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Endophenotype effect sizes support variant
pathogenicity in monogenic disease
susceptibility genes

Jennifer L. Halford 1,2,36, Valerie N. Morrill1,3,36, Seung Hoan Choi 1,
Sean J. Jurgens 1,4, Giorgio Melloni5, Nicholas A. Marston5, Lu-Chen Weng 1,3,
Victor Nauffal 1, Amelia W. Hall6, Sophia Gunn7, Christina A. Austin-Tse8,9,10,
James P. Pirruccello 1,3, Shaan Khurshid1,3,11, Heidi L. Rehm1,9,10,
Emelia J. Benjamin 12,13,14, Eric Boerwinkle15, Jennifer A. Brody 16,
Adolfo Correa 17, Brandon K. Fornwalt18,19,20, Namrata Gupta1,
Christopher M. Haggerty18,19, Stephanie Harris3, Susan R. Heckbert 16,21,
Charles C. Hong 22, Charles Kooperberg 23, Henry J. Lin 24,
Ruth J. F. Loos 25,26, Braxton D. Mitchell22,27, Alanna C. Morrison 15,
Wendy Post28, Bruce M. Psaty 16,21,29, Susan Redline 30, Kenneth M. Rice 31,
Stephen S. Rich 32, Jerome I. Rotter24, Peter F. Schnatz33,
Elsayed Z. Soliman 34, Nona Sotoodehnia16,35, Eugene K. Wong3,10, NHLBI
Trans-Omics for Precision Medicine (TOPMed) Consortium, Marc S. Sabatine5,
Christian T. Ruff5, Kathryn L. Lunetta 7, Patrick T. Ellinor 1,3,11,37 &
Steven A. Lubitz 1,3,11,37

Accurate and efficient classification of variant pathogenicity is critical for
research and clinical care. Using data from three large studies, we demonstrate
that population-based associations between rare variants and quantitative
endophenotypes for three monogenic diseases (low-density-lipoprotein cho-
lesterol for familial hypercholesterolemia, electrocardiographic QTc interval for
longQT syndrome, and glycosylated hemoglobin formaturity-onset diabetes of
theyoung)provideevidence for variantpathogenicity. Effect sizes are associated
with pathogenic ClinVar assertions (P<0.001 for each trait) and discriminate
pathogenic fromnon-pathogenic variants (areaunder thecurve0.82-0.84across
endophenotypes). An effect size threshold of ≥ 0.5 times the endophenotype
standarddeviationnominates up to 35%of rare variants of uncertain significance
or not in ClinVar in disease susceptibility genes with pathogenic potential. We
propose that variant associations with quantitative endophenotypes for mono-
genic diseases can provide evidence supporting pathogenicity.

Determining the clinical significance of rare genetic variation has cri-
tical implications for research and optimal care for patients and their
families1. Incorrect classification of genetic variation, though rare, may
place patients and their relatives at risk for adverse consequences of

disease, inappropriate therapies with related complications, and
anxiety2. Insufficient evidence for pathogenicity is common and the
inability to discriminate variants of uncertain significance (VUS)
remains a significant barrier3. In clinical practice, genetic testing is
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frequently hampered by discovery of VUS and conflicting variant
classifications between laboratories, with lack of specific evidence for
pathogenicity due to the genetic heterogeneity of disease and rarity of
segregation data4–6. Although a process of variant classification
advanced by the American College of Medical Genetics (ACMG) and
Association for Molecular Pathology exists7, it is laborious and prone
to adjudicator disagreement8,9. For example, one study across three
laboratories found low concordance (Cohen K =0.26) in classifying
variants in SCN5A and KCNH2—two disease-causing genes for the long
QT syndrome (LQTS) which can cause sudden cardiac death10. Never-
theless, with increasing useof genetic sequencing in both research and
clinical practice there is now a rapidly growing pool of rare variants
requiring adjudication.

Quantitative endophenotypes are instrumental phenotypes for
genetic association and are often more easily and reliably ascertained
than dichotomous disease status indicators. The emergence of large-
scale human genetic sequence and phenotype data in biorepositories
provides an opportunity to assess whether endophenotypes for
monogenic diseases can be leveraged to enable scalable and accurate
variant pathogenicity assertions. Currently, variant classification
practices do not account for rare variant associations with endophe-
notypes for monogenic diseases. We hypothesized that quantitative
endophenotypes for monogenic diseases measured at population-
scale can provide evidence of variant pathogenicity.

To assess our hypothesis, we studied three monogenic diseases
for which easily ascertained human-derived endophenotypes exist,
and ambiguous variant classification is an established challenge2,4,6,11.
Familial hypercholesterolemia (FH) is the most common inherited
disorder in medicine, affecting about 1 in 250 individuals. FH is char-
acterized by elevated blood levels of low-density lipoprotein choles-
terol (LDL-C), which may lead to premature coronary artery disease
and myocardial infarction3. LQTS is a common cause of arrhythmias
that affects about 1 in 2000 individuals andmay lead to sudden cardiac
death12. The electrocardiographic corrected QT interval (QTc) is an
easily measured endophenotype for LQTS. Maturity-onset diabetes
of the young (MODY) is a monogenic form of diabetes often mis-
diagnosed as type 1 or type 2 diabetes that affects about 1 in 10,000
adults13. Glycosylated hemoglobin (HbA1c) levels are a routinely mea-
sured blood biomarker for diabetes.

We studied the relations between rare coding variants,
defined here as those with a minor allele frequency (MAF) < 0.1%,
in disease-causing genes for FH and MODY with LDL-C and HbA1c
levels, respectively, among individuals who underwent whole exome
sequencing (WES) in the UK Biobank (UKBB) and replicated findings

in the Further Cardiovascular Outcomes Research With PCSK9 Inhi-
bition in Subjects With Elevated Risk (FOURIER) randomized con-
trolled trial14. We studied the relations between rare variants in LQTS
susceptibility genes and QTc intervals among individuals who
underwent WES in the UKBB and replicated findings in the National
Heart Lung and Blood Institute’s (NHLBI) Trans-Omics for Precision
Medicine (TOPMed) program15, in which samples underwent whole
genome sequencing (WGS).

