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Prediction of the Hydrodynamic Loads on a Full-Scale
Caisson at High Reynolds Number

Yanwei Niu1 and Bassam A. Younis2

Abstract: The paper reports on the computation of the hydrodynamic loads on a full-scale caisson at high Reynolds number in the presence
of vortex shedding. The objective was to obtain reliable predictions of the resulting mean and fluctuating forces to guide the design of an
actual caisson in the absence of relevant experimental data. A further objective was to investigate the effectiveness of alternative methods for
the control of vortex shedding that can be implemented in practice. Two such methods were evaluated: (1) by rounding the corners of the
rectangular-sectioned caisson, and (2) by the placement of a splitter plate in the separated wake region. The computations, which were
performed using the OpenFOAM open-source software, were for a fixed caisson and hence did not account for motions due to vortex-induced
vibrations. The effects of turbulence were accounted for by performing large-eddy simulations, and by using two-equation eddy-viscosity
closures, one of which was specifically adapted to account for the interactions between the periodic vortex shedding and the random
turbulence. The numerical accuracy was checked using the grid convergence index method, and the computations were extensively validated
against data from relevant benchmark flows. The recommendations of this research were implemented in the design of a full-scale caisson that
has since been deployed in a bridge construction project. DOI: 10.1061/JSENDH.STENG-11841. © 2023 American Society of Civil
Engineers.

Author keywords: Full-scale caisson; Turbulence modeling; Large-eddy simulations; Flow control; Vortex shedding.

Introduction

The ever-growing demand for the construction of mega infrastruc-
tures in deep waters places greater demands on our ability to ac-
curately predict and control the steady and unsteady hydrodynamic
loads on submerged structures at high Reynolds number. The par-
ticular application that stimulated the present study relates to the
construction of piers for a long-span bridge in a deep, fast-moving
river. In such projects, large, steel-walled caissons are lowered in
place to provide dry space for the construction of the piers (Krishna
et al. 2004). The caissons’ cross-sectional geometries are invariably
bluff leading to massive flow separation and large drag forces.
Moreover, the flow separation is often unsteady due to the occur-
rence of vortex shedding leading to substantial fluctuations in both
the lift and drag forces that occur at a well-defined (Strouhal) fre-
quency. Since the caissons are by their nature temporary structures,
they are often constructed in several sections from thin steel plates
whose thickness is determined by estimates of the lift and drag
forces they are likely to experience once fully submerged. The
occurrence of vortex shedding demands further consideration to
guard against failure by resonance or fatigue. The ability to accu-
rately predict the magnitude and frequency of these forces on the
full-scale caissons is clearly crucial for their safe and cost-effective
construction. Experimental data that can guide the design are lim-
ited by the fact that the Reynolds numbers associated with the full-
scale dimensions and the river-flow velocities by far exceed the

values of this parameter attained in laboratory studies. This can
clearly be seen from Fig. 1 where many of the available experi-
ments on cylinders having a rectangular cross section (which is the
typical caisson cross-sectional geometry) are plotted. Discarding
the experiments where the aspect ratio of B (the dimension parallel
to the flow) to D (the dimension perpendicular to it) is less than
unity on the basis that it would be unusual to orient the caisson
in such a way as to maximize the drag, it is evident that the vast
majority of measurements are for the case of a square cylinder
(B=D ¼ 1), with the measurements becoming more sparse at
higher values of this ratio. For the particular full-scale caisson
under present consideration, B=D ¼ 1.564, and only one result for
a similar ratio could be found (Shimada and Ishihara 2002). Even
then, the result was the outcome of a computational rather than ex-
perimental study, and at a Reynolds number that is about two orders
of magnitude lower than the value expected in the river deploy-
ment. Extrapolation of available measurements to higher Reynolds
numbers is certainly possible, but considering the inevitable uncer-
tainty in fluid-flow measurements and the indeterminate extent of
the scaling effects that would be present, it seemed logical to seek
to obtain the necessary data using computational fluid dynamics
with the proviso that the results obtained are convincingly shown
to be of demonstrable reliability to be of any value in the design of a
full-scale caisson.

In addition to providing reliable estimates of the hydrodynamic
loads on the caisson, another objective of this study was to assess
the effectiveness of alternative techniques for reducing the magni-
tudes of both the mean and the fluctuating components of these
loads. This is important in practice as it allows for the achievement
of better control of the caisson sinking process (Yang et al. 2019,
2022). Attention here was confined to consideration of passive vor-
tex shedding control methods that do not require the input of energy
for their operation. Two techniques were considered. The first in-
volved replacing the sharp corners by rounded ones. This simple
adaptation to the cross-sectional geometry has been shown to pro-
duce an appreciable reduction in the lift and drag forces on square
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cylinders (Tamura et al. 1998; Miran and Sohn 2015; Carassale
et al. 2014; Wang and Gu 2016; Dai et al. 2017) and on cylinders
having aspect ratios different from unity. Thus, for example,
Norberg (1993) experimentally investigated cylinders with aspect
ratio in the range 1–3 while Wang and Gu (2015) experimentally
investigated rectangular geometries with side ratios in the range
2–4. Their results will provide useful benchmarks for checking the
present computations. Another passive technique with proven per-
formance that is considered here involves the use of a splitter plate
installed at the rear of the cross-sectional area (Dai et al. 2018).
While rounding the corners and adding a splitter plate have proved
to be quite effective when deployed separately, no previous work
could be found to show their performance when deployed simulta-
neously. Moreover, the effectiveness of these techniques have been
demonstrated for values of Re below 2 × 105 while, in the present
application, interest is in the flow behavior around a full-scale
structure at values of Re of order 107. This paper reports on com-
putations performed for both techniques, and will present recom-
mendations that were actually deployed in practice.

