Title
A cytoplasm to vacuole targeting pathway in P-pastoris

Permalink
https://escholarship.org/uc/item/6ng5z1j5

Journal
Autophagy, 3(3)

ISSN
1554-8627

Authors
Farré, Jean-Claude
Vidal, Jason
Subramani, Suresh

Publication Date
2007-05-01

Peer reviewed
A Cytoplasm to Vacuole Targeting Pathway in *P. pastoris*

Jean-Claude Farré
Jason Vidal
Suresh Subramani*

Section of Molecular Biology; Division of Biological Sciences; University of California, San Diego; La Jolla, California USA

*Correspondence to: Suresh Subramani; Section of Molecular Biology; Division of Biological Sciences; University of California, San Diego; La Jolla, California 92093-0322 USA; Tel.: 858.534.2327; Fax: 858.534.0053; Email: subramani@ucsd.edu

Original manuscript submitted: 10/14/06
Manuscript accepted: 01/23/07
Previously published online as an E-publication:
http://www.landesbioscience.com/journals/autophagy/abstract.php?id=3905

KEY WORDS
aminopeptidase 1 sorting, Cvt, autophagy, Atg28

ACKNOWLEDGEMENTS

This work was supported by an EMBO fellowship to J.C.F. and by NIH grants (DK41737 and GM69373) to S.S. We thank W. Dunn for the strains Pp*atg1Δ*, Pp*atg2Δ*, Pp*atg3Δ*, Pp*atg7Δ*, Pp*atg11Δ* and Pp*atg18Δ* and the plasmids GFP-PpAtg1 and GFP-PpAtg11, A. Sibirny and O. Stasyk for the strains Pp*atg28Δ* and Pp*pros15Δ*, and R. Mathewson for critical reading and editorial help with the manuscript. We also thank Integrated Genomics for access to the ERGO database.

NOTE
Supplemental information can be found at: www.landesbioscience.com/supplement/farreAUTO3-3-sup.pdf

ABSTRACT

The cytoplasm-to-vacuole targeting (Cvt) pathway of *Saccharomyces cerevisiae* delivers aminopeptidase I (Ape1) from the cytosol to the vacuole, bypassing the normal secretory route. The Cvt pathway, although well-studied, was known only in *S. cerevisiae*. We demonstrate its existence in the methylotrophic yeast, *Pichia pastoris*, where it also delivers *P. pastoris* Ape1 (*Pp*Ape1) to the vacuole. Most proteins known to be required for the Cvt pathway in *S. cerevisiae* were, to the extent we found orthologs, also required in *P. pastoris*. The *P. pastoris* Cvt pathway differs, however, from that in *S. cerevisiae*, in that new proteins, such as *Pp*Atg28 and *Pp*Atg26, are involved. The discovery of a Cvt pathway in *P. pastoris* makes it an excellent model system for the dissection of autophagy-related pathways in a single organism and for the discovery of new Cvt pathway components.

INTRODUCTION

Biosynthetic trafficking of many hydrolyases to the vacuole involves transit through the secretory pathway, but a unique autophagy-related pathway, the cytoplasm-to-vacuole targeting pathway, exists in *S. cerevisiae* for two vacuolar enzymes, Ape1 and Ams1. These proteins are translated on free ribosomes in the cytosol. Ape1 is synthesized as a precursor (prApe1) and rapidly forms decamers that aggregate into a large complex (Ape1 complex). The prApe1 is recognized by the receptor protein, Atg19, to form a Cvt complex. Atg19 further interacts with Atg11, which is a large coiled-coil protein that functions in part to recruit prApe1 to the pre-autophagosomal structure (PAS).

A double membrane sequesters the Cvt complex, resulting in cytosolic vesicles (Cvt vesicles) which fuse with the vacuole membrane to release a single-membrane vesicle (Cvt body) into the lumen of the vacuole. The Cvt body is broken down and prApe1 is matured (mApe1) in the vacuole lumen by removal of its pro-peptide.

