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Abstract Few studies have quantified juvenile salm-
on growth among different habitats or evaluated the
mechanisms controlling salmon growth and survival.
We used otolith microstructure to compare daily
relative growth rates among main-channel riverine
areas, off-channel ponds, and non-natal seasonal
tributaries of the Sacramento River, CA. We com-
pared prey availability, prey preference, and stomach
fullness between these sites. We observed larger
average otolith growth increments, higher prey den-
sities, and warmer water temperatures in both off-
channel ponds and non-natal seasonal tributaries
compared to the main-channel areas in both 2001
and 2002. Our findings suggest that warmer temper-
atures and abundant prey in off-channel habitats
during Central Valley Chinook salmon rearing periods
may lead to higher growth rates, which in turn may
improve juvenile survival. Our results suggest that
off-channel habitats may be critical habitats to include
in conservation and management plans for juvenile
salmon.

Keywords Salmon . Chinook . Growth . Juvenile .

Rearing . Habitat . Otolith

Introduction

Pacific salmon stocks show precipitous declines (e.g.
Mantua et al. 1997). Declines are particularly severe
in California, where subspecies, and/or populations of
three anadromous salmonid species, Chinook salmon
(Oncorhynchus tshawytscha), coho salmon (O.
kisutch) and steelhead trout (O. mykiss), currently
have state or federal protection (Ruckelshaus et al.
2002). Yoshiyama et al. (2000) have documented a
75% decrease in the numbers of Chinook salmon in
California’s Central Valley since 1950. Much of this
decline in the Central Valley is attributed to the
reduction in spawning and rearing habitats, due to
dams and diversions. (Yoshiyama et al. 2000).

Though anadromous salmon gain over 95% of
their mass in the open ocean, recent modeling results
for Columbia River Chinook suggest that first year
and estuarine survival are key factors influencing a
cohort’s success (Kareiva et al. 2000). While regional
differences exist between river systems, first year
survival rates are likely important in the population
dynamics of every salmonid stock (Holtby et al. 1990;
Sommer et al. 2001). More information on juvenile
salmonid performance in different habitats is needed
to identify factors limiting their abundance during the
freshwater phase (Swales et al. 1986).
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In addition to rearing in the main-channel of rivers,
salmon rear in floodplains (e.g. Sommer et al. 2001),
off-channel ponds (e.g. Peterson 1982), natal tributar-
ies (e.g. Johnson et al. 1992), and non-natal tributaries
(e.g. Murray and Rosenau 1989). It has been
suggested that the refuge that off-channel habitats
provide from both high flows and high sediment loads
may improve growth rates (Crouse et al. 1981) and
decrease mortality (Erman et al. 1988). In addition, at
the onset of floodplain and seasonal tributary inunda-
tion, the increase in overall available habitat is likely
to both reduce competition and lower predation risk
(Sommer et al. 2001). Greater prey densities in off-
channel habitat relative to the main-channel may also
improve feeding rates and result in faster growth
(Swales and Levings 1989). Rarely have the effects of
off-channel habitats on juvenile salmon growth or
survival been quantified (Simenstad and Cordell
2000). Instead, benefit for the salmonids is often
assumed based on abundance comparisons between
habitats rather than actual performance differences
(Simenstad and Cordell 2000).

Recent advances in otolith increment analysis
(Campana and Thorrold 2001) allow us to improve
upon previous methods used to compare fish growth
rates. Daily increment widths of sagittal otoliths
provide a stable record of each individual’s growth
response to spatial and temporal environmental con-
ditions (Neilson and Geen 1982; Neilson et al. 1985;
Gauldie 1991). We can use these daily otolith growth
increments to compare growth differences across a
variety of habitats. One early concern with otolith
analysis was that increment widths might be more
influenced by temperature and metabolism than by
somatic growth (Neilson and Geen 1982; Mosegaard
et al. 1988; Wright et al. 1990; Bradford and Geen
1992). While otolith growth can become uncoupled
from somatic growth under specific conditions (e.g.
starvation), Gauldie (1991) demonstrated that changes
in increment width do not correspond to predicted
values based on temperature effects alone. As a result,
otolith microstructure provides a conservative esti-
mate of somatic growth and is a useful tool for
assessing short-term relative growth differences be-
tween individuals or populations (Neilson et al. 1985;
Gauldie 1991).

