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ABSTRACT OF THE THESIS

Automatic Grammar Correction: Using PCFGs and Whole Sentence
Context

by

Vineet Kumar

Master of Science in Computer Science

University of California, San Diego, 2012

Professor Roger Levy, Chair

We explore the problem of automatic grammar correction and extend the

work of [Park and Levy, 2011]. We use a noisy channel model that uses whole

sentence context to generate a grammatically correct sentence with the highest

probability. Our major contribution is to explore the idea of using a better lan-

guage model than n-gram to represent the rules of the English language. We use

Probabilistic Context Free Grammar (PCFG) and explain how we can combine

it with noise models that are represented with Weighted Finite State Transducers

(wFST) to build our noisy channel model. We also extend V-expectation semirings

[Eisner, 2002] to CKY parsing, a popular parsing algorithm for parsing a sentence

of a language.
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Chapter 1

Introduction

How do humans make mistakes that lead to a grammatically incorrect sen-

tence? We can perhaps categorize some of these mistakes as selecting an incorrect

form of a word, inserting and deleting words and making spelling errors. Table 1.1

lists some examples of common grammatical mistakes:

Table 1.1: Examples of some common grammatical mistakes

Mistake Category Correct Sentence Incorrect Sentence
Wordform choice John walks John walk
Spelling People talk Poeple talk
Insertion and Deletion I will go. I go

Thus, if we consider grammatical errors as noise that is added to an error-

free sentence, we can build a noisy channel model that represents the mistakes

people make. In this thesis, we explore the problem of doing automatic grammar

correction using a noisy channel model and whole sentence context. We state our

problem formally in the section below.

1.1 Problem Statement

We explore the problem of predicting the most likely grammatically correct

sentence given an incorrect sentence. This task is also called as automatic grammar

1
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correction. In this thesis, we explore the automatic grammar correction problem

using a noisy channel model and extend the work of [Park and Levy, 2011].

A noisy channel model is a generative model that has a component that

generates error free sentences. We call this component the language model.

It further has a noise component that modifies the original sentence by adding

errors or noise stochastically. We call this component the noise model. Thus,

a noisy channel model can be considered as a generative model of language that

emits all sentences of a language and some of those sentences have errors1. This

model generates sentences that we observe and may wish to correct (if they are

grammatically incorrect).

[Park and Levy, 2011] introduce us to using noisy channel models for au-

tomatic grammar correction. Their noisy channel model also has two components

- a language model and a noise model. They use a n-gram model as the lan-

guage model, and use various noise models (spelling correction, wordform, prepo-

sitional error, article choice error, among other models) which they represent using

Weighted Finite State Transducers (wFST). We will introduce wFST later in Sec-

tion 2.1.2. At a high level a wFST can be seen as a string transformer, that given

an input and state of the system, generates a new output. Figure 1.1 depicts their

noisy channel model. Notice that both their language and noise model can be

represented using a wFST and the composition of the language and model is again

a wFST.

[Park and Levy, 2011] also state that one can view the task of grammar

correction as a machine translation task. A standard machine translation task

involves translating a sentence from a Language F (say French) to Language E

(say English). If we consider the grammatically incorrect language to be Language

F, and the grammatically correct language to be Language E, then automatic

grammar correction can be seen as a task in translating from the grammatically

incorrect to grammatically correct language. However, for learning the parameters

of the model, statistical machine translation make use of parallel corpus (available

say by two same books translated in Language E and F). Unfortunately, no such

1A language model generates all error-free sentences; in combination with the noise model our

noisy channel model generates error-free and erroneous sentences
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parallel corpus exists for grammar correction. Thus a supervised learning approach

cannot be used. Thus as suggested by [Park and Levy, 2011], we use unsupervised

learning for our task. The parallel to machine translation, however is useful for

the task of evaluation of our models, which we will discuss later in Section 4.3.

In our thesis, we use a noisy channel model too. We however use a Proba-

bilistic Context Free Grammar (PCFG) as our language model. We use the same

noise models as [Park and Levy, 2011], that is our noise models are represented

by a wFST. We explain PCFG in Section 2.1.1. A PCFG, at a high level is a

generative model of language that emits all possible sentences of a language with

some probability. Another way to look at PCFG is that it generates sentences

that are probabilistically distributed over all the sentences of the language. We

believe a PCFG would do a better job in capturing the structure of a sentence

than a n-gram model, and thus when combined with a noise model will help us

make better predictions. Table 1.2 summarizes how our noisy channel model is

different.

In this thesis, our major contribution is to explain how a PCFG language

model can be combined with a wFST noise model to build a noisy channel model.

We use this noisy channel model to predict the most likely grammatically correct

sentence for a given observed sentence.

1.2 Organization of the Thesis

In rest of the thesis, we explain the background needed to understand our

noisy channel model. We further, demonstrate with the help of a toy example,

how training and decoding work for our model. In later chapters of our thesis, we

explain how we implement our model. We also explain changes we made to some

open source software tools we use, and the data sets for our task. We conclude

by discussing the results we get by using a wordform choice noise model with our

language model and discussing future work.
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Figure 1.1: [Park and Levy, 2011] Noisy channel model: the language model is
a n-gram model, represented using wFST and the noise model is also represented
using wFST, the composition gives back a wFST

Table 1.2: How our noisy channel model differs from [Park and Levy, 2011]

Noisy Channel Model Language Model Noise Model
[Park and Levy, 2011] n-gram Model wFST
Our Noisy Channel Model PCFG wFST



Chapter 2

Background

2.1 Noisy Channel Model

As explained in Section 1.1, our noisy channel model is constructed by the

composition of a language and a noise model. The language model generates error-

free sentences distributed probabilistically over all the sentences of a language (in

our case English language). The noise model introduces errors stochastically to

an error-free sentence. Thus, when a language model is composed with a noise

model, we get a noisy channel model that generates error-free as well as erroneous

sentences. This noisy channel is a generative model of language that generates the

sentences that we may wish to correct. Figure 2.1 shows an example sentence that

can be generated by our noisy channel model.