In this work, we show that effect sizes are associated with
pathogenic ClinVar assertions and discriminate pathogenic from non-
pathogenic variants for three monogenic diseases. As such, variant
associations with quantitative endophenotypes can provide evidence
supporting pathogenicity.

Results
Sample characteristics
Our discovery analysis includedmulti-ancestry samples from theUKBB
comprising 189,652 participants with LDL-C measurements, 33,520
with QTc measurements, and 189,741 with HbA1c measurements
(Supplementary Figs. 1–3). Sample characteristics are reported in
Table 1. Our replication analyses for the LDL-C and HbA1c endophe-
notypes included 14,038 and 12,798 samples, respectively, from the
FOURIER trial. Replication analyses for the QTc endophenotype
included 26,976 individuals from TOPMed (Replication sample char-
acteristics are reported in Supplementary Table 1). A sensitivity ana-
lysis including individuals in the UKBB of European ancestry included
165,783 participants with LDL-C measurements, 28,249 with QTc
measurements, and 166,335 with HbA1c measurements (European
sample characteristics are reported in Supplementary Table 2).

Variant-level effect sizes and pathogenicity category
Within definitive FH genes (LDLR, APOB, PCSK9)16, we observed 3495
rare (within-sample MAF <0.1%) coding variants in the UKBB; of these,
1443 (41.3%) were present in ClinVar with clinical pathogenicity
assertions. Single variant association testing between each variant in
the FH genes and LDL-C levels produced variant effect sizes that dif-
fered by pathogenicity category. Pathogenic and likely pathogenic
variants exhibited the largest mean effect sizes (effect size ± standard
deviation [SD]: 46.57 ± 52.58 and 44.50 ± 58.43 milligrams per deciliter
[mg/dL], respectively) (Fig. 1A). For variants within definitive LQTS
genes (KCNQ1, KCNH2, SCN5A)16, we observed 1078 rare coding var-
iants in theUKBB, 752 (69.8%) ofwhichwere present inClinVar. Variant
effect sizes for QTc duration differed across categories with patho-
genic and likely pathogenic variants exhibiting the largest mean effect

Table 1 | Baseline cohort characteristics by endophenotype in the UK Biobank

Characteristic LDL-C (mg/dL) QTc (ms) HbA1c (%)

Participants with a measurable endophenotype, n 189,652 33,520 189,741

Median endophenotype value (Q1–Q3) 136 (114–159) 411 (396–426) 5.4 (5.1–5.6)

Male, n (%) 85,197 (44.9) 16,582 (49.5) 85,210 (44.9)

European ancestry, n (%) 165,783 (87.4) 28,249 (84.3) 166,335 (87.7)

Mean age, years (SD) 57.0 (8.1) 52.6 (5.7) 57.0 (8.1)

Myocardial infarction, n (%) 2995 (1.6) 483 (1.4) -

Statin usage, n (%) 31,909 (16.8) - -

Median high-density lipoprotein, mg/dL (Q1–Q3) 56.0 (46.3–64.0) - -

Heart failure, n (%) - 74 (0.2) -

Beta blocker usage, n (%) - 1701 (5.1) -

Calcium channel blocker usage, n (%) - 2455 (7.3) -

Type 2 diabetes medication usage, n (%) - - 7090 (3.7)

Mean corpuscular volume, femtoliters (SD) - - 91.2 (4.5)

NB: only select relevant characteristics for the given monogenic disease of interest are displayed.
This table includes median imputed values for select clinical covariates.
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sizes (29.58 ± 29.19 and 11.54 ± 36.98 milliseconds [ms], respectively)
(Fig. 1B). For variants within the common MODY genes (GCK, HNF1A,
HNF1B, HNF4A)13, we observed 1052 rare coding variants in the UKBB;
of these, 184 (17.5%) were present in ClinVar. Variant effect sizes for
HbA1c differed across categories with pathogenic and likely patho-
genic variants exhibiting the largestmean effect sizes (0.70 ±0.70 and
0.45 ± 0.37%, respectively) (Fig. 1C). The distributions of effect sizes for
variants tested for association with LDL-C, QTc, and HbA1c did not
differ across pathogenicity categories in a control panel of hereditary
cancer genes17, which would not be expected to be associated with
either LDL-C levels, QTc duration, or HbA1c percentage (Supplemen-
tary Fig. 4).

Carrier-level effect sizes and pathogenicity category
We then assessed the estimated differences in endophenotype mea-
surements for carriers of variants in each pathogenicity category
compared to carriers of benign variants. Compared to carriers
of benign variants, LDL-C levels were greater among carriers of
pathogenic (difference 37.1mg/dL, 95% CI 31.9, 42.3, P = 6.42 × 10−45)
and likely pathogenic (difference 38.8mg/dL, 95% CI 30.9, 46.7,
P = 8.12 × 10−22) variants in FH genes (Fig. 1A). Similarly, QTc duration
was greater among carriers of pathogenic (difference 32.3ms, 95% CI
24.0, 40.6, P = 3.43 × 10−14) and likely pathogenic (difference 16.3ms,
95% CI 6.2, 26.4, P = 1.54 × 10−3) variants compared to benign variant
carriers (Fig. 1B). Lastly, HbA1c percentage was greater among carriers
of pathogenic (difference 0.75%, 95% CI 0.57, 0.94, P = 1.73 × 10−15)
variants compared to benign variant carriers (Fig. 1C). Carriers of likely
pathogenic variants did not have significantly higher HbA1c percen-
tage than benign variant carriers. No significant differences in LDL-C,
QTc, or HbA1c measures were observed among carriers of pathogenic
or likely pathogenic variants in a control set of hereditary cancer genes
(Supplementary Fig. 4). In sensitivity analyses restricted to individuals
of European ancestry in the UKBB (n = 165,783 participants for LDL-C

levels, n = 28,249 participants for QTc duration, n = 166,335 partici-
pants for HbA1c), we again observed that carriers of pathogenic var-
iants had higher LDL-C levels, longer QTc intervals, and higher HbA1c
percentages than carriers of benign variants in corresponding mono-
genic genes (Supplementary Fig. 5). Carriers of likely pathogenic var-
iants had significantly higher LDL-C levels and longer QTc intervals
than carriers of benign variants.