In the present study we use otolith daily growth
increments as a relative measure of somatic growth in
fall-run juvenile Chinook salmon. We hypothesized that

somatic growth for salmon would be greater in off-
channel habitats than in main-channel habitats. Specif-
ically, we expected that the higher temperature,
increased water clarity, and shallow depth of off-
channel waters would support higher prey densities
and favor increased somatic growth in juvenile salmon.
To test this hypothesis we compared daily otolith
growth increments, diet, and stomach fullness, prey
abundance, temperature, and turbidity among main-
channel areas, off-channel ponds, and non-natal season-
al tributaries of the Sacramento River, California.

Methods

Study area

The Sacramento River is the largest river system in
California and is also one of the most disrupted in the
world (Yoshiyama et al. 2000). The river originates
near Mt. Shasta and is fed primarily by snowmelt and
precipitation runoff. The 70,000 km2 watershed is
heavily altered by dams and diversions primarily for
agriculture and urban development (Reisner 1986;
May and Brown 2002). All fish sampling occurred
between the towns of Los Molinos and Ord Bend at
river miles 224 and 168 respectively (Fig. 1).

We focus on juvenile fall-run Chinook salmon due
to the their use of off-channel habitats during the
study period. Fall-run Chinook salmon have an
“ocean-type” life history (Healey 1991) and are
currently the largest of the four runs in the Sacra-
mento River (Yoshiyama et al. 2000). Fall-run adult
migration peaks during September and October and
spawning occurs soon after adults reach their natal
stream. After emerging in winter and early spring, the
fall-run fry typically rear in main stem rivers or the
bay-delta estuary before moving toward the ocean
(Kjelson et al. 1982).

Physical conditions

Water temperature and turbidity and were measured at
each site prior to sampling. We used a hand-held
thermometer to measure water temperature. Addition-
ally, in 2002, temperature loggers (Onset Corporation)
were placed in all study sites taking hourly samples.
Mean daily water temperature was calculated from the
24 daily measurements collected by these temperature
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loggers. We measured turbidity using a DRT 15-CE
Portable Turbidimeter.

Fish sampling

We collected fall-run juvenile salmon from three
habitat types: main-channel, off-channel ponds, and
non-natal seasonal tributaries. We sampled once every
14 days during March–April in 2001 and February–
March in 2002, using 10-m and 15-m long and 1.8-m
high beach seines (4.75-mm mesh). We sampled in
the morning between 07:30 to 11:00 so that more
easily digestible prey would not be under-represented

in fish stomachs. In 2001 and 2002 we visited each
site three times and collected ten fish each visit, for a
total of 30 fish site−1year−1. Due to the possible
correlation between fish length and increment width
(larger fish having larger increments despite similar
growth rates), we haphazardly collected ten fish
between 40 mm and 50 mm standard length.
Therefore, the fish lengths reported (Table 1) do not
represent the mean fish standard length for each
habitat.

In 2001 we sampled two main-channel sites and
one off-channel pond site. The two main-channel sites
(MC 1 and MC 2) were along side gravel bars on the

Fig. 1 Sampling sites for
March–April 2001 (open
symbols) and February–
March 2002 (filled symbols)
along the Sacramento River.
Off-channel pond (squares),
main-channel (stars), and
non-natal seasonal tributar-
ies (circles) are shown for
each year
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inside of a meander bend in the river (Fig. 1). Our off-
channel pond site (OP 1) contained approximately
3,100 m3 of water and was continuously connected to
the main-channel at the downstream end (Fig. 1).
During the first week of sampling, high flows
inundated off-channel pond 1 at the upstream end
for 3 days.

In 2002 we sampled three new main-channel sites
(erosion prevented sampling at 2001 main-channel sites),
three off-channel pond sites (OP1 and two new sites
OP2, OP3), and two non-natal seasonal-tributary sites
(hereafter referred to as seasonal tributaries). Main-
channel sites (MC 3, MC 4, and MC 5) each occurred
on gravel bars 100 meters upstream from an off-
channel pond that was sampled (Fig. 1). The size of
off-channel pond sites ranged from approximately
2,800 m3 (OP 2) to 5,500 m3 (OP 3). OP 1 and OP 2
lost their connection to the main-channel during the
last week of sampling when discharge in the main-
channel dropped below 225m3·s−1. Our third site (OP 3)
maintained connection to the main-channel throughout
the study period.