Mathematical Formulation

Governing Equations

The equations that govern the conservation of mass, momentum
applicable to both the unsteady Reynolds-averaged Navier-Stokes
(URANS) and the large-eddy simulations (LES) approaches are of
the form

∂Ūi

∂xi ¼ 0 ð1Þ

∂Ūi

∂t þ ∂
∂xj ðŪiŪjÞ ¼ − 1

ρ
∂p̄
∂xi þ

∂
∂xj

�
ν
∂Ui

∂xj
�
þ ∂τ ij

∂xi ð2Þ

where an overbar represents a time-averaged or a space-filtered
quantity; and τ ij are unknown turbulence correlations that arise
from the averaging process.

For URANS, τ ij are the Reynolds stresses, which, for the eddy-
viscosity turbulence models used in the present study, are obtained
from Boussinesq’s linear stress-strain relationship

τ ij ¼ 2νtSij − 2

3
δijk ð3Þ

where Sij = mean rate of strain

Sij ¼
1

2

�∂Ui

∂xj þ
∂Uj

∂xi
�

ð4Þ

and νt = turbulent kinematic viscosity:

νt ¼ Cμ
k2

ϵ
ð5Þ

In the previous equations, k and ϵ are, respectively, the turbu-
lence kinetic energy and its dissipation rate, which are obtained
from the equations

∂k
∂t þ Uj

∂k
∂xj ¼

∂
∂xj

��
ν þ νt

σk

� ∂k
∂xj

�
þ Pk − ϵ ð6Þ

∂ϵ
∂t þ Uj

∂ϵ
∂xj ¼

∂
∂xj

��
ν þ νt

σϵ

� ∂ϵ
∂xj

�
þ Cε1

ϵ
k
Pk − Cϵ2

ϵ2

k
− R

ð7Þ

where Pk = rate of production of turbulence kinetic energy

Pk ¼ 2νtSijSij ð8Þ

One of the turbulence models used in this work is a variant on
the standard k-ϵ model and is referred to hereafter as the modified
model. It was specifically developed in order to account for the
effects of the interactions between organized mean-flow unsteadi-
ness (vortex shedding in this case) and the random turbulent mo-
tions (Younis and Przulj 2006). These interactions lead to a direct
input of energy into the turbulent-energy spectrum at a discrete
frequency—the Strouhal frequency. The modification entails mak-
ing the coefficient Cε1 dependent on the rate of additional energy
input. This is achieved simply by multiplying this coefficient by the
quantity T, which is defined as

T ¼
�
1þ Ct

k
ϵ

1

Qþ k

���� ∂ðQþ kÞ
∂t

����
�

ð9Þ

where Q = mean-flow kinetic energy. The values assigned to the
model coefficients are given in Table 1.

The second model considered is the widely-used RNG model
(Yakhot and Orszag 1986; Yakhot et al. 1992), which has given
improvements over the standard model in a number of applications.
The model introduces an additional term R to the ϵ equation having
the form

R ¼ Cμη3ð1 − η=η0Þ
1þ βη3

ϵ2

k
ð10Þ
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Sarioglu (2017)
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Fig. 1. Experiments on rectangular cylinders with sharp corners.

Table 1. Turbulence models coefficients

k-ϵ model Cμ Cϵ1 Cϵ2 Ct σk σϵ R

Standard 0.09 1.44 1.92 0 1.0 1.3 0
Modified 0.09 1.44T 1.92 0.38 1.0 1.3 0
RNG 0.0845 1.42 1.68 0 0.718 0.718 Eq. (10)
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where β ¼ 0.012; and η0 ¼ 4.38. The values of the remaining
coefficients are listed in Table 1.

For the large-eddy simulations, τ ij are the subgrid scale stresses,
which are modeled following Smagorinsky (1963) as

τ ij ¼ −νsgs2S̄ij ð11Þ

where S̄ij = resolved strain rate tensor as defined previously; and
νsgs = subgrid scale eddy viscosity, which is obtained from

νsgs ¼ ðCSΔÞ2jS̄j ð12Þ

where CS was set equal to 0.20; andΔ = representative length scale
obtained from

Δ ¼ ðΔxΔyΔzÞ13 ð13Þ

where Δx;Δy, and Δz are the grid node spacing in the x, y, and
z directions, respectively.

Following the usual practice, we use van Driest’s damping func-
tion to bring about the correct behavior

νsgs ¼ ðCSΔÞ2jS̄jð1 − e−yþ=AþÞ ð14Þ

where yþ ¼ ðuτy=νÞ = nondimensional wall distance; and
Aþ ¼ 26.

