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ABSTRACT OF THE DISSERTATION

Modeling and Control of Thin Film Surface Morphology:

Application to Thin Film Solar Cells
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Jianqiao Huang
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Professor Panagiotis D. Christofides, Co-Chair

Professor Gerassimos Orkoulas, Co-Chair

Thin film solar cells, which consist of multiple layers such as the PIN layers and the

Transparent Conducting Oxide (TCO) layers, are playing a more and more important role

in the overall solar cell market owing to the potential of improving light conversion effi-

ciencies (currently on the order of 10% for production modules). Over the last decade, it

has been widely recognized that the surface morphology at each interface, which is charac-

terized by surface root-mean-square roughness and slope, has crucial influence on the light

conversion efficiency of thin film solar cells. Therefore, precisely shaping the surface mor-

phologies of different layers in thin film solar cells during the thin film deposition process

is a promising way to improve solar cell efficiency. Despite its importance, the computa-

ii



tional modeling and control of the surface morphology, especially of the root-mean-square

surface mean slope, during the thin film deposition process and its application to improve

solar cell performance have not received enough attention.

This dissertation presents a systematic framework for modeling and control of thin film

surface morphology in both PIN layers and TCO layers. Specifically, we will present novel

definitions for describing surface morphology by introducing both the surface root mean

square roughness and slope to describe the surface morphology, study its physical prop-

erties and dependence on model parameters such like lattice size, activation energies and

temperature, introduce and identify stochastic closed-form equations describing surface

morphology, and finally design model predictive controllers to control the surface mor-

phology to desired levels. Extensive simulation results are presented to demonstrate the

effectiveness of the proposed modeling and control framework.
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Chapter 1

Introduction

1.1 Background on modeling and control of thin film mi-

crostructure

Thin film solar cells constitute an important and growing component of the overall solar

cell market (see, for example, [14, 46]) owing to their reduced cost relative to silicon-based

solar cell modules as well as to the potential of using various thin film materials which may

lead to improved light conversion efficiencies (currently on the order of 10% for production

modules.) In addition to investigating the performance with respect to light conversion effi-

ciency and long-term stability of an array of materials, thin film solar cell technology stands

to benefit from optimal thin film manufacturing (deposition) control strategies that produce

thin films with desired light reflectance and transmittance properties. Extensive research

1



on optical properties of thin-film, primarily silicon, solar cells has demonstrated that the

scattering properties of the thin film interfaces directly influence the light trapping ability

and the efficiency of thin-film silicon solar cells and the scattering properties are strongly

affected by the surface/interface morphologies at each surface/interface in thin film solar

cell systems (see, for example, [54, 42, 40, 43]). Shaping the morphology of the various

surfaces/interfaces at the thin film deposition stage is therefore critical in order to maxi-

mize the amount of light trapped within the solar cell and converted to electrical energy.

With respect to visible light trapping by thin film solar cells, the light scattering properties

of the various surfaces/interfaces have a complex dependence on the surface morphology

interface. In the context of solar cell performance, it is noticed that the wavelength of the

visible light is much larger than the size of the silicon atom and the atomic level surface

morphology will not be accurately sensed by the visible light. Thus, the aggregate surface

roughness and slope are defined at a length scale that is comparable to the wavelength of

visible light. While developing accurate models for predicting optical properties of thin

films is an on-going research topic, it is well-established that the root-mean-square surface

roughness and slope at characteristic length scales that are comparable to the wavelength

of the visible light are key factors that influence thin film reflectance and transmittance

(e.g., [9, 50]). Specifically, significant increase of conversion efficiency with appropriately

roughened interfaces has been reported in several works [45, 33, 44, 30, 28].

To provide a concrete example of this issue, we focus on a typical p-i-n thin-film solar

cell (Fig. 1.1). In this thin-film solar cell, light comes into the hydrogenated amorphous
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silicon (a-Si:H) semiconductor layers (p, i, n layers) through a front transparent conducting

oxide (TCO) layer (made, for example, of ZnO:Al), and part of this light is absorbed by

the semiconductor layers before it reaches the back TCO layer. At the back TCO layer,

the remaining light is either reflected back to the semiconductor layers to potentially be

absorbed again or leaves the system by transmitting through the back TCO layer. The

reflected light that is not absorbed reaches the front TCO layer again and this process of

reflection and transmission is repeated until all the light leaves the cell or is absorbed by

the cell. We focus on a thin film a-Si:H p-i-n solar cell with glass/ZnO:Al as the front

TCO layer and ZnO:Al as the back TCO layer to demonstrate quantitatively the influence

of sufrace/interface roughness, r, and slope, m, on thin film light reflectance and transmit-

tance.

Light scattering (Rayleigh scattering) occurs when the incident light goes through a

rough interface, where it is divided into four components: specular reflection, specular

transmission, diffused reflection and diffused transmission; see Fig. 1.2 [45, 33]. If a rough

thin film surface is illuminated with a beam of monochromatic light at normal incidence,

the total reflectance, R, can be approximately calculated as follows [9]:

R = R0 exp(−4πr2
∆/λ 2)+R0

∫ π/20

0
2π4

( a
λ

)2

×
(r∆

λ

)2
(cosθ +1)4 sinθ exp[−(πasinθ)2/λ 2]dθ

(1.1)

where R0 is the reflectance of a perfectly smooth surface of the same material, r∆ is the

aggregate rms roughness, ∆ is the aggregation size and in this work ∆ = 400, θ is the

incident angle, λ is the light wavelength and a is the auto-correlation length of the interface.
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Figure 1.1: Typical structure of a p-i-n thin-film solar cell with front transparent conducting

oxide (TCO) layer and back contact.
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It can be proved that a=
√

2r∆/m∆, where m∆ is the aggregate rms slope of the profile of the

interface [2]. The numerical integration result of Eq. 1.1 is shown in Fig. 1.3. It is necessary

to note that Eq. 1.1 is only valid when θ is small, so in the integration θ ∈ [0,π/20].

From Fig. 1.3, it can be inferred that both r∆ and m∆ strongly influence the intensity of

light reflection (and light transmission) at the surface/interface. Specifically, for a thin-

film solar cell, the objective is to maximize the light trapping efficiency by controlling the

intensities and directions of light reflection and transmission at surfaces and interfaces in

the thin film solar cell. This control objective can be achieved by attaining proper values

of r∆ and m∆ during the thin-film manufacturing process. Therefore, it is important during

the manufacturing of thin-film solar cells to regulate process input variables such that the

surfaces/interfaces of the produced thin-film solar cells have appropriate values (set-points)

of r∆ and m∆ that optimize light reflectance and transmittance.

In the context of modeling of thin film growth and surface morphology, two mathe-

matical approaches have been developed and widely used: kinetic Monte Carlo (kMC)

methods and stochastic differential equation (SDE) models. KMC methods provide unbi-

ased realizations of thin film growth processes based on pre-defined microscopic rules.

The corresponding thermodynamic and kinetic parameters that differentiate the micro-

scopic growth models are obtained from experiments and/or molecular dynamics simu-

lations [35, 55, 34, 7]. However, kMC models are not available in closed form, and thus,

they cannot be readily used for feedback control design and system-level analysis. On the

other hand, SDE models can be derived from the corresponding master equation of the
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Figure 1.2: Light scattering at a rough interface: specular reflection, Rsp, diffused reflec-

tion, Rd , specular transmission, Tsp, and diffused transmission, Td . n1 and n2 are the refrac-

tive indices of the two substances above and below the rough interface, respectively.
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Figure 1.3: Reflectance as a function of r∆ and m∆ of thin film surface.

microscopic process and/or identified from process data. Specifically, methodologies have

been developed to construct SDE models and estimate their parameters from first princi-

ples (e.g., [15, 16, 17]) and numerical simulations (e.g., [7, 19]). The closed form of the

SDE models enables their use as the basis for the design of feedback controllers which can

regulate thin film surface roughness [7, 19], film porosity [22], and film thickness [21].

In kMC models, different lattices are utilized for different applications. Specifically,

a triangular lattice is utilized when the film porosity is studied. This model allows for

overhangs and vacancies inside the film and it is perfect to simulate the properties of film

porosity. However,0 for solar cell applications, the research focus is to study the surface

properties’ influence on solar cell performance and it is not necessary to keep the informa-

tion inside the film. Therefore, a solid-on-solid square lattice is introduced to simulate the
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thin film solar cell growth process. In this model, every particle is placed right over another

particle and no vacancies are allowed inside the film, which is sufficient to study the surface

morphology’s influence on solar cell performance. Beyond the choice of lattice, different

growth mechanisms have been developed to describe thin film growth processes. Specifi-

cally, a random deposition with surface relaxation (RDSR) model was introduced in [11].

The dependence of surface irregularity on the lattice size of the RDSR model, i.e., scal-

ing properties, was investigated via both numerical simulations and theoretical derivations

[11, 1]. A competitive growth model that considers separate deposition and migration pro-

cesses (deposition/migration model) was further developed to capture the balance of these

two processes at different substrate temperatures [41]. In addition, the dynamics and the

scaling properties of surface roughness in the deposition/migration model were also inves-

tigated both numerically and analytically and revealed a temperature dependence.

In SDE models, an Edwards–Wilkinson (EW) type equation is introduced to describe

the thin film dynamics. Both the numerical and analytical solutions of the EW equation

are derived at the length scale that is comparable to the wavelength of visible light. The

parameters of the EW equation are identified by fitting the analytical solutions of EW equa-

tions to open-loop kMC simulation data. Since the solution of EW equation is available in

closed form, it can be readily used for feedback controller design.

Over the last twenty years within the control engineering literature, extensive efforts

have been made on the modeling and model-based feedback control of thin film deposi-

tion processes with emphasis on the problems of film thickness, roughness and porosity
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regulation. With respect to model-based feedback control of thin film deposition, early

efforts focused on deposition spatial uniformity control on the basis of continuum-type dis-

tributed parameter models (e.g., [6]), while within the last ten years, most attention has

focused on control of thin film surface morphology and microstructure. Since kMC models

are not available in closed form and cannot be readily used for feedback control design

and system-level analysis, stochastic differential equation (SDE) models (whose parame-

ters are computed from kMC model data) have been used as the basis for the design of

feedback controllers to regulate thin film surface roughness (e.g., [7, 41, 47, 48, 18]), film

porosity [20, 18], and film thickness [21].

After the successful regulation of silicon thin film deposition process, we extend our

method to simulate and control the manufacturing process of Transparent Conducting Ox-

ide (TCO) layers. Transparent Conducting Oxide (TCO) layer, which consists of zinc

oxide (ZnO) and aluminum (Al), is an important component of thin film solar cells and

has a crucial influence on the performance of thin film solar cell systems (see, for ex-

ample, [31, 13]). Extensive research on optical properties of thin-film TCO layers has

demonstrated that the surface morphology at the interface, which is characterized by sur-

face roughness and slope, directly influences the efficiency of thin-film silicon solar cells

(see, for example, [13, 31, 54, 42, 40, 43]). To simulate this process, a two-species ki-

netic Monte Carlo model is utilized and different growth mechanisms are defined for each

species. After that, model predictive controller is designed to shape the surface properly

for improved solar cell performance, and a patterned deposition rate profile is used to shape
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the surface. To make the process more practical, the wafer grating method, which means

using suitably patterned wafers for solar panel manufacturing, is used in combination with

patterned deposition rate profiles to precisely control the surface morphology [36, 12, 5, 4].

1.2 Dissertation objectives and structure

Motivated by the above considerations, this dissertation focuses on the modeling and the

control of film surface morphology in thin film solar cell growth processes. Kinetic Monte

Carlo models are developed to simulate the thin film growth processes on the basis of dif-

ferent lattice structures and growth mechanisms. Surface height profile, surface roughness

and slope are defined and computed from the kMC simulation data and are used to charac-

terize the surface morphology and microstructure of the thin films. Stochastic differential

equation models are introduced to describe the evolution of the thin film surface morphol-

ogy and used as the basis for the feedback control design. The model parameters of the

dynamic equation models can be estimated on the basis of the kMC simulation data using

least-square methods. MPC algorithms are developed to regulate and stabilize the thin film

surface roughness and slope at desired levels. The dissertation has the following structure:

Chapter 2 focuses on the simulation of silicon thin film growth process. Both RDSR

and deposition/migration models are considered on a square lattice in both one-dimension

and two-dimensions using the solid-on-solid assumption. Kinetic Monte Carlo methods

are used to simulate both models. The surface roughness and surface slope are defined
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to characterize the surface morphology and their dependence on lattice size are carefully

studied. Furthermore, activation energy barrier is changed to study its influence on surface

morphology. The results suggest that preferential migration (i.e., surface particles with

zero or one nearest neighbor dominate the migration events) results in a stronger depen-

dence of surface roughness and slope on the lattice size in thin film deposition processes.

Finally, the different dynamics of surface roughness and slope evaluated under different

characteristic length scales is investigated, and the need for spatially distributed control ac-

tuation to induce desired roughness and slope levels at large characteristic length scales is

demonstrated.

Chapter 3 focuses on the study of the dynamic behavior and lattice size dependence of

the surface root-mean-square slope of thin-film deposition processes. Two different lattices,

solid-on-solid square lattice and triangular lattice, are used. Two different deposition pro-

cesses are investigated: a random deposition with surface relaxation process and a porous

thin-film deposition process. Both deposition processes involve a deposition (adsorption)

process and a relaxation (migration) process, which strongly influence the resulting thin-

film surface morphology. KMC methods are used to simulate the deposition processes and

generate film surface height profiles and compute rms slope and roughness. A theoretical

analysis is provided using an Edwards–Wilkinson (EW)-type partial differential equation

(PDE) that can describe the dynamics of the surface height profile in the deposition pro-

cesses under consideration. The kMC simulation findings are corroborated by the analytical

results of appropriate finite-difference discretizations of the solutions of the EW equation
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model.

Chapter 4 presents an integrated control actuator and control algorithm design for the

regulation of deposition of thin films such that the final thin film surface morphology is

characterized by a desired visible light reflectance/transmittance level. To demonstrate the

approach, a thin film growth process is simulated via kMC method and thin film surface

morphology characteristics like roughness and slope are computed for different character-

istic length scales and it is found that a patterned actuator design is needed to induce thin

film surface roughness and slope at visible light wavelength spatial scales, that lead to de-

sired thin film reflectance and transmittance values. An Edwards-Wilkinson-type equation

is used to model the surface evolution at the visible light wavelength spatial scale and to

form the basis for feedback controller design within a model predictive control framework.

Extensive simulation studies demonstrate that the proposed controller and patterned actu-

ator design successfully regulate surface roughness and slope at visible light wavelength

spatial scales to set-point values at the end of the deposition that yield desired levels of thin

film reflectance and transmittance.

In Chapters 5 focuses on the development of a model predictive control (MPC) algo-

rithm to simultaneously regulate the aggregate surface slope and roughness of a two-stage

thin film growth process to optimize thin film light reflectance and transmittance. In the

first stage of the process, a uniform deposition rate profile is utilized and in the second

stage of the deposition process, a spatially distributed deposition profile is used to carry out

the simulation. This process is modeled on a one-dimensional solid-on-solid square lattice
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using kMC methods. An Edwards–Wilkinson (EW)-type equation is used to describe the

dynamics of the aggregate surface height profile obtained form the kMC model and predict

the evolution of the aggregate rms roughness and aggregate rms slope. A model predictive

control algorithm is then developed on the basis of the dynamic equation model to regulate

the aggregate rms slope and the aggregate rms roughness at desired levels. Closed-loop

simulation results demonstrate the effectiveness of the proposed model predictive control

algorithm in successfully regulating the aggregate rms slope and the aggregate rms rough-

ness at desired levels that optimize thin film light reflectance and transmittance.

Chapter 6 focuses on the application of microscopic modeling and control to the process

of TCO thin film deposition, which consists of ZnO and Al. Specifically, this work intro-

duces a two species simulation for TCO layer deposition process and presents an integrated

control actuator and control algorithm design framework for the regulation of deposition of

TCO thin films such that the final thin film surface morphology is controlled to a desired

level. An Edwards-Wilkinson-type equation is used to model the surface evolution at the

visible light wavelength spatial scale and to form the basis for feedback controller design

within a model predictive control framework. The cost function of the predicted controller

involves penalties on both surface roughness and slope from set-point values as well as

constraints on the magnitude and rate of change of the control action. Extensive simulation

studies demonstrate that the proposed controller and patterned actuator design successfully

regulate surface roughness and slope at visible light wavelength spatial scales to set-point

values at the end of the deposition.
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Chapter 7 focuses on the application of microscopic modeling and analysis of a TCO

thin film deposition process on a sinusoidal grated wafer, and model predictive control is

utilized to control the surface morphology to desired values. To demonstrate the approach,

we focus on a two species thin film deposition process using a grated initial lattice, which

is modeled via kinetic Monte-Carlo simulation. The initial lattice is defined based on a

sinusoidal function with proper magnitude (M = 100 layers) and 5 sine waves are placed

across the lattice. An Edwards–Wilkinson-type equation is used to model the surface evo-

lution and to form the basis for feedback controller design within a model predictive control

framework. The cost function of the predicted controller involves penalties on both surface

roughness and slope, following [26]. Extensive simulation studies demonstrate that the

proposed controller and patterned actuator design successfully regulate surface roughness

and slope at visible light wavelength spatial scales to desired set-point values at the end of

the deposition.

Finally, Chapter 8 summarizes the contributions of this dissertation.
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Chapter 2

Dependence of Film Surface Roughness

and Slope on Surface Migration and

Lattice Size in Thin Film Deposition

Processes

2.1 Introduction

This chapter focuses on the study of the dependence of film surface roughness and slope on

the lattice size in thin film deposition processes. Both random deposition with surface re-

laxation (RDSR) model and deposition/migration models are considered on a square lattice

in both one-dimension and two-dimensions using the solid-on-solid assumption. Kinetic
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Monte Carlo methods are used to simulate both models. The surface roughness and surface

slope are defined as the root-mean-squares of the surface height profile and of the surface

slope profile, respectively. We find that both surface roughness and slope evolve to steady-

state values at large times but are subject to different dynamics and scaling properties. A

linear dependence and a logarithmic dependence of surface roughness square on the lat-

tice size are observed in the one-dimensional and two-dimensional models, respectively, of

the random deposition with surface relaxation model and the deposition/migration model

with zero activation energy contribution from each neighboring particle. Furthermore, a

stronger lattice-size dependence is found in the deposition/migration model with a signifi-

cant migration activation energy contribution from each neighboring particle. This finding

suggests that preferential migration (i.e., surface particles with zero or one nearest neighbor

dominate the migration events) results in a stronger dependence of surface roughness on

the lattice size in thin film deposition processes. In contrast, a weak lattice-size dependence

is found for the surface mean slope in all growth models considered, especially at large lat-

tice sizes. Finally, the different dynamics of surface roughness and slope evaluated under

different characteristic length scales is investigated, and the need for spatially distributed

control actuation to induce desired roughness and slope levels at large characteristic length

scales is demonstrated.
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2.2 Description of thin film deposition processes

In this section, two different thin film deposition process models are introduced: a random

deposition with surface relaxation (RDSR) model and a process model involving depo-

sition and surface migration (deposition/migration model). Both deposition models are

constructed on a square lattice in both one-dimension (1D) and two-dimensions (2D) using

the solid-on-solid (SOS) assumption, where particles land on top of the existing surface

particles. Periodic boundary conditions are applied to these lattice models in the directions

that are perpendicular to the growth direction. Lattice size is defined as the number of sites

in the lateral direction bounded by the periodic boundaries. In the two-dimensional lattice,

the lattice sizes in the two lateral directions are the same, i.e., the deposition process models

take place on a square lattice in the two-dimensional case.

Fig. 2.1 shows the lattice models of the thin film deposition processes in both 1D and

2D cases. In Fig. 2.1, the incident particles are deposited vertically onto the thin film. The

surface particles, i.e., the highest particles of the lattice sites, are subject to an instantaneous

surface relaxation event (the RDSR model) or a migration event (the deposition/migration

model). The details of the microscopic events in these two models will be discussed in the

following subsections. Kinetic Monte Carlo methods are used to simulate both deposition

process models. Specifically, we use the continuous-time Monte Carlo (CTMC) algorithm

[49] to simulate the thin deposition process models.
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Figure 2.1: Thin film deposition processes on (a) a one-dimensional square lattice and (b)

a two dimensional square lattice.
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2.2.1 Random deposition with surface relaxation model

The RDSR model is a convenient basic model of the thin film deposition process since

its microscopic rules are simple and its dynamic behavior is known [24, 1, 29]. In the

RDSR model, there is only one type of microscopic event: the random deposition with

surface relaxation event. When a particle is deposited, a site is first randomly chosen among

all lattice sites. After the site is determined, an incident particle deposits on the top of

the surface particle on that site. Upon deposition, the deposited particle is subject to a

surface relaxation event if any of the nearest neighbors of the site is lower than the initial

deposition site. When the surface relaxation event is conducted, the deposited particle

moves to the neighboring site with the lowest height among its nearest neighboring sites.

For the case for which two or more neighboring sites have the same lowest heights, the

deposited particle randomly chooses (with equal probability) a neighboring site as its final

deposition site. When the lowest height of the nearest neighbors is only one layer lower

than the center site after deposition, the deposited particle may stay in the original deposited

site subject to the same probability to the one that this particle moves to the lowest nearest

neighboring site. We note that the number of nearest neighboring sites varies with respect

to the dimension of the lattice model. Specifically, there are two nearest neighboring sites

in the one-dimensional square lattice and the number of nearest neighboring sites is four in

the two-dimensional case.

In the RDSR model, there is only one macroscopic process parameter that characterizes

the deposition process: the deposition rate, W , in units of deposited layers per second.
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Since random deposition is always followed by surface relaxation of the same deposited

particle, the deposition rate, W , does not influence the balance between the deposition and

relaxation events. A different W only scales the dynamics of the thin film evolution. Thus,

the deposition rate is fixed at W = 1 layer/s for the RDSR model in all simulations presented

in this work.

2.2.2 Deposition/migration model

In the deposition/migration model [41], the deposition and migration events are sepa-

rate and independent microscopic events. The deposition event is a random process, i.e.,

the same random deposition (without surface relaxation) as in the RDSR model in Sec-

tion 2.2.1. However, the migration event does not follow immediately the deposition of the

particle. Instead, each surface particle, i.e., the top particle of a lattice site, is subject to

its own migration event with a probability that depends on its local environment and the

substrate temperature. The migration rate (probability) follows an Arrhenius-type law as

follows:

rm,i = ν0 exp
(
−Es +niEn

kBT

)
, (2.1)

where rm,i denotes the migration rate of the i-th surface particle, ν0 = 2kBT/h is a pre-

exponential factor, ni = 0, 1, 2, . . . , is the number of the nearest neighbors in the same

layer of the surface particle on the ith lattice site, Es and En are the contribution to the

activation energy barrier from the surface site and from each nearest neighbor, respectively,

kB is Boltzmann’s constant, h is Planck’s constant, and T is the substrate temperature.
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When a surface particle is subject to migration, the particle moves onto a neighbor-

ing site with a lower surface height. If two or more neighboring sites have lower height

than the height of the initial particle site, the migrating particle randomly moves to one of

these neighboring sites with equal probability. We note that when ni equals the number

of nearest neighboring sites (i.e., two for the 1D lattice and four for the 2D lattice), the

particle is fully surrounded and cannot move. Multi-step moves are not included in this de-

position/migration model but can be realized via several successive but separate migration

events of the same particle.

In the deposition/migration model, the macroscopic process parameters include the de-

position rate, W , and the substrate temperature, T . These two process parameters together

determine the growth conditions of the thin film as well as its surface morphology. As

in the RDSR model in Section 2.2.1, the deposition rate is fixed as W = 1 layer/s for the

deposition/migration model. The substrate temperature may be varied at different values.

2.3 Surface roughness

Surface roughness is commonly used to describe the irregularity of surface morphology

and measures the vertical deviation of the surface from an ideal, flat surface. In this work,

surface roughness is defined as the root-mean-square (rms) of the surface height profile,

which is the connection of the centers of the surface particles on all lattice sites. The
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definition of surface roughness is given as follows:

r =

[
1
L

L

∑
i=1

(hi − h̄)2

]1/2

, one-dimension,

r =

[
1
L2

L

∑
i=1

L

∑
j=1

(hi, j − h̄)2

]1/2

, two-dimensions,

(2.2)

where r denotes surface roughness, hi (hi, j), i = 1, 2, . . . , L, is the surface height at the

i-th (i, j-th) position in the unit of layer, L denotes the lattice size, and h̄ = 1
L ∑L

i=1 hi is the

average surface height defined as follows:

h̄ =
1
L

L

∑
i=1

hi, one-dimension,

h̄ =
1
L2

L

∑
i=1

L

∑
j=1

hi, j, two-dimensions.

(2.3)

To investigate the scaling properties of surface roughness, we perform a series of kMC

simulations for the two deposition models for different lattice sizes. Both one-dimensional

and two-dimensional lattices are investigated. The surface roughness is computed on the

basis of the surface height profile that is obtained from the kMC simulation at each sam-

pling time. For the convenience of observing the lattice size dependence, the roughness

square, r2, is used to express the results. Since the deposition process is a stochastic process

in nature, multiple independent kMC simulations (1,000–30,000, depending on the level

of fluctuations) under the same operating conditions are repeated to generate the expected

value of the roughness square. The range of lattice size is chosen as large as possible un-

der the limitation of currently available computing power and the requirement to compute
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accurate values of expected film surface properties. In this work, all deposition processes

start with flat initial surface height profiles.

Remark 2.1 For each specific point we include in the results, we run a sufficiently large

number of simulations so that the computed expected value does not change with the addi-

tion of more simulations for that specific condition. For example, for an expected value that

is computed using 10,000 runs, the addition of more runs will not change the location of

the point at all; this has been checked for all points. For this reason, we use different num-

ber of runs for different conditions because some temperature/deposition rate conditions or

variables (roughness/slope) require more runs to get an accurate (one that does not change

with the addition of more simulations) expected value. With respect to the computation of

the errors of the computed mean values, we follow the following procedure: we group the

simulations for a specific condition into ten different groups (for example, in the case of

running 10,000 simulations, we form 10 groups of 1,000 simulations each) and compute

the mean of each group first and then the standard deviation of these ten means which is

equal to the size of the error bar. This exact procedure is repeated for all points included

in the results.

2.3.1 Random deposition with surface relaxation model

In the RDSR model of the deposition process, the deposition rate is fixed at W = 1 layer/s

for all simulations. The lattice size ranges from 20 to 200 sites. Fig. 2.2 shows the evo-

lution profiles of the expected surface roughness square. All profiles in Fig. 2.2 start from
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Figure 2.2: Profiles of the expected surface roughness square at different lattice sizes, L =

20, 50, 100, 150, and 200; 1D RDSR model with W = 1 layer/s.

zero, since the surface is assumed to be flat at the beginning of the deposition process. At

the initial stages of deposition (the time is sufficiently small), all roughness profiles evolve

similarly. As time increases, the roughness profiles in Fig. 2.2 increase and approach their

respective steady-state values. It is evident from Fig. 2.2 that the lattice size strongly in-

fluences the dynamic behavior of surface roughness. The roughness square of the RDSR

model with a larger lattice size takes longer time to reach a higher steady-state value. Thus,

the roughness profiles for L = 150 and L = 200 require a longer time frame (∼ 2000 s) to

reach their respective steady-states.

To further investigate the scaling properties of surface roughness of the deposition pro-

cess, we examine the behavior of surface roughness square v.s. lattice size. Fig. 2.3 shows
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Figure 2.3: Dependence of the expected steady-state value of surface roughness square on

the lattice size; 1D RDSR model with W = 1 layer/s.

the L-dependent expected steady-state values of surface roughness square,
⟨
r2⟩

ss, with re-

spect to the lattice size. A clear linear dependence on the lattice size is observed in Fig. 2.3.

This linear lattice-size dependence is consistent with the dynamic equation, the Edwards-

Wilkinson (EW) equation, of the RDSR model [29, 18].

Subsequently, we study the scaling properties of the 2D RDSR model. Figs. 2.4 and

2.5 show the profiles of the expected roughness square and the lattice-size dependence of

the expected steady-state values of the roughness square of the 2D RDSR model. The

evolution profiles in Fig. 2.4 have similar dynamics as the ones in the 1D system shown

in Fig. 2.2. This similarity is because the surface height dynamic behavior of the RDSR

model belongs to the EW universality class, irrespective of the dimension of the model.

25



0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (s)

<
r2 >

 (
la

ye
r2 )

 

 

L=20
L=50
L=100
L=150

Figure 2.4: Profiles of the expected surface roughness square at different lattice sizes; 2D

RDSR model with W = 1 layer/s.

A logarithmic dependence on the lattice size can be seen in Fig. 2.5. A semi-log plot is

used in Fig. 2.5 with a least-square-fitted line to show clearly the logarithmic dependence.

The logarithmic lattice-size dependence of roughness square is consistent with the EW

dynamics, from which a dependence of zeroth order on lattice size can be derived (which

is consistent with logarithmic dependence) [29].

However, by comparing Figs. 2.2 and 2.4, it can be seen that there is a difference in

the dynamics between the 1D and 2D RDSR models. The roughness square in the 2D

RDSR model reaches a lower steady-state value at a shorter time, given the same lattice

size. The different dynamic behavior of the 2D RDSR model is due to the extra dimension

for the surface relaxation, i.e., the deposited particles have more freedom of migrating in
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Figure 2.5: Dependence of the expected steady-state value of surface roughness square on

the lattice size; 2D RDSR model with W = 1 layer/s.
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the 2D model than in the 1D model. Thus, it takes less time for the surface roughness

in the 2D model to reach a steady-state, which can be thought of as an equilibrium state

between the deposition and migration events. Furthermore, the extra dimension for the

surface relaxation also leads to different lattice-size dependence of surface roughness; a

linear dependence in the 1D RDSR model and a logarithmic dependence in the 2D case, as

shown in Figs. 2.3 and 2.5.

2.3.2 Deposition/migration model

In the RDSR model, the ratio between the particle deposition and relaxation rates is fixed

and the particles after the deposition/relaxation process cannot move. However, in the de-

position/migration model, the deposition and migration events are independent and the par-

ticles on the surface are subject to migration unless fully surrounded by nearest neighbors.

