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ABSTRACT OF THE THESIS 

 
 
 

Control and Optimization of Wave-Induced Motion of Ramp-Interconnected Craft for 
Cargo Transfer 

 
 
 

by 
 
 
 

Jacob Toubi 
 
 

Master of Science in Engineering Sciences (Mechanical Engineering) 
 
 

University of California, San Diego, 2009 
 
 

Professor Miroslav Krstic, Chair 
 
 
 

A two vessel interconnected by a ramp system was modeled using 

SimMechanics toolbox in Simulink. Both vessels were modeled as half cylinders and 

the ramp as a rectangular solid. Although the equations of motion for the system were 

derived, the SimMechanics model proved to be more efficient to implement certain 

control and optimization techniques and is emphasized throughout the thesis. This 

thesis documents different attempts to control and optimize the various motions of the 

system using passive and active methods. The passive methods include extremum 

seeking tuning of two parameters namely the ramp length and wave heading angle to 

reduce the pitch angle amplitude at the joint connecting the ramp and T-Craft. The 



 

xii 

second method employed mimics automotive shock absorbers to reduce relative 

motion between each vessel and ramp to reduce overall ramp motions. In both 

methods the results concur with the goal of the problem statement of stabilizing 

ramp/vessel motions. Applying the ES algorithm to tune the ramp length and wave 

heading angle reduced the pitch amplitude by 67% (from approx. 15 to 5 degrees) and 

applying the shock absorbers in the pitch joint case of the system reduced the pitch 

angle amplitude by two orders of magnitude (from approx. 10 to 0.1 degrees). 

The active method explored is installing a control moment gyroscope on the T-

Craft to stabilize its roll motion. The results show that roll motion is decreased to lie 

within the stability region of one degree in amplitude and have a feasible size and 

weight requirement.   
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Introduction 

The transfer of cargo over a ramp from a LMSR (large, medium-speed, roll-

on/roll-off) vessel to a connector vessel in high sea states represents significant 

challenges for ship and control system designers. The goal of this project is to 

determine the actuation/sensing requirements and to devise control and real-time 

optimization algorithms to minimize the amplitude of oscillation of the interconnected 

ramp primarily in the roll, pitch and heave degree of freedoms (DOF). 

The system investigated consists of a Sea Base (LMSR) and a T-Craft (the 

connector vessel) connected by a ramp in a bow to stern configuration.  Due to the 

nonlinear nature of the three interconnected dynamical model the resulting motions are 

quite complex and as the initial effort the system was modeled non-analytically in 

MATLAB, Simulink, and SimMechanics. In order to simplify the problem, yet 

maintain a reasonable level of complexity, a few assumptions and simplifications were 

made. For example, the simplification of the ocean surface is modeled as linear waves 

which are a superposition of sine waves with differing phase that exert surface forces 

through a spring-damper connection at various points on the vessels. This model is 

based on the ocean behaving like a second order differential equation system. The 

vessels were modeled as half cylinders and the ramp as a rectangular solid with three 

joint cases explored that connect each ship to the ramp, which influence the amplitude 

of the angle oscillations per degree of freedom considered as discussed below.  

Following the initial SimMechanics model implementation the equations of 

motion were derived for the system using Lagrangian mechanics. However, the 
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SimMechanics model proved to be a simpler way to perform control and optimization 

techniques without the need to alter the equations of motion. The solution to the 

equations of motion provides a cross reference with the results of the rigid body 

simulations which validate each other. 

One of the approaches used to minimize the amplitude of the ramp angles 

involved applying the extremum seeking algorithm to optimize the ramp length and 

wave heading angle. Extremum Seeking (ES) was first implemented in a 2D sense to 

optimize the ramp length for a set wave heading angle to achieve the desired minimum 

angle amplitudes. It is named 2D to correspond to the amount of directions the system 

moves namely heave (z-axis) and surge (x-axis). The 3D case refers to optimizing 

both ramp length and wave heading to achieve the minimum values for a given cost 

function on the desired parameters. In our case the cost function was a function of 

ramp length and pitch angle amplitude between T-Craft and ramp. The three motions 

accounted for in the 3D case are heave, surge, and yaw (rotation about z-axis). 

To predict the neighborhood of a local minimum off line 3D cost plots were 

produced, which show the dependence of the angle amplitudes to ramp length and 

wave orientation. A longer ramp has been found to decrease the magnitude of the pitch 

angle oscillation, but fails to decrease the roll angle magnitudes. In addition if the 

ramp length is increased beyond a reasonable range it introduces an undesirable 

weight issue and infeasibility in the design. In order to force the ES algorithm to 

optimize to a feasible ramp length a penalty on the ramp length was introduced. This 

ramp penalty multiplied by the pitch angle amplitude per time step of simulation 

comprised the cost function. The penalty and multiplication of the terms in the cost 
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function increased the convexity of the cost plots, making the local minimum more 

pronounced.  

Another approach to decrease the amplitude of angle oscillations was to 

implement passive control techniques into the system. Passive control is integrated 

into the system by mimicking automotive shock absorbers with springs and dampers 

in the joints between each vessel and the ramp. The results confirmed the intuition and 

showed a decrease in angle oscillations for the three DOFs in the joints (pitch, roll, 

yaw) considered.  

The final method of control implemented on the T-Craft is the active control 

moment gyroscope, which is designed to stabilize roll motion. The roll motion of the 

T-Craft, coupled with the precession motion of the gyroscope is modeled using the 

equations of motion derived from the conservation of angular momentum law. A 

linear controller is then designed to influence the gyroscope’s precession rate, which 

provides an opposing moment in the roll DOF. The results successfully show that a 

control moment gyroscope can reduce the roll angle amplitudes of the T-Craft to allow 

for safe cargo transfer between the Sea Base.
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Chapter 1. System Models  

1.1. Ship Model 

The SimMechanics model consists of a series of rigid bodies acted on by a 

wave force model at the corners of each vessel. Each ship is modeled as a monohull as 

shown in Figure 1.1 meaning there is only one hull submerged beneath the water. 

Although this is an over simplifying assumption of the actual shape, the control 

techniques executed can be readily applied to any vessel model desired. Figure 1.2 

shows the SimMechanics representation of the system model. The specific mass and 

dimensions of the system’s individual components are given in Table 1.1. 

 

.  

Figure 1.1: System model using half-cylinder ships and rectangular ramp 

 
Figure 1.2: SimMechanics representation of the system model 
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Table 1.1: Vessel dimensions and mass used in SimMechanics model 

Variable T-Craft Sea Base Ramp Abrams Tank 

Length [m] 40 200 10 7.9 

Width [m]  16 30 4 3.7 

Height [m] 8 15 0.05 2.4 

Radius [m] 8 15 --- --- 

Mass [metric ton] 2,721 45,359 16 6 

 

After picking the shape of the ship models we need to calculate the moment of 

inertia for the half-cylinder and rectangular prism about the three axes. Note: in the 

SimMechanics model, the coordinate system is rotated with respect to the figures 

below.  

 

Figure 1.3: Half-cylinder model of ships 

 

Figure 1.4: Rectangular prism model of ramp 
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The forthcoming terms and calculations are essential in the study of ship 

hydrostatics and are adapted from Biran [2]. The waterplane area wA is a horizontal 

slice of a ship’s hull at the water level and equals the length of the ship multiplied by 

the horizontal distance (c) from the starboard (right) to port (left) measured at the 

water level. The length of the vessel goes into the paper in Figure 1.5. The vertical 

distance from the water level to the bottom of the hull defines the drought (T) and can 

be determined from the drought scale that usually exists on the side of the hull. Figure 

1.5 depicts the cross section of a half cylinder ship with the relevant variables to 

calculate the waterplane area.  

 

Figure 1.5: Cross section of half cylinder ship submerged in water 

To express the variable c in terms of the drought, T and radius of the cylinder 

(r), we apply the Pythagorean Theorem on one of the right triangles above the 

waterline.  

 ( ) ( )
2

2 22 2 22 2 2
2

c
r T r c r r T Tr T

  + − = ⇒ = − − = − 
 

 (1.1) 

The waterplane area is then expressed as 
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 ( )22 22 2 2WA cL L Tr T L r r T= = − = − −  (1.2) 

Another important metric is the metacentric height, iGM  and greatly 

influences the stability of the ship. The variable i  differentiates between the transverse 

and longitudinal metacentric heights, which apply to roll and pitch motions and are 

denoted RGM  and PGM  respectively. The transverse metacentric height equals the 

distance from the ship’s center of gravity (G) to its metacenter (M) for heel (roll) 

motion. The longitudinal metacentric height is computed the same way except the 

metacenter used corresponds to pitch motion. For small angles of heel, the metacenter 

is assumed to be a fixed point thus allowing us to use the aforementioned definition of 

metacentric height. To describe the metacenter we first need to define the center of 

buoyancy. The center of buoyancy (B) defines the center of the volume of water 

displaced by the vessel’s hull and lies below the center of gravity for stable ship 

geometries. When a ship heels (rotates about the x-axis) clockwise, the point B 

displaces laterally, which is to the right in Figure 1.6. The metacenter (M) is the 

intersection point between the original vertical line through the center of buoyancy, 

and the new vertical line through the translated center of buoyancy.  
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Figure 1.6: Ship heeling to show metacenter 

The metacentric height is also given by the equation 

 GM KB BM KG= + −  (1.3) 

where KB is the distance from the keel to the center of buoyancy, BM is the distance 

from center of buoyancy to the metacenter, and KG is the distance from the keel to the 

center of gravity. These terms were calculated for the half cylinder model in Oonk [6] 

and only the results are presented here. Note for the calculations below the keel is 

located at z = 0. 
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 (1.7) 

where PI and RI are the moment of inertias of the waterplane area about the respective 

axis of inclination, and ∇  is the volume of the immersed part of the ship. The volume 

is the area of the submerged hull multiplied by the length of the ship and is given as 

 ( ) ( ) 







−−−−







 −
=∇ − 2212 cos TrrTr

r

Tr
rL  (1.8) 

After combining the individual terms we arrive at the final metacentric height 

values. These values are used to calculate the roll and pitch spring constants for the 

SimMechanics model as will be expanded on below. 

 R RR RGM KB BM KG= + −  (1.9) 
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 (1.10) 

 P PP PGM KB BM KG= + −  (1.11) 
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( ) ( )

3

22 1 2

1 12
2 2

cos
P

wL
r

GM T
r T

L r r T r r T
r

−

= + −
 −  − − − −    

 (1.12) 

1.2. Joint Models 

There are three joint models proposed to connect each vessel with the ramp; 

they include: pitch (P) joint, pitch-roll (PR) joint, and pitch-roll-yaw (PRY) joint. The 

complexity of implementing each joint increases with each DOF. The simplest is the 

pitch joint, which acts like a door hinge and is the one emphasized throughout the 

research. Figure 1.7 shows each DOF separately to visualize its motion; however the 

above joint types go from one to three DOF per joint. 

 

Figure 1.7: Degree of freedoms in joints between ship and ramp 

If the system’s equations of motion are derived for each joint model, the 

number of first order differential equations describing its motion would be: 16 for a 

pitch joint, 20 for a pitch-roll joint and 24 for a pitch-roll-yaw joint. Using the pitch 

joint system model, we have eight DOFs. If we first assume the ship-ramp-ship system 

to be a rigid body we arrive at the usual six DOFs of a rigid body: surge, sway, heave, 

roll, pitch and yaw. These correspond to all translational and rotary motion along a 

Euclidean coordinate system. The pitch joint introduces two more DOFs where the T-
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Craft and Sea Base can pitch independently of the system at large. Summing the two, 

gives eight DOFs and since each DOF can be thought of as a 2nd order differential 

equation, given the proper change of variables can be expressed as a system of 16 first 

order differential equations as shown below. The same process can be used to arrive at 

number of equations required for the other two joint models. 

1.3. Open Loop Response of System 

Using the above calculated ship parameters in the SimMechanics model and 

applying the wave force inputs gives the open loop response of the system. The 

responses are considered baseline values of the state variables, which through control 

and optimization can be reduced or stabilized. The most important state variables to 

consider for our goal of safe cargo transfer are roll, pitch and heave. The responses of 

these variables and their dependence on the three joint models are shown below 

separately for the T-Craft, Sea Base and ramp. The ramp length value used is 10 m 

and the heading angle is π/4 radians. 

The results indicate that the joint type primary influence the roll DOF. As the 

top subplots in Figure 1.8 and Figure 1.10 shows, the roll amplitude is reduced for the 

PR and PRY-joint cases compared to the response for the P-joint. Note that the roll 

evolution of the ramp for the PRY-joint case (top subplot of Figure 1.10) has similar 

amplitude to that of the P-joint because springs were inserted between the roll and yaw 

DOFs due to unstable behavior. The bottom two subplots on the figures corresponding 

to pitch and heave motions do not vary much with the joint case as indicated by the 

overlap.  
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Figure 1.8: T-Craft open loop roll, pitch, heave 

 

Figure 1.9: Sea Base open loop roll, pitch, heave 

 

Figure 1.10: Ramp open loop roll, pitch, heave

0 5 10 15 20 25 30
-1

0

1
Open Loop System Response: T-Craft

R
ol

l [
de

g]

 

 

0 5 10 15 20 25 30
-0.1

0

0.1

P
itc

h 
[d

eg
]

0 5 10 15 20 25 30
-5

-4

-3

-2

Time [sec]
H

ea
ve

 [m
]

P-Joint

PR-Joint
PRY-Joint

0 5 10 15 20 25 30
-1

0

1
Open Loop System Response: Sea Base

R
ol

l [
de

g]

 

 

0 5 10 15 20 25 30
-0.02

0

0.02

P
itc

h 
[d

eg
]

0 5 10 15 20 25 30
-7

-6.5

-6

Time [sec]

H
ea

ve
 [m

]

P-Joint

PR-Joint
PRY-Joint

0 5 10 15 20 25 30
-1

0

1
Open Loop System Response: Ramp

R
ol

l [
de

g]

 

 

0 5 10 15 20 25 30
-10

0

10

P
itc

h 
[d

eg
]

0 5 10 15 20 25 30
-0.5

0

0.5

Time [sec]

H
ea

ve
 [m

]

P-Joint

PR-Joint
PRY-Joint



 

13 

Chapter 2. Ocean Wave Model 

Environmental disturbances for ship modeling exist as waves, wind and ocean 

currents. In the forthcoming simulations we will neglect the direct effect of the wind 

and ocean current and instead only consider the wave disturbances that are modeled as 

linear plane waves. The basic assumptions of the linear wave theory are: the sea water 

is incompressible, inviscid, no surface tension, the fluid motion is irrotational, and the 

wave amplitude is significantly smaller than the wavelength. The linear wave theory 

allows us to express the wave model as a superposition of sine waves with differing 

frequencies distributed according to a spectrum. The resulting wave will produce an 

irregular pattern and is considered a useable approximation to model real seas [2]. We 

can represent the sea surface profile equation as a superposition of sine waves as  

 
1

sin( )
N

i i i i
i

A t k xζ ω ε
=

= − +∑  (2.1) 

where iA is the wave amplitude, iω is the wave frequency, ik is the wave number andiε

is a random and uniformly distributed number between 0 and 2π. As the number of 

waves superimposed,N , increases this formulation produces an irregular sea pattern 

that marches both in time and 1-D space.  