We use Probabilistic Context Free Grammar (PCFG) as our language

model and Weighted Finite State Transducer (wFST) as our noise model. We

will now define PCFG and wFST, so as to facilitate further discussion of our model.

2.1.1 Probabilistic Context Free Grammar (PCFG)

A PCFG is a 5 tuple (N, T,R, S, P ) where:

• N is a finite set of non-terminals

• T is a finite set of terminals, or words of our language.

5
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Figure 2.1: An example sentence generated by our noisy channel model. Notice
how the word walks was replaced by walk.

• R is a set of expansion rules of the form X → Y1Y2...Yn, where X ∈ N ,

Yi ∈ (T ∪N) and i = 1 to n.

• S is a unique start symbol, such that S ∈ N .

• P is a probability function that maps a rule R to [0, 1] .

• For any Xi ∈ N , we have the following constraint:

∑

X→Y1...Yn∈R:X=Xi

P (X → Y1...Yn) = 1 (2.1)

Equation 2.1 states that the probability of all rules with same non-terminal on the

LHS must sum to 1.

Thus, starting with the Root symbol S and using the expansion rules R,

till we end in terminals, we can generate a group of words or a sentence. The

sentence generated by using a set of rules is also referred as yield and the rules can

be conveniently represented by a derivation tree. Table 2.1 shows a toy PCFG.

Note that this PCFG generates sentences of the form (a+ b)(a+ b)(a+ b)∗. Figure

2.2 shows some sample derivation trees for our toy PCFG along with the yield.
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Table 2.1: A toy PCFG with start symbol as S, N = {S,A} and T = {a, b}.
Probability for each rule is specified in the brackets

Rule-Number Rule P(Rule)
R1 S → AA (1)
R2 A→ AA (0.25)
R3 A→ a (0.25)
R4 A→ b (0.5)

�

� �

� �
�

� �

�

� �

� �
�

� �

Figure 2.2: Derivation trees for sentences generated by our toy PCFG. Left tree
generates the sentence “b b a” and right tree generates the sentence “b a a”

Probability of generating a sentence by a PCFG is simply the product

of the probabilities of the rules used. Let us look at the probabilities of the

trees generated by our PCFG. We will use the probabilities from Table 2.1 for our

calculations:

P (“bba′′) = P (S → AA) · P (A→ b) · P (A→ AA) · P (A→ b) · P (A→ a)

= 1 · 0.5 · 0.25 · 0.5 · 0.25

= 0.015625

P (“baa′′) = P (S → AA) · P (A→ b) · P (A→ AA) · P (A→ a) · P (A→ a)

= 1 · 0.5 · 0.25 · 0.25 · 0.25

= 0.078125

In this section, we defined a PCFG, explained how it can generate sentences, and

how to calculate the probability of a yield. We hope this gives the reader a general
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idea of how a PCFG can be seen as generative model of a language. We will now

define a wFST.

2.1.2 Weighted Finite State Transducer (wFST)

A wFST1 is a 6 tuple (Q, T, T,Qs, Qf , P ) where:

• Q represents a finite set of states.

• T represents a finite set of words .

• T represents a state transition (Qa
0)→ (Qb

1), where Q0, Q1 ∈ Q and a, b ∈

T . Thus, at state Q0 and after receiving “a” the model changes its state to

Q1 and emits the word “b”. In effect, it transformed the input word “a” to

“b”.

• Qs is a set of initial states .

• Qf is a set of final states .

• P is a probability function, such that P (Ti) ∈ [0, 1] where Ti ∈ T

• Additionally, for every input word ai we have the following constraint:

∑

Qa
i →Qb

j∈ T a=ai

P (Qa
i → Qb

j) = 1 (2.2)

Equation 2.2 allows us to represent conditional probability distribution. It

can be inferred as ‘What is the probability of generating an output word given

an input word?’. We need this as our noise model, which takes the input from

the language model, and generates an output (“b” generated when input word was

“a”)

Figure 2.3 shows a Toy Noise Model represented by a wFST. This wFST

indicates that the word “a” is never changed, but the word “b” can be changed

to “a” with a probability of p1. Thus if this transducer receives a word “b” it can

1our wFST representation does not care about the final weight of the state. We can assume

the final state probability to be 1
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change it to “a” with a probability of p1 and it remains as “b” with a probability

of (1− p1). Changing the word from “b” to “a” when it was not intended by our

language model, can be thought of as an error.

��

���������

�������	��

��������
�	��

Figure 2.3: A toy wFST with Q ∈ {q0}, T = {a, b}, each state transition is
represented with an arrow, and probability is represented in brackets

Table 2.2: State transitions for toy Noise Model in Figure 2.3

State Transition P (Transition)
qa0 → qa0 1
qb0 → qa0 p1
qb0 → qb0 (1− p1)

We have now defined PCFG and wFST, explaining how a PCFG acts as a

generative model of a language, and how a wFST can introduce errors. We will

now talk about the free parameters of our language and noise models.

2.2 Free Parameters

We did not mention until now how we learn the rules and probabilities for

our language model, or how we learn the parameters and state transitions for our

noise model. We will, for the rest of the chapter assume that the language model

is fixed. We will discuss in Section 3.1 how we learn the language model. We will

also assume that the state transitions for our noise model are fixed. Thus the

only unknown we have is the probabilities of state transition for our noise
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model. For example, for our toy noise model, we want to learn p1, which is the

only free parameter.

