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ABSTRACT OF THE DISSERTATION 

 

DEPLOYMENT AND ORGANIZATION STRATEGIES FOR SAMPLING-

INTERPOLATION SENSOR NETWORKS 

 

by 

 

Periklis G. Liaskovitis 

 

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems) 

 

University of California, San Diego, 2009 

 

Professor Curt Schurgers, Chair 

 

Networks of wireless micro-sensors are envisioned to be the prominent choice 

for on-site monitoring of physical locations. A wide range of practical applications has 

been conceived and studied in recent years for this engineering regime: habitat and 

wildlife monitoring, smart buildings and disaster response are only a few 

representative examples. However, there are also unique challenges faced by the 

sensor network paradigm: energy resources for individual sensors are limited. 

Efficient approaches are necessary to ensure prolonged autonomous operation of the 

network, while still providing quality of service to the user application at all times.  
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Here, we focus on situations where the wireless sensor network functions as a 

distributed sampling system and sensors periodically sample a physical phenomenon 

of interest, e.g. temperature. Samples are then used to construct a spatially continuous 

estimate of the phenomenon through interpolation, over time.  

We examine two distinct classes of practical sampling-interpolation scenarios. In 

the first one we are given a large ensemble of sensors which have already been 

deployed. The goal is then to reactively devise a maximum number of disjoint subsets 

of sensors, such that data from each of them can individually support the desired 

interpolation accuracy. Energy efficiency is achieved by reducing the amount of data 

packets communicated across the network. In the second one we have to proactively 

manage deployment of the network from scratch. The objective is then to use a 

minimum number of sensors so as to again support the desired interpolation accuracy. 

Cost effectiveness is achieved here by using a smaller network to begin with. 

To tackle the challenges of these scenarios we utilize the Hilbert space of 

second order random variables and define interpolation quality on the basis of Mean 

Squared Error (MSE). Times series of values measured at individual sensors can 

provide finite dimensional approximations of these random variables and facilitate 

algebraic manipulations within the Hilbert space framework. The associated 

covariance matrix succinctly captures sensor correlations and enables novel solutions 

to the aforementioned problems.  Through extensive simulations on synthetic and real 

sensor network data our proposed solutions are shown to possess strong advantages 

compared to other approaches. 
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CHAPTER 1 

 

1. INTRODUCTION 

 

1.1 The Vision for Wireless Sensor Networks 

For more than a decade now, researchers have been weaving the vision of the 

wireless sensor network (WSN): a new paradigm for connecting humans to the 

physical world. In this vision, sensors are small, untethered devices that can sense 

diverse physical phenomena, including but not limited to, mechanical forces, chemical 

concentrations and electromagnetic fields. Deployed in areas of interest, they will 

gather, process and disseminate information according to application needs [Cul04], 

[Rag02].  

The focal point in this evolution is not the technological sophistication of 

individual nodes themselves, but the properties of their collection as a whole. Energy 

storage capabilities of devices are limited and energy efficiency emerges as a goal of 

utmost importance for prolonged autonomous operation of the network. In return, the 

sensor network effectively provides a collective alternative to traditional remote 

monitoring techniques. Instead of employing few very expensive sensors, e.g., 

satellites, to monitor areas of interest from afar, a big group of sensing devices will be 

embedded directly onto these areas, enjoying physical proximity to the phenomena or 

events to be monitored. Depending on their cost, devices may exploit multi-modal 

sensing capabilities ranging from full visual motion capture to simple temperature or 
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pressure readings. Most importantly, they will be wirelessly networked together as a 

transparent ‘sensing entity’ able to furnish a much richer, real-time representation of 

the surrounding physical environment than remote monitoring.  

  

 

 

 

 

 

 

 

 

 

 

 

Figure  1.1: Great Duck Island deployment 
 

The spectrum that can potentially utilize this sensing entity is very multifaceted: 

environmental and structural monitoring, wildlife tracking, disaster response and smart 

physical environments are only a few of the available scenarios. There are numerous 

examples of such WSNs deployed within the last decade. Two of the most well known 

ones are the Great Duck Island deployment [Mai02], [Sze04a], [Sze04b] realized 

through collaboration between the University of California Berkeley and Intel 

Research, as well as the ExScal deployments [Aro05], [Bap05], [ExS04] led by a team 
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of Ohio State University researchers. The former aimed at habitat monitoring for a 

species of sea birds, while the objective of the latter was detection and classification of 

multiple intruder types over an extended perimeter. A sketch of the tiered network 

architecture used to extract information from the Great Duck Island deployment is 

shown in Figure 1.1. The ExScal project on the other hand, actually involved the 

largest sensor network deployments to date, consisting of approximately 10000 nodes. 

More research motivated deployments have been realized and we will give brief 

accounts of them in later sections.  

On a commercial scale, according to recent industry studies [Con05], the market 

for WSNs is growing and is predicted to continue to grow rapidly in the next years, as 

their potential is getting more widely understood and more relevant opportunities 

emerge. A curve depicting the expected growth of sensors deployed is shown in 

Figure 1.2: 

 

 

 

 

 

 

 

 

Figure  1.2: Anticipated number of sensor nodes deployed 
 



 

 

4 

However, the sheer spectrum of envisioned applications also prevents the 

existence of solutions that will be universal to all WSN related considerations. No 

energy efficiency or robustness strategy for example can be blindly applicable to all 

situations. Classes of solutions should instead target classes of applications.  

 

1.2 A Taxonomy of Sensor Network Applications 

The work we present here necessarily focuses on a specific subset of WSN 

applications. To make our application domain clearer, we will contrast it to others and 

pinpoint its distinct characteristics. Prevalent taxonomies of sensor network 

applications characterize them on the basis of data delivery requirements, or on the 

basis of actual objectives [Li08]. Here we adopt the latter criterion, which essentially 

views applications under the prism of two distinct classes.  

In event detection applications, the network should be able to provide a good 

indication of where and when an ‘event’ occurs within its area. Consider the example 

of a network of sensors that can measure and report temperature to an external data 

sink. An ‘event’ could be said to occur when the temperature readings of sensors in a 

specific area rise above a certain threshold, thus indicating a fire. The objective would 

then be ‘detect a fire’. Another event detection objective would be intruder detection 

and classification. Immediate real world examples facilitating such an application are 

the ExScal deployments mentioned in the previous section.  

A subclass of event detection applications are target tracking applications. Their 

goal is to first detect an event and then follow its movement through the physical area 

of the network. Note that target tracking in this context assumes that there is no sensor 
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physically attached to the target. For the temperature measuring scenario for example, 

the goal would be to follow the movement of a fire. Potential real world examples of 

target tracking applications can again be found in the ExScal deployments, where 

sensors can be configured to track the movement of specific intruders within the 

network.  

On the other hand, our work focuses on continuous monitoring applications, 

where each sensor periodically produces data that must be conveyed to the sink. The 

objective is to reliably compute a function on collected data. This is in direct contrast 

to identifying outliers, which is the case for event detection. The most prevalent 

among such objectives is interpolation of sensor measurements. The network as a 

whole acts as a distributed sampling system for the value of a physical quantity of 

interest. Samples obtained are interpolated to produce a continuous estimate for this 

quantity in time and space. In the temperature measuring scenario for example, 

sensors sample temperature over time and at any given point in time these samples can 

be interpolated to determine how temperature varies in space, i.e., even in locations 

where no sensors exist. Monitoring environmental phenomena over a specific area is 

an important example of this kind of applications. The physical quantities of interest 

can include ambient phenomena, such as temperature, humidity and light intensity as 

well as more localized ones, such as rain precipitation levels, wind velocity and water 

contamination.  

Current deployments relevant to interpolation applications are the Networked 

InforMechanical System (NIMS) sensor, which has been successfully deployed to 

gather chemical measurements in the San Joaquin and Merced rivers in California 
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[Har06], as well as networks for indoor temperature monitoring nurtured by Intel 

Research [Gue05]. The Sensorscope project in EPFL [Sen07] has also demonstrated 

moderately sized deployments of up to 125 solar powered sensing stations, each 

measuring key environmental data such as air temperature and humidity, surface 

temperature, incoming solar radiation, wind speed and direction, precipitation, soil 

water content, and soil water suction. The stations have been deployed over the years 

in various formations at the EPFL campus or at surrounding sites. Additional 

examples include networks for habitat monitoring such as the already discussed Great 

Duck Island deployment and PODS [Bia02]. 

Query-driven applications can be considered as a subclass of continuous 

monitoring applications. In this case, rather than each sensor periodically reporting its 

measurements, the sink could query a specific subset of sensors for their 

measurements. This enables the sink to extract information at a different resolution or 

granularity, from different regions in space and in an on-demand fashion. Sensor 

networks serving query-driven applications often possess the additional characteristic 

of consisting of sensors embedded on mobile agents, e.g., animals. Real world 

examples of such applications are wildlife and plant monitoring projects such as 

Zebranet [Jua02], Shared Wireless Infostation Model (SWIM) [Sma03] and Hogthrob 

[Hog07].  

We anticipate that both major classes of applications, i.e., event detection and 

continuous spatiotemporal sampling will be of importance as the sensor network 

vision grows. However, each one of these classes has a conceptually distinct purpose 

and therefore demands different tools to study effectively. Event detection needs every 
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specific point in the observation field to be ‘covered’ by a sensor, because any such 

point could potentially be the origin of an event. Proximity of sensors to events is 

modeled by such notions as sensing range (see Chapter 2). Interpolation on the other 

hand does not value specific points, but, in a sense, whole areas of the field in as much 

as they contribute to an accurate spatial estimate. Tools radically different from 

sensing range are needed here to characterize sensing quality. In this dissertation we 

will focus only on interpolation applications.  

 

1.3 Why is Spatial Interpolation Important? 

With the term ‘spatial interpolation’ we will hereafter refer to the operation of 

interpolating samples of a physical quantity gathered at a fixed time instant. 