Replication of associations between effect sizes and patho-
genicity category
Weobserved similar relations between rare variant effect sizes for each
endophenotype and variant pathogenicity categories (Supplementary
Tables 6–8, Supplementary Fig. 6). Carriers of pathogenic variants had
significantly greater endophenotype values compared to benign var-
iant carriers for all endophenotypes. Carriers of likely pathogenic
variants had significantly greater endophenotype values compared to
benign variant carriers for LDL-C; no significant difference was
observed for QTc or HbA1c.

Variant-level effect sizes and discrimination of pathogenicity
category
We then examined whether variant effect sizes can discriminate var-
iant pathogenicity assertions. For the LDL-C endophenotype, variant
effect sizes among FH genes discriminated pathogenic variants from
variants classified as likely benign and benign in a logistic regression
model with an area under curve (AUC) of 0.84 (95% CI 0.74, 0.93; 45
variants included) and 0.91 (95% CI 0.87, 0.96; 58 variants included) in
the UKBB and FOURIER, respectively (Fig. 2A). For the QTc interval,
variant effect sizes among LQTS genes discriminated pathogenic var-
iants with an AUC of 0.83 (95% CI 0.71, 0.95; 20 variants included) and
0.79 (95% CI 0.66, 0.92; 23 variants included) in the UKBB and
TOPMed, respectively (Fig. 2B). For HbA1c, variant effect sizes among
MODY genes discriminated pathogenic variants with an AUC of 0.82

Fig. 1 | Association between effect size and variant pathogenicity for three
monogenic disease endophenotypes. A,B, andC display data for the LDL-C, QTc,
and HbA1c endophenotypes, respectively, for rare variants found in the UK Bio-
bank. Definitive familial hypercholesterolemia (FH) genes include LDLR, APOB,
PCSK9; definitive long-QT syndrome (LQTS) genes include KCNQ1, KCNH2, SCN5A;
common maturity-onset diabetes of the young (MODY) genes include HNF1A,
HNF1B, HNF4A, GCK. Row 1 in each panel displays the variant effect size distribution

by ClinVar pathogenicity category (colored). Row 2 in each panel displays the
estimated difference in endophenotype value comparing carriers of a variant in
each ClinVar pathogenicity category to carriers of benign variants (circles) and 95%
confidence intervals. Two-sided P values are derived from multiple linear regres-
sion model t-statistics and are annotated for variant categories with P <0.05. Var-
iant classification includes B benign, LB likely benign, LP likely pathogenic, P
pathogenic, VUS variant of uncertain significance, C conflicting.
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(95% CI 0.67, 0.97; 20 variants included) and 0.91 (95% CI 0.76, 1;
2 variants included) in the UKBB and FOURIER, respectively (Fig. 2C).
Lower discrimination was observed when pathogenic and likely
pathogenic variants were grouped together (Fig. 2). For analyses of
LDL-C, 383 variants in definitive FH genes overlapped between the
UKBB and FOURIER; for analyses of QTc, 439 variants in definitive
LQTS genes overlapped between the UKBB and TOPMed; for analyses
of HbA1c, 43 variants in common MODY genes overlapped between
the UKBB and FOURIER.

Application of an effect size threshold to provide evidence of
pathogenicity
Next, we selected a large effect size threshold which we applied to
VUS or variants with conflicting assertions to document evidence

for a pathogenic or benign classification. A priori, we selected var-
iant effect size thresholds that corresponded to 0.5 SD of the
endophenotype distribution in the UKBB. As a secondary analysis,
we tabulated the sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) of other effect size
thresholds based on a range of SD thresholds (Supplementary
Table 9). For LDL-C levels, a large effect size threshold corre-
sponding to 0.5 SD of the LDL-C distribution in the UKBB was
16.7 mg/dL. In the UKBB, the large LDL-C effect size threshold had a
sensitivity of 76% (95% CI 63, 88) and specificity of 88% (95% CI 85,
91) for discriminating ClinVar designated pathogenic variants from
non-pathogenic variants (likely benign, and benign). PPV and NPV
were calculated to be 37% (95% CI 27, 47) and 97% (95% CI 96, 99)
respectively. The large effect variant threshold in the UKBB pro-
vided evidence of pathogenicity for 15.9% of VUS and 18.9% of var-
iants with conflicting assertions in FH genes (Fig. 2A). The large
effect size threshold corresponding to 0.5 SD of the QTc distribu-
tion in the UKBB was 11.9 ms, which had a sensitivity of 80% (95% CI
62, 98) and specificity of 74% (95%CI 69, 79), with PPV of 19% (95% CI
10, 27) and NPV of 98% (95% CI 96, 100). In the UKBB, this threshold
provided evidence of pathogenicity for 24.4% of VUS and 16.6% of
conflicting variants in the LQTS genes (Fig. 2B). For HbA1c, the large
effect threshold was 0.31%, with a sensitivity of 70% (95% CI 50, 90),
specificity of 95% (95% CI 89, 100), PPV of 82% (95% CI 64, 100), and
NPV 90% (95% CI 82, 98); this threshold provided evidence of
pathogenicity for 10.4% of VUS and 8.8% of conflicting variants in
the MODY genes (Fig. 2C).

