Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

Performance Boundaries in Nb3Sn Superconductors

Permalink

https://escholarship.org/uc/item/6sv7x08f

Author

Godeke, Arno

Publication Date

2006-05-01

Performance Boundaries in Nb₃Sn Superconductors

Arno Godeke

Berkeley, CA May 1, 2006

Acknowledgments

Bennie ten Haken Herman ten Kate Sasha Golubov

David Larbalestier Peter Lee Alex Gurevich Matt Jewell Chad Fischer

Outline

- Critical current density and critical current
- Composition variation in Nb₃Sn wires
- Composition and $H_{c2}(T)$
- Pinning capacity, grain boundary pinning, grain size
- Composition and J_c
- Strain dependence (time allowing)
- Present status and future prospects

Wire J_c progress versus time

Parrell, ACE 2004

What determines J_c ?

Pinning capacity

Average grain size [nm] 1000 80 Scanlan 1975 Shaw 1976 A Marken 1986 West 1977 Fischer 2002 10 Reciprocal grain size [µm⁻¹]

Average grain size

Effective H - T phase boundary

- Composition
- Strain state

$$J_{c} \rightarrow I_{c}$$
?

What determines I_c ?

Powder-in-tube wire (SMI)

• 50% Non – Cu fraction

• Only 20% of the wire carries J_c

Outline

- Critical current density and critical current
- Composition variation in Nb₃Sn wires
- Composition and $H_{c2}(T)$
- Pinning capacity, grain boundary pinning, grain size
- Composition and J_c
- Strain dependence
- Present status and future prospects

Composition: $Nb_3Sn \rightarrow Nb_{1-\beta}Sn_{\beta}$

•Binary phase diagram → 18 to 25 at.% Sn → 'A15'

→ Charlesworth, JMS 1970, Flükiger, ACE 1982

Nb₃Sn diffusion reaction in wires

Reaction at 675°C vs time in Powder-in-Tube wire (SMI)

Composition variation in wires

Composition analysis on SMI Powder-in-Tube wire

- •0.3 at.% Sn/μm
- $\bullet J_c(12T,4.2) = 2250 \text{ A/mm}^2$

Composition variation in wires

Bronze process wire Univ. of Geneva

- •4 at.% Sn/μm
- $J_c(12T,4.2) = 720 \text{ A/mm}^2$
 - Abächerli, TAS 2005

Composition variation in wires

- OST Internal-Tin wire
- Flat Sn content at 24 at.%
- $J_c(12T,4.2) = 3000 \text{ A/mm}^2$

■ Uglietti, MT19 2005

Increasing J_c with increasing Sn

			BERKELEY LAB
Geneva Bronze Process	25 at.% Sn @ source 4 at.% Sn/µm gradient	J _c (12T,4.2) = 720 A/mm ²	
SMI Powder-In-Tube	25 at.% Sn @ source 0.3 at.% Sn/µm gradient	J _c (12T,4.2) = 2250 A/mm ²	Sn richer Higher J _c Why?
OST Internal Tin	24 at.% Sn no gradient	J _c (12T,4.2) = 3000 A/mm ²	

Outline

- Critical current density and critical current
- Composition variation in Nb₃Sn wires
- Composition and $H_{c2}(T)$
- Pinning capacity, grain boundary pinning, grain size
- Composition and J_c
- Strain dependence
- Present status and future prospects

What happens with changing Sn content?

- Pure Nb
 - **■** *bcc* Nb spacing 0.286 nm
 - $T_c = 9.2 \text{ K}$
- Nb₃Sn → A15 unit cell
 - **■** *bcc* Sn, orthogonal Nb chains
 - Nb spacing 0.265 nm
 - High peaks in d-band DOS
 - Increased T_c = 18 K
- Off-stoichiometry
 - Sn vacancies unstable
 - Excess Nb on Sn sites
 - Additional d-band
 - **▶** Less electrons for chains
 - → Rounded off DOS peaks
 - → Reduced T_c

A15 lattice and DOS

Dew-Hughes, Cryogenics 1975

Nb chain continuity, $N(E_F)$, λ_{ep} , T_c , H_{c2}

In general

- Sn deficiency
- Tetragonal distortion
 - →24.5 25 at.% Sn
- Strain
- Alloying (Ti, Ta, ...)
- Dislocations
- Anti-site disorder

All affect Nb chain integrity ('Long Range Order')