Considering for simplicity a 2-dimensional sensor network, spatial interpolation 

effectively results in the construction of a continuous surface of values also referred to 

as ‘spatial profile’. We focus on spatial interpolation, because it plays a vital role in a 

lot of envisioned or even realized sensor network scenarios. In addition to earlier 

examples of such scenarios, a few more are given below:  

• Precision agriculture: Spatially varying application of nutrients and fertilizers 

[Int04] is often necessary to refine crop production. This can greatly benefit 

from knowledge of how humidity levels and soil synthesis vary over space. 

• Habitat monitoring: An important goal of disciplines such as zoology and 

botanology is the development of reliable models that can predict behavior of 

various plant and animal species. Such a development needs accurate 
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information about the values of numerous environmental parameters (e.g., 

humidity, atmospheric pressure, temperature, infrared radiation, total solar 

radiation and photosynthetically active radiation [Bia02], [Mai02]) not just at 

specific sites, but over entire areas of interest. 

• Monitoring of freshwater quality: To restore and maintain quality of water 

supplies in human dominated regions [Har06] the levels of various hydrologic, 

chemical and ecological parameters need to be taken into account. Since water 

deposits often stretch over large areas, sampling and interpolation with sensor 

networks can greatly contribute to the characterization of such quantities.  

• Intelligent buildings: Buildings of the future are envisioned to considerably 

improve the comfort level of inhabitants by constantly monitoring indoor 

environment characteristics such as temperature, humidity and airflow and 

acting accordingly, e.g. through precise ventilation and air conditioning. 

Interpolation of such quantities through a carefully tuned WSN emerges as a 

cost-effective solution to achieve this monitoring-actuating functionality. 

• Urban planning: On an even scale larger than that of a building, studying the 

concentrations of contaminants (e.g. carbon oxides) in the atmosphere can 

enable better land-use decisions.  

Spatial interpolation essentially provides a link between measuring a quantity at 

specific locations and then inferring how this quantity varies over whole areas of 

interest. It is a prominent task within various scenarios and has justifiably attracted 

increased attention from the research community in recent years. 
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1.4 Problem Definition 

To date, there has been research work addressing various systemic aspects of 

WSNs that perform continuous monitoring. Issues such as Medium Access Control, 

routing, localization and others have been explored [Kri05]. However, there has been 

little work on the fundamental question of how many sensors are needed and where 

exactly, in order to support the task of spatial interpolation. The problem we are 

examining in this dissertation can be summarized as: 

 

Manage how many sensors are to be sensing and producing data at any given 

time and where they should be located, so that construction of spatial profiles for a 

physical quantity is possible at a given level of accuracy. 

 

 Our question therefore is one of managing sampling points for interpolation. 

Answering this question is directly related to the notions of longevity and cost-

effectiveness for the network. For example, if, out of many sensors deployed over an 

observation field, only a few are deemed necessary to provide an accurate enough 

interpolation, the rest have the option of not sensing and not sending data through the 

network at all. These redundant sensors can be themselves rotated into the sensing 

functionality if needed. This will increase the lifetime of the network as a whole not 

only because fewer packets are injected and communicated through it but also because 

‘backup’ sensors are available to take over the sensing task should the initial ones 

deplete their energy reserves. In a different scenario, we may be able to flesh out the 

important locations to perform sensing at, before actually deploying the network. If 
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sensors are then deployed only at such locations, the whole deployment will be 

smaller and therefore more cost effective.  

 

1.5 Reactive vs. Proactive management (or which sensors we need vs. where we 

need them) 

Our purpose in this dissertation is to tackle the problem of efficient sampling and 

interpolation with WSNs, relying on as few modeling assumptions as possible. In 

comparison to relevant work, this means that we do not assume prior knowledge about 

the spatiotemporal behavior of the physical phenomenon of interest. Such prior 

knowledge for example could be information about the joint distribution of the data or 

of the second order statistics of an underlying spatiotemporal random process or even 

that measured signals are compressible in some known basis. Thought in another way, 

regardless of the interpolation model used to describe the data, we do not assume that 

we know anything about the specifics of the model prior to the deployment. 

Furthermore, the only assumption we do make is knowledge of an absolute upper 

bound Nmax on the number of sensors necessary to provide accurate enough 

interpolation. This means, that if we deploy Nmax sensors completely at random, the 

interpolation achieved will surely satisfy some application and model specific 

criterion. Knowledge of such an upper bound is not limiting because, by definition, it 

can be very loose. 

Given this basis, the first class of scenarios we will examine is those where we 

are allowed exactly one ‘shot’ at deploying the network. This essentially means that 

all sensors are deployed simultaneously (or almost simultaneously) in a single pass, 
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remain where they were initially deployed and no addition of sensors is possible after 

that. Given this setup, a sensible choice is to initially deploy the maximum number of 

sensors Nmax, i.e., to initially overdeploy. This creates sensing redundancy. Our goal 

would then be to decide which sensors will be sensing and sending data over time to 

achieve accurate enough interpolation. Because any technique thus applied is a 

reaction to the already existing network, we will call this task reactive management of 

the network. As will elaborate in Chapter 3 the challenge for us here is to devise 

multiple subsets of sensors, each individually adequate for accurate enough 

interpolation and schedule operation of the network accordingly. 

A practical scenario amenable to reactive management emerges when the region 

to be monitored is largely inaccessible. For instance, habitat monitoring at natural 

reserves (e.g. the Great Duck Island) precludes frequent re-entering of the deployment 

site. In the same vein, monitoring of remote regions or hostile territory is likely to be 

served by randomly scattering sensors from an airplane at one shot [Don04], [Sun05], 

[Zha03]. Another relevant example can be found at situations where the cost of 

devices is so small as to permit unplanned deployments. Future scenarios for WSNs, 

envision thousands of tiny, cheap electromechanical sensors embedded in the interior 

paint of a building [Cul04]. After the network has been deployed (i.e. the building 

painted) reactive management strategies are needed to ensure quality of interpolation 

in face of the great number of devices and the randomness of deployment. 

The second class of scenarios we will examine is those where we have the option 

of deploying the network in multiple passes. This means that we are allowed to deploy 

sensors, have them gather data and re-enter the observation field at will. It is then our 



 

 

12 

goal to decide on where to deploy a minimum number of sensors, so that accurate 

enough interpolation based on them is possible. In this case, all decisions are made 

concurrently with the deployment itself and we call this task proactive management of 

the deployment. As we will elaborate in Chapter 4, for such scenarios, we follow a 

two step approach: the first step is to efficiently ‘explore’, i.e., estimate the statistics of 

the underlying random process by incrementally placing sensors at appropriate 

locations and the second step is to select deployment locations facilitating spatial 

interpolation. The challenge is of course to use as few sensors as possible altogether. 

Proactive management can be applied to situations where the cost of individual 

sensors is so large as to prohibit randomly scattering a large number of them and 

tighter control over the deployment is actually possible. A salient example would be 

deploying sophisticated meteorological sensors, such as those of EPFL [Sen07], to 

perform spatial interpolation. In general, any small experimental deployment targeting 

spatial interpolation, such as the ones currently operating in various research 

institutions, would fall under the proactive management paradigm. 

Both reactive and proactive management can be seen under a unifying light: the 

notion of the exact minimum number of sensors necessary for accurate enough 

interpolation, according to the given criterion. Essentially this represents the best 

possible deployment in terms of number of sensors, given a particular interpolation 

model. Calling this number N0, the aim of our different strategies is schematically 

shown at Figure 1.3. Reactive management effectively tries to select subsets with size 

close to Ν0. Proactive management on the other hand, tries to estimate the statistics of 
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the phenomenon well enough to be able to reliably predict the whole deployment 

corresponding to N0. 

 

 

 

 

Figure  1.3: Schematic representation of reactive and proactive management for 
deploying a WSN 

 

1.6 Dissertation Outline 

To study interpolation in this dissertation we use the notion of second order 

statistics for an underlying spatiotemporal random process. Details on these ideas are 

provided in Chapter 2; an integrated mathematical framework is presented there, able 

to characterize the quality of interpolation contingent upon the deployment and the 

monitored physical phenomenon. Chapters 3 and 4 examine reactive and proactive 

management of the network respectively.  Chapter 5 then discusses open problems and 

future perspectives. These include interpolation model generalizations, network 

related issues, as well as the more general problem of multi-pass deployments. An 

account of related work is given at the end of each individual chapter. 

 

1.7 Contributions  

An important aspect of our contribution relates to the fact that existing work in 

the area makes assumptions on the form of the statistics governing the underlying 

total number of 

sensors 

0 Nmax N0 

reactive 

management 

proactive 

management 
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physical phenomenon: the overwhelmingly prevalent assumption is Gaussian 

statistics. Even then, associated statistical models (e.g. distribution priors and 

parameter priors) need to be initialized based on some form of expert knowledge, 

usually originating from past deployments or measurements. In many practical 

situations however, assumptions on the statistics are not desirable or even pertinent 

[Jin06] and may lead to inaccurate conclusions. In addition, although past 

deployments and associated data provide a solid basis for statistical inference, they 

may not be always be available.  

On the other hand, we relinquish the need for such limiting assumptions and 

instead build on a Hilbert space framework for interpolation. The Hilbert space is that 

of second order random variables; time series measured by individual sensors can be 

considered as their finite dimensional approximations. Although properties of this 

particular Hilbert space are well known, its finite-dimensional interpretation in the 

context of a sensor network is a first contribution of this dissertation. The notion of 

Mean Squared Error (MSE) is utilized, aided by very relaxed notions of prior 

knowledge about the physical phenomenon at hand. Specifically, we only assume 

mean square ergodicity in time and knowledge of an upper bound on the number of 

necessary sampling points, i.e., sensors. Correlations among sensors are captured in a 

covariance matrix and algebraic tools can be applied to this matrix. This has the 

potential of being a useful tool in sensor network processing even beyond the specific 

problems we consider in this dissertation. Part of our pursuit has in fact led us to draw 

parallelisms with the well known sparse approximation problem in signal processing. 
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Overall, our approach offers a consistent and elegant treatment for the task of 

interpolation with a WSN.  