To characterize the waves according to standard sea state (SS) codes we need 

to formulate the concept of significant wave heightSH and define two types of wave 

heights. Figure 2.1 shows two types of trough-to-crest heights. 1H  measures the 
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trough-to-crest when they lie on opposite sides of the mean sea level, while 2H

measures the height on the same side of the sea level. Experimentation shows that the 

former height, 1H , follows a Raleigh distribution 

 
2

( ) exp
4 8o o

H H
f H

m m

 
= − 

 
 (2.2) 

with mean height of  

 
0

( ) 2m oH Hf H dH mπ
∞

= =∫  (2.3) 

where om is the variance of the wave distribution. The mean of the highest 

third of the wave heights is called the significant wave height, SH . 

 ( )
o

S H
H Hf H dH

∞
= ∫  (2.4) 

where
1

 is given by ( )
3o

o H
H f H dH

∞
=∫  

The significant wave height corresponds to the wave height estimated by a 

trained observer. The maximum wave height naturally depends on the number of 

waves superimposed and it was shown in Bonnefille (1992) that max SH H  varies from 

1.2 for 10N = to 1.9 for 1000N = . We have chosen arbitrarily to use 100N = for the 

following sea elevation computations. 
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Figure 2.1: Two Types of Wave Height 

 

Figure 2.2: PM-Spectrum for Sea State 
3, 4

The main result born from the significant wave height is the wave spectrum

( )S ω , which is a distribution of the wave energy verses angular frequency for a given 

sea state. In Figure 2.2 the Pierson-Moskowitz (PM) Spectrum is depicted for waves 

of SS 3 where 0.5 1.25SH = − and SS 4 where 1.25 2.5SH = − [3]. As shown, the larger 

the wave height the more the energy of the modal frequency wave is shifted to a lower 

frequency range. The PM-Spectrum is given by the following equation 

 ( )5 4 2( ) exp m sS A Bω ω ω− −= −  (2.5) 

where 3 2 2 4A = 8.1 10  m sg− −× and 2 4B = 3.11  s
S

H − . 

We can find the modal frequency or peak frequency present in the PM-

Spectrum by requiring that 

 

( ) ( )6 4 5 4 5

( )
0

5 exp exp 4 0

o

o o o o o

dS

d

A B A B B

ω ω

ω
ω

ω ω ω ω ω

=

− − − − −

  = 
 

⇓

   − − + − =   

 (2.6) 
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Solving for oω yields  

 4
4

5o

B
ω =   (2.7) 

Consequently the maximum spectrum value, which can be used to find a 

transfer function or state space model of the wave is found. 

 ( ) ( )5
exp 5 / 4

4max o
o

A
S S

B
ω

ω
= = −  (2.8) 

The first moment or variance of the wave spectrum is used in designing linear 

wave response models and is given byom and σ can be thought of the RMS value of 

the wave spectrum. 

 ( )2

0 4o

A
m S d

B
σ ω ω

∞
= = =∫  (2.9) 

The PM-Spectrum is empirically formulated using measured sea characteristics 

and corresponds to a first order approximation of fully developed seas in the North 

Atlantic with large depth, no swell and unlimited fetch, which means the wave shape 

moves but there is no mass transport [3]. For moving ships this approximation is 

sufficient, consequently a higher order approximation that predicts drift is necessary 

for static vessels.  

It is known that the total energy of N wave components is half of the sum of 

all wave component amplitudes squared.  Given how the spectrum is defined to 
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correspond to the wave energy, the amplitude of each wave component can be 

determined by  

 21
( )

2i iS Aω ω∆ =  (2.10) 

Figure 2.3 shows the result after plugging each amplitude value per time step 

into the sea elevation profile equation above while holding the space variable constant. 

This sea profile vectorζ is used below (section 2.2) to calculate the force term 

amplitudes for the respective DOFs acting on a floating body. Holding time constant 

and varying the space variable produces a similar irregular shape. The evolution of the 

wave in both space and time is shown in Figure 2.4. It is the space component of the 

wave profile that is used to determine the proper phase delay of the wave force acting 

on the ship.  For instance, as the distance the wave travels increases, phase increases 

accordingly.  
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Figure 2.4: Sea elevation with space and time for SS 4 

2.1. Ocean Wave Response Model 

For closed loop systems and control analysis it is desired to form linear wave 

response models in transfer function or state space form and proves to be more 

practical than the spectrum representation of an ocean surface. This approach is based 

on determining the coefficients of the wave response transfer function by comparing 

its output to the spectral density function ( )S ω of the empirical approach. A linear 

approximation can be found by expressing the output as a linear filter.  

 ( ) ( ) ( )y s h s w s=  (2.11) 

where ( )w s  is zero mean Gaussian white noise process with unity power 

across the spectrum, ( )Φ ω 1.0w = , and ( )h s  is a transfer function to be determined. 

The power spectral density functions for ( )y s  can be written as 
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 ( ) ( ) ( ) ( )2 2
Φ Φ ωy wh j h jω ω ω= =  (2.12) 

The final 2nd order linear wave response transfer function approximation with a 

damping term was introduced by Saelid et.al (1983) as 

 ( ) 2 22 o o

K s
h s

s s
ω

λω ω
=

+ +
 (2.13) 

The gain constant is defined as 2 oKω λω σ= , σ  describes the wave intensity, 

λ  is a damping coefficient and oω  is the wave peak frequency. Hence, the power 

spectral density function of the output ( )y s  can be written as 

 ( ) ( ) ( )
( ) ( )

2 2
2

2 22 2

4
Φ

4

o
y

o o

h j
λω σ ω

ω
ω ω λ

ω
ω σ

= =
+ +

 (2.14) 

The parameters λ  and σ  can be varied to better fit the Pierson-Moskowitz 

empirical spectrum. Since the ultimate goal is to design ( )Φ y ω to approximate ( )S ω

and their respective maximum values are obtained for oω ω= this yields 

 

( ) ( )

( )2 5
exp 5 /

4

Φ

4

y o o

o

S

A

B

ω ω

σ
ω

=

= −

c  (2.15) 

The damping coefficientλ can be determined by requiring the energy, that is 

the areas under ( )Φ y ω and ( )S ω , to be equal. One method of doing this is to fit 
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( )Φ y ω on ( )S ω in a least-squares sense, which results in0.26λ ≈ for the PM-

Spectrum and is independent of the significant wave height for fully developed sea 

models. 

The 2nd order linear wave spectrum can also be transformed into the time 

domain and represented in state space form by defining 1 2 2,  wx x x y= =& & which 

eventually yields 

 

[ ]

1 1
2

2 2

1

2

0 1 0

2

0 1

o o

w

x x
w

Kx x

x
y

x

ωω λω
      

= +      − −      

 
=  

 

&

&
 (2.16) 

As a further approximation to white noise filtered through a 2nd order transfer 

function we can use a sine wave with the same dominating frequency oω  and a 

stochastic white noise additive component in the form  

 ( ) ( )sin ( )oy t A t w tω ϕ= + +  (2.17) 

 Representing the ocean wave as a sine wave allows us to define the time at 

which the wave meets each ship by modifying the phase delay and can be used to 

orient the wave front relative to the ship system axis. As seen from Figure 2.5 the sine 

wave model is an ad hoc approximation to the 2nd order transfer function model by 

differing in phase, frequency components and amplitude in certain regions. However, 

it is useful when implementing the model in SimMechanics for the reasons mentioned 

above.  
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Figure 2.5: A transfer function and sine wave model for wind-generated ocean waves 

 

Table 2.1: Parameter values of wave model 

Parameter Value 

Peak Frequency, oω  [rad/s] 0.79 

Damping Coefficient, λ  0.26 

RMS of Wave Spectrum, σ  0.63 
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B [ s-4] 0.50 
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affect the motion. The term used to describe the induced force caused by the waves 

that act on a semi-immersed body is restoring force [2]. These restoring forces arise 
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restoring forces tend to return a floating body to its initial position, while no opposing 

hydrostatic restoring forces exist in the surge, sway or yaw directions. In other words, 

since these motions are analogous to a spring-damper system their respective spring 

constants and damping coefficients are set to zero.  

There are two primary effects that influence the forces acting on a vessel. 

There are the 1st order effects that are due to the wave frequency motion as described 

above and the 2nd order effects that comprise the wave drift forces, which tend to 

behave as slowly varying bias terms (Wiener process). The above transfer function 

wave motion model can be used to describe the forces in each DOF desired as 

 
1 12 2

1 2

2wave
o o

K s
F w d

s s

d w

ω

λω ω
= +

+ +

=&
 (2.18) 

where 1w and 2w  are Gaussian white noise processes. However, in the 

forthcoming simulation results the transfer function force model is not used, rather the 

method below, which uses an approximating sine wave force.  

An approximation to the equations of motion that govern the roll, pitch and 

heave take the form of an uncoupled second order dynamical system [2]. The symbols 

used follow the convention by Society of Naval Architects and Marine Engineers 

(SNAME) and International Towing Tank Conference (ITTC) Dictionary of Ship 

Hydrodynamics.  The equation for roll motion with linear damping and linear waves is 

given as 

 ( )2 2 22
2 sin ,  ,  /∆

Ro
W R R

R

gGM
b t i J

iφ φ φ

πζ
φ φ ω φ ω ω ω

λ
+ + = = =&& &  (2.19) 
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where b is a linear damping coefficient, φω is the ship natural frequency in roll, 

oζ is the wave amplitude, Wω is the wave angular frequency, RGM is the metacentric 

height in roll, Ri  is the mass radius of gyration in roll and for a half cylinder equals 

( )2

1 16
/ 2 3

2 9ri r w
π

= − ≈ where w= width of half cylinder, RJ is the mass moment 

of inertia, ∆ is the mass displacement from the floating body. The roll equation can be 

rearranged to:  

 ( )2
2 ∆ ∆ sino

R RR R WJ J b g GM g GM t
πζ

φ φ φ ω
λ

+ + =&& &  (2.20) 

The undamped uncoupled pitch equation is: 

 
( )

( )
2 2 2

sin ,  ,  ,  
cos

P

E E E
E P

gGM
t T

T c v iθ θ θ

π λ
θ ω θ ω γ ω ω ω

α
+ = = = =

−
&&  (2.21) 

where θω  is the ship natural frequency in pitch,γ is the maximum pitch 

amplitude, Eω is the angular frequency of encounter (number of waves seen by the 

ship per unit time), Pi is the mass radius of gyration in pitch and equals 

( )2 2
2

1 16 1
/ 2 3

4 9 12pi r L L
π

 = − + ≈ 
 

where L is length,vis the ship speed,c is the 

wave celerity, α is the angle between ship speed and wave celerity. The pitch equation 

can be rearranged to yield:  

 ( )∆ ∆ sinP PP EJ g GM g GM tθ θ γ ω+ =&&  (2.22) 
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The uncoupled heave equation is: 

 ( ) ( )33 cosw w o Em A z bz gA z gA tρ ρ ζ ω+ + + =&& &  (2.23) 

where 33A  is the added submerged mass in the heave DOF due to the heave 

motion, wA is the waterplane area of the floating body, which both depend on the 

waves’ frequency of oscillation.  

The two metacentric heights and waterplane area used in the simulations were 

calculated for a half-cylinder model of the two ships.  Since no explicit expression for 

the damping coefficients were available they were estimated in an ad hoc manner 

provided the result complied with intuitive ship motions. Summarizing the resulting 

spring and damping constants we get 

 
∆ ,  

  0.01

∆ ,  

2 ,  ,  

R Proll pitch heave w

R z

k g GM k g GM k gA

b J b b b bφ

ρ= =

=

=

= =
 (2.24) 

Since the waves are modeled as linear plane waves the heave DOF force is 

used to model the wave forces. Hence, the final wave force form implemented in the 

SimMechanics model is 

 ( )cosave o ow wF gA tρ ζ ω ϕ= +  (2.25) 

where the phase delay depends on the distance the wave travels until reaching 

the reacting body. 
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The above expressions were used in the SimMechanics model to simulate the 

ocean wave and restoring force disturbances by its analogous spring damper system. 

Although these equations were derived for a single ship, rather than an interconnected 

ship-ramp-ship system, nevertheless the resulting spring and damper coefficients were 

used as an estimate for the system’s motion. In reality there exists some coupling 

between the various DOFs, which these equations do not capture. For example, the 

combination of roll and pitch motions will induce yaw and heave motions. Also, 

during the roll motion, the center of buoyancy will move and cause some pitch 

motion. It is important to understand the limitations of these equations, which fall 

short at describing the full behavior of a floating body. 

2.3. Phases due to Approaching Wave Front 

Since the ocean surface is modeled as linear plane waves in the x-y plane, we 

assume there is some delay between when two points of the system feel the impact of 

the waves. This delay is accounted for in the phase term of the wave force and is 

proportional to the distance the wave travels. The line perpendicular to the direction of 

travel is called the wave front and the distance from the wave front to the points 1-8 is 

proportional to the phase by the equation 

 
Distance

2Phase π
λ

=  (2.26) 

where λ is the wavelength of the ocean wave. This equation fits our intuition 

in that a distance that is a multiple of the wavelength has a 2π phase, which is 

equivalent to a zero phase. A floating body with length equal to the wavelength of a 
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wave and exposed to a wave front perpendicular to its direction of motion will not 

experience any rotary motion since the back and front of the body are struck by the 

wave with the same phase causing only translational heave to exist. The angle � is 

called the heading angle, which is the angle between the wave front and the horizontal 

line that is parallel to the ship-ramp-ship system. The heading angle ranges from 0 to 

π, and because of symmetry does not need to go a full circle. When 0α = the wave 

encounters the T-Craft first specifically points 1 and 2 and when α π= points 7 and 8 

of the Sea Base encounter the wave first. The auxiliary angle / 2ϕ π α= − is used for 

ease of analysis. 

In Figure 2.6 the diagonal lines that originate at the wave front and end at each 

of the eight point of the system represent the distance the wave travels and is used to 

find the relative phase shifts of the wave forces. For ease of visualization the phases 

are derived for the two intermediate ranges of heading angle: ( )0, / 2α π∈ and

( )/ 2,α π π∈ , which corresponds to ( )/ 2,0ϕ π∈ and ( )0, / 2ϕ π∈ − respectively, 

where L’Hôpital’s rule can be applied to arrive at the end point phase values. 