In aggregate, of the 253 VUS across FH, LQTS, and MODY genes
for which large effect size thresholds provided evidence of patho-
genicity, there were 244 (96.4%) missense variants, 7 (2.8%) synon-
ymous variants, 1 (0.4%) in-frame deletion, and 1 (0.4%) in-frame
insertion. We created an aggregate measure of 31 bioinformatic tools
designed to predict function, which we denoted as the predicted
functional impact (PFI) score which ranged from 0 to 1; higher PFI
scores indicate greater predicted impact (see Methods for full detail).
Of the 119 missense variants in genes associated with FH, the median
PFI was 0.28 (Q1–Q3 0.09-0.41). The highest aggregate PFI was
observed for variants in LDLR (median PFI 0.58, Q1–Q3 0.40–0.71). Of
the 114 missense variants in genes associated with LQTS, the median
PFI was 0.49 (Q1–Q3 0.30–0.69). Of the 11 missense variants in genes
associated with MODY, the median PFI was 0.54 (Q1–Q3 0.44–0.81),
with variants in HNF1B displaying the highest PFI of around 0.82.
Detailed bioinformatic tool functional predictions are shown in

Fig. 2 | Discrimination of variant pathogenicity by effect size and percent of
variants with evidence of pathogenicity. A This includes variants within familial
hypercholesterolemia (FH) genes recommended for secondary findings return
(LDLR, APOB, PCSK9); B includes variants within the long-QT syndrome (LQTS)
genes recommended for which the return of a secondary variant finding is
endorsed (KCNQ1, KCNH2, SCN5A); C includes variants within common maturity-
onset diabetes of the young (MODY) genes (HNF1A, HNF1B, HNF4A, GCK). Column 1
includes variants from the UK Biobank, the primary cohort; Column 2 includes
variants from FOURIER and TOPMed, the replication cohorts. Rows 1, 3, and 5
display receiver operating characteristic (ROC) curves depicting discrimination of
pathogenic variants according to effect size. Variant pathogenicity is taken from
ClinVar. The red curve includes “Pathogenic” variants only; the pink curve includes
“Pathogenic” and “Likely pathogenic” variants combined; area under the curve
(AUC) values and variant numbers are reported in the legend. Large effect size,
defined as effect size greater than 0.5 standard deviations (SD) of the trait dis-
tribution, is plotted inpurple on the “Pathogenic” variant ROCcurve. Rows 2, 4, and
6 display variants by ClinVar category and shows the percent of variants with
evidence for pathogenicity using the large effect size thresholddefined inRows 1, 3,
and 5. Variantswith evidence forpathogenicity, definedas having larger effect sizes
than the threshold, are in pink; variantswith evidence for a benign effect, defined as
having smaller effect sizes than the threshold, are in light blue.
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Supplementary Fig. 7; additional variant characteristics are listed in
Supplementary Data 1.

There were 139 variants with conflicting assertions in ClinVar
across FH, LQTS, and MODY genes for which large effect size thresh-
olds provided evidence of pathogenicity. Of these, 112 (80.6%) were
missense variants, 22 (15.8%) were synonymous variants, 2 (1.4%) were
splice donor variants, 2 (1.4%) were frameshift or stop-gained variants,
and 1 (0.7%) was an in-frame deletion. The PFI score was calculated for
71 variants in genes associated with FH with a median PFI of 0.63
(Q1–Q3 0.25–0.77), with the highest PFI observed in LDLR variants
(n = 53, median PFI 0.76, Q1–Q3 0.57–0.80). There were 38 variants in
genes associated with LQTS with a median PFI of 0.66 (Q1–Q3
0.33–0.82) and 4 variants in genes associated with MODY with a
median PFI of 0.80 (Q1–Q3 0.66–0.86). Detailed bioinformatic tool
functional predictions are shown in Supplementary Fig. 8; additional
variant characteristics including minor allele count are listed in Sup-
plementary Data 1.

Within the UKBB, the fraction of carriers of VUS or conflicting
assertion variants with large effect size varied by endophenotype (LDL
4.7%,QTc 11.3%, andHbA1c 1.5%). In contrast, in FOURIER, a clinical trial
enriched for patients with atherosclerotic cardiovascular disease, we
observed a greater percentage of carriers of VUS or conflicting asser-
tion variants with large effect sizes for the LDL (16.0%) and HbA1c
(11.0%) endophenotypes (Supplementary Table 10). We submit that
the increased percentage of carriers of VUS or conflicting assertion
variants with large effect size for the LDL and HbA1c endophenotypes
in FOURIER is consistent with a functional and clinically impactful role
of such variants.

Lastly, we applied the large variant effect size threshold to novel
variants that were not previously submitted to ClinVar as a screen for
potential pathogenicity. In the UKBB, 438 (21.3%), 99 (30.4%), and 124
(14.3%) variants not previously submitted to ClinVar were found to
have large effect size in genes associated with FH, LQTS, and MODY,
respectively. Similar percentages were observed in the replication
datasets (18.8%, 19.4%, and 20.1%, respectively). In total, 807
unique large effect size variants were identified across all cohorts, of
which 544 (67.4%) were missense, 237 (29.4%) synonymous, 22
(2.7%) were loss-of-function (LOF; frameshift, stop-gained, or splice-
altering), and the remainder with various consequences. For the 355
non-synonymous variants in FH genes, 339 (95.5%) weremissense and
14 (3.9%) were LOF, with a median PFI of 0.28 (Q1–Q3 0.12–0.43). For
the 106 non-synonymous variants in LQTS genes, there were 102
(96.2%) missense and 3 LOF (2.8%), with median PFI of 0.56 (Q1–Q3
0.41–0.73). There were 109 non-synonymous variants in the MODY
genes, with 103 (94.5%) missense and 5 (4.6%) LOF, and median PFI of
0.63 (Q1–Q3 0.48–0.79). Additional details for the non-synonymous
variants, including minor allele count, are provided in Supplemen-
tary Data 2.