- And thus $N(E_F)$ and λ_{ep}
- And thus T_c and H_{c2}

$T_{\rm c}$ and $H_{\rm c2}$ versus Sn content

Single crystal, bulk and thin film samples

$$T_{c}(\beta) = \frac{-12.3}{1 + \exp\left(\frac{\beta - 0.22}{0.009}\right)} + 18.3$$

$$T_{c}(\beta) = \frac{-12.3}{1 + \exp\left(\frac{\beta - 0.22}{0.009}\right)} + 18.3 \qquad \mu_{0}H_{c2}(\beta) = -10^{-30} \exp\left(\frac{\beta}{0.00348}\right) + 577\beta - 107$$

$H_{c2}(T)$ versus Sn content

■ Jewell, ACE 2004, bulk samples

•Sn richer A15 has higher $H_{c2}(T)$ (until ~ 24.5 at.% Sn)

$H_{c2}(T)$ in wires

\bullet $H_{c2}(T)$ from small current, resistive transitions

Normalized $H_{c2}(T)$ all available results

Ternary

- SMI PIT 4h/675°C 26.3-28.8T, 16.6-17.3K
- SMI PIT 16h/675°C 26.9-29.0T, 16.8-17.5K
- SMI PIT 64h/675°C 28.6-29.7T, 17.5-17.9K
- ▼ SMI PIT 768h/675°C 28.8-29.7T, 17.3-17.8K
- ◆ SMI PIT single fil.#1 28.3-30.3T, 16.7-17.3K
- SMI PIT single fil.#2 28.4-30.4T, 16.6-17.2K
- SMI reinforced PIT 27.7-29.6T, 17.7-18.0K
- Fur. br. on Ti-6Al-4V 27.5-29.3T, 17.0-17.5K ⋄
- Fur. br. on Brass 27.0-28.9T, 16.9-17.4K
- ▲ Fur. br. on Stainless 27.1-29.0T, 16.9-17.4K
- ▼ Fur. br. Free 27.5-29.4T, 16.9-17.5K
- ♦ Vac. bronze 26.6-29.2T, 17.2-17.8K
- $\nabla FUR \mu_0 H_{\rm K}(T) 100 \,\mu{\rm V/m}$
- FUB H (T) 10 M/--
- FUR μ₀ $H_{\rm K}(T)$ 10 μV/m
- $VAC \mu_0 H_{\rm K}(T) 100 \,\mu{\rm V/m}$
- $VAC \mu_0 H_{\rm K}(T) 10 \ \mu {
 m V/m}$

Binary

- Foner single crystal cubic 28.8T, 17.8K
- ▶ Foner single crystal tetr. 24.3T, 17.6K
- Foner poly-crystal mart. 25.2T, 17.8K
- Foner poly-crystal cubic 28.6T, 17.7K
- Orlando thin film 9 μΩcm 26.3T, 17.4K
- \triangle Orlando thin film 35 μΩcm 29.5T, 16.0K
- ▼ Orlando thin film 60 μΩcm 25.4T, 13.2K
- Orlando thin film 70 μΩcm 15.1T, 10.4K
- SMI PIT 26.1-27.8T, 17.8-17.9K
- ▲ UW-ASC bulk 19.3at.% Sn 10.9T, 8.4K
- UW-ASC bulk 24.4at.% Sn 25.5-29.3T, 16.4-16.7K

— Maki-DeGennes

• Shape $H_{c2}(T)$ independent of

- Composition
- Morphology
- **Strain state**
- Applied critical state criterion

$$\ln\left(\frac{T}{T_{c}(0)}\right) = \psi\left(\frac{1}{2}\right) - \psi\left(\frac{1}{2} + \frac{\hbar D\mu_{0}H_{c2}(T)}{2\phi_{0}k_{B}T}\right)$$

Approximation:

$$\frac{H_{c2}(t)}{H_{c2}(0)} \cong 1 - t^{1.52}, \quad t = \frac{T}{T_{c}(0)}$$

Highest $H_{c2}(T)$ in wires

 $\mu_0 H_{c2}(0) = 30 \text{ T}, T_c(0) = 18 \text{ K is upper limit}$

Outline

- Critical current density and critical current
- Composition variation in Nb₃Sn wires
- Composition and $H_{c2}(T)$
- Pinning capacity, grain boundary pinning, grain size
- Composition and J_c
- Strain dependence
- Present status and future prospects

Pinning: Why does Nb₃Sn need it?