 

1.8 Impact 

The key impact of our work then lies in that it provides greater flexibility to 

WSN deployment. The phenomenon to be monitored need not have been characterized 

a-priori. This effectively means that the network practitioner does not need access to 

past observational data or have to set up costly expert assessments in preliminary 

stages of the network lifecycle. Rather he can start gathering measurements in an 

informed manner very early on and save on precious resources. The essential core of 

our work is thus that it brings network practitioners on step closer to the reality of 

actual deployments.  
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CHAPTER 2 

 

2. HILBERT SPACES FOR INTERPOLATION 

 

2.1 Background 

Our goal in this chapter is to analyze the task of spatial interpolation with a 

wireless sensor network (WSN) in a mathematically rigorous manner. Spatial 

interpolation is intertwined with the statistical correlation among the readings of 

different sensors. If, for example, readings gathered at two distinct spatial locations are 

correlated, then, to obtain a sufficiently accurate interpolation, we may not need to 

place sensors in both of these locations or, if sensors are already present, we may not 

need to use samples from both of them. The main theme will be to characterize such 

correlation and effectively link it to the interpolation operation.  

Different application classes for WSNs (see section 1.2) impose fundamentally 

different notions of correlation. For an event detection application, the objective would 

be to determine when and where an event occurs, i.e., when and where an outlier 

definitely exists in the sensor readings. Consider the example of a WSN monitoring 

temperature inside a warehouse: increased temperature readings may indicate the 

proximity of a hot object. Any point in space can potentially be the source of an event, 

so a possible strategy would be to have a minimum number of sensors k sensing each 

point in space. This strategy is well known as k-coverage [Abr04], [Wan03]. To 

associate an event with a sensor, it is intuitively appealing to define a sensing range, 
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as the maximum distance from a sensor over which an event can be reliably detected 

[Car04], [Hua03], [Sli01]. Correlation among sensors is dictated by their proximity to 

a particular event: sensors are correlated if they are close the same event. Since 

proximity is defined by sensing range so is the notion of correlation.  

On the other hand, for a spatial interpolation application the goal would be to 

construct a continuous surface in space, i.e., defined even in areas devoid of sensors. 

In the temperature monitoring scenario, it would be desirable to know for example 

how temperature varies as one is moving away from the windows or air-conditioning 

units. To accomplish this, measurements are viewed as spatiotemporal samples 

indexed by the spatial locations of sensors that produced them. Samples are sent 

through the network to a data sink and combined by means of an interpolation scheme 

in a non-trivial manner that can no longer be captured by the notion of sensing range. 

There are two major factors crucial to all possible interpolation schemes: the 

distribution of sensor nodes in space and the correlation characteristics of the physical 

phenomenon to be monitored. The main theme of this chapter is in fact how to analyze 

the interpolation operation itself in association with these two factors. How is 

interpolation affected by the existence or not of sensors in a spatial region? How is 

interpolation quality improved (or diminished) by including (respectively, omitting) 

sensors that are really close to each other? Furthermore, how do answers to these 

questions change in accordance to faster or slower variations of the monitored 

physical phenomenon over space? 
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In what follows, we describe a framework that allows us to capture correlation in 

a spatial interpolation context. This will be used in the remainder of the dissertation to 

devise effective management strategies. 

 

2.2 Network Model 

Consider a sensor network which, at some point in time, consists of N sensors, 

indexed 1 through N, scattered over an observation field F. We will refer to the 2-D 

positions of sensor p with the tuple X0
p = (xp, yp), p=1…N. Sensor positions are needed 

for interpolation itself, and assumed to be known with sufficiently high accuracy by 

running a localization service in the network [Lan03], [Pat04]. At discrete time 

instants ti, a subset of the sensors measures the value of a physical quantity of interest 

(e.g. temperature). Sensors are time synchronized at a coarse level, so that they can be 

considered to be sampling at roughly the same time ti.  

The physical phenomenon is modeled as the spatial realization of a random 

process at ti, denoted by S(x, ti), where vector x represents 2-D coordinates in the 

observation field F. An approximation of this realization is constructed at a data sink 

by interpolating data values reported only by the sensors ‘active’ at ti, along with their 

positions. ‘Active’ sensors are those that actually sense and communicate their data. 

Note that non-active sensors are not generating sensing data. They may be in an 

energy efficient sleep state or forwarding data produced by active modes. The 

collection of active sensors is hereafter referred to as subset or set. A subset is 

represented by the Boolean vector mk, of length N, where each element is (1) for an 

active sensor and (0) otherwise (by convention, m0 will refer to the set of all available 
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sensors). The exact positions of the sensors comprising the subset will be denoted by 

the tuple Xk
p = (xp, yp), p=1…|mk|, where |⋅| is the size of a set. 

We consider interpolation that is linear on values measured by the sensors. This 

is an assumption widely employed in existing literature [Dig06], [Gue04], [Ste99], 

[Zha03] and covers a broad range of interpolation techniques [Mar01], [Moo00]. 

Denoting the random process values at sensor locations as S(Xk
p, ti) the interpolation at 

point x can be generally expressed as: 

 

 

 (2.1) 

where {λp(x,mk)}p=0…N are coefficients describing how a specific interpolation scheme 

depends on the particular subset of sensors mk ∀ti. The collection of interpolations 

Ŝk(x, ti) for ∀x ∈ F is based only on values originating from sensors in mk and forms a 

surface also referred to as spatial profile. A single subset mk can generate surfaces for 

multiple ti. The idea is that interpolation is performed with one subset for some time 

and then control is turned over to another subset. For example, the surfaces Ŝ2(x, t1), 

Ŝ2(x, t5), Ŝ2(x, t8) are assumed to have been generated by m2, reporting at time instants 

t1, t5, t8 respectively.  

 

2.3 Hilbert Space Methodology – Fundamentals 

To analyze spatial interpolation with a sensor network, we develop a 

methodology that maps the network onto an equivalent Hilbert space. A Hilbert space 
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is a collection of elements, indiscriminately referred to as points or vectors, which can 

be entities of any kind and have appropriate operations defined on them. These 

operations are addition, scalar multiplication, inner product and norm of an element 

(for more details see [Deu01], [Moo00]). Hilbert spaces are widely used as a tool in 

approximation, because results within their framework are amenable to simple 

geometric interpretations. 

A fundamental question arising is what should be considered an element of the 

space in our sampling-interpolation setting. Existing work in WSN literature that has 

used the notion of Hilbert spaces (e.g. compressive sensing [Baj06], [Dua06]), has 

utilized the space ℜm, i.e., the space of finite length vectors of real elements equipped 

with the usual Euclidean inner product. Each of these vectors typically holds collected 

measurements of a single sensor. Here, we make an alternate choice of Hilbert space 

structure that we believe is much more naturally suited to our particular problem: the 

Hilbert space of random variables with finite second order moments. To the best of 

our knowledge, ours ([Lia07a]) is the first interpretation of a sensor network as an 

instance of this particular Hilbert space, which could potentially find use beyond the 

context examined here. 

To be more specific, the measured value of the physical phenomenon S(x, ti) at 

location x for a specific, fixed time instant ti can be viewed as a random variable. The 

completed span of these random variables, i.e., all their linear combinations and limits 

of Cauchy sequences thereof form a Hilbert space [Cra67], [Mar01]. We define the 

inner product, the (induced) norm and the distance between two elements in this space 

as (* denotes the complex conjugate):  
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 (2.2) 

  

 (2.3)  

 

 (2.4) 

where µ~ (·, ·) is a mean function that varies in time and space. The expectation 

operator E[⋅] is with respect to the joint probability density function describing the 

values of the physical phenomenon at any finite number of points in continuous space 

and at any finite number of time instants, assuming that such a function exists. 

Viewing our problem under the light of this particular Hilbert space structure, 

entails some assumptions on the random process that models the physical phenomenon 

at hand. These assumptions are in fact very common and have been extensively used 

to describe real sensor network data [Jin06], [Kra06] as we do here. For completeness 

of presentation we will formalize them in the remainder of this subsection.  

To begin with, the norm of an element as expressed in eq. (2.3) assumes that the 

random process has finite second order moments (i.e. the process is a second order 

process). Equations (2.2) (2.3) and (2.4) in fact describe standard formulation for the 

Hilbert space underlying second order processes. This is an assumption 

overwhelmingly used in existing literature [Kra06], [Per04], [Vur06], [Zha03] with 

Gaussian processes as the main representative. Our approach is more generic, 

however, as it targets distortion in the mean square sense, regardless of the underlying 

probability distribution.  
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Additional assumptions are wide sense stationarity and mean square ergodicity 

in the time index. Wide sense stationarity practically means that the spatial 

characteristics of the process up to second order are time-invariant. Time invariance is 

a valid assumption in many cases and depends on the nature of the application. In the 

indoor temperature monitoring scenario for example, the time scale of change for the 

mean function would likely be in the order of seasons. This time scale of change will 

be hereafter referred to, when applicable, as the coherence time of the application. 

Mean square ergodicity practically ascertains ability to estimate ensemble averages 

from time averages. This has been implicitly assumed in the past when manipulating 

real sensor network data [Kra06]. Formally, the following relations are assumed: 

 (2.5) 

 

 (2.6) 

 

 (2.7) 

where µ(·) is a spatial mean function and C
~
(⋅, ·, ·) is a space-time covariance function. 

Equations (2.5) and (2.6) impose wide-sense stationarity while eq. (2.7) is the mean 

square ergodicity condition.  