As expected, we observed that the percentage of variants with
large effect sizes was greatest for loss-of-function variants (38%), fol-
lowed by missense/indels (22%), and synonymous variants (18%; Sup-
plementary Table 11, Supplementary Fig. 9). The pattern of large effect
size variants stratified by variant consequence was similar when we
used an effect size threshold of one standard deviation of the endo-
phenotype distribution. A total of 2261 unique synonymous variants
were analyzed using SpliceAI, with 68 (3.0%) of these demonstrating
some probability of being splice-altering with delta score > 0.2 (Sup-
plementary Table 12).

Discussion
We observed that population-level associations between genetic
variants and readily ascertainable endophenotypes for monogenic
diseases are informative for classifying variant pathogenicity. Specifi-
cally, rare variant effect sizes derived from association testing with
LDL-C levels, electrocardiographic QTc duration, and HbA1c levels

discriminated pathogenic from non-pathogenic variants in suscept-
ibility genes for FH, LQTS, and MODY, respectively. A large variant
effect size threshold provided evidence for pathogenicity for up to 35%
of variants previously classified as VUS or with conflicting classifica-
tions in ClinVar. Additionally, up to 30% of variants without ClinVar
assertions had large effect sizes, providing potential for pathogenicity
for variants not previously subjected to rigorous clinical assertion
processes. As expected, a higher proportion of loss-of-function var-
iants had large effect sizes compared to missense/indels and synon-
ymous variants. Similar proportions were observed for missense/
indels and synonymous variants, which we submit likely reflects sub-
stantial variability in the functional role of such variants.

Our findings have two main implications. First, quantitative
endophenotypes formonogenic diseases that aremeasurable in large
scale population-based datasetsmay be leveraged to infer rare variant
pathogenicity. We demonstrated that effect sizes for rare variants in
FH, LQTS, and MODY monogenic disease susceptibility genes with
corresponding endophenotypes are associated with variant patho-
genicity in three large studies. Single-variant association testing in
biobanks has become a widely used tool to explore the relations
between rare variants and phenotypes of interest, yet it has primarily
been used for genetic discovery purposes18,19. Our findings suggest
that referencing effect sizes from large-scale rare variant association
testing may have applications beyond variant or gene discovery,
aiding in variant classification. The three diseases studied have pre-
cisely defined endophenotypes which are heritable, associated with
the mechanism of disease, and included in the diagnostic criteria
for the disease. We anticipate that using endophenotype effect
sizes to aid in ascertaining variant pathogenicity will be most effec-
tively applied to diseases with readily measurable endophenotypes in
which the endophenotype is highly correlated with disease status,
including other cardiac diseases such as aortic aneurysm and various
cardiomyopathies20,21. We hypothesize that the application of endo-
phenotype effect sizes for inferring pathogenicity may also be rele-
vant for diseases in which endophenotypes complement diagnostic
criteria22. Further studies are required to characterize the potential
applications of the described approach and define criteria for clini-
cally informative endophenotypes.

Second, variant effect sizes can be used as rapid and scalable
discriminators of variant pathogenicity to help resolve variants with
uncertain significance or conflicting classifications. Further, variant
effect sizes may be useful in screening for potential pathogenicity of
novel variants. The traditional variant classification process, which
relies on familial segregation data and functional studies is time-con-
suming, labor-intensive, and subject to uncertainty7. While there is
a growing landscape of computational tools being deployed to
predict pathogenicity through assessment of variant conservation and
prediction of variant effects on protein function, these tools remain
imperfect and are not informed by features specific to a given
disease23,24. We observed that the PFI, an aggregate measure of pre-
dicted variant function, was variable and heterogeneous in relation to
effect size. Current algorithms for classifying variant pathogenicity do
not account for population-based genotype-phenotype associations,
which can be interpreted as human-derived physiologic indicators of
variant expressivity. We anticipate that a potential application may
be to utilize effect size information, when available, either prior to
initiating a formal variant classification process or in conjunction
with existing methods. Such applications will require prospective
evaluation.

The large number of novel variants discovered with sequencing
efforts highlights a need for rapid and scalable methods for assessing
variant pathogenicity. Indeed, many individuals in our studies carried
rare coding variants in disease susceptibility genes that have not
previously been classified or submitted to ClinVar with clinical
pathogenicity assertions (58.7% of FH variants, 30.0% of LQTS
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variants, and 81.5% of MODY variants in the UKBB). We acknowledge
that effect size thresholds that provide evidenceof pathogenicitymay
differ by endophenotype and disease. Moreover, as with most tests
the appropriateness of a given effect size threshold may vary by
intended use of the information, whichmay justify amore sensitive or
specific threshold (e.g., screening individuals for potential mono-
genic disease risk, clinical reporting of variant pathogenicity, etc.).
Greater precision in effect size threshold test characteristics will fol-
low from larger repositories of sequence and phenotype data in the
future. Further analyses are warranted to examine the prognostic
implications of large-effect variation, test different effect size
thresholds for screening potential pathogenicity, and discover easily
ascertainable endophenotypes for othermonogenic diseases to aid in
variant classification.

To facilitate use of our results into potential clinical practice and
research, we will make variant level association results from the pre-
sent analysis publicly accessible in the Cardiovascular Disease Knowl-
edge Portal25. We expect that as the number of sequenced individuals
grows, large compendia of variant effect sizes with endophenotypes
may help classify variants as potentially pathogenic or benign, facil-
itating both research and clinical variant classification.