- Nb₃Sn slab in $H_{c1} < H < H_{c2}$
- Field quanta $\phi_0 = h / 2e$ (flux-lines) penetrate slab

- Transport current ($\nabla \times B = \mu_0 J$) causes gradient B_x
- •Flux-lines repel \rightarrow move ($\nabla \times E = dB/dt$) $\rightarrow E_{V} \rightarrow Loss$
 - Need to be 'pinned' at 'pinning centers' by 'pinning force' F_P
- Optimal pinning at 1 pinning center / flux-line

What determines pinning capacity?

Pinning centers

- Positions with minima in SC wave function
 - Normal regions
 - Grain boundaries
 - Lattice imperfections
 - ...

- ●Nb₃Sn
 - Grain boundaries
 - → Main pinning centers
 - Grain size determines F_{Pmax}

What determines grain size?

- Presence of grain nucleation points
- Reaction time and temperature

What is an optimal grain size?

Ideal: One pinning center per flux-line $\rightarrow a_{\Delta} \approx d_{av}$

- Flux-line spacing → field dependent
 - E.g. at 12 T a_{Λ} = $(4/3)^{1/4}(\phi_0/\mu_0 H)^{1/2}$ = 14 nm
 - Grain size in Nb₃Sn wires → 100 200 nm
 - Order of magnitude from optimal
- For any practical field $a_{\wedge} << d_{av}$
 - Collective pinning ('shearing' of FLL)
 - a_{Λ} → d_{av} only for $\mu_0 H$ << 1 T
- NbTi in contrast
 - Nano-scale distribution of α-Ti precipitates
 - $a_{\Lambda} \approx \alpha$ -Ti distribution for application fields
 - NbTi is fully optimized

What does $a_{\wedge} << d_{av}$ mean in practice?

- De-pinning → Synchronous shearing of FLL
- F_{Pmax} at $H/H_{c2} = 0.2$
 - About 6 T for Nb₃Sn
 - Far below application fields
- Grain refinement / APC
 - F_{Pmax} to higher field
 - $F_{\text{Pmax}} \rightarrow H/H_{\text{c2}} > 0.4$ shown by Cooley, ACE 2002
 - Higher fields accessible with Nb₃Sn
- Much room for improvement!

Example: Bronze processed
 ITER wire (Furukawa)

Alternative presentation $a_{\Delta} << d_{av}$

Flux shear model

Kramer JAP 1973

$$F_{\rm P}(H) = 12.8 \frac{\left(\mu_0 H_{\rm c2}\right)^{2.5}}{\kappa_1^2} \frac{h^{0.5} \left(1 - h\right)^2}{\left(1 - a_{\Delta}(H)/d_{\rm av}\right)^2}, \quad h = \frac{H}{H_{\rm c2}} \quad \left[\text{GN/m}^3 \right]$$

$$\therefore J_{c}^{0.5} (\mu_{0}H)^{0.25} = \frac{1.1 \times 10^{5}}{\kappa_{1}} \frac{\mu_{0} (H_{c2} - H)}{(1 - a_{\Delta}(H)/d_{av})}$$

• a_{Δ} << d_{av} : Kramer plot

$$f_{\rm K}(H) \equiv J_{\rm c}^{0.5} (\mu_0 H)^{0.25} \cong \frac{1.1 \times 10^5}{\kappa_1} \mu_0 (H_{\rm c2} - H)$$
 : $f_{\rm K}(H) \propto H$

Linear in H

'Kramer' plot

• Plot of $f_K(H)$ at various temperatures

Outline

- Critical current density and critical current
- Composition variation in Nb₃Sn wires
- Composition and $H_{c2}(T)$
- Pinning capacity, grain boundary pinning, grain size
- Composition and J_c
- Strain dependence
- Present status and future prospects

Are Kramer plots linear?

$$F_{\rm P}(h) = 12.8 \frac{(\mu_0 H_{\rm c2})^{2.5}}{\kappa_1^2} h^{0.5} (1-h)^2 \quad a_{\scriptscriptstyle \Delta} \ll d_{\rm av}$$

$$\stackrel{\triangle}{=} F_{P}(h) = F_{Pmax}h^{p}(1-h)^{q} \quad p = 0.5, \quad q = 2$$

- Linearity from $h \cong 0.03$ to 0.8
 - Confirmed by measurements
- $a_{\wedge} \cong d_{av}$ only below $h \cong 0.03$
- Different pinning mechanism?
 - only below $h \cong 0.03$
- Non-linearity below $h \cong 0.03$
 - Different pinning mechanism
- Non-linearity above $h \cong 0.8$
 - Inhomogeneity artifacts
 - **▶** Averaging over *H*_{c2} distribution

Effective $H_{c2}(T)^*$ for J_c

J_c scales with 'some' average $H_{c2}(T)^*$

• J_c gain if all A15 is stoichiometric?