We have now explained the free parameters of our noise model and will now

explain how we train our model and learn noise model parameters.

2.3 Training

Our noisy channel model generates error-free as well as erroneous sentences.

A supervised learning is an approach where we have labeled data. For our task,

such labeled data would be a corpus of incorrect sentence and the corresponding

correct sentence. However, as we will explain below, we do not have access to such

a corpus and thus cannot use supervised learning. Thus, we use an unsupervised

learning approach, which can be used in cases where there is no labeled data, and

all we have is observed data (in our case a data set of incorrect grammar sentences).

Our aim in unsupervised learning is to learn the free parameters of our model such

that the likelihood of the observed data is maximized.

2.3.1 Lack of Parallel Training Corpus

[Park and Levy, 2011] specify that an automatic grammar correction task

can also be viewed as machine translation from one language to another. Let us

assume that the error-free (grammatically correct) sentences belong to a Language

E, and the erroneous sentences belong to a Language F. Thus automatic grammar

correction, can be viewed as translation from language F (grammatically incorrect)

to language E (grammatically correct). However, unlike machine translation we

do not have access to a large parallel corpus of text in the languages E and F.

Thus, we cannot use supervised learning and we take a unsupervised learning

approach.
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2.3.2 What does training mean for our noise model ?

We stated earlier, that we wish to learn the value of p1, that being the only

free parameter of our model (Figure 2.3). p1 is the probability of state transition

b→ a. Also, Equation 2.2 specifies that for all transitions with same input word,

the probability of transitions sum to 1. Thus, in our toy noise model:

P (b→ a) + P (b→ b) = 1

Now, let us say we have just one observed sentence S1
obs = “bba′′. Now the

first two words of this sentence “b” can only be generated if we traverse b → b

in the noise model. However, “a” can either be generated by traversing a → a or

b → a. Thus, we have two paths, which we denote as derivations for generating

“b b a” (Table 2.3). We denote the number of times a state transition by C. Ci

denotes the counts for a single derivation:

Table 2.3: Noise Model Transitions to generate S1
obs = “bba′′

Derivation Word1 = “b′′ Word2 = “b′′ Word3 = “a′′ Ci(b→ b) Ci(b→ a)
D1 b→ b b→ b b→ a 2 1
D2 b→ b b→ b a→ a 2 0

Let us now assume that the D1 occurs with a probability of P (D1) and D2

occurs with P (D2). To calculate p1, we need to take the ratio of expected counts of

b→ a and the total counts with b as the input symbol, given an observed sentence:

p1 =
E[C(b→ a)|S1

obs]

E[C(b→ a)|S1
obs] + E[C(b→ b)|S1

obs]
(2.3)

We have seen two derivations for our observed sentence. Thus the expected

counts can be computed as:

E[C(b→ a)|S1
obs] =

∑2
i=1Ci(b→ a) · P (Di|S

1
obs)∑2

i=1(Ci(b→ a) + Ci(b→ b)) · P (Di|S1
obs)

(2.4)

if D denotes the set of all derivations for a sentence Si
obs, we can generalize

Equation 2.4 as follows:

E[C(b→ a)|Si
obs] =

∑
Di∈D

CDi
(b→ a) · P (Di|S

i
obs)∑

Di∈D
CDi

(b→ a) + CDi
(b→ b) · P (Di|Si

obs)
(2.5)
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If we have n observed sentences denoted by Si
obs for i = 1 to n , we need

to sum all the expected counts given each sentence, to get the total counts. Thus,

Equation 2.3 becomes:

p1 =

∑n

i=1E[C(b→ a)|Si
obs]∑n

i=1E[C(b→ a)|Si
obs] + E[C(b→ b)|Si

obs]
(2.6)

Equation 2.5 needs us to compute P (Di|S
i
obs) which can be specified as:

P (Di|S
i
obs) =

P (Di, S
i
obs)

P (Si
obs)

(2.7)

The total probability of a sentence P (Si
obs) is the sum of the joint probability of

all derivations and the sentence:

P (Si
obs) =

∑

Dj∈D

P (Dj, S
i
obs) (2.8)

In the next section, we explain how to compute the joint probability of a derivation

and observed sentence.

2.3.3 Calculating the total probability (P (Si

obs
)) of an ob-

served sentence

If we compose our noisy channel model with an observed sentence, it re-

stricts the output of the model to the observed sentence. This is because all other

sentences will lead to a non-final state in the wFST, and thus would be discarded

by the model.

We can construct a wFST trivially that generates an observed sentence.

Let us revisit S1
obs = “bba′′. This sentence has three words. To construct a wFST,

we will add a state for each word, and a final state, that indicates end of the

sentence. Thus, we get a total of four states, and for each state transition we use

the same word as the input and output. We further use unit probabilities for each

transition.

We can now convert this resultant wFST (noise model composed with an

observed sentence) to a word lattice. This means we can discard the output from

each transition, and parse this word lattice with our PCFG language model. Let
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us summarize the steps we have discussed so far. (Figure 2.4) shows the first three

steps:

• For each observed sentence, create an observed wFST with unit probabilities

and input and output word same as the word in the sentence. Add a final

state indicating the end of the sentence.

• Compose the noise model with this observed sentence, restricting the noise

model to only generate the observed sentence.

• Convert this composed wFST to a word lattice by discarding the output

words

• While Parsing the input word lattice with the PCFG multiply the lattice

word probability with the rule probability. This gives us the probability for

that observed sentence.