However, it is straight forward to arrive at the end point cases through inspection and 

only use L’Hôpital’s for verification. It should be noted that this mathematical 

construction of modeling the phase holds under the assumption that the six degrees of 

freedom of the floating body are relatively small. The final phases are used in the 

SimMechanics model to represent the incoming waves.  
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Figure 2.6: Wave front and system for ( )0, / 2α π∈  (left) and ( )/ 2,α π π∈  (right) 

In the first range of heading angles ( )0, / 2α π∈ or ( )/ 2,0ϕ π∈ points 1, 2, 5, 

7 have fairly obvious phase’s using simple geometry and are given as  

 
( ) ( )/ 2 / 2 sin / 2

Phase(1) 2sb tcw w π ϕ
π

λ
− −

=  (2.27) 

 
( ) ( )/ 2 / 2 sin / 2

Phase(2) 2tc sbw w π ϕ
π

λ
+ −

=  (2.28) 

 
( )sin

Phase(5) 2
tc rampL L ϕ

π
λ

+
=  (2.29) 

 
( )sin

Phase(7) 2
tc ramp sbL L L ϕ

π
λ

+ +
=  (2.30) 

At the end points these phases simplify to rational numbers thus circumventing 

the use of L’Hôpital’s rule. We will now derive the phase shifts for points 3, 4, 6, 8 for 

the range ( )0, / 2α π∈ . 
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Figure 2.7: Geometry for deriving phase shift for point 3 (P3) 

Using Figure 2.7 we first solve for the following variables 

( ),  tan ,  tan / 2
cos

tc
tc tc sb tc

L
c d L e L w wα α

α
= = = − −     

We then solve for b, using the above expression  

( )cos tan / 2 costc sb tcb e L w wϕ α ϕ= = − −      

It is clear that P3 = c - b, subtracting yields the formula for P3 in terms of known 

quantities: 

( )3

cos
/ 2 cos

sincos
2

tc
sb tctc

L
P L w w

ϕ
ϕ

π ϕϕ

 
= − − −    − 

 

  

The phase shift for point 3 then becomes 
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 ( )cos 2
Phase(3) / 2 cos

sincos
2

tc
sb tctc

L
L w w

ϕ π
ϕ

π ϕ λϕ

 
   

= − − −      −    

 (2.31) 

In the geometry for point 4, only the expression for e changes by subtracting 

the T-Craft width term 

( ) ( )tan / 2 tan / 2tc sb tc sbtc tc tce L w w w L w wα α= − − − ⇒ − +  

Plugging in the new expression for e, gives the following phase shift for point 4 

 ( )cos 2
Phase(4) / 2 cos

sincos
2

tc
sb tctc

L
L w w

ϕ π
ϕ

π ϕ λϕ

 
   

= − − +      −    

 (2.32) 

Deriving the above variable expressions for point 6 we have 

 

Figure 2.8: Geometry for deriving phase shift for point 6 (P6) 

( ) ( ),  tan ,  tan
cos

tc ramp
tc ramp tc ramp sb

L L
c d L L e L L wα α

α

+
= = + = + −       

( )cos tan costc ramp sbb e L L wϕ α ϕ = = + −    
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Solving for the phase shift in the usual way gives    

 ( ) cos 2
Phase(6) cos

sincos
2

tc ramp
tc ramp sb

L L
L L w

ϕ π
ϕ

π ϕ λϕ

 
 +   

= − + −      −    

 (2.33) 

Deriving the above variable expressions for point 8 we have 

 

Figure 2.9: Geometry for deriving phase shift for point 8 (P8) 

( ) ( ),  tan ,  tan
cos

tc ramp sb
tc ramp sb tc ramp sb sb

L L L
c d L L L e L L L wα α

α

+ +
= = + + = + + −

( )cos tan costc ramp sb sbb e L L L wϕ α ϕ = = + + − 

 ( ) cos 2
Phase(8) cos

sincos
2

tc ramp sb
tc ramp sb sb

L L L
L L L w

ϕ π
ϕ

π ϕ λϕ

 
 + +   

= − + + −      −    

 (2.34) 

A summary of the phases for the boundary condition / 2ϕ π= is given below  
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( )

( )

Phase(1) Phase(2) 0

2
Phase(3) Phase(4)

2
Phase(5) Phase(6)

2
Phase(7) Phase(8)

tc

tc ramp

tc ramp sb

L

L L

L L L

π
λ

π
λ

π
λ

= =

= =

= = +

= = + +

 (2.35) 

A summary of the phases for the boundary condition 0ϕ = is given below. 

Note L’Hôpital’s rule was used for points 3, 4, 6, 8 since plugging in 0ϕ = would 

cause the not well defined expression ∞ −∞  to define the phase. L’Hôpital’s rule 

circumvents this problem. 

 

Phase(5) Phase(7) 0

2
Phase(6) Phase(8)

2
Phase(1) Phase(3)

2 2

2
Phase(2) Phase(4)

2 2

sb

sb tc

sb tc

w

w w

w w

π
λ

π
λ

π
λ

= =

= =

 = = − 
 

 = = + 
 

 (2.36) 

A summary of the phases for the angle range ( )/ 2,0ϕ π∈ is given below  
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( ) ( )
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   

= − − −      −    


  

= − − +      −   

( )

( )

( )

( )

2

2
Phase(5) sin

cos 2
Phase(6) cos

sin
cos

2

2
Phase(7) sin

cos
Phase(8)

sincos
2

tc ramp

tc ramp
tc ramp sb

tc ramp sb

tc ramp sb
tc ramp sb

L L

L L
L L w

L L L

L L L
L L L

π
λ

π
ϕ
λ

ϕ π
ϕ

π ϕ λϕ

π
ϕ
λ

ϕ
π

ϕ







= +

 
 +   

= − + −      −    

= + +

+ +
= − + +

 − 
 

2
cossbw

π
ϕ

ϕ λ

 
   

−  
  

  

 (2.37) 

The derivation for the heading angle range of ( ]0, / 2ϕ π∈ −  is not shown, but 

the final results are given below.  
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( ) ( )

( ) ( )

cos 2
Phase(1) / 2 cos

sincos
2

cos 2
Phase(2) / 2 cos

sincos
2

Phase(3)

sb ramp tc
sb ramp tc sb tc

sb ramp tc
sb ramp tc tc sb

sb

L L L
L L L w w

L L L
L L L w w

L

ϕ π
ϕ

π ϕ λϕ

ϕ π
ϕ

π ϕ λϕ

 
  + + 

= − + + − −  
    −    

 
  + + = − + + − +  

    −    

= ( ) ( )

( ) ( )

cos 2
/ 2 cos

sincos
2

cos 2
Phase(4) / 2 cos

sincos
2

2
Phase(5) sin

Phase(6)
cos

2

ramp
sb ramp sb tc

sb ramp
sb ramp sb tc

sb

sb

L
L L w w

L L
L L w w

L

L

ϕ π
ϕ

π ϕ λϕ

ϕ π
ϕ

π ϕ λϕ

π
ϕ

λ

π
ϕ

 
  + 

− + − −  
    −    

 
  + 

= − + − +  
    −    

=

=
 −


cos 2
cos

sin

Phase(7) 0

2
Phase(8) sin

2

sb sb

sb

L w

w

ϕ π
ϕ

ϕ λ

π π
ϕ

λ

 
   

− −  
      

=

 = − 
 

 (2.38) 
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Chapter 3. Lagrangian Mechanics Approach to 

Deriving Equations of Motion of Ship System 

with Pitch Joint 

Lagrangian mechanics is an approach used to derive the equations of motion of 

a dynamical system and is based on the principle of conservation of energy. The 

method can be modified to account for dissipative forces as well that are a function of 

the first derivative of a generalized coordinate. Since in our model the effects from 

gravity and buoyancy are modeled as a second order spring and damper system this 

modification is employed due to the damping. Generalized coordinates are the 

minimum amount of coordinates required to model the system and prove to 

significantly simplify the analysis and shown in Table 3.1. Counterclockwise angles 

are assumed positive in the derivation. The system modeled here includes a pitch joint 

between each ship and ramp resulting in 8n= degree of freedoms.  

We begin by defining the Lagrangian L T V= − as the difference between the 

kinetic and potential energy of the system. Then we construct Rayleigh’s dissipation 

functionD to include all relevant terms to describe the system. Then we derive the 

work done by the generalized applied forces AQ . Once the intermediate steps for each 

of the aforementioned items are complete the results are plugged into equation (3.1) 

and solved for the equations of motion in second order form. A simple change of 

coordinates can change it to a first order form as shown by equation (3.20). Following 

the resulting equations of motion, their respective solutions are given and include the 

position and velocity of the system states.  
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Throughout this section it is assumed the reader can follow the flow of the 

derivation by the order of equations being presented and is why only terse language is 

used for more guidance. 

Table 3.1: Generalized coordinates for deriving equation of motion  

Generalized Coordinate Degree of Freedom Units 

1q  Surge (x) [m] 

2q  Sway (y) [m] 

3q  Heave (z) [m] 

4q  Roll (about x) [rad] 

5q  Yaw (about z) [rad] 

6q  Pitch (about y) [rad] 

7q  Pitch of T-Craft [rad] 

8q  Pitch of Sea Base [rad] 

 

Kinetic Energy = T  

Potential Energy: G SV V V= +  (work done by gravity and by springs) 

Work done by Applied Force: 
1 0

( ) ( )
tn

A i i
i

Q Q t q t dt
=

=∑∫ & , where iQ =  generalized applied 

force/moment and iq =&  generalized velocity coordinate  

Lagrangian: L T V= −  

Lagrange’s Equation with Dissipation Function:  

 i
i i i

d L L D
Q

dt q q q

 ∂ ∂ ∂
− + = ∂ ∂ ∂ & &

 (3.1) 
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Rayleigh’s Dissipation Function (represents damping force):     2

1

1

2

n

i i
i

D b q
=

= ∑ &  

ib =  damping coefficient of iq  DOF 

iqD D=∑ , where 
iqD =  the dissipation function due to motion in the iq  DOF 

Let 3 3 34 4Tot TC SBb b b= + , total damping in 3q  (heave) DOF 

In the system model, damping is present only in the following DOFs: heave, roll and 

pitch. 

 
3

2
3

32q Tot

q
D b=

&
 (3.2) 

 ( )
4

2
2 2 24

4 3 3cos
2q TC TC SB SB

q
D q w b w b= +

&
 (3.3) 

( ) ( )
7 ,8

2 2 2 2
2 27 7 8 8

7 3 7 8 3 82 2 cos 2 2 cos
2 2 2 2q TC TC TC SB SB SB

q q q q
D b b L q b b L q= + + +

& & & &
 (3.4) 

 

( )

6

2

7 8 6 3 32
6

2 2

3 6 3 6

2 2 cos 2 2
2

2
2 cos 2 cos

2 2

R
TC SB TC SB

q

R R
TC TC SB SB

L
b b q b b

q
D

L L
b q L b q L

  + + + +  
  

=  
       + + +              

&
 (3.5) 

Reduce dissipation function components by substituting the Taylor series 

expansion of sin x and cosx into previous form to get the following 

 
3

2
3

32q Tot

q
D b=

&
 (3.6) 

 ( )
4

2
2 24

3 32q TC TC SB SB

q
D w b w b= +

&
 (3.7) 

 ( )
7

2 2
7 7 1q TC TCD q b L= +&  (3.8) 
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 ( )
6

22
2 26

7 8 3 3 3 32 2 2 2 2 2
2 2

R
q TC SB TC SB TC TCR SB SBR

q L
D b b b b b L b L

    = + + + + +        

&
 (3.9) 

Let Tot TC R SBm m m m= + +  

The first term in the kinetic energy equation is from the ramp surge velocity. 

The second term is the T-Craft’s surge velocity, which also depends its rotation in its 

pitch DOF. The third term is similar to the previous T-Craft term but accounts for the 

Sea Base. The fourth term accounts for energy due to sway velocity. The fifth, sixth 

and seventh terms accounts for energy from the ramp, T-Craft and Sea Base heave 

motions respectively. The next two terms correspond to the rotational energy of the 

whole system in roll and yaw DOFs. The last three terms correspond to the pitch 

motion of the ramp, T-Craft and Sea Base respectively. 

 

( )

2 2
2
1 1 7 7 1 8 8

2
2
3 3 7 7

2
2 2

3 8 8

22 2 2
4 5 6 6 7

1
sin sin

2 2 2

cos
21 1

2 2
cos

2

1 1 1

2 2 2

TC SB
R TC SB

TC
R TC

Tot

SB
SB

r y R TC

L L
T m q m q q q m q q q

L
m q m q q q

m q
L

m q q q

J q J q J q J q q

    = + + + − +         

  + − +  
  + + 

  +    

+ + + − +

& & & & &

& & &

&

& &

& & & & & ( )( )2

6 8SBJ q q−& &

 (3.10) 

In the gravitational potential energy equation, the first term accounts for the 

total system’s potential energy in the heave DOF. The next two terms account for the 

potential energy due to the individual pitch motion of the T-Craft and Sea Base. The 
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last two terms account for the potential energy in the T-Craft and Sea Base due to the 

system’s collective pitch motion. 

 
3 7 8

6 6

sin sin
2 2

sin sin
2 2

TC SB
G Tot TC SB

R R
TC TC SB SB

L L
V m gq m g q m g q

L L
m g L q m g L q

= − + −

   + + +   
   

 (3.11) 

iS SqV V=∑ , where 
iSqV = the potential energy stored in all springs of the system due to 

motion in the iq  DOF 

 ( ) ( )
3

2 2
3 3 3 3

1 1
4 4

2 2Sq TC SBV K q K q= +  (3.12) 

 ( ) ( )
4

2 2

4 4 4 4

1 1
4 sin 4 sin

2 2 2 2
TC SB

Sq TC SB

w w
V K q K q

   = +   
   

 (3.13) 

 

( ) ( ) ( )

( ) ( )

( )

6

2
2 2

7 6 8 6 7 6

22

8 6 3 6

2

3 6

1 1 1
2 2 2 sin

2 2 2 2

1 1
2 sin 2 sin

2 2 2 2

1
2 sin

2 2

R
Sq TC SB TC

R R
SB TC TC

R
SB SB

L
V K q K q K q

L L
K q K L q

L
K L q

 = + + + 
 

    + + +    
    

  +  
  

 (3.14) 

 ( ) ( )
7

2
7 7 3 7

1 1
2 2 sin

2 2Sq TC TC TCV K q K L q= +  (3.15) 

 ( ) ( )
8

2
8 8 3 8

1 1
2 2 sin

2 2Sq SB SB SBV K q K L q= +  (3.16) 

Generalized Applied Force/Moment Terms from Ocean Waves 

Surge: 1 0Q =  
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Sway: 2 0Q =  

Heave: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 1 2 3 4 5 6 7 8Q F t F t F t F t F t F t F t F t= + + + + + + +  

Roll: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 1 3 2 4 5 7 6 82 2
TC SBw w

Q F t F t F t F t F t F t F t F t   = + − − + + − −     

Yaw: 5 0Q =  

Pitch: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )6 1 2 5 6 3 4 7 82
R

TCR SBR

L
Q F t F t L F t F t F t F t F t F t L     = − + + + − − + +       

Pitch (TC joint): ( ) ( )7 1 2 TCQ F t F t L = +   

Pitch (SB joint): ( ) ( )8 7 8 SBQ F t F t L = +   

where  ( )sin ( )i o iF A t v tω ϕ= + +  (3.17) 

Defining more variables 

 
2
R

TCR TC

L
L L= +  , 

2
R

SBR SB

L
L L= +  

, ,  R TC SBJ J J = Moment of Inertia about the y-axis (pitch DOF) of Ramp, T-Craft, Sea 

Base respectively and after summing define 
y R TC SBJ J J J= + +  

, ,  r p yJ J J = Moment of Inertia of whole system in the roll (about x-axis), pitch (about 

y-axis), and yaw (about z-axis) DOF respectively 

 

Constructing the Lagrangian (non-linear): 
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2
2 2
1 1 1 7 7 7 7

2
2
1 1 8 8 8 8

2
2 2
3 3 3 7 7 7 7

2
3 3 8 8

sin sin
21

2
sin sin

2

cos cos
21

2
cos
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R TC TC TC TC

SB
SB SB SB SB
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R TC TC

S
SB SB

L
m q m q q q m L q m q q

L
m q q q m L q m q q

L
m q m q q q L q q q

L
L

m q q q L q

  + + + +  
   + 

  − +     
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 

=
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& & && &

& && &
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& &&
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6 6 8 8
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q q

J q J q q q q
m q J q J q

J q q q q

w w
m gq K K q K K

 
 
 
 
 
 
 
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  

   +  
         

  + − + +
  + + +
  − +  
 
  

+ + + +

−

&

& & && &
& & &

& && &

( ) ( )

2
2

4

2
7 8 6 6

2 2
2 2 2

7 8 3 3 6

2
3 7 7 7

2
3 8 8 8

sin
2

sin

sin
4 4

sin
2

sin
2

SB

TC SB SB SBR TC TCR

R R
TC SB TC TCR SB SBR

TC
TC TC TC TC

SB
SB SB SB SB

q

K K q m gL m gL q

L L
K K K L K L q

L
K L m g q K q

L
K L m g q K q

 
  

+  
  

 + + − + 
   

+ + + +  
 
  − + + 
 
  + +  









 (3.18) 

3.1. Linearizing the Lagrangian  

Using the trigonometric identity sin 2 2sin cosθ θ θ=  and the first term of the 

Taylor series expansions of sinx  and cosx we can “somewhat” linearize the 

equations, where non-trigonometric non-linearity terms still exist, which will be left to 

propagate until after computing the Lagrange equations. Once the non-linear equations 

of motion have been derived one can attempt to linearize the equations of motion even 
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more or transform the system to first order differential equations and solve the non-

linear system using MATLAB. The Lagrangian produces the result in the form 

( ), , , 0f t x x x =&&& . 