We describe the seasonal tributaries as non-natal,
based on evidence of juvenile salmon presence, but
not reproduction, in a study by Maslin et al. (1997,
Intermittent streams as rearing habitat for Sacramento
River chinook salmon (Oncorhynchus tshawytscha).
Unpublished report, California State University,
Chico). Seasonal tributaries were connected to the
main-channel by short periods of surface flow
(typically December through May) and were charac-
terized by ‘flash’ responses to precipitation. The

Toomes Creek site (ST1) is surrounded by mixed
riparian forest dominated by cottonwoods, sycamores
and willows, while the Mud Creek site (ST2) is
situated in a freshwater marsh with willows and
grasses as the predominant vegetation (Fig. 1).

Otoliths

Fish mass and standard length were measured prior to
otolith removal. We followed Secor et al. (1992) for
preparation of the otoliths. The right side otoliths
were mounted on microscope slides in Crystalbond™
(Aremco, Valley Cottage, NY) with the sulcus
acousticus facing down. The otolith was then pol-
ished using 600 wet grit sand paper followed by
alumina micropolish (0.05μm grit, Buehler ltd.).
Polishing continued until central primordia and daily
increments were clearly visible using light microsco-
py. The left otolith was used in six of the 330 samples
because the right otolith was in the vaterite form
rather than the more common aragonite form.

Each mounted otolith was assigned a random
number to prevent bias during later analysis. We
photographed otoliths at 400X using a Pixera Penguin
(Pixera, Los Gatos, CA) digital camera mounted to an
Olympus BX-51 compound microscope. Daily incre-
ment widths were measured using Metamorph®
(Molecular Devices Corp, Downington, PA) imaging
analysis software and an average daily increment
width (here after referred to as increment width) was
calculated for each fish. We measured the ten most
recently accreted daily increment widths to character-

Table 1 Results of physical measurements and salmon collections for 2001 and 2002

2001 2002

OP MC OP MC ST

No. of sites 1 2 3 3 2

Mean turbidity (NTU) 5.7±2.7 10.5±1.9 7.8±2.0 13.0±2.0 5.0±2.5

No. of salmon 30 60 90 90 60

Standard length (mm) 43.6±0.8 44.1±1.0 43.7v±0.9 40.7±0.6 45.1±1.0

Mean salmon mass (g) 1.2±0.1 1.3±0.1 1.3±0.1 1.0±0.1 1.4±0.1

Stomach fullness 3.8±0.2 3.7±0.3 2.1±0.3 1.7±0.3 1.9±0.3

Prey density (# per m−3) 97±42 12±8 316±164 4.7±164 23.4±201

Means are presented with ± 1 SE. Note: Salmon standard length does not represent the mean for that habitat, but the mean for salmon
selected (between 40 mm and 50 mm) for otolith increment width analysis

OP off channel ponds, M main channel, ST non-natal tributary
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ize growth for each fish at each site. All measure-
ments were made at a 45° angle to the longitudinal
axis at the posterior end, ventral side.

Diet

After otolith removal, we removed, weighed, and
placed the stomach contents of each fish in 95%
ethanol. Prey item identification followed Merritt and
Cummins (1996) and Borror et al. (1992). Aquatic
insect larvae and pupae were identified to scientific
family, while aquatic adult insects, terrestrial insects,
and crustaceans were identified to scientific order.
Aquatic and terrestrial dipteran adults were all
classified as winged diptera.

Individuals of the same taxon were grouped in a
petri dish and the percent volume of each taxon
relative to the total stomach contents was visually
estimated. An Index of Relative Importance (IRI) was
calculated for samples from each habitat using the
frequency of occurrence, frequency by number, and
percent volume for each prey category (Shreffler et al.
1992):

IRI ¼ freq: of occurrence freq: by numbers * percent volumeð Þ
ð1Þ

Due to small stomach size, we used percent
volume of all ingested bolus rather than the standard
measure of percent biomass (Shreffler et al. 1992).