Computational Details

The governing equations were solved by finite volume methodol-
ogy incorporated in OpenFOAM version 5.0. The Laplacian terms
were discretized using the Gauss linear corrected scheme, while the
convective fluxes were approximated using the Gauss limited linear
V integral discrete lattice. The temporal terms were discretized by
using the Euler scheme. The PISO algorithm (Issa 1986) was used
to couple the solution of the continuity and momentum equations.
The convergence criterion for the iterative solution procedure at
each time step was set to be when the normalized residuals fell
below 10−6. The time step size was restricted according to the
Courant-Friedrichs-Lewy number

CFL ¼ Δtmax

�jUj
Δx

þ jVj
Δy

þ jWj
Δz

�
ð15Þ

To ensure stability, CFL was set equal to 0.6 for Re up to
3 × 105 and 1.0 for Re up to 107 to ensure time accurate and stable
results.

A multiblock solution methodology was adopted for in which
the computational domain was subdivided into a number of blocks
in order to facilitate parallel computations on distributed processors
(Fig. 2). The boundary conditions employed were as follows. At the
inlet, uniform profiles of the streamwise velocity U0 were set ac-
cording to the required Reynolds number. The specification of a
uniform profile instead of a boundary-layer one was justified in this
study where the focus was on an isolated segment of the caisson
rather than on the complete structure. The value of k was then ob-
tained from k ¼ ð3=2ÞðTuU0Þ2 where Tu is the inlet turbulence in-
tensity, which was set here to 0.5%, which is representative of the
levels found in wind-tunnel studies (Tamura et al. 1998; Wang and
Gu 2015; Luo et al. 1994; Sarioglu et al. 2005). The dissipation rate
ϵ is typically obtained by inversion of the relation for the eddy vis-
cosity νt [Eq. (5)]. Alternatively, a constant ratio νt=ν is specified
and ϵ is then deduced from that value (Dai et al. 2018; Jones et al.
2016). In this study, consideration was given to using a Reynolds
number–dependent approach to specifying νt=ν. Younis and Przulj
(2006) proposed an equation that took into account the ratio of the
integral length scale of turbulence to the physical dimensions of the
cylinder. For the present conditions, this yielded

ðνt=νÞ0 ≈ 0.22TuRe ð16Þ

This approach was tested and the results are described in the
next section.

At outlet to the solution domain, the streamwise gradients of all
the dependent variables were set equal to zero. Similarly, the nor-
mal gradients were set equal to zero at the side planes. The cylinder
walls were assumed to be smooth, and the flow in their immediate
vicinity was assumed to follow the standard logarithmic law

Up

Uτp
¼ 1

κ
ln

�
Uτpni
ν

�
þ E ð17Þ

(a) (b)

Fig. 2. Grid arrangement, boundary conditions, and monitoring section of square cylinder: (a) computational domain and grid distribution; and
(b) mesh details near the square cylinder with rounded corner.
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where Up = velocity component parallel to the wall; Uτp = friction
velocity; ν = kinematic viscosity; and ni = normal distance from the
wall to the grid nodes closest to it. The coefficients κ and E were
set equal to their standard values of 0.41 and 9.8, respectively
(Schlichting and Gersten 2017). The boundary conditions for k
and ϵ at the cylinder wall were fixed by the assumption of local
equilibrium.

Results for Benchmark Flows

In this section, results obtained with the various models for a num-
ber of standard benchmark flows are presented. These flows were
selected on the basis that they share many features of the flows
around full-scale caissons.

Square and Rectangular Cylinders

The dimensions of the computational domain, together with the
boundary conditions are shown in Fig. 2. The dimension D was
set equal to 0.05 m. These dimensions were found to be appro-
priate to eliminate the influence of the boundary conditions and
the blockage on the computations (Younis and Przulj 2006). The
center of the square cylinder was located at x ¼ 12D and y ¼
12D, and the resulting blockage ratio was 4.1%. The computa-
tional model consisted of 31,749 cells using orthogonal mesh,
with 43 cells in contact with each side of cylinder wall. The rec-
tangular cross sections were generated by stretching the sides par-
allel to the flow. The number of cells in contact with the sides was
adjusted to maintain the cell adjacent to the cylinder wall within a
side ratio smaller than 5. Five aspect ratios B=D were investigated,
viz. 1.564 (which is the same ratio as that of the full-scale cais-
son), 2, 3, 4, and 5.

Experimental data available for model validation are available
in the range 104 < Re < 105. These included the measurements of
Tamura et al. (1998) for Re ¼ 6 × 104, Carassale et al. (2014) for
Re ¼ 3.6 − 3.7 × 104, Norberg (1993) for Re ¼ 0.5 − 3.8 × 104,
Rathakrishnan (1999) for Re ¼ 5.8 − 9.5 × 104, and Vickery
(1966) for Re¼ 105. Fig. 3 presents the time series of the hydro-
dynamic coefficients predicted by the various models for the case
of flow around a square cylinder. The computations for the stan-
dard k-ϵ model were started from the prescribed inlet conditions.
Each subsequent model calculations were started from the end of
the preceding model in order to better illustrate the differences
between their behavior. This practice, as opposed to the alterna-
tive of restarting each model from the original uniform flow field,
was justified by the fact that the flow was periodic in nature and,
as can be seen from Fig. 3, readjusted very rapidly to the change
in model. The parameters plotted in this figure consist of the lift

coefficient (CL), the drag coefficient (CD), and the nondimen-
sional time (t�)