Taylor series:
3 5

sin
3! 5!

x x
x x= − + −…  , 

2 4

cos 1
2! 4!

x x
x = − + −…

 

 

( ) ( )

( ) ( )

2 2 2 2
1 2 4 5 1 7 7

2 2
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7 7 1 8 8 8 8 3

2 2
2 2 2

3 7 7 3 8 8 8 6

2 2 2 2
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1 4 4
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m q m q J q J q m L q q q

L L
m q q m L q q q m q q m q
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q q L q L q q q q J q

J q q q q J q q q q

 + + + + +

 − + + −

= 
+ + + + +

− + + − +

& & & & &&

& && & &

&& & && & &

& && & & && &
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3 3 3 3 4 4 4

2
6 3 7 7 7

2 2
2 2 2

7 8 7 8 3 3 6

3

2 2
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2

4 4

2
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L
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L L
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L
m g K L





  
−

 
 
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  

 
+ + + + + 
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 
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 

 
+ + + + + + 



+



 +
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8 8 8SBq K q

 
 
 
 
 
 
 
 
 
 
  + 

  (3.19) 

3.2. Second Order Nonlinear System of Equations of Motion 

1. ( ) ( )2 2
1 7 7 7 8 8 8/ 2 / 2 0Tot TC TC SB SBm q q q q m L q q q m L+ + − + =&& && & && &  

2. 2 0Totm q =&&  

3. ( ) ( )2
3 8 8 8 3 3 3 3 3 3/ 2 4 4Tot SB Tot TC SB Totm q q q q L b q K K q m g Q+ + + + + + =&& && & &  

4. ( ) ( )2 2 2 2
4 3 3 4 4 4 4 4r TC TC SB SB TC TC SB SBJ q w b w b q K w K w q Q+ + + + =&& &  

5. 
5 0yJ q =&&  
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The aforementioned 2nd order system of equations is converted to a 1st order 

system of equations by introducing a change of variables from q  to x , as shown 

below and will be put in the implicit form ( ), , 0f t x x =& .  

 
[ ]

[ ]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

T

T

x x x x x x x x x x x x x x x x x

q q q q q q q q q q q q q q q q

= ≡

& & & & & & & &
 (3.20) 

3.3. First Order Nonlinear System of Equations of Motion 

1. 1 2 0x x− =&  

2. ( ) ( )2 2
2 14 13 13 16 15 16/ 2 / 2 0Tot TC TC SB SBm x x x x m L x x x m L+ + − + =& & &  
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3. 3 4 0x x− =&  

4. 4 0Totm x =&  

5. 5 6 0x x− =&  

6. ( ) ( )2
6 16 15 16 3 6 3 3 5 3/ 2 4 4 0Tot SB Tot TC SB Totm x x x x L b x K K x m g Q+ + + + + + − =& &  

7. 7 8 0x x− =&  

8. ( ) ( )2 2 2 2
8 3 3 8 4 4 7 4 0r TC TC SB SB TC TC SB SBJ x w b w b x K w K w x Q+ + + + − =&  

9. 9 10 0x x− =&  

10. 
10 0yJ x =&  

11. 11 12 0x x− =&  

12. 
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3.4. Solution to Nonlinear 1st Order System of Equations of 

Motion 

The solution to the above system of equations is given in Figure 3.1-Figure 

3.4. Figure 3.1 and Figure 3.2 show the position and velocity component of each state 

side by side. Figure 3.3 summarizes all the position states while Figure 3.4 

summarizes all the velocity states relative to each other. The solution is visibly 

comparable to the output of the SimMechanics without quantifying the difference. 

Note, when programming the system of equations into MATLAB the sinusoidal force 

terms (3.17) used to construct the generalized applied force terms above did not 

include the additive noise term. Including the noise outputted an error message and 

didn’t allow the simulation to complete. 
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Figure 3.1: Solution to Equations of Motion for 1 4−q q  
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Figure 3.2: Solution to Equations of Motion for 5 8−q q   
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Figure 3.3: Summary of Position States 

 

Figure 3.4: Summary of Velocity States 
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Chapter 4. Extremum Seeking  

Extremum Seeking is a non-model based tool to find local extremum in 

relevant situations.  The algorithm presupposes that a local minimum exists in the 

plant and by filtering, demodulating, integrating and perturbing the output which is 

then fed back into the plant, over time, the output will converge to an optimal value. A 

more detailed proof of this algorithm can be found in Ariyur and Krstic [1]. The 

uniqueness of the ship system in regards to its applicability to extremum seeking is 

that an added perturbation signal is unnecessary in the ES loop; rather the inherent 

oscillatory behavior of the ship motion in the ocean waves suffices for its 

implementation.  In the usual implementation of ES the system is driven to 

equilibrium stabilization. Due to the fact that the ship system will indefinitely oscillate 

in an ocean environment, the ES algorithm is used to minimize the amplitude of the 

limit cycle inherent in this system. The joint type that is used in the ES simulations is 

Pitch Joint. The parameter chosen to optimize is the pitch angle of the ramp, which is 

fed into the amplitude detector block and then to construct the cost.  

4.1. Amplitude Detector Block 

The additional component in the ES loop in the limit cycle application is the 

amplitude detector block (ADB). This consist of running the desired oscillatory signal 

through a high pass filter to eliminate the DC component, square the filtered signal to 

separate the amplitude term from the unwanted high frequency components, and 

finally run the resulting signal through a low pass filter in order to output just the 
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amplitude term. The main assumption is: the limit cycle frequency, ωo, is much greater 

than the cutoff frequency of the high and low pass filters. This technique was adapted 

from Ariyur and Krstic [1]. In its application to the ship system the detector block is 

shown in Figure 4.1.  

 

Figure 4.1: Amplitude detector block components 

Figure 4.2 shows the pitch and roll power spectrums of the limit cycle for the 

ramp where the main frequency component lies at0.785oω = rad/s for both signals 

corresponding to the ocean wave model modal frequency for SS 4. However, the pitch 

angle spectrum also includes frequencies around 2.2 and 2.5 rad/s. The additional 

components in the pitch angle are due to the fact that the two vessels experience 

slightly different frequencies in heave motion. This fact directly influences the pitch 

angle position and thus frequency components. Since there is no separate roll DOF in 

the pitch joint model, the whole system oscillates with the same frequency in roll, 

hence the single dominant frequency. The frequency content does not change with 

varying ramp length and wave heading angle, but the magnitude of the frequencies do. 

The results from Figure 4.2 correspond to ramp length = 10 m and � = 45 degrees. 

The resulting ADB output is fed into the cost and into the rest of the ES loop. For a 

successful seek, the amplitude of the inputted signal will decrease to its minimum 

value once the parameters are optimized with respect to the given cost. 
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Figure 4.2: Frequency Content of Ramp’s Pitch and Roll Positions 

The cost is constructed using the signal that is output from the amplitude 
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minimum. However, in the multiple parameter optimization problem, both the roll and 

pitch signals can be used in constructing the cost. In other words, the wave heading 

angle influenced the roll experienced by the system, while the ramp length influenced 

the pitch, proving their worthiness of inclusion in the cost. 

Forming the cost plots a priori provides an ad hoc estimate of the locations of 

extremum, which automatically gives the optimal values for the ramp length and 

heading angle. Three dimensional cost plots were generated based on the Pitch Joint 

SimMechanics model through a series of simulations where the ramp length and wave 

heading angle were varied from 5 to 30 meters and –π/2 to π/2 radians respectively. 

During each simulation the ramp length and heading angle were fixed and the 

maximum of the absolute value of the pitch and roll signals were recorded. This was 

done until every combination of ramp length and heading angle was accounted for. 

The plots of Figure 4.3 show the cost value for the corresponding ramp length and 

heading angle without and with a penalty on ramp length for the pitch only joint case. 

The next two figures show the cost for the PR-Joint and PRY-Joint respectively. As 

shown in the left plot of the P-Joint case, the cost decreases as the ramp length 

increases; this makes sense intuitively. If the heave motions of two vessels stay 

constant, and the distance between the vessels increases, the ramp angle amplitudes 

will clearly decrease. Increasing the ramp length until the desired angle amplitudes are 

achieved is impractical and therefore a penalty function is included to prevent the 

ramp length from tracking to an infinitely long value. The inclusion of the penalty 

function creates a more pronounced and convex cost plot and therefore facilitates the 
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ES algorithm to tracking to a certain ramp length value while minimizing the ramp 

angle amplitudes as much as possible.  

The penalty function is an exponential raised to the square of the ramp length 

and multiplied by the sum of the maximum pitch and maximum roll angle amplitudes. 

The constants a1 and a2 serve as weights to give either DOF a greater influence on the 

cost. In this investigation both weights were set to one. In all the joint cases 

considered, the cost plots were mostly symmetric about the zero degree line with a 

slightly smaller cost value in the negative region compared to the positive region. This 

negative wave heading angle corresponds to the waves first hitting the Sea Base and 

then propagating towards the T-Craft. Having the penalty function multiply the 

original cost effectively preserved the ramp length’s influence on the cost as seen in 

the post washout filter signal as shown in Figure 4.8. For an additive penalty on the 

ramp length there were insignificant differences in the post washout filter signal and 

lead to the conclusion that the tracked values did not optimize over the ramp length.  

In the P-Joint case, we can use the cost plot above to get an estimate of the 

optimal value for ramp length and wave heading angle for the penalty function used. 

In Figure 4.6 the two relevant side views of the cost plot are shown, making the 

minimum values clearly visible. The minimum ramp length lies between 10 and 15 

meters, while the minimum heading angle lies between -20 and -30 degrees. The goal 

of the extremum seeking algorithm is to make the two parameters considered converge 

to the aforementioned neighborhood of values to minimize the cost.  



53 

 

 
Figure 4.3: Cost Plot without penalty (left) and with penalty (right) for P-Joint 

 
Figure 4.4: Cost Plot without penalty (left) and with penalty (right) for PR-Joint 

 
Figure 4.5: Cost Plot without penalty (left) and with penalty (right) for PRY-Joint 
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Figure 4.6: Minimum Values View of Cost with Penalty, P-Joint 
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actuation.  Once the ramp length reaches a steady value, the inherent oscillations can 

be eliminated by a dead zone block after the integrator in the ES loop to further 

smooth the actuation. 
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Figure 4.7: ES loop for single parameter seeking 

The results shown in Figure 4.8 are obtained when using the fol

constants in the ES loop

1.003,  10,  1 rad/s,  5, 0.03 rad/s, 1lP h kω ω ζ= = = = − = = . 

In practice it is convenient to find internal measurable signals of the system to 

use for demodulation. For example, the following signals were used as the 

Craft heave, Sea Base heave, pitch angle between T-Craft and ramp,

angular velocity and angular acceleration. The oscillatory behavior of these signals is 

beneficial for the ES loop to work properly. Although these substitutions may promote 

convergence there exists some offset in the final ramp length convergence that varies 

with the demodulating signal chosen. Also, the phase delay that the demodulating 
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actuation.  Once the ramp length reaches a steady value, the inherent oscillations can 

be eliminated by a dead zone block after the integrator in the ES loop to further 

 

are obtained when using the following values 

constants in the ES loop

In practice it is convenient to find internal measurable signals of the system to 

use for demodulation. For example, the following signals were used as the 

Craft and ramp, 

angular velocity and angular acceleration. The oscillatory behavior of these signals is 

beneficial for the ES loop to work properly. Although these substitutions may promote 

convergence that varies 

with the demodulating signal chosen. Also, the phase delay that the demodulating  
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Figure 4.8: Summary of Results for Single Parameter Seeking 
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is formed by adding the ramp length penalty (instead of multiplying) to the signal 

amplitude. Although the cost function has been improved by multiplying the terms, 

these results show the strategy one needs to find a proper demodulating signal. The 

initial ramp length is 25 m with a heading angle of 90 degrees. 

Table 4.1: Summary of demodulation results for ���� = 90� 

Demodulation Signal Phase [sec] Final ramp length [m] 

Sine 0 35 

T-Craft Heave 5 37 

Sea Base Heave 3 37 

Angular Position 7 34 

Angular Velocity 14.1 33 

Angular Acceleration 10.1 33 

 

 

Figure 4.9: Spectrums of signals from pitch joint 

0.2 0.4 0.6 0.8 1 1.2

0

1000

2000

3000

Frequency (Hz)

M
ag

ni
tu

de

Signal = Pitch Angle Pos

 

 
Pitch ang pos2

Pitch ang Pos

0.2 0.4 0.6 0.8 1 1.2

0

2000

4000

6000

Frequency (Hz)

M
ag

ni
tu

de

Signal = Pitch Angle Vel

 

 
Pitch ang Vel2

Pitch ang Vel

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

1

2

x 10
4

Frequency (Hz)

M
ag

ni
tu

de

Signal = Pitch Angle Acc

 

 
Pitch ang acc2

Pitch ang Acc



58 

 

 

Figure 4.10: Spectrum of T-Craft and Sea Base heave signal 
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angle evolution with no ES tuning (top) and its reduction while using the ES algorithm 

(bottom). These results show that extremum seeking effectively reduces the pitch 

angle in the joint by finding the optimal ramp length and heading angle.

 

Figure 

 

Figure 4.12: Multiple Parameter ES 

ith no ES tuning (top) and its reduction while using the ES algorithm 

(bottom). These results show that extremum seeking effectively reduces the pitch 

angle in the joint by finding the optimal ramp length and heading angle.

Figure 4.11: ES loop for multiple parameter seeking 
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ith no ES tuning (top) and its reduction while using the ES algorithm 

(bottom). These results show that extremum seeking effectively reduces the pitch 

angle in the joint by finding the optimal ramp length and heading angle. 
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Chapter 5. Passive Control with Shock Absorbers 

The goal of the passive control investigation is to mimic automotive shock 

absorbers with springs and dampers. This reduces the angle amplitudes between the 

ramp and each vessel. We investigate three joint cases of the cargo transfer system 

with these passive control techniques. The three types of joints are: pitch joint (P-

joint), pitch-roll joint (PR-joint), and pitch-roll-yaw joint (PRY-joint). The same initial 

conditions are used in each simulation. The ramp length is 5 meters and the wave front 

angle, (�), is 45 degrees. We use a damping coefficient of 100 Nms/deg in all cases. 