This completes discussion for all the parameters needed for Equation 2.4.

We now discuss the task of getting counts for each state transition for each sentence.

Note that the procedure described above is general and computes the total

probability of an observed sentence. If we wish to compute the joint probability,

with respect to one derivation, P (Sobsi, Di), by creating word lattice for Di and

parsing it with our PCFG. We will now discuss how we can keep track of counts for

the state transition, more specifically, we are interested in calculating CDi
(b→ a)

and CDi
(b→ b)

2.3.4 Keeping track of counts CDi

Calculating CDi
for an observed sentence can be a huge book-keeping task

(as we will need to do it for every derivation for a sentence), and we use the

framework of V-expectation semirings [Eisner, 2002]. V-expectation semirings,

can be used to keep track of expected counts of arc transitions. Since in our toy

example, we want to count the number of expected state transitions for b → b

and b → a, we can create a vector of length = 2, where the first component of

vector indicates expected number of traversals for b→ a and the second component
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indicates the expected number of traversals for b → b. We will denote this tuple

of probability and Vector as Weight Wt for a state transition:

Wt = (P, V )

where the first component P is a probability and the second V is a vector denoting

the expected state transition counts. We initialize Weight by making the vector

component value 1 for the state transition of interest and 0 for all other values, and

then multiplying this with the probability of the state transition. We illustrate the

process for our noise model. Table 2.5 and Figure 2.5 summarize the same.

• Our arcs of interest are b→ a and b→ b. We assign b→ a as index 0 in our

vector and b→ b as index 1.

• b→ a which has P (b→ a) as p1

Now has Wt(b→ a) = (p1, [p1 0])

• b→ b which has P (b→ b) as (1− p1)

Now has Wt(b→ b) = ((1− p1), [0 1− p1])

• a → a which we do not wish to keep track of this, thus it has an empty

vector component. Wt(a→ a) = (1, [ ])

We have now introduced the framework necessary for book-keeping to keep

track of the state transition counts. We now need to discuss how PCFG parsing

works with V-expectation semirings. For this we will introduce a hypergraph that

is a compact way of representing derivation trees for PCFG parsing.

2.3.5 Hypergraph and PCFG parsing

We use CKY parsing [Jurafsky and Martin, 2009], to parse a word lattice.

CKY parsing keeps track of the parsing via a parsing chart, in which the root

terminal node is noted down along with the word start index and end index. For

example, with respect to our PCFG (Table 2.1), consider the rule R3 : A → a.

Let us say the sentence to be parsed was “b a b”. A CKY Parsing chart will have

an item denoted as 〈A,R3, 1, 2〉. which means the word1 = “a′′ can be parsed by
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Figure 2.4: The figure shows the operations needed before parsing an observed
sentence “b b a” with PCFG a) Shows the output wFST b) Shows the wFST
when noise model is composed with observed wFST c) Shows the word lattice to
be parsed

Table 2.4: The V-expectation semiring of [Eisner, 2002]. V is a vector space
representing the features of arcs.

K ∈ R≥0 × V

(p1, v1)⊕ (p2, v2)
def

= (p1 + p2, v1 + v2)

(p1, v1)⊗ (p2, v2)
def

= (p1p2, p1v2 + v1p2)

if p∗ defined, (p, v)∗
def

= (p∗, p∗vp∗)

0̄
def

= (0, 0)

1̄
def

= (1, 0)
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Figure 2.5: Noise model with V-expectation semiring
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Figure 2.6: Word lattice for “b b”
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Figure 2.7: Sample hyper-graph for “b b”

using R3, and the word has index 1 in the sentence. However, keeping a state for

every parse is not very efficient, and hyper-graph allows us to represent the parsing

state in a compact way.

Formally, a hypergraph [Li and Eisner, 2009] is a pair 〈V,E〉, where V is

a set of nodes and E is a set of hyperedges, with each hyperedge connecting a

set of antecedent nodes to a single consequent node. each node corresponds to an

item in the parsing chart. A hyperedge, represents a PCFG rule that was used

to construct that item in the parsing chart. We will denote the set of antecedent

nodes on a hyperedge e by T (e). We will denote set of incoming edges on a node

v as I(v).

Each node consists of a tuple: (Node-Number, RootSymbol, wordstart,

wordend). And each hyperedge is depicted by (Hyperdge-number, PCFG-Rule-

number) Figure 2.7 shows a Hypergraph generated for the sentence “b b” (Figure

2.6)

When parsing with a word lattice that has a probability assigned to the

word, we need to account it by multiplying the lattice word probability with the

PCFG rule used. Its interesting to note that we need to do this only for rules that
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Figure 2.9: Sample hyper-graph for “b b” with semiring.

expand to a terminal symbol. For example, for our toy PCFG, we need to account

for word lattice probability for R3 : A → b and R4 : A → a The probability of

generating a hyper-edge e is given by Equation 2.9 where Re represents the Rule

used to construct e and Le represents Lattice word used, if lattice word does not

appear in rule expansion, then P (Le) = 1

P (e) = P (Re) ∗ P (Le) (2.9)

And thus we can compute the probability of this hypergraph as follows:

P (“bb′′) = P (e1) ∗ P (e2) ∗ P (e3) (2.10)

Our word lattice however, does not have a probability component. Infact,

to keep track of state transition counts, we had added a V-expectation Semiring

which we denote by Wt. Let us now explain how we use Weights:

• Add Wt to a hyperedge e. Thus hyperedge is represented as (Hyperdge-

number, PCFG-Rule-number, Weight-lattice)

• Compute Weight of a hyperedge by using an Equation similar to Equation
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2.9. Notice, we have used ⊗ as defined in Table 2.4:

Wt(e) = P (Re)⊗Wt(Le) (2.11)

• And finally an equation to compute Weight of hypergraph using Equation

2.10

Wt(“bb′′) = Wt(e1)⊗Wt(e2)⊗Wt(e3) (2.12)

Figure 2.9 shows the semiring representation of the sample hypergraph for

word lattice for “b b”(Figure 2.8)

2.3.6 Putting all the pieces together for training:

We mention earlier that we use unsupervised learning. We begin by in-

tializing our parameters for noise model with random values, and then using

Expectation-Maximization[Dempster et al., 1977] to update the value of our pa-

rameters, until we see convergence. In this section, we summarize the training

algorithm:

• Initialize the unknown parameters of the noise model with random values.