CL ¼ FL

�
1

2
ρU2

0D
2 ð18Þ

CD ¼ FD

�
1

2
ρU2

0D
2 ð19Þ

t� ¼ tU0=L ð20Þ

where FL and FD are the combined pressure and viscous lift and
drag forces, respectively. The pressure forces were obtained by
integrating the computed static pressure on the caisson surface
over the entire area and by resolving the resultant forces into their
components. The viscous forces were obtained from the com-
puted values of the wall shear stresses and the cell areas on which
they apply, similarly resolved into their components. The time in-
terval over which each model was used was the same and was
equal to 480 in nondimensional time t�. In this interval, 2,000
data points were generated; a number which is sufficient to com-
pute the mean and RMS values of the force coefficients.

It is immediately evident that the standard k-ϵ model yields the
lowest level of mean drag while predicting virtually no fluctuations
in the lift coefficient. Both of these outcomes represent well-known
defects in this model. The remaining models yield approximately
the same level of fluctuations in CL while the RNG model fails to
reproduce the level of fluctuations in CD obtained by the modified
k-ϵ model and the LES.

Figs. 4(a and b) show the predicted contours of the instantane-
ous vorticity and the streamlines at the phase of shedding cycle,
which corresponds to the point where the lift coefficient is at maxi-
mum. Plotted there is the nondimensional vorticity v� (¼ vD=U0,
where v is the vorticity component normal to the solution domain).
It is apparent from these plots that a clearly defined vortex shedding
process is captured by the modified k-ϵ model, which succeeds in
capturing the experimentally-observed separation and subsequent
reattachment that occurs along the cylinder’s length.

Fig. 5 shows the predicted time-averaged pressure coefficient
(Cp ¼ p=ð1=2ÞρU2

0, p is time-averaged pressure) and the mean
streamwise velocity along the centerline. Also plotted there are
experimental data from various sources (Lee 1975; Bearman and
Obasaju 1982; Durao et al. 1998; Lyn 1992). The predicted size of
the recirculation zone downstream of the square cylinder generally
agrees well with the available experimental data.

An overall impression of the effects of the cylinder aspect ratio
B=D on the resulting flow patterns can be seen in Fig. 6, where
results are presented for values of B=D in the range 1–5. The plots

0

2

4

6

240 660 1080 1500 1920

C
D

t*

Standard
k-ε Modified k-ε RNG k-ε LES (2D)

-6

-3

0

3

6

240 660 1080 1500 1920

C
L

t*(a)

Standard
k-ε Modified k-ε RNG k-ε LES (2D)

(b)

Fig. 3. Variation of the lift and drag coefficients with time for square cylinder at Re ¼ 6 × 104: (a) CL; and (b) CD.
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reveal complex patterns of flow separation and subsequent reattach-
ment, and of separated wakes that are vastly different in size,
indicating a strong dependence of the hydrodynamic forces on the
aspect ratio. This is clearly evident from Fig. 7, where the average
drag coefficient CD and the fluctuating component of the lift
coefficient C 0

L are plotted. Generally, good correspondence is ob-
tained between the models predictions and the experimental and
LES results for CD across the entire range of B=D.

Square Cylinder with Rounded Corners

Computations were performed for four ratios of the radius of the
rounded corner (r) to the width (D) namely r=D ¼ 1=15, 1=10,
1=7.5 and 1=6. A qualitative description of the effects of r=D on
the overall flow patterns can be seen in Fig. 8.

The predicted and measured variation of the mean drag and the
fluctuating lift coefficients with r=D is shown in Fig. 9 for the case
where the turbulence intensity Tu was 0.2%. As expected, the ef-
fects of rounding the sharp corners lead to marked decrease in CD
with an increase in r=D, which is indicative of the large changes
in flow behavior brought about by the smooth transition over the
cylinder and into the wake region. From a practical standpoint, the
increase of r=D means a significant reduction of the usable area

within the caisson and this places an upper limit on the value
of r=D.

Square Cylinder with Splitter Plate

The models’ performance is next evaluated for the case of a square
cylinder with a splitter plate placed at the mid-plan of the rearward
side. Ten cases were considered, corresponding to ratios of the
splitter plate length (L) to cylinder width B of L=B ¼ 1=20, 1=15,
1=10, 1=5, ¼, 1=3, 2=5, ½, ¾, and 1.

The predicted and measured variation of the drag coefficient
(normalized by its value for the case of no splitter plate) are shown
in Fig. 10. The effect of the splitter plate on the drag coefficient is
most pronounced for all values of L=B, with the rate of decrease
being at its steepest for values of L=B in the range 1=20–1=10. The
reduction in CD persists for higher values of L=B, albeit at a some-
what reduced rate. Similar trends are exhibited in both the predic-
tions and the measurements, though some quantitative differences
are apparent. Thus, for the case of L=B ¼ 1, for example, the mea-
surements of Rathakrishnan (1999) suggest that CD has decreased
by about 30% of its initial value, while the measurements of
Sarioglu (2017) suggest a reduction of 22%. The modified k − ϵ
model obtains a 20% reduction in this parameter.