In light of the stationarity and ergodicity assumptions, the spatial mean function 

represents a spatially varying mean in the data that does not change over time and can 

be obtained by averaging measurements over time. In the temperature scenario for 

example, a spatial trend could exist due to certain parts of the observation field being 

more exposed to direct sunlight than others. The space-time covariance function on the 
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other hand, quantifies the statistical similarity between readings gathered at different 

spatial locations and different times.  

Our ultimate goal is to obtain spatial interpolations of the physical phenomenon 

for specific time instants. In this case, only a subgroup of all existing vectors and inner 

products in the Hilbert space needs to be examined, specifically those that correspond 

to fixed time instants ti:  

 

 (2.8) 

The inner product in eq. (2.8) is quantifying the correlation between readings at two 

spatial locations for the same time instant. All relevant inner products are collectively 

described by the function C(⋅, ⋅) obtained from eq. (2.6) for t1 = t2, which will be 

hereafter referred to with the term spatial covariance function.  

It can be seen from that the spatial covariance function is not dependent on the 

specific time instant of observation ti. Furthermore, it can be any function bounded 

over the observation field, i.e., spatial stationarity is not assumed. This essentially 

means that the correlation between readings at two points on the field is allowed to 

depend on their location, i.e., the covariance structure can be non-stationary. For 

example, at locations closer to windows or heat sources temperature readings may 

vary more incoherently for proximate sensors than they do at dark or isolated 

locations, e.g. under desks. Equation (2.8) provides us with a model sufficiently rich to 

capture these spatial non-stationarities (also referred to as inhomogeneities) which are 

in fact commonly encountered in real life physical phenomena and corresponding 

measurements [Kra06]. 
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As a conclusion, the inner product and norm described by eq. (2.2) and (2.3) are 

of major importance, because they directly incorporate both the sensor locations and 

the correlation of the monitored physical phenomenon. Furthermore, the advantage of 

the Hilbert space structure over mere identification of the sensors as correlated random 

variables is that we get a rich geometry on these random variables. This enables us to 

manipulate a set of deterministic vectors instead, with all relevant statistical 

information captured in the inner product. 

 

2.4 Hilbert Space Methodology – Spatial Interpolation 

In this section, our goal is to translate spatial interpolation of the physical 

phenomenon into Hilbert space terms. Specifically, we will show how the 

interpolation operation can be abstracted solely by means of the inner product of the 

space.  

Assume that we wish to obtain an approximation of the form (2.1) for the value 

of the physical phenomenon at location x, based on a subset mk within our network of 

N sensors. The set of random variables S(x, ti) across the whole observation field, i.e., 

∀x ∈ F, for a fixed time instant ti, comprises a Hilbert space [Cra67]. We will denote 

this “ambient” Hilbert space as HS. By virtue of the ergodicity assumptions discussed 

in the previous section, properties of this space do not change across different time 

instants. Random variables corresponding to the (time-invariant) locations of sensors 

are vectors in this Hilbert space, i.e., there is a one to one correspondence between a 

specific set of sensors and a specific set of vectors. Therefore, in what follows, the 
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terms ‘vectors’ and ‘sensors’ will be used interchangeably. The subset {S(Xk
p, ti)}, 

p=1…|mk|, for fixed ti defines a finite dimensional subspace HXk [Cra67].  

The interpolation problem for point x now becomes a problem of approximating 

the element S(x, ti) of the Hilbert space HS with the finite dimensional subspace HXk. A 

well known property of Hilbert spaces that optimally addresses this problem is 

“approximation through orthogonal projection” [Cra67], [Moo00]. Orthogonal 

projection basically gives an element of the subspace HXk for which the Mean Squared 

Error (MSE) of interpolation Ŝk(x, ti) is minimized: 

 

 (2.9) 

The MSE is a commonly used measure to test fidelity of interpolated spatial profiles 

from sensor network data [Yu04]. Note that, compared to the general norm expression 

(2.4), the MSE of eq. (2.9) takes into account the fact that the process S(x, t) is real. 

The optimal linear interpolator of the form (2.1) can now be viewed as a combination 

of two terms: 

 

  

 (2.10) 

The linear combination of sensor vectors in the second term corresponds to orthogonal 

projection onto the subspace HXk, while the bias term is equal to E[S(x, ti) – Ŝk,orth(x, 

ti)], in other words, to the mean of a certain element of the ambient Hilbert space HS 

[Ste99]. Since the bias term depends on the actual vector S(x, ti), where there is no 
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sensor, computation of the best linear interpolator (2.10) in practice relies on models 

for the spatial mean function E[S(x, ti)] [Dig06], [Ste99].  

A particularly useful observation however, is that the optimal (i.e., minimum) 

MSE induced by such an interpolator is actually the error of orthogonal projection 

onto the subspace HXk. The first term in eq. (2.10) effectively renders the best linear 

interpolator unbiased. Assuming that the spatial covariance function C(⋅, ⋅) of eq. (2.8) 

is completely known, we can write the following: 

 

 

  

 (2.11) 

The matrix Gk will be hereafter referred to as the Grammian matrix corresponding to 

the subset mk and to ck(x) as the covariance vector of point x with the subset mk. Then 

the MSE of the optimal linear interpolation, i.e., of orthogonal projection, is given 

according to Hilbert space theory by [Deu01], [Ste99]: 

 

  

 (2.12) 

Where MMSE(⋅, ⋅) denotes the Minimum MSE. An alterative form for the MMSE is 

[Deu01]: 
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 (2.13) 

Our first contribution is thus viewing the MSE of the best possible linear 

interpolation with a subset of sensors at a point x as the error of orthogonal projection 

of the vector S(x, ti) onto this subset of sensors. Furthermore, it can be seen from eq. 

(2.12) and (2.13) that this error can be computed solely through knowledge of the 

values of the spatial covariance function C(⋅, ⋅) at specific location pairs. The 

orthogonal projection error will serve in what follows as the means of characterizing 

different subsets of sensors with respect to the quality of spatial interpolations they can 

provide.  

As a final remark, we should point out that eq. (2.12) assumes that the 

Grammian matrix Gk is invertible. This is equivalent to the approximating subspace 

HXk having as many dimensions as the number of vectors that comprise it, i.e., the 

vectors {S(Xk
p, ti)}, p=1…|mk| must be linearly independent. Equation (2.13) also 

assumes linear independence and, additionally, that the covariance vector ck(x) is not 

the all-zero vector. This translates to the sensor at point x being correlated with at least 

one of the sensors in the subset mk. In the next section we argue that for a very 

common type of network deployment and for a stationary underlying process, vectors 

corresponding to sensors are indeed linearly independent on the average so that both 

eq. (2.12) and (2.13) can be utilized.  
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2.5 A Property of Poisson Deployments Sampling Stationary Processes 

Consider the scenario where sensors are dropped from a mobile agent, e.g. an 

airplane over an otherwise inaccessible region. It is then very probable that sensors 

will rely at random positions in 2-D space. Our interest in the Poisson distribution 

stems from the fact that it is a mathematically attractive method of describing such 

randomness in a WSN deployment. By definition, a Poisson deployment pattern 

implies that for a given observation field and a given number of sensors, any one of 

them is equally probable to rely anywhere on this field, i.e., sensors are uniformly 

distributed on the field [Ken98]. In this section, our goal is to prove that, for Poisson 

distributed sensor nodes and a spatially stationary physical phenomenon, the resulting 

Hilbert space vectors are linearly independent of each other on the average. This 

essentially means that no single sensor can be perfectly described by a linear 

combination of other sensors. 

We initially consider a one-dimensional sensor network where sensor positions 

X0
p = (xp, yp), p=1…N constitute an orderly Poisson process of constant rate β on the 

observation interval [0, L]. Similarly, we consider the monitored phenomenon as a 

one-dimensional wide sense stationary process S(x) with correlation function C(x) and 

associated power spectral density Φ(ω). An element of the ambient Hilbert space HS 

spanned by the random variables S(x) for all real x can be expressed as: 

  

 (2.14) 

The norm of an element as well as the inner product and the distance between two 

elements are given by eq. (2.2)-(2.4).  

∑
=

⋅=
n

k
ikk txSaA

1

),(



 

 

29 

Consider now the Hilbert space HΦ of functions in the form: 

 (2.15) 

 

The associated inner product is: 

 

 (2.16) 

and, similarly as before, the distance between two elements will be: 

 

 (2.17) 

Since inner products and distances in the two spaces coincide, we can define an 

isometry mapping between the spaces HS and HΦ: 

  

 (2.18) 

The mapping I(·) holds for finite sums of random variables or functions as shown in 

eq. (2.16) and (2.17) and can be extended by arguments of mean square convergence 

to the entire spaces [Cra67], [Mar01]. Isometry means that associated spaces can be 

treated as equivalent for projection or distance problems. In other words, sums of the 

form (2.14) can be manipulated as sums of the form (2.15). The advantage we gain by 

considering HΦ in place of HS is that elements of the former are deterministic and, in 

addition, amenable to Fourier analysis tools. 

In order to prove linear independence on the average, we first look at linear 

combinations of vectors in the isometric subspace. We want to prove that no vector of 

the form nxje ⋅⋅ω
 can be written as a combination of other vectors, when averaging 
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over all realizations {xp}, p=1…N, i.e., over all Poisson deployments of the given rate. 