Substantial evidence suggests that the Cvt vesicle originates at the PAS: most of the autophagy-related proteins (*Atg* proteins) involved in the pathway are located there; the localization of some *Atg* proteins at the PAS requires the function of other *Atg* proteins; and *Atg*8 transiently localizes to the PAS and is then transported to the vacuole together with the Cvt vesicles.

The Cvt pathway shares most of its molecular machinery with the autophagy pathway. Autophagy is a non-specific vacuolar trafficking pathway that targets cytosolic proteins and organelles to the vacuole via double-membrane vesicles called autophagosomes. It is the primary intracellular catabolic mechanism for degrading and recycling long-lived proteins and organelles of the yeast cell. Autophagy occurs as a cellular response to both extracellular stress conditions (such as nutrient starvation) and intracellular stress conditions (such as accumulation of damaged organelles and proteins).

Most of the molecular machinery required for Cvt function consists of *Atg* proteins. However, in addition, the Cvt pathway uses components that are uniquely required for the specific packaging of cargo. A number of differences distinguish the Cvt and bulk autophagy pathways. Ape1 transport is a biosynthetic event that is constitutive, occurring even under nutrient-rich conditions. In contrast, bulk autophagy is degradative and mostly detectable during nutrient starvation. Morphologically, Cvt vesicles seen in rapidly-growing cells are smaller (150 nm in diameter) than autophagosomes (300–900 nm). Finally, the Cvt pathway is specific (excluding bulk cytoplasm) and saturable, while autophagy is non-specific and is not saturable.
Here, we report that the methylotrophic yeast, *P. pastoris*, has a Cvt pathway to transport PpApe1 to the vacuole. PpApe1 is synthesized as a precursor, imported by the Cvt pathway, and processed in the vacuole. We also describe a requirement of the novel protein, PpAtg28, for the Cvt pathway. The existence of the Cvt, autophagy, and micro- and macrophagophagy pathways in *P. pastoris* makes it an ideal system for studies of these processes in a single organism.

**MATERIALS AND METHODS**

**Strains, plasmids and media.** The strains used in this study are listed in Table S1. Three plasmids containing PpApe1 fused to CFP were used: (1) pJCF211 expresses PpApe1-CFP from the endogenous promoter (accompanied by Zeocin resistance) and was integrated into the PpAPE1 locus in place of the endogenous PpAPE1; (2) pJCF147 is similar to pJCF211 but with kanMX as the marker; and (3) pJCF239 expresses PpApe1-CFP from the PpApe1 promoter, but was integrated at the HIS4 locus.

Growth media components were as follows: YPD medium (2% glucose, 2% Bactopeptone, and 1% yeast extract), glucose medium [SD] (0.67% yeast nitrogen base without amino acids, 2.0% glucose), nitrogen starvation medium [SD-N] (0.67% yeast nitrogen base without ammonium sulfate and amino acids, 2.0% glucose), methanol medium (0.67% yeast nitrogen base without amino acids, 5% [v/v] methanol, supplemented with the appropriate Complete Supplement Mixture (CSM) of amino acids.

Antibody. Anti-PpApe1 peptide antibodies were raised in rabbits against amino-terminal residues EKEKYFDDFANDYIEF and carboxy-terminal residues FKNNRKVVDGIEEF of PpApe1.

REMI screen for pexophagy mutants. Mutants were isolated by alcohol oxidase (AOX) screening after a shift from methanol to glucose as a carbon and energy source, from among Zeocin-resistant mutants as described.14

**Fluorescence microscopy.** Yeast cells were grown at 30°C in rich medium (YPD) to 1 OD/ml, washed with distilled H2O, shifted to SD medium and were collected at log phase for fluorescence microscopy. For autophagy studies, cells were grown in SD medium, washed with distilled H2O, and shifted to nitrogen starvation medium for different lengths of time.