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 0.025 0.05 0.075 0.1

C
p

Modified k-ε model
Lee (1975)
Bearman & Obasaju (1982)

A                B    C               D

B

D

C

A

(a)

-0.4
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0.0

0.2
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0.6

0.8

1.0

U
/U

0

x / D

Modified k-ε model
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Lyn (1992)

0             2            4              6              8             10

(b)

Fig. 5. Predicted and measured time-averaged pressure coefficient and centerline velocity for square cylinder at Re ¼ 6 × 104: (a) mean surface
pressure coefficient; and (b) mean velocity along the centerline.

(a) (b)

Fig. 4. Contours of vorticity and streamlines at maximum CL for square cylinder at Re ¼ 6 × 104: (a) nondimensional vorticity; and (b) streamlines.
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The predicted contours of mean vorticity for various values of
L=B are presented in Fig. 11. These contours were obtained at the
phase in the vortex shedding cycle that corresponds to where the lift
is at its maximum. It is generally assumed that the effectiveness of
the splitter plates in reducing the drag is associated with their modi-
fication of the base flow by reducing the extent of the separated
wake. This is clearly evident from this figure, especially at higher
values of L=B where the size of the shed vortices are markedly
small leading to reduction in the force fluctuations as well. It should
be noted that the splitter plates themselves may be subject to
vibrations leading to fatigue damage and to alteration of the sur-
rounding flow field. However, the extent of the latter is not thought
to be sufficient to warrant a fully-coupled fluid-structures interac-
tions (FSI) approach to this problem.

Reynolds Number Effects

The models’ ability to account for the effects of Reynolds number
is assessed by computations performed for 10 different values in
the range 0.5 × 104 < Re < 9.4 × 106, with the highest value being
appropriate for the operation of the full-scale caisson of present
interest.

The predicted and measured variation of the hydrodynamic
parameters with Re for the case of a square cylinder is shown in
Fig. 12. Also plotted there are the LES results of Sohankar (2006).
Although the experimental results show a certain degree of scatter,
the data for CD fall in the range of 2.03–2.30. The variations among
the experiments are largely due to the different levels of turbulence
intensity in the experiments. Thus, for example, there are three
points (marked by hollow triangles) in Fig. 12 at Re ¼ 3 × 104 sug-
gesting a CD value of 2.1 for Tu ¼ 0.4%, but this reduces to 1.5 at
the higher Tu value of 14%. Similarly, the levels obtained in the
experiments of Vickery (1966) and Lee (1975) were lower at Tu of
10% and 12.5%, respectively. In contrast, the lower values of Tu in
the experiments by Igarashi (1997) (0.4%) and Sarioglu (2017)
(0.8%), yielded higher values of CD. Based on experimental and
computation results, Bai and Alam (2018) argued that CD ap-
proached a constant level at values of Re greater than 104 and a
value of 2.21 was suggested. Interestingly, the phenomenon of drag
crisis does not seem to occur as it does for the case of a circular
cylinder at high Re. It should be noted that based on experimental
results of Wang and Gu (2016) and the LES results of Sohankar
(2006), CD is slightly higher and falls into range of 2.2 to 2.4.
The Reynolds number of simulation in present study extends to
9.4 × 104. It can be seen that the modified k-ϵ model shows an

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6. Predicted instantaneous spanwise vorticity contours around
rectangular cylinders with various B=D at the phase of maximum CL

(Re ¼ 6 × 104). The anticlockwise rotation,−4 < v� < 4: (a) B=D ¼ 1;
(b) B=D ¼ 1.564; (c) B=D ¼ 2; (d) B=D ¼ 3; (e) B=D ¼ 4; and
(f) B=D ¼ 5.

0.0

1.0

2.0
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0 1 2 3 4 5

C
D

B / D

Modified k-ε model
Norberg (1993)
Shimada & Ishihara (2002)
Bruno et al. (2010)
Wang & Gu (2015)
RNG k-ε
LES

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5

C
L'

B / D(a) (b)

Fig. 7. Predicted and measured variations of CD and the fluctuating lift coefficient C 0
L with B=D (Re ¼ 6 × 104): (a) CD; and (b) C 0

L.
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increase in CD from 1.95 to 2.23 as a result of an increase in Re
from 5 × 103 to 2 × 104. The Reynolds number effect on St is
shown in Fig. 12(b) where it can be seen that the predictions ob-
tained by the variants of the k-ϵ model provide a good representa-
tion of the measurements.

Next, the effects of Re on the average drag coefficient of a rec-
tangular cross section having B=D ratio of 1, 1.564 (which equals
the ratio for the full-scale caisson), and 2 are explored. The results
are shown in Fig. 13. It is seen that CD remains fairly constant at
value of Re>2 × 104. At Re around 105, the present simulations for
the B=D ¼ 2 case are in good agreement with the consensus of the
experimental data. The computed CD for the B=D ¼ 1.564 case fall
in between the data of Norberg (1993) and Nakaguchi et al. (1968).

Results for the Full-Scale Caisson

This section presents the results of simulations performed on the
full-scale caisson in the field operating conditions.

Caisson Geometry and Computational Details

A schematic representation of the caisson is shown in Fig. 14(a). The
cross-sectional dimensions are 29.4m × 18.8m (B=D ¼ 1.564).