Suppose the opposite is true. Then for a non-trivial choice of the coefficients cp, the 

following expression should hold: 

 

 (2.19) 

The expectation term in (2.19) is the characteristic function of xp, i.e., of the length of 

the interval from the origin to the p-th point of the process. This length is often called 

recurrence time of order p. For a Poisson point process, its probability density 

function fp(u) depends only on p and the rate β through the following closed form 

[Beu70]:  

 (2.20) 

 

Plugging the definition of a characteristic function into (2.19) we get equivalently: 

 

 

 

 

 

 (2.21) 

where I(0,∞)(u) denotes the step function and the last equation follows from the 

uniqueness of the Fourier transform. Equation (2.21) can be further scrutinized as: 
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 (2.22) 

 

where the last equation follows from the linear independence of any subset of 

monomials, over any interval of the real line, i.e.: 

 

 (2.23) 

Equation (2.23) contradicts our initial hypothesis and therefore, on the average, no 

vector in a Poisson deployment can be a linear combination of other vectors. To 

generalize for the case of multidimensional scenarios, we observe that a multi-

dimensional Poisson sampling process can be degraded into a one dimensional one by 

keeping only a single (e.g. the first) coordinate of each sensor position; by definition 

of the Poisson process, for a fixed number of sensors this coordinate will be uniformly 

distributed in the observation interval and, since involved distributions are continuous, 

the probability that two of the resulting points will coincide is zero. The corresponding 

correlation function would then be formulated by taking only differences of the chosen 

coordinate into account. The resulting proof arguments are the same.  

We have now proved the following lemma: 
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Lemma 2.1: For a deployment where the positions of the sensors form a Poisson point 

process with constant rate β and the monitored random process S(x) is wide sense 

stationary, vectors {S(X0
p, ti)}p=1..N  are linearly independent on the average. 

 

Note that the lemma indicates what we should expect on average for a Poisson 

deployment of fixed rate. However, any specific deployment may deviate from the 

average, i.e., there is a non-zero (although very small) probability that some small 

number of vectors are linearly dependent. The lemma effectively enables use of eq. 

(2.12) and (2.13) for computation of orthogonal projection errors, whenever the 

underlying deployment pattern is Poisson.  

 

2.6 Related Work 

The ultimate aim of sampling-interpolation applications is to obtain 

spatiotemporal models of the sensed physical phenomena. The unique characteristic of 

WSNs in this respect is that such models should be built efficiently, i.e., taking into 

account the limited resources of the network. Some related efforts do exist in the 

sensor networks’ literature [Gue04], [Per04], [Zha03]. However, they generally 

assume some specific kind of prior knowledge on the underlying physical 

phenomenon. The hexagon based sensor reporting scheme [Zha03] requires exact 

knowledge of the second-order statistics of the spatial process beforehand, while the 

blue noise sampling technique [Per04] needs similar information to construct a blue 

noise spatial filter. The distributed regression framework [Gue04] performs in-

network spatial data modeling by computing weights of local basis functions after 
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sensor measurements have been partitioned with kernels. The number and size of the 

kernels as well as basis functions used by each, in essence model correlation among 

various positions on the field and assume therefore a rough, prior knowledge of how 

this correlation varies over it. Our aim in the present work is to make as few a-priori 

assumptions about the statistics of the physical phenomenon as possible.  

However, transcending the specific sensor networks regime, in the last few 

decades, modeling of space-time data has actually been the target of tremendous 

amounts of research effort in the environmental sciences, i.e., the atmospheric, 

oceanographic and geological sciences. Excellent overviews of related techniques can 

be found in [Bow97], [Har04], [Has90], [Le06], [Pac03]. These can be roughly 

divided to regression models and random process models.  

Regression models generally assume that a data and location dependent 

deterministic structure underlies the observations and regard random effects as white 

noise. They include such subject areas as kernel regression, spline smoothing and 

orthogonal series expansions. Wavelet expansions and associated multi-resolution 

analyses have especially attracted a lot of interest during recent years. Although such 

models have a richly developed theory behind them, they can lead to interpretation 

problems when used in a sensor networks context. For example, the notion of 

correlation between two or more sensors is not well defined in such a framework. Our 

intuition is that sensor networks can benefit more from models in which the effects of 

individual sensors can be decoupled, if necessary, within the model and where the 

physical meaning of spatial locations and measurements is well preserved. As a 

remark, it is noted that all of these methods are instantiations of generalized linear 
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models which are currently at the forefront of machine learning research. Another 

development in this area is compressive sensing [Baj06], [Dua06], [Wan07], which 

will be discussed in the next chapter. 

Random process models on the other hand, assume that observations belong to 

an underlying space of random functions. The functions are sampled at the monitoring 

sites. Exactly because these methods explicitly view measurements gathered at 

individual sites as random variables, they seem to be more naturally suited for 

interpretation of sensor network data. Relevant examples include, but are not limited 

to, single time instant geostatistical kriging, empirical orthogonal functions, and 

hierarchical Bayesian modeling. Hierarchical Bayesian modeling in particular, is the 

subject of ongoing research. It relies on a view of the physical phenomenon as a 

Gaussian process in space and time. The term ‘Gaussian Process’ (GPs) is used in the 

literature to describe a random process, for which the joint probability distribution 

considered at any finite number of index points (i.e., locations and time instants) is 

Gaussian. Generally, trends and covariance functions form the first level of the 

hierarchy while their uncertainty, i.e., constituent parameters and prior probability 

distributions on these parameters, forms the second level of the hierarchy. The goal is 

to obtain posterior distributions on quantities of interest, after data have been 

observed. Sampling of posterior distributions, often referred to as Bayesian inference, 

can be well served by Markov Chain Monte Carlo techniques.  

However, for our particular objective of spatial interpolation with a WSN, even 

these methods are not without shortcomings. The main drawback is that the statistical 

correlation structure assumed is usually inseparable in space and time, i.e., spatial 
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effects cannot often be decoupled from temporal ones. As a result, spatial structure 

may be lost or altered when subtracting temporal trends and vice versa. By contrast, 

we make the more conservative assumption of a mean constant in time at each spatial 

location. In addition, these methods are burdened with considerable computational 

complexity. In large scale meteorology for example, they aim at explaining data 

accumulated at a small number of sites and over several years. Their applicability 

however, in scenarios with real time requirements, incorporating thousands of sensors 

and lacking prior measurements is not obvious. The methods that will be presented in 

subsequent chapters are simpler and faster in comparison. 

A subclass of hierarchical Bayesian models which is perhaps closer to what we 

have presented in this chapter and has been used in a sensor networks’ context is 

Gaussian processes in space [Gue05], [Ras06]. Since random variables are involved, 

Gaussian processes in general and spatial ones in particular lie in a Hilbert space, 

exactly as has been discussed in this chapter. The major difference is that the 

framework presented here does not rely on the fact that the underlying distributions 

are Gaussian and therefore encompasses Gaussian processes as a special case. Our 

methods are potentially applicable to any type of distribution, as long as estimators of 

the type (2.1) can be considered relevant. 

 

2.7 Summary 

In this chapter, we have outlined a view of spatial interpolation based on the 

notion of a suitably chosen Hilbert space. Within the framework of this Hilbert space, 

each sensor can be represented by a vector characterized by the sensor’s spatial 
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position. Correlations among sensors are captured by the geometry of the space, i.e., 

its inner product. Moreover, the quality of interpolation can be directly linked to 

orthogonal projection error in this space. Finally, when the deployment pattern can be 

regarded as random, in the sense that no particular region of the field is given 

preference over another for deployment purposes, explicit expressions can be invoked 

to compute such errors. 
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CHAPTER 3 

 

3. SPATIAL INTERPOLATION: THE REACTIVE CASE 

 

3.1 Background 

In this chapter, we are going to examine solutions to the reactive management 

scenario of Section 1.6. Consider the example of a wireless sensor network (WSN) 

monitoring radiation level in a contaminated area. In such a scenario, inexpensive 

sensors are likely to be dropped from an airplane over the field of interest in an ad hoc 

manner. In addition, we, the network practitioners, do not have a concrete way of 

knowing beforehand what to expect in terms of variation of the monitored values over 

the whole area. This lack of prior knowledge also hinders exact characterization of the 

sensing behavior of devices before deployment.  

However, a practical strategy that can be utilized is to initially overdeploy: make 

a pessimistic assumption on the necessary number of sensors and throw such number 

out. The problem essentially becomes that of managing which sensors are needed, out 

of all deployed, so as to achieve an accurate enough interpolation over time. After 

initial deployment, some sensors will be redundant from an application point of view. 

In a sampling-interpolation setting this essentially translates to oversampling: only a 

few of the gathered samples are needed to provide a sufficiently good interpolation. 

The challenge is then how to take advantage of this redundancy and achieve longevity 

of operation for the network as a whole. The network practitioner essentially trades the 
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cost of overdeployment with improving the network in another dimension, namely that 

of lifetime.  

A straightforward way to leverage redundancy during operation is by keeping 

only a subset of sensors sensing and communicating samples. The subset is such that 

samples collected from it can still provide a sufficiently good interpolation. The key 

idea towards overall lifetime gains, however, is devising not just one, but multiple 

subsets of sensors, which are, ideally, disjoint and each individually achieves the 

desired interpolation fidelity [Kou06], [Lia06], [Sli06]. At every point in time only 

one such subset is made active and produces sensing data packets. Sensors in all other 

subsets may be in an energy efficient sleep state or forwarding such data, albeit not 

generating data themselves. The data producing functionality is then rotated amongst 

subsets.  

 

 

 

 

Figure  3.1: Rotating subsets of active sensors 
 

The effectiveness of this sensing topology management scheme for obtaining 

lifetime gains, assuming subsets are disjoint, depends upon the number of subsets: the 

more subsets available the higher the proportional increase in lifetime. Figure 3.1 

shows interpolation being performed sequentially with three different subsets of 

sensors. If these are chosen so that interpolation with any one of them alone is 
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accurate enough, as the phenomenon changes over time, the sensor network can be 

effectively thought of as being three superimposed networks, all basically equivalent 

with respect to interpolation. Ideally, this may lead to a three-fold increase in network 

lifetime.  

 

3.2 Optimization Goals 

The purpose of this section is to elaborate on the notion of “accuracy” for spatial 

interpolation. The setup assumed is exactly the same as in section 2.2: a static network 

of N sensors scattered over an observation field F.  

Interpolation is inherently approximate since the network consists of a finite 

number of sensors and, additionally, the measurements are themselves affected by 

various factors such as measurement noise, quantization noise etc. In order to 

characterize the quality of interpolation, a distortion measure has to be introduced. 