Our work must be considered in the context of the study design.
The UKBB and FOURIER studies are predominantly of European
ancestry and the results of our analysis may not be generalizable to all
ancestries. However, the replication of associations in TOPMed, which
comprises a more diverse ancestral distribution of participants sug-
gest the results are robust. Greater ancestral diversity anticipated with
future biobank efforts will further refine the ability to resolve relations
between specific variants and pathogenicity. ClinVar includes variant
submissions primarily from clinical laboratories in the United
States26–28 and existing variant pathogenicity assertions may not ade-
quately represent non-European ancestral groups. Increased avail-
ability and equity of genetic testing among diverse populations is
needed. We used single time-point endophenotype measurements in
our analyses; repeatedmeasuresmay increasemeasurement precision
and power, and warrant examination. Rare coding variants may be
subject to imprecise effect size estimation which we anticipate will
improve with larger repositories of sequence and phenotypic data
over time29. KCNQ1, in which variants can cause LQTS type 1, has been
associated with both autosomal dominant and recessive disease; as
such, calculated effect sizes from an additive genetic model may be
biased toward the null30. We acknowledge that variant pathogenicity is
not a discrete entity, and that discrimination of variants as “patho-
genic” or “benign” may belie probabilistic gradients of pathogenicity
or penetrance. As such, we submit that use of effect sizes may enable
more quantitative inferences of variant pathogenicity.

In conclusion, population-based genetic association testing for
monogenic disease endophenotypes may enable scalable inferences
that provide evidence for variant pathogenicity. Future analyses are
warranted to test whether large effect size variants are associated with
clinical outcomes, and whether variant effect size information can be
implemented in variant pathogenicity assertion workflows.

Methods
Study participants
The UKBB is a large, national, prospective cohort of ~500,000 indivi-
duals with detailed medical history, electronic health record, and
genetic data31. Participants were recruited from 22 centers across the
UK between 2006 and 2010 and aged 40–69 years at recruitment.
Our analysis focused on participants with whole-exome sequencing
(WES) and QT intervals extracted from resting 3-lead ECGs prior to a
bicycle exercise protocol (n = 33,520), participants with WES and
LDL-C measured (n = 189,652), and participants with WES and HbA1c
measured (n = 189,741). Informed consent was obtained from all par-
ticipants, and the UKBB received approval from the Research Ethics

Committee (11/NW/0382). Our study was approved by the Mass Gen-
eral Brigham Human Research Committee and conducted using the
UKBB Resource (Application 17488).

Ascertainment of clinical measurements and covariates
DetailedWESprotocols for theUKBB are available elsewhere32. In brief,
20X whole exome sequencing was performed using IDT xGen Exome
Research Panel v1.0 including supplemental probes, reads were
aligned to human genome build GRCh38, joint genotype calling and
initial variant QC was performed. Procedures for procuring data are
discussed in detail on the UKBB website33–35. Clinical exclusion criteria
and covariates were ascertained using self-report, ICD-9 and ICD-10
codes, and operation codes (Supplementary Methods). The extracted
QT intervals were corrected using the Bazett formula, defined as
QTc =QT/√RR, for subsequent analyses36. LDL-C levels and other
disease-relevant biomarkers including HDL-C andMCV were collected
at baseline from all UKBB participants and measured by enzymatic
protective selection analysis on a Beckman Coulter AU5800 device.
Hemoglobin A1c was measured from baseline blood tests via HPLC
analysis on a Bio-Rad VARIANT II Turbo. Diabetes medication use was
ascertained via self-report.

Genotype, variant, and sample quality control
Genotype. The Genotype QC protocol for the UKBB is described
elsewhere37. In brief, genotypes were removed with total depth >200
or <10. Homozygous reference calls were removed if genotype quality
was <20. Homozygous alternative calls were removed if the ratio of A1
depth + A2 depth and total depth was less than 0.9, the ratio of A2
depth and total depth was less than 0.9 or phred-scaled genotype
likelihood was <20. Heterozygous calls were removed if the ratio of A1
depth + A2 depth and total depth was less than 0.9, the ratio of A2
depth and total depth was less than 0.2 or phred-scaled genotype
likelihood was <20.

Variant. UKBB variants were removed if they were in low complexity
regions, had call rates <90%, failed the Hardy Weinberg Equilibrium
test (P ≤ 1.0 × 10−15), or were monomorphic in the final dataset38,39.

Sample. Duplicate individuals in the UKBB were identified with
KING40 (--duplicate) and removed if not a monozygotic twin. Geneti-
cally determined sex was calculated using high quality (MAF ≥0.1%,
missingness ≤ 1%, Hardy Weinberg Equilibrium P ≥ 10−6) independent
variants on the X chromosome, as described in detail in previous
studies37–39,41. Samples were removed if their genetically determined
sex did not match their reported sex. Samples were removed if they
were outliers (outside of 8 SD from the mean)41 for quality control
metrics including heterozygosity homozygosity ratio, transition and
transversion ratio, SNP and Indel ratio, and the number of singletons
per sample. Genetically determined ancestry groups were defined
using high-quality independent variants. We estimated five ancestry
groups supervised by 1000G participants using ADMIXTURE version
1.3.042. We defined a sample as a member of the ancestry group
if the probability of belonging to that ancestry group was greater
than 80%. We defined a sample as a member of the “undetermined
ancestry group” if the probability of belonging to any ancestry group
was less than 80% (Supplementary Methods). We conducted
our primary analysis in a multi-ancestry cohort, followed by a sensi-
tivity analysis restricted to samples with genetically defined European
ancestry.

Clinical trait exclusions and covariates
For our LDL-C analysis, clinical covariates included high-density lipo-
protein (HDL), history of myocardial infarction, and history of statin
usage. We imputed participants with incomplete data for HDL to the
median HDL value. We imputed participants with incomplete data
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for history of myocardial infarction and history of statin usage to no
history. This resulted in a cohort of 189,652 participants in our multi-
ancestry cohort in the UKBB (Supplementary Fig. 1).