The thin film surface morphology is the result of a complex interplay between adsorp-

tion and migration events. Thus, the surface roughness of the deposition/migration model

may have different dynamic behavior, i.e., time of approaching the steady-state value, from

the one of the surface roughness in the RDSR model. To carry out the kMC simulations

of the deposition/migration model, the values of the activation energy barriers are cho-

sen to be consistent with silicon thin films [18] in the two-dimensional lattice model and

are taken as follows: Es = 1.2 eV and En = 0.6 eV. The operating conditions for the de-

position/migration model are chosen so that the resulting surface roughness under these

operating conditions is close to the one in the RDSR model; T = 680 K and W = 1 layer/s
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for the 1D model and T = 650 K and W = 1 layer/s for the 2D model.

In the deposition/migration model, the dynamic behavior of surface roughness square

is similar to the one in the RDSR model; the profile of roughness square increases from

zero and approaches a steady-state value at large times. However, the scaling proper-

ties of roughness are different in the two deposition process models. Figs. 2.6 and 2.7

show the lattice-size dependence of
⟨
r2⟩

ss in the 1D and 2D deposition/migration process

models with En = 0.6 eV, respectively. By comparing to the dependence of
⟨
r2⟩

ss in the

RDSR models in Figs. 2.3 and 2.5, both 1D and 2D deposition/migration models have

a stronger roughness dependence on the lattice size. The 1D lattice-size dependence is

quasi-exponential,
⟨
r2⟩

ss ∼ exp(L) (Fig. 2.6); while the 2D dependence is quasi-linear,⟨
r2⟩

ss ∼ O(L) (Fig. 2.7).

This stronger dependence of surface roughness on the lattice size has a correlation with

a larger difference of the rates of the various migration possibilities of the surface particles.

Here the migration possibilities refer to the dimension of the lattice and the classifications

of surface particles with respect to the number of neighboring particles (particles belonging

in different classes are associated with different migration rates when En ̸= 0). In the 1D

lattice, the migration of surface particles is limited to one direction; while in the 2D lattice,

the surface particles have an extra dimension to migrate. Thus, the roughness dependence

on the lattice size in the 1D model is stronger (linear) than in the 2D model (logarithmic).

Similarly, in the deposition/migration model with a non-zero En, the surface particles are

classified according to the number of nearest neighbors, ni, in Eq. 2.1. The particles in
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Figure 2.6: Dependence of the expected steady-state value of surface roughness square

on the lattice size; 1D deposition/migration model with En = 0.6 eV, T = 680 K, W = 1

layer/s.
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Figure 2.7: Dependence of the expected steady-state value of surface roughness square

on the lattice size; 2D deposition/migration model with En = 0.6 eV, T = 650 K, W = 1

layer/s.
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different classes have different migration rates; a larger migration rate for the class with

a smaller ni. Thus, the surface particles with less nearest neighbors are more likely to

migrate than the particles with more nearest neighbors. However, in the RDSR model,

all surface particles have the same migration probabilities, since the relaxation event is

executed instantaneously following a random deposition. This difference of the migration

possibilities (classification of migration particles) in the deposition/migration model results

in a stronger lattice-size dependence than in the RDSR model.

To further support the correlation between the scaling properties and the difference of

the migration possibilities, kMC simulations are carried out for the deposition/migration

model with En = 0 eV. In the deposition/migration model, a zero En indicates no additional

energy barrier from each nearest neighbor, and thus, all particles have the same migration

rates. From a physical significance point of view, En = 0 implies that the rate of migration

of each surface particle is only dependent on temperature and the activation energy Es of

the surface site and it is independent of the number of nearest neighbors of the particle; this

scenario is appropriate in the case where the nearest neighbor interactions of the surface

particle are very weak relative to the bonding of the particle with its site. Lower substrate

temperatures (T = 480 K for the 1D model and T = 460 K for the 2D model) are selected

for the operating conditions due to the lower total activation energy barriers compared to

the deposition/migration model with En = 0.6 eV. Figs. 2.8 and 2.9 show the lattice-size

dependence of
⟨
r2⟩

ss in the 1D and 2D deposition/migration models with En = 0 eV, re-

spectively. The dependence of
⟨
r2⟩

ss ∼ exp(L) in the deposition/migration model with zero
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Figure 2.8: Dependence of the expected steady-state value of surface roughness square on

the lattice size; 1D deposition/migration model with En = 0 eV, T = 480 K, W = 1 layer/s.

En on the lattice size, shown in Figs. 2.8 and 2.9, is consistent with the dependence found

in the RDSR model; both models have linear lattice-size dependence in the 1D lattice and

logarithmic lattice-size dependence in the 2D lattice. The close relationship of the surface

roughness dependence on the lattice size for the RDSR model and the deposition/migration

model with En = 0 is expected, since the surface relaxation model has a migration step that

is always performed if the neighboring sites have lower height, and this is also achieved in

the deposition/migration model with En being 0. Furthermore, the roughness is higher in

the deposition/migration model versus the RDSR model because the relaxation step takes

place in every deposition event in the RDSR model.

Remark 2.2 Regression coefficients R2 were only added to the plots where linear depen-
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Figure 2.9: Dependence of the expected steady-state value of surface roughness square on

the lattice size; 2D deposition/migration model with En = 0 eV, T = 460 K, W = 1 layer/s.
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dence can be proved analytically (using closed-form equations (stochastic PDEs) of the

surface evolution profile) to hold for any lattice size range (Figs. 2.3, 2.5, 2.8 and 2.9).

Specifically, in previous works (e.g., [1, 18]), the linear dependence of
⟨
r2⟩

ss on lattice

size L for RDSR models has been proved analytically for any lattice size range, so in the

present paper regression coefficients were added in all related plots (Figs. 2.3 and 2.5) to

support this conclusion. In addition, regression coefficients were also added to Figs. 2.8

and 2.9 to show that the scaling properties of the deposition/migration model with En = 0

are similar to the ones of the RDSR model. For all the other plots, although quasi-linear

or quasi-exponential dependences were observed locally (for the range of lattice size used

in the simulations) from the results, there is no proof that these types of dependences hold

globally (for any range of lattice size), so regression coefficients were not added.

2.4 Surface slope

Although rms roughness can be used to capture the height deviations of a thin film sur-

face profile, neither surfaces slope nor surface height correlation between different surface

locations can be captured by the rms roughness. Under certain assumptions for surface

height distribution functions, these additional surface characteristics can be simplified to

the quantities of surface mean slope and auto-correlation length. In this work, the surface
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mean slope is defined in a fashion similar to surface roughness as follows:

m =

[
1
L

L

∑
i=1

h2
s,i

]1/2

, one-dimension,

m =

[
1
L2

L

∑
i=1

L

∑
j=1

h2
s,i, j

]1/2

, two-dimensions,

(2.4)

where m denotes the rms slope and hs,i (hs,i, j), is the surface slope at the i-th (i, j-th) lattice

site, which is a dimensionless variable. The surface slope, hs,i (hs,i, j), is computed as

follows:

hs,i = hi+1 −hi, one-dimension,

hs,i, j = hi+1, j −hi, j, two-dimensions.

(2.5)

Due to the use of PBCs, the slope at the boundary lattice site (i = L) is computed as the

slope between the last lattice site (hL) and the first lattice site (h1). It is necessary to point

out that the surface slope in the 2D lattice is calculated as the slope in one dimension. Due

to the isotropy of the lattice model, the surface slope can be obtained in either dimension of

the lattice, i.e., (hi+1, j − hi, j) or (hi, j+1 − hi, j). To be consistent with the roughness plots,

the mean slope square, m2, is used to present the results.

2.4.1 Random deposition with surface relaxation model

The evolution profiles of the expected mean slope square in the RDSR model, both 1D

and 2D, are obtained from the same kMC simulation data for the roughness profiles in

Section 2.3. Fig. 2.10 shows the profiles of the expected mean slope square at different
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lattice sizes in the 1D and 2D RDSR models. From Fig. 2.10, it can be seen that the mean

slope square of the RDSR model has a smaller value and faster dynamics than the roughness

square. The different dynamic behavior of the slope is because the correlation between the

heights of two adjacent lattice sites in the slope definition in Eq. 2.4 is higher than the

correlation between the heights of a lattice site and the average height in the roughness

definition in Eq. 2.2 [24].

The dependence of the mean slope square on the lattice size is also different from the

dependence of the roughness square; see Fig. 2.11 for the lattice-size dependence of the

mean slope square. The expected steady-state value of the mean slope square,
⟨
m2⟩

ss,

has a very weak dependence on the lattice size in both 1D and 2D RDSR models;
⟨
m2⟩

ss

converges to a fixed value. To show the weak dependence, Fig. 2.11 is generated in a

semi-log plot, which indicates that the dependence is weaker than logarithmic dependence.

2.4.2 Deposition/migration model

In the deposition/migration model, the weak lattice-size dependence of the mean slope

square can be also observed. As is shown in Section 2.3.2, the deposition/migration model

with En = 0 eV exhibits a consistent dynamic behavior and scaling property of surface

roughness with the RDSR model. A similar weak dependence of the mean slope square on

the lattice size is found in the deposition/migration model with En = 0 eV; see Fig. 2.12.

However, in the deposition/migration model with non-zero En, the lattice-size depen-

dence of the mean slope square is slightly stronger. Fig. 2.13 shows the dependence of
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Figure 2.10: Profiles of the expected mean slope square at different lattice sizes; (a) 1D

RDSR model and (b) 2D RDSR model with W = 1 layer/s.
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Figure 2.11: Dependence of the expected steady-state value of mean slope square on the

lattice size; 1D and 2D RDSR models with W = 1 layer/s.
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lattice size; 1D and 2D deposition/migration models with En = 0 eV, T = 480 K for the 1D
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⟨
m2⟩

ss on the lattice size in the deposition/migration model with En = 0.6 eV for both 1D

and 2D lattices. In the 1D deposition/migration model with non-zero En, the lattice-size

dependence is quasi-linear; in the 2D model, the dependence is quasi-logarithmic. Over-

all, the mean slope square has a weaker dependence on the lattice size than the roughness

square, especially at large lattice sizes.

2.5 Applications to light trapping efficiency

In this section, the influence of the surface morphology characteristics, i.e., the surface

roughness and slope, on the light reflectance/transmittance is investigated in a light scatter-

ing (Rayleigh scattering) process. When the incident light goes through a rough interface,

the light is divided into four components: specular reflection, specular transmission, dif-

fused reflection and diffused transmission; see Fig. 2.14 [45, 33]. Under the assumptions

of normal surface height distribution and correlation, the total reflectance of a beam of

monochromatic light at normal incidence to a rough surface, which is denoted by R, can be

approximately calculated as follows [9]:

R = R0 exp
(
−4πr2

λ 2

)

+R0

∫ π/2

0
2π4

( a
λ

)2( r
λ

)2
(cosθ +1)4 sinθ exp

[
−(πasinθ)2

λ 2

]
dθ

(2.6)

where R0 is the reflectance of a perfectly smooth surface of the same material, θ is

the incident angle, λ is the light wavelength, and a is the auto-covariance length of the
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Figure 2.13: Dependence of the expected steady-state value of mean slope square on the

lattice size; (a) 1D deposition/migration model with En = 0.6 eV, T = 610 K, and W = 1

layer/s and (b) 2D deposition/migration model with En = 0.6 eV, T = 650 K, and W = 1

layer/s.
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Figure 2.14: Light scattering at a rough interface: specular reflection, Rsp, diffused re-

flection, Rd , specular transmission, Tsp, and diffused transmission, Td . n1 and n2 are the

refractive indices of the two substances above and below the rough interface, respectively.
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interface, which can rewritten as a ratio between the rms roughness and the rms slope,

a =
√

2r/m [2]. Eq. 2.6 shows that both r and m have a strong influence on the intensity

of light reflection (and light transmission) at the surface/interface. The distributions of

the four components of light reflectance and transmittance are also affected by r and m

[30, 32] even though this dependence cannot be expressed by an approximate equation like

the one of Eq. 2.6. For thin-film solar cells, specifically, a maximum or minimum of the

light reflectance is desired for a certain surface/interface. For example, the top surface of

the solar cell favors a minimum reflectance so as to absorb the incident light as much as

possible. The objective of an optimal light trapping efficiency can be achieved by attaining

certain values of r and m during the manufacturing of thin-film solar cells.

The mean surface slope investigated in this work is defined on the basis of the slope

profile computed from the surface heights of the adjacent lattice sites; see Eq. 2.4. Thus,

the characteristic length scale of the mean surface slope computed using Eq. 2.4 is the

atomic/molecular diameter (∼ 0.25 nm). However, the wavelength of visible light (400 nm

– 700 nm) is much larger than the diameters of atoms/molecules; it may result in different

surface slope under the larger length scale. Thus, it is necessary to compute the mean

surface slope over the length scale of the light wavelength.

The new surface slope, m∆, is computed similarly to the original mean surface slope of

Eq. 2.4, but on the basis of the averaged surface height profile, h∆,i, which is defined on the

basis of the aggregation of ∆ surface sites as follows in one-dimension:

h∆,i = (hi∆+1 +hi∆+2 + · · ·+h(i+1)∆)/∆, i = 0,1, . . . ,L∆ −1 (2.7)
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where h∆,i denotes the averaged surface height, ∆ denotes the aggregation size, i.e., the

number of lattice sites used to calculate the averaged surface height, and L∆ denotes the

number of aggregated surface heights. For the wavelength of visible light and silicon thin-

film solar cells, the corresponding aggregation size, ∆, is around 2000. The computation of

aggregated surface mean slope, m∆, is given as follows in one-dimension:

m∆ =

[
1
L

L∆

∑
i=1

(
h∆,i −h∆,i+1

∆

)2
]1/2

. (2.8)

The dynamics of the new surface slope is dependent on the characteristic length scale,

∆. To show this dependence, kMC simulations of the 1D deposition/migration model with

En = 0 eV and L = 10000 are carried out at T = 430 K and W = 1 layer/s. The mean

slope square, m2
∆, is calculated from the surface height profile from the kMC simulations

at different length scales. Fig. 2.15 shows the profiles of the expected mean slope square,⟨
m2

∆
⟩
, under different characteristic length scales, ∆. It is evident from Fig. 2.15 that the

larger the characteristic length scale, the smaller the mean slope square and the slower the

dynamics of evolution (i.e., the longer the time to reach the steady-state value).

Furthermore, Fig. 2.16 shows the dependence of the steady-state value of the expected

mean slope square,
⟨
m2

∆
⟩

ss, on the characteristic length scale, ∆. This dependence is quasi-

quadratic on 1/∆, i.e.,
⟨
m2

∆
⟩

ss ∼ 1/∆2. Following this dependence, the corresponding mean

slope square for ∆ around 2000 is very small (
⟨
m2

∆
⟩

ss ∼ 10−5). This close-to-zero value

of the mean slope square reveals a smoothly changing surface profile with respect to a rel-

atively large characteristic length scale. The smoothness of the surface profile persists at

larger lattice sizes as well, due to the very weak lattice-size dependence of the mean slope
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Figure 2.15: Profiles of the expected mean slope square under different characteristic length

scales; 1D deposition/migration model with En = 0 eV, T = 430 K, and W = 1 layer/s.
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Figure 2.16: Dependence of the steady-state value of the expected mean slope square on

the characteristic length scale (symbols) and the fitted quadratic dependence on the charac-

teristic length scale (dashed line); 1D deposition/migration model with En = 0 eV, T = 430

K, and W = 1 layer/s.

square. This small mean slope square under larger length scales is partly because the op-

erating conditions are spatially uniform during the entire deposition process, i.e., the same

deposition rate or substrate temperature are applied throughout the spatial domain. Thus,

spatially distributed operating conditions (implemented via spatially-distributed control ac-

tuators) are necessary for the purpose of optimizing thin film light reflectance/transmittance

by manipulation of film surface roughness and slope at length scales relevant to visible light

wavelength.

On the other hand, the surface roughness behaves differently from the surface slope at
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large length scales. Specifically, the new surface roughness, r∆, is computed as the surface

roughness in Eq. 2.2 but on the basis of the average surface height profile computed from

Eq. 2.7. The surface roughness has a weaker dependence on the characteristic length scale,

∆, than the surface slope. To show this weak dependence, kMC simulations of the 1D

deposition/migration model with En = 0 eV are carried out at T = 500 K and W = 1 layer/s.

A smaller lattice size, L= 500, is used in the kMC simulations because it takes much longer

time for the surface roughness square than the mean slope square to reach the steady-state

value at larger lattice sizes. Fig. 2.17 shows the profiles of the expected surface roughness

square,
⟨
r2

∆
⟩
, under different characteristic length scales, ∆. It can be seen that the surface

roughness square attains smaller steady-state values for larger length scales. However, the

surface roughness square does not drop as prominently as the mean slope square when

the characteristic length scale increases. This weak dependence of the steady-state value

of the expected surface roughness square,
⟨
r2

∆
⟩

ss, on the characteristic length scale, ∆, is

also shown in Fig. 2.18. The weak dependence on the length scale indicates a different

behavior of surface roughness: the high frequency components in the surface height profile

(i.e., local ripples below the characteristic length scale) contribute less significantly to the

surface roughness than to the surface slope. Therefore, smooth surface height profiles

with respect to large length scales have a very small mean slope square but considerable

surface roughness square. Due to the insensitivity of the surface roughness to the high

frequency components, spatially distributed control actuators may have less influence on

the surface roughness while achieving the desired surface slope under certain characteristic
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Figure 2.17: Profiles of the expected surface roughness square under different characteristic

length scales; 1D deposition/migration model with En = 0 eV, T = 500 K, and W = 1

layer/s.

length scales. This decoupled relationship between the surface roughness and slope can

be utilized in the controller design for improving the light trapping efficiency of thin-film

solar cells. This problem will be studied in future research work.

The results of this section also suggest that given a monochromatic light of wavelength

λ , the light trapping efficiency of a thin film should be computed using surface roughness

and slope values corresponding to an aggregate length scale which is on the order of λ ; this

implies that the lattice size to be used to carry out this simulation should be at least two

orders of magnitude larger than the one corresponding to a length λ to minimize boundary

effects (i.e, the use of periodic boundary conditions) on the computed properties.
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Finally, we note that while the results for aggregate roughness and slope in Figs. 2.16

and 2.18 have been computed for En = 0 (which corresponds to the case where the migra-

tion rates of all surface particles are the same), the reduction of the aggregate roughness

and slope with increasing aggregation length will continue to hold for non-zero En value;

however, the exact shape of the curves will depend on the specific En values.
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Chapter 3

Dynamics and Lattice-Size Dependence

of Surface Mean Slope in thin-film

Deposition

3.1 Introduction

This chapter focuses on the study of the dynamic behavior and lattice size dependence of

the surface root-mean-square slope of thin-film deposition processes. Two different de-

position processes are investigated: a random deposition with surface relaxation process

and a porous thin-film deposition process. Both deposition processes involve a deposi-

tion (adsorption) process and a relaxation (migration) process, which strongly influence

the resulting thin-film surface morphology. KMC methods are used to simulate the de-
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position processes and generate film surface height profiles and compute rms slope and

roughness. The simulation results indicate that the expected mean slope square reaches

quickly a steady-state value and exhibits a very weak dependence with respect to lattice

size variation. A theoretical analysis is provided using an Edwards–Wilkinson (EW)-type

partial differential equation (PDE) that can describe the dynamics of the surface height

profile in the deposition processes under consideration. The kMC simulation findings are

corroborated by the analytical results of appropriate finite-difference discretizations of the

solutions of the EW equation model.

3.2 Thin-Film Deposition Processes

In this section, two thin-film deposition processes are considered and modeled by using

on-lattice kMC models. The first process is a random deposition process with surface re-

laxation taking place on a square lattice where solid-on-solid (SOS) assumption is made

[37]. The second process is a porous thin-film deposition process taking place on a tri-

angular lattice where vacancies and overhangs are allowed to develop [22, 18]. Periodic

boundary conditions (PBCs) are applied to both lattice models. In both deposition pro-

cesses, there are two competing effects which influence the evolution of the surface height

profiles: a growth effect and a relaxation effect. The definitions of surface height profile

and root-mean-square slope are also introduced.
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Figure 3.1: Random deposition process with surface relaxation and examples of deposition

and surface relaxation processes. A square lattice is used.

3.2.1 Random Deposition with Surface Relaxation Process Model

The random deposition process with surface relaxation is modeled on a one-dimensional in

the lateral direction square lattice with SOS assumption, where particles land on top of the

existing surface particles. The lattice size in this model denotes the number of sites. The

deposition rate is denoted by W and has the unit of deposited layers per second. Fig. 3.1

shows the lattice model of the random deposition process with surface relaxation and ex-

amples of the deposition processes.

When a particle is deposited, a site is first randomly chosen among all lattice sites.

After the site is determined, an incident particle deposits on the top of the highest particle
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on that site. Upon deposition, a surface relaxation process takes places if the height of

the deposited site (before the deposition process) is higher in the growth direction than the

height of any of the two adjacent sites. When the surface relaxation process is conducted,

the incident particle relaxes to the lowest site among its two nearest neighboring sites. If

both neighboring sites have lower heights, the incident particle randomly chooses (with

equal probability) a neighboring site as its final deposition site.

3.2.2 Porous Thin-Film Deposition Process Model

Fig. 3.2 shows the porous thin-film growth process taking place on a one-dimensional in the

lateral direction triangular lattice. In this lattice model, the lattice size denotes the number

of sites in the lateral direction per layer, i.e., the maximum number of particles that can

be packed within one horizontal layer. The coordination number of the triangular lattice is

six, so a particle on the lattice can have at most six nearest neighbors. In the bottom of the

lattice, a fully packed and fixed substrate layer is initially placed and is used to initiate the

thin-film deposition process.

We consider two different types of microprocesses taking place in this deposition pro-

cess: an adsorption process and a migration process. In the adsorption process, incident

particles are deposited from the gas phase and are incorporated into the thin-film. In this

work, only vertical incidence is considered in the adsorption process. When an incident

particle is incorporated into the film, it moves to the nearest vacant site of the contacting

particle. If the incident particle moves to a site that has only one nearest neighbor, it is con-
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Figure 3.2: Thin-film growth process on a triangular lattice. The arrows denote adsorption

and migration processes.

sidered to be an unstable particle in the lattice and relaxes instantaneously to the most stable

vacant site neighboring the unstable site, i.e., the site that has the most nearest neighbors.

In a migration process, particles on the thin-film overcome the energy barrier of their

sites and move to their adjacent vacant sites [52, 53]. Substrate particles cannot move.

The migration rate follows an Arrhenius-type law, where the pre-exponential factor and the

activation energy are taken from a silicon film [see ref [18] for details].

The microstructure of the porous thin-film is the result of a complex interplay between

adsorption and migration processes. The macroscopic operating variables of the deposition

process influence the resulting film microstructure. The two variables that are considered

in this process are the adsorption rate and the substrate temperature. The adsorption rate,
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which is denoted by W , is defined as the number of deposited layers per second. The

substrate temperature, which is denoted by T , has a strong influence on the migration rate

via the Arrhenius rate law.

In this work, the microscopic rules are used in kMC methods to simulate both the ran-

dom deposition with surface relaxation process and the porous thin-film deposition process.

Specifically, a continuous-time Monte Carlo (CTMC)-type method (e.g., [49]) is used to

carry out the kMC simulations.

3.2.3 Definition of Variables

In this section, the variables that characterize the film surface morphology are defined. Sur-

face height profile represents the film surface morphology and is defined as the connection

of the centers of the surface particles. For the porous thin-film deposition process, surface

particles are determined as the particles that can be reached from above in the vertical di-

rection without being fully blocked by other particles on the film [22, 18]. Fig. 3.3 shows

an example of the surface height profile of the porous thin-film deposition process. For

the random deposition process with surface relaxation, the surface particles can be easily

identified as the top particles on all lattice sites due to the SOS assumption.

Surface roughness is a commonly used measure of thin-film surface morphology and is

defined as the root-mean-square (rms) of surface height profile as follows:

r =

[
1
nL

nL

∑
i=1

(hi − h̄)2

]1/2

, (3.1)
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where r denotes surface roughness, hi, i = 1, 2, . . ., nL, is the surface height at the i-th

position in the unit of layer, and h̄ = 1
nL

∑nL
i=1 hi is the average surface height. We note that

the number of height positions in Eq. 3.1, nL, does not always equal the lattice size, L. In

the porous thin-film deposition process, the number of height positions equals 2L due to

the nature of the triangular lattice in the porous thin-film deposition process; see Fig. 3.3

for example. For the random deposition process with surface relaxation, nL is simply L due

to the use of a square lattice.

In addition to surface roughness, the gradient (slope) of surface height profile is another

important variable that determines the surface morphology. In this work, the root-mean-

square (rms) slope represents the extent of surface slope and is defined in a similar fashion

to surface roughness as follows:

m =

[
k2

m
nL

nL

∑
i=1

(hi+1 −hi)
2

]1/2

, (3.2)

where m denotes the rms slope, which is a dimensionless variable, and km denotes the

geometric ratio between the single-layer height and the interval between adjacent height

positions. Due to the use of PBCs, the slope at the last position (i = nL) is computed as

the surface height difference between the last lattice site and the first lattice site. The value

of the geometric ratio in Eq. 3.2, km, is 1 for the random deposition process with surface

relaxation and
√

3 for the porous thin-film deposition process. Fig. 3.3 shows an example of

the surface slope obtained from the surface height profile in the porous thin-film deposition

process.

The two variables that are related to the surface morphology, surface roughness and rms
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Figure 3.3: Example showing the definition of the surface height profile and the calculation

of the corresponding surface slope profile.
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slope, are defined in a similar fashion, i.e., root mean squares of a spatial profile. However,

surface roughness is calculated on the basis of surface height profile, while rms slope is

based on the surface slope profile. Thus, the two variables describe different properties of

the surface height profile. Surface roughness measures the correlation of surface height at

all sites with the average height, and thus, the sequence of the surface sites does not affect

the calculation of surface roughness. On the contrary, surface slope is the height difference

between two adjacent surface sites. As a result, rms slope measures the height correlation

of adjacent surface sites and is sensitive to the sequence of surface sites. Therefore, two

surface profiles with the same roughness may have very different rms slope profiles. We

also note that surface roughness and rms slope are not fully independent. In the extreme

case of a flat surface, surface roughness and rms slope both have zero values.

3.3 Rms Slope Behavior

In this section, the rms slope is calculated from the surface height profiles of the two de-

position processes. The behavior of rms slope, i.e., its dynamics and dependence on lattice

size, is then investigated. For the convenience of theoretical analysis and comparison with

the simulations, the square of rms slope (mean slope square), i.e., m2, is used to present the

results.
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3.3.1 Dynamics of Rms Slope

To investigate the dynamics of rms slope, kMC simulations of the two deposition processes

are carried out with fixed operating conditions throughout the entire simulation. The lattice

size is fixed to 100 sites for both processes for the results to be presented in this section.

The simulation duration is large enough to allow the rms slope to reach its steady-state

value. Due to the stochastic nature of kMC methods, different simulation runs may result

in different lattice configurations and different surface morphology. Multiple independent

simulations runs (10000–25000 runs) are carried out to generate smooth profiles of statis-

tical moments, i.e., expected values and variances.

Fig. 3.4 and Fig. 3.5 show the profiles of the expected mean slope square. The operating

conditions are fixed at a substrate temperature of 300 K (in the porous thin-film deposition

process) and an adsorption rate of 1 layer/s (in both deposition processes). Fig. 3.4 and

Fig. 3.5 also include the profiles of the corresponding expected roughness square. In both

figures, the mean slope square profiles evolve similarly to the roughness square profiles:

mean slope square increases from zero and approaches a finite steady-state value at large

times.

However, it can be seen from Fig. 3.4 and Fig. 3.5 that the dynamics of roughness square

and mean slope square are different in many aspects. First, the mean slope square has

faster dynamics than roughness square. Here, the dynamics of a profile refer to the steady-

state time, tss, that is needed for the profile to reach the steady-state value (practically, we

take 99% of the steady-state value as the threshold to calculate tss). In general, a smaller
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Figure 3.4: Profiles of the expected mean slope square (dashed line) and surface roughness

square (solid line) from kMC simulations with lattice size L = 100; random deposition

process with surface relaxation with W = 1 layer/s.
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Figure 3.5: Profiles of the expected mean slope square (dashed line) and surface rough-

ness square (solid line) from kMC simulations with lattice size L = 100; porous thin-film

deposition process with W = 1 layer/s and T = 300 K.

63



steady-state time indicates faster dynamics. Specifically, in the random deposition with

surface relaxation process of Fig. 3.4, tss ≃ 125 s for slope and tss ≃ 469 s for roughness;

in the porous thin-film deposition process of Fig. 3.5, for T = 300 K, tss ≃ 190 s for slope

and tss ≃ 467 s for roughness. Second, the steady-state values of mean slope square are

smaller than the steady-state values of roughness square (even taking into consideration the

geometric ratios). These differences can be explained as follows: the height correlation

of adjacent surface sites, which mean slope square measures, is higher than the surface

height correlation with the average height which is measured by the surface roughness.

The higher correlation results in a smaller difference, i.e., a smaller steady-state value, and

faster dynamics of mean slope square than surface roughness.

3.3.2 Dependence of Rms Slope on Operating Conditions

The dynamics of rms slope depend on operating conditions and lattice size. KMC simula-

tions are also carried out to find out the dependence of rms slope with respect to different

operating conditions. For the random deposition with surface relaxation process, the dy-

namics of the entire process scales proportionally with the adsorption rate, i.e., the higher

the adsorption rate, the faster the rms slope and rms roughness approach their steady state

values. However, the dynamics of the porous thin-film deposition process have a com-

plex dependence on the operating conditions, i.e., substrate temperature or adsorption rate

below.

Fig. 3.6 shows the profile of the expected mean slope square and roughness square
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Figure 3.6: Profiles of the expected mean slope square (dashed line) and surface rough-

ness square (solid line) from kMC simulations with lattice size L = 100; porous thin-film

deposition process with W = 1 layer/s and T = 500 K.

of the porous thin-film deposition process at a substrate temperature of T = 500 K; the

adsorption rate is kept at W = 1 layer/s. From the comparison between Fig. 3.5 and Fig. 3.6,

it is evident that both the rms slope and the surface roughness increase as the substrate

temperature increases from 300 K to 500 K. These consistent results indicate that the rms

slope and surface roughness can be captured by the same analytical dynamic equation, as

we will discuss in Section 3.4.

Fig. 3.7 shows the profiles of the expected mean slope square at different substrate tem-

peratures. The adsorption rate is kept at W = 1 layer/s. A lattice size of 100 sites is used in
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all simulations for a meaningful comparison. It can be clearly seen from Fig. 3.7 that the

substrate temperature has a strong influence on the evolution of the rms slope. At low tem-

peratures (T ≤ 400 K), the particles have limited mobility, and thus, the evolution profiles

of the mean slope square are nearly insensitive to temperature variation. As temperature

increases, however, the mean slope square profiles have higher values. At high tempera-

tures (T ≥ 700 K), the intensive mobility of particles results in an almost flat surface and

the mean slope square is close to zero.