Here, we explore two such measures:  

 (3.1) 

 

 (3.2) 

where D is a user defined distortion criterion. Inequality (3.1) defines distortion as 

spatially averaged Mean Squared Error (MSE), while inequality (3.2) defines 

distortion as the maximum MSE over space. There is a fundamental difference 

between these two criteria: the latter demands that the MSE of interpolation be less 

than the target D at all locations in the observation field while the former can tolerate 

large MSE at some locations if it is compensated by low MSE at other locations.  
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The choice of optimization criterion belongs to the steering user application. 

Spatially averaged distortion is plausible in many cases and has been used extensively 

utilized in the domain of geostatistical studies [Dig06], [Zhu06]. However, it does not 

always capture local features of the physical phenomenon, which are of interest in 

many practical scenarios. For example, a situation where distortion is high in a region 

with few sensors and very low in a region with many sensors would be overlooked by 

the spatially averaged distortion criterion. Qualitatively, these two different definitions 

of distortion will be tackled with different sensing topology management algorithms, 

as will be shown in the following sections.  

A subset of sensors is acceptable for a particular application, if the distortion 

associated with it by virtue of the chosen criterion (i.e. (3.1) or (3.2)) does not exceed 

the threshold D. Since the network consists of N sensors, it may be the case that more 

than one disjoint subsets of sensors exist, all of which adher to this distortion bound. 

The overall goal of our sensing topology management scheme is precisely to partition 

sensors in as many disjoint subsets as possible, while still meeting a desired distortion 

bound for each subset. A monitoring schedule is then a sequence of sensor selections, 

i.e., subsets, over time.  

 

3.3 Sensing Topology Management - Fundamentals 

Presenting a novel practical way to devise disjoint subsets for both distortion 

criteria (3.1) and (3.2) is the primary goal of this chapter. Our novel contribution lies 

in how to select the sensors comprising each subset. The proposed selection 

algorithms are to be executed centrally. Since data interpolation, is performed at the 
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application end-point (data fusion center) anyway, it is not unreasonable to have 

sensor selection done at this center as well. The important goal is to effectively reduce 

the number of data packets which have to be communicated through the network. 

Although the exact energy savings achieved by our schemes will depend on the actual 

MAC protocol and routing used, reducing the number of data producing nodes is 

beneficial in exactly the same manner as it is for the case of event detection 

applications [Abr04], [Sli01]. Furthermore, the only energy overhead of our schemes 

compared to an unscheduled network comes from switching between monitoring 

subsets. This energy cost can be kept to a minimum for example with randomized 

flooding [Kin06] of a bit-mask packet denoting subset membership, whenever such a 

switch is necessary. A more meticulous account of potential energy savings for the 

schemes presented here will be given in Section 3.9. 

Before we outline our specific contributions in the next sections, we briefly 

describe related practicalities. Specifically, notice that inequalities (3.1) and (3.2) are 

based on a statistical characterization of the underlying random process which is not 

available a priori. Instead it has to be learned after network deployment. A two-phase 

strategy addresses this problem:  

1. During the learning phase, all N sensors report their data, where, in addition to 

interpolation itself, the goal is to estimate relevant statistical properties of the 

process. This learning phase can extend over multiple time instants ti…Θ+i, 

during which the monitoring application is fully operational, albeit not in a 

manner that takes advantage of redundancy. In addition, it is possible that 

statistics of the process change over the course of time (for example the 
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temperature readings of two sensors may show different correlation properties 

in summer as compared to winter), dictating that the learning phase may have 

to be repeated periodically. 

2. During the monitoring phase, only sensors from an active subset report and 

subsets are rotated over time.   

To devise monitoring subsets that optimize criteria (3.1) and (3.2), it is essential 

that for any given subset of sensors {S(Xk
p, ti)}, p=1…|mk|, the values of the MSEs 

contained in those expressions can be computed. Recall from section 2.4. that the 

subset of sensors {S(Xk
p, ti)}, p=1…|mk|, defines a finite dimensional subspace HXk. 

For the best linear interpolation, such MSEs are given by eq. (2.12) or (2.13). 

However, actual computation of the error of optimal interpolation, i.e., the error of 

orthogonal projection onto the related subspace, requires knowing the inner product of 

S(x, ti), ∀x ∈ F, with all the sensor vectors. From eq. (2.8), this is equivalent to 

knowing the entire continuous spatial covariance function:  

 

 (3.3) 

Although it is possible to estimate the continuous covariance function [Kra06], 

[Not02], this is ultimately a costly and intricate procedure that also does not lend itself 

to providing distortion guarantees. Instead, we restrict S(x, ti) to elements of a 

subspace of HS, namely that spanned by all deployed sensors HX0. We refer to HX0 as 

the primary subspace. It is generated by {S(X0
p, ti)}, p=1..N, and is therefore of 

dimension at most N. Essentially, we assume that the initial number of sensors is large 

enough so that HX0 is a close approximation to HS, or in other words that the sensors 
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can capture enough details of the underlying physical phenomenon in the first place. 

The distortion metric is thus defined in relation to the maximum information we could 

extract with our initial deployment. Formally, it means that eq. (3.1) and (3.2) are 

transformed into: 

 (3.4) 

 

 (3.5) 

A first practical point is that during the learning phase any sensor selection 

algorithm needs to actually evaluate eq. (3.4) or (3.5) in order to assess its 

performance. Since for a real system the expectation operator cannot be known, it is 

approximated with an average over W time instants, where W ≤ Θ. During the learning 

phase, all N sensors report their data for Θ time instants. Thus each sensor collects a 

time series of Θ values {S(X0
p, ti)}i=1..Θ. By virtue of mean square ergodicity, surfaces 

{Ŝ0(x, tq)}q=1…Θ, obtained by interpolating these values for fixed time instants can be 

used as the best available approximation to the ground truth (i.e., they can thought of 

as reference surfaces):  

 (3.6) 

 

 (3.7) 

A second practical point is that to evaluate orthogonal projection error, eq. (2.12) 

and (2.13) require knowledge of the inner products between all sensors. From eq. (2.2) 

these inner products correspond to covariances and can be readily estimated after the 

learning phase as follows. Let B0 be the ΘxN matrix formed by stacking the time 
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series produced by individual sensors together as columns:  

 

  

 (3.8) 

We will refer to B0 as the data matrix. Firstly, a vector estimate of the spatial mean 

function 
Np

p
...100 }{ˆ

== µµ  evaluated at the sensor locations is obtained from B0. This can 

be done for example by averaging the columns of B0, since the spatial mean function 

is assumed to be constant in time (see eq. (2.5)). Then the empirical covariance matrix 

provides an estimate of the inner products: 

 

 (3.9) 

with 
0µ̂  being a matrix with all rows equal to 

0µ̂ . The matrix 
0Ĝ  will also be referred 

to as the approximate Grammian matrix of inner products among all deployed sensors. 

Equation (3.9) converges to the true covariances for Θ large enough, again by virtue of 

mean square ergodicity. A subtle point is that the estimate of eq. (3.9) results in a 

Grammian of full rank (i.e. of rank Ν) only if Θ ≥ N, i.e., only if the number of 

measurements in time is at least as large as the number of sensors. It should be 

stressed however that eq. (3.9) represents only one possible way of estimating the 

covariances from the data matrix, used in this dissertation for its simplicity. Other 

more sophisticated and robust methods of estimation exist in the literature for this 

purpose [Sch05] and are equally applicable. In Section 3.9 we will briefly examine the 

effect of a small number of measurements on the performance of our schemes. 
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3.4 Complexity of Optimal Solution 

In the Hilbert space framework, introduced in the previous section, each 

individual sensor can be thought of as a vector in the primary subspace. Consequently, 

the sensing topology management problem of selecting disjoint subsets of sensors 

translates into selecting subsets of vectors instead. The goal is to maximize the number 

of subsets that can be found (or equivalently, minimize the average number of vectors 

in each subset), while ensuring that each subset can provide a sufficiently accurate 

interpolation, in terms of the chosen distortion definition. 

As a first step in tackling this problem, we consider a more basic variant, namely 

that of finding just a single minimal subset: Given an initial set of sensors, find the 

minimal subset which yields an interpolation that has an expected distortion of at most 

D. Finding multiple subsets, is a generalization of this problem and hence 

computationally at least as hard. Furthermore, our algorithm will be built on a good 

understanding of solutions for the single subset selection problem.  

The basic single-subset problem can essentially be seen as finding an 

approximate basis for the primary subspace. The term ‘basis’ for a V-dimensional 

Hilbert, will hereafter refer to any set of V linearly independent vectors that span the 

space. Note that the vectors forming a basis need not be orthogonal to each other. As 

such, the problem is related to the problem of sparse signal approximation with 

general dictionaries, which has been studied in signal processing literature [Cot05], 

[Dav97], [Don03], [Rao03], [Tro06], [Wip04], [Wip07]. The term ‘dictionary’ will 

hereafter refer to a set of non-orthogonal vectors used for representation in a Hilbert 
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space, without necessarily forming a basis for that space. The sparse approximation 

problem in a V-dimensional Hilbert space is how to select the best vectors out of a 

redundant dictionary of size P ≥ V to approximate a given target vector (simple sparse 

approximation) or multiple target vectors (simultaneous sparse approximation) in the 

space. This ideally requires enumerating all possible subsets of vectors, an operation 

of which the cost is exponential in P [Dav97], [Don03]. In the case of a general 

dictionary, the resulting computation is provably NP-hard [Dav97]. 

In our scenario, the dimension of the primary subspace HX0 is at most N. The set 

of N vectors that correspond to the initially deployed sensors {S(X0
p, ti)}p=1..N is 

therefore a redundant dictionary for this space. Given a target vector S(x, ti), a 

dictionary of size N effectively means that the computational cost to optimally select 

sensors to approximate it grows exponentially with the size of the network N. For our 

particular case we have also proved a stronger result: that for Poisson deployments, 

the vectors {S(X0
p, ti)}p=1…N are linearly independent on the average. Linear 

independence means that the dimension of HX0 is N, i.e., the dictionary {S(X0
p, 

ti)}p=1…N is also a basis for the space, rendering optimization over any redundant 

dictionary for this space exponentially hard with the size of the network. For more 

details refer to section 2.5.  