**RESULTS**

Identification of PpApe1. The release of the genomic sequence of *P. pastoris* allowed us to search for and identify a protein with significant similarity to *S. cerevisiae* Ape1 (ScApe1) in this organism using the ERGO database (Integrated Genomics, Chicago, IL) (Fig. S1, Genbank accession DQ979026). PpAPE1 encodes a 68 kDa protein, whose amino-terminal region has two putative α-helices separated by a loop. The PpApe1 pro-peptide resembles that of ScApe1 in secondary structure, but not in amino acid sequence.

Identification of new *atg* mutants. Mutants were obtained by Restriction Enzyme Mediated Integration (REMI), which has been used to identify several pexophagy genes in *P. pastoris* and *Hansenula polymorpha*.13-15 From this screen we identified 12 genes required for pexophagy, including *ATG5, ATG8, ATG9, ATG26, PEP4, VAC8*, and six other genes, to be described elsewhere, not known previously to play a role in pexophagy.

**PpApe1 is processed in the vacuole.** ScApe1 is a vacuolar hydrolase that travels to the vacuole via the Cvt pathway. Its N-terminal pro-peptide contains vacuolar targeting information and is processed in a vacuolar protease A (Pep4)-dependent manner subsequent to delivery.16,17 We replaced the endogenous PpAPE1 gene with a PpAPE1-CFP fusion driven by the PpAPE1 promoter in both a wild-type strain and a strain deficient in the vacuolar proteases, Pep4 and Prb1 (Fig. 1A). The putative PpApe1 pro-peptide has a theoretical molecular weight of 10 kDa and the rest of the fusion protein is 85 kDa (58 kDa for the mature PpApe1 and 27 kDa for the CFP).

The cells were grown in glucose medium to log phase and analyzed by Western blot. As in *S. cerevisiae*, PpApe1 in wild-type cells was cleaved at its N-terminus because the mature PpApe1-CFP fusion protein is detected using antibodies to GFP and it yields a mature form that is shorter by 10 kDa. No maturation occurred in the vacuolar protease-deficient strain (Fig. 1B) indicating that the processing of PpApe1 was vacuole-dependent.

In *S. cerevisiae*, the Ape1 pro-peptide interacts with the receptor, Atg19, and is therefore required to target the Ape1 complex to the PAS and, eventually, the vacuole.4 We disrupted the first α-helix of PpApe1 by a deletion of the amino acids 12 to 14 (PpApe1Δ12-14). The wild-type and mutated PpApe1-CFP fusions (plasmids pJCF239 and mutated pJCF239) were integrated into the HIS locus in a Ppape1Δ strain. Both fusions were matured, but the maturation of the mutated form was much less efficient, causing its precursor form to accumulate (Fig. 1C). The new PpApe1-CFP fusion (plasmid pJCF239) was processed slightly better than the PpApe1-CFP fusion used to replace the *APE1* gene (plasmids pJCF147 and pJCF211). By fluorescence microscopy, the wild-type localized (as expected) mostly in the vacuolar lumen, but the mutated PpApe1 accumulated in cytosolic dots, consistent with its inefficient delivery to the vacuole (Fig. 1D).
PpApe1 transport to the vacuole depends on the autophagy machinery. In *S. cerevisiae*, precursor Ape1 transport and maturation depends on the autophagy machinery.2,11 In the absence of proteins required for its transport and for autophagosome formation, ScApe1 accumulates in a membrane structure associated with the vacuolar membrane, the PAS. ScApe1 fails to reach the PAS, and instead accumulates as a cytosolic Ape1 complex, only in the absence of the proteins involved in its recognition (ScAtg11 and ScAtg19).4,5,17,18