A similar dependence of the expected mean slope square on adsorption rate can be

found in Fig. 3.8, which shows the profiles of the expected mean slope square at different

adsorption rates with a fixed substrate temperature of T = 500 K. The thin-film morphol-

ogy is determined by the thermal balance between the adsorption process and the migration

process. Thus, the expected mean slope square under a high adsorption rate behaves simi-

larly to the one under a low substrate temperature (equivalently a low migration rate) and

vise versa. This strong dependence on operating conditions can be used to design feed-

back controllers that regulate the rms slope of the thin-film surface at desired values that

optimize thin-film reflectance and transmittance.

3.3.3 Lattice-Size Dependence of Rms Slope

In this subsection, the lattice-size dependence of rms slope is studied for both deposition

processes. To investigate the dependence of rms slope on lattice size, kMC simulations of

the deposition processes are carried out for different lattice sizes (from 20 to 500). The
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Figure 3.7: Profiles of the expected mean slope square from kMC simulations at different

substrate temperatures; porous thin-film deposition process with W = 1 layer/s and L= 100.
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Figure 3.8: Profiles of the expected mean slope square from kMC simulations at different

adsorption rates; porous thin-film deposition process with T = 500 K and L = 100.
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operating conditions are fixed at T = 300 K and W = 1 layer/s for all simulations where

applicable. Both evolution profiles and steady-state dependence of the expected mean slope

square are presented. In the figures of steady-state dependence, the error bars are calculated

from 20 averages of evenly divided groups of all simulation runs.

Fig. 3.9 shows the profiles of the expected mean slope square of the random deposition

with surface relaxation process for different lattice sizes. From Fig. 3.9, it can be seen that

the dynamics of mean slope square have a weak relationship with the lattice size at large

lattice sizes, i.e., the profiles of mean slope square evolve and reach their steady states at

similar time instants regardless of the lattice size. Similar to the dynamics, the steady-

state values of mean slope square also have a weak dependence on lattice size, especially

at large lattice sizes. This dependence of steady-state values on lattice size is different

from the scaling properties of the surface roughness [1], i.e., the lattice-size dependence of

mean slope square does not follow a power law. The weak dependence can be observed

more clearly in Fig. 3.10, which shows the steady-state values of the expected mean slope

square for different lattice sizes in a log–log plot. Similar evolution profiles and lattice-size

dependence can be seen for the porous thin-film deposition process at different operating

conditions; see Fig. 3.11 and Fig. 3.12 for T = 300 K and Fig. 3.13 and Fig. 3.14 for

T = 500 K (the deposition rate is 1 layer/s for both cases).

In previous work, a linear lattice-size dependence of the steady-state value of expected

surface roughness square was found [18]. In the next section, analytical and numerical

results will be obtained and discussed from a stochastic PDE model of the thin-film de-
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Figure 3.9: Profiles of the expected mean slope square from kMC simulations with different

lattice sizes; random deposition process with surface relaxation with W = 1 layer/s.
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Figure 3.10: Dependence of the steady-state values of the expected mean slope square with

error bars from kMC simulations, on the lattice size, L; random deposition process with

surface relaxation with W = 1 layer/s.
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Figure 3.11: Profiles of the expected mean slope square from kMC simulations for different

lattice sizes; porous thin-film deposition process with W = 1 layer/s and T = 300 K.
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Figure 3.12: Dependence of the steady-state values of the expected mean slope square with

error bars from kMC simulations, on the lattice size, L; porous thin-film deposition process

with W = 1 layer/s and T = 300 K.
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Figure 3.13: Profiles of the expected mean slope square from kMC simulations for different

lattice sizes; porous thin-film deposition process with W = 1 layer/s and T = 500 K.
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Figure 3.14: Dependence of the steady-state values of the expected mean slope square with

error bars from kMC simulations, on the lattice size, L; porous thin-film deposition process

with W = 1 layer/s and T = 500 K.
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position processes under consideration to explain the behavior of the expected mean slope

square.

Remark 3.1 For atomic depositions, the length scale of the crystalline lattice (0.5 nm) is

smaller than the scale of the wavelength of the visible light (400–700 nm). Thus, the surface

irregularity at the atom/molecular level cannot be related to the optical property of thin-

films. To be able to simulate a realistic domain size, we would need to have a lattice size

of the order of 106 (with each site corresponding to atomic dimension) or higher, which is

beyond the currently available computing power. If this simulation were possible, we would

look at subdomains of the lattice of dimension of the order 400–700 nm and estimate an

overall subdomain slope that the light “sees”. In this setup, the overall slope of a given

subdomain could be computed in an approximate way by computing average heights of

groups of sites embedded in the subdomain and then connecting these average heights to

compute the overall slope of the subdomain. We have applied this approach to the maximum

order of domain size that we can simulate with our current computing power, L = 1000,

and have computed average heights of groups of 10 sites and the corresponding m profile.

Fig. 3.15 shows the resulting m profile; we can see that the fast dynamics and approach of

m to a finite steady-state value that we observe for the small lattice-size problem (L = 100

and m defined between adjacent heights as done in our work) from Fig. 3.5 and Fig. 3.6

are also observed in this larger scale problem. Therefore, the metric m we have used for

L = 100 gives us some insight into the behavior of a more complex problem that cannot be

currently simulated.

76



0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (s)

<
m

2 >
 

 

 

T=300 K
T=500 K

Figure 3.15: Profiles of the expected mean slope square computed on the basis of the

average heights of groups of 10 surface particles from kMC simulations with L = 1000 at

T = 300 K and 500 K; porous thin-film deposition process with W = 1 layer/s.
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Figure 3.16: Snapshot of the film surface morphology at steady state (t = 1000s); porous

thin-film deposition process with T = 500 K and W = 1.0 layer/s.

Remark 3.2 We note that, in the triangular lattice in the porous thin-film growth process,

particles are only stable with two or more nearest neighbors, and thus, the typical height

difference between adjacent lattice sites is zero or one layer. However, it can be inferred

on the basis of the steady-state values in Fig. 3.12 and Fig. 3.14 that an average vertical

height difference between adjacent lattice sites is between 2 and 3 layers. This difference is

significantly higher than the typical value, which is less than one layer. Such a large height

difference between adjacent lattice size is the result of the columnar growth film structure

in the low temperature region (T = 300–500 K); as can be seen in Fig. 3.16, which shows

that the surface height profile of the thin-film with a columnar structure formed at T = 500

K contains steep “cliffs” (large differences between few adjacent surface height positions).

These large height differences, although very few, contribute significantly to the root-mean-

square value of the vertical height difference, i.e., 2 or 3 in the porous thin-film growth

process at T = 300 and 500 K.
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3.4 Analytical and Numerical Results from the Stochastic

PDE Model

The thin-film deposition is a stochastic process, where fluctuations are intrinsic and should

be considered in the dynamic equation that describes the dynamics of the process. How-

ever, the surface irregularities of the thin-film are not purely random; otherwise, the surface

roughness square and the mean slope square cannot reach their respective steady states but

rather increase (linearly) to infinity as time increases. To this end, an Edwards–Wilkinson

(EW)-type equation with appropriately fitted parameters, which is a second-order stochas-

tic PDE, is used to describe the dynamics and evolution of the surface height profile of the

random deposition with surface relaxation process and the porous thin-film growth process

[10, 11, 41, 18].

Furthermore, due to the fact that stochastic PDEs are defined on a continuous spatial

domain, the dynamics of the rms slope obtained from the EW equation are different from

the kMC simulations on the discrete lattice, i.e., an infinite value of mean slope square and

a reciprocal dependence on the domain size are obtained from the continuum EW equation

(see also Remark 3 for more discussion on this issue). This inconsistency of the dynamics

of the rms slope originates from the discretization of a continuous domain. Consistent

numerical results to the ones of the kMC simulation are obtained from the discretization

of the solution of the EW equation. This corroboration further supports the use of the EW

equation as a continuum model to describe the evolution of surface height profile and the
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dynamics of the rms slope in the deposition processes considered in this work.

In the EW formalism, h(x, t) represents the surface height profile in the continuum

spatial domain case and the equation takes the following form [10, 18]:

∂h
∂ t

= rh +ν
∂ 2h
∂x2 +ξ (x, t), (3.3)

subject to the following PBCs

h(−L0, t) = h(L0, t),
∂h
∂x

(−L0, t) =
∂h
∂x

(L0, t) (3.4)

and the initial condition:

h(x,0) = h0(x), (3.5)

where x ∈ [−L0,L0] is the spatial coordinate, t is the time, and ξ (x, t) is a Gaussian white

noise with the following expressions for its mean and covariance:

⟨ξ (x, t)⟩ = 0,

⟨ξ (x, t)ξ (x′, t ′)⟩ = σ2δ (x− x′)δ (t − t ′),
(3.6)

where ⟨·⟩ denotes the mean value, σ2 is a parameter which measures the intensity of the

Gaussian white noise and δ (·) denotes the standard Dirac delta function.

In the EW equation of Eq. 3.3, rh, ν , and σ2 are model parameters. Specifically, rh is

related to the growth of average surface height, ν is related to the effect of surface particle

relaxation and migration, and σ2 is related to the noise intensity. Since rh is only related

to the averaged surface height, this term can be ignored for the purpose of studying the

dynamics and scaling behavior of surface roughness and rms slope, i.e., rh = 0 [18].

80



3.4.1 Analytical Derivation

The behavior of surface roughness can be derived from the EW equation of Eq. 3.3. Specif-

ically, the steady-state value of the expected surface roughness square scales linearly with

the domain size. This lattice-size dependence of surface roughness is consistent with the

kMC simulation results of the porous thin-film deposition process as well as of other pro-

cesses [18].

The dynamics of rms slope can be derived from the EW equation using modal decom-

position. A direct computation of the following eigenvalue problem of the linear operator

of Eq. 3.3 subject to the PBCs of Eq. 3.4,

ν
d2ϕ̄n(x)

dx2 = λnϕ̄n(x),

ϕ̄n(−L0) = ϕ̄n(L0),
dϕ̄n

dx
(−L0) =

dϕ̄n

dx
(L0),

(3.7)

yields the following solution for the eigenvalues, λn, and the eigenfunctions, ϕ̄n(x):

λn = −νk2n2, n = 0,1, . . . ,

ϕn(x) = cn sin(knx), n = 1,2, . . . ,

ψn(x) = cn cos(knx), n = 0,1, . . . ,

(3.8)

where ϕn(x) and ψn(x) are the two eigenfunctions corresponding to the same nonzero

eigenvalue λn, n ≥ 1, with a multiplicity of 2, k = π/L0 is used to satisfy the PBCs, and

cn is introduced for the purpose of normalization with the values of c0 = 1/(2L0)
1/2 and

cn = 1/(L0)
1/2, n = 1, 2, 3, . . .. The solution of Eq. 3.3 is expanded into an infinite series
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in terms of the eigenfunctions of the operator of Eq. 3.7 as follows:

h(x, t) =
∞

∑
n=1

αn(t)ϕn(x)+
∞

∑
n=0

βn(t)ψn(x). (3.9)

Substituting the above expansion for the solution, h(x, t), into Eq. 3.3 and taking the

inner product with the adjoint eigenfunctions, the following system of infinite stochastic

ordinary differential equations (ODEs) is obtained:

dαn

dt
= λnαn +ξ n

α(t), n = 1,2, . . . ,∞,

dβn

dt
= λnβn +ξ n

β (t), n = 0,1, . . . ,∞,

(3.10)

where ξ n
α =

∫ L0
−L0

ξ (x, t)ϕn(x)dx and ξ n
β =

∫ L0
−L0

ξ (x, t)ψn(x)dx is the projection of the noise

ξ (x, t) in the n-th ODE. We note that ξ n
α and ξ n

β , n = 0, 1, . . . , are independent Gaussian

white noise terms. Due to the linearity of the stochastic ODE system of Eq. 3.10, the system

state, αn or βn, is independent from any other state. Therefore, the analytical solution of

the state variance can be directly obtained from a direct computation as follows:

⟨
α2

n (t)
⟩

= − σ2

2λn
+

(⟨
α2

n (t0)
⟩
+

σ2

2λn

)
e2λn(t−t0), n = 1,2, . . . ,∞,

⟨
β 2

n (t)
⟩

= − σ2

2λn
+

(⟨
β 2

n (t0)
⟩
+

σ2

2λn

)
e2λn(t−t0), n = 1,2, . . . ,∞,

(3.11)

where only expressions of the non-zeroth state variance are provided, since the zeroth state

does not contribute to the mean slope square due to the spatially invariant zeroth eigenfunc-

tion.

Specifically, the expression of the steady-state value of the state variance can be ob-
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tained at the infinite-time limit as follows:

⟨
α2

n
⟩

ss =
⟨
β 2

n
⟩

ss =− σ2

2λn
=

σ2

2νk2n2 =
σ2L2

0
2νπ2n2 , n = 1,2, . . . ,∞. (3.12)

Similar to the discrete lattice definition of Eq. 3.2, the continuum form of the rms slope

is defined as follows:

m(t) =

{
1

2L0

∫ L0

−L0

[
∂h
∂x

(x, t)
]2

dx

}1/2

. (3.13)

Substituting the infinite-series expansion of h(x, t) of Eq. 3.9 into Eq. 3.13, the expected

mean slope square,
⟨
m2(t)

⟩
, can be rewritten as follows:

⟨
m2(t)

⟩
=

⟨
1

2L0

∫ L0

−L0

[
∂h
∂x

(x, t)
]2

dx

⟩

=
1

2L0

⟨∫ L0

−L0

[
∞

∑
n=1

αn(t)
∂ϕn

∂x
(x)+

∞

∑
n=0

βn(t)
∂ψn

∂x
(x)

]2

dx

⟩

=
1

2L0

⟨∫ L0

−L0

[
∞

∑
n=1

αn(t)knψn(x)−
∞

∑
n=1

βn(t)knϕn(x)

]2

dx

⟩

=
1

2L0

⟨
∞

∑
n=1

k2n2α2
n (t)+

∞

∑
n=1

k2n2β 2
n (t)

⟩

=
1

2L0

∞

∑
n=1

k2n2 ⟨α2
n (t)

⟩
+

1
2L0

∞

∑
n=1

k2n2 ⟨β 2
n (t)

⟩
.

(3.14)

Eq. 3.14 provides a direct link between the state variance of the infinite stochastic ODEs

of Eq. 3.10 and the expected mean slope square of the surface height profile. The steady-

state value of the expected mean slope square,
⟨
m2⟩

ss, can be obtained as t → ∞. By
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substituting the steady-state variances of Eq. 3.12 and the expressions of the eigenvalues of

Eq. 3.8, the analytical form of
⟨
m2⟩

ss is as follows:

⟨
m2⟩

ss =
1

2L0

∞

∑
n=1

k2n2 ⟨α2
n
⟩

ss +
1

2L0

∞

∑
n=1

k2n2 ⟨β 2
n
⟩

ss

= −2
1

2L0

∞

∑
n=1

k2n2 σ2

2λn
=

1
2L0

∞

∑
n=1

k2n2 σ2

2νk2n2

=
1
L0

∞

∑
n=1

σ2

2ν
=

σ2

2νL0
+

σ2

2νL0
+

σ2

2νL0
+ . . . .

(3.15)

From Eq. 3.15, it can be seen that each state contributes an equal finite part, σ2/(2νL0),

to the steady-state value of the expected mean slope square,
⟨
m2⟩

ss. Since the stochastic

ODE system of Eq. 3.10 has infinite number of states, the steady-state value of the expected

mean slope square has an infinite value. It can be also seen that
⟨
m2⟩

ss has a reciprocal

dependence on the domain size, L0.

3.4.2 Discretization Analysis

In the previous section, the analytical derivation from the EW equation in a continuum

domain results in an infinite steady-state value and a reciprocal domain-size dependence

of the expected mean slope square. This behavior is different from the one obtained from

the kMC simulations of the lattice model, which leads to a finite steady-state value and a

weak lattice-size dependence of the expected mean slope square. This difference does not

mean that the EW equation cannot be used to describe the evolution of the surface height
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profile and of the rms slope. The infinite value of the expected mean slope square from the

EW equation is due to the infinitesimal discretization intervals in the continuum domain.

The same behavior of rms slope can be obtained from the EW equation under a suitable

finite-difference discretization of the continuum surface height profile.

Specifically, a spatial discretization is introduced to the continuum domain, [−L0,L0].

This spatial discretization contains L evenly distributed nodes, where L corresponds to the

lattice size of the kMC models and is also referred to here as lattice size. The spatial

coordinates of the discretization nodes can be obtained as follows:

xi = x1 +(i−1)∆x, i = 2,3, . . . ,L, (3.16)

where x1 ∈ [−L0,−L0 +∆x) denotes the coordinate of the first node and ∆x = 2L0/L is the

interval between two adjacent nodes. The range of x1 indicates a freedom of choosing the

discretization, as long as the continuum domain is evenly discretized. The choice of the

specific discretization does not affect the analysis and the numerical results.

With the finite-dimensional discretization, the mean slope square of a discrete surface

height profile can be computed in a similar fashion as in the kMC simulations:

m2 =
1
L

L

∑
i=1

(
hi+1 −hi

∆x

)2

, (3.17)

where hi denotes the surface height at the i-th node and hi(t) = h(xi, t).

By substituting the definition of mean slope square of Eq. 3.17 and the expansion of

the surface height profile of Eq. 3.9, the expected mean slope square can be manipulated

as follows (the zeroth state does not contribute to the expected mean slope square because
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ϕ0(x) is a constant function):

⟨
m2(t)

⟩
=

⟨
1

L∆2x

L

∑
i=1

[
∞

∑
n=1

αn(t)∆ϕn(xi)+
∞

∑
n=1

βn(t)∆ψn(xi)

]2⟩

=
1

L∆2x

L

∑
i=1

[
∞

∑
n=1

⟨
α2

n (t)
⟩

∆2ϕn(xi)+
∞

∑
n=1

⟨
β 2

n (t)
⟩

∆2ψn(xi)

]

=
∞

∑
n=1

[
1

L∆2x

L

∑
i=1

∆2ϕn(xi)

]⟨
α2

n (t)
⟩
+

∞

∑
n=1

[
1

L∆2x

L

∑
i=1

∆2ψn(xi)

]⟨
β 2

n (t)
⟩
,

(3.18)

where ∆ f (xi) = f (xi+1)− f (xi) and ∆2 f (xi) = [∆ f (xi)]
2. We note that, due to the in-

dependence of the system states, ⟨αn1(t)αn2(t)⟩ = ⟨βn1(t)βn2(t)⟩ = 0, for n1 ̸= n2, and

⟨αn1(t)βn2(t)⟩= 0, for any n1 and n2, n1 = 1, 2, . . ., and n2 = 1, 2, . . ..

The expression of the expected mean slope square of Eq. 3.18 can be further simplified

into the following form:

⟨
m2(t)

⟩
=

∞

∑
n=1

Kα
n
⟨
α2

n (t)
⟩
+

∞

∑
n=1

Kβ
n
⟨
β 2

n (t)
⟩
, (3.19)

where Kα
n and Kβ

n denote the coefficients of the state variance and have the following

analytical form:

Kα
n = Kβ

n =
4

L∆3x
sin2

(nπ
L

)
. (3.20)

With the solution expression of the expected mean slope square of Eq. 3.19, it can be

proved that the expected mean slope square from finite discretization has a finite steady-

state value, which is consistent with the kMC simulation results of the lattice models.

Derivation of the analytical form of Kn of Eq. 3.20 and proof of the finite steady-state
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value of the expected mean slope square can be found in the Appendix at the end of this

chapter.

Remark 3.3 We note that there is no connection, established from a physical (first princi-

ples) point of view, between the metric m computed on the basis of the surface profile of the

kMC simulations and the derivative of the surface height of the EW equation. The reason

we consider the EW equation and present profiles of the metric m on the basis of the surface

height profile of the EW equation is because the EW equation with appropriately fitted pa-

rameters to kMC data can be used to approximately predict the evolution of m of the kMC

simulation with finite lattice size, and thus, it can be incorporated in model-based feed-

back control schemes to make predictions of the evolution of the mean slope m. In previous

work, we have demonstrated that this approach leads to a controller design that works well

for simultaneous regulation of surface slope and roughness [56]. We also note that the

EW equation is a reasonable model for the thin-film growth process because it captures

the balance between random adsorption and thermal migration (diffusion) and predicts

certain scaling properties (lattice-size dependence of roughness) obtained from kMC sim-

ulation of the deposition processes under consideration. Furthermore, EW equation-based

control can be applied to an actual thin-film manufacturing process when the EW equation

parameters are computed on the basis of experimental data.
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3.4.3 Numerical Results of Discretized Solution

In this subsection, the numerical simulations of the EW equation are used to verify the so-

lution of the expected mean slope square derived in the previous subsection under the finite

discretization. The numerical results are also compared to demonstrate their consistency

with the kMC simulation results of the lattice models.

To carry out the numerical calculations of the mean slope square under the finite differ-

ence discretization, numerical simulations are first carried out to compute solutions of the

EW equation, i.e., the solutions of surface height profile. The numerical solutions of the

EW equation can be obtained from a high-order approximation of the infinite ODE system

of Eq. 3.10. Due to the decoupled nature of the linear ODE system, the solution of each

state is a stochastic process, which is independent from the other states. Since the ODE sys-

tem contains an infinite number of states and results in an infinite computational time for

the solution, a reduced-order system with a sufficiently large number of modes (the num-

ber of modes is 100 times the number of discretization nodes) is used as an approximation

of the infinite-order system. The solution of the surface height profile is then sampled at

discrete positions to obtain a discrete surface height profile. The sampled positions are the

coordinates of the discretization nodes defined in Eq. 3.16, which are evenly distributed in

the spatial domain. Finally, the expected rms slope and the expected mean slope square

can be computed from the discrete surface height profile. Since the numerical solutions are

stochastic realizations of the analytical solution, multiple independent numerical solutions

are obtained to calculate the expected mean slope square.
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Fig. 3.17 shows the profile of the expected mean slope square of the discretized solution

of the EW equation. In Fig. 3.17, the profile from numerical solutions is compared with the

profile from the analytical solution that is derived previously in Section 3.4.2. The analyti-

cal solution is obtained from the same high-order approximation as the numerical solutions.

The values of parameters of the EW equation are ν = 1 and σ2 = 1 for all simulations in

this subsection. The domain size is L0 = 50 and the discretization interval is ∆x = 1. Thus,

the lattice size is L = 100. From Fig. 3.17, it can be seen that the derived analytical solu-

tion of the expected mean slope square fits very well with numerical solutions of the EW

equation. Therefore, the analytical solution can be used to predict the mean slope square

evolution.

Fig. 3.18 shows the profiles of the expected mean slope square obtained from the EW

equation for different domain sizes ranging from L0 = 5 to L0 = 250. We note that the

lattice size changes simultaneously and proportionally with the domain size. As a result,

the same discretization interval, ∆x, is preserved, which corresponds to the size of particles

in the lattice model. Therefore, the number of discretization nodes, which is also denoted

by L, ranges from L = 10 to 500. In Fig. 3.18, the expected mean slope square profiles

evolve similarly to the profiles from the discrete lattice kMC model shown in Fig. 3.5.

The lattice-size dependence of the expected mean slope square can be obtained from

the analytical solution for different domain sizes and correspondingly different lattice sizes.

Fig. 3.19 shows the lattice-size dependence of the steady-state value of the expected mean

slope square. From Fig. 3.19, it can be seen that the steady-state value of the expected
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Figure 3.17: Profile of the expected mean slope square from the discretized solution of the

EW equation from numerical simulations (solid line) and from analytical solutions (dashed

line); ∆x = 1, L = 100.
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Figure 3.18: Profile of the expected mean slope square from the discretized solution of the

EW equation with different domain sizes; ∆x = 1.
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Figure 3.19: Dependence of the steady-state value of the expected mean slope square ob-

tained from the discretized solution of the EW equation, on the lattice size, L; ∆x = 1.

mean slope square has a weak dependence on lattice size, especially at large lattice sizes.

We note that this lattice-size dependence is obtained on the basis of the fixed discretization

interval, ∆x.

From Fig. 3.18 and Fig. 3.19, the same behavior is observed from the discretized so-

lution of the EW equation as the ones from the kMC simulations of the lattice model, i.e.,

a finite steady-state value and a weak lattice-size dependence of the steady-state value of

the expected mean slope square. The consistency between the discretized solution of the

EW equation and of the kMC simulations supports the choice of the EW equation as the

dynamic model for the surface height profile evolution in the deposition processes under

consideration.
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The discretization can also explain the infinite steady-state value of the mean slope

square of the EW equation in the continuum domain of Eq. 3.15. The infinite value orig-

inates from the infinitesimal discretization intervals in the continuum case, which can be

observed from the analytical results of the discretized solutions of the EW equation with

decreasing discretization intervals. The domain size is kept constant, and thus, the lattice

size is proportional to 1/∆x. Fig. 3.20 shows the dependence of the steady-state value of the

expected mean slope square from the discretized solution of the EW equation for different

discretization intervals. It can be clearly seen that as the discretization interval decreases

to zero, the steady-state means slope square increases and the dependence of
⟨
m2⟩

ss on

1/∆x is linear. The same behavior of the steady-state value of
⟨
m2⟩

ss can be obtained

from the kMC simulations of both deposition processes; see Fig. 3.21 for the random de-

position with surface relaxation process and Fig. 3.22 for the porous thin-film deposition

process. We note that the counterpart of the discretization interval in the kMC models of

the deposition processes is the sampling interval, i.e., the distance between the points of

the surface height profile that are used to calculate the surface slope and is denoted as ∆x

as well. Thus, the sampling intervals of the deposition process have a minimum value of

one; smaller sampling intervals are not possible due to the lattice size limitation, which is

different from the EW equation in the continuum domain where ∆x can be chosen at will.

Remark 3.4 The dependence of the steady-state value of the expected mean slope square

on the sampling interval, ∆x, in the porous thin-film deposition process is linear for large

∆x, as shown in Fig. 3.22, which is similar to the linear dependence observed in the random
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Figure 3.20: Dependence of the steady-state value of the expected mean slope square

obtained from the discretized solution of the EW equation on the discretization interval;

L0 = 100.
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Figure 3.21: Dependence of the steady-state value of the expected mean slope square with

error bars on the sampling interval; random deposition with surface relaxation process with

W = 1 layer/s and L = 200.

95



0 0.2 0.4 0.6 0.8 1
0

5

10

15

R2=0.9800

1/∆x

<
m

2 >
ss

 

Figure 3.22: Dependence of the steady-state value of the expected mean slope square with

error bars on the sampling interval; porous thin-film deposition process with W = 1 layer/s,

T = 300 K, and L = 200.

96



deposition with surface relaxation process and in the EW equation shown in Fig. 3.20 and

Fig. 3.21, respectively. However, at the discrete limit, ∆x = 1, the dependence on ∆x in the

porous film process has a notable deviation from the linear dependence. This deviation is

due to the triangular lattice structure and the porosity allowed in the thin-film deposition

process. To calculate the surface height profile of the deposition process taking place on

a triangular lattice, 2L points are needed for the surface height positions, i.e., h1, h2, . . . ,

h2L. However, since there are only L lattice sites in a row (in the lateral direction), the

2L surface heights are not fully independent. Instead, these heights are correlated to their

neighboring heights via the structure of the triangular lattice. This correlation reduces the

irregularity of the surface and results in close steady-state values of expected mean slope

square for ∆x = 1 and ∆x = 2 in the porous thin-film deposition process.

Remark 3.5 This chapter mainly focuses on the dynamic behavior of the surface slope of

thin-film growth processes that can be described by the EW equation. A potential applica-

tion of this work is to improve light trapping efficiency of thin-film solar cells by simulta-

neously regulating surface roughness and slope of the thin-films during the manufacturing

process. To achieve the control objectives, macroscopic variables including the substrate

temperature and the deposition rate or the inlet concentration of the deposition reactor may

be chosen as the manipulated variable(s). Model predictive control can be designed based

on state feedback or measurements by formulating an optimization problem that minimizes

the deviations of the surface roughness square and of the mean slope square from desired

set-point values that optimize light trapping. With respect to measurement of surface mean
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slope, atomic force microscopy measurements of the film surface can be used to obtain

surface height profiles up to atomic dimensions and from this compute the local surface

mean slope variable. Aggregate surface height can also be computed from the atomic force

microscopy measurements of the film surface to compute surface slope of aggregate sur-

face height that is relevant to visible light trapping of thin-film solar cells. The detailed

development of this controller design approach has been the subject of another work.

Appendix

Derivation of the state coefficients, Kα
n and Kβ

n , of Eq. 3.20, can be found in the following

steps. Since Kα
n and Kβ

n have the same value and the derivation steps are similar, we only

show the derivation of Kα
n from ϕn(x). The same value of Kβ

n can be obtained from ψn(x)

via a similar derivation procedure.

From Eq. 3.18, the state coefficient, Kα
n has the following form:

Kα
n =

1
L∆2x

L

∑
i=1

∆2ϕ̄n(xi). (3.21)

By substituting the expression of the eigenfunction ϕn of Eq. 3.8 into Eq. 3.21, the
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expression of Kα
n can be rewritten as follows:

Kα
n =

1
L∆2x

L

∑
i=1

[ϕn(xi+1)−ϕn(xi)]
2

=
1

L∆2x

L

∑
i=1

[cn sin(knxi+1)− cn sin(knxi)]
2

=
1

L∆2x

L

∑
i=1

{
2cn cos

[
kn
2
[xi+1 + xi)

]
sin
[

kn
2
[xi+1 − xi)

]}2

=
4

L∆2x

L

∑
i=1

c2
n cos2

[
kn
2
(xi+1 + xi)

]
sin2

(
kn∆x

2

)

=
4

L∆2x

L

∑
i=1

c2
n cos2

[
kn
2
(xi+1 + xi)

]
sin2

(
kn∆x

2

)
.

(3.22)

Eq. 3.22 can be further simplified into the following form by substituting the expres-

sions of ∆x= 2L0/L, k= π/L0, cn = 1/
√

L0 (for n≥ 1), and the expression of xi of Eq. 3.16:

Kα
n =

4
L∆2x

L

∑
i=1

1
L0

cos2
[

knx1 −
nπ
L

+ i
2nπ

L

]
sin2

(nπ
L

)

=
8

L2∆x3

L

∑
i=1

cos2
[

knx1 −
nπ
L

+ i
2nπ

L

]
sin2

(nπ
L

)
.