This magnitude is fixed to provide minimal impact on angle amplitude that instead 

will vary with spring rates.  

In the PRY-joint case, we introduce springs in the roll and yaw DOFs to 

stabilize the system. Otherwise, the two ships end up crashing during the simulation. 

In the PRY-Joint case, the T-Craft’s (TC) roll and yaw spring rates are 1x102 Nm/deg 

and 1x106 Nm/deg respectively, and the Sea-Base’s (SB) roll and yaw rates are 1x105 

Nm/deg and 1x106 Nm/deg respectively. We consider these spring rates minimum 

order of magnitude values to maintain stability and name them the uncontrolled case. 

The controlled case refers to the increased spring rate beyond the uncontrolled case in 

the PRY-joint. For the other joint cases the control case refers simply to the present of 

the absorbers. In each joint case, we ground the Sea-Base in the surge and sway 

directions to improve system stability.  

We first simulate the system with no spring/damper absorber on either joint in 

order to get an estimate of the baseline angle amplitude values during a stable limit 
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cycle (except for the PRY-joint case as mentioned above). This is the open loop 

response. In this series of simulations we measure the following variables: roll, pitch, 

yaw angles, and the difference in heave between the two ships.  The difference in 

heave measurement is calculated using the absolute value of the distance between the 

center of gravity of the T-Craft and Sea-Base. Due to the ships’ different inertial and 

buoyancy properties their z-direction position is not necessarily going to be equal. The 

relative distance between the centers of gravity of the two ships directly relates to the 

pitch angle oscillations. If the difference in heave decreases in magnitude, the pitch 

angle amplitude will decrease accordingly. The open loop simulation results for the 

three cases for the TC and SB joint angles and heave are summarized on the first row 

of Figure 5.1, Figure 5.2, and Figure 5.3 respectively.  

We then simulate the system applying a spring/damper absorber to the TC joint 

that is analogous to position and velocity feedback. For the pitch only case, we only 

use one spring/damper pair. We use two for the pitch-roll case and three for the pitch-

roll-yaw case, one for each DOF. During the simulations the following measurements 

are taken: TC joint angles (pitch, roll, and yaw), difference in heave between the two 

ships and passive control effort (torque from spring/damper). The results are 

summarized in the second rows of Figure 5.1, Figure 5.3 and first row of Figure 5.4 

respectively. In case of absorber failure, the control effort data can be used for the 

actuator requirements to provide the necessary torque for stability. 

Finally, we simulate the system applying a spring/damper to the SB joint. The 

results of the angles, passive control effort and difference in heave and from the 
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controlled SB joint case are summarized in the second rows of Figure 5.2, Figure 5.3 

and third row of Figure 5.4 respectively.   

5.1. Results 

A summary of all the results is given in Figure 5.1-Figure 5.5. Figure 5.1 

summarizes the TC joint maximum angles of the open-loop and controlled system for 

the three joint cases. Figure 5.2 summarizes the SB joint maximum angles of the open-

loop and controlled system for the three joint cases. Figure 5.3 summarizes the heave 

difference for the three cases using no control, TC joint control, and SB joint control. 

Figure 5.4 summarizes the passive control effort for the three cases using TC joint 

control and SB joint control. Figure 5.5 summarizes the ramp angles for all the cases 

and absorber arrangements considered. In the bar graphs the abscissa correspond to the 

three joint cases considered, namely P-joint, PR-joint, and PRY-joint respectively and 

the ordinate the corresponding angle or distance magnitude. The angle and distance 

evolution with time for each simulation is given in the appendix. 



63 

 

TC Joint Summary 

 

Figure 5.1: TC Joint Angles Summary 

SB Joint Summary 

 

Figure 5.2: SB Joint Angles Summary 
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Heave Summary 

 

Figure 5.3: Heave Summary for No Absorber, TC Joint Absorber, and SB Joint 
Absorber 

Passive Control Effort Summary for TC and SB Joint 

 

Figure 5.4: Passive Control Effort Summary 
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5.2. Discussion of Joint Angles 

 The above results summarize the motion at the joints for the various cases 

mentioned with and without shock absorbers. The open loop simulations show, for 

each of the cases in both the TC and SB joints, that the pitch angle oscillated between 

about ± 10 degrees. In the PR-joint case, the TC and SB joints experienced a roll angle 

oscillation of 0.34 and 0.89 degrees respectively. Any difference in TC and SB angle 

oscillations may be due to their different dimensions, inertial properties and the Sea-

Base being grounded in the surge and sway directions while the T-Craft was not.  In 

the PRY-joint case, the TC and SB roll  angles were 2.93 and 2.76 degrees 

respectively, and their respective yaw angles were 1.14 and 1.09 degrees. The yaw 

angle oscillations in both joints are significantly more sensitive. These DOFs have a 

higher tendency to become unstable, and therefore require larger spring rate in the 

joints for stabilization. Increasing the spring rate in the yaw DOF decreases its 

influence on the behavior of the system, hence closely mirroring the PR-joint case, 

which has a desired stable system response. Furthermore, increasing the spring rate of 

the roll  DOF makes the system response closely mirror the P-joint case, which also 

has a stable response.   

The heave summary plots in Figure 5.3 show the improved performance 

between the open and closed loop simulations. With no absorbers the average delta 

heaves between the T-Craft and Sea-Base are 3.89 m, 4.01 m, and 4.00 m for the P-

joint, PR-joint, and PRY-joint cases respectively; for an absorber on the TC joint the 

delta heaves are 3.03 m, 3.07 m, 3.07 m for each case respectively; for an absorber on 
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the SB joint the delta heaves are 3.02 m, 3.07 m, 3.07 m for each case respectively. 

The important point to see from these results is the decrease of about 1 m in delta 

heave between the uncontrolled and controlled simulations, which primarily affects 

the pitch angle, reducing it a few degrees.  

The results of the controlled simulations show an improvement in the 

amplitude of angle oscillations for each of the DOFs as shown in Figure 5.1 and 

Figure 5.2. The amount of reduction depends on the spring constant chosen. An 

arbitrary constant was chosen in the effective order of magnitude range for the 

simulations to show a reduction in angle amplitudes.  For all three controlled cases the 

pitch angle was reduced to about ±0.10 degrees for both the TC and SB joints with a 

gain value of Kpitch = -5x108.  In the controlled PR-joint case the roll angle oscillation 

reduced to about ±0.21 and ± 0.59 degrees for the TC and SB joints respectively with 

a gain value of Kroll = -1x103. The smaller gain value implies less torque is 

experienced in the roll  DOF. In the controlled PRY-joint case the roll  angle oscillation 

is ±0.06 and ± 0.10 degrees for the TC and SB joints respectively with a gain value of 

Kroll = -1x106, and the yaw angle oscillation was ±0.10 and ± 0.22 degrees for the TC 

and SB joints respectively with a gain value of Kyaw = -1x108. Comparing the PR-joint 

to the PRY-joint we see that the addition of the yaw DOF significantly influences the 

gain tuning by a few orders of magnitude to reach a similar steady state value for the 

roll angle in the PR-joint case. As assumed the complexity and unpredictability of the 

response grows with the amount of DOFs.  
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5.3. Discussion of Ramp Angles 

Another relevant set of values to look at is the ramp angles since the above 

joint data misses some crucial information. For example, in each of the joint cases, the 

only measured angle is the allowed DOF(s). In the pitch joint case, only the pitch 

angle is measured while the roll and yaw angle amplitudes of the ramp are 

unmeasured. If the ramp’s roll DOF is unstable, it can be considered unobservable in 

the above joint measurements and would not be known if we only rely on the joint 

angle measurements. Measuring the ramp angles directly eliminates this problem. 

Figure 5.5 summarizes the ramp angles for each of the three cases and for four various 

scenarios, namely: no absorbers used in joints, an absorber on the T-Craft joint, an 

absorber on the Sea Base joint, and an absorber on both joints. Matching our intuition, 

the ramp angles are mostly maximal when no absorbers are used (with two exceptions 

as seen in figure), and mostly minimal when both joints have absorbers. The addition 

of each DOF creates unintuitive reactions in angle amplitudes. For example, when no 

absorber is used the roll angle is minimum in the PR-joint case and greater in the P- 

and PRY-joint case for no apparent reason. A future endeavor is to tune the dampers 

using extremum seeking in order to reduce the angles amplitudes even further. 
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Figure 5.5: Summary of Max Ramp Angles 

5.4. Weight, Dimensions and Cost 

The rotary damper concept used in the absorber design exists on the market 

where one vendor is Efdyn and has a product with model number LD4 Dashpot. The 

product has dimensions 0.24 x 0.24 x 0.23 m, a damping rate of 4,000 Nms/rad (~70 

Nms/deg), a weight of 17 Kg and cost of $4,400 each.  A more feasible design will 

have greater dimensions and damping rate by a few orders of magnitude, but for the 

sake of proof of concept these values are sufficient. 

In designing the springs one is constrained by the industry maximum values. 

The maximum wire diameter dimension is 3 inches and wire length before wound of 

40 feet. The vendor MW Industries can make a spring with rate 5x109 Nm/rad that 
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weighs about 160 Kg. Using the Hooke’s law applied to a torsion spring one can 

design the spring by altering the relevant variables. One way to design the spring is to 

first define the torque (T) at a given deflection (F�) requirement, then approximate 

the design bending stress (Sb) from average service curves, then use the equations in 

(5.1) which are valid for round wire to determine the wire diameter, spring diameter 

and body length. Other wire options are square and rectangular wire.  

 
4 4

3
10.18

,    ,    
4000 4000

o o

b

T Ed F Ed F
d T N

S ND TD
= = =  (5.1) 

where E is elastic modulus of wire material, d diameter of wire, D outer 

diameter of spring cross section and N is number of active coils. 
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Chapter 6. Ship Roll Stabilizing Gyroscope 

The technology of ship stabilizing gyroscopes emerged in the early 1900’s and 

became more popular during the 1990’s for stabilizing roll motions of low speed 

ocean vessels. Otto Schick of Hamburg, Germany was the first to use a pendulous 

gyroscope with a break device at the precession axis in 1903 to reduce the roll motion 

of a ship. Since then an active type was invented by Elmer A. Sperry where an 

actuator controlled the precession moment to counteract the moment from roll due to 

the ocean waves.  

A gyroscope is a device that allows its flywheel to move about all three rotary 

degrees of freedom. If any of the output gimbals is in a fixed configuration then the 

gyroscope’s flywheel will resist rotating in the corresponding DOF and will introduce 

a precession torque acting on the mounted body. When this gyroscopic resistance 

force exists the device is called a control moment gyroscope (CMG) or a rate 

gyroscope. CMG devices are commonly used in attitude control of spacecraft, aircraft 

and are adapted in ship systems, such as in military, luxury yachts, and ferry 

applications where low forward speed and roll stabilization is important. The 

effectiveness of a roll stabilizing gyroscope is a function of vessel displacement (the 

weight of a volume of water displaced by the vessel), transverse metacentric height, 

vessel speed, heading angle of waves and sea state. These devices typically comprise 

1-5% of the vessel displacement to provide a various range of degrees in roll angle 

reduction. It is proposed that an anti-roll gyroscope mounted on the T-Craft can reduce 
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its roll angle amplitude and hence facilitate safely transferring cargo to it from the Sea 

Base through an interconnected ramp.  

The basic elements of a control moment gyroscope are the flywheel, the inner 

and outer gimbals, and the motor that spins the flywheel. The most effective CMGs 

only have one gimbal, resulting in a total of two DOF for the flywheel with the 

precession torque acting in the direction of the third DOF. Let us define three axes of 

gyroscopic motion namely: spin, input and output axes. The axle upon which the 

flywheel rotates defines the spin axis. Each gimbal provides one degree of rotational 

freedom, which will define the motions along the input and output axes. The input axis 

is defined by the axis where an external torque is applied to the flywheel. Torque 

applied at the input axis brings forth the phenomenon of precession at the output axis.  

In roll stabilization applications, the spin axis corresponds to the z-axis on the body-

fixed reference frame of an ocean vessel [3]; the input axis is the x-axis where roll 

occurs and is typically a fixed gimbal; the output axis is the y-axis where precession 

occurs and is a free gimbal. Figure 6.1 summarizes the orientation of these axes with 

respect to the T-Craft. The flywheel is designed to have a large moment of inertia 

about the spin axis in order to create the gyroscope effect of resisting roll motions.  

Tilting the flywheel about the input axis while it spins, changes its angular 

momentum, consequently creating a precession torque acting on the output axis, which 

through active control is utilized to stabilize roll motion. For instance, in a typical 

control moment gyroscope for ships, if the flywheel lies on the z-axis of a vessel, and 

the spin is counterclockwise an angular momentum is created about the positive z-axis 

and is equal to f fH I ω= , where 
fω  is the spin rate of the flywheel in rad/s and 

fI  is 
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its moment of inertia about the spin axis in kgm2. When a torque is applied to the 

flywheel at the input axis perpendicular to the spin axis, due to roll motion of the 

vessel, a torque perpendicular to both of these axes is created in the flywheel resulting 

in precession, an oscillatory motion about the y-axis of the gyroscope and thus creates 

a precession torque that acts internally to the ship system. The precession torque or 

Gyroscopic Reaction Moment (GRM) is given by  

 p p p f fH Iτ ω ω ω= × ⇒ ×  (6.1) 

where 
pω  is the precession rate in rad/s and H  is the angular momentum of 

the flywheel about the spin axis. Since the roll of the ship occurs on the x-axis and is 

orthogonal to the spin axis, the cross product becomes an ordinary multiplication. 

Typically, a gyro controller is used to regulate the precession torque rate by sending 

commands to a hydraulic brake generating an opposing torque on the y-axis of equal 

order of magnitude to transfer this internal precession torque to an external torque that 

acts on the hull of the vessel and will be addressed below. At this point there are 

effectively two sources of torque acting on the gyroscope despite the roll moment, 

namely the torque from the spinning flywheel on the z-axis and the torque from the 

hydraulic break on the y-axis. These two perpendicular torques cause the desired anti-

roll torque required along the x-axis on the ship’s hull to oppose the natural roll 

motion of the ship.  
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Figure 6.1: T-Craft with body fixed coordinates and axes of gyroscope 

6.1. Design of the Gyroscope’s Flywheel 

The initial step in designing an effective roll stabilizing gyroscope is to 

determine the vessel’s rolling moment and roll period while floating in flat water. It is 

assumed that the vessel rolls under constant displacement, meaning the ship neither 

loses nor adds loads. For small angles of roll a vessel’s rolling moment is 

approximated by sinRRM GM φ= ∆  where ∆  is the displacement (equal to the vessel 

weight force) and RGM  is the metacentric height about the roll axis, and when 

multiplied by sin  φ expresses the perpendicular distance from the center of gravity to 

the line of action of the new buoyancy force. Since the buoyancy force always acts 

perpendicular to the waterline, as the ship rolls φ  degrees the waterline rotates φ  

degrees, the center of buoyancy moves toward the ship’s submerged section and 

creates a new metacentric height. This new metacentric height is the point of 

intersection of the old and new buoyancy force line of actions. Carrying over the 

assumption of small roll angles extends the assumption that the metacentric height 
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stays relatively constant during roll and therefore the original metacentric height is 

used in computing the vessel’s rolling moment. Figure 6.2, although not to scale, 

shows the location of these variables relative to each other on a transverse section of a 

half cylinder. The buoyant force labeled B causes the restoring moment when the 

vessel rolls. 