 $J_{c}(12T,4.2K)$

From 2250 A/mm² to 2900 A/mm²

Outline

- Critical current density and critical current
- Composition variation in Nb₃Sn wires
- Composition and $H_{c2}(T)$
- Pinning capacity, grain boundary pinning, grain size
- Composition and J_c
- Strain dependence
- Present status and future prospects

Strain sensitivity of $H_{c2}(T)$

• Longitudinal strain effects on <u>effective</u> $H_{c2}(T)^*$

- Strain and composition have similar effects
 - Need for a separation of parameters

Strain sensitivity of $J_c(H,T)$

• Why is strain sensitivity increased at higher H and T?

Strain sensitivity versus composition

At higher H and T

- Low Sn A15 sections "die out"
 - Benefit PIT and IT vs Bronze:
 - **→** Larger volume fraction high Sn
 - High Sn sections determine SC properties
- Increased strain sensitivity
 - Is Sn rich A15 more strain sensitive than Sn poor A15 ?

 Does wire optimization through Sn enrichment cause higher strain sensitivity?

Strain sensitivity versus LRO

• S → Bragg-Williams order parameter

Higher LRO (≜ more Sn) → larger strain sensitivity

Strain in ternary and binary wires

◆Alloyed → more disorder → reduced strain sensitivity?

Outline

- Critical current density and critical current
- Composition variation in Nb₃Sn wires
- Composition and $H_{c2}(T)$
- Pinning capacity, grain boundary pinning, grain size
- Composition and J_c
- Strain dependence
- Present status and future prospects

Prospects for critical current density

Summary

Wire optimizations past decade

- Sn enrichment
- A15 fraction in non-Cu optimization
- Physical limit 5 kA/mm², realistic limit 4 kA/mm²

Grain refinement / APC

- The next big step?
- Grain size one order above optimal
- Grain 10 20 nm desired → nano technology

Strain

- Strain and composition parameter separation needed
- •Sn enrichment = more strain sensitivity?
- Much work to be done (3D, theory, bulk, film,...)

More information

■Available on request → agodeke@lbl.gov

Optional theory section

$N(E_{\rm F})$ and $\lambda_{\rm ep} \to T_{\rm c}$ and $H_{\rm c2}$

Weak coupling (BCS based)

$$T_{\rm c}(0) \cong \frac{2e^{\gamma_{\rm E}}}{\pi k_{\rm B}} \hbar \omega_{\rm c} \exp \left[-\frac{1}{V_0 N(E_{\rm F})} \right] \quad \therefore \quad T_{\rm c}(0) \cong 1.134 \Theta_{\rm D} \exp \left[-\frac{1}{\lambda_{\rm ep}} \right]$$

$$\mu_{0}H_{c2}(0) \cong k_{B}eN(E_{F})\rho_{n}T_{c}(0) = \frac{3e}{\pi^{2}k_{B}}\gamma\rho_{n}T_{c}(0)$$

Interaction strength independent (Eliashberg based)

$$\lambda_{\rm ep} = 2 \int \frac{\alpha^2(\omega) F(\omega)}{\omega} d\omega$$

$$\lambda_{\text{eff}} = \frac{\left(\lambda_{\text{ep}} - \mu^{*}\right)}{\left(1 + 2\mu^{*} + 1.5\lambda_{\text{ep}}\mu^{*}e^{-0.28\lambda_{\text{ep}}}\right)}$$

$$T_{\rm c} = \frac{0.25 \langle \omega^2 \rangle^{\frac{1}{2}}}{\left(e^{2/\lambda_{\rm eff}} - 1\right)^{\frac{1}{2}}}$$

$$\mu_0 H_{c2} = \dots$$

Is Nb₃Sn weak or strong coupling?

■ Moore, PRB 1979, thin film samples

- Weak coupling below 23 24 at.% Sn
- Strong coupling approaching stoichiometry

Applicable theory

$$N(E_{\rm F})$$
 and $\lambda_{\rm ep} \to T_{\rm c}$ and $H_{\rm c2}$

- •Wires → 18 25 at.% Sn, polycrystalline
- Interaction strength independent theory
- Not done for entire composition range
- $N(E_{\rm F})$ and $\lambda_{\rm ep} \to T_{\rm c}$ and $H_{\rm c2}$ remains empirical

Promising recent work

- Eliashberg-based description of $T_c(\varepsilon)$ and $H_{c2}(\varepsilon)$
 - Markiewicz, Cryogenics 2004
 - Oh, JAP 2006