(3.23)

The following result is used to simplify the expression of Kα
n further:

Result 1 If (1) θ0 ∈ R, (2) n1 ≥ 1 and n2 ≥ 2 are integers, and (3) θ = 2n1π/n2, then it
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can be derived that:

n2

∑
i=1

cos2 (θ0 + iθ) =


n2cos2θ0, n2 = 2,4,6, . . . , and n1 =

1
2

n2,n2,
3
2

n2, . . . ,

n2

2
, otherwise.

. (3.24)

Proof of Result 1:

If n2 is a even integer and n1 = n2/2, n2, 3n2/2, . . . , i.e., θ = 2n1π/n2 = π , 2π , . . . , the

sum of the series of cosine square can be directly obtained as follows:

n2

∑
i=1

cos2 (θ0 + iθ) =
n2

∑
i=1

cos2 θ0 = n2 cos2 θ0. (3.25)

Otherwise, the sum of the series of cosine square can be rewritten in the following form:

n2

∑
i=1

cos2 (θ0 + iθ) =
n2

∑
i=1

[
1
2
+

1
2

cos(2θ0 +2iθ)
]

=
n2

2
+

1
2

n2

∑
i=1

Re
(

e j(2θ0+2iθ)
)
=

n2

2
+

1
2

Re

(
e j2θ0

n2

∑
i=1

e j2iθ

)
,

(3.26)

where j denotes the imaginary unit, and Re(·) denote the real part of a complex number.

The sum of the geometric series can be further simplified as follows:

n2

∑
i=1

cos2 (θ0 + iθ) =
n2

2
+

1
2

Re
(

e j2θ0e j2θ 1− e j2n2θ

1− e j2θ

)

=
n2

2
+

1
2

Re
(

e j2θ0e j2θ 1− e j4n1π

1− e j2θ

)
=

n2

2
+

1
2

Re(0) =
n2

2
,

(3.27)

since the denominator 1− exp( j2θ) = 1− exp( j2π 2n1
n2
) ̸= 0. �
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By using Result 1, the expression of Kn can be obtained as follows:

Kα
n =



8
L∆x3 sin2

(nπ
L

)
cos2

(
knx1 −

nπ
L

)
, n =

1
2

L,L,
3
2

L, . . . ,

4
L∆x3 sin2

(nπ
L

)
, otherwise.

(3.28)

Eq. 3.28 indicates that for certain values of n (n = 1
2L, L, 3

2L, . . . ), the value of Kn

depends on the choice of the spatial coordinate of the first discretization node, x1, which

can be any value from −L0 to −L0 +∆x. Thus, a general expression of Kα
n is desired and

can be obtained by averaging over all possible x1 ∈ [−L0,−L0 +∆x) as follows:

Kα
n =

1
∆x

∫ −L0+∆x

−L0

Kn(x1)dx1 =
4

L∆x3 sin2 nπ
L
, n ≥ 1. (3.29)

Similarly, Kβ
n can be obtained with the same value as Kα

n .

After the expressions of Kα
n and Kβ

n are obtained, the steady-state value of the expected

mean slope square can be computed by taking the infinite-time limit of Eq. 3.19 and sub-

stituting the steady-state variance of Eq. 3.12 as follows:

⟨
m2⟩

ss =
∞

∑
n=1

Kα
n
⟨
α2

n
⟩

ss +
∞

∑
n=1

Kβ
n
⟨
β 2

n
⟩

ss

=
∞

∑
n=1

2
4

L∆x3
σ2L2

2νπ2n2 sin2
(nπ

L

)

=
4Lσ2

νπ2∆x3

∞

∑
n=1

1
n2 sin2

(nπ
L

)
.

(3.30)

Since 0 ≤ sin2(nπ/L) ≤ 1, it can be shown that the steady-state expected mean slope
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square has an finite upper bound as follows:

⟨
m2⟩

ss ≤
4Lσ2

νπ2∆x3

∞

∑
n=1

1
n2 =

4Lσ2

νπ2∆x3
π2

6
=

2Lσ2

ν∆x3 . (3.31)

Therefore, the expected mean slope square has a finite value at the steady state. �
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Chapter 4

Dynamics and Control of Aggregate

Thin Film Surface Morphology for

Improved Light Trapping:

Implementation on a Large-Lattice

Kinetic Monte-Carlo Model

4.1 Introduction

This chapter presents an integrated control actuator and control algorithm design for the

regulation of deposition of thin films such that the final thin film surface morphology is
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characterized by a desired visible light reflectance/transmittance level. To demonstrate

the approach, we focus on a thin film deposition process involving atom adsorption and

surface migration and use a large-lattice (lattice size=40,000) kinetic Monte-Carlo simula-

tion to describe its spatiotemporal behavior; this allows computing surface roughness and

slope at different length-scales ranging from atomic scale to visible light wavelength scale.

Subsequently, thin film surface morphology characteristics like roughness and slope are

computed for different characteristic length scales and it is found that a patterned actuator

design is needed to induce thin film surface roughness and slope at visible light wavelength

spatial scales, that lead to desired thin film reflectance and transmittance values. Since

a large-lattice kinetic Monte-Carlo model cannot be used as the basis for controller de-

sign and real-time controller calculations, an Edwards-Wilkinson-type equation is used to

model the surface evolution at the visible light wavelength spatial scale and to form the

basis for feedback controller design within a model predictive control framework. The cost

function of the predicted controller involves penalties on both surface roughness and slope

from set-point values as well as constraints on the magnitude and rate of change of the con-

trol action. The Edwards-Wilkinson equation model parameters are estimated from kinetic

Monte-Carlo simulations and their dependence on the manipulated input (deposition rate)

is used to predict the influence of the control action on the surface roughness and slope dur-

ing the growth process. The controller formulation takes advantage of analytical solutions

of the expected surface roughness and surface slope at the visible light wavelength spatial

scale and the controller is applied to the large-lattice kinetic Monte-Carlo simulation. Ex-
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tensive simulation studies demonstrate that the proposed controller and patterned actuator

design successfully regulate surface roughness and slope at visible light wavelength spatial

scales to set-point values at the end of the deposition that yield desired levels of thin film

reflectance and transmittance.

4.2 Thin film deposition process description and modeling

In this section, a one-dimensional solid-on-solid (SOS) on-lattice kinetic Monte Carlo

(kMC) model is used to simulate the thin film deposition process, which includes two

microscopic processes: an adsorption process, in which particles are incorporated onto the

film from the gas phase, and a migration process, in which surface particles move to adja-

cent sites [35, 34, 52, 53]. The model is valid for temperatures T < 0.5Tm, where Tm is the

melting point of the deposited material [35]. At high temperatures (T . Tm), the particles

cannot be assumed to be constrained on the lattice sites and the on-lattice model may not

be valid. In this work, a square lattice is selected to represent the structure of the film, as

shown in Fig.4.1. All particles are modeled as identical hard spheres and the centers of the

particles deposited on the film are located on the lattice sites. The diameter of the particles

equals the distance between two neighboring sites. The width of the lattice is fixed so that

the lattice contains a fixed number of sites in the lateral direction. The new particles are al-

ways deposited from the top side of the lattice with vertical incidence; see Fig.4.1. Particle

deposition results in film growth in the direction normal to the lateral direction. The direc-

tion normal to the lateral direction is thus designated as the growth direction. The number
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Figure 4.1: Thin film growth process on a solid-on-solid one-dimensional square lattice.

of sites in the lateral direction is defined as the lattice size and is denoted by L. Periodic

boundary conditions (PBCs) are applied at the edges of the lattice in the lateral direction.

The top particles of each column are defined as the surface particles and the positions

of the centers of all surface particles form the surface height profile. The number of nearest

neighbors of a surface particle ranges from zero to two. A surface particle with zero nearest

neighbors is possible to migrate to one of its adjacent columns with equal probability. A

surface particle with one nearest neighbor is possible to migrate to its adjacent column with

lower height with appropriate probability based on the migration rate (please see Eq. 4.1

below). A surface particle with two nearest neighbors can not migrate. Particles that are

not on the film surface can not migrate.
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In the adsorption process, a site is randomly selected with uniform probability among

all lattice sites and a particle is deposited on top of this site. The overall adsorption rate, w,

is expressed in the unit of layer per second. In the migration process, a surface particle over-

comes the energy barrier of the site and jumps to a vacant neighboring site. The migration

rate (probability) of a particle follows an Arrhenius-type law with a pre-calculated activa-

tion energy barrier that depends on the local environment of the particle, i.e., the number

of the nearest neighbors of the particle chosen for a migration event. The migration rate of

the ith surface particle is calculated as follows:

rm = ν0 exp
(
−Es +niEn

kBT

)
(4.1)

where ν0 denotes the pre-exponential factor, ni is the number of the nearest neighbors

of the ith particle and can take the values of 0 and 1, (rm is zero when ni = 2 since in

the one-dimensional lattice this surface particle is fully surrounded by other particles and

cannot migrate), Es is the contribution to the activation energy barrier from the site itself,

En is the contribution to the activation energy barrier from each nearest neighbor, kB is the

Boltzmann’s constant and T is the substrate temperature of the thin film. Since the film is

thin, the temperature is assumed to be uniform throughout the film.

4.2.1 Surface morphology at atomic level

Thin film surface morphology, which can be expressed in terms of surface roughness and

slope, is a very important surface property influencing the light trapping properties of thin

films. Surface roughness is defined as the root-mean-square (rms) of the surface height
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profile. Specifically, the definition of surface roughness is given as follows:

r =

[
1
L

L

∑
i=1

(hi − h̄)2

]1/2

(4.2)

where r denotes surface roughness, hi, i = 1, 2, . . . , L, is the surface height at the i-th

position in the unit of layer, L denotes the lattice size, and the surface mean height is given

by h̄ =
1
L

L

∑
i=1

hi.

In addition to surface roughness, another quantity that also determines the surface mor-

phology is the surface mean slope. In this work, the surface mean slope is defined as the

rms of the surface gradient profile as follows:

m =

[
1
L

L

∑
i=1

h2
s,i

]1/2

(4.3)

where m denotes the rms slope and hs,i is the surface slope at the i-th lattice site, which is a

dimensionless variable. The surface slope, hs,i is computed as follows:

hs,i =
hi+1 −hi

1
(4.4)

Since the unit of height is layer and the distance between two adjacent particles (the diame-

ter of particles) always equal to one layer, the denominator of hs,i is always one. Due to the

use of PBCs, the slope at the boundary lattice site (i = L) is computed as the slope between

the last lattice site (hL) and the first lattice site (h1).

To investigate the open-loop properties of surface morphology, a set of kMC simu-

lations is carried out at different w with T = 480 K and L = 40000. In particular, the

continuous-time Monte Carlo (CTMC) method is used in the kMC simulations. In this
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method, a list of events is constructed and an event is selected randomly with its respective

probability. After the execution of the selected event, the list is updated based on the new

lattice configuration. The following values are used for the parameters of the migration rate

of Eq. 4.1, ν0 = 1013s−1 , Es = 1.2 eV and En = 0 eV. Fig. 4.2 and Fig. 4.3 show that both

atomic roughness and slope increase with time and approach steady-state values at different

time scales. Furthermore, both surface roughness and slope increase with deposition rate

w. It is important to note that surface roughness and slope are correlated to some extent in

the deposition process, but they are separate variables that describe different aspects of the

film surface. Films with the same surface roughness may have different mean slope values.

4.2.2 Aggregate surface morphology and spatial deposition rate pro-

file

One of the most important application of our work is to simulate and control the deposition

process of thin film solar cells in order to improve solar cell efficiency via enhanced light

trapping. However, the wavelength of visible light (400nm− 700nm) is much larger than

the diameter of silicon atoms (∼ 0.25 nm) and thus, it is necessary to define an aggregate

surface morphology at length scales comparable to visible light wavelength.

Specifically, the aggregate surface morphology is computed similarly to the atomic

surface morphology, but on the basis of the aggregate surface height profile, h∆,i, which is
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Figure 4.2: Evolution of expected atomic surface roughness with respect to time for differ-

ent deposition rates (unit of w is layer/s) obtained from kMC simulations.
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Figure 4.3: Evolution of expected atomic surface slope with respect to time for different

deposition rates (unit of w is layer/s) obtained from kMC simulations.
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defined as follows:

h∆,i = (hi∆+1 +hi∆+2 + · · ·+h(i+1)∆)/∆, i = 0,1, . . . ,L/∆−1 (4.5)

where h∆,i denotes the averaged surface height over the length scale of ∆ sites, ∆ denotes

the aggregation size, i.e., the number of lattice sites used to calculate the aggregate surface

height, and L/∆ denotes the number of aggregate sites of size ∆ included in the spatial

domain of the process. For the wavelength of visible light and silicon thin-film solar cells,

the corresponding ∆ is around 400; this follows from the fact that 0.25nm · 400 = 100nm,

which is a length scale comparable to visible light wavelength. The definition of aggregate

surface roughness and slope is given as follows:

r∆ =

[
1
L

L/∆

∑
i=1

(
h∆,i − h̄∆

)2

]1/2

,

m∆ =

[
1
L

L/∆

∑
i=1

(
h∆,i −h∆,i+1

∆

)2
]1/2

.

(4.6)

The dynamics of the aggregate surface roughness and slope are dependent on the char-

acteristic length scale, ∆. To investigate this dependence, kMC simulations with En = 0

eV and L = 40000 were carried out. The expected aggregate surface roughness square,⟨
r2

∆(t)
⟩
, and the expected aggregate surface slope square,

⟨
m2

∆(t)
⟩
, are calculated from the

aggregate surface height profile from kMC simulations for different aggregation lengths.

The simulation duration is t f = 1000 s and 100 independent simulations were carried out

to calculate the expected values of aggregate surface roughness and slope. Fig. 4.4 and

Fig. 4.5 show the profiles of aggregate surface roughness square and slope square for dif-

ferent characteristic length scales, ∆. It is clear that the larger the characteristic length
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scale, the smaller the aggregate roughness and slope square. Furthermore, Fig. 4.5 shows

that as the aggregation size increases, the aggregate slope square decreases very fast; a

much weaker dependence is observed for aggregate roughness in Fig. 4.4. From these

results, we see that the corresponding aggregate slope square for ∆ = 400 is very small

(
⟨
m2

∆
⟩

ss ∼ 10−5). This close-to-zero value of aggregate slope square reveals a smoothly

changing surface profile with respect to characteristic length scales that are comparable to

visible light wavelength. The smoothness of the surface profile persists at larger lattice sizes

as well, due to the very weak lattice-size dependence of the mean slope square. This small

aggregate slope square at large characteristic length scales is partly because the operating

conditions are spatially uniform throughout the entire deposition process, i.e., the same de-

position rate and substrate temperature are applied throughout the spatial domain. Thus,

a spatially non-uniform deposition rate profile is necessary for the purpose of optimizing

thin film light reflectance/transmittance by manipulation of film aggregate surface rough-

ness and slope at length scales comparable to visible light wavelength; this conclusion is

also consistent with recent experimental data [28]. To this end, we introduce a patterned in

space deposition rate profile, which is defined as follows:

w(x) = w0 +Asin
(

2kπ
L

x
)
, A ≤ w0 (4.7)

where x is a position along the lattice, w0 is the mean deposition rate, A is the magnitude of

the patterned deposition profile, k is the number of sine waves along the entire lattice, and

L is the lattice size. Referring to the difference between w and w0, it is necessary to point

out that w0 is the mean deposition rate of the patterned deposition rate profile, w(x), while

113



0 100 200 300 400
1

2

3

4

5

6

7

8

∆ (site)

<
r2 ∆(t

f)>
 (

la
ye

r2 )

Figure 4.4: Dependence of expected aggregate surface roughness on aggregation size ob-

tained from kMC simulations; t f = 1000 s.

the w used in subsection 4.2.1 is a spatially-uniform deposition rate.

The dynamics of aggregate surface morphology with patterned deposition rate profile

is studied by carrying out a series of simulations at different mean deposition rates w0 with

L = 40000, ∆ = 400, T = 480K, k = 5 and A = 0.1w0. The evolution profiles are shown

in Fig. 4.6 and Fig. 4.7. The introduction of patterned deposition rate profiles significantly

changes the dynamic profiles of aggregate surface morphology. However, some properties

of uniform deposition rate evolution profiles remain valid, for example, the expected values

of aggregate surface roughness and slope still increase with mean deposition rate w0. Fur-

114



0 100 200 300 400

10
−4

10
−2

10
0

∆ (site)

<
m

2 ∆(t
f)>

Figure 4.5: Dependence of expected aggregate surface slope on aggregation size obtained

from kMC simulations; t f = 1000 s.
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thermore, simulations are carried out at w0 = 1 layer/s with different magnitude, A, values

to investigate the influence of the strength of patterned deposition on the evolution profiles

of aggregate surface morphology. As shown in Fig. 4.8 and Fig. 4.9, the magnitude, A, has

substantial influence on the dynamics of aggregate surface morphology. Both aggregate

roughness and aggregate slope can be increased by 10000 times by manipulating A com-

pared to the aggregate surface morphology achieved with a uniform deposition rate profile.

Thus, the introduction of a patterned deposition rate profile substantially expands the range

of surface morphology values that can be obtained and makes light trapping optimization

at length scales comparable to visible light wavelength possible. Finally, referring to the

influence of the migration activation energy values on the aggregate surface roughness and

slope steady state values, we note that such an influence exists but it is small at aggregation

levels corresponding to visible light wavelength.

4.3 Closed-form modeling and parameter estimation

4.3.1 Edward-Wilkinson-type equation of aggregate surface height

Given the complexity of the deposition process and the need to control surface roughness

and slope at spatial scales comparable to the wavelength of visible light, the direct compu-

tation of a closed-form model, describing the surface height evolution and is suitable for

controller design, from the microscopic deposition mechanisms is a very difficult (if not

impossible) task. Therefore, a hybrid modeling approach should be used in which a basic
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Figure 4.6: Evolution of expected aggregate surface roughness with respect to time for

different mean deposition rates (unit of w0 is layer/s) obtained from kMC simulations.

Patterned deposition with k = 5 and A = 0.1w0.
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Figure 4.7: Evolution of expected aggregate surface slope with respect to time for different

mean deposition rates (unit of w0 is layer/s) obtained from kMC simulations. Patterned

deposition with k = 5 and A = 0.1w0.
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Figure 4.8: Evolution of expected aggregate surface roughness with respect to time for

different patterned deposition rate magnitudes obtained from kMC simulations. Patterned

deposition with k = 5 and w0 = 1 layer/s.
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Figure 4.9: Evolution of expected aggregate surface slope with respect to time for different

patterned deposition rate magnitudes obtained from kMC simulations. Patterned deposition

with k = 5 and w0 = 1 layer/s.
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closed-form modeling structure is used and the model parameters are computed such that

the predictions of key variables from the closed-form model are close to the one of the

kinetic Monte-Carlo model for a broad set of operating conditions. To this end, we use

an Edward-Wilkinson(EW)-type equation, which is a second-order stochastic PDE to de-

scribe the aggregate surface height evolution and compute its parameters from kMC data.

The choice of the EW-equation is motivated by the fact that it has been used in many

deposition processes that involve a thermal balance between adsorption (deposition) and

migration (diffusion) [3]. Specifically, a one-dimensional EW-type equation is used to

describe the evolution of aggregate surface height profile:

∂h∆
∂ t

= w(x, t)+ c2
∂ 2h∆
∂x2 +ξ (x, t) (4.8)

subject to the following periodic boundary conditions

h∆(0, t) = h∆(L, t) (4.9)

∂h∆
∂x

(0, t) =
∂h∆
∂x

(L, t) (4.10)

and the initial condition

h∆(x,0) = h0
∆(x) (4.11)

where x ∈ [0,L] is the spatial coordinate, t is the time, h∆(x, t) is the aggregate surface

height and ξ (x, t) is a Gaussian white noise with zero mean and the following covariance:

⟨
ξ (x, t)ξ (x′, t ′)

⟩
= σ2δ (x− x′)δ (t − t ′) (4.12)

where δ (·) denotes the Dirac delta function. In Eq. 4.8, the parameters c2 and σ2, corre-

sponding to diffusion effects and stochastic noise respectively, depend on the deposition
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rate w(x, t). In the case of a patterned deposition rate profile (control actuation), the term

w(x, t) is of the form:

w(x, t) = w0(t)+A(t)sin
(

2kπ
L

x
)

(4.13)

where w0(t) is the mean deposition rate, A(t) is the magnitude of patterned deposition rate,

and k is the number of sine waves between 0 and L.

To analyze the dynamics and obtain a solution of the EW equation suitable for real-time

controller calculations, we first consider the eigenvalue problem of the linear operator of

Eq. 4.8 subject to the periodic boundary conditions of Eqs. 4.9-4.10:

A ϕ̄n(x) = c2
d2ϕ̄n(x)

dx2 = λnϕ̄n(x), (4.14)

∇ jϕ̄n(0) = ∇ jϕ̄n(L), j = 0,1 (4.15)

where λn denotes an eigenvalue, ϕ̄n denotes an eigenfunction, and ∇ j, j = 0, 1, denotes the

gradient of a given function. The solution of the eigenvalue problem of Eqs. 4.14–4.15 is

as follows:

λn =−4c2π2n2

L2 (4.16)

ϕ1,n(x) = ϕn =

√
2
L

sin(
2nπ

L
x) (4.17)

ϕ2,n(x) = ψn =



√
1
L

n = 0

√
2
L

cos(
2nπ

L
x) n ̸= 0

(4.18)

The solution of the EW equation of Eq. 4.8 can be expanded in an infinite series in terms
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of the eigenfunctions of the operator of Eq. 4.14 as follows:

h∆(x, t) =
L/(2∆)

∑
n=0

(ϕ1,n(x)z1,n(t)+ϕ2,n(x)z2,n(t)) , (4.19)

where z1,n(t), z2,n(t) are time-varying coefficients.

Substituting the above expansion for the solution, h∆(x, t), into Eq. 4.8 and taking the

inner product with the adjoint eigenfunctions, the following system of infinite stochastic

linear ordinary differential equations (ODEs) for the temporal evolution of the time-varying

coefficients in Eq. 4.19 is obtained:

dz2,0(t)
dt

= w2,0 +ξ2,0(t), (4.20)

dzp,n(t)
dt

= wp,n +λnzp,n +ξp,n(t) (4.21)

p = 1,2, n = 1, · · · , L
2∆

,

where ξp,n(t) =
∫ L

0
ξ (x, t)ϕp,n(x)dx is the projection of the noise ξ (x, t) on the ODE for

zp,n. The noise term, ξp,n, has zero mean and covariance

⟨
ξp,n(t)ξp,n(t ′)

⟩
= σ2δ (t − t ′). (4.22)

Similarly, wp,n is the projection of w on the ODE for zp,n(t), wp,n =
∫ L

0
ϕp,n(x)w(x)dx

• If p = 1,

w1,n =


0, n ̸= k

A

√
L
2
, n = k

(4.23)
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• If p = 2,

w2,n =


0, n ̸= 0

A
√

L, n = 0

(4.24)

The temporal evolution of the variance of mode zp,n can be obtained from the solution

of the linear ODEs of Eqs. 4.20 and 4.21 as follows:

⟨
z2,0(t)

⟩
= w2,0(t − t0) (4.25)

var(z2,0(t)) = σ2(t − t0) (4.26)

⟨z(t)⟩= eλ (t−t0) ⟨z(t0)⟩+
wp

λ
(eλ (t−t0)−1) (4.27)

var(z(t)) = e2λ (t−t0) var(z(t0))+σ2 e2λ (t−t0)−1
2λ

(4.28)

where z(t) = zp,n(t), λ = λn and wp = wp,n for n ̸= 0.

Finally, it is necessary to point out that, when aggregate (discrete) surface height profile

is used, the highest number of modes that can be accurately estimated from h∆(x, t) is

limited by the spatial sampling points, n ≤ L
2∆

; the reader may refer to [57] for a detailed

discussion of the issue.

4.3.2 Aggregate surface root–mean–square roughness

Aggregate surface roughness of the thin film is defined as the standard deviation of the

aggregate surface height profile from its average height

r∆(t) =

√
1
L

∫ L

0

[
h∆(x, t)− h̄∆(t)

]2 dx (4.29)
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where h̄∆(t) =
1
L

∫ L

0
h∆(x, t)dx is the average aggregate surface height. According to Eq. 4.19,

we have

h̄∆(t) =
1
L

∫ L

0
ϕ2,0z2,0dx =

√
1
L

z2,0 (4.30)

Using that

h∆(x, t)− h̄∆(t) =
L/(2∆)

∑
n=1

2

∑
p=1

ϕp,n(x)zp,n(t) (4.31)

the expected aggregate surface roughness,
⟨
r2

∆(t)
⟩
, of Eq. 4.29 can be re-written as

⟨
r2

∆(t)
⟩
=

⟨
1
L

∫ L

0

[
2

∑
p=1

L/(2∆)

∑
n=1

zp,n(t)ϕp,n(x)

]2

dx

⟩

=

⟨
1
L

∫ L

0

L/(2∆)

∑
n=1

(
ϕ 2

1,n(x)z
2
1,n(t)+ϕ 2

2,n(x)z
2
2,n(t)

)
dx

⟩

=
1
L

L/(2∆)

∑
n=1

(⟨
z2

1,n
⟩
+
⟨
z2

2,n
⟩)

(4.32)

where ⟨
z2

p,n
⟩
= var(zp,n)+

⟨
zp,n
⟩2
. (4.33)

The expression of Eqs. 4.32- 4.33 will be used in the MPC formulation; please see

Eq. 4.42 below.
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4.3.3 Aggregate surface root–mean–square slope

The aggregate rms slope is defined as the root–mean–square of the aggregate surface slope

in the x–direction as follows:

m∆(t) =

√
1
L

∫ L

0

(
∂h∆
∂x

)2

dx

=

√√√√1
L

L/∆

∑
i=0

(
h∆(i+1, t)−h∆(i, t)

∆

)2

∆

(4.34)

Using the expansion of Eq. 4.19, Eq. 4.34 can be written as:

⟨
m2

∆(t)
⟩
=

⟨
1
L

L/∆

∑
i=0

(
h∆(i+1, t)−h∆(i, t)

∆

)2

∆

⟩

=

⟨
1

L∆

L/∆

∑
i=0

{
2

∑
p=1

L/(2∆)

∑
n=0

zp,n [ϕp,n(i+1)−ϕp,n(i)]

}2⟩

=

⟨
1

L∆

L/∆

∑
i=0

2

∑
p1=1

L/(2∆)

∑
n1=0

2

∑
p2=1

L/(2∆)

∑
n2=0

zp1,n1zp2,n2dϕp1,n1(i)dϕp2,n2(i)

⟩

=
1

L∆

2

∑
p1=1

L/(2∆)

∑
n1=0

2

∑
p2=1

L/(2∆)

∑
n2=0

⟨
zp1,n1zp2,n2

⟩(L/∆

∑
i=0

dϕp1,n1(i)dϕp2,n2(i)

)
(4.35)

where

L/∆

∑
i=0

dϕp1,n1(i)dϕp2,n2(i)

=
L/∆

∑
i=0

(ϕp1,n1(i+1)−ϕp1,n1(i))(ϕp2,n2(i+1)−ϕp2,n2(i))

=
2
L

(
L/∆

∑
i=0

(
sin(

2n1π
L/∆

(i+1))− sin(
2n1π
L/∆

i)
)(

sin(
2n2π
L/∆

(i+1))− sin(
2n2π
L/∆

i)
))

=
8
L

sin(
n1π
L/∆

)sin(
n2π
L/∆

)
L/∆

∑
i=0

(
cos(

n1π
L/∆

(2i+1))cos(
n2π
L/∆

(2i+1))
)

(4.36)
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or more compactly:

⟨
m2

∆(t)
⟩
=

1
L∆

2

∑
p1=1

L/(2∆)

∑
n1=0

2

∑
p2=1

L/(2∆)

∑
n2=0

⟨
zp1,n1zp2,n2

⟩(L/∆

∑
i=0

dϕp1,n1(i)dϕp2,n2(i)

)

=
1

L∆

2

∑
p=1

L/(2∆)

∑
n=0

⟨
zp,n
⟩2

(
8
L

sin2(
nπ

L/∆
)

L/∆

∑
i=0

(
cos2(

nπ
L/∆

(2i+1))
))

=
2

∑
p=1

L/(2∆)

∑
n=0

Kp,n
⟨
z2

p,n
⟩

(4.37)

where

Kp,n =
8

L∆
sin2

(
πn

L/∆

)L/(2∆)

∑
i=0

(
cos2

(
nπ

L/∆
(2i+1)

))

=


8

L∆
sin2

(
πn

L/∆

)
n = 0

4
L∆

sin2
(

πn
L/∆

)
n ̸= 0

(4.38)

Finally, using that

L/(2∆)

∑
i=0

(
cos2

(
nπ

L/∆
(2i+1)

))

=
L/(2∆)

∑
i=0

(
cos(2nπ(2i+1)/(L/∆))+1

2

)

=



L
∆

if n = 0

L
2∆

if n ̸= 0

(4.39)

⟨
m2

∆(t)
⟩

can be expressed as:

⟨
m2(t)

⟩
=

L/(2∆)

∑
m=1

(
K1,m

⟨
z2

1,m
⟩
+K2,m

⟨
z2

2,m
⟩)

(4.40)

The expression of Eq. 4.40 will be used in the MPC formulation; please see Eq. 4.42

below.
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4.3.4 Parameter estimation

Referring to the EW equation of Eq. 4.8, there are two model parameters, c2 and σ2 that

must be determined as functions of the mean deposition rate w0 and of the patterned de-

position rate magnitude A. These parameters affect the dynamics of aggregate surface

roughness and slope and can be estimated by fitting the predicted evolution profiles for ag-

gregate surface roughness and slope from the EW equation to profiles of aggregate surface

roughness and slope from kMC simulations. Least-square methods are used to estimate

the model parameters so that the EW-model predictions are close in a least-square sense

to the kMC simulation data. Comparison of the predictions of both models are shown in

Fig. 4.10. It is necessary to point out that 20 groups of EW-equation-simulations are car-

ried out with mean deposition rate w0 ranging from w0 = 0.1 layer/s to w0 = 2 layer/s, but

in Fig. 4.10 only five groups of simulation results are shown. Based on c2 and σ2 values

obtained from these fitting results, polynomial functions are chosen to estimate c2 and σ2

values at different w0 with the least-square method. Specifically, a fourth order polyno-

mial function with respect to w0 is chosen to estimate c2 and a linear function is chosen to

estimate σ2, and the expressions are given as follows:

c2(w) = ac2w4 +bc2w3 + cc2w2 +dc2w+ ec2 , (4.41)

σ2 = aσ2w+bσ2

where ac2 , bc2 , cc2 , dc2 , ec2 , aσ2 and bσ2 are time-invariant fitting model parameters. The

fitting results are shown in Fig. 4.11 and Fig. 4.12, where ac2 =−0.0003, bc2 =−0.0002,
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cc2 = 0.001, dc2 = 0.0018, ec2 = 0.001, aσ2 = 0.8739 and bσ2 = −0.0043. These fitting

results are based on kMC simulations with uniform deposition rate profiles (A = 0). For

simulations with patterned deposition rate profiles (A ̸= 0), it is assumed that c2 and σ2

models obtained from uniform deposition rate simulations (A = 0) can be used to estimate

c2 and σ2 values. To verify this assumption, the solutions of EW equations for aggregate

surface evolution with patterned deposition rate profile are obtained based on c2 and σ2

models from open-loop kMC data with uniform deposition rate, and these dynamic evolu-

tion profiles are compared with open-loop kMC dynamic evolution profiles with patterned

deposition rate profiles. As shown in Fig. 4.13 and Fig. 4.14, c2 and σ2 models from open-

loop kMC data with uniform deposition rate can be used in the EW equation to predict

aggregate surface roughness and slope of the kMC model with patterned deposition rate. It

is important to emphasize that the y–axes in Fig. 4.13 and Fig. 4.14 are logarithmic in order

to make this comparison clear. We note that the approach presented for the computation

of the parameters of the closed-form PDE model of Eq. 4.8 is not limited to the specific

PDE system and can be used in the context of other dissipative PDE systems that model the

evolution of surface height of deposition processes. Finally, referring to the dependence of

surface roughness and slope on lattice size, we note that both atomic and aggregate surface

roughness and slope increase with increasing lattice size (this issue has been extensively

studied other works [24, 23]); however, the proposed approach to closed-form modeling

and MPC design is scalable and can be used in the context of different lattice size as long as

the parameters of the stochastic PDE model of Eq. 4.8 and their dependence on deposition
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rate are computed on the basis of data obtained from the lattice size considered.