Figure 2. PpApe1 import depends on the autophagy machinery. (A) PpApe1 maturation was analyzed in wild-type (SJCF205), Pp atrg8Δ (SJCF265), Pp atrg9Δ (SJCF221), Pp atrg11Δ (SJCF241), Pp vac8Δ (SJCF231) and Pp vps15Δ (SJCF348) cells. (B) PpApe1 localization was followed by fluorescence microscopy in the same strains described in (A). Vacuoles were labeled with FM 4-64. Bars, 2 μm. (C) Autophagy was induced by nitrogen starvation and the effect on PpApe1 maturation was followed by Western blot. Cells were grown in SD medium (SD) to an OD₆₀₀ of 1 and shifted to nitrogen starvation medium (SD-N) for 3 and 6 hr. (D) Autophagy and autophagy-related mutants from *P. pastoris* were tested for PpApe1 maturation using PpApe1 antibody. * indicates a non-specific band. (A and D) Pr: PpApe1 precursor and m: mature PpApe1.

We analyzed the maturation status and localization in growth conditions of PpApe1-CFP in the absence of *P. pastoris* orthologs of proteins involved in all autophagy-related pathways (PpAtg5, PpAtg8, PpAtg9, and PpVps15), or in the absence of two proteins (PpAtg11 and PpVac8) required only for the Cvt pathway in *S. cerevisiae* (Fig. 2A and B). Whereas in wild-type cells, PpApe1-CFP showed substantial maturation and localized mostly in the vacuolar lumen (Fig. 2B), the PpApe1-CFP in all mutant strains was processed inefficiently at best, and accumulated in a dot, probably the PAS, the Cvt complex or the Ape1 complex.

ScVac8 and ScAtg11 are required for ScApe1 delivery to the vacuole only in rich medium (transport via the Cvt pathway), but not during nitrogen starvation (transport via the autophagy pathway). Scatg8Δ cells yield an intermediate phenotype, with ScApe1 import blocked in rich medium but affected only partially in prApe1 transport during nitrogen starvation. We analyzed the effect of nitrogen starvation on PpApe1 maturation (Fig. 2C). Cells were grown in glucose medium (SD) to log phase and shifted to starvation medium (SD-N) for 3 or 6 h. Starvation resulted in increased PpApe1 maturation and localized mostly in the vacuolar membrane, the PAS (Fig. 2B), by Western blot. PpAtg11Δ and PpVac8Δ cells, starvation for 6 h produced mature PpApe1 resembling that in wild-type cells. Furthermore, starvation partially corrected the PpApe1 transport defect of Pp atg8Δ cells because Atg8 is not completely essential for autophagy. The dependence of PpApe1 maturation on autophagy and Cvt-specific proteins shows conclusively that a Cvt pathway exists in *P. pastoris*.

We extended the study of PpApe1 maturation to most of the *atg* mutants isolated to date in *P. pastoris* and additional ones recently isolated from our REMI screen for pexophagy mutants. The PpApe1 antibody detects in wild-type cells a precursor form (apparent molecular weight of ~70 kDa) and a mature form (~55 kDa) of PpApe1 not detected in PpApe1Δ cells. Mutants deficient in PpAtg1, PpAtg2, PpAtg3, PpAtg7, PpAtg8, PpAtg9, PpAtg11 and PpAtg18 all exhibited severe defects in PpApe1 maturation, but PpAtg26 cells exhibited a partial defect in PpApe1 maturation.

Cargo selection and accumulation at the PAS. We analyzed further the PpApe1 localization in mutant cells from (Fig. 2B), by colocalization experiments with the autophagy proteins, PpAtg8 and PpAtg17 (Fig. 3A). The fusion protein YFP-PpAtg8 supplemented the PpApe1 maturation defect in Pp atrg8Δ cells (Supplemental Fig. S2A). In wild-type cells, YFP-PpAtg8 and CFP-PpAtg17 colocalized at a dot proximal to the vacuolar membrane, the PAS (Supplemental data, Fig. S2B). PpAtg17 localization was unaffected in Pp atrg8Δ, Pp atrg11Δ, Pp vps15Δ, and Pp atrg8Δ Pp atrg11Δ cells, making it the best PAS marker. YFP-PpAtg8 was mislocalized in Pp vps15Δ cells and was hardly detectable at the PAS in Pp atrg11Δ cells (Fig. 3A). PpApe1-CFP colocalized with YFP-PpAtg17 in these four mutant strains and with YFP-PpAtg8, when PpAtg8 was