For our QTc analysis, participants with Wolff-Parkinson-White
Syndrome (WPW), history of pacemaker placement, 2nd or 3rd degree
atrioventricular block, history of class I or class III antiarrhythmic drug
usage, and/or history of digoxin usage were excluded from the ana-
lysis. ECGs with QRS duration >120ms and/or heart rate <40 or >120
beats/minute were excluded. Clinical covariates included beta blocker
use, calcium channel blocker use, history ofmyocardial infarction, and
history of heart failure. We imputed participants with incomplete data
for history of myocardial infarction and history of heart failure to no
history. The above QC steps resulted in a cohort of 33,520 participants
for our primary analysis in UKBB (Supplementary Fig. 2).

For our HbA1c analysis, clinical covariates included mean cor-
puscular volume (MCV) and self-reported diabetes medication usage
including common medications such as insulin, metformin, DPP-4
inhibitors, GLP-1 receptor agonists, SGLT-2 inhibitors, sulfonylureas,
and thiazolidinediones.We imputed participants with incomplete data
for MCV to the median MCV value. This resulted in a cohort of 189,741
participants in our multi-ancestry cohort in the UKBB (Supplemen-
tary Fig. 3).

Variant pathogenicity assertions reported in ClinVar
ClinVar is a public database of reported sequence variants and their
relations with human phenotypes43. We identified variants submitted
to ClinVar from clinical genetic testing laboratories with the most
recent pathogenicity assertion after 2015 and downloaded entries
from https://ftp.ncbi.nlm.nih.gov/pub/clinvar/ on 11/28/2020. We uti-
lized variant pathogenicity assertions that were submitted from the
clinical genetic testing laboratories for further analysis. Pathogenicity
categories included “benign”, “likely benign”, “likely pathogenic”, and
“pathogenic.” Variants in ClinVar classified as “conflicting” due to
multiple assertions with conflicting classifications and “variants of
uncertain significance” (VUS) were classified as such. Ultimately, our
analysis included six clinical pathogenicity categories: pathogenic,
likely pathogenic, likely benign, benign, VUS, and conflicting. We then
merged the ClinVar dataset with those of the UKBB, FOURIER, and
TOPMed datasets by aligning with GRCh38 positions.

Statistical analyses
Single variant association testing. We first estimated the empirical
kinship matrix and derived principal components of ancestry using
high-quality (missingness < 10%, HWE>0.001, MAF >0.1) independent
(pruned with a window size of 200 kb, step size of 100 kb, and r2
threshold of 0.05) variants. The kinshipmatrixwas estimated using the
“--make-rel” function in PLINK 2.044. Principal components of ancestry
were estimated in an unrelated subset using PCAir45. We then derived
variant effect sizes by fitting linear mixed effects models for each
variant compared tonon-carriers of each variant inwhichwe regressed
the endophenotype on the variant dosage, adjusting for age, sex,
clinical covariates, the first 12 principal components of ancestry, and
fitting a variance component proportional to the empirical kinship
matrix, as well as separate residual variances for each ancestral group.
We used GENESIS version 2.14.346 and R version 3.647 and assumed an
additive genetic model.

Relations between estimated variant effect size and pathogenicity.
For our LDL-C analysis, we examined the relations between estimated
variant effect sizes and clinical pathogenicity assertions for variants (1)
within FH genes included in the ACMG list of genes recommended for
secondary findings reporting (LDLR, APOB, PCSK9)16, and (2) within a
control panel comprising of genes from a commercially available
hereditary cancer panel (Supplementary Table 13)17. For our QTc ana-
lysis, we examined the relationship between estimated variant effect

sizes and clinical pathogenicity assertions for variants in established
LQTS genes. We grouped variants as those residing (1) within a list of
LQTS genes included in the ACMG list of genes recommended for
secondary findings reporting (KCNQ1, KCNH2, SCN5A)16,48, and (2)
within a control panel comprising of genes from a commercially
available hereditary cancer panel (Supplementary Table 13)17. For our
HbA1c analysis, we examined the relationship between estimated
variant effect sizes and clinical pathogenicity assertions for variants in
established MODY genes. We grouped variants as those residing (1)
within a list of establishedMODYgenes (GCK, HNF1A, HNF1B, HNF4A)13,
and (2) within a control panel comprising of genes from a commer-
cially available hereditary cancer panel (Supplementary Table 13)17.

We assessed variant characteristics, including effect size and
minor allele count, and generated density plots to assess the dis-
tribution of variant effect size stratified by pathogenicity classification
category. We next assessed the estimated difference in individual
endophenotype value for carriers of variants in each pathogenicity
category relative to carriers of benign (B) variants using a multiple
linear regression model. In the model, we regressed individual endo-
phenotype values against carrier status of variants in each patho-
genicity category, adjusting for age, sex, clinical covariates, and first 12
principal components of ancestry. Unadjusted P values corresponding
to the pathogenicity category terms were reported. Analyses were
conducted for each of the gene panels of interest. In instances inwhich
statistical testing was performed, we report P values that are not
adjusted for multiple hypothesis testing. We considered a two-sided P
value of 0.05 significant. Analyses were performed using R ver-
sion 3.647.

Sensitivity analyses in European ancestry cohorts
Weperformed sensitivity analyses in aUKBBEuropeanancestry cohort
for all analyses (LDL-C n = 165,783, QTc n = 28,249, HbA1c n = 166,335).
In single variant association testing, we used the first 4 principal
components of ancestry; all other procedures remained the same.

Replication analyses in FOURIER and TOPMed
Our LDL-C and HbA1c analyses was replicated in the Further Cardio-
vascular Outcomes Research With PCSK9 Inhibition in Subjects With
Elevated Risk (FOURIER) trial cohort. We performed variant and sam-
ple QC as outlined above. The same clinical covariates were used; of
note, all participants in FOURIER were taking statin medications. After
sample and clinical trait exclusions as outlined above, 14,038 partici-
pants remained for our LDL-C replication analysis, and 12,798 partici-
pants remained for our HbA1c replication analysis in FOURIER.