4.4 Model predictive control

In this section, we design a model predictive controller based on the dynamic models of

aggregate surface roughness and slope to simultaneously control the expected values of

aggregate surface roughness and slope square to desired levels. The dynamics of aggregate

surface roughness and slope of the thin film are described by the EW equation of aggre-

gate surface height of Eq. 4.8 with the computed parameters of subsection 4.3.4. State

feedback control is considered in this work, i.e., h∆(x, t) is assumed to be available for

feedback. In practice, real-time surface height measurements can be obtained via atomic

force microscopy (AFM) systems.

4.4.1 MPC formulation for regulation of aggregate roughness and slope

We consider the problem of regulation of aggregate surface roughness and slope to de-

sired levels within a model predictive control framework. Due to the stochastic nature of

the variables, the expected values of aggregate surface roughness and slope,
⟨
r2

∆(t)
⟩

and⟨
m2

∆(t)
⟩
, are chosen as the control objectives. The mean deposition rate, w0, and magni-

tude of patterned deposition rate, A, are chosen as the manipulated inputs; the substrate

temperature is fixed at T = 480K during all closed-loop simulations. To account for a

number of practical considerations, several constraints are added to the control problem.
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Figure 4.10: Evolution of expected aggregate surface roughness with respect to time for

different spatially-uniform deposition rates obtained from kMC simulations (solid lines

with symbols).The analytical solutions for the aggregate surface roughness obtained from

the corresponding EW equations with the fitted values for c2 and σ2 are also shown (dashed

lines).
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Figure 4.11: c2 values for different spatially-uniform deposition rates w. The solid line is

the result of a fourth-order polynomial fitting function and it is the c2 versus w relationship

used by the predictive controller.
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Figure 4.12: σ2 values for different spatially-uniform deposition rates w. The solid line is

the result of a linear fitting function.
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Figure 4.13: Evolution of expected aggregate surface roughness for different patterned

deposition magnitudes from the kMC model (solid lines with symbols) and expected ag-

gregate roughness solutions from the corresponding EW equations (dashed lines). The

c2 and σ2 values of the EW equations were estimated from open-loop aggregate surface

roughness kMC model data with spatially-uniform deposition rates.
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Figure 4.14: Evolution of expected aggregate surface slope for different patterned deposi-

tion magnitudes from the kMC model (solid lines with symbols) and expected aggregate

slope solutions from the corresponding EW equations (dashed lines). The c2 and σ2 val-

ues of the EW equations were estimated from open-loop aggregate surface roughness kMC

model data with spatially-uniform deposition rates.
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In particular, since w(x) ≥ 0, the constraint 0 ≤ A ≤ w0 is imposed to ensure w(x, t) > 0,

∀(x, t). To ensure the validity of the closed-form process model, there is a constraint on the

range of variation of the mean deposition rate. Another constraint is imposed on the rate of

change of the mean deposition rate to account for actuator limitations. The control action

at time t is obtained by solving a finite-horizon optimal control problem. The cost function

in the optimal control problem includes penalty on the deviation of
⟨
r2

∆
⟩

and
⟨
m2

∆
⟩

from

their respective set-point values. Different weighting factors are assigned to the aggregate

surface roughness and slope. Aggregate surface roughness and slope have very different

magnitudes, (
⟨
r2

∆
⟩

ranges from 102 to 104 and
⟨
m2

∆
⟩

ranges from 10−5 to 10−2). Therefore,

relative deviations are used in the formulation of the cost function to make the magnitude

of the two terms comparable in the cost function. The optimization problem is subject to

the dynamics of the aggregate surface height of Eq. 4.8. The optimal w0 and A values are

calculated at each sampling time by solving a finite-dimensional optimization problem in a

receding horizon fashion. Specifically, the MPC problem at time t is formulated as follows:

min
w0,A

f (w0,A) = qr2

[
r2

set −
⟨
r2

∆(t f )
⟩

r2
set

]2

+qm2

[
m2

set −
⟨
m2

∆(t f )
⟩

m2
set

]2

(4.42)

where

⟨
r2

∆(t f )
⟩
=

1
L

L/(2∆)

∑
n=1

2

∑
p=1

⟨
z2

p,n(t f )
⟩
,
⟨
m2

∆(t f )
⟩
=

L/(2∆)

∑
n=1

2

∑
p=1

(
Kp,n

⟨
z2

p,n(t f )
⟩)

(4.43)
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⟨
z2

p,n(t f )
⟩
= var(zp,n(t f ))+

⟨
zp,n(t f )

⟩2 (4.44)⟨
zp,n(t f )

⟩
= eλn(t f−t) ⟨zp,n(t)

⟩
+

wp

λn
(eλn(t f−t)−1) (4.45)

var(zp,n(t f )) = e2λn(t f−t) var(zp,n(t))+σ2(w)
e2λn(t f−t)−1

2λn
(4.46)

λn =−4c2(w)π2

L2 n2 (4.47)

and

c2(w) = ac2w4 +bc2w3 + cc2w2 +dc2w+ ec2 (4.48)

σ2(w) = aσ2w+bσ2 (4.49)

subject to:

wmin ≤ w0 ≤ wmax, |w0(t)−w0(t −dt)| ≤ δwmax, (4.50)

w = w0 +Asin
(

kπx
L

)
, 0 ≤ A ≤ w0 (4.51)

where t is the current time, dt is the sampling time, qr2 and qm2 are the weighting penalty

factors for the deviations of
⟨
r2

∆
⟩

and
⟨
m2

∆
⟩

from their respective set-points at the ith pre-

diction step, wmin and wmax are the lower and upper bounds on the mean deposition rate,

respectively, and δwmax is the limit on the rate of change of the mean deposition rate. Given

the batch nature of the deposition process, the MPC of Eq. 4.42 includes penalty on the dis-

crepancy of the expected surface roughness and slope at the end of the deposition from the

set-points values of surface roughness and slope that lead to desired film reflectance levels.

The optimal control actions are obtained from the solution of the multivariable opti-

mization problem of Eq. 4.42, and are applied to the deposition process model over dt (i.e.,
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either the EW equation model or the kMC model) during the time interval (t, t + dt). At

time t + dt, a new measurement of aggregate surface roughness and slope is received by

the controller and the MPC problem of Eq. 4.42 is solved for the next set of control ac-

tions. An interior point method optimizer, IPOPT [51], is used to solve the optimization

problem in the MPC formulation. With respect to the stability of the closed-loop system,

we note the following: the deposition process considered including atom adsorption and

atom migration is an inherently stable process; this is evident by the negative values of all

the eigenvalues of the spatial differential operator of the Edwards-Wilkinson-type equation

(Eq. 4.8) used to model the evolution of surface height for all values of the deposition rare.

Given this stability property of the open-loop process and the specific MPC design, the

stability of the closed-loop system is ensured.

4.5 Simulation results

In this section, the model predictive controller of Eq. 4.42 is applied to both the one-

dimensional EW equation type model of Eq. 4.8 and the one-dimensional kMC model

of the thin film growth process. The mean deposition rate ranges from 0.1 to 2 layer/s, the

substrate temperature is fixed at 480K, the lattice size of the kMC model is fixed at 40,000

sites, the aggregation size is fixed at 400 to make the results relevant to thin film solar cell

applications and five sine waves are used in the patterned deposition rate profile. The sam-

pling time is 5 s; this sampling time is enough for the MPC to carry out the calculations

needed to compute the control action. In addition to the deposition rate, the temperature
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may be used as a manipulated input but it should vary in space to induce substantial aggre-

gate surface roughness and slope values at spatial scales corresponding to the visible light

wavelength. Each closed-loop simulation lasts for 100 s. Expected values are calculated

from 100 independent closed-loop system simulation runs. In all the simulations, the ag-

gregate surface roughness and slope set-points remain the same, specifically, r2
set = 10000

and m2
set = 0.002.

4.5.1 MPC application to EW equation model

In this subsection, the EW equation model is utilized in the closed-loop control problem as

the plant model. First, the problem of regulating aggregate surface roughness is considered.

In this problem, the cost function has only penalty on the deviation of the expected aggre-

gate surface roughness square from its set-point, i.e., qr2 = 1 and qm2 = 0. Fig. 4.15 shows

the evolution profile of
⟨
r2

∆(t)
⟩

under the model predictive controller of Eq. 4.42. It is clear

that the controller drives the expected aggregate surface roughness to its set-point at the end

of the simulation. Fig. 4.16 shows the input profiles of w0 and A for these simulations. It is

necessary to point out that during the first half of the simulation time, the optimal solutions

of w0 are constrained by the rate of change constraint and the optimal solutions of A are

bounded by the values of w0.

Next, the aggregate surface slope is regulated. The cost function includes only penalty

on the deviation of the expected value of aggregate surface slope square from its set-point

(qm2 = 1, qr2 = 0). Fig. 4.17 shows the evolution profile of the expected aggregate slope
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Figure 4.15: Profile of expected aggregate surface roughness square with EW equation as

the plant model. qr2 = 1, qm2 = 0 and r2
set = 10000.
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Figure 4.16: Input profiles for aggregate roughness-only control problem with EW equation

as the plant model. qr2 = 1, qm2 = 0 and r2
set = 10000.
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Figure 4.17: Profile of expected aggregate surface slope square with EW equation as the

plant model. qr2 = 0, qm2 = 1 and m2
set = 0.002.

square. The aggregate slope reaches its set-point at t = 100s. Fig. 4.18 displays the input

profile in this scenario. Compared with Fig. 4.16, the controller requires less time to find

the input values needed to reach the desired slope value.

The next step is the simultaneous regulation of aggregate surface roughness and slope.

The weighting factor of aggregate slope square, qm2 , is kept at 1, while the weighting factor

of aggregate roughness square, qr2 , increases from 10−2 to 103. Fig. 4.19 shows the values

of expected aggregate surface roughness and slope at the end of closed-loop simulations

(t f = 100s) as a function of qr2/qm2 . It can be seen that as the weighting on aggregate
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Figure 4.18: Input profiles for aggregate slope-only control problem with EW equation as

the plant model. qr2 = 0, qm2 = 1 and m2
set = 0.002.
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Figure 4.19:
⟨
r2

∆(t f )
⟩

and
⟨
m2

∆(t f )
⟩

at the end of closed-loop simulations (t = 100s) for

different penalty weighting factors in the predictive controller with EW equation as the

plant model. 10−2 ≤ qr2 ≤ 103, qm2 = 1, r2
set = 10000 and m2

set = 0.002.

roughness increases, the expected value of aggregate roughness approaches its set-point at

the cost of larger deviation of the aggregate slope from its set-point.

4.5.2 MPC application to kMC model

In this subsection, the kMC model is used in the closed-loop control problem as the plant

model, while all the other settings remain the same. Fig. 4.20 shows the aggregate sur-

face roughness in the case of roughness-only control while Fig. 4.21 shows the aggregate

surface slope in the case of slope-only control. From both plots, we see that both aggre-
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Figure 4.20: Profile of expected aggregate surface roughness square with kMC model as

the plant model. qr2 = 1, qm2 = 0 and r2
set = 10000.

gate roughness and slope successfully reach their set-points at the end of the simulations.

Furthermore, the closed-loop evolution profiles with kMC as the plant model are very sim-

ilar to the closed-loop profiles that use the EW equation as the plant model, which implies

that the EW equation model used in this work can accurately predict the kMC simulation

results.

Simultaneous regulation of aggregate surface roughness and slope has also been in-

vestigated. Similar to the case where the EW equation is used as the plant model, the

weighting factor of aggregate slope square, qm2 , is kept at 1, and the weighting factor of
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Figure 4.21: Profile of expected aggregate surface slope square with kMC model as the

plant model. qr2 = 0, qm2 = 1 and m2
set = 0.002.
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Figure 4.22:
⟨
r2

∆(t f )
⟩

and
⟨
m2

∆(t f )
⟩

at the end of closed-loop simulations (t = 100s) for

different penalty weighting factors in the predictive controller with kMC model as the plant

model. 10−2 ≤ qr2 ≤ 103, qm2 = 1, r2
set = 10000 and m2

set = 0.002.

aggregate roughness square, qr2 , ranges from 10−2 to 103. Fig. 4.22 shows the values of

expected aggregate roughness and slope at the end of simulations as a function of qr2/qm2 .

It can be seen that the expected value of aggregate roughness approaches its set-point as

qr2 increases at the cost of larger deviation of the aggregate slope from its set-point.

4.5.3 Application to light trapping efficiency

In this subsection, we demonstrate an application of the proposed modeling and control

framework to improve thin film solar cell performance. When the incident light goes
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through a rough interface, the light is divided into four components: specular reflection,

specular transmission, diffused reflection, and diffused transmission [45, 33]. The total re-

flectance of a beam of monochromatic light at normal incidence to a rough surface, which

is denoted by R, can be approximately calculated as follows [9]:

R = R0 exp
(
−

4πr2
∆

λ 2

)
+

R0

∫ π/20

0
2π4

(a∆
λ

)2(r∆
λ

)2
(cosθ +1)4 sinθ exp

[
−(πasinθ)2

λ 2

]
dθ

(4.52)

where R0 is the reflectance of a perfectly smooth surface of the same material, λ is the light

wavelength, a∆ is the auto-covariance length of the interface, which can be rewritten as a

ratio between the aggregate roughness and aggregate slope as a∆ =
√

2r∆/m∆ [2], and θ is

the incident angle. Eq. 4.52 is only valid when θ is small [9], so the integration upper limit

of θ is assumed to be π/20. Furthermore, aggregate roughness and slope at aggregation

length ∆ = 400 are used in Eq. 4.52.

Fig. 4.23 shows how films with different reflectance values can be produced by simul-

taneous regulation of film surface aggregate roughness and aggregate slope. Specifically,

the weighting factor of aggregate slope square, qm2 , is kept at 1, and the weighting factor

of aggregate roughness square, qr2 , ranges from 10−2 to 103, and the resulting aggregate

roughness and slope are used to compute the light reflectance of the thin film according

to Eq. 4.52. It is clear that films with different reflectance values can be generated by

regulating aggregate surface roughness and slope; please see the small circles in Fig. 4.23.

Remark 4.1 Referring to the model predictive controller of Eq. 4.42, we note that in the

absence of measurement feedback it can still be used to compute in an open-loop fashion an
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Figure 4.23: Light reflectance of thin films deposited under closed-loop operations with
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input trajectory for manipulating the deposition rate profile to drive the surface roughness

and slope to desired levels at the end of the deposition; however, such an approach is

inherently non-robust to process disturbances and model uncertainty owing to the lack of

feedback. Furthermore, when measurements of the film surface height are available at

specific locations across the film surface, a state estimator based on the stochastic PDE

model can be used to provide estimates of the entire film thickness; these estimated can be

subsequently used in the model predictive controller of Eq. 4.42. Finally, we note that even

though the controller of Eq. 4.42 focuses on the regulation of surface roughness and slope

at desired levels, it is possible to incorporate in the controller additional objectives like,

for example, achieving a desired film thickness; this can be done by the incorporation of

additional thickness requirement constraints in the controller to ensure that the deposition

rate is above a certain value that ensures that final film thickness is achieved at the end of

the deposition that meets the specifications.
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Chapter 5

Simulation and Control of Aggregate

Surface Morphology in a Two-Stage

Thin Film Deposition Process for

Improved Light Trapping

5.1 Introduction

This chapter focuses on the development of a model predictive control (MPC) algorithm to

simultaneously regulate the aggregate surface slope and roughness of a two-stage thin film

growth process to optimize thin film light reflectance and transmittance. In the first stage

of the process, a uniform deposition rate profile is utilized and in the second stage of the
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deposition process, a spatially distributed deposition profile is used to carry out the simu-

lation. Initially, a two-stage thin film deposition process is modeled on a one-dimensional

solid-on-solid square lattice that involves an adsorption process and a migration process in

the microscopic scale using kMC methods. An Edwards-Wilkinson (EW)-type equation

(second-order stochastic partial differential equation) is used to describe the dynamics of

the aggregate surface height profile obtained form the kMC model and predict the evolution

of the aggregate rms roughness and aggregate rms slope. A model predictive control algo-

rithm is then developed on the basis of the dynamic equation model to regulate the aggre-

gate rms slope and the aggregate rms roughness at desired levels. Closed-loop simulation

results demonstrate the effectiveness of the proposed model predictive control algorithm in

successfully regulating the aggregate rms slope and the aggregate rms roughness at desired

levels that optimize thin film light reflectance and transmittance.

5.2 Two-stage thin film deposition process modeling

In this section, an on-lattice kMC model is introduced to simulate the two-stage thin film

growth process. Aggregate surface height profile, aggregate rms roughness, and aggregate

rms slope are defined on the basis of the surface micro-configuration of the thin film. An

EW-type equation model is then constructed to describe the dynamics of the surface height

profile.
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5.2.1 Two-stage thin film deposition: on-lattice kinetic Monte Carlo

model and variable definitions

The two-stage thin film deposition process considered in this work takes place on a one-

dimensional solid-on-solid square lattice with periodic boundary conditions (PBCs), as

shown in Fig. 5.1. In this thin film deposition process, two different micro-processes sig-

nificantly influence the thin film surface morphology [52, 53]: an adsorption process and

a migration process. In an adsorption process, vertically incident particles are deposited

from the gas phase into the thin film. In a migration process, particles on the thin film

overcome the energy barriers of the sites and move to neighboring vacant sites with prob-

abilities that obey an Arrhenius-type rate law. In the first state of this deposition process,

uniform adsorption rate (in the unit of laryer/s) is used to carry out the simulation, i.e.,

w(x) = w f ix (5.1)

where x ∈ [0,L] is the position along the lattice, L is the lattice size and in this work L =

40000, and w f ix is the uniform adsorption rate in this stage. The simulation time for the

first stage of the deposition process is denoted as t f ix. In the second stage of this deposition

process, a spatially distributed deposition rate profile is utilized, i.e.,

w(x) = w0 +
m

∑
i=1

Ai sin
(

2πkix
L

)
(5.2)

where w0 is the average adsorption rate (in the unit of layer/s), Ai is the amplitude of sine

waves and it is requested that 0 ≤
m

∑
i=1

Ai ≤ w0 to ensure that w(x)≥ 0, ∀x ∈ [0,L], ki is the
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Figure 5.1: Thin film growth process on a solid-on-solid one-dimensional square lattice.

frequency of a sine wave and L is the lattice size. The innovation of introducing the spa-

tially distributed deposition rate profile was introduced in [27]. The average adsorption

rate and the amplitude value are the macroscopic variables that can be used as the manip-

ulated variables for control purposes. By introducing the two-stage deposition model, the

thickness of the thin film can be manipulated during the first stage and the surface morphol-

ogy of the thin film can be shaped during the second stage. Throughout this work, Eq. 5.2

will be used with m = 2.

After the introduction of the two-stage thin film deposition process, two variables, ag-

gregate rms surface roughness and slope, are precisely defined to characterize the film

aggregate surface morphology which is represented by the aggregate surface height profile.

The aggregate rms surface roughness and aggregate rms surface slope can be then defined
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as the root-mean-square of the aggregate surface height profile and the aggregate height

slope profile, respectively, as follows:

r∆ =

[
1

L/∆

L/∆

∑
i=1

(h∆,i − h̄∆)
2

]1/2

, (5.3)

m∆ =

[
1

L/∆

L/∆

∑
i=1

(
h∆,i −h∆,i+1

∆

)2
]1/2

(5.4)

where r∆ denotes the aggregate rms surface roughness, m∆ denotes the aggregate rms

slope, h∆,i, i = 1,2, . . . ,L/∆, are the aggregate surface height (with a unit of layer) and

h̄∆ =
1
L

L

∑
j=1

h j, j = 1,1, . . . ,L, is the average surface height and L is the lattice size on the

lateral direction. Due to the use of PBCs, we have that, h∆,L+1 = h∆,1.

5.2.2 Spatially distributed deposition rate profile

To improve the performance of the two-stage deposition process, a spatially distributed

deposition rate profile is introduced in the second stage of the deposition process [28].

Specifically, in the second stage of the deposition process, a spatially distributed deposition

rate profile with two sine waves is introduced to carry out the deposition,

w(x) = w0 +A1 sin
(

2πk1x
L

)
+A2 sin

(
2πk2x

L

)
(5.5)

where k1 and k2 are the frequencies of the two sine wave functions. It is necessary to note

that the amplitude values for both sine wave functions should satisfy 0 ≤ A1 +A2 ≤ w0.

To explore the properties of this spatially distributed deposition rate profile with mul-

tiple sine waves, a series of simulations are carried out at different amplitude values with
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k1 = 5, k2 = 10, w0 = 20 layer/s, L = 40000 and A1 = A2 = A where A ∈ [0,10] layer/s.

In this series of simulations, the simulation time for the first stage (the stage with uniform

deposition rate profile) is zero (t f ix = 0 s). Fig. 5.2 shows a snapshot of one of these sim-

ulations with A1 = A2 = A = 5 layer/s. It is clear that the introduction of multiple sine

waves changes the shape of the thin film surface and provides more potential to design

and control the surface morphology of silicon thin film and improve the performance of

thin film solar cells. To further explore its application in improving thin film solar cells,

reflectance values are calculated with aggregate roughness and slope values obtained from

these simulations; the results are mapped in Fig. 5.3. R0 in the plot is the light reflectance of

a perfectly smooth surface. Light reflectance of thin films deposited with different A values

(A ∈ [0,10] layer/s) and spatially distributed deposition rate profiles with (k1 = 5, k2 = 0)

and (k1 = 0, k2 = 10) are also mapped in the plot. It is clear that different reflectance values

can be generated by utilizing spatially distributed deposition rate profile with multiple sine

waves.

5.2.3 Closed-form dynamic model construction

The dynamics and evolution of the aggregate surface height profile, as well as of the aggre-

gate rms roughness and slope, of the thin film of Fig. 5.1 can be described by an Edwards-

Wilkinson (EW)-type equation of the form [10, 11, 24]:

∂h∆
∂ t

= w(x, t)+ c2
∂ 2h∆
∂x2 +ξ (x, t), (5.6)
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Figure 5.2: Snapshot of thin-film with A1 = A2 = A = 5 layer/s, k1 = 5, k2 = 10, w0 = 20

layer/s and L = 40000.

subject to the initial condition and the following PBCs:

h∆(0, t) = h∆(L, t),
∂h∆
∂x

(0, t) =
∂h∆
∂x

(L, t), (5.7)

where w(x, t) is the deposition rate profile. Specifically, in the first stage of the deposition

process, w(x, t) = w f ix(t) and in the second stage,

w(x, t) = w0(t)+A1(t)sin
(

2πk1x
L

)
+A2(t)sin

(
2πk2x

L

)

where x ∈ [0,L] is the aggregate spatial coordinate, t is the time, c2 is the model parameter

related to the effect of surface particle migration, and ξ (x, t) is a Gaussian white noise term

with a zero mean and a covariance as ⟨ξ (x, t)ξ (x′, t ′)⟩ = σ2δ (x− x′)δ (t − t ′), where σ2

is a parameter that measures the noise intensity and σ(·) denotes the standard Dirac delta
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Figure 5.3: Light reflectance of thin film deposited with spatially distributed deposition

rate profiles of varying complexity with (k1 = 5, k2 = 0), (k1 = 0, k2 = 10) and (k1 = 5,

k2 = 10). Circles are reults with k1 = 5 and k2 = 0; Squares are results with k1 = 0 and

k2 = 10; Triangles are results with k1 = 5, k2 = 10. A1 = A2 = A and A ∈ [0,10] layer/s.
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function. These model parameters, c2 and σ2, can be estimated on the basis of the kMC

simulation data of the thin film deposition process in a least-square sense. It is necessary

to note that the initial condition for the first stage of simulation is h∆,1(x,0) = 0 and the

initial condition for the second stage of simulation is the final condition of the first stage,

h∆,2(x,0) = h∆,1(x, t f ix).

To obtain the dynamics of the aggregate rms roughness and of the aggregate rms slope,

the EW equation is first decomposed into a stochastic system of infinite ODEs as follows

[27]:

dz2,0

dt
= w2,0 +ξ2,0(t), (5.8)

dzp,n

dt
= wp,n +λnzp,n +ξp,n(t), (5.9)

p = 1,2, n = 1, . . . ,
L

2∆
,

where λn denotes the n − th eigenvalue of the linear second-order operator of Eq. 5.6,

zp,n(t) is the state projection of h∆(x, t) in the n− th ODE, and similarly the ξp,n and wp,n

are the projection of noise and w(x, t) on the n− th ODE [27], the value of wp,n is shown

as follows:
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• If p = 1,

w1,n =



A
√

L
2 , n = k1

A
√

L
2 , n = k2

0, else

(5.10)

• If p = 2

w2,n =


0, n ̸= 0

A
√

L, n = 0

(5.11)

Since the infinite stochastic ODEs of Eqs. 5.8 and 5.9 are linear and uncoupled, the state

variance can be directly obtained from the analytical solution of Eqs. 5.8 and 5.9 as follows:

⟨
z2,0(t)

⟩
= w2,0(t − t0) (5.12)

var(z2,0(t) = σ2(t − t0) (5.13)

⟨z(t)⟩= eλ (t−t0) ⟨z(t0)⟩+
wp

λ
(eλ (t−t0)−1) (5.14)

var(z(t)) = e2λ (t−t0)var(z(t0))+σ2 e2λ (t−t0)−1
2λ

(5.15)

where z(t) = zp,n(t) and wp = wp,n for n ̸= 0.

For the purpose of theoretical analysis and control design, the expected value of aggre-

gate rms roughness square,
⟨
r2

∆
⟩
, and expected value of aggregate rms slope square,

⟨
m2

∆
⟩
,

are used in the analysis and controller design later in this work. Both expected aggregate
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roughness square and expected aggregate slope square can be expressed in terms of state

variance,
⟨
z2

p,n
⟩
. The derivation processes can be found in [27], and the results are shown

as follows:

⟨
r2

∆(t)
⟩
=

1
L

L/(2∆)

∑
n=1

(⟨
z2

1,n
⟩
+
⟨
z2

1,n
⟩)

, (5.16)

⟨
m2

∆(t)
⟩
=

2

∑
p=1

L/(2∆)

∑
n=0

Kp,n
⟨
z2

p,n
⟩

(5.17)

where

⟨
z2

p,n
⟩
= var(zp,n)+

⟨
zp,n
⟩2 (5.18)

Kp,n =
8

L∆
sin2

(
πn

L/∆

)L/(2∆)

∑
i=0

(
cos2

(
nπ

L/∆
(2i+1)

))

=


8

L∆
sin2

(
πn

L/∆

)
n = 0

4
L∆

sin2
(

πn
L/∆

)
n ̸= 0

(5.19)

It is necessary to point out that, when aggregate (discrete) surface height profile is used,

the highest number of modes that can be accurately estimated from h∆(x, t) is limited by

the spatial sampling points, n ≤ L
2∆ ; the reader may refer to [57] for a detailed discussion

of the issue.

5.2.4 Parameter identification and model verification

The model parameters, c2 and σ2, of the EW equation of Eq. 5.6 can be estimated based

on the kinetic Monte Carlo simulations results as functions of the mean deposition rate w0
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and/or of the patterned deposition rate magnitudes, A1 and A2. These parameters affect the

dynamics of aggregate surface roughness and slope and can be estimated by fitting the pre-

dicted evolution profiles for aggregate surface roughness and slope from the EW equation

to profiles of aggregate surface roughness and slope from kMC simulations. Least-square

methods are used to estimate the model parameters so that the EW-model predictions are

close in a least-square sense to the kMC simulation data. It is assumed that EW parameters

fitted to the kMC results with non-pattern deposition rate profiles can be used to predict the

dynamics of kMC simulations with spatially distributed deposition rate profiles; this as-

sumption will be proved to be a valid one in the simulations below. In this work, 40 groups

of kMC simulations are carried out from w0 = 0.1 layer/s to w0 = 20 layer/s to compute

the dependence of c2 and σ2 on w0. Based on the fitted c2 and σ2 values obtained from

these fitting results in Fig. 5.4 and Fig. 5.5, polynomial functions are chosen to estimate

c2 and σ2 values at different w0 with the least-square method. Specifically, a second-order

polynomial function with respect to w0 is chosen to estimate c2 and a linear function is

chosen to estimate σ2, and the expressions are given as follows:

c2(w0) = ac2w2
0 +bc2w0 + cc2, (5.20)

σ2(w0) = aσ2w0 +bσ2 (5.21)

where ac2 , bc2 , cc2 , aσ2 and bσ2 are time-invariant fitting model parameters with the

following values, ac2 = −0.0002, bc2 = 0.0018, cc2 = 0.0007, aσ2 = 0.9261 and bσ2 =

−0.1168. These fitting results are based on kMC simulations with uniform deposition rate
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Figure 5.4: c2 values for different spatially-uniform deposition rates w0, (A1 = A2 = 0).