• For each observed sentence, create a wFST as described in Section 2.3.3.

Add Weights with probability of 1, and empty vector.

• Count the number of arcs we want to keep track of for our training. This

will give us a length of the vector to be used. Compute the weight for each

noise model state transition by the process described in 2.3.4.

• Compose Noise Model with the output wFST. To compute the weight of the

resultant wFST use ⊗ and ⊕ operations.

• Convert the wFST to a word lattice.

• Parse word lattice using CKY Algorithm and the V-expectation modifica-

tions for hypergraphs as described in Section 2.3.5.
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• This will give us the total weight of the hypergraph for the observed sentence.

Let us denote it as Wthg = (Phg, Vhg). Phg denotes the total probability of

the hypergraph, which also is P (Si
obs). Vhg is a vector of expected counts.

This would be the Expectation Step.

• Find the new parameter values using Equation 2.6 Maximization Step

• Update the noise model parameters and re-iterate the process, till we see

convergence of parameters

2.3.7 Training demonstration for a toy corpus

We will now demonstrate training for our toy PCFG and noise model with

the help of a toy training corpus (Table 2.6):

• We begin by converting Sobs1 to a wFST with same output and input sym-

bols, state transition probability of 1, and a state for each word in the sen-

tence.

• Next, we compose noise model with observed wFST and use semiring ⊗

instead of ∗ and ⊕ instead of +.

• Next, we need to convert this wFST to a word lattice that can be parsed with

our language model (PCFG). This is done by removing the output symbol.

Figure 2.10 shows the computation to generate the word lattice.

• Next we use CKY algorithm and a hypergraph (Section 2.3.5. This gives us

the hypergraph depicted in Figure 2.11 and Table 2.7

• We can then compute the Weight of the hypergraph using inside-outside

algorithm as described in [Li and Eisner, 2009]:

Wt(S1
obs) = (

(1− p1)2(2p1 + 1)

32
, [
(1− p1)2p1

16

(1− p1)2(2p1 + 1)

16
])

• The above weight can be broken into two components: P(S
i
obs) and expected

counts vector. We had assigned b→ a as index 0 and b→ b as index 1. Let
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Figure 2.10: Figure depicting word lattice computation for “b b a” (a) depicts
output wFST, (b) depicts resultant wFST when composed with a noise model and
(c) depicts the word lattice

us list them down below for clarity:

P (Si
obs) =

(1− p1)
2(2p1 + 1)

32

E[b→ a] =
(1− p1)

2
p1

16

E[b→ b] =
(1− p1)

2(2p1 + 1)

16

• We need to divide the expected counts with PS1

obs
to use in Equation 2.6.

This gives us:

E[b→ a|S1
obs] =

2p1
2p1 + 1

E[b→ b|S1
obs] = 2

• Similarly, we can compute Wt for S2
obs. Figure 2.12 and Table 2.9

Wt(S2
obs) = (

(1− p1)(2p1 + 1)2

64
, [
(1 + 2p1)(1− p1)p1

16

(1− p1)(2p1 + 1)2

64
)]
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Figure 2.11: Hyper-graph for composition of Noise model and “b b a”

And thus we get:

E[b→ a|S2
obs] =

4p1
2p1 + 1

E[b→ b|S2
obs] = 1

• Using Equation 2.6 we can get an update rule for p1 as follows:

p1 ←
E[b→ a|S1

obs] + E[b→ a|S2
obs]

E[b→ a|S1
obs] + E[b→ a|S2

obs] + E[b→ a|S1
obs] + E[b→ b|S2

obs]

=

2p1
2p1+1

+ 4p1
2p1+1

2p1
2p1+1

+ 4p1
2p1+1

+ 2 + 1

=

6p1
2p1+1

6p1
2p1+1

+ 3

=
2p1

4p1 + 1

• Running E-M with the above update rule(Table 2.8) gives us a value of 0.25

after 16 iterations
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Figure 2.12: Hyper-graph for composition of Noise model and “b a a”

2.4 Decoding

The task of decoding is to generate the highest probability original sentence

for an observed sentence. Let us say we observe a sentence Sobs, then we can have

various Si
orig for say i = 1toN . We are interested in finding the sentence which has

highest P (Si
orig|Sobs). Thus, once we learn the parameters of our noise model, we

can compute P (Si
orig|Sobs) as:

P (Si
orig|Sobs) =

P (Sorigi, Sobs)

P (Sobs)
(2.13)

Note that we only care about the numerator P (Sorig, S
i
obs) as P (Sobs) is

same for all Si
orig. The computation is very similar to our training, we just dont

need the Weight component for the word lattice and can work using the probability

component. We re-iterate below for clarity:

• Convert the sentence to be decoded in a wFST with same input and output

symbols and unit probabilities.