 

Figure 6.2: Vessel parameters during roll motion 

It is assumed that a quasi-static roll angle of one degree suffices for the 

stabilization requirement. Thus, the T-Craft’s roll moment becomes 9,370 kNmRM = .  

The designed gyroscope will create an equal and opposite moment on the vessel hull 

attempting to eliminate the roll motion. The three design parameters for the gyroscope 

become the flywheel’s moment of inertia, its angular spin velocity and its controlled 

precession rate. The precession rate is designed to be in the neighborhood of the 

vessel’s natural roll frequency, which given above by  R rgGM iφω =  and equals 

about 3 rad/s for the T-Craft. The flywheel spin rate is set to 

Wa



 

10, 000 rpm 1, 047  rad / sfω = =

the gyroscope flywheel to have a minimum moment of inertia of

 minfI = ⇒ =

If steel is used to make the flywheel and its shape is a cylindrical tube as 

shown in Figure 6.3 with moment of inertia about the spin axis as 

it would have the dimensions shown in 

inertia for the cylindrical tube shape of 3,453

flywheel inertia introduces the flexibility to vary the spin angular velocity in 

compensation.  

Figure 6.3: Cylindrical Tube
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If steel is used to make the flywheel and its shape is a cylindrical tube as 

with moment of inertia about the spin axis as f fI m r r= −

it would have the dimensions shown in Table 6.1. Given that the resulting moment of 

inertia for the cylindrical tube shape of 3,453 Kgm2 is greater than the minimum 

flywheel inertia introduces the flexibility to vary the spin angular velocity in 

 

: Cylindrical Tube  

Table 6.1: Designed parameters of 
Gyroscope Flywheel

 

Density of steel [kg/m

Inner radius, 

Outer radius, 

Height, 
Mass, m

Moment of Inertia, fI

75 

to comply with existing industry specs, thus requiring 

 (6.2) 

If steel is used to make the flywheel and its shape is a cylindrical tube as 

( )2 2
2 1

1
 

2f fI m r r= −

. Given that the resulting moment of 

is greater than the minimum 

flywheel inertia introduces the flexibility to vary the spin angular velocity in 

: Designed parameters of 
Gyroscope Flywheel 

Metric Value 

Density of steel [kg/m3] 7850 

Inner radius, 1r  [m] 0.6 

Outer radius, 2r  [m] 0.8 

Height, h  [m] 1 

fm  [kg] 6,905 

fI  [kgm2] 3,453 
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6.2. Equations of Motion of the Gyroscope 

In deriving the equations of motion of the gyroscope we start by considering a 

rigid body that rotates in 3-dimensions and invoke the dynamical law: The time rate of 

change of the angular momentum of a rigid body rotating about any axis is equal to 

the moment of the applied external forces about the same axis [4].  

 x y z

d
M M M

dt
= = + +

H
M i j k  (6.3) 

If the time rate of change equals zero, it expresses the law of Conservation of 

Angular Momentum. On a fixed O-XYZ coordinate system, the above law for a 

moving rigid body, in component form with respect to the fixed coordinate system 

looks as follows  

 

x
z y y z x

y
x z z x y

z
y x x y z

dH
H H M

dt
dH

H H M
dt

dH
H H M

dt

ω ω

ω ω

ω ω

+ − =

+ − =

+ − =

 (6.4) 

If the axes OX, OY, OZ coincide with the principal axes of inertia of the body, 

then  

 ,  ,  x R x y y y z z zH J H I H Iω ω ω= = =  (6.5) 

where RJ  is the moment of inertia of the ship about the roll axis. Since the 

gyroscope is constrained in this DOF, making its angular velocity zero, we choose to 
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model the roll of the ship instead of the trivial roll motion of the gyroscope.  

Furthermore, if the body is dynamically symmetrical about the vertical z-axis (
x yI I= ) 

the equations of motion of a rigid body about a fixed point simplify to (6.6).  

 

( )

( )

( )  

x
x z y z xy

y x
y

x z y

z
z x y z

z

x y

d
I I I M

dt
d

I I I M
dt

d
I I I M

dt

ω
ω ω

ω
ω ω

ω
ω ω

+ − =

+ − =

+ − =

 (6.6) 

Equations (6.4) and (6.6) are known as Euler’s Dynamical Equations and was 

used above to design the flywheel of the gyroscope letting H 0d dt = . 

6.3. Active-Type (Sperry) Gyroscope Stabilizer 

To arrive at the final form of the equations of motion for the gyroscope, the 

Euler’s Dynamical Equations need to be adapted to correspond with the gyroscopic 

parameters using the form of (6.4). Each variable is projected onto the inertial O-XYZ 

coordinate system by performing the flowing transformations  

 ' ' 'cos ,  ,  sin
x y z

ω φ θ ω θ ω φ θ= − = = −& & &  (6.7) 

Hence 

 ( )' ' 'cos ,  ,  sinR y f f f fx y z
H J H I H I Iφ θ θ ω φ θ ω=− = = − =& & &  (6.8) 

Since φ& and θ  are assumed to be small. Differentiating in time gives 



78 

 

 ( ) '' '

cos cos cos ,  ,  0yx z
R R y

dHdH dH
J J I

dt dt dt
φ θ φθ θ φ θ θ= − − = − = =&& && && &&  (6.9) 

Plugging in these expressions and making the assumption that cos 1θ =  readily 

forms the following equations, which describe the ships motion about its roll axis and 

the gyroscope's motion about its precession axis.   

Ship Roll Motion             RR f f RJ K I GM Mφ φ ω θ φ+ − + ∆ =&& & &  (6.10) 

Gyroscope Precession Motion                  gy f fI I Nθ ω φ+ = −&& &  (6.11) 

where 
gyI  denotes the moment of inertia of the gyroscope’s flywheel along the 

y-axis, N  denotes the variable control moment provided by the gyroscope’s actuators 

along the precession axis, and K  denotes the skin friction between water and the 

ship’s hull. Since this variable moment is controlled through the rolling of the ship, 

one would think it is reasonable to assume that the applied precession moment is 

proportional to the angular velocity of the ship’s roll. This stabilizing action will 

supplement the gyroscope’s flywheel moment to oppose the ship’s rolling. This 

assumption leads to the result that setting N Qφ= &, where Q  denotes a positive 

constant, can reduce the roll as much as desired provided the angular momentum 

f fI ω  is sufficiently large. This assumption only holds true when the ship’s course is a 

straight line or when the course curves in the same direction as the spin of the 

flywheel. Given the known fact that a Sperry stabilizer works for courses in any 

direction another relationship must be found.  
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Figure 6.4: Degrees of freedom of gyroscope mounted on T-Craft 

Another approach is proposed and Figure 6.4 is used to visualize the argument.  

If the controlled precession moment acts in the negative y-direction, making θ  

negative and clockwise (looking from starboard) and given that the flywheel’s 

moment acts along the positive z-axis, a positive roll φ  can be quenched. In other 

words, if the ship’s roll angular velocity is positive, the gyro’s precession angular 

velocity must be negative to produce an opposing roll moment. This fact leads to the 

relationship mθ φ= −& &, where m is a positive constant, holds for any course curves 

direction, and acts as a linear state-feedback controller term. The controlled moment 

about the precession axis is now assumed to depend on time, denoted by ( )R t  and can 

be computed once φ  is found. The above equations are now replaced by the following 

Ship Roll Motion  RR f f WJ K I GM Mφ φ ω θ φ+ − +∆ =&& & &
   (6.12)
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Gyroscope Precession Motion                   ( )gy f fI I R tθ ω φ+ =&& &
   (6.13)

 

Linear state feedback controller                                  mθ φ= −& &
   (6.14) 

where ( )2
∆ sino

RW WM g GM t
πζ

ω
λ

=  is the ocean wave moment on the roll axis. 

Solving for the roll variable φ  

To solve for φ  we begin by plugging the linear controller into the ship roll 

motion equation, making it purely a function of φ   

 ( ) RR f f WJ K I m GM Mφ ω φ φ+ + + ∆ =&& &  (6.15) 

Since it is reasonable to assume the solution is periodic, we let rtaeφ = , then 

plug it into the above equation and divide by rtae  to produce the characteristic 

equation below for the homogenous solution 

 ( )2 0RR f fJ r K I m r GMω+ + + ∆ =  (6.16) 

Solving for r  gives  

 
( ) ( )24

2

Rf f R f f

R

K I m i J GM K I m
r

J

ω ω− + ± ∆ − +
=  (6.17) 

The square root term must be imaginary since we know that the solution will 

naturally oscillate. Plugging r  into the assumed solution produces the following result 
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( )

( )1 1exp sinδ cosδ
2

f f

R

K I m t
c t c t

J

ω
φ

 +
 = − +
  

 (6.18) 

where   

  
( )24

δ
2

RR f f

R

J GM K I m

J

ω∆ − +
=  

From the exponent term of φ  it is clear that the gyroscopic moment assists in 

making the damping more rapid. To find the particular solution we let 

 1 2sin cosW WP t P tφ ω ω= +  (6.19) 

then compute its first and second derivatives with respect to time, plug them 

into the characteristic equation and set equal to the ocean wave moment. The results 

are given below in (6.20). 

 
( ) ( )

( ) ( )

2
1 2
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1 2

2
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o
R RR W W f f

RW f f R W

GM J P K I m P g GM
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πζ
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λ

ω ω ω

∆ − − + = ∆

+ + ∆ − =
 (6.20) 

Solving for 1P  and 2P  gives 
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( ) ( )

( )

( ) ( )

2
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∆ ∆
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 (6.21)  
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These constants give a particular solution of

( ) ( )
( )

( )

2

2 22 2

2
sin

cos

o
R R R W W

R W f f WR W W f f

g GM GM J t

K I m tGM J K I m

πζ
ω ωλφ

ω ω ωω ω ω

 ∆ ∆ − +
 =
 +∆ − + +  

 

and is simplified to 

 

( ) ( )
( )

( )

2 22 2

1

2

2

( ) sin  

  

tan

o
R

W

R R W W f f

W f f

R R W
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GM J K I m

K I m

GM J

πζ
λφ ω γ

ω ω ω

ω ω
γ

ω
−

∆
= −

∆ − + +

+
=

∆ −

 (6.22)  

From the above solution to the roll motion it is evident that the roll amplitude 

can be decreased by increasing the gyroscope’s angular momentum
f fI ω , either by 

spinning it faster or increasing its moment of inertia. 

To find the controlled moment about the precession axis ( ) R t , we computeφ&, 

thenθ&, differentiating gives θ&&, then solve for ( ) R t  from the precession motion 

equation. 

 
( ) ( )

( )
2 22 2

2

cos

o
RW

W

R R W W f f

g GM
t

GM J K I m

πζ
ω

λφ ω γ
ω ω ω

∆
= −

∆ − + +

&

 

(6.23) 

 

( ) ( )
( )

2 22 2

2

cos

o
RW

W

R R W W f f

m g GM
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GM J K I m

πζ
ω

λθ ω γ
ω ω ω

− ∆
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&  (6.24) 
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 (6.26) 

The periodic nature of the controlled moment gives credence to its desire to 

track the roll motion and produce a stabilizing moment to counteract the roll as it 

occurs in real time. The only difference between the two motions is the phase by the 

angleβ , which since the numerator will dominate is likely to be near 90 degrees.  

6.4. Gyroscope Simulation Results 

For the control gyroscope simulation, the ship system was modeled as half 

cylinders, the gravity and buoyancy forces as a second order spring-mass-damper 

system and the wave model as a sum of linear waves weighted by frequency according 

to the PM Spectrum for SS 4. Table 6.2 shows the parameter values from the above 

results and the simulation. The simulation result shows that the gyroscope design 

complies with the original roll angle amplitude stability requirement of 1 degree. The 

controller gain value required to reach this stability threshold is 7, 000m =  and 

translates into an upper bound of 400 kNm for the precessional moment that the 

gyroscope must output.  
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Figure 6.5 shows the simulation results of the roll angle evolution with time 

while the gyro is off and while it is on. The gyroscope’s effectiveness at reducing the 

T-Craft’s roll amplitude is clearly observed. Figure 6.6 shows the controlled 

precession moment of the gyroscope, which somewhat resembles the shape of the roll 

evolution while the gyro is off. Note on Figure 6.6 the time scale starts at 100 seconds 

since that is when the gyro turns on. 

Table 6.2: Gyroscope Control Parameters 

 

 

 

 

 

 

Figure 6.5: Simulation of gyroscope reducing roll angle 
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Figure 6.6: Controlled Precession Moment 

6.5. Dimensions and Power Requirements 

Comparing the upper bound of 400 kNm for the precessional moment to the 

current industry maximum torque output of about 6,000 kNm in roll stabilizers 

demonstrates the feasibility of the stabilizing gyroscope concept. The vendor 

ShipDynamics1 sells a gyro with model number GYR256 with maximum torque 

                                                 

1 Ship Dynamics Spec Sheet 

http://www.shipdynamics.com/assets/public/File/Gyro%20size%20range_PDF%20

version_R6000h_2009-07-07.pdf  

 

100 110 120 130 140 150 160 170 180 190 200
-4

-3

-2

-1

0

1

2

3

4
x 10

5 Gyroscope Controlled Precession Moment R(t)

Time [sec]

P
re

ce
ss

io
n 

M
om

en
t [

N
m

]



86 

 

output about the x-axis of 5,005.1 kNm. The dimensions of this model are 

5.9 3.0 3.3 ml w h× × = × × , weighs 100.3 metric tons and requires 9 motors with 

30kW each of power. Based on the half cylinder ship model it is proposed that two 

gyro’s of the GYR256 model will suffice for the T-Craft application and can be 

installed in the multiple transverse configuration. The gyroscope unit can be mounted 

anywhere on the vessel, longitudinally, transversely or multiple transversely. Since the 

metacentric height greatly influences the gyro requirements and given that the 

metacentric height in the model is a really conservative estimate being an order of 

magnitude greater than common ship metacentric heights, the actual gyro size and 

power for the T-Craft will be less than proposed here.  

6.6. Extremum Seeking on Gyroscope Parameters  

Due to the various tunable parameters in the design of a control moment 

gyroscope, it is a good candidate to apply extremum seeking and optimize the 

parameters for a given cost function. The tunable parameters are: flywheel moment of 

inertia, spin speed and precession rate. As an initial effort a cost plot is constructed to 

show the dependence of the roll amplitude on flywheel moment of inertia and spin rate 

as shown in the left plot of Figure 6.7 similar to what is shown above in the left plots 

of Figure 4.3-Figure 4.5. Since the behavior of the cost gradually decreases with 

increasing inertia and spin rate, a penalty function in parabolic form as shown in 

equation (6.27) is additively introduced to the cost to make it more convex to produce 

the right plot of Figure 6.7. In equation (6.27) the minimum values are given as 

* *1000,  4000f fIω = = which after applying the ES algorithm should be the values the 
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flywheel’s spin rate and moment of inertia respectively converge towards. An 

analogous scenario where the moment of inertia changes is when an ice skater extends 

his arms inward and outward while spinning to influence the spin rate. A similar 

concept can be applied to the flywheel design to allow for a certain range of inertias 

and thus spin rates to choose from that can be used to optimize over per sea state.  