Since the single-subset problem is hard, the same will hold for the extended 

problem of finding multiple subsets. As a result, we have to resort to heuristic 

approaches to perform the selection of multiple active subsets of sensors.  
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3.5 Jittered Grid Sampling  

3.5.1 Rationale 

We will first present subset selection schemes pertaining to the spatially 

averaged distortion criterion (3.6). Optimizing the spatially maximum distortion 

criterion (3.7) is a more intricate problem and will be treated in a separate subsection 

(specifically, Section 3.8).  

A first conceptual foundation to efficiently partition sensors into active subsets is 

the observation that spatial variation for many physical processes of interest (e.g. 

temperature, humidity, salinity, acidity) can in practice be well approximated by 

models that are structurally regular throughout the observation field. Researchers in 

environmental sciences (e.g. atmospheric sciences, geostatistical monitoring) have in 

fact consistently modeled such physical quantities as spatially stationary processes 

[Dig06], [Ste99]. Structural regularity in space has been expressed through a multitude 

of ways in the sensor networks regime as well: sparse representation in N-dimensional 

bases [Baj06], Gaussian processes [Kra06] or bandlimited processes [Bal07], [Per04] 

are the most commonly adopted ones. With a spatially stationary model for the 

physical phenomenon of interest, regular grid designs, specifically rectangular and 

triangular grids, are frequently used to determine the monitoring sites [Dig06], 

[Zhu06]. In fact, an abundance of theoretical results exists for the distortion 

performance of such designs when the underlying statistics are assumed Gaussian 

[Ste99].  

In our setup, sensors are chosen from a pre-deployed set which does not 

necessarily form a regular grid. The key idea is to try to approximate a grid structure 
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instead. To do this we impose a virtual grid over the observation field and then ‘map’ 

a subset of sensors onto this grid. The mapping should satisfy some closeness 

criterion. By offsetting the virtual grid the mapping procedure can be repeated a 

number of times so as to obtain many different sensor subsets. As an example, Figure 

3.2 shows a virtual square grid of 16 points superimposed on a network of 50 sensors. 

 

 

 

 

 

Figure  3.2: A virtual grid imposed on a random network 
 

For simplicity, but without loss of generality, we will hereafter focus on square 

grid structures. It should be stressed that, ultimately, the method for subset 

construction described here can be used to obtain sensor subsets based on any type of 

chosen grid structure, i.e., not necessarily a square grid. Other choices could be 

triangular or hexagonal grids, which are known to be nearly optimal for certain forms 

of stationary correlations [Kun03], [Zhu06].  In our case where the actual statistics of 

the physical process are unknown, i.e., the optimal sampling structure is unknown, 

square grids represent a pragmatic choice that gives good interpolation results. We 

will demonstrate this in Section 3.9. 

 

α 
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3.5.2 Subset Construction 

A virtual square grid is uniquely defined by its size, or equivalently its side α, as 

shown in Figure 3.2, while grids of the same size are distinguished by their offsets 

relative to a fixed point (x0, y0). For results presented in this dissertation, we offset 

grids along their common diagonal. Supposing that a series of virtual square grids are 

available, a naive strategy to construct sensor subsets would be the following:  

 

Pure Jittered Grid Sampling (PJiG): Construct monitoring subsets by sequentially 

selecting the sensors that are closest in Euclidean distance to grid points.  

 

The PJiG scheme is a useful tool for theoretical analyses; however, in practical 

settings it has one important drawback: it does not necessarily produce disjoint subsets 

of sensors. Consider a virtual grid that consists of M points. Then, according to the 

pure jittered equidistant sampling rule, a single sensor may be the closest one to more 

than one grid points. At most (but maybe not exactly) M sensors will be selected based 

on such a grid. This characteristic of overlap or collision is possible within the same 

subset or across subsets and is undesirable for our objective of increasing lifetime. 

The crucial element for subset construction is then how to obtain disjoint subsets 

from virtual grids. Essentially a 1-1 mapping is needed, such that each sensor is 

mapped onto a grid point only once and optimality is achieved with respect to the 

closeness criterion. To tackle this, suppose that a total of  MN /  virtual grids have 

been constructed, consisting of   MMN ⋅/  points. We construct a complete bipartite 

graph (U, V, E) consisting of a set of vertices U corresponding to the grid points, a set 



 

 

50 

of vertices V corresponding to the sensors and a set of edges E = {[ui, vj]} with 

weights wij equal to the Euclidean distance between grid point i and sensor j. If the 

number of grid points   MMN ⋅/  is less than the number of sensors N (i.e., if N is not 

an integer multiple of M), the set U of grid points is enhanced by adding to it 

  MMNN ⋅− /  points with incident edges of infinite weight. With this formulation, the 

problem of mapping sensors onto grid points is equivalent to the minimum weight 

perfect matching problem for bipartite graphs and can be efficiently solved by the 

Hungarian Algorithm [Pap98]. We call the overall procedure Jittered Grid Sampling 

(JiG): 

 

Jittered Grid Sampling (JiG): Construct subsets indexed k = 1…







M

N , with application 

of the Hungarian algorithm on the matrix {wij} of weights defined by the Euclidean 

distances separating grid node i, i=1…N from sensor j, j=1…N.  

 

As a remark, note that for spatially stationary processes, Euclidean distance directly 

translates to spatial correlation. In this sense, edges in the bipartite graph (U, V, E) are 

weighed by the magnitude of correlation between grid points and sensors as points in 

2-D space. 

An important technical issue that remains is how to select the size M of the 

virtual square grids. This can be accomplished with reference surfaces {Ŝ0(x, tq)}q=1…Θ 

constructed during the learning phase (see section 3.4). For a single dimensional 

network, we have proposed to estimate the spatial Nyquist rate of the physical 
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phenomenon from these reference surfaces [Lia06], which essentially boils down to 

spectrum estimation. For two dimensional networks examined here, 2-D Nyquist rate 

estimation from reference surfaces is also possible [Lim90] and a multitude of related 

spectrum estimation methods exist [Sto05], [Tho01], [Wae99]. However, we have 

found that empirical determination of associated parameters is not as straightforward 

as in the single dimensional case and depends significantly on the underlying  physical 

process and estimation method used. Another drawback is that the Nyquist rate on a 

finite field is not necessarily optimal in terms of sampling and interpolation distortion 

[Kun03].  

Instead, we have used eq. (3.6) as a performance criterion. To choose the 

appropriate grid size M = n2, the integer n is iteratively increased until the resulting 

sensor subsets satisfy the distortion bound as computed through eq. (3.6). 

Furthermore, virtual grids are offset along their common diagonal. The complete 

sensing topology management scheme based on JiG is shown in Figure 3.3. 

 

 

 

 

 

 

 

 

Figure  3.3: Jittered Grid (JiG) subset construction algorithm 

1 Using data from the learning phase, construct W reference 
surfaces {Ŝ0(x, tq)}q=1…W. 
2 Select n, set M = n2. 
3 Construct sets indexed k = 1…  MN / , with application of the 

Hungarian algorithm on the matrix {wij} of weights defined by 
the Euclidean distances separating grid node i, i=1…N from 
sensor j, j=1…N.  
4 Compute )(ˆ

k
Dgva

F
m

x∈

, from eq. (3.6) for all of these sets. If 

)(ˆ
k

Dgva
F

m
x∈

 > D for at least one of them, go to step 2 with n = n + 

1, otherwise finalize the M computed in step 2. 
5 The M

M

N
N ⋅





−  sensors corresponding to dummy grid points 

are randomly distributed among devised sets. 
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3.5.3 Performance Analysis 

In the previous subsection we described a method for devising monitoring 

subsets of sensors based on a jittered grid sampling notion. The key idea is emulation 

of sampling on a regular grid. If the physical process statistics are considered fixed, 

the distortion performance of jittered grids will depend on the characteristics of the 

jitter and the interpolation scheme used. This subsection provides an analysis of the 

distortion performance of this sensing topology management scheme, drawing on the 

Hilbert space framework for interpolation presented in Chapter 2.  

 

3.5.3.1 Assumptions 

For our analysis, we make the following assumptions:  

• Sensors are assumed to be scattered in a Poisson fashion over the observation 

field. For a large fixed number of sensors N, we approximate the rate of the 

Poisson process with the density of the network: 

  

 (3.10) 

• When the sensor closest to a grid point is chosen, the point process describing 

the scattered sensors is purely Poisson and in particular, Poisson of constant 

rate β. This is the case when each sensor selection is performed independently 

of all previous such selections, i.e. the selection process is memoryless. Thus 

our analysis pertains to PJiG. JiG on the other hand, is a scheme with memory: 

selections are engineered to be non-colliding by finding a perfect matching. 

Because of this strict memory effect the resulting point process is no longer 

|| F

N
=β
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Poisson, rendering its analytical study intractable. However, the central theme 

of our approach is well captured by the memoryless variant for dense 

networks. 

• The monitored random process is spatially stationary. This implies that the  

spatial covariance of eq. (2.8) is a function solely of the difference of spatial 

indices: 

 

 (3.11) 

 

3.5.3.2 Jitter Formulation 

A first key step in what follows is deriving the distribution of the jitter, i.e. how 

far away the sensors selected are from points of the grid. Denoting a node of the grid 

with O, let A denote the sensor closest to it, as depicted in Figure 3.4.  