• Compose Noise Model (with learnt parameter values) with the above wFST

• Convert wFST to a word lattice
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• Parse word lattice using the language PCFG. This will generate a hypergraph

- whose yield generates all possible Si
orig

• Return Si
orig with the highest joint probability P (Si

orig, Sobs)
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Table 2.5: Toy Noise Model for Figure 2.5

Arc P Wt

qa0 → qa0 1 (1, [ ])
qb0 → qa0 p1 (p1, [p1 0])
qb0 → qb0 (1 - p1) ((1-p1), [(0 (1-p1)])

Table 2.6: A toy training corpus

Sobs1 ”b b a”
Sobs2 ”b a a”

Table 2.7: Table for Hyper-graph Figure 2.11

Hyperedge PCGF Rule LatticeWeight Antecedent nodes
e1 R1 1 [ ] 1,5
e2 R1 1 [ ] 3,2
e3 R2 1 [ ] 3,4
e4 R2 1 [ ] 4,5
e5 R4 (1-p1) [0 (1-p1)] ∅
e6 R4 (1-p1) [0 (1-p1)] ∅
e7 R3 1 [ ] ∅
e8 R4 p1 [p1 0] ∅
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Table 2.8: E-M table

Iteration p1
0 0.5
1 0.33333
2 0.28571
3 0.28571
4 0.26661
5 0.25806
6 0.25397
7 0.25197
8 0.25098
9 0.25049
10 0.25024
11 0.25012
12 0.25006
13 0.25003
14 0.25002
15 0.25001
16 0.25
17 0.25

Table 2.9: Table for Hyper-graph Figure 2.12

Hyperedge PCFG Rule LatticeWeight Antecedent nodes
e1 R1 1 [ ] 1,5
e2 R1 1 [ ] 3,2
e3 R2 1 [ ] 3,4
e4 R2 1 [ ] 4,5
e5 R4 (1-p1) [0 (1-p1)] ∅
e6 R4 (1-p1) [0 (1-p1)] ∅
e7 R3 1 [ ] ∅
e8 R4 p1 [p1 0] ∅
e9 R4 p1 [p1 0] ∅



Chapter 3

Design and Implementation

3.1 Language Model

We had stated earlier that we assume our language model to be fixed. In this

section, we explain how we learn the rules and probabilities for our language. We

use unlexicalized parsing [Klein and Manning, 2003] and use Sections 2-21 of WSJ

sections of the Penn treebank [M. Marcus and Marcinkiewicz, 1993]. Penn tree-

bank is a collection of 39,823 annotated trees. The annotations assign a structure

to a sentence. We can extract rules for a language and thus build a Probabilistic

Context Free Grammar (PCFG). For example, one tree from Penn tree bank looks

as follows:

( (S

(NP-SBJ (NNP Ms.) (NNP Haag) )

(VP (VBZ plays)

(NP (NNP Elianti) ))

(. .) ))

The leaves of this tree generate a sentence of English. For example, above

tree generates the sentence “Ms. Haag plans Elianti . ”

The following describes the procedure to extract rules from an annotated

Penn treebank tree:

• We first remove functional (NP-SBJ → NP) and empty tags from all trees.

26
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We use tsurgeon [Levy and Andrew, 2006], an open source tool for tree ma-

nipulation. Thus, our original tree now becomes:

(

(S

(NP (NNP Ms.) (NNP Haag))

(VP (VBZ plays)

(NP (NNP Elianti)))

(. .)))

• We now read the tree and extract the rules. This gives us rules as indicated

in Table 3.1

• We further add a root symbol SROOT to each tree. Table 3.2 shows the

updated set of rules.

• We now read the counts for each non-terminal (on LHS of the rule). We

further normalize each rule by dividing it with the LHS count. Table 3.3

show the counts for each LHS rule and Table 3.4 shows the normalized counts.

Thus we get a PCFG where each rule is specified by a probability.

We repeat the process for all 39,823 trees. We add the counts for all rules,

and then normalize the rules by dividing it with count of LHS of the rule. We

finally get a total of 924,021 rules of which 720,200 lead to terminal rule. An

example of a terminal rule is: NNP → Elianti

3.2 CKY Parsing with semirings

We use CDEC [Dyer et al., 2010], an open source tool for parsing a word

lattice with a PCFG. CDEC however does not understand V-expectation semir-

ings. We need V-expectation semiring to accomplish training and learn parameters

of our noise model. Similar to the changes described to work with semirings in hy-

pergraph in Section 2.3.5, we extend CDEC so that a hypergraph stores the weight

of the lattice and emits the total weight of the hypergraph for each training sen-

tence. With these changes, we can train our noise model by passing a word lattice
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Table 3.1: Rules generated for a sample tree

Rule Counts(Rule)
S → NP VP . 1
VP → VBZ NP 1
NP → NNP 1
NP → NNP NNP 1
. → . 1
NNP → Elianti 1
NNP → Haag 1
NNP → Ms. 1
VBZ → plays 1

Table 3.2: Table 3.1 with updated rule for the root symbol

Rule Counts(Rule)
SROOT → S 1
S → NP VP . 1
VP → VBZ NP 1
NP → NNP 1
NP → NNP NNP 1
. → . 1
NNP → Elianti 1
NNP → Haag 1
NNP → Ms. 1
VBZ → plays 1

Table 3.3: Counts of LHS for the tree

LHS Counts(LHS)
SROOT 1
S 1
VP 1
NP 2
. 1
NNP 3
VBZ 1
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Figure 3.1: CDEC parsing for learning noise model parameters

Table 3.4: PCFG rules

Rule Counts(Rule)
SROOT → S 1
S → NP VP . 1
VP → VBZ NP 1
NP → NNP 0.5
NP → NNP NNP 0.5
. → . 1
NNP → Elianti 0.33
NNP → Haag 0.33
NNP → Ms. 0.33
VBZ → plays 1
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with semiring and doing Expectation-Maximization to learn updated parameters.