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8 1

C
D

/ C
D
(0

)

L / B

Modified k-ε model
Rathakrishnan (1999), Re=5.8x10
Rathakrishnan (1999), Re=9.5x10
Sarioglu (2017)
RNG k-ε
LES (2D)

4
4

Fig. 10. Variation of average drag coefficient with L=B (Re ¼
6 × 104).

(a)

(b)

(c)

(d)

(e)

Fig. 8. Streamlines of flow over square cylinders with different
rounded corner ratio (Re ¼ 6 × 104): (a) sharp corner; (b) r=D ¼
1=15; (c) r=D ¼ 1=10; (d) r=D ¼ 1=7.5; and (e) r=D ¼ 1=6.
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Modified k-ε model
Tamura & Miyaki (1999)
Carassale et al. (2014)
Wang & Gu (2016)
RNG k-ε
LES (2D)
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(a)
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r / D
0                      1/15     1/10     1/7.5       1/6      1/5

(b)

Fig. 9. Predicted and measured variation of hydrodynamic forces with r=D for Re ¼ 6 × 104 and Tu ¼ 0.2%: (a) CD; and (b) C 0
L.
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(a) (b)

(c) (d)

Fig. 11. Predicted instantaneous spanwise vorticity contours around square cylinders with various L=B at the phase of maximum CL (Re ¼ 6 × 104).
Anticlockwise rotation, −4 < v� < 4: (a) no splitter plate; (b) L=B ¼ 1=10; (c) L=B ¼ 1=2; and (d) L=B ¼ 1.

(a) (b)

(c) (d)

Fig. 12. Reynolds number effects on the computed and measured hydrodynamic parameters of square cylinder: (a) CD; (b) St; (c) C 0
L;

and (d) C 0
D.
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These dimensions provide a dry construction space beneath thewater
level for the pile cap having a rectangular section of dimensions
25.2 m × 14.6 m and an access margin of 0.5 m. The maximum
flow velocity that was expected to occur during construction was
0.5 m=s. The resulting Reynolds number is Re ¼ 9.4 × 106. The
steel caisson was composed of seven segments, each 6 m in length.
Fig. 14(b) shows the geometry adaptations to the original sharp-
cornered rectangular cross section that were considered. These con-
sisted of rounding the corners and attaching splitter plates to both

the front and rear of the caisson either separately or simultaneously.
All of the splitter plates were set along the caisson’s centerline.

Because of the requirements of operation space and the bearing
capacity, the limit radii (center at corners of pile cap) of the rounded
corner considered was 2.1 m for the outer wall and 0.5 m for
the inner wall. With these dimensions, an operating space was pro-
vided that was 0.5 m wide between the inner wall and pile cap, at a
depth of 1.6 m of the full-scale caisson. Two configurations for the
rounded corners were considered corresponding to the ratio of ra-
dius (r) to caisson width (D) of 1=15 and 1=8.95 (yielding radii of
1.253 m and 2.1 m, respectively). A total of 11 splitter plate lengths
were computed in which the ratio of the splitter plate length to cais-
son length varied in the range 1=50 < L=B < 1. This translated to
actual splitter plate lengths in the range 0.588m < L < 29.4m.

Three three-dimensional (3D) full-scale models were built
in order to evaluate the hydrodynamic forces and to assess the
effects of rounding the corners and attaching the splitter plates.
Figs. 15(a–c) show a close-up of the mesh surrounding the caisson.
All of the models use structured meshes including the transitional
region, which is contiguous to the round corner. In the spanwise
direction, 90 layers of cells were used to capture flow features
in that direction.

To be able to quantify the numerical accuracy of the results,
computations were performed on three different grids that con-
sisted of 1,053,104, 1,373,988 and 1,780,800 nodes. A qualitative
impression of the grid effects can be seen in Fig. 16 where the
contours of nondimensional vorticity at maximum CL are shown.
While the overall flow patterns obtained with each mesh are very
similar, differences are observed in the smaller flow structures,
especially those that develop close to the walls.

A quantitative check of the numerical accuracy of the com-
putations was performed using the grid convergence index (GCI)
method (Celik et al. 2008). The results of this check are presented
in Table 2. In that table, the parameters that were chosen to test for
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2.0

2.5

C
D

Re

Modified k-ε model
Nakaguchi et al. (1968)
Norberg (1993)
Shimada & Ishihara (2002)
Wang & Gu (2015)

103 104 105 106 107

B/D=1:1

B/D=1.564:1

B/D=2:1

B/D=1.6:1

Fig. 13. Reynolds number effect on mean drag coefficient CD for
various values of B=D.
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Fig. 14. Scale of actual steel caisson (all dimensions are in m): (a) cross section of steel caisson showing the multiple piles and the pile cap;
(b) geometry adaptations considered; and (c) elevation of completed steel caisson and fabricated segments.
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grid independence are listed at the top and are labeled N. The sym-
bol γ represents the ratio of nodes in successive grids. The values
listed under the label ϕ represent the values obtained for the chosen
parameters with the selected grid. The values listed under the label

ϕext
21 represent the asymptotic values for each of the target param-

eters, obtained by Richardson interpolation. Finally, the values
listed under the label er21 represent the resulting error. It is evident
that the results obtained with the finest grid tested (1,780,800
nodes) are of sufficient numerical accuracy and hence all sub-
sequent computations were performed using this grid.