232 Autophagy 2007; Vol. 3 Issue 3
PpApe1 is required for PpAtg1, PpAtg8 and PpAtg11 localization at the PAS. During active growth, the autophagy machinery is mainly engaged in the Cvt pathway and the cargo of the Cvt pathway (ScApe1) is required to localize several autophagy proteins at the PAS. 19 We analyzed the localization of PpAtg1, PpAtg8, PpAtg11 and PpAtg24 in wild-type and Ppape1Δ cells (Fig. 4). In wild-type cells, GFP-PpAtg1 and GFP-PpAtg8 localized in the cytosol and at the PAS, GFP-PpAtg11 localized at the vacuolar membrane and at the PAS, and PpAtg24-GFP localized at the vacuolar membrane and at the PAS. In Ppape1Δ cells, GFP-PpAtg1, GFP-PpAtg8 and GFP-PpAtg11 were almost undetectable at the PAS, but PpAtg24-GFP localization was not affected.

PpAtg28 is required for the Cvt pathway. Recently a novel Atg gene, PpATG28, was found to be required for pexophagy but not autophagy, and localizes at the vacuolar membrane and at the PAS. 20 In Ppape28Δ cells, PpApe1 was not matured under growth conditions, but when Ppape28Δ cells were transformed with PpAtg28-GFP, the maturation defect was partially rescued (Fig. 5A). As was the case for all the atg mutants cells analyzed here, Ppape28Δ cells did not mislocalize PpApe1-CFP, which colocalized with YFP-PpAtg8 and YFP-PpAtg17 at the PAS (Fig. 5B).

DISCUSSION

Since several Cvt, autophagy and pexophagy genes overlap, the requirement of genes for autophagy-related pathways is best analyzed in a single organism in which all these pathways exist. Previous studies have revealed the existence of autophagy and pexophagy pathways in P. pastoris, but the existence of the Cvt pathway has not been documented in any organism other than S. cerevisiae.

This study provides many lines of evidence for the presence of a Cvt pathway in P. pastoris. (1) PpApe1 is matured in vacuoles as expected for this pathway (Fig. 1B) and is processed at its N-terminus by vacuolar hydrolases (Fig. 1B and C). (2) Mutants that affect all autophagy-related processes, including the Cvt pathway (e.g., atg1, atg2, atg3, atg5, atg7, atg8, atg9, atg18, eps15), also affect the maturation of PpApe1 (Fig. 2A and D). (3) Proteins known to be required specifically for the Cvt pathway in S. cerevisiae (e.g., Vac8 and Atg11) are also required for the Cvt pathway in P. pastoris (Fig. 2A and C). (4) The PpApe1 processing defect in the Cvt-specific mutants can be bypassed upon activation of autophagy by nitrogen starvation.
that were not obvious from studies in *P. pastoris*. The ScAms1 protein, which is the known receptor involved in cargo-binding to ScApe1, has no detectable ortholog in *P. pastoris*. The Atg11 protein, which is proposed to play a key role in cargo recognition and recruitment to the PAS, is not essential for these steps in *P. pastoris*, although it is indeed necessary for the Cvt pathway in both organisms (Fig. 2D and Fig. 3). The sterol glucosyltransferase, Atp26, which is not necessary for the Cvt pathway in *S. cerevisiae*, substantially reduces PpApe1 maturation (Fig. 2D) and PpAtg28, which has no *S. cerevisiae* ortholog, is essential for the Cvt pathway in *P. pastoris* (Fig. 5A). These differences in requirements emphasize the potential of *P. pastoris* in uncovering novel components and mechanistic differences.

References

10. Levine B, Klionsky DJ. Development by self-digestion: Molecular mechanisms and biologica