An index representing stomach fullness (FI) was
calculated by dividing the wet weight of stomach
contents (WWsc) by the wet weight of the juvenile
salmon (WWsalmon) (Miller and Simenstad 1997):

FI ¼ WWsc=WWsalmon * 100 ð2Þ

Prey availability

Aquatic invertebrates in the water column were
collected on every sampling occasion using 13 cm
diameter plankton nets with 263μm mesh. Ten
horizontal plankton net tows were made at different
points within the habitat to sample microhabitat
variation including depth and substrate. Each plank-
ton tow was 10 m in length gauged from the rope
length. In flowing water, we applied a Lagrangian
approach and sampled a 10 m long water column
perpendicular to the shore. While pulling the plankton

net in towards the shore we moved downstream with
the current, keeping the rope at a 90° angle with
respect to the shore. The ten samples were combined
into a single composite sample and preserved in 90%
ethanol. Due to high numbers of organisms, three
samples from backwater sites in 2001 and 2002 were
subsampled in the lab. Subsampling was accom-
plished by measuring the total sample volume,
agitating the sample for 10 sec and removing a
subsample of known volume with a pipet. Subsam-
pling continued until 300 organisms were counted,
after which the last subsample was fully identified.
Identification of available prey organisms followed
the same procedures as for stomach contents.

Data analysis

In 2001 we captured salmon from only one off-channel
pond. We used Student’s t-test to compare otolith
increment width, prey availability, stomach fullness,
temperature, and turbidity between the off-channel pond
and main-channel sites. In 2002, we performed analysis
of variance (ANOVA) on otolith increment width to test
hypotheses about prey availability, stomach fullness,
temperature, and turbidity between the three habitat
types. We used Tukey’s multiple comparison test to
compare habitat means at a 0.05 significance level. We
used analysis of covariance (ANCOVA) to test for
covariance between habitat and salmon length.

For prey availability comparisons, we limited prey
taxa to those that constituted 96% IRI or greater in the
salmon stomachs. We tested for differences between
discrete temperature measurements and daily averages
from temperature loggers using Wilcoxon's matched-
pairs test. All statistical analyses were done using
JMP 5.0 (SAS Institute Inc.).

Results

Physical measurements

No differences were found between hand-held tem-
perature measurements and daily averages calculated
from temperature loggers (p>0.56). In 2001 mean
water temperatures were significantly higher in OP 1
than in the main-channel habitats (MC 1 t1,4=4.39,
p=0.01; with MC 2 t1,4=3.51, p=0.02 , Fig. 2). Water
temperatures in 2002 were significantly higher in off-
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channel ponds than in the main-channel and seasonal
tributaries (F2,5=8.97, p=0.02, Tukey's, Fig. 2), with
the highest temperatures found in the off channel
ponds followed by seasonal tributaries. In 2001
turbidity in OP 1 was lower than in MC 1 (t1,4=
2.48, p=0.02) and similar to MC 2 (t1,4=1.69, 0.10,
p=0.02 Table 1). Turbidity was similar between
habitats in 2002 (F2,5=3.32, p=0.12).

Otolith increments

In 2001 we measured a significant difference in
otolith increment width between habitat types (be-
tween OP 1 and MC 1 t1,58=5.18, p<0.0001; between
OP1 and MC 1 t1,58=2.82, p=0.003), with larger
otolith increment widths observed in individuals
captured in off-channel ponds (Fig. 2). In 2002 otolith
increment width again differed between habitat types
(F2,5=9.12, p=0.02), with larger otolith increment
widths observed in off-channel pond salmon

(Tukey’s, α=0.05). Individuals captured in seasonal
tributaries had more variable increment widths, and
did not differ significantly from either off-channel
ponds or main-channel salmon (Tukey’s, α=0.05).
ANCOVA results suggest no interaction between
habitat and salmon length was observed, and therefore
habitat effects on daily increment widths were
independent of salmon length.

Diet

Aquatic dipterans dominated juvenile salmon diets in
all habitats (Fig. 3). In 2001 Chironomidae larvae,
pupae, and adults were the most common prey items
in both off-channel pond salmon (69% IRI) and main-
channel salmon (78% IRI). Diets in 2002 were again
dominated by Chironomidae larvae and pupae, with
IRI values of 52%, 97%, and 89% for off-channel
pond, main-channel and seasonal-tributary salmon,
respectively. Copepods were also a significant prey

Fig. 2 Mean daily increment widths and temperature for different habitats in 2001 and 2002. Error bars are calculated from site means
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item in off-channel pond salmon stomachs (46%).
Hydropsychidae larvae (Trichoptera), Baetidae
nymphs (Ephemeroptera), and arachnids were con-
sumed infrequently in both years.

We observed no difference in stomach fullness
between habitats in 2001 (between OP 1 and MC 1
t1,4=1.39, p=0.09 ; between OP 1 and MC 1 t1,4=0.97,
p=0.16, Table 1) or in 2002 (F2,5=1.68, p=0.19).