Basic Geometry

The results for the basic geometry with its sharp corners and with
no splitter plate are presented first. The predicted hydrodynamic
parameters obtained for two different values of B=D, and at
two Reynolds number are shown in Table 3. The average drag
coefficient CD value of 2.006 obtained for the full-scale caisson
is somewhat larger than the value of 1.962 obtained for a small-
scale model having the same proportions. This may suggest that
scaling effects that are present in experimental model tests are also
present in the simulations, though the presence of any residual
numerical artifacts in the latter can also have made a contribution
to this result.

Fig. 15. 3D LES model: (a) plan view; (b) sharp corner details; and (c) round corner details.

(a)

(b)

(c)

Fig. 16. Predicted instantaneous vorticity at maximum CL for full-
scale caisson with rounded corners and splitter plate: (a) 1,780,800
nodes; (b) 1,373,988 nodes; and (c) 1,053,104 nodes.

Table 2. The GCI method estimates of the discretization errors for the full-
scale caisson computations at Re ¼ 9.4 × 106

Variables/
coefficients ϕ ¼ CD ϕ ¼ St ϕ ¼ C 0

L ϕ ¼ C 0
D

N1, N2, N3 1,780, 800, 1,373, 988, 1,053, 104
γ21 1.296 — — —
γ32 1.305 — — —
ϕ1 0.700 0.248 0.242 0.043
ϕ2 0.698 0.239 0.258 0.035
ϕ3 0.691 0.220 0.311 0.035
p 6.310 2.673 4.569 14.183
ϕext
21 0.700 0.257 0.235 0.044

er21 0.002 0.037 0.267 0.199
GCI21 0.001 0.046 0.037 0.006

Table 3. Computed drag coefficient and Strouhal number for models of
different proportions

Model scale B=D Re CD St C 0
L C 0

D

Small scale
(D ¼ 0.05 m)

1.564 6.0 × 104 1.846 0.084 1.494 0.334
2 6.0 × 104 1.561 0.196 0.867 0.080
1.564 9.4 × 106 1.962 0.084 1.730 0.425

Full scale
(D ¼ 18.8 m)

1.564 6.0 × 104 1.854 0.084 1.479 0.336
2 6.0 × 104 1.561 0.196 0.869 0.080
1.564 9.4 × 106 2.006 0.091 1.781 0.455
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The mean vorticity is shown in Fig. 17(a) where it is clear that
an extensive wake region develops downstream of the caisson lead-
ing to large mean drag and intense fluctuations in the lift and drag
forces.

Basic Geometry with Rounded Corners

The effects of rounding the corners on the flow patterns are shown
in Figs. 17(b and c) for r=D ¼ 1=15 and 1=8.95, respectively.
The most noticeable effects, compared to the case with the sharp
corners, is the movement of the point of flow separation from the
upstream corners to the downstream ones. This has the effect of
significantly decreasing the size of the shed vortices and with that,
the magnitude of the hydrodynamic forces on the caisson. This
reduction of forces increases with r=D, as can be seen in Table 4.
Thus, for example, compared to the sharp-cornered case, CD is de-
creased by 31.7% with r ¼ 1.253 m and 42.5% with r ¼ 2.1 m.
The Strouhal number is increased by the effects of rounding the
corners consistent with the increase in the vortex shedding fre-
quency in Fig. 17.

Basic Geometry with Splitter Plates

The variation of the average drag coefficient and Strouhal number
with the ratio L=B is shown in Fig. 18. Plotted there are the com-
puted results for the full-scale caisson and, for comparison, for a
caisson having a square cross section. The results are normalized
with respect to the values obtained for the basic geometry. For
L=B < 0.1, the effects of the splitter plate are more pronounced
for the 1.564 caisson.

Basic Geometry with both Rounded Corners and
Splitter Plate

Here, the corner radii were fixed at 2.1 m (r=D ¼ 1=8.95) while
the splitter plate was aligned with the caisson central line and
placed either on the front, on the back, or on both the front and
back simultaneously. When splitter plates were placed simultane-
ously at both the front and back, the plates were assumed to be of
the same length. In total, 11 ratios of L=B were considered, in the
range from 1=50 < L=B < 1. The results are shown in Fig. 19.
It was found that the effect of placing the splitter plate on the front
had very little effect on the hydrodynamic force and Strouhal num-
ber irrespective of the value of L=B. Consequently, this option was
excluded from further consideration.

Based on the variation of CD and C 0
L with L=B for the case with

the splitter plate at the back (Fig. 19), three distinct regimes can be
identified:
• Regime I: 0 < L=B < 1=10, CD and C 0

L decrease rapidly;
• Regime II: 1=10 < L=B < 3=4, moderate rate of decrease of CD;
• Regime III: 3=4 < L=B < 1, CD and C 0

L remain approximately
constant.

(a)

(b)

(c)

Fig. 17. Predicted instantaneous spanwise vorticity contours: (a) basic
geometry of sharp corner; (b) r=D ¼ 1=15; and (c) r=D ¼ 1=8.95.