 ( ) ( )2 2* *
2 2

50 2
1000 4000

1500 1500f fPenalty Iω= − + −  (6.27) 

 
Figure 6.7: Gyroscope cost without (left) and with (right) penalty function 
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in Figure 6.8 as a Simulink block diagram. Essentially it solves the roll differential 

equation of an ocean vessel coupled with the gyroscope controller and updates the 

flywheel’s moment of inertia and spin rate per times step as influenced by the multi-

parameter ES loop. An amplitude extraction block as in Figure 4.1 is included in this 

application, the roll signal is then introduced to the penalty, then through the ES loop 
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The ES tuning of gyroscope parameters concept still needs more work to be 

fully implementable. For instance, the cost function form should be modified to tailor 

to quick parameter value convergence and whether it is added or multiplied to the roll 

amplitude signal should also be explored.  

 

Figure 6.8: Simulink block diagram of ES on gyroscope parameters 
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Chapter 7. Future Work 

Some of the control methods explored throughout the thesis can be expanded 

upon to improve performance and possibly cost of design. The passive control method 

of applying shock absorbers can be improved by tuning the damper values using 

extremum seeking. The concept exists in the automotive industry in the form of 

magnetorheological dampers, which change their damping coefficient by exposing the 

inner fluid to a magnetic field. Actively modifying the dampers is great for adapting to 

the different sea state characteristics and allows for a more robust control design. This 

is another application of extremum seeking that has not been previously explored. 

Using extremum seeking to tune the gyroscope parameter values is also an unsolved 

problem that can prove to be a robust tool for ship stabilization.  

Other methods to investigate in further research for stabilizing the T-Craft is 

heave and pitch control using inflatable skirts beneath the hull. Since the T-Craft may 

be a catamaran vessel (double hull), this is a likely control option. Also, installing 

water tanks to create an opposing moment to the roll motion can assist in reducing the 

roll amplitude of the T-Craft. In this application, each hull can be designed to act a 

tank where a sufficiently powerful water pump is used to transfer the fluid between the 

tanks.  

There are many methods that exist in controlling and stabilizing ships at sea 

and many that don’t exist yet. In this thesis some of these methods were explained, 

simulated and results documented. It is dependent on further research to prove the 

feasibility of these other control design concepts. 



 

90 

Appendix 

A 1. Time Plots from Passive Control Investigation 

 

Figure A.1: TC Joint: Angles with No 
Absorber 

 

 

Figure A.2: SB Joint: Angles with No 
Absorber 

 

 

Figure A.3: Delta Heave with No 
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Figure A.4: TC Joint: Angles with 
Absorber 
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Figure A.5: TC Joint: Passive Control 
Effort 

 

Figure A.6: TC Joint with Absorber: 
Delta Heave 

 

Figure A.7: SB Joint: Angles with 
Absorber 

 

Figure A.8: SB Joint: Passive Control 
Effort 
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Figure A.9: SB Joint with Absorber: Delta Heave 

A 2. MATLAB initialization script for SimMechanics model 

%The following program is a general-purpose m-file to initialize 
variables in the Simulink/SimMechanics two ship and  ramp models.  
rtime=150;  
srate=15;  
alpha_init=pi/4;  
fs=13;  %font size  
g=9.806; %m/s^2 

 
%Sea Base mass + dimensions  
m_sb= 45359237;  %kg   50,000 tons  
L_sb= 200;   %m 
r_sb= 15;    %m 
w_sb= 2*r_sb;  
delta_sb=m_sb*g; %weight of water displaced by TC =displacement  
  
%T-craft mass + dimensions  
m_tc= 2721554.22; %kg(1000kg=1metric ton=tonne) 
L_tc= 40;    %m 
r_tc= 8;     %m 
w_tc= 2*r_tc;  
delta_tc=m_tc*g; %weight of water displaced by TC =displacement  
 
%Ramp mass + dimensions  
%Assume Steel Ramp  
rho_steel= 7850;  %kg/m^3 density of steel  
L_ramp= 5;        %m   82.021 feet  
w_ramp= 4;        %m   13.1234 feet  
h_ramp= 0.0508;   %m   2 inches  
V_ramp= L_ramp*w_ramp*h_ramp;  
m_ramp= rho_steel*V_ramp;  
  
%Moment of Inertia Tensor of Ship  
%Assume Ship is modeled as half cylinder  
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% Ixx= (1/2 - 16/(9pi^2))*mr^2  
% Iyy= 1/4*mr^2 + 1/2*(mL^2)  
% Izz= (1/4 - 16/(9pi^2))*mr^2 + 1/12*(mL^2) 
 
% Moment of Inertia of SeaBase through CG CS  
I_sb= [(1/2- 16/(9*pi^2))*m_sb*r_sb^2 0 0; ...  
        0 (1/4-16/(9*pi^2))*m_sb*r_sb^2 + (1/12)*m_ sb*L_sb^2 0; ...         
        0 0 (1/4)*m_sb*r_sb^2 + (1/12)*m_sb*L_sb^2 ];  
    
%Moment of Inertia of T-craft through CG CS  
I_tc= [(1/2- 16/(9*pi^2))*m_tc*r_tc^2 0 0; ...  
        0 (1/4-16/(9*pi^2))*m_tc*r_tc^2 + (1/12)*m_ tc*L_tc^2 0; ...  
        0 0 (1/4)*m_tc*r_tc^2 + (1/12)*m_tc*L_tc^2] ; 
 
%Moment of Inertia Tensor of Ramp  
%Assume Ramp is modeled as a thin rectangular prism   
%      [ 1/12mw^2  0       0  ]  
%   I= [ 0  1/12m(w^2+L^2) 0  ]  
%      [ 0         0 1/12mL^2 ] 
 
%Moment of Inertia of Ramp through CG CS 
I_ramp= [(1/12)*m_ramp*(w_ramp^2) 0 0; 0 
(1/12)*m_ramp*((w_ramp^2)+(L_ramp^2)) 0; 0 0 
(1/12)*m_ramp*(L_ramp^2)];  
  
%Draught Information  
T_tc= 1/4*r_tc;  
T_sb= 1/2*r_sb;  
%Waterplane Area  
Aw_tc= 2*L_tc*sqrt(r_tc^2-(r_tc-T_tc)^2);  
Aw_sb= 2*L_sb*sqrt(r_sb^2-(r_sb-T_sb)^2);  
%Density of sea water and gravity  
rho= 1025;  %kg/m^3  
 
%Wave Information  
%8 seconds in between waves  
time= 8;           %s 
f= 1/time;         %linear frequency Hz  
omega= 2*pi*f;    %angular frequency rad/s  
zetaknot=1;       %wave amplitude  
A_tc= rho*g*Aw_tc*zetaknot; %Wave Force Amplitude for TC in Heave  
A_sb= rho*g*Aw_sb*zetaknot; %Wave Force Amplitude for SB in Heave  
  
%Assume there is 125 ft between wave peaks  
lambda= 38.1;    %125 ft  
  
%Metacentric Heights  
%Roll Motions  
GMrsb=(r_sb-(2/3*r_sb^3*((sin(acos((r_sb-
T_sb)/r_sb))^3))/(r_sb^2*acos((r_sb-T_sb)/r_sb)-(r_ sb-
T_sb)*sqrt(r_sb^2-(r_sb-T_sb)^2)))+ ...  
    (((L_sb*w_sb^3)/12)/(L_sb*(r_sb^2*acos((r_sb-T_ sb)/r_sb)-(r_sb-
T_sb)*sqrt(r_sb^2-(r_sb-T_sb)^2))))-(r_sb-((4*r_sb) /(3*pi))));  
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GMrtc=(r_tc-(2/3*r_tc^3*((sin(acos((r_tc-
T_tc)/r_tc))^3))/(r_tc^2*acos((r_tc-T_tc)/r_tc)-(r_ tc-
T_tc)*sqrt(r_tc^2-(r_tc-T_tc)^2)))+ ...  
    (((L_tc*w_tc^3)/12)/(L_tc*(r_tc^2*acos((r_tc-T_ tc)/r_tc)-(r_tc-
T_tc)*sqrt(r_tc^2-(r_tc-T_tc)^2))))-(r_tc-((4*r_tc) /(3*pi))));  
  
%Pitch Motions  
GMpsb=(0.5*T_sb+(((w_sb*L_sb^3)/12)/(L_sb*(r_sb^2*a cos((r_sb-
T_sb)/r_sb)-(r_sb-T_sb)*sqrt(r_sb^2-(r_sb-T_sb)^2)) ))-r_sb/2);  
GMptc=(0.5*T_tc+(((w_tc*L_tc^3)/12)/(L_tc*(r_tc^2*a cos((r_tc-
T_tc)/r_tc)-(r_tc-T_tc)*sqrt(r_tc^2-(r_tc-T_tc)^2)) ))-r_tc/2);  
  
%Account for the difference in forces  
eta_rolltc= (rho*Aw_tc)/(m_tc);  
eta_rollsb= (rho*Aw_sb)/(m_sb);  
  
eta_pitchtc= (rho*Aw_tc)/(m_tc);  
eta_pitchsb= (rho*Aw_sb)/(m_sb);  
%Spring Contstant to SImulate Gravity and Buoyancy  
P3tc= rho*g*Aw_tc;  %Heave Motions  
P3sb= rho*g*Aw_sb;  
R1sb= g*m_sb*GMrsb*eta_rollsb; %Roll Motions  
R1tc= g*m_tc*GMrtc*eta_rolltc;  
R2sb= g*m_sb*GMpsb*eta_pitchsb; %Pitch Motions  
R2tc= g*m_tc*GMptc*eta_pitchtc; 
 
%Damping Coefficients  
b=0.01;  
BP3tc= b;        %Heave 
BP3sb= b;  
BR1tc= 2*m_tc*((w_tc/(2*sqrt(3)))^2)*b;  %Roll  
BR1sb= 2*m_sb*((w_sb/(2*sqrt(3)))^2)*b;  
BR2tc= 2*m_tc*((L_tc/(2*sqrt(3)))^2)*b;  %Pitch  
BR2sb= 2*m_sb*((L_sb/(2*sqrt(3)))^2)*b; 

A 3. Pierson-Moskowitz ocean model script 

%% Pierson Moskowitz Spectrum of Ocean Waves  
run Research_Project_Data_updating_phi  
wend=3;  
w=linspace(0,wend,wend*50);  
H1=1.875;   % for sea state 4 (Moderate) Hs = 1.25-2.5 m  
A=8.1e-3*9.806^2;  
B1=3.11/H1^2;  
S1=A*w.^(-5).*exp(-B1*w.^(-4)); %SS4 

 
% Plotting the wave with time  
N=100;    % # of waves added together  
dw=w(2);  
t=linspace(0,rtime,rtime*srate);  
wave_ss4(1,:)=zeros(1,length(t)); %initialize wave vector  
tot_wave=zeros(1,length(t));  
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for  i=2:N  
    wave_ss4(i,:)=sqrt(2*S1(i)*dw).*sin(w(i)*t+2*pi *rand);  
%individual sine waves  
    tot_wave=tot_wave+wave_ss4(i,:);  %vector of wave amplitudes  
end 

A 4. Passive Control Script 

%Initializations of Damping/Spring Constants  
RPJD=1e2;   %Right Pitch Joint Damper  
RRJD=1e2;  
RYJD=1e2;  
RRK=1e5;    %Right Roll Spring Constant for PRY Joint Case, No 
Control  
RYK=1e6;    %Right Yaw Spring Constant for PRY Joint Case, No C ontrol  
LPJD=1e2;   %Left Pitch Joint Damper  
LRJD=1e2;  
LYJD=1e2;  
LRK=1e2;  
LYK=1e6;  
run Research_Project_Data_updating_phi  
  
rtime=50;  
L_ramp=5;  
phi_init=pi/4;  
%% No Control & No Damper, SeaBase and TCraft Joint   
%TCraft not grounded  
j=1; %1,2,3 are for SB Joint, 4,5,6 TC Joint  
fz=13;  
%pitch only  
        sim  Simulation_Pitch_UC  
        figure(1)  
        subplot(3,1,1),plot(tout, RPA(:,2))  
        title( 'SeaBase Joint Angle with No Absorber' , 'FontSize' ,fz)  
        legend( 'Pitch Angle' )  
         
        figure(2)  
        heave1=abs(abs(TCraftZ(:,2))-abs(SeaBaseZ(: ,2)));  
        subplot(3,1,1),plot(tout, heave1)  
        title( 'Difference in Heave Between TCraft & SeaBase with No 
Absorber' , 'FontSize' ,fz)  
        legend( 'Pitch Angle' )  
         
        figure(3)  
        subplot(3,1,1),plot(tout, LPA(:,2))  
        title( 'TCraft Joint Angle with No Absorber' , 'FontSize' ,fz)  
        legend( 'Pitch Angle' )  
               
        maxLA_P(j)=max(abs(LPA(:,2)));     
        maxRA_P(j)=max(abs(RPA(:,2)));  
        maxheave(j)=max(abs(TCraftZ(:,2)-SeaBaseZ(: ,2)));     
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%Extract angles from Rotation Matrices  
N=length(Rot_r(:,1));  
    for  i=1:N  
        theta_r(i) = asind(-Rot_r(i,7));                   % Pitch  
        psi_r(i) = asind(Rot_r(i,4)/cosd(theta_r(i) ));     % Yaw  
        phi_r(i) = asind(Rot_r(i,8)/cosd(theta_r(i) ));     % Roll  
    end  
                
sim  Simulation_Pitch_Roll_UC  
        figure(1)  
        subplot(3,1,2),plot(tout, RPA(:,2),tout,RRA (:,2), 'g' )  
        legend( 'Pitch' , 'Roll' )  
        ylabel( 'Angles [deg]' , 'FontSize' ,fz)  
         
        figure(2)  
        heave1=abs(abs(TCraftZ(:,2))-abs(SeaBaseZ(: ,2)));  
        subplot(3,1,2),plot(tout, heave1)  
        ylabel( 'Delta Heave [m]' , 'FontSize' ,fz)  
        legend( 'Pitch, Roll' )   
         
        figure(3)  
        subplot(3,1,2),plot(tout, LPA(:,2),tout,LRA (:,2), 'g' )  
        legend( 'Pitch' , 'Roll' )  
        ylabel( 'Angles [deg]' , 'FontSize' ,fz)  
         
        maxLA_PR(j)=max(abs(LPA(:,2)));  
        maxLA_PR(j+1)=max(abs(LRA(:,2)));  
         
        maxRA_PR(j)=max(abs(RPA(:,2)));  
        maxRA_PR(j+1)=max(abs(RRA(:,2)));  
        maxheave(j+1)=max(abs(TCraftZ(:,2)-SeaBaseZ (:,2)));  
        
i=3;    %pitch roll yaw  
  
        sim  Simulation_Pitch_Roll_Yaw_UC  
        figure(1)  
        subplot(3,1,3),plot(tout, 
RPA(:,2),tout,RRA(:,2), 'g' ,tout,RYA(:,2), 'r' )  
        legend( 'Pitch' , 'Roll' , 'Yaw' )  
        xlabel( 'Time [sec]' , 'FontSize' ,fz)  
         
        figure(2)  
        heave1=abs(abs(TCraftZ(:,2))-abs(SeaBaseZ(: ,2)));  
        subplot(3,1,3),plot(tout, heave1)  
        xlabel( 'Time [sec]' , 'FontSize' ,fz)  
        legend( 'Pitch, Roll, Yaw' )       
         
        figure(3)  
        subplot(3,1,3),plot(tout, 
LPA(:,2),tout,LRA(:,2), 'g' ,tout,LYA(:,2), 'r' )  
        legend( 'Pitch' , 'Roll' , 'Yaw' )  
        xlabel( 'Time [sec]' , 'FontSize' ,fz)  
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        maxLA_PRY(j)=max(abs(LPA(:,2)));  
        maxLA_PRY(j+1)=max(abs(LRA(:,2)));  
        maxLA_PRY(j+2)=max(abs(LYA(:,2)));  
                 