Prey availability

We observed higher prey densities in off-channel
habitats in both years but the differences were not
statistically significant due to high between-sample
variability (In 2001 between OP 1 and MC 1 t1,4=
2.00, p=0.09 ; between OP 1 and MC 1 t1,4=2.05, p=
0.16; In 2002 F2,5=1.07, p=0.41), Table 1).

Fig. 3 Chinook salmon diet
in off-channel ponds and the
main-channel during
March–April of 2001 and in
off-channel ponds, the
main-channel, and non-natal
seasonal tributaries during
February–March of 2002.
The Index of Relative Im-
portance (IRI) is defined in
the text
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Cladocerans and copepods were the dominant taxa
found in all habitats followed by chironomidae larvae.
In both years, cladoceran and copepod densities were
over a magnitude greater in off-channel ponds than in
the main-channel. Copepods dominated off-channel
pond zooplankton in 2001 and cladocerans in 2002.

Chironomidae larvae were the second most com-
mon prey in all habitats followed by chironomidae
pupae. In 2001, chironomidae larval densities in off-
channel ponds were similar to those in main-channel
habitats, while in 2002 they were three times the
main-channel density and one-third the seasonal-
tributary density.

Discussion

The primary result of the current study indicates that,
Chinook salmon in the Sacramento River show larger
otolith increments widths in off-channel habitats
when compared to near-by main-channel habitat,
suggesting faster or improved growth rates. This
result is interesting in the light of previous work on
the benefits of alternative habitat for juvenile salmo-
nids. Our results based on otolith microstructure
support the findings of previous studies using
alternative methods to evaluate growth improvements
such as changes in abundance (Simenstad and Cordell
2000), change-in-length of fish (Swales et al. 1986;
Murray and Rosenau 1989) and mark/recapture
techniques (Sommer et al. 2001; Wigington et al.
2006).

A suite of environmental, genetic and behavioral
factors likely influence salmonid growth rates. In our
case the juvenile salmon rearing in off-channel
habitats clearly experienced warmer water temper-
atures both within and between years (Fig. 2).
Warmer temperature by itself is known to increase
metabolic and growth rates when adequate food is
present. For example, in the laboratory under maxi-
mum ration conditions, Central Valley salmon growth
rates increase with increasing water temperature up to
19°C (Rich 1987; Cech and Myrick 1999). Our
results suggest that water temperature differences
(including seasonal variation) may have played a role
in growth rate differences between habitats.

Water temperature also influences metabolism and
therefore indirectly affects somatic growth (Elliot
1982). We quantified juvenile salmon somatic growth

by measuring daily otolith increment widths. While
water temperature can decouple otolith growth from
somatic growth and complicate otolith microstructure
interpretation (Marshall and Parker 1982; Mosegaard
et al. 1988; Bradford and Geen 1992), otolith growth
cannot be predicted by water temperature alone. To
investigate the effect of temperature on otolith incre-
ment widths, Gauldie (1991) reared juvenile Chinook
salmon at five different water temperatures (8°C, 10°C,
12°C, 14°C, and 16°C) and fed them to repletion. After
43 days the otoliths were analyzed and an empirical
relationship between temperature and otolith increment
width was developed. If we assume water temperature
is the sole control on otolith increment width growth,
we can apply the water temperature data from our
study to Gauldie’s equation Average Incrementð
Width ¼ 1:19 þ 0:085 *TemperatureÞ and predict
otolith increment widths for juvenile salmon in each
habitat type. Based on the average water temperature
in each habitat, off-channel pond salmon otolith
increment widths should be 12% wider in 2001 and
8% wider in 2002, than otolith increment widths in
main-channel salmon. Seasonal tributary salmon oto-
lith increment widths should be 2% narrower than
those in main-channel salmon. The observed otolith
increment widths were 21% wider in off-channel pond
salmon in 2001, 46% wider in off-channel pond salmon
in 2002, and 10% wider in seasonal tributary salmon in
2002 than those in main channel salmon. The greater
otolith increment width differences we observed in off-
channel habitats relative to those predicted, suggest
factors other than water temperature influenced otolith
growth rates.