The solid line is the result of a second-order polynomial fitting function and it is the c2

versus w0 relationship used by the predictive controller.

profiles (Ai = 0). To verify that these fittings can be used in the EW equation to predict

the open-loop kMC results with spatially distributed deposition rate profiles, the solutions

of EW equations for aggregate surface evolution with patterned deposition rate profile are

obtained based on c2 and σ2 models from open-loop kMC data with uniform deposition

rate, and these dynamic evolution profiles are compared with open-loop kMC dynamic

evolution profiles with patterned deposition rate profiles. As shown in Fig. 5.6 and Fig. 5.7,

c2 and σ2 models from open-loop kMC data with uniform deposition rate can be used in

the EW equation to very accurately predict aggregate surface roughness and slope of the

kMC model with patterned deposition rate; this conclusion is consistent with [27].
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Figure 5.5: σ2 values for different spatially-uniform deposition rates w0, (A1 = A2 = 0).

The solid line is the result of a first-order polynomial fitting function and it is the σ2 versus

w0 relationship used by the predictive controller.
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Figure 5.6: Evolution of expected aggregate surface roughness for different patterned de-

position magnitudes from the kMC model (solid lines with symbols) and expected ag-

gregate surface roughness solutions from the corresponding EW equations (dashed lines,

A1 = A2 = A). The c2 and σ2 values of the EW equations were estimated from open-loop

aggregate surface roughness kMC model data with spatially-uniform deposition rates.
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Figure 5.7: Evolution of expected aggregate surface slope for different patterned deposition

magnitudes from the kMC model (solid lines with symbols) and expected aggregate surface

slope solutions from the corresponding EW equations (dashed lines, A1 = A2 = A). The

c2 and σ2 values of the EW equations were estimated from open-loop aggregate surface

roughness kMC model data with spatially-uniform deposition rates.
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5.3 Model predictive control

In this section, a model predictive controller is developed on the basis of the constructed

closed-form dynamic model. The control objective is to regulate the expected aggregate

rms slope square and the expected aggregate rms roughness square of the thin film to de-

sired levels.

5.3.1 MPC formulation

Specifically, we consider the problem of simultaneous regulation of aggregate rms slope

and aggregate rms roughness of the thin film to desired levels within a model predictive

control framework. The expected values of aggregate rms slope square and of aggregate

rms surface roughness square,
⟨
m2

∆
⟩

and
⟨
r2

∆
⟩
, are chosen as the control objectives. Since

the first stage of the deposition process mainly deals with the thickness of the thin film and

the second stage of the process mainly shapes the morphology of the thin film, in this work

the control problem focuses mainly on the second stage of the deposition process. The

average deposition rate, w0, and the amplitude of sine wave, A, are used as the manipulated

input with a fixed substrate temperature, T = 480 K. The control action at time t is obtained

by solving a finite-horizon optimal control problem. The cost function in the optimal con-

trol problem includes penalty on the deviation of
⟨
m2

∆
⟩

and of
⟨
r2

∆
⟩

from their set-point

values, which are computed to optimize light reflectance of the thin film at desired values.

The optimization problem is subject to the dynamics of the aggregate surface height. The
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manipulated variable profiles are calculated by solving a finite-dimensional optimization

problem in a receding horizon fashion. Specifically, the MPC problem is formulated as

follows:

min
(w0(ti),A1(ti),A2(ti))

J =
p

∑
i=1

{
qm[(m2

∆,set −
⟨
m2

∆(ti)
⟩
)/m2

∆,set ]
2

+qr[(r2
∆,set −

⟨
r2

∆(ti)
⟩
)/r2

∆,set ]
2
}

subject to

∂h∆
∂ t

= w(x, t)+ c2
∂ 2h∆
∂x2 +ξ (x, t)

r∆ =

[
1

L/∆

L/∆

∑
i=1

(h∆,i − h̄∆)
2

]1/2

m∆ =

[
1

L/∆

L/∆

∑
i=1

(
h∆,i −h∆,i+1

∆

)2
]1/2

wmin < w0(ti)< wmax, |w0(ti)−w0(ti −dt)| ≤ δwmax

w(x, ti) = w0(ti)+A1(ti)sin
(

2πk1x
L

)
+A2(ti)sin

(
2πk2x

L

)
0 ≤ A1(ti)+A2(ti)≤ w0

i = 1,2, . . . , p

(5.22)

where ti is the current time, dt is the length of the sampling interval, p is the number of

prediction steps, pdt is the specified prediction horizon, w0(ti), i= 1,2, . . . , p, is the average

deposition rate at the ith step, qr and qm are the weighting penalty factors for the deviations

of
⟨
m2

∆
⟩

and
⟨
r2

∆
⟩

from their respective set-points, r2
∆,set and m2

∆,set , at the ith prediction step,

wmin and wmax are the lower and upper bounds on the average deposition rate, respectively,
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and δwmax is the limit on the rate of change of the average deposition rate. It is necessary to

note that several constraints are added to the controller to account for a number of practical

considerations. First, there is a constraint on the range of variation of the average deposition

rate. Another constraint is imposed on the rate of change of the average deposition rate to

account for actuator limitations. The optimal manipulated variable profile, (w0(ti), A(ti)),

is obtained from the solution of the optimization problem of Eqs. 5.22, which minimizes

the deviation of the expected aggregate rms slope square and of the expected aggregate rms

roughness square from their respective set-point values within the prediction horizon.

The surface aggregate rms roughness square and slope square can be calculated in terms

of the state variance, as is shown in Eq. 5.16 and 5.17, then the MPC formulation can be
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modified as follows:

min
(w0(ti),A1(ti),A2(ti))

J =
p

∑
i=1

{
qm[(m2

∆,set −
⟨
m2

∆(ti)
⟩
)/m2

∆,set ]
2

+qr[(r2
∆,set −

⟨
r2

∆(ti)
⟩
)/r2

∆,set ]
2
}

subject to⟨
r2

∆(t)
⟩
=

1
L

L/(2∆)

∑
n=1

(⟨
z2

1,n
⟩
+
⟨
z2

1,n
⟩)

⟨
m2

∆(t)
⟩
=

2

∑
p=1

L/(2∆)

∑
n=0

Kp,n
⟨
z2

p,n
⟩

wmin < w0(ti)< wmax, |w0(ti)−w0(ti −dt)| ≤ δwmax

w(x, ti) = w0(ti)+A1(ti)sin
(

2πk1x
L

)
+A2(ti)sin

(
2πk2x

L

)
0 ≤ A1(ti)+A2(ti)≤ w0

i = 1,2, . . . , p

(5.23)

5.4 Regulation of surface slope and roughness for light

trapping efficiency

In this section, we apply the predictive controller of Eqs. 5.23 to the kMC model of the thin

film deposition process to regulate the surface aggregate slope and roughness at desired

levels. The average deposition rate and amplitude of sine waves are chosen as manipu-

lated variables. The substrate temperature is kept constant during all deposition runs. The

controlled variables are the expected values of the aggregate rms slope square and of the
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aggregate rms roughness square at the end of the deposition process.

In the closed-loop simulations, the aggregate surface height profile of the thin film is

obtained from the kMC simulations and is transferred to the controller (state feedback con-

trol) at each sampling time. A finite number of modes, L/(2∆), are reconstructed from the

aggregate surface height profile and are used to calculate the predictions of the aggregate

rms slope square and of the aggregate rms roughness square. The constrained optimization

problem formulated in the MPC of Eqs. 5.23 is solved and the optimal input profile is ob-

tained and is applied to the closed-loop system during the sampling time. The optimization

problem is solved via a local constrained minimization algorithm with a broad set of initial

guesses.

5.4.1 Surface regulation of two-stage deposition process with k1 = 5,

k2 = 0 and A1 = A2 = A

In this subsection, several groups of set-points are picked to generate thin-film surfaces

corresponding to different light reflectance values, R/R0 = 0.2, R/R0 = 0.5 and R/R0 =

0.9. In the first stage of the simulation, open-loop simulations are carried out with w f ix =

10 layer/s and simulation time is t f ix = 5000 s. In the second stage of the simulation,

close-loop simulations are carried out at different set-points with fixed weighing factors on

roughness and slope of qr = qm = 1 and A1 = A2 = A. The obtained aggregate roughness

and slope are used to calculate the corresponding reflectance value. Specifically, in the first

group of simulations, m2
∆,set = 0.16 and r2

∆,set = 160000 layer2/s, and results are shown
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Figure 5.8:
⟨
r2

∆
⟩

and
⟨
m2

∆
⟩

at the end of the closed-loop thin film deposition with k1 = 5

and k2 = 0 corresponding to light reflectance value R/R0 = 0.2 with qr = qm = 1, r2
∆,set =

160000 layer2, m2
∆,set = 0.16 and A1 = A2 = A.

in Fig. 5.8. It is clear in the plot that during the first stage of simulation (t f ix = 5000 s),

aggregate surface roughness and slope increase very slowly and both variables increase

fast and approach set-points during the second stage of the deposition. This is as expected

because the amplitude value,A, is the key factor to shape the morphology of the thin film

surface. Larger deviation from set-point is observed for aggregate slope than for aggregate

roughness. This is determined by the ratio between the weighting factors and more details

can be found in [27]. Light reflectance value with the obtained aggregate roughness and

slope is R/R0 = 0.24, which is close to the desired value. The surface snapshot in this case

is shown in Fig. 5.9 and a clear pattern can be observed on the thin film surface.
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Figure 5.9: Surface snapshot for closed-loop thin film deposition using actuation with k1 =

5 and k2 = 0 corresponding to light reflectance value R/R0 = 0.2 and A1 = A2 = A.
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Figure 5.10: Surface snapshot for closed-loop thin film deposition using actuation with

k1 = 5 and k2 = 0 corresponding to light reflectance value R/R0 = 0.5 and A1 = A2 = A.

Similarly, simulations are carried out to generate surfaces with R/R0 = 0.5 and R/R0 =

0.9 and the resulting surface snapshots are shown in Fig. 5.10 and Fig. 5.11. The obtained

light reflectance values in these two cases are R/R0 = 0.54 and R/R0 = 0.89 respectively,

both of which are close to the desired values. As the surface becomes smoother, the light

reflectance value approaches the reflectance for perfectly smooth surface, where R = R0.
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Figure 5.11: Surface snapshot for closed-loop thin film deposition using actuation with

k1 = 5 and k2 = 0 corresponding to light reflectance value R/R0 = 0.9 and A1 = A2 = A.
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5.4.2 Separate control of aggregate surface roughness and slope for

two-stage deposition process with k1 = 5, k2 = 10 and A1 =A2 =A

In this subsection, the two-stage kMC simulation model is replaced with the one which

utilizes a spatially distributed deposition rate profile with multiple sine waves. To focus on

the regulation of aggregate surface roughness and slope in the second stage of simulations,

in this subsection the simulation time for the first stage of simulation is set to be short,

t f ix = 10 s. In the second stage of simulations, multiple frequencies k1 = 5 and k2 = 10

are used. First, the problem of regulating aggregate surface roughness is considered. In

this problem, the cost function has only penalty on the deviation of the expected aggregate

surface roughness square from its set-point, i.e., qr = 1, qm = 0 and A1 = A2 = A. The

set-point, r2
∆,set is 10000 layer2. Fig. 5.12 shows the evolution profile of

⟨
r2

∆
⟩

under the

model predictive controller of Eq. 5.23. It is clear that the controller drives the expected

aggregate surface roughness to its set-point at the end of the simulation. Fig. 5.13 shows

the input profiles of w0 and A for these simulations.

Next, the aggregate surface slope is regulated. The cost function includes only penalty

on the deviation of the expected value of aggregate surface slope square from its set-point

(qm = 1, qr = 0). The set-point, m2
∆,set is 0.25. Fig. 5.14 shows the evolution profile of the

expected aggregate slope square. The aggregate slope reaches its set-point at t = 110 s.

Fig. 5.15 displays the input profile in this scenario. It is necessary to point out that during

the first half of the simulation time, the optimal solutions of w0 are constrained by the rate

of change constraint and the optimal solutions of A are bounded by the values of w0.
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Figure 5.12: Profile of expected aggregate surface roughness square with k1 = 5 and k2 =

10. qr = 1, qm = 0, r2
∆,set = 10000 layer2 and A1 = A2 = A.
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Figure 5.13: Manipulated input profiles with k1 = 5 and k2 = 10. qr = 1, qm = 0, r2
∆,set =

10000 layer2 and A1 = A2 = A.
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Figure 5.15: Manipulated input profiles with k1 = 5 and k2 = 10. qr = 0, qm = 1, m2
∆,set =

0.25 and A1 = A2 = A.
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5.4.3 Surface regulation of two-stage deposition process with k1 = 5,

k2 = 10 and A1 = A2 = A

In this subsection, the kMC simulation model with a spatially distributed deposition rate

profile with multiple sine waves is still utilized to carry out the simulation, but different

from the previous part, the cost function in this subsection has penalties on both aggregate

roughness and aggregate slope. The set-points m2
∆,set = 0.25 and r2

∆,set = 160000 layer2/s

are used. The closed-loop simulation results are shown in Fig. 5.16 and the obtained ag-

gregate roughness and slope generates a surface with light reflectance value R/R0 = 0.21,

which is very close to the desired value. The resulting snapshot is shown in Fig. 5.17. It is

important to point out that in the closed-loop simulations in this work, all the set-points are

reached with 0 ≤ A ≤ 10 layer/s, which means that the fitting used in this work is valid for

all the set-points.

5.4.4 Surface regulation of two-stage deposition process with k1 = 5,

k2 = 10 and A1 ̸= A2

Similar to the previous subsection, the kMC model with k1 = 5 and k2 = 10 is utilized, but

A1 and A2 are allowed to be adjusted independently by the controller. Specifically, the MPC

has three manipulated variables, w0, A1 and A2, all of which can change independently. The

set-points m2
∆,set = 0.25 and r2

∆,set = 160000 layer2/s are used. The closed-loop simulation

results are shown in Fig. 5.16. It is clear that both
⟨
r2

∆
⟩

and
⟨
m2

∆
⟩

reach their set-points
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Figure 5.16:
⟨
r2

∆
⟩

and
⟨
m2

∆
⟩

at the end of the closed-loop thin film deposition with k1 = 5

and k2 = 10 corresponding to light reflectance value R/R0 = 0.2 with qr = qm = 1, r2
∆,set =

160000 layer2, m2
∆,set = 0.25 and A1 = A2 = A.
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Figure 5.17: Surface snapshot for closed-loop thin film deposition using actuation with

k1 = 5 and k2 = 10 corresponding to light reflectance value R/R0 = 0.2 and A1 = A2 = A.

at the end of the closed-loop simulation. The ability to independently vary w0, A1 and

A2 makes it possible to reach the set-points for both aggregate roughness and slope at the

same time and substantially improve the performance of the MPC. Fig. 5.19 shows the

input profiles of w0, A1 and A2 for the simulation and the corresponding thin film surface

snapshot is shown in Fig. 5.20.
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Figure 5.18:
⟨
r2

∆
⟩

and
⟨
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at the end of the closed-loop thin film deposition with k1 = 5

and k2 = 10 corresponding to light reflectance value R/R0 = 0.2 with qr = qm = 1, r2
∆,set =

160000 layer2 and m2
∆,set = 0.25.
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Figure 5.19: Manipulated input profiles with k1 = 5 and k2 = 10. qr = qm = 1 , r2
∆,set =

160000 layer2 and m2
∆,set = 0.25.
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Figure 5.20: Surface snapshot for closed-loop thin film deposition using actuation with

k1 = 5 and k2 = 10.
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Chapter 6

Modeling and Control of Transparent

Conducting Oxide Layer Surface

Morphology for Improved Light

Trapping

6.1 Introduction

This chapter focuses on the application of microscopic modeling and control to the process

of TCO thin film deposition, which consists of ZnO and Al. Specifically, this work intro-

duces a two species simulation for TCO layer deposition process and presents an integrated

control actuator and control algorithm design framework for the regulation of deposition of
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TCO thin films such that the final thin film surface morphology is controlled to a desired

level. To demonstrate the approach, we focus on a two species thin film deposition process

using a large-lattice (lattice size=40,000) kinetic Monte-Carlo simulation. Different deposi-

tion mechanisms are utilized for each component, ZnO and Al. Specifically, random depo-

sition with surface relaxation (RDSR) mechanism is used for Al and deposition/migration

mechanism is used for ZnO [23]. Subsequently, surface roughness and slope at different

length-scales ranging from atomic scale to visible light wavelength scale are both calcu-

lated based on the generated thin film surface. It is found that a patterned actuator design is

needed to induce thin film surface roughness and slope at visible light wavelength spatial

scales to desired levels. Since a large-lattice kinetic Monte-Carlo model cannot be used as

the basis for controller design and real-time controller calculations, an Edwards-Wilkinson-

type equation is used to model the surface evolution at the visible light wavelength spatial

scale and to form the basis for feedback controller design within a model predictive control

framework. The cost function of the predicted controller involves penalties on both sur-

face roughness and slope from set-point values as well as constraints on the magnitude and

rate of change of the control action. The Edwards-Wilkinson equation model parameters

are estimated from kinetic Monte-Carlo simulations and their dependence on the manip-

ulated input (deposition rate) is used to predict the influence of the control action on the

surface roughness and slope during the growth process. The controller formulation takes

advantage of analytical solutions of the expected surface roughness and surface slope at

the visible light wavelength spatial scale and the controller is applied to the large-lattice ki-
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netic Monte-Carlo simulation. Extensive simulation studies demonstrate that the proposed

controller and patterned actuator design successfully regulate surface roughness and slope

at visible light wavelength spatial scales to set-point values at the end of the deposition.

6.2 Two species thin film deposition process description

and modeling

In this section, a one-dimensional solid-on-solid (SOS) on-lattice kinetic Monte Carlo

(kMC) model is used to simulate the two species thin film deposition process, which in-

cludes three microscopic processes: an adsorption process, in which particles are incorpo-

rated onto the film from the gas phase, a migration process and a surface relaxation process,

in which surface particles move to adjacent sites [35, 34, 52, 53]. The model is valid for

temperatures T < 0.5Tm, where Tm is the melting point of the deposited material [35]. At

high temperatures (0.5Tm . T . Tm), the particles cannot be assumed to be constrained on

the lattice sites and the on-lattice model may not be valid. In this work, a square lattice

is selected to represent the structure of the film, as shown in Fig. 6.1. All particles are

modeled as identical hard spheres and the centers of the particles deposited on the film are

located on the lattice sites. The diameter of the particles equals the distance between two

neighboring sites. The width of the lattice is fixed so that the lattice contains a fixed number

of sites in the lateral direction. The new particles are always deposited from the top side

of the lattice with vertical incidence; see Fig. 6.1. Particle deposition results in film growth
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Figure 6.1: Two species thin film growth process on a solid-on-solid one-dimensional

square lattice.

in the direction normal to the lateral direction. The direction normal to the lateral direction

is thus designated as the growth direction. The number of sites in the lateral direction is

defined as the lattice size and is denoted by L. Periodic boundary conditions (PBCs) are

applied at the edges of the lattice in the lateral direction.

The top particles of each column are defined as the surface particles and the positions

of the centers of all surface particles form the surface height profile. The number of nearest

neighbors of a surface particle ranges from zero to two. A surface particle with zero nearest
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neighbors is possible to move to one of its adjacent columns with equal probability. A

surface particle with one nearest neighbor is possible to move to its adjacent column with

lower height. A surface particle with two nearest neighbors can not move. Particles that

are not on the film surface can not move.

The overall deposition rate, w, is expressed in the unit of layer per second and is

a combination of two components, ZnO deposition rate w1 and Al deposition rate w2

(w = w1 +w2). The deposition ratio between ZnO and Al is 24 : 1 [8]. Different deposi-

tion mechanisms are used for each component. Random deposition with surface relaxation

(RDSR) mechanism is used for Al. Specifically, in the RDSR process a site is randomly

selected with uniform probability among all lattice sites and a particle is deposited on the

top of this site. If the just deposited particle has less than two nearest neighbors, it will

move according to the rules described above. A deposition/migration mechanism is used

for ZnO. In this model, the deposition and migration events are separate and independent

microscopic events. The deposition event is a random process, i.e., the same random de-

position (without surface relaxation) as in the RDSR model. However, the migration event

does not follow immediately the deposition of the particle. Instead, each surface particle,

i.e., the top particle of a lattice site, is subject to its own migration event with a probability

that depends on its local environment and the substrate temperature. The migration rate

(probability) follows an Arrhenius-type law with a pre-calculated activation energy bar-

rier that depends on the local environment of the particle, i.e., the number of the nearest

neighbors of the particle chosen for a migration event. The migration rate of the ith surface
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particle is calculated as follows:

rm = ν0 exp
(
−Es +niEn

kBT

)
(6.1)

where ν0 denotes the pre-exponential factor, ni is the number of the nearest neighbors of

the ith particle and can take the values of 0 and 1, (rm is zero when ni = 2 since in the one-

dimensional lattice this surface particle is fully surrounded by other particles and cannot

migrate), kB is the Boltzmann’s constant, Es is the contribution to the activation energy

barrier from the site itself, and En is the contribution to the activation energy barrier from

each nearest neighbor. In this work, Es = 3.4eV and En is assumed to be zero [39]. T

is the substrate temperature of the thin film and in this work T = 800 K [38]. Since the

film is thin, the temperature is assumed to be uniform throughout the film. For the detailed

description and investigation of these models, please refer to [23].

6.2.1 Surface morphology at atomic level

Thin film surface morphology, which can be expressed in terms of surface roughness and

slope, is a very important surface property influencing the light properties of TCO thin

films. Surface roughness is defined as the root-mean-square (rms) of the surface height

profile. Specifically, the definition of surface roughness is given as follows:

r =

[
1
L

L

∑
i=1

(hi − h̄)2

]1/2

(6.2)

where r denotes surface roughness, hi, i = 1, 2, . . . , L, is the surface height at the i-th

position in the unit of layer, L denotes the lattice size, and the surface mean height is given
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by h̄ =
1
L

L

∑
i=1

hi.

In addition to surface roughness, another quantity that also determines the surface mor-

phology is the surface mean slope. In this work, the surface mean slope is defined as the

rms of the surface gradient profile as follows:

m =

[
1
L

L

∑
i=1

h2
s,i

]1/2

(6.3)

where m denotes the rms slope and hs,i is the surface slope at the i-th lattice site, which is a

dimensionless variable. The surface slope, hs,i is computed as follows:

hs,i =
hi+1 −hi

1
(6.4)

Since the unit of height is layer and the distance between two adjacent particles (the diam-

eter of particles) always equals to one layer, the denominator of hs,i is always one. Due

to the use of PBCs, the slope at the boundary lattice site (i = L) is computed as the slope

between the last lattice site (hL) and the first lattice site (h1).

To investigate the open-loop properties of surface morphology, a set of kMC simu-

lations is carried out at different w with T = 800 K and L = 40000. In particular, the

continuous-time Monte Carlo (CTMC) method is used in the kMC simulations. In this

method, a list of events is constructed and an event is selected randomly with its respective

probability. After the execution of the selected event, the list is updated based on the new

lattice configuration. The following values are used for the parameters of the migration

rate of Eq. 6.1, ν0 = 1013s−1, Es = 3.4 eV and En = 0 eV. Fig. 6.2 and Fig. 6.3 show that

both atomic roughness and slope increase with time and will reach steady-state values at
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Figure 6.2: Evolution of expected atomic surface roughness with respect to time for differ-

ent deposition rates (unit of w is layer/s) obtained from kMC simulations.

different time scales. Furthermore, both surface roughness and slope increase with total

deposition rate w.

To further investigate the open-loop properties of this two species simulation model,

simulations are carried out with different deposition rate ratio between the two components.

As shown in Fig. 6.4 and 6.5, as w1%(w1% = w1/w)) increases, the values of both the

roughness and the slope increase since at this temperature (T = 800 K), the effect of the

migration (which has the ability to smooth the surface compared to the RDSR process) is

weak. Thus, as ZnO (w1%) dominates the deposition process, the surface becomes more
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Figure 6.3: Evolution of expected atomic surface slope with respect to time for different

deposition rates (unit of w is layer/s) obtained from kMC simulations.
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Figure 6.4: Evolution of expected atomic surface roughness with respect to time for differ-

ent compositions from two species kMC simulations.

rough.

6.2.2 Aggregate surface morphology and spatial deposition rate pro-

file

One of the most important applications of our work is to simulate and control the deposition

process of thin film solar cells in order to improve solar cell efficiency. However, the

wavelength of visible light (400nm− 700nm) is much larger than the diameter of ZnO

particles (∼ 0.3 nm) and thus, it is necessary to define an aggregate surface morphology at
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197



length scales comparable to visible light wavelength [27].

Specifically, the aggregate surface morphology is computed similarly to the atomic

surface morphology, but on the basis of the aggregate surface height profile, h∆,i, which is

defined as follows:

h∆,i = (hi∆+1 +hi∆+2 + · · ·+h(i+1)∆)/∆,

i = 0,1, . . . ,L/∆−1
(6.5)

where h∆,i denotes the averaged surface height over the length scale of ∆ sites, ∆ denotes

the aggregation size, i.e., the number of lattice sites used to calculate the aggregate surface

height, and L/∆ denotes the number of aggregate sites of size ∆ included in the spatial

domain of the process. For the wavelength of visible light and silicon thin-film solar cells,

the corresponding ∆ is around 400; this follows from the fact that 0.3nm · 400 = 120nm,

which is a length scale comparable to visible light wavelength [27]; the same aggregation

level is used for the TCO layer in this work. The definition of aggregate surface roughness

and slope is given as follows:

r∆ =

[
1

L/∆

L/∆

∑
i=1

(
h∆,i − h̄∆

)2

]1/2

,

m∆ =

[
1

L/∆

L/∆

∑
i=1

(
h∆,i −h∆,i+1

∆

)2
]1/2

.

(6.6)

The dynamics of aggregate roughness and slope are shown in Fig. 6.6 and Fig. 6.7.

The simulation duration is t f = 200 s and 100 independent simulations were carried out to

calculate the expected values of aggregate surface roughness and slope. It is clear that at

the aggregation length ∆ = 400, both
⟨
r2

∆(t f )
⟩

and
⟨
m2

∆(t f )
⟩

are much smaller compared to

their corresponding value at atomic length scale. It is reported that the desired
⟨
r2

∆(t f )
⟩

for
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optimum optical performance of TCO thin film ranges from 500 to 10000 nm2 [31], which

is much larger than available aggregate roughness value with practically viable simulation

time and deposition rate magnitude. This small aggregate roughness at large characteristic

length scales is partly because the operating conditions are spatially uniform throughout the

entire deposition process, i.e., the same deposition rate and substrate temperature are ap-

plied throughout the spatial domain. Thus, a spatially non-uniform deposition rate profile is

necessary for the purpose of optimizing thin film light trapping properties by manipulation

of film aggregate surface roughness and slope at length scales comparable to visible light

wavelength [27]. To this end, we introduce a patterned in space deposition rate profile,

which is defined as follows:

w1(x) = w1,0 +A1 sin
(

2kπ
L

x
)
, A1 ≤ w1,0

w2(x) = w2,0 +A2 sin
(

2kπ
L

x
)
, A2 ≤ w2,0

w(x) = w1(x)+w2(x)

w0(x) = w1,0(x)+w2,0(x), A = A1 +A2

(6.7)

where x is a position along the lattice, w1,0 and w2,0 are the mean deposition rates, A1 and

A2 are the magnitude of the patterned deposition profile, k is the number of sine waves along

the entire lattice, and L is the lattice size. It is assumed that w1 : w2 = w1,0 : w2,0 = A1 : A2 = 24 : 1.

The dynamics of aggregate surface morphology with patterned deposition rate profile

is studied by carrying out a series of simulations at different mean deposition rates w0 with

L = 40000, ∆ = 400, T = 800 K, k = 5 and A = 0.1w0. The evolution profiles for aggre-

gate roughness and slope are shown in Fig. 6.8 and Fig. 6.9. The introduction of patterned
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Figure 6.6: Evolution of expected aggregate surface roughness with respect to time for

different deposition rates (unit of w is layer/s) obtained from kMC simulations.
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Figure 6.7: Evolution of expected aggregate surface slope with respect to time for different

deposition rates (unit of w is layer/s) obtained from kMC simulations.
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deposition rate profiles significantly changes the dynamic profiles of aggregate surface mor-

phology. However, some properties obtained under uniform deposition rate evolution pro-

files remain valid, for example, the expected values of aggregate surface roughness and

slope still increase with mean deposition rate w0. Furthermore, simulations are carried out

at w0 = 2 layer/s with different magnitude, A, values to investigate the influence of the

strength of patterned deposition on the evolution profiles of aggregate surface morphol-

ogy. As shown in Fig. 6.10 and Fig. 6.11, the magnitude, A, has substantial influence on

the dynamics of aggregate surface morphology. Both aggregate roughness and aggregate

slope can be increased substantially by manipulating A compared to the aggregate surface

morphology achieved with a uniform deposition rate profile. Thus, the introduction of a

patterned deposition rate profile expands the range of surface morphology values that can

be obtained and makes surface morphology control at length scales comparable to visible

light wavelength possible.

6.3 Closed-form modeling and parameter estimation

6.3.1 Edward-Wilkinson-type equation of aggregate surface height

Given the complexity of the two species deposition process and the need to control surface

roughness and slope at spatial scales comparable to the wavelength of visible light, the

direct computation of a closed-form model, describing the surface height evolution and is

suitable for controller design, from the microscopic deposition mechanisms is a very dif-
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different mean deposition rates (unit of w0 is layer/s) obtained from kMC simulations.