Figure 3.1 shows how CDEC fits in the overall picture.

3.3 Corpus for learning noise model parameters

We use Korean ESL dataset provided by [Park and Levy, 2011] to train

our noise models. This dataset is composed from 25,000 essays and comprised

of 478,350 sentences written by Korean ESL students preparing for the Test of

English as a Foreign Language (TOEFL) writing exam. These sentences were

collected from open web postings by Koren ESL students asking for advice on

their writing samples. For training and testing purposes the data set was split

into a development set with 504 randomly selected sentences. The evaluation

set consists of 1017 randomly selected sentences, and training set consists of the

remaining sentences.

3.4 wFST operations

We need Weighted Finite State Transducer(wFST) to compose our noise

models with an observed sentence, and then to parse the corresponding word lattice

with the language model (PCFG). This is needed for both training and decoding

purposes. We use OpenFST [Allauzen et al., 2007], an open source wFST tool.

We use the parametric form of wFST , this allows us to do composition of noise

model and observed sentence only once, and then update the word lattice with the

updated parameters during EM training.



Chapter 4

Results and Analysis

In this chapter we discuss some issues with the grammar we learn for our

language model. We then discuss our noise model, the parameters we learnt for it

an end the chapter with an analysis of results.

4.1 Modifying Grammar

The grammar that we learn in Section 3.1 does not capture the difference

between say a singular noun being combined with a plural verb and vice versa.

Figure 4.1 shows the problem. The information about a NN being combined

with V BZ is lost. We will call our grammar learnt with this problem as Vanilla

PCFG. To address this issue, we move the information about NNS and NN up

to its parent node. (Figure 4.2). We will call this grammar as Fixed PCFG.

Fixing the PCFG is a work in progress, and we need to make it aware of more

syntactic rules of grammar from our knowledge of english grammar to do a good

job of grammar correction.

4.2 Noise Model

We use a wordform correction noise model. We try to model the mistakes

people make while using the form of a verb or say using a singular form when a

plural form was expected for a noun.

31



32

�� ��

�����

���	
���
��

�

�� ��

�����

���	�
���
�

�

Figure 4.1: Some issues with the learnt grammar
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Figure 4.2: How the issues can be fixed by putting information in root node
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4.2.1 Modeling the mistakes when using a noun

Nouns can be identified as being singular (E.g cat) or being plural (E.g

cats). We try to model the mistakes people can make when say a plural form was

intended to use. In other words, the noise model will try to estimate the probability

of a singular changing to plural (cat→ cats) or a plural changing to singular (cats

→ cat). Thus, our noise model will have two parameters: p(singular → plural) ,

p(plural→ singular)

4.2.2 Modeling the mistakes when using a verb

Verbs can be classified in three main categories: regular verbs, irregular

verbs and auxiliary verbs. A regular verb has four forms (Table 4.1), an irregular

verb has five forms (Table 4.2) and an auxiliary verb has eight forms (Table 4.3).

Notice that all the verb forms listed for an auxiliary verb, exist for a regular and

irregular verb. Thus if we want to model an error as using the incorrect form of

a verb (eg. walk → walking), we have 7 parameters for each form and total of 8

forms. This gives us 56 free parameters to learn.

Combining the noun and verb errors together gives us a noise model with

58 free parameters. We now describe how we construct our model.

4.2.3 wFST construction

For each word in an observed sentence, we identify it as a noun or a verb.

We use CELEX [Baayen et al., 1995] to find all possible forms for a verb and a

noun. We then identify the possible forms of the word. Let us say our observed

word is cat. We ask CELEX what are its forms, CELEX tells us that the word

cat is a noun, is singular, and has a form cats which is plural. We thus construct

an arc cats → cat, and cat → cat and assign it probability PP luralToSingular and

PSingularToSingular respectively. We repeat this process for each word in the observed

sentence and act a unit probability transition for any word that is not a noun or

a verb. We thus get a one state wFST which is both the start and the end state.
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Table 4.1: Regular verb forms illustrated with verb walk

Form Example
Base walk
Past Simple walked
Third Person Singular walks
Present Participle walking

Table 4.2: Irregular verb forms illustrated with verb fly

Form Example
Base fly
Past Simple flew
Third Person Singular flies
Present Participle flying
Past Participle flown

Table 4.3: Auxiliary verb forms illustrated with verb be

Form Example
Base am
Past Simple was
Third Person Singular is
Present Participle being
Past Participle been
Second Person are
Infinitive be
Second Person Past were
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4.2.4 Results

We use a training set of 1000 randomly chosen sentences from Korean ESL

corpus. We see convergence of our model in 18 iterations. We run our model

for both Vanilla PCFG and Fixed PCFG. Table 4.6 and Table 4.7 shows the

parameters that we learn for our model when trained with Vanilla Grammar.Table

4.6 and Table 4.7 shows the parameters that we learn for our model when trained

with Vanilla Grammar.