Salmon growth rates may also be influenced by
prey availability. Higher metabolic rates require
adequate food to maintain higher growth rates. Our
observations of higher prey densities in the warmer
off-channel habitats are congruent with previous
research on innundated floodplains (Gladden and
Smock 1990; Sommer et al. 2001) and shallow
habitat interfaces (Welcomme 1979). We expected to
see greater stomach fullness in habitats with greater
prey densities due to higher feeding rates. Stomach
fullness was higher in both off-channel ponds and
main-channel habitats in 2001 than in 2002 but did
not vary significantly within the year. While stomach
fullness results imply that prey availability did not
influence growth differences between habitats, it is
possible that salmon fed at different times or for
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different duration(s) in different habitats, or that prey
availability varied throughout the day in different
habitats. Salmon movement between habitats may
have influenced stomach contents, but recent analysis
of chironomid and salmon carbon and nitrogen stable
isotopes, which provide a time-integrated measure of
prey assimilation (Vander Zanden and Vadeboncoeur
2002), suggest the chironomids and salmon we
collected were feeding from distinct sources that
differed between habitats (Limm, unpublished data).
Because stomach evacuation rates and digestive
processes are temperature dependent (Elliot and
Persson 1978), fishes with full stomachs that were
collected in warmer conditions (i.e., off-channel
habitats) likely processed food more quickly than
did salmon with full stomachs collected in cooler
locations (i.e., main-channel).

Turbidity and habitat area may also influence growth
rate. It is known that fine suspended sediments can
reduce salmonid growth rates (Crouse et al. 1981) and
feeding efficiency (Berg and Northcote 1985). Berg
and Northcote (1985) observed reduced feeding
efficiency at turbidity levels as low as 11 NTU. These
levels of turbidity were observed in the main-channel
during the study period in both 2001 and 2002. In
addition to effecting growth, high turbidity may cause
juvenile salmon to select less-turbid off-channel sites
during high flows (Scrivener et al. 1994). The
inundation of seasonally dry areas habitats (including
floodplains, off-channel ponds, and tributaries)
increases the overall wetted area available for fish
and other aquatic organisms and may increase prey
availability (Sommer et al. 2001). This same increase
in wetted area may also act to dilute the number of
predators and their direct and indirect impacts on
juvenile salmon. Large predators may force smaller
fishes into sub-optimal feeding areas (Schlosser 1987),
so habitat expansion that reduce this interaction and
could act to accelerate the growth of smaller fish.

The shallower depths, warmer temperatures, lower
turbidity, and more abundant prey we found in off-
channel remnant floodplain habitats likely support
higher productivity of both salmonid and non-
salmonid species. Floodplains elsewhere enhance fish
growth (Welcomme 1979; Gutreuter et al. 2000;
Sommer et al. 2001), secondary production (Gladden
and Smock 1990), and contribute significant aquatic
biomass to the river system (Benke 2001). Whether
the enhanced fish growth we observed in off-channel

habitats yields a significant biomass contribution to
main channel communities is unclear. We observed
black bass (Micropterus ssp.) in off-channel ponds
and predation by black bass (e.g. Tabor et al. 2007)
may offset any rearing benefits for juvenile Chinook.
We also observed stranding of juvenile salmon in both
2001 and 2002 as off-channel ponds were discon-
nected from the main-channel, and water temperatures
increased to lethal limits (≈24°; Rich 1987). The
extensive alteration of the Sacramento River’s natural
flow regime has greatly decreased connectivity to off-
channel habitats in the spring (Yoshiyama et al.
2000). If salmon life history strategies are adapted to
utilizing off-channel habitats, the mortality costs
associated with high temperatures and stranding may
be significant (Higgins and Bradford 1996).

In conclusion, off-channel habitats have historical-
ly played a critical/crucial role in supporting juvenile
fishes (both salmon and non-salmonids) in the Central
Valley of California. Our results support the idea that
off-channel habitats may be critical areas to include in
conservation and management plans for juvenile
salmon. We see evidence in our study and others
(Sommer et al. 2001) to support the idea that higher
rates of growth occur in off-channel habitats. In-
creased growth in fishes is also typically linked to
higher rates of survival (Parker 1971). Future work in
this system will be needed to examine this linkage in
more detail and perhaps ultimately provide estimates
of the impact that rearing in these habitats has on
juvenile survival (Simenstad and Cordell 2000).
Historically we can assume that off-channel habitats
were once integral pieces of the environmental mosaic
of the Sacramento River. As a result any habitat
remnants that remain are likely important to the
rearing of Central Valley salmonids, and that restora-
tion and management of these types of habitat should
be included in an overall conservation strategy aimed
at restoring California’s salmonids.
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