        MaxLAngles(1:3,1:3)=[maxLA_P(1)          0       0              
%Pitch Only                  maxLA_PR(1)  maxLA_PR(2)     0                      
%Pitch, Roll                  maxLA_PRY(1) maxLA_PRY(2) maxLA_PR Y(3)];            
%Pitch, Roll, Yaw          
        maxRA_PRY(j)=max(abs(RPA(:,2)));  
        maxRA_PRY(j+1)=max(abs(RRA(:,2)));  
        maxRA_PRY(j+2)=max(abs(RYA(:,2)));  
        maxheave(j+2)=max(abs(TCraftZ(:,2)-SeaBaseZ (:,2)));  
        MaxRAngles(1:3,1:3)=[maxRA_P(1)          0        0                      
%Pitch Only                  maxRA_PR(1)  maxRA_PR(2)      0                      
%Pitch, Roll                 maxRA_PRY(1) maxRA_PRY(2) maxRA_PRY (3)];             
%Pitch, Roll, Yaw  
                         
        MaxHeave_RLJ = [maxheave(1) maxheave(2) max heave(3)];        
%max heave for no control on either TC/SB joint  
  
%% With Control SB Joint%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
j=1; %1,2,3 Right Joint, 4,5,6 Left Joint  
  
sim  Simulation_Pitch_RC  
  
    figure(1),subplot(3,1,1),plot(tout, RPA(:,2))       
    title( 'SeaBase Joint Angles with Absorber' , 'FontSize' ,fz)  
    legend( 'Pitch Angle' )  
  
    figure(2), subplot(3,1,1),plot(tout, R_Pitch_fe edback(:,2))  
    title( 'Passive Control Effort - SeaBase Joint' , 'FontSize' ,fz)  
    legend( 'Pitch' )  
  
    figure(3)  
    heave1=abs(TCraftZ(:,2)-SeaBaseZ(:,2)); %Pos=Tcraft is above SB, 
Neg=Tcraft is below SB  
    subplot(3,1,1),plot(tout, heave1)  
    title( 'Difference in Heave Between TCraft & SeaBase with SB 
Absorber' , 'FontSize' ,fz)  
    legend( 'Pitch Only' )  
  
    maxRA_P(j)=max(abs(RPA(:,2)));  
    maxheave(j)=max(abs(TCraftZ(:,2)-SeaBaseZ(:,2)) );  
    maxRTor_P(j)=max(abs(R_Pitch_feedback(:,2)));  
     
sim  Simulation_Pitch_Roll_RC  
  
    figure(1),subplot(3,1,2),plot(tout, RPA(:,2),to ut,RRA(:,2), 'g' )  
    ylabel( 'Angle [deg]' , 'FontSize' ,fz)  
    legend( 'Pitch' , 'Roll' )  
  
    figure(2), subplot(3,1,2),plot(tout, R_Pitch_fe edback(:,2),tout, 
R_Roll_feedback(:,2), 'g' )  
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    ylabel( 'Torque [Nm]' , 'FontSize' ,fz)  
    legend( 'Pitch' , 'Roll' )  
     
    figure(3)  
    heave1=abs(abs(TCraftZ(:,2))-abs(SeaBaseZ(:,2)) );  
    subplot(3,1,2),plot(tout, heave1)  
    ylabel( 'Delta Heave [m]' , 'FontSize' ,fz)  
    legend( 'Pitch, Roll' )  
         
    maxRA_PR(j)=max(abs(RPA(:,2)));  
    maxRA_PR(j+1)=max(abs(RRA(:,2)));  
    maxheave(j+1)=max(abs(TCraftZ(:,2)-SeaBaseZ(:,2 )));  
    maxRTor_PR(j)=max(abs(R_Pitch_feedback(:,2)));  
    maxRTor_PR(j+1)=max(abs(R_Roll_feedback(:,2)));  
         
sim  Simulation_Pitch_Roll_Yaw_RC  
  
    figure(1),subplot(3,1,3), plot(tout, 
RPA(:,2),tout,RRA(:,2), 'g' ,tout,RYA(:,2), 'r' )  
    xlabel( 'Time [sec]' , 'FontSize' ,fz)  
    legend( 'Pitch' , 'Roll' , 'Yaw' )  
     
    figure(2), subplot(3,1,3),plot(tout, R_Pitch_fe edback(:,2),tout, 
R_Roll_feedback(:,2), 'g' ,tout, R_Yaw_feedback(:,2), 'r' )  
    xlabel( 'Time [sec]' , 'FontSize' ,fz)  
    legend( 'Pitch' , 'Roll' , 'Yaw' )  
     
    figure(3)  
    heave1=abs(abs(TCraftZ(:,2))-abs(SeaBaseZ(:,2)) );  
    subplot(3,1,3),plot(tout, heave1)  
    xlabel( 'Time [sec]' , 'FontSize' ,fz)  
    legend( 'Pitch, Roll, Yaw' )     
     
    maxRA_PRY(j)=max(abs(RPA(:,2)));  
    maxRA_PRY(j+1)=max(abs(RRA(:,2)));  
    maxRA_PRY(j+2)=max(abs(RYA(:,2)));  
    maxheave(j+2)=max(abs(TCraftZ(:,2)-SeaBaseZ(:,2 )));  
     
    maxRTor_PRY(j)=max(abs(R_Pitch_feedback(:,2)));  
    maxRTor_PRY(j+1)=max(abs(R_Roll_feedback(:,2))) ;  
    maxRTor_PRY(j+2)=max(abs(R_Yaw_feedback(:,2)));  
     
    MaxRAngles(1:3,4:6)=[maxRA_P(1)          0         0                      
%Pitch Only              maxRA_PR(1)  maxRA_PR(2)      0                      
%Pitch, Roll             maxRA_PRY(1) maxRA_PRY(2) maxRA_PRY(3)] ;             
%Pitch, Roll, Yaw  
  
   MaxHeave_RJC = [maxheave(1) maxheave(2) maxheave (3)];  
   MaxRightTorque=[maxRTor_P(1)          0           0                        
%Pitch Only         maxRTor_PR(1)  maxRTor_PR(2)      0                        
%Pitch, Roll        maxRTor_PRY(1) maxRTor_PRY(2) maxRTor_PRY(3) ];             
%Pitch, Roll, Yaw  
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%% With Control: TC Joint%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
j=1; %1,2,3 Right Joint, 4,5,6 Left Joint  
  
sim  Simulation_Pitch_LC  
  
    figure(1),subplot(3,1,1),plot(tout, LPA(:,2))       
    title( 'TCraft Joint Angles with Absorber' , 'FontSize' ,fz)  
    legend( 'Pitch Angle' )  
  
    figure(2), subplot(3,1,1),plot(tout, L_Pitch_fe edback(:,2))  
    title( 'Passive Control Effort - TCraft Joint' , 'FontSize' ,fz)  
    legend( 'Pitch' )  
  
    figure(3)  
    heave1=abs(TCraftZ(:,2)-SeaBaseZ(:,2)); %Pos=Tcraft is above SB, 
Neg=Tcraft is below SB  
    subplot(3,1,1),plot(tout, heave1)  
    title( 'Difference in Heave Between TCraft & SeaBase with TC 
Absorber' , 'FontSize' ,fz)  
    legend( 'Pitch Only' )  
  
    maxLA_P(j)=max(abs(LPA(:,2)));  
    maxheave(j)=max(abs(TCraftZ(:,2)-SeaBaseZ(:,2)) );  
    maxLTor_P(j)=max(abs(L_Pitch_feedback(:,2)));  
sim  Simulation_Pitch_Roll_LC  
    figure(1),subplot(3,1,2),plot(tout, LPA(:,2),to ut,LRA(:,2), 'g' )  
    ylabel( 'Angle [deg]' , 'FontSize' ,fz)  
    legend( 'Pitch' , 'Roll' )  
    figure(2), subplot(3,1,2),plot(tout, L_Pitch_fe edback(:,2),tout, 
L_Roll_feedback(:,2), 'g' )  
    ylabel( 'Torque [Nm]' , 'FontSize' ,fz)  
    legend( 'Pitch' , 'Roll' )  
    figure(3)  
    heave1=abs(abs(TCraftZ(:,2))-abs(SeaBaseZ(:,2)) );  
    subplot(3,1,2),plot(tout, heave1)  
    ylabel( 'Delta Heave [m]' , 'FontSize' ,fz)  
    legend( 'Pitch, Roll' )  
    maxLA_PR(j)=max(abs(LPA(:,2)));  
    maxLA_PR(j+1)=max(abs(LRA(:,2)));  
    maxLTor_PR(j)=max(abs(L_Pitch_feedback(:,2)));  
    maxLTor_PR(j+1)=max(abs(L_Roll_feedback(:,2)));  
    maxheave(j+1)=max(abs(TCraftZ(:,2)-SeaBaseZ(:,2 )));     
sim  Simulation_Pitch_Roll_Yaw_LC  
    figure(1),subplot(3,1,3), plot(tout, 
LPA(:,2),tout,LRA(:,2), 'g' ,tout,LYA(:,2), 'r' )  
    xlabel( 'Time [sec]' , 'FontSize' ,fz)  
    legend( 'Pitch' , 'Roll' , 'Yaw' )  
    figure(2), subplot(3,1,3),plot(tout, L_Pitch_fe edback(:,2),tout, 
L_Roll_feedback(:,2), 'g' ,tout, L_Yaw_feedback(:,2), 'r' )  
    xlabel( 'Time [sec]' , 'FontSize' ,fz)  
    legend( 'Pitch' , 'Roll' , 'Yaw' )  
    figure(3)  
    heave1=abs(abs(TCraftZ(:,2))-abs(SeaBaseZ(:,2)) );  
    subplot(3,1,3),plot(tout, heave1)  
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    xlabel( 'Time [sec]' , 'FontSize' ,fz)  
    legend( 'Pitch, Roll, Yaw' )     
    maxLA_PRY(j)=max(abs(LPA(:,2)));  
    maxLA_PRY(j+1)=max(abs(LRA(:,2)));  
    maxLA_PRY(j+2)=max(abs(LYA(:,2)));  
     
    maxLTor_PRY(j)=max(abs(L_Pitch_feedback(:,2)));  
    maxLTor_PRY(j+1)=max(abs(L_Roll_feedback(:,2))) ;  
    maxLTor_PRY(j+2)=max(abs(L_Yaw_feedback(:,2)));  
    maxheave(j+2)=max(abs(TCraftZ(:,2)-SeaBaseZ(:,2 )));  
    MaxLAngles(1:3,4:6)=[maxLA_P(1)          0        0                      
%Pitch Only               maxLA_PR(1)  maxLA_PR(2)     0                      
%Pitch, Roll              maxLA_PRY(1) maxLA_PRY(2) maxLA_PRY(3) ];            
%Pitch, Roll, Yaw  
    MaxHeave_LJC = [maxheave(1) maxheave(2) maxheave( 3)]; %maximum 
heave for the 3 cases using control on TC joint  
       MaxLeftTorque=[maxLTor_P(1)          0          0                        
%Pitch Only             maxLTor_PR(1)  maxLTor_PR(2)     0                        
%Pitch, Roll            maxLTor_PRY(1) maxLTor_PRY(2) maxLTor_PR Y(3)];            
%Pitch, Roll, Yaw  

A 5. Active gyroscope simulation script 

%% Active type (Sperry) Stabilizing Gyroscope Soln.  to Eq. of Motion  
t=linspace(0,rtime,rtime*5);  
fs=12;  
% run PM_Spectrum 
% using PM Spectrum waves of SS4  
wfa=1.0472e3;  
m=7000; %linear controller gain, u = -mx  
gam=atan(omega*(K+I_f(3,3)*wfa*m)/(delta_tc*GMrtc-
I_tc(1,1)*omega^2));  
phi_on = 
g*delta_tc*GMrtc*2*pi*tot_wave(length(t)/2+1:end)/l ambda/sqrt((delta_
tc*GMrtc-I_tc(1,1)*omega^2 )^2+(omega*(K+I_f(3,3)*w fa*m))^2 ).* 
sin(omega*t(length(t)/2+1:end)-gam) ;  
 
% computing the controlled precession moment - R(t)  = control effort  
beta=atan((I_f(3,3)*wfa)/(I_f(1,1)*m*omega));  
r=omega*g*delta_tc*GMrtc*2*pi*tot_wave(length(t)/2+ 1:end)/lambda 
*sqrt(((I_f(1,1)*m*omega)^2+(I_f(3,3)*wfa )^2)/((de lta_tc*GMrtc-
I_tc(1,1)*omega^2)^2+(omega^2*(K+I_f(3,3)*wfa*m)^2) )).* 
sin(omega*t(length(t)/2+1:end)-gam+beta); 

 
%turning off the gyro, ang velocity=0  
wfa=0;  
gam=atan(omega*(K+I_f(3,3)*wfa*m)/(delta_tc*GMrtc-
I_tc(1,1)*omega^2));  
phi_off = 
g*delta_tc*GMrtc*2*pi*tot_wave(length(t)/2+1:end)/l ambda/sqrt((delta_
tc*GMrtc-I_tc(1,1)*omega^2 )^2+(omega*(K+I_f(3,3)*w fa*m))^2 ).* 
sin(omega*t(1:length(t)/2)-gam) ;  
phi_gyro=[phi_off phi_on]*180/pi; 
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%Roll Reduction using gyroscope  
figure(1)  
hold on 
plot(t,phi_gyro), title( 'Active Gyroscope Stabilizer on T-Craft, 
using PM Spectrum' , 'fontsize' ,fs)  
xlabel( 'Time [sec]' , 'fontsize' ,fs)  
ylabel( 'T-Craft Roll ( \phi) [deg]' , 'fontsize' ,fs)  
text(.25*tend,80, 'Gyro Off' , 'fontsize' ,fs)  
text(.75*tend,80, 'Gyro On' , 'fontsize' ,fs)  
line([tend/2+1 tend/2+1],[-90 90], 'LineStyle' , '--' , 'Color' , 'k' )  
 
%Precession moment R(t)  
figure(2)  
plot(t(length(t)/2+1:end),r), title( 'Gyroscope Controlled Precession 
Moment R(t)' , 'fontsize' ,fs)  
xlabel( 'Time [sec]' , 'fontsize' ,fs)  
ylabel( 'Precession Moment [Nm]' , 'fontsize' ,fs)  
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