Table 4.4: Noun noise model parameters with Vanilla PCFG

Singular Plural
Singular 0.9028 0.0972
Plural 0.658 0.342

Table 4.5: Verb noise model parameters with Vanilla PCFG

Base Par Th Sec Pa PaPar Inf. Sec
Base 0.9792 0.0002 0.0204 0.0 0.0 0.0 0.0 0.0
Par 0.2610 0.6796 0.0 0.0 0.0593 0.0 0.0 0.0
Th 0.0970 0.0370 0.8658 0.0 0.0 0.0 0.0 0.0
Sec 0.0 0.0 0.5355 0.0 0.0 0.0 0.0980 0.3663
Pa 0.5456 0.0431 0.0259 0.0 0.3853 0.0 0.0 0.0

PaPar 0.0126 0.0002 0.5719 0.0 0.0 0.4152 0.0 0.0
Inf. 0.0 0.0 0.0007 0.0065 0.0 0.0001 0.1595 0.8331
Sec 0.0 0.0 0.0031 0.0924 0.0 0.0368 0.4471 0.4205

Table 4.6: Noun noise model parameters with Fixed PCFG

Singular Plural
Singular 0.9233 0.0767
Plural 0.6548 0.3451

4.3 Evaluation techniques

In this section, we explain our evaluation method. [Park and Levy, 2011]

presented a novel approach to evaluate grammar correction model performance.
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Table 4.7: Verb noise model parameters with Fixed PCFG

Base Par Th Sec Pa PaPar Inf. Sec
Base 0.9787 0.0045 0.0165 0.0 0.0001 0.0 0.0 0.0
Par 0.0235 0.8999 0.0 0.0 0.0765 0.0 0.0 0.0
Th 0.1096 0.0068 0.8809 0.0 0.0025 0.0 0.0 0.0
Sec 0.0 0.0 0.6112 0.0 0.0 0.0 0.0203 0.3684
Pa 0.5290 0.04079 0.0439 0.0 0.3861 0.0 0.0 0.0

PaPar 0.3262 0.0928 0.1013 0.0 0.0387 0.4409 0.0 0.0
Inf. 0.0 0.0 0.0 0.0129 0.0 0.049 0.8964 0.04156
Sec 0.0 0.0 0.0093 0.0783 0.0013 0.0 0.0 0.9108

If we denote the grammatically incorrect language as Language A, and the gram-

matically correct language as Language B. We can think of the task of grammar

correction as translation from language A to language B. Thus, we can use stan-

dard machine translation evaluation techniques to evaluate our model. Machine

translation evaluation relies on availability of a parallel corpus. Thus if we can

obtain correct sentences for our sentences in development and testing set, we can

evaluate our model using parallel corpus methods. We will now re-iterate the

BLEU and METEOR metrics from [Park and Levy, 2011]

4.3.1 BLEU and METEOR

BLEU [Papineni et al., 2002] and METEOR [Lavie and Agrawal, 2007] are

two state-of-the-art evaluation metrics currently being used in the field of machine

translation. Both these metrics compare a machine translated output sentence to

reference translations, and try to evaluate the similarity of the translation output

to the reference. The reference translations are a set of high quality translations,

often obtained from existing translations of the same document. Both BLEU and

METEOR have a score between 0 and 1, where 1 is the best possible score and a

higher score means better translation.

We use the reference sentences provided by [Park and Levy, 2011]. These

reference translations were obtained using Amazon Mechanical Turk and later each

correction was validated.
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4.3.2 Results on development set

Out of 502 total sentences in the development set, 139 sentences failed to

parse. This was mainly due to some word forms not being seen while training. We

are yet to fix this issue and thus this failure was expected. Table 4.8 summarizes

the results with BLEU and METEOR scores included.

Table 4.8: Results on development set with wordform noise model and using
parameters learnt after using 1k training sentences

Total Sentences 502
Sentences that failed to parse 139
Average BLEU score for incorrect sentences: 0.705898
Average BLEU score for Vanilla Grammar: 0.6030409
Average BLEU score for Fixed Grammar: 0.630623
Average METEOR score for incorrect sentences: 0.812503
Average METEOR score for Vanilla grammar: 0.753504
Average METEOR score for Fixed Grammar: 0.768581

4.3.3 Analysis

We see that our model actually does a worse job and introduces more errors

on the incorrect sentences. However, we see that our fixed grammar does a better

job than Vanilla grammar. We think that due to strong independence assumptions

in our grammar, some of the syntactic information is lost, and thus by fixing our

grammar we can hope to do a better job at automatic grammar correction. This

is part of our future work. Let us also look at some of the corrections our present

model made that work well:

• Corrected: Such an effort will make our country help to overcome economic

difficulties and create many jobs for the people.

• Incorrect: Such an effort will make our country help to overcome economic

difficulty and create many jobs for the people

Note that it correctly fixes the word difficulty to its right form.

Now, let us also look at a sample correction where it performs bad:
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• Correct: Teachers can only gain these ability through their careers , and

some may even had to went through difficult time .

• Incorrect: Teachers can only gain these abilities through their careers , and

some might even have to go through difficult time .

We see here that it is unable to associate these and abilities together. We

can fix this by adding propagating lexical information up the tree about these.

The problem of using go instead of went is however hard to fix.



Chapter 5

Conclusion and Future Work

In this thesis, we have presented a novel approach for automatic grammar

correction. We have shown how we can use noisy channel model to correct gram-

matical errors. Our major contribution is to present how this model works when we

use a Probabilistic Context Free Grammar (PCFG) as our language model along

with wFST as noise model. We show how we can extend the framework of V-

expectation Semirings to CKY parsing to learn the parameters of our noise model.

In this thesis, we have worked with only one noise model - wordform correction.

Another important conclusion is that we can fix the grammar to remove

the strong independence assumptions. We believe using syntactic knowledge of

english grammar will help us fixing our grammar. As part of future work, We also

plan to use more noise models as mentioned in [Park and Levy, 2011] - spelling

errors, article choice errors, prepositional choice errors, word insertion models,

word deletion models and combination of these models.
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