Table 4. Predicted hydrodynamic coefficients for full-scale caisson.
Effects of rounding the corners

r=D Re CD St C 0
L C 0

D

1=15 9.4 × 106 1.370 0.238 0.982 0.124
1=8.95 9.4 × 106 1.153 0.244 1.065 0.170
1=8.95 5.0 × 106 1.147 0.244 1.079 0.178
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Fig. 18. Variation of mean drag coefficient and Strouhal number with L=B: (a) CD; and (b) St.
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Fig. 19. Computed hydrodynamic parameters for the case with rounded corners (r=D ¼ 1=8.95) and splitter plates of various length: (a) CD; (b) St;
(c) C 0

L; and (d) C 0
D.

(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

Fig. 20. Instantaneous spanwise vorticity contours at maximum C 0
L. Results for the full-scale caisson with rounded corners modifying and for various

values of L=B: (a) 1=50; (b) 1=20; (c) 1=15; (d) 1=10; (e) 1=5; (f) 1=4; (g) 1=3; (h) 2=5; (i) 1=2; and (j) 3=4.
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The mechanism of the transition of flow regimes can be seen
from the variation of the flow characteristics in Fig. 20. The vor-
ticity contours for this case obtained for various values of L=B are
shown in Fig. 20. For L=B in the range 1=50 < L=B < 1=10, small

vortices are shed from the tip of the splitter plates, but because the
splitter plates are short, the position of the main vortices are not
altered and remain adjacent, close to the base face. The strength
and size of the shed vortices are reduced leading to the reduction
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Fig. 21. Instantaneous vorticity, power spectral density, and time history of C 0
L for full-scale caisson with rounded corners and L=B ¼ 1 at maximum

CL: (a) back plate; and (b) both front and back plates.

(a) (b)

(c)

Fig. 22. Distribution of instantaneous vorticity (v�) and fluctuating velocities for full-scale caisson with optimal rounded corners and splitter plate
length. Contours of v�, colored from −4 to 4 and correspond to 0.001 < λ2 < 6: (a) plane view; (b) perspective view; and (c) perspective view of
fluctuating velocities.
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of drag force. When L=B is larger than 1=10, the shed vortices are
convected away from base leading to further reduction in drag.

When the length of the back splitter plate increases to 3=4B, no
significant change occurs in CD. However, C 0

L increases, although
it is still less than that for the case with no splitter plate. The cause
for this increase can be inferred from Fig. 21 where the time history
for CL is shown, together with the fluctuations power spectral den-
sity. The fluctuations turn out to consist of a small amplitude high
frequency component that is due to vortex shedding, and a low fre-
quency large amplitude component due to the instability of the flow
at the splitter plate tip. The addition of a splitter plate to the front
side, as shown in Fig. 21(b), shows that the low frequency insta-
bility is effectively suppressed.

Figs. 22(a and b) present the flow structures that form when the
optimal values of the corners radii and the splitter plate length are
deployed. These plots are captured at the point of maximum CL and
show the instantaneous normalized spanwise vorticity as detected
using the λ2 criterion (Jeong and Hussain 1995). The picture that
emerges is of vortices that are somewhat diffused and intermingled
compared to the case where no control methods were present.
Fig. 22(c) depicts the contours of the root-mean-square of the fluc-
tuations in the streamwise velocity, nondimensionalized by the inlet
velocity. This parameter serves to quantify the strength and location
of the formed vortices (Gerrard 1966). It can be seen that the most
intense fluctuations occur at some distance downstream of the base.

Based on the results presented above, it was decided to imple-
ment both control methods in the full-scale caisson that was being
deployed. In the first instance, the rounded corners were welded
on the caisson segments as these were being fabricated on land.
Thereafter, these segments were floated and transported to the
bridge site. The splitter plate was then attached to the back face of
the steel caisson by welding, and was reinforced by diagonal truss.
The finished structure is shown in Fig. 23.

Concluding Remarks

While computations of the flow and hydrodynamic loads around
rectangular cross-sectioned cylinders representative of caissons
abound in the literature, none are available for a caisson at full scale

and at realistic flow conditions leading to very high values of
Reynolds number being attained. The need to provide reliable
design data under these conditions provided the motivation for the
present study. To establish the reliability of the data, simulations
were performed using vastly different strategies to account for the
effects of turbulence in the computations. The numerical accuracy
of the computations was checked using the GCI method while veri-
fication was accomplished by comparisons with experimental data
for a wide range of geometries and values of Reynolds number.
Extensive computations were performed to determine the effective-
ness of the two passive techniques of rounding the corners and of
installing a base splitter plate in reducing both the mean and fluc-
tuating lift and drag forces. Parametric studies were performed to
determine the optimal value of r=D in the case of rounded corners
and the ratio L=D for the splitter plate cases. The outcome of the
computations was a recommendation that the caisson corners are to
be rounded with a maximum allowable radius ration r=D of 1=8.95
(which translates to a radius of 2.1 m at full scale), and splitter plate
length ratio L=D of 1=10 (which translates to a length of 2.94 m at
full scale). These recommendations were implemented on an actual
steel caisson during the construction of Boluo Dongjiang Bridge
located in Guandong Province, South China. Reports from the field
indicated that vortex shedding, as evidenced by the flow patterns on
the surface, was entirely absent from the full-scale caisson with the
recommended adaptations.
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