Patterned deposition with k = 5 and A = 0.1w0.
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Figure 6.10: Evolution of expected aggregate surface roughness with respect to time for

different patterned deposition rate magnitudes obtained from kMC simulations. Patterned

deposition with k = 5 and w0 = 2 layer/s.
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ficult (if not impossible) task. Therefore, a hybrid modeling approach should be used in

which a basic closed-form modeling structure is used and the model parameters are com-

puted such that the predictions of key variables from the closed-form model are close to

the one of the kinetic Monte-Carlo model for a broad set of operating conditions. To this

end, we use an Edward-Wilkinson(EW)-type equation, which is a second-order stochastic

PDE, to describe the aggregate surface height evolution and compute its parameters from

kMC data. The choice of the EW-equation is motivated by the fact that it has been used

in many deposition processes that involve a thermal balance between adsorption and relax-

ation/migration [3]. Specifically, a one-dimensional EW-type equation is used to describe

the evolution of aggregate surface height profile:

∂h∆
∂ t

= w(x, t)+ c2
∂ 2h∆
∂x2 +ξ (x, t) (6.8)

subject to the following periodic boundary conditions

h∆(0, t) = h∆(L, t) (6.9)

∂h∆
∂x

(0, t) =
∂h∆
∂x

(L, t) (6.10)

and the initial condition

h∆(x,0) = h0
∆(x) (6.11)

where x ∈ [0,L] is the spatial coordinate, t is the time, h∆(x, t) is the aggregate surface

height and ξ (x, t) is a Gaussian white noise with zero mean and the following covariance:

⟨
ξ (x, t)ξ (x′, t ′)

⟩
= σ2δ (x− x′)δ (t − t ′) (6.12)
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where δ (·) denotes the Dirac delta function. In Eq. 6.8, the parameters c2 and σ2, corre-

sponding to diffusion effects and stochastic noise respectively, depend on the deposition

rate w(x, t). In the case of a patterned deposition rate profile (control actuation), the term

w(x, t) is of the form:

w(x, t) = w0(t)+A(t)sin
(

2kπ
L

x
)

(6.13)

where w0(t) is the total mean deposition rate and A(t) is the total magnitude of patterned

deposition rate. In the context of two species simulations, w(x, t), w0(t) and A(t) can be

seen as the sum of corresponding values from each component (i.e., w(x, t) = w1(x, t)+

w2(x, t), w0(t) = w1,0(t)+w2,0(t), A(t) = A1(t)+A2(t)) and k is the number of sine waves

between 0 and L.

To analyze the dynamics and obtain a solution of the EW equation suitable for real-time

controller calculations, we first consider the eigenvalue problem of the linear operator of

Eq. 6.8 subject to the periodic boundary conditions of Eqs. 6.9–6.10:

A ϕ̄n(x) = c2
d2ϕ̄n(x)

dx2 = λnϕ̄n(x), (6.14)

∇ jϕ̄n(0) = ∇ jϕ̄n(L), j = 0,1 (6.15)

where λn denotes an eigenvalue, ϕ̄n denotes an eigenfunction, and ∇ j, j = 0, 1, denotes the

gradient of a given function. The solution of the eigenvalue problem of Eqs. 6.14–6.15 is
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as follows:

λn =−4c2π2n2

L2 (6.16)

ϕ1,n(x) = ϕn =

√
2
L

sin(
2nπ

L
x) (6.17)

ϕ2,n(x) = ψn =



√
1
L

n = 0

√
2
L

cos(
2nπ

L
x) n ̸= 0

(6.18)

The solution of the EW equation of Eq. 6.8 can be expanded in an infinite series in terms

of the eigenfunctions of the spatial differential operator of Eq. 6.14 as follows:

h∆(x, t) =
L/(2∆)

∑
n=0

(ϕ1,n(x)z1,n(t)+ϕ2,n(x)z2,n(t)) , (6.19)

where z1,n(t), z2,n(t) are time-varying coefficients.

Substituting the above expansion for the solution, h∆(x, t), into Eq. 6.8 and taking the

inner product with the adjoint eigenfunctions, the following system of infinite stochastic

linear ordinary differential equations (ODEs) for the temporal evolution of the time-varying

coefficients in Eq. 6.19 is obtained:

dz2,0(t)
dt

= w2,0 +ξ2,0(t), (6.20)

dzp,n(t)
dt

= wp,n +λnzp,n +ξp,n(t) (6.21)

p = 1,2, n = 1, · · · , L
2∆

,

where ξp,n(t) =
∫ L

0
ξ (x, t)ϕp,n(x)dx is the projection of the noise ξ (x, t) on the ODE for

zp,n. The noise term, ξp,n, has zero mean and covariance

⟨
ξp,n(t)ξp,n(t ′)

⟩
= σ2δ (t − t ′). (6.22)
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Similarly, wp,n is the projection of w on the ODE for zp,n(t), wp,n =
∫ L

0
ϕp,n(x)w(x)dx

• If p = 1,

w1,n =


0, n ̸= k

A

√
L
2
, n = k

(6.23)

• If p = 2,

w2,n =


0, n ̸= 0

A
√

L, n = 0

(6.24)

The temporal evolution of the variance of mode zp,n can be obtained from the solution

of the linear ODEs of Eqs. 6.20 and 6.21 as follows:

⟨
z2,0(t)

⟩
= w2,0(t − t0) (6.25)

var(z2,0(t)) = σ2(t − t0) (6.26)

⟨z(t)⟩= eλ (t−t0) ⟨z(t0)⟩+
wp

λ
(eλ (t−t0)−1) (6.27)

var(z(t)) = e2λ (t−t0) var(z(t0))+σ2 e2λ (t−t0)−1
2λ

(6.28)

where z(t) = zp,n(t), λ = λn and wp = wp,n for n ̸= 0.

Finally, it is necessary to point out that, when aggregate (discrete) surface height profile

is used, the highest number of modes that can be accurately estimated from h∆(x, t) is

limited by the spatial sampling points, n ≤ L
2∆

; the reader may refer to [57] for a detailed

discussion of the issue.
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6.3.2 Aggregate surface root–mean–square roughness

Aggregate surface roughness of the thin film is defined as the standard deviation of the

aggregate surface height profile from its average height

r∆(t) =

√
1
L

∫ L

0

[
h∆(x, t)− h̄∆(t)

]2 dx (6.29)

where h̄∆(t) =
1
L

∫ L

0
h∆(x, t)dx is the average aggregate surface height. According to Eq. 6.19,

we have

h̄∆(t) =
1
L

∫ L

0
ϕ2,0z2,0dx =

√
1
L

z2,0 (6.30)

Using that

h∆(x, t)− h̄∆(t) =
L/(2∆)

∑
n=1

2

∑
p=1

ϕp,n(x)zp,n(t) (6.31)

the expected aggregate surface roughness,
⟨
r2

∆(t)
⟩
, of Eq. 6.29 can be re-written as

⟨
r2

∆(t)
⟩
=

⟨
1
L

∫ L

0

[
2

∑
p=1

L/(2∆)

∑
n=1

zp,n(t)ϕp,n(x)

]2

dx

⟩

=

⟨
1
L

∫ L

0

L/(2∆)

∑
n=1

(
ϕ 2

1,n(x)z
2
1,n(t)+ϕ 2

2,n(x)z
2
2,n(t)

)
dx

⟩

=
1
L

L/(2∆)

∑
n=1

(⟨
z2

1,n
⟩
+
⟨
z2

2,n
⟩)

(6.32)

where ⟨
z2

p,n
⟩
= var(zp,n)+

⟨
zp,n
⟩2
. (6.33)

The expression of Eqs. 6.32–6.33 will be used in the MPC formulation; see Eq. 6.42

below.
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6.3.3 Aggregate surface root–mean–square slope

The aggregate rms slope is defined as the root–mean–square of the aggregate surface slope

in the x–direction as follows:

m∆(t) =

√
1
L

∫ L

0

(
∂h∆
∂x

)2

dx

=

√√√√1
L

L/∆

∑
i=0

(
h∆(i+1, t)−h∆(i, t)

∆

)2

∆

(6.34)

Using the expansion of Eq. 6.19, Eq. 6.34 can be written as:

⟨
m2

∆(t)
⟩
=

⟨
1
L

L/∆

∑
i=0

(
h∆(i+1, t)−h∆(i, t)

∆

)2

∆

⟩

=

⟨
1

L∆

L/∆

∑
i=0

{
2

∑
p=1

L/(2∆)

∑
n=0

zp,n [ϕp,n(i+1)−ϕp,n(i)]

}2⟩

=

⟨
1

L∆

L/∆

∑
i=0

2

∑
p1=1

L/(2∆)

∑
n1=0

2

∑
p2=1

L/(2∆)

∑
n2=0

zp1,n1zp2,n2dϕp1,n1(i)dϕp2,n2(i)

⟩

=
1

L∆

2

∑
p1=1

L/(2∆)

∑
n1=0

2

∑
p2=1

L/(2∆)

∑
n2=0

⟨
zp1,n1zp2,n2

⟩(L/∆

∑
i=0

dϕp1,n1(i)dϕp2,n2(i)

)
(6.35)

where

L/∆

∑
i=0

dϕp1,n1(i)dϕp2,n2(i)

=
L/∆

∑
i=0

(ϕp1,n1(i+1)−ϕp1,n1(i))(ϕp2,n2(i+1)−ϕp2,n2(i))

=
2
L

(
L/∆

∑
i=0

(
sin(

2n1π
L/∆

(i+1))− sin(
2n1π
L/∆

i)
)(

sin(
2n2π
L/∆

(i+1))− sin(
2n2π
L/∆

i)
))

=
8
L

sin(
n1π
L/∆

)sin(
n2π
L/∆

)
L/∆

∑
i=0

(
cos(

n1π
L/∆

(2i+1))cos(
n2π
L/∆

(2i+1))
)

(6.36)
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or more compactly:

⟨
m2

∆(t)
⟩
=

1
L∆

2

∑
p1=1

L/(2∆)

∑
n1=0

2

∑
p2=1

L/(2∆)

∑
n2=0

⟨
zp1,n1zp2,n2

⟩(L/∆

∑
i=0

dϕp1,n1(i)dϕp2,n2(i)

)

=
1

L∆

2

∑
p=1

L/(2∆)

∑
n=0

⟨
zp,n
⟩2

(
8
L

sin2(
nπ

L/∆
)

L/∆

∑
i=0

(
cos2(

nπ
L/∆

(2i+1))
))

=
2

∑
p=1

L/(2∆)

∑
n=0

Kp,n
⟨
z2

p,n
⟩

(6.37)

where

Kp,n =
8

L2∆
sin2

(
πn

L/∆

)L/(2∆)

∑
i=0

(
cos2

(
nπ

L/∆
(2i+1)

))

=


8

L∆2 sin2
(

πn
L/∆

)
n = 0

4
L∆2 sin2

(
πn

L/∆

)
n ̸= 0

(6.38)

Finally, using that

L/(2∆)

∑
i=0

(
cos2

(
nπ

L/∆
(2i+1)

))

=
L/(2∆)

∑
i=0

(
cos(2nπ(2i+1)/(L/∆))+1

2

)

=



L
∆

if n = 0

L
2∆

if n ̸= 0

(6.39)

⟨
m2

∆(t)
⟩

can be expressed as:

⟨
m2(t)

⟩
=

L/(2∆)

∑
m=1

(
K1,m

⟨
z2

1,m
⟩
+K2,m

⟨
z2

2,m
⟩)

(6.40)

The expression of Eq. 6.40 will be used in the MPC formulation; please see Eq. 6.42

below.
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6.3.4 Parameter estimation

Referring to the EW equation of Eq. 6.8, there are two model parameters, c2 and σ2, that

must be determined as functions of the total mean deposition rate w0 and of the total pat-

terned deposition rate magnitude A. These parameters affect the dynamics of aggregate

surface roughness and slope and can be estimated by fitting the predicted evolution profiles

for aggregate surface roughness and slope from the EW equation to profiles of aggregate

surface roughness and slope from kMC simulations. Least-square methods are used to es-

timate the model parameters so that the EW-model predictions are close in a least-square

sense to the kMC simulation data. Comparison of the predictions of both models are shown

in Fig. 6.12. Based on c2 and σ2 values obtained from these fitting results, different func-

tions are chosen to estimate c2 and σ2 values at different w with the least-square method.

Specifically, a linear function with respect to log(w) is chosen to estimate log(c2) and a

linear function with respect to w is chosen to estimate σ2, and the expressions are given as

follows:

c2(w) = wa
c2
· eb

c2
(6.41)

σ2 = aσ2w+bσ2

where ac2 , bc2 , aσ2 and bσ2 are time-invariant fitting model parameters. The fitting results

are shown in Fig. 6.13 and Fig. 6.14. To verify the fitting function, two more groups of

simulations are carried out with larger deposition rates (w = 5 and 10 layer/s) and fitted

to EW equation, and the obtained values for c2 and σ2 are used to extend the fitting curve
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to show the validity of the chosen fitting functions. It is necessary to clarify that these

fitting results are based on kMC simulations with uniform deposition rate profiles (A =

0). For simulations with patterned deposition rate profiles (A ̸= 0), it is assumed that c2

and σ2 models obtained from uniform deposition rate simulations (A = 0) can be used

to estimate c2 and σ2 values. To verify this assumption, the solutions of EW equations

for aggregate surface evolution with patterned deposition rate profile are obtained based

on c2 and σ2 models from open-loop kMC data with uniform deposition rate, and these

dynamic evolution profiles are compared with open-loop kMC dynamic evolution profiles

with patterned deposition rate profiles. As shown in Fig. 6.15 and Fig. 6.16, c2 and σ2

models from open-loop kMC data with uniform deposition rate can be used in the EW

equation to predict aggregate surface roughness and slope of the kMC model with patterned

deposition rate. We note that the approach presented for the computation of the parameters

of the closed-form PDE model of Eq. 6.8 is not limited to the specific PDE system and can

be used in the context of other dissipative PDE systems that model the evolution of surface

height of deposition processes. Finally, referring to the dependence of surface roughness

and slope on lattice size, we note that both atomic and aggregate surface roughness and

slope increase with increasing lattice size (this issue has been extensively studied in another

work [24]); however, the proposed approach to closed-form modeling and MPC design is

scalable and can be used in the context of different lattice size kMC models as long as the

parameters of the stochastic PDE model of Eq. 6.8 and their dependence on deposition rate

are computed on the basis of data obtained from the lattice size considered.
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Figure 6.12: Evolution of expected aggregate surface roughness with respect to time for

different spatially-uniform deposition rates obtained from kMC simulations (solid lines

with symbols).The analytical solutions for the aggregate surface roughness obtained from

the corresponding EW equations with the fitted values for c2 and σ2 are also shown (dashed

lines).
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Figure 6.13: c2 values for different spatially-uniform deposition rates w. The solid line is

the result of a linear fitting function and it is the log(c2) versus log(w) relationship used

by the predictive controller. The first 5 blue cross markers are used to generate the fitting

function, and the last 2 red circle markers are used to test the validity of the fitting function.
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Figure 6.14: σ2 values for different spatially-uniform deposition rates w. The solid line is

the result of a linear fitting function.The first 5 blue cross markers are used to generate the

fitting function, and the last 2 red circle markers are used to test the validity of the fitting

function.
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Figure 6.15: Evolution of expected aggregate surface roughness for different patterned

deposition magnitudes from the kMC model (solid lines with symbols) and expected ag-

gregate roughness solutions from the corresponding EW equations (dashed lines). The

c2 and σ2 values of the EW equations were estimated from open-loop aggregate surface

roughness kMC model data with spatially-uniform deposition rates.
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Figure 6.16: Evolution of expected aggregate surface slope for different patterned deposi-

tion magnitudes from the kMC model (solid lines with symbols) and expected aggregate

slope solutions from the corresponding EW equations (dashed lines). The c2 and σ2 val-

ues of the EW equations were estimated from open-loop aggregate surface roughness kMC

model data with spatially-uniform deposition rates.
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6.4 Model predictive control

In this section, we design a model predictive controller based on the dynamic models of

aggregate surface roughness and slope to simultaneously control the expected values of

aggregate surface roughness and slope square to desired levels. The dynamics of aggregate

surface roughness and slope of the TCO thin film are described by the EW equation of

aggregate surface height of Eq. 6.8 with the computed parameters of subsection 6.3.4. State

feedback control is considered in this work, i.e., h∆(x, t) is assumed to be available for

feedback. In practice, real-time surface height measurements can be obtained via atomic

force microscopy (AFM) systems.

6.4.1 MPC formulation for regulation of aggregate roughness and slope

We consider the problem of regulation of aggregate surface roughness and slope to desired

levels within a model predictive control framework. Due to the stochastic nature of the vari-

ables, the expected values of aggregate surface roughness and slope,
⟨
r2

∆(t)
⟩

and
⟨
m2

∆(t)
⟩
,

are chosen as the control objectives. The total mean deposition rate, w0 (w0 = w1,0+w2,0),

and magnitude of patterned deposition rate, A (A = A1 +A2), are chosen as the manipu-

lated inputs; the substrate temperature is fixed at T = 800K during all closed-loop simu-

lations. To account for a number of practical considerations, several constraints are added

to the control problem. In particular, since w(x) ≥ 0, the constraint 0 ≤ A1 ≤ w1,0 and

0 ≤ A2 ≤ w2,0 are imposed to ensure w(x, t) > 0, ∀(x, t). To ensure the validity of the
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closed-form process model, there is a constraint on the range of variation of the mean de-

position rate. Another constraint is imposed on the rate of change of the mean deposition

rate to account for actuator limitations. The control action at time t is obtained by solving

a finite-horizon optimal control problem. The cost function in the optimal control prob-

lem includes penalty on the deviation of
⟨
r2

∆
⟩

and
⟨
m2

∆
⟩

from their respective set-point

values. Different weighting factors are assigned to the aggregate surface roughness and

slope. Aggregate surface roughness and slope have very different magnitudes, therefore,

relative deviations are used in the formulation of the cost function to make the magnitude

of the two terms comparable in the cost function. The optimization problem is subject to

the dynamics of the aggregate surface height of Eq. 6.8. The optimal w0 and A values are

calculated at each sampling time by solving a finite-dimensional optimization problem in a

receding horizon fashion. Specifically, the MPC problem at time t is formulated as follows:

min
w0,A

f (w0,A) = qr2

[
r2

set −
⟨
r2

∆(t f )
⟩

r2
set

]2

+qm2

[
m2

set −
⟨
m2

∆(t f )
⟩

m2
set

]2

(6.42)

where

⟨
r2

∆(t f )
⟩
=

1
L

L/(2∆)

∑
n=1

2

∑
p=1

⟨
z2

p,n(t f )
⟩
,
⟨
m2

∆(t f )
⟩
=

L/(2∆)

∑
n=1

2

∑
p=1

(
Kp,n

⟨
z2

p,n(t f )
⟩)

(6.43)

⟨
z2

p,n(t f )
⟩
= var(zp,n(t f ))+

⟨
zp,n(t f )

⟩2 (6.44)⟨
zp,n(t f )

⟩
= eλn(t f−t) ⟨zp,n(t)

⟩
+

wp

λn
(eλn(t f−t)−1) (6.45)

var(zp,n(t f )) = e2λn(t f−t) var(zp,n(t))+σ2(w)
e2λn(t f−t)−1

2λn
(6.46)

λn =−4c2(w)π2

L2 n2 (6.47)
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and

c2(w0) = w
ac2
0 · eb

c2
(6.48)

σ2(w0) = aσ2w0 +bσ2 (6.49)

subject to:

wmin ≤ w0 ≤ wmax, |w0(t)−w0(t −dt)| ≤ δwmax, (6.50)

w1 = w1,0 +A1 sin
(

kπx
L

)
, 0 ≤ A1 ≤ w1,0 (6.51)

w2 = w2,0 +A2 sin
(

kπx
L

)
, 0 ≤ A2 ≤ w2,0 (6.52)

where t is the current time, dt is the sampling time, qr2 and qm2 are the weighting penalty

factors for the deviations of
⟨
r2

∆
⟩

and
⟨
m2

∆
⟩

from their respective set-points at the ith pre-

diction step, wmin and wmax are the lower and upper bounds on the mean deposition rate,

respectively, and δwmax is the limit on the rate of change of the mean deposition rate. Given

the batch nature of the deposition process, the MPC of Eq. 6.42 includes penalty on the dis-

crepancy of the expected surface roughness and slope at the end of the deposition from the

set-points values of surface roughness and slope that lead to desired film reflectance levels.

The optimal control actions are obtained from the solution of the multivariable opti-

mization problem of Eq. 6.42 and are applied to the deposition process model over dt (i.e.,

either the EW equation model or the kMC model) during the time interval (t, t + dt). At

time t + dt, a new measurement of aggregate surface roughness and slope is received by

the controller and the MPC problem of Eq. 6.42 is solved for the next set of control ac-

tions. An interior point method optimizer, IPOPT [51], is used to solve the optimization
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problem in the MPC formulation. With respect to the stability of the closed-loop system,

we note the following: the deposition process considered including atom adsorption and

atom migration is an inherently stable process; this is evident by the negative values of all

the eigenvalues of the spatial differential operator of the Edwards-Wilkinson-type equation

(Eq. 6.8) used to model the evolution of surface height for all values of the deposition rare.

Given this stability property of the open-loop process and the specific MPC design, the

stability of the closed-loop system is ensured.

6.5 Simulation results

In this section, the model predictive controller of Eq. 6.42 is applied to both the one-

dimensional EW equation type model of Eq. 6.8 and the one-dimensional kMC model

of the thin film growth process. The mean deposition rate ranges from 0.1 to 2 layer/s, the

substrate temperature is fixed at 800K, the lattice size of the kMC model is fixed at 40,000

sites, the aggregation size is fixed at 400 to make the results relevant to thin film solar cell

applications and five sine waves are used in the patterned deposition rate profile. The sam-

pling time is 10 s; this sampling time is enough for the MPC to carry out the calculations

needed to compute the control action. In addition to the deposition rate, the temperature

may be used as a manipulated input but it should vary in space to induce substantial aggre-

gate surface roughness and slope values at spatial scales corresponding to the visible light

wavelength. Each closed-loop simulation lasts for 200 s. Expected values are calculated

from 10 independent closed-loop system simulation runs. In all the simulations, the aggre-
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gate surface roughness and slope set-points remain the same, specifically, r2
set = 1000 and

m2
set = 0.005.

6.5.1 MPC application to EW equation model

In this subsection, the EW equation model is utilized in the closed-loop control problem as

the plant model. First, the problem of regulating aggregate surface roughness is considered.

In this problem, the cost function includes only penalty on the deviation of the expected

aggregate surface roughness square from its set-point, i.e., qr2 = 1 and qm2 = 0. Fig. 6.17

shows the evolution profile of
⟨
r2

∆(t)
⟩

under the model predictive controller of Eq. 6.42.

It is clear that the controller drives the expected aggregate surface roughness to its set-

point at the end of the simulation. Fig. 6.18 shows the input profiles of w0 and A for these

simulations. It is necessary to point out that during the first 40 seconds of the simulation

time, the optimal solutions of w0 are constrained by the rate of change constraint and the

optimal solutions of A are bounded by the values of w0.

Next, the aggregate surface slope is regulated. The cost function includes only penalty

on the deviation of the expected value of aggregate surface slope square from its set-point

(qm2 = 1, qr2 = 0). Fig. 6.19 shows the evolution profile of the expected aggregate slope

square. The aggregate slope reaches its set-point at t = 200s. Fig. 6.20 displays the input

profile in this scenario.

The next step is the simultaneous regulation of aggregate surface roughness and slope.

The weighting factor of aggregate slope square, qr2 , is kept at 1, while the weighting factor
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Figure 6.17: Profile of expected aggregate surface roughness square with EW equation as

the plant model. qr2 = 1, qm2 = 0 and r2
set = 1000.
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Figure 6.18: Input profiles for aggregate roughness-only control problem with EW equation

as the plant model. qr2 = 1, qm2 = 0 and r2
set = 1000.
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Figure 6.19: Profile of expected aggregate surface slope square with EW equation as the

plant model. qr2 = 0, qm2 = 1 and m2
set = 0.005.
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Figure 6.20: Input profiles for aggregate slope-only control problem with EW equation as

the plant model. qr2 = 0, qm2 = 1 and m2
set = 0.005.
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Figure 6.21:
⟨
r2

∆(t f )
⟩

and
⟨
m2

∆(t f )
⟩

at the end of closed-loop simulations (t = 200s) for

different penalty weighting factors in the predictive controller with EW equation as the

plant model. 10−2 ≤ qm2 ≤ 104, qr2 = 1, r2
set = 1000 and m2

set = 0.005.

of aggregate roughness square, qm2 , increases from 10−2 to 104. Fig. 6.21 shows the values

of expected aggregate surface roughness and slope at the end of closed-loop simulations

(t f = 200s) as a function of qm2/qr2 . It can be seen that as the weighting on aggregate

roughness increases, the expected value of aggregate roughness approaches its set-point at

the cost of larger deviation of the aggregate slope from its set-point.
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6.5.2 MPC application to kMC model

In this subsection, the kMC model is used in the closed-loop control problem as the plant

model, while all the other settings remain the same. Fig. 6.22 shows the aggregate sur-

face roughness in the case of roughness-only control while Fig. 6.23 shows the aggregate

surface slope in the case of slope-only control. From both plots, we see that both aggre-

gate roughness and slope successfully reach their set-points at the end of the simulations

(t f = 200 s). Furthermore, the closed-loop evolution profiles with kMC as the plant model

are very similar to the closed-loop profiles that use the EW equation as the plant model,

which implies that the EW equation model used in this work can accurately predict the

kMC simulation results.

Simultaneous regulation of aggregate surface roughness and slope has also been in-

vestigated. Similar to the case where the EW equation is used as the plant model, the

weighting factor of aggregate slope square, qr2 , is kept at 1, and the weighting factor of

aggregate roughness square, qm2 , ranges from 10−2 to 104. Fig. 6.24 shows the values of

expected aggregate roughness and slope at the end of simulations as a function of qm2/qr2 .

It can be seen that the expected value of aggregate roughness approaches its set-point as

qm2 increases at the cost of larger deviation of the aggregate slope from its set-point.

Though with the current actuator design it is difficult to reach the set-points of aggregate

roughness and slope at the same time, the actuator design can be easily improved to reach

this goal. For example, one way to do this is to introduce a spatially distributed deposition

rate profile with multiple sine waves that have independently controlled magnitude values,
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Figure 6.22: Profile of expected aggregate surface roughness square with kMC model as

the plant model. qr2 = 1, qm2 = 0 and r2
set = 1000.
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Figure 6.23: Profile of expected aggregate surface slope square with kMC model as the

plant model. qr2 = 0, qm2 = 1 and m2
set = 0.005.
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Figure 6.24:
⟨
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⟩

and
⟨
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∆(t f )
⟩

at the end of closed-loop simulations (t = 200s) for

different penalty weighting factors in the predictive controller with kMC model as the plant

model. 10−2 ≤ qm2 ≤ 104, qr2 = 1, r2
set = 1000 and m2

set = 0.005.
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and the mean deposition rate and the magnitude value of each sine wave are used as the

manipulated variables in the control problem. In this way, set-points of both aggregate

roughness and slope can be achieved simultaneously; for details on this approach, please

see [26].
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Chapter 7

Surface Morphology Control of

Transparent Conducting Oxide Layers

for Improved Light Trapping Using

Wafer Grating and Feedback Control

7.1 Introduction

This chapter focuses on the application of microscopic modeling and analysis of a TCO

thin film deposition process on a sinusoidal grated wafer, and model predictive control is

utilized to control the surface morphology to desired values. To demonstrate the approach,

we focus on a two species thin film deposition process using a grated initial lattice, which
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is modeled via kinetic Monte-Carlo simulation. The initial lattice is defined based on a

sinusoidal function with proper magnitude (M = 100 layers) and 5 sine waves are placed

across the lattice. Since a square lattice is used in the model, the initial heights of all the

sites are rounded to the nearest lattice site. Different deposition mechanisms are utilized

for each component, ZnO and Al. Specifically, a random deposition with surface relax-

ation (RDSR) mechanism is used for Al and a deposition/migration mechanism is used for

ZnO [23]. Since a large-lattice kinetic Monte-Carlo model cannot be used as the basis for

controller design and real-time controller calculations, an Edwards-Wilkinson-type equa-

tion is used to model the surface evolution and to form the basis for feedback controller

design within a model predictive control framework. The cost function of the predicted

controller involves penalties on both surface roughness and slope, following [26]. Ex-

tensive simulation studies demonstrate that the proposed controller and patterned actuator

design successfully regulate surface roughness and slope at visible light wavelength spatial

scales to desired set-point values at the end of the deposition.

7.2 Two species thin film deposition process description

and modeling

In this section, a one-dimensional solid-on-solid (SOS) on-lattice model is used to simu-

late the two species thin film deposition process via a kinetic Monte Carlo method, which

includes three microscopic processes: an adsorption process, in which particles are in-
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corporated onto the film from the gas phase, a migration process and a surface relaxation

process, in which surface particles move to adjacent sites [35, 34, 52, 53]. In this work, a

square lattice is selected to represent the structure of the film and a sinusoidal grated wafer

is used to initialize the deposition lattice, as shown in Fig. 7.1. The initial heights of all the

particle sites are calculated as follows:

h0(x)≈ M · sin(
2πx

p
)+M, x ∈ [0,L] (7.1)

All particles are modeled as identical hard spheres and the centers of the particles deposited

on the film are located on the lattice sites. If the initial heights of the particles, h0(x), are not

integers, they are approximated with the closest integers to satisfy the assumptions of on-

lattice models. The diameter of the particles equals the distance between two neighboring

sites. The width of the lattice is fixed so that the lattice contains a fixed number of sites

in the lateral direction. The new particles are always deposited from the top side of the

lattice with vertical incidence; see Fig. 7.1. Particle deposition results in film growth in the

direction normal to the lateral direction. The direction normal to the lateral direction is thus

designated as the growth direction. The number of sites in the lateral direction is defined

as the lattice size and is denoted by L. Periodic boundary conditions (PBCs) are applied at

the edges of the lattice in the lateral direction.

The top particles of each column are defined as the surface particles and the positions

of the centers of all surface particles form the surface height profile. The number of nearest

neighbors of a surface particle ranges from zero to two. A surface particle with zero nearest

neighbors is possible to move to one of its adjacent columns with equal probability. A

238



Figure 7.1: Two species thin film growth process on a solid-on-solid one-dimensional

square lattice with sinusoidal grated wafer.
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surface particle with one nearest neighbor is possible to move to its adjacent column with

lower height. A surface particle with two nearest neighbors cannot move. Particles that are

not on the film surface cannot move.

The overall deposition rate, w, is expressed in the units of layers per second and is

a superposition of two components, ZnO deposition rate w1 and Al deposition rate w2

(w = w1+w2). The deposition ratio between ZnO and Al is 24 : 1 [8]. Different deposition

mechanisms are used for each component. Random deposition with surface relaxation

(RDSR) mechanism is used for Al and deposition/migration mechanism is used for ZnO.