Our QTc replication cohort included subjects from the NHLBI
TOPMed program49 with WGS and ECG data. The present analysis
includes nine studies including the Atherosclerosis Risk in Commu-
nities study, Genetics of Cardiometabolic Health in the Amish, Mount
Sinai BioMe Biobank, Cleveland Family Study, Cardiovascular Health
Study, Framingham Heart Study, Jackson Heart Study, Multi-Ethnic
Study of Atherosclerosis, and Women’s Health Initiative. Use of the
TOPMed cohort for analysis was approved under paper proposal ID
8472. Genomic data included those available in Freeze 6. Details of
comprising studies are provided in the supplement. DetailedWGS and
variant calling protocols for the samples in TOPMed are provided on
the TOPMed website15,49. Briefly, 30× whole genome sequencing was
performed, reads were aligned to human genome build GRCh38, joint
genotype calling was performed, and initial sampleQCwas performed
on all samples by the TOPMed Informatics Research Center. Clinical
covariates including QT interval were defined using study-specific
definitions. These measures were centrally collected and harmonized
prior to our analysis39. We performed variant and sample QC as out-
lined above. We subsetted the TOPMed WGS dataset to coding
regions, defined as exons flanked by 5 base pairs for consistency with
the UKBB exome cohort39. After sample and clinical trait exclusions as
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outlined above, 26,976 participants remained for our replication ana-
lysis in TOPMed.

Assessment of variant effect size as a discriminator for
pathogenicity
We tested whether rare (MAF < 0.1%) variant effect size discriminates
pathogenic fromnon-pathogenic variants byfittingunadjusted logistic
regression models in which we regressed the log-odds of a variant
being pathogenic on the variant effect size. Only variants present in
ClinVar were included in this analysis. Non-pathogenic variants inclu-
ded those adjudicated as likely benign and benign. In sensitivity ana-
lyses, we grouped pathogenic and likely pathogenic variants as one
category and regressed on variant effect size. Analyses were con-
ducted for each of the gene panels of interest in the primary and
replication cohorts. We generated receiver operating characteristic
curves and calculated AUC for each using the pROC package in R50.

Variant reclassification and nomination of potential pathogenic
variants
Lastly, we used a large effect size threshold as a screen for patho-
genicity for rare variantswithin genes of interest.Wedefined the “large
effect size” threshold as effect size greater than 0.5 SD of the trait
distribution in the UKBB, the primary cohort. We applied this thresh-
old to rare variants submitted to ClinVar with VUS and conflicting
assertions and calculated the proportion of variants with pathogenic
potential using thismethod for each cohort. Variant consequences and
relevant characteristics including HGVS descriptions and gnomAD
minor allele frequencies were annotated using the Ensembl Variant
Effect Predictor tool51. The percentage of carriers of variants of large
effect size with ClinVar uncertain significance or conflicting assertion
was calculated for each endophenotype and cohort.

We characterized the potential functional consequences of the
non-synonymous variants with pathogenic potential by aggregating
the output of 31 in silico prediction algorithms in dbNSFP v4.2a52 into a
PFI score. Both qualitative (SIFT, SIFT4G, Polyphen2 HDIV, Polyphen2
HVAR, LRT, MutationTaster, FATHMM, PROVEAN, MetaSVM, MetaLR,
MetaRNN, M-CAP, PrimateAI, deogen2, BayesDel addAF, BayesDel
noAF, ClinPred, LIST-S2, fathmm-MKL, fathmm-XF, MutationAssessor,
and ALoFT) and quantitative (VEST v4.0, REVEL, MutPred, MVP, MPC,
DANN, CADD, Eigen, and Eigen-PC) prediction algorithms were inclu-
ded. Eachmissense variant gained 1 point per algorithm if predicted to
have a functional impact (designated as “D” for qualitative tools, “H”
for MutationAssessor, and >90% for quantitative tools); additional
details regarding functional impact scores and cutoffs are publicly
available52. When algorithms did not generate a prediction for the
variant of interest, they received an “NA” designation. PFI scores were
then calculated for each variant by dividing the number of bioinfor-
matic tools predicting the variant to have a functional consequence by
the total number of bioinformatic tools with variant prediction infor-
mation available such that scores ranged from 0 to 1, with higher
values indicating greater predicted impact. Heatmaps were generated
to display the in silico predictions of functional consequences of VUS
and conflicting variants using ggplot253 in R version 3.647.

We also applied this threshold to rare variants not reported in
ClinVar and assessed the functional consequences of non-synonymous
variants using bioinformatic tools. Then, we examined the proportion
of large effect size variants stratifiedby variant consequence, including
loss-of-function (frameshift, stop-gained, and splice altering variants),
missense and indels, and synonymous variants. Synonymous variants
located in genes associated with each endophenotype were analyzed
using SpliceAI for splice-altering potential54. Delta scores of 0–1 were
generated, with 1 representing the highest probability of the variant
being splice-altering. Lastly, we tabulated the sensitivity, specificity,
positive predictive value, and negative predictive value of other

effect size thresholds based on a range of SD cutoffs for each trait
distribution.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
To facilitate use of our results into potential clinical practice and
research, we will make variant level association results from the pre-
sent analysis publicly accessible in the Cardiovascular Disease Knowl-
edge Portal (https://cvd.hugeamp.org/downloads.html). Access to
individual-level UK Biobank data is available to researchers through
applicationon theUKBiobankwebsite (https://www.ukbiobank.ac.uk).
The use of UK Biobank data was performed under application number
17488. Data availability from TOPMed and FOURIER are subject to
controlled access. Other datasets used in this manuscript include: the
ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/) downloaded
in November 2020 and the dbNSFP database v4.2a (https://sites.
google.com/site/jpopgen/dbNSFP).

Code availability
Custom code or mathematical algorithms used to generate results
reported in the manuscript can be obtained from contacting the cor-
responding author.
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