 

 

 

 

 

 

Figure  3.4: Jitter formulation 
 

Under the above assumptions, the distribution of the magnitude of the distance to 

the closest sensor, r, can be derived based on the notion of ‘hitting’ or ‘vacancy’ 

probabilities in stochastic geometry: 
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 (3.12) 

where (⋅)C denotes the complement of an event. To fully characterize the position of A, 

i.e. the jitter, the joint distribution of r and φ must be found. Consider the joint 

probability of the event ((r0 ≤ r ≤ r0 + ∆r)∩(φ0 ≤ φ ≤ φ0 + ∆φ)): 

 

 

 

 

 (3.13) 

where f(⋅)(⋅) denotes the probability density function of the involved quantity. For the 

analysis of distortion in the next subsection the distribution of the Cartesian 

coordinates of the jitter as shown in Figure 3.4 is also needed. It can be derived as 

follows: 

 

 

 

 

 (3.14) 

The last part of eq. (3.13) says that the Cartesian coordinate x=r⋅cosφ has a Gaussian 

distribution, specifically )
2

1
,0(

βπ ⋅⋅
N , where N(µ, σ2) denotes the Gaussian distribution 

==≤ ])),(Pr[(]Pr[ CsensorsofemptyiszOcirclezr

)exp(1]),(Pr[1 2zemptyiszOcircle ⋅⋅−−=−= πβ

=∆+≤≤∩∆+≤≤ )]()Pr[( 0000 ϕϕϕϕrrrr

0

0
00000000 ]Pr[

2
]Pr[]|Pr[

→∆

→∆
⇒∆+≤≤⋅

⋅

∆
=∆+≤≤⋅∆+≤≤∆+≤≤

r

rrrrrrrrrrrr
ϕπ

ϕ
ϕϕϕϕ

∫ ∫∫∫
∞−

∞

∞−

⋅⋅−⋅⋅−
⋅=

⋅=
≤⋅

⋅⋅− ⋅⋅=⋅⋅⋅=≤⋅
z

yx
rx

ry
zr

r dyedxeddrerzr
222

cos

sin
cos

]cosPr[ πβπβ
ϕ

ϕ
ϕ

πβ ββϕβϕ

∫
∞−

⋅⋅⋅−

⋅⋅⋅⋅
⋅

=
z

x
dxe

2)2(
2

1

2
2

1 βπ

βπ
π

)()()exp(2
2

1
),( 2 rffrrrf rr ⋅=⋅⋅−⋅⋅⋅⋅⋅

⋅
= ϕπββπ

π
ϕ ϕϕ



 

 

55 

with mean µ and variance σ2.  Computation of the y-coordinate leads to an exactly 

symmetric integration, so that both Cartesian coordinates have the same Gaussian 

distribution. Based on the fact that the polar coordinates are independent and using 

standard probability tools [Sta02] it can be proved that the Cartesian coordinates are 

independent as well. 

 

3.5.3.3 Expected distortion 

In order to analyze expected distortion we further need to analyze interpolation, 

i.e. the exact procedure by which a spatial profile is obtained based on a subset of 

sensors. This can be done based on the Hilbert space framework of Chapter 2. 

Equation (2.13) effectively describes expected distortion at any fixed position x on the 

field in terms of the spatial covariance function C(⋅) of the underlying random process. 

Our ultimate purpose is to statistically characterize the orthogonal projection error for 

all Poisson deployments of a certain rate β, with the underlying random process, i.e., 

C(⋅), regarded as fixed. Essentially, what follows enables investigation of expected 

distortion with respect to network density for any fixed physical process model. For 

notational convenience, in what follows we will drop the indices k referring to subset 

mk as well as call the orthogonal projection with a subset of sensors, Γ and the number 

sensors in the subset, M. Equation (2.13) then becomes: 
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Notice that Γ is a random variable dependent on the deployment of sensors: for 

any given spatial covariance structure C(⋅), for any particular deployment {(x1
p, x2

p)}, 

p = 1…M and for any target coordinates (η1, η2), the quantities η – X
p and thus eq. 

(3.15) can be directly computed. With fixed coordinates (η1, η2), Γ can in fact be 

viewed as a non-linear function h(·) of the following collection of 2·M constituent 

random variables: 

 

 

 

 

 

 

 

 (3.16) 

where we have used the convention that R(η – Xp) = R(η1 – x1
P, η2 – x2

p). By virtue of 

eq. (3.14) for PJiG, each of the Gk follows a Gaussian distribution. The mean is the 

difference between the Cartesian coordinates of η i.e. (η1, η2) and those of the grid 

point (u1
p, u2

p) corresponding to sensor Xk. The variance is 
βπ ⋅⋅2

1 . In addition, all Gk 

are independent of each other: Gk is independent of Gn for k, n < M because they 

correspond to hitting probabilities of a Poisson process centered at different points on 

the field and Gk is independent of GM+k because they correspond to the Cartesian 
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coordinates of the jitter, which have been proved to be independent in Section 3.5.3.2. 

Hence the covariance matrix of these variables will be diagonal: 

 

   

 (3.17) 

It is useful to point out that the variance of these random variables is inversely 

proportional to the network density β, i.e. the denser the network the better the 

approximation of a virtual grid obtained. 

Through eq. (3.16) and (3.17), Γ can be viewed as a non-linear transformation of 

a multi-dimensional Gaussian distribution. By studying the statistical behavior of Γ for 

different covariance structures of the underlying physical phenomenon, i.e., for 

different functions C(·), we can gain useful insights on how distortion performance 

scales with network density. For covariance models of interest [Ber01], the exact 

distribution of Γ is hard to derive analytically. However, numerical methods can be 

used to approximate the mean and variance of Γ, which are what interests us 

ultimately. The first two moments of Γ can be expressed as: 

 

 

 

 (3.18) 

where P(G) is the probability density function of the multi-dimensional Gaussian 

distribution defined in eq. (3.17). Provided that the spatial correlation function 

appearing in the expression for Γ in eq. (3.16) is known in analytical form and 
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utilizing the numerical integration techniques described in [Ler02], approximations for 

the mean and variance integrals in eq. (3.18) can be obtained.  

As a final remark, note that this analysis can give us an initial indication of or 

even provide elaborate bounds on the distortion performance of any spatial sampling 

scheme based on the PJiG rule. An example would be to characterize sensor subsets 

derived from hexagonal jittered grids instead of the squared ones discussed here. 

Although preliminary numerical results thereon have been presented [Lia07b], the 

extensive numerical investigation of eq. (3.15) via eq. (3.18) is beyond the scope of 

this dissertation and will not be further pursued. 

 

3.6 Random Variable Greedy (RaVaG) Algorithm  

A drawback of JiG sampling is that it is better suited for spatially stationary 

processes, since virtual grids are regular. However, spatial non-stationarities are in fact 

commonly encountered in real life physical phenomena and corresponding 

measurements. For example, at locations closer to windows or heat sources, 

temperature readings may vary more rapidly for proximate sensors than they do at 

dark or isolated locations, e.g. under desks. Another drawback is that it does not 

provide fine-grained control over the size of subsets obtained. For example, if subsets 

of 132 = 169 sensors are inadequate, the next available choice is subsets of 142 = 196 

sensors. This effect becomes more pronounced for large n. 

We present now a class of algorithms that aims exactly to address these 

shortcomings of JiG sampling. It is based on the expressive power of the Hilbert space 

HS of sensors as random variables. The key idea of the approach is essentially 
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quantifying ‘colinearity’ or ‘orthogonality’ between a given candidate vector and an 

existing set of vectors. This can be done by using orthogonal projection error as the 

score function. If the orthogonal projection error of a candidate vector onto a subset of 

existing vectors is maximal among all such vectors, then we know that the descriptive 

power of the subset will maximally grow if we add the candidate to it. If, on the other 

hand, the orthogonal projection error of a member of the set onto the rest of the 

vectors in the set is minimal, then we know that the descriptive power of the set will 

only marginally be affected if we remove the candidate vector from it. The main 

strength of this approach is that it readily provides a characterization of how redundant 

an individual sensor is with respect to any subset of sensors for interpolation purposes, 

which was one of our initial goals. 

Based on these concepts, our RaVaG algorithms for finding multiple subsets of 

sensors resulting in adequate interpolation (or, equivalently, multiple approximate 

bases for the primary subspace) proceed as follows. It is not known a priori how many 

subsets can be possibly created. Instead, the algorithms start creating the first subset 

by selecting vectors until the distortion criterion is met. Next, the second subset will 

be selected from the remaining vectors, and so forth. Consider, in general, a situation 

where we are in the process of creating the jth subset. At this point, the primary 

subspace can be considered as being partitioned in three subspaces: 1) the space HU of 

vectors in subsets 1 through j-1; 2) the space HA of vectors already selected in subset j; 

3) the space HR of vectors not yet selected for any of the subsets. Our algorithms 

consider all candidate vectors η from those not yet belonging to any subset. For each 
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one of them, they compute the error by orthogonal projection in both of the spaces HA 

and HR (always excluding the vector η):  

 

 

 

 (3.19) 

The important decision at this point is how to use these orthogonal projection 

errors to populate the subsets with ‘good’ vectors. A simple first choice would be to 

sequentially select the vector η that maximally expands the current subset, i.e., the 

vector maximizing EΑ(η). However, this choice does not always lead to a good subset 

of vectors, especially in cases where the random process is spatially non-stationary. To 

see this, consider a random process showing rapid variations over a small region of the 

field, while being smooth over the rest of the field. Then a heuristic based on 

maximizing EΑ(η) would first choose vectors in the rapidly varying region, because 

they are likely to be the most orthogonal to each other. This strategy has an immediate 

drawback however: it is possible that subsets subsequently constructed cannot contain 

any of these vectors describing rapid variations, because they have all been used up. 

Eventually, they will not be able to achieve the target distortion or will need to employ 

a much larger number of sensors.  

Based on this example, there are two competing effects both of which should be 

taken into consideration when designing a greedy approach: expanding the expressive 

capability of the subset currently being constructed and not ‘crippling’ the expressive 

capability of the subset of sensors that remain