For a description and comparison between these two mechanisms, please refer to [25]. The

migration rate (probability) follows an Arrhenius-type law with a pre-calculated activation

energy barrier that depends on the local environment of the particle, i.e., the number of the

nearest neighbors of the particle chosen for a migration event. The migration rate of the ith

surface particle is calculated as follows:

rm = ν0 exp
(
−Es +niEn

kBT

)
(7.2)

where ν0 denotes the pre-exponential factor, ni is the number of the nearest neighbors of

the ith particle and can take the values of 0 and 1, (rm is zero when ni = 2 since in the one-

dimensional lattice this surface particle is fully surrounded by other particles and cannot

migrate), kB is the Boltzmann’s constant, Es is the contribution to the activation energy

barrier from the site itself, and En is the contribution to the activation energy barrier from

each nearest neighbor. In this work, Es = 3.4 eV and En is assumed to be zero [39]. T

is the substrate temperature of the thin film and in this work T = 800 K [38]. Since the
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film is thin, the temperature is assumed to be uniform throughout the film. For a detailed

description and study of these models, please refer to [23].

7.2.1 Surface morphology at atomic level

Thin film surface morphology, which includes surface roughness and slope, is a very impor-

tant surface property influencing the light properties of TCO thin films. Surface roughness

is defined as the root-mean-square (rms) of the surface height profile as follows [24]:

r =

[
1
L

L

∑
i=1

(hi − h̄)2

]1/2

(7.3)

where r denotes surface roughness, hi, (i = 1, 2, . . . , L), is the surface height at the i-th

position in the unit of layer, L denotes the lattice size, and the surface mean height is given

by h̄ =
1
L

L

∑
i=1

hi.

In addition to surface roughness, the surface mean slope is defined as the rms of the

surface gradient profile as follows [24]:

m =

[
1
L

L

∑
i=1

h2
s,i

]1/2

(7.4)

where m denotes the rms slope and hs,i is the surface slope at the i-th lattice site, which is a

dimensionless variable. The surface slope, hs,i is computed as follows:

hs,i =
hi+1 −hi

1
. (7.5)
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7.2.2 Aggregate surface morphology and spatial deposition rate pro-

file

In the context of TCO manufacturing for improved solar cell performance, the roughness

and slope should be calculated at a length scale that is comparable to the wave length of

visible light. Thus, aggregate surface morphology should be used in this work and the

aggregation length, ∆, is 400. [24, 27]. Specifically, the aggregate surface morphology is

computed similarly to the atomic surface morphology, but on the basis of the aggregate

surface height profile, h∆,i, which is defined as follows:

h∆,i = (hi∆+1 +hi∆+2 + · · ·+h(i+1)∆)/∆,

i = 0,1, . . . ,L/∆−1
(7.6)

where h∆,i denotes the averaged surface height over the length scale of ∆ sites, ∆ denotes

the aggregation size, i.e., the number of lattice sites used to calculate the aggregate surface

height, and L/∆ denotes the number of aggregate sites of size ∆ included in the spatial

domain of the process. For the wavelength of visible light and silicon thin-film solar cells,

the corresponding ∆ is around 400; this follows from the fact that 0.3 ·400= 120 nm, which

is a length scale comparable to visible light wavelength [27]; the same aggregation level

is used for the TCO layer in this work. The definition of aggregate surface roughness and

slope is given as follows:

r∆ =

[
1

L/∆

L/∆

∑
i=1

(
h∆,i − h̄∆

)2

]1/2

,

m∆ =

[
1

L/∆

L/∆

∑
i=1

(
h∆,i −h∆,i+1

∆

)2
]1/2

.

(7.7)
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To investigate the properties of aggregate roughness and slope in this model, multiple

sets of simulations were carried out with different parameter values. First, simulations were

carried out to investigate the surface morphology dependence on wafer grating parameters,

specifically, magnitude (M) and period (P) of grating. As shown in Fig. 7.2 and Fig. 7.3,

W = 5 layer/s, T = 800 K, M = 100 layers and 1000 independent simulations were car-

ried out to calculate the expected values of aggregate surface roughness and slope. It is

clear that as the period, P, decreases from 40000 to 4000, aggregate slope increases by two

orders of magnitude while aggregate roughness decreases slightly. As shown in Fig. 7.4

and Fig. 7.5, with same T and W as in the previous simulation set and P = 8000, as the

grating magnitude increases, both aggregate roughness and slope increase dramatically.

Subsequently, more simulations were carried out with the same wafer grating parameters,

P = 8000 and M = 100 layers, but different T and W . From Fig. 7.6 to Fig. 7.9, we observe

that both the temperature, T , and the uniform deposition rate, W , have very limited influ-

ence on aggregate roughness and slope. This is as expected since wafer grating influences

the shape of the surface in a macroscopic way, while T and W influence the surface in a

microscopic way via the deposition and migration rates and they are not strong enough

to influence the shape of the surface within a practically meaningful deposition time. In

order to induce large enough aggregate surface roughness and slope to precisely control

the surface morphology on a sinusoidal grated wafer, a spatially non-uniform deposition

rate profile is necessary for the purpose of optimizing thin film light trapping properties by

manipulation of film aggregate surface roughness and slope at length scales comparable to
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visible light wavelength [27]. To this end, a spatially patterned deposition rate profile is

used in this work, which is defined as follows:

w1(x) = w1,0 +A1 sin
(

2kπ
L

x
)
, A1 ≤ w1,0

w2(x) = w2,0 +A2 sin
(

2kπ
L

x
)
, A2 ≤ w2,0

w(x) = w1(x)+w2(x)

w0(x) = w1,0(x)+w2,0(x), A = A1 +A2

(7.8)

where x is a position along the lattice, w1,0 and w2,0 are the mean deposition rates, A1 and

A2 are the magnitude of the patterned deposition profile, k is the number of sine waves

along the entire lattice. It is considered that w1 : w2 = w1,0 : w2,0 = A1 : A2 = 24 : 1.

The dynamics of aggregate surface morphology with patterned deposition rate profile

is studied by carrying out a series of simulations at different mean deposition rates w0 with

M = 100 layers, P = 8000, L = 40000, ∆ = 400, T = 800 K, k = 1 and A = 0.1w0. The

evolution profiles for aggregate roughness and slope are shown in Fig. 7.10 and Fig. 7.11.

The introduction of patterned deposition rate profiles significantly changes the dynamic

profiles of aggregate surface morphology, and the values of both aggregate roughness and

slope increase by several orders of magnitude. Furthermore, simulations are carried out

at w0 = 2 layer/s with different magnitude, A, values to investigate the influence of the

strength of patterned deposition on the evolution profiles of aggregate surface morphology.

As shown in Fig. 7.12 and Fig. 7.13, the magnitude, A, has a substantial influence on

the dynamics of aggregate surface morphology. Both aggregate roughness and aggregate

slope can be increased substantially by manipulating A compared to the aggregate surface
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Figure 7.2: Evolution of expected aggregate surface roughness with respect to time for

different grating period lengths obtained from kMC simulations.
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Figure 7.3: Evolution of expected aggregate surface slope with respect to time for different

grating period lengths obtained from kMC simulations.
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Figure 7.4: Evolution of expected aggregate surface roughness with respect to time for

different grating magnitudes obtained from kMC simulations.
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Figure 7.5: Evolution of expected aggregate surface slope with respect to time for different

grating magnitudes obtained from kMC simulations.
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Figure 7.6: Evolution of expected aggregate surface roughness with respect to time for

different uniform deposition rates obtained from kMC simulations.
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Figure 7.7: Evolution of expected aggregate surface slope with respect to time for different

uniform deposition rates obtained from kMC simulations.
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Figure 7.8: Evolution of expected aggregate surface roughness with respect to time for

different temperatures obtained from kMC simulations.
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Figure 7.9: Evolution of expected aggregate surface slope with respect to time for different

temperatures obtained from kMC simulations.
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Figure 7.10: Evolution of expected aggregate surface roughness with respect to time for

different mean deposition rates (unit of w0 is layer/s) obtained from kMC simulations.

Patterned deposition with k = 1, P = 8000, M = 100 layer/s and A = 0.1w0.

morphology achieved with a uniform deposition rate profile. Thus, the introduction of a

patterned deposition rate profile, in conjunction with wafer grating, expands the range of

surface morphology values that can be obtained and makes surface morphology control at

length scales comparable to visible light wavelength possible.
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Figure 7.11: Evolution of expected aggregate surface slope with respect to time for different

mean deposition rates (unit of w0 is layer/s) obtained from kMC simulations. Patterned

deposition with k = 1,P=8000,M=100layer/s, P = 8000, M = 100 layer/s and A = 0.1w0.
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Figure 7.12: Evolution of expected aggregate surface roughness with respect to time for

different patterned deposition rate magnitudes obtained from kMC simulations. Patterned

deposition with k = 1, P = 8000, M = 100 layer/s and w0 = 2 layer/s.
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Figure 7.13: Evolution of expected aggregate surface slope with respect to time for different

patterned deposition rate magnitudes obtained from kMC simulations. Patterned deposition

with k = 1, P = 8000, M = 100 layer/s and w0 = 2 layer/s.
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7.3 Closed-form modeling and parameter estimation

7.3.1 Edward-Wilkinson-type equation of aggregate surface height

Given the complexity of the two species deposition process and the need to control sur-

face roughness and slope at spatial scales comparable to the wavelength of visible light,

the direct computation of a closed-form model describing the surface height evolution suit-

able for controller design, from the microscopic deposition mechanisms is a very difficult

task. Therefore, a hybrid modeling approach should be used in which a basic closed-form

modeling structure is first postulated and the model parameters are computed such that

the predictions of key variables from the closed-form model are close to the one of the

kinetic Monte-Carlo model for a broad set of operating conditions. It is well known that

an Edward-Wilkinson(EW)-type equation, which is a second-order stochastic PDE, can be

used in this case to describe and predict the aggregate surface height profile [27, 25] as

follows:

∂h∆
∂ t

= w(x, t)+ c2
∂ 2h∆
∂x2 +ξ (x, t) (7.9)

subject to the following periodic boundary conditions

h∆(0, t) = h∆(L, t) (7.10)

∂h∆
∂x

(0, t) =
∂h∆
∂x

(L, t) (7.11)
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In this work, the use of a sinusoidal grated wafer introduces a non-zero initial condition, as

follows:

h∆(x,0) = h0
∆(x) = M∆ · sin(

2πx
L

)+M∆ (7.12)

where h∆(x, t) is the aggregate surface height, x ∈ [0,L/∆] is the spatial coordinate and M∆

is the magnitude of wafer grating at the aggregate length scale. ξ (x, t) is a Gaussian white

noise with zero mean and the following covariance:

⟨
ξ (x, t)ξ (x′, t ′)

⟩
= σ2δ (x− x′)δ (t − t ′) (7.13)

where δ (·) denotes the Dirac delta function. In Eq. 7.9, the parameters c2 and σ2 depend

on the deposition rate w(x, t) [26]. A patterned deposition rate profile (control actuation),

w(x, t), is used of the form:

w(x, t) = w0(t)+A(t)sin
(

2kπ
L

x
)

(7.14)

where w0(t) is the total mean deposition rate and A(t) is the total magnitude of patterned

deposition rate.

To analyze the dynamics and obtain a solution of the EW equation suitable for real-time

controller calculations, we first consider the eigenvalue problem of the linear operator of

Eq. 7.9 to obtain its eigenvalues and eigenfunctions. Then the aggregate surface height

profile can be expanded in an infinite series in terms of the eigenfunctions times time-

varing coefficients. Substituting this expansion into Eq. 7.9 and taking the inner product

with the adjoint eigenfunctions, the stochastic PDE can be transformed into a system of
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infinite stochastic linear ordinary differential equations (ODEs) of the form:

dz2,0(t)
dt

= w2,0 +ξ2,0(t), (7.15)

dzp,n(t)
dt

= wp,n +λnzp,n +ξp,n(t) (7.16)

p = 1,2, n = 1, · · · , L
2∆

,

where ξp,n(t) =
∫ L

0
ξ (x, t)ϕp,n(x)dx is the projection of the noise ξ (x, t) on the ODE for

zp,n. The noise term, ξp,n, has zero mean and covariance

⟨
ξp,n(t)ξp,n(t ′)

⟩
= σ2δ (t − t ′). (7.17)

Similarly, wp,n is the projection of w on the ODE for zp,n(t), wp,n =
∫ L

0
ϕp,n(x)w(x)dx

• If p = 1,

w1,n =


0, n ̸= k

A

√
L
2
, n = k

(7.18)

• If p = 2,

w2,n =


0, n ̸= 0

A
√

L, n = 0

(7.19)

The temporal evolution of the variance of mode zp,n can be obtained from the solution
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of the linear ODEs of Eqs. 7.15 and 7.16 as follows:

⟨
z2,0(t)

⟩
= w2,0(t − t0) (7.20)

var(z2,0(t)) = σ2(t − t0) (7.21)

⟨z(t)⟩= eλ (t−t0) ⟨z(t0)⟩+
wp

λ
(eλ (t−t0)−1) (7.22)

var(z(t)) = e2λ (t−t0) var(z(t0))+σ2 e2λ (t−t0)−1
2λ

(7.23)

where z(t) = zp,n(t), λ = λn, wp = wp,n for n ̸= 0 and z(t0) = zp,n(t0) can be calculated as

follows:

• If p = 1,

z1,n(t0) =


0, n ̸= P

M∆

√
L
2
, n = P

(7.24)

• If p = 2,

z2,n(t0) = 0. (7.25)

For the details on how to solve Eq. 7.9, please refer to [25].

7.3.2 Aggregate surface root–mean–square roughness and slope

Aggregate surface roughness of the thin film is defined as the standard deviation of the

aggregate surface height profile from its average height

r∆(t) =

√
1
L

∫ L

0

[
h∆(x, t)− h̄∆(t)

]2 dx (7.26)
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where h̄∆(t) =
1
L

∫ L

0
h∆(x, t)dx is the average aggregate surface height. It can be shown

that [25],

⟨
r2

∆(t)
⟩
=

1
L

L/(2∆)

∑
n=1

(⟨
z2

1,n
⟩
+
⟨
z2

2,n
⟩)

(7.27)

where ⟨
z2

p,n
⟩
= var(zp,n)+

⟨
zp,n
⟩2
. (7.28)

The expression of Eqs. 7.27–7.28 will be used in the MPC formulation; see Eq. 7.33

below.

Similarly, the aggregate rms slope is defined as the root–mean–square of the aggregate

surface slope in the x–direction as follows:

m∆(t) =

√
1
L

∫ L

0

(
∂h∆
∂x

)2

dx

=

√√√√1
L

L/∆

∑
i=0

(
h∆(i+1, t)−h∆(i, t)

∆

)2

∆

(7.29)

It can be shown that [25],

⟨
m2

∆(t)
⟩
=

2

∑
p=1

L/(2∆)

∑
n=0

Kp,n
⟨
z2

p,n
⟩

=
L/(2∆)

∑
m=1

(
K1,m

⟨
z2

1,m
⟩
+K2,m

⟨
z2

2,m
⟩) (7.30)

where

Kp,n =
8

L2∆
sin2

(
πn

L/∆

)L/(2∆)

∑
i=0

(
cos2

(
nπ

L/∆
(2i+1)

))

=


8

L∆2 sin2
(

πn
L/∆

)
n = 0

4
L∆2 sin2

(
πn

L/∆

)
n ̸= 0

(7.31)
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The expression of Eq. 7.30 will be used in the MPC formulation; please see Eq. 7.33

below.

7.3.3 Parameter estimation

The two model parameters, c2 and σ2, in the EW equation of Eq. 7.9, can be determined

as functions of the total mean deposition rate w0 and of the total patterned deposition rate

magnitude A. These parameters affect the dynamics of aggregate surface roughness and

slope and can be estimated by fitting the predicted evolution profiles for aggregate surface

roughness and slope from the EW equation to profiles of aggregate surface roughness and

slope from kMC simulations. Least-square methods are used to estimate the model pa-

rameters so that the EW-model predictions are close in a least-square sense to the kMC

simulation data. Comparison of the predictions of both models are shown in Fig. 7.14.

Based on c2 and σ2 values obtained from these fitting results, two linear functions are

chosen to estimate c2 and σ2 values at different w with the least-square method:

c2(w) = ac2 ·w+bc2 (7.32)

σ2 = aσ2 ·w+bσ2

where ac2 , bc2 , aσ2 and bσ2 are time-invariant fitting model parameters. The fitting results

are shown in Fig. 7.15 and Fig. 7.16. To verify the fitting functions, two more groups of

simulations were carried out with larger deposition rates (w = 17 and 21 layer/s) and fitted

to EW equation, and the obtained values for c2 and σ2 are used to extend the fitting curve to

show the validity of the chosen fitting functions. It has been verified that fitting results based
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on kMC simulation with uniform deposition rate profiles (A = 0) can be used to estimate

c2 and σ2 values for simulations with spatially distributed deposition rate profiles [27], and

this assumption is still used in this work.

7.4 Model predictive control

In this section, a model predictive controller is designed based on the dynamic models of

aggregate surface roughness and slope to simultaneously control the expected values of

aggregate surface roughness and slope square to desired levels. The dynamics of aggregate

surface roughness and slope of the TCO layers are described by both the kMC model and

the EW equation. State feedback control is considered in this work, and h∆(x, t) is assumed

to be available for feedback. In practice, real-time surface height measurements can be

obtained via atomic force microscopy (AFM) systems.

7.4.1 MPC formulation for regulation of aggregate roughness and slope

The control objective in this work is to regulate aggregate surface roughness and slope to

desired levels within a model predictive control framework. Due to the stochastic nature

of the variables, the expected values of aggregate surface roughness and slope,
⟨
r2

∆(t)
⟩

and
⟨
m2

∆(t)
⟩
, are chosen as the control objectives. The total mean deposition rate, w0

(w0 = w1,0 +w2,0), and magnitude of patterned deposition rate, A (A = A1 +A2), are cho-

sen as the manipulated inputs; the substrate temperature is fixed at T = 800 K during all

263



0 200 400 600 800 1000
4950

4960

4970

4980

4990

5000

Time (s)

<
r2 ∆(t

)>
 (

la
ye

r2 )

 

 

w = 1 Layer/s
w = 5 Layer/s
w = 9 Layer/s
w = 13 Layer/s
w = 17 Layer/s

Figure 7.14: Evolution of expected aggregate surface roughness with respect to time for

different spatially-uniform deposition rates obtained from kMC simulations (solid lines

with symbols).The analytical solutions for the aggregate surface roughness obtained from

the corresponding EW equations with the fitted values for c2 and σ2 are also shown (dashed

lines).
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Figure 7.15: c2 values for different spatially-uniform deposition rates w. The solid line

is the result of a linear fitting function and it is the c2 versus w relationship used by the

predictive controller.
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Figure 7.16: σ2 values for different spatially-uniform deposition rates w. The solid line is
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closed-loop simulations. To account for a number of practical considerations, several con-

straints are added to the control problem. In particular, since w(x) ≥ 0, the constraints

0 ≤ A1 ≤ w1,0 and 0 ≤ A2 ≤ w2,0 are imposed to ensure w(x, t) > 0, ∀(x, t). To ensure the

validity of the closed-form process model, there is a constraint on the range of variation

of the mean deposition rate. Another constraint is imposed on the rate of change of the

mean deposition rate to account for actuator limitations. The control action at time t is ob-

tained by solving a finite-horizon optimal control problem. The cost function in the optimal

control problem includes penalty on both aggregate roughness and slope with independent

weighting factors. Since the dynamics of aggregate surface roughness and slope are dif-

ferent by several orders of magnitudes, relative deviations are used in the formulation of

the cost function to make the magnitude of these two terms comparable in the cost func-

tion. The optimization problem is subject to the dynamics of the aggregate surface height

of Eq. 7.9, which account for wafer grating. Specifically, the MPC problem at time t is

formulated as follows:

min
w0,A

f (w0,A) = qr2

[
r2

set −
⟨
r2

∆(t f )
⟩

r2
set

]2

+qm2

[
m2

set −
⟨
m2

∆(t f )
⟩

m2
set

]2

(7.33)

where

⟨
r2

∆(t f )
⟩
=

1
L

L/(2∆)

∑
n=1

2

∑
p=1

⟨
z2

p,n(t f )
⟩
,
⟨
m2

∆(t f )
⟩
=

L/(2∆)

∑
n=1

2

∑
p=1

(
Kp,n

⟨
z2

p,n(t f )
⟩)

(7.34)
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⟨
z2

p,n(t f )
⟩
= var(zp,n(t f ))+

⟨
zp,n(t f )

⟩2 (7.35)⟨
zp,n(t f )

⟩
= eλn(t f−t) ⟨zp,n(t)

⟩
+

wp

λn
(eλn(t f−t)−1) (7.36)

var(zp,n(t f )) = e2λn(t f−t) var(zp,n(t))+σ2(w)
e2λn(t f−t)−1

2λn
(7.37)

λn =−4c2(w)π2

L2 n2 (7.38)

and

c2(w0) = ac2 ·w0 +bc2 (7.39)

σ2(w0) = aσ2 ·w0 +bσ2 (7.40)

subject to:

wmin ≤ w0 ≤ wmax, |w0(t)−w0(t −dt)| ≤ δwmax, (7.41)

where t is the current time, dt is the sampling time, qr2 and qm2 are the weighting penalty

factors for the deviations of
⟨
r2

∆
⟩

and
⟨
m2

∆
⟩

from their respective set-points at the ith pre-

diction step, wmin and wmax are the lower and upper bounds on the mean deposition rate,

respectively, and δwmax is the limit on the rate of change of the mean deposition rate. Due

to the influence of wafer grating, zp,n(t0) follows Eqs. 7.24 and 7.25.

The optimal control actions are obtained from the solution of the multivariable opti-

mization problem of Eq. 7.33 and are applied to the deposition process model over dt (i.e.,

either the EW equation model or the kMC model) during the time interval (t, t + dt). At

time t+dt, a new measurement of aggregate surface roughness and slope is received by the

controller and the MPC problem of Eq. 7.33 is solved for the next set of control actions.
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An interior point method optimizer, IPOPT [51], is used to solve the optimization problem

in the MPC formulation. The stability of the closed-loop system is inherently guaranteed

by the negative values of all the eigenvalues of the spatial differential operator of Eq. 7.9

used to describe the dynamics of surface height profiles.

7.5 Simulation results

In this section, the model predictive controller of Eq. 7.33 is applied to both the one-

dimensional EW equation type model of Eq. 7.9 and the one-dimensional kMC model

of the thin film growth process. The sinusoidal grated wafer period is 8000, the grating

magnitude is 100 layers, the mean deposition rate ranges from 0.1 to 10 layer/s, the sub-

strate temperature is fixed at 800K, the lattice size of the kMC model is fixed at 40,000

sites, the aggregation size is fixed at 400 to make the results relevant to thin film solar cell

applications and five sine waves are used in the patterned deposition rate profile. The sam-

pling time is 10 s; this sampling time is enough for the MPC to carry out the calculations

needed to compute the control action. In addition to the deposition rate, the temperature

may be used as a manipulated input but it should vary in space to induce substantial ag-

gregate surface roughness and slope values at spatial scales comparable to the visible light

wavelength. Each closed-loop simulation lasts for 200 s. Expected values are calculated

from 10 independent closed-loop system simulation runs; further increase of the number

of independent simulations did not appreciably change the computed expected values. In

all the simulations, the aggregate surface roughness and slope set-points remain the same,
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specifically, r2
set = 5500 and m2

set = 0.005.

7.5.1 MPC application to EW equation model

In this subsection, the EW equation model is utilized in the closed-loop control problem as

the plant model. First, the problem of regulating aggregate surface roughness is considered.

In this problem, the cost function includes only penalty on the deviation of the expected

aggregate surface roughness square from its set-point, i.e., qr2 = 1 and qm2 = 0. Fig. 7.17

shows the evolution profile of
⟨
r2

∆(t)
⟩

under the model predictive controller of Eq. 7.33.

It is clear that the controller drives the expected aggregate surface roughness to its set-

point at the end of the simulation. Fig. 7.18 shows the input profiles of w0 and A for these

simulations.

Next, the aggregate surface slope is regulated. In this case, the cost function includes

only penalty on the deviation of the expected value of aggregate surface slope square from

its set-point (qm2 = 1, qr2 = 0). Fig. 7.19 shows the evolution profile of the expected

aggregate slope square. The aggregate slope reaches its set-point at t f = 200 s. Fig. 7.20

displays the input profile in this scenario.

7.5.2 MPC application to kMC model

In this subsection, the kMC model is used in the closed-loop control problem as the plant

model, while all the other settings remain the same. Fig. 7.21 shows the aggregate surface

roughness in the case of roughness-only control and its corresponding manipulated input
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Figure 7.17: Profile of expected aggregate surface roughness square with EW equation as

the plant model. qr2 = 1, qm2 = 0 and r2
set = 5500.
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Figure 7.18: Input profiles for aggregate roughness-only control problem with EW equation

as the plant model. qr2 = 1, qm2 = 0 and r2
set = 5500.
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Figure 7.19: Profile of expected aggregate surface slope square with EW equation as the

plant model. qr2 = 0, qm2 = 1 and m2
set = 0.005.
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Figure 7.20: Input profiles for aggregate slope-only control problem with EW equation as

the plant model. qr2 = 0, qm2 = 1 and m2
set = 0.005.
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Figure 7.21: Profile of expected aggregate surface roughness square with kMC model as

the plant model. qr2 = 1, qm2 = 0 and r2
set = 5500.

profiles are shown in Fig. 7.22, while Fig. 7.23 shows the aggregate surface slope in the

case of slope-only control and its corresponding manipulated input profiles are shown in

Fig. 7.24. In both conditions, we see that both aggregate roughness and slope successfully

reach their set-points at the end of the simulations (t f = 200 s). Furthermore, the closed-

loop evolution profiles with kMC as the plant model are very similar to the closed-loop

profiles that use the EW equation as the plant model, which implies that the EW equation

model used in this work can accurately predict the kMC simulation results.

Simultaneous regulation of aggregate surface roughness and slope has also been in-

vestigated. Similar to the case where the EW equation is used as the plant model, the
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Figure 7.22: Input profiles for aggregate roughness-only control problem with kMC model

as the plant model. qr2 = 1, qm2 = 0 and r2
set = 5500.
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Figure 7.23: Profile of expected aggregate surface slope square with kMC model as the

plant model. qr2 = 0, qm2 = 1 and m2
set = 0.005.
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Figure 7.24: Input profiles for aggregate slope-only control problem with kMC model as

the plant model. qr2 = 0, qm2 = 1 and r2
set = 0.005.
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Figure 7.25:
⟨
r2

∆(t f )
⟩

and
⟨
m2

∆(t f )
⟩

at the end of closed-loop simulations (t f = 200 s) for

different penalty weighting factors in the predictive controller with kMC model as the plant

model. 10−2 ≤ qm2 ≤ 107, qr2 = 1, r2
set = 5500 and m2

set = 0.005.

weighting factor of aggregate slope square, qr2 , is kept at 1, and the weighting factor of

aggregate roughness square, qm2 , ranges from 10−2 to 107. Fig. 7.25 shows the values of

expected aggregate roughness and slope at the end of simulations as a function of qm2/qr2 .

It can be seen that the expected value of aggregate roughness approaches its set-point as

qm2 increases at the cost of larger deviation of the aggregate slope from its set-point.
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Chapter 8

Conclusions

Motivated by the increasing importance of thin film solar cells, this dissertation developed a

systematic methodology for modeling and control of thin film solar cell surface roughness

and slope on both silicon layers and TCO layers. Kinetic Monte Carlo (kMC) methods

and stochastic differential equation models were constructed to account for the stochastic

nature of the thin film growth processes and were used as the basis for controller design.

Specifically, in Chapters 2 and 3, the lattice-size dependence and dynamic behavior of

thin film surface roughness and slope under different characteristic length scales were stud-

ied in two thin film deposition process models and using different lattice dimensions. The

simulation results indicate that the expected mean slope square reaches quickly a steady-

state value and exhibits a very weak dependence with respect to lattice size variation. The

simulation findings were corroborated by an analysis of appropriate finite-difference dis-

cretizations of surface height profiles computed by an EW-type partial differential equation
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that can be used to describe the dynamics of surface height profile in the deposition pro-

cesses under consideration. Aggregate surface roughness and slope were also introduced

to apply these results in the context of solar cell performance improvement.

Subsequently, in Chapter 4, a thin film deposition process was simulated via a kinetic

Monte Carlo method in a large lattice (L = 40000) and a patterned deposition rate profile

was introduced to generate significant aggregate surface roughness and slope at a length

scale comparable to the wavelength of visible light. An Edwards-Wilkinson-type equa-

tion for the aggregate surface profile was used to predict the surface temporal evolution

of aggregate surface roughness and slope. A model predictive controller was designed to

regulate aggregate surface roughness and slope to desired levels, and the controller was

applied to the EW equation and the kMC model of the deposition process with L = 40000.

Simulation results demonstrated the applicability and effectiveness of the controller and

of the spatially-patterned deposition rate profile by demonstrating that different thin-film

reflectance values can be generated by successfully controlling aggregate roughness and

slope to desired values.

Chapter 5 developed a model predictive control algorithm to regulate the aggregate

surface slope and roughness of a two-stage thin film growth process simulated via kMC

method. A spatially uniform deposition rate profile was used in the first stage to control the

film thickness and a spatially distributed deposition rate profile was utilized in the second

stage to control the surface morphology. Similar to Chapter 4, aggregate surface roughness

and aggregate surface slope were used to characterize the surface morphology and an EW-
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type equation was used to predict process dynamics and form the basis of feedback control

design. Closed-loop simulation results were presented to demonstrate the effectiveness of

the proposed model predictive control algorithm in successfully regulating the aggregate

rms slope and the aggregate rms roughness at desired levels that generate desired thin film

light reflectance and transmittance.

Finally, in Chapters 6 and 7, we extended the method of Chapter 5 to simulate and

control the TCO layer manufacturing process via kMC method. The deposition process

was a two species thin film deposition process and different growth mechanisms were used

for each species (ZnO and Al) and a patterned deposition rate profile was introduced to

generate significant aggregate surface roughness and slope at a length scale comparable

to the wavelength of visible light. To make the process more practical, wafer grating was

combined with spatially distributed deposition rate profile to precisely control the surface

morphology of TCO layers. An Edwards-Wilkinson-type equation for the aggregate sur-

face profile was used to predict the surface temporal evolution of aggregate surface rough-

ness and slope. A model predictive controller was designed to regulate aggregate surface

roughness and slope to desired levels, and the controller was applied to the EW equation

and the kMC model of the deposition process with L = 40000. Simulation results demon-

strated the applicability and effectiveness of the controller and of the spatially-patterned

deposition rate profile and wafer grating. The results of this work pave the way for the

manufacturing of TCO layers with desired light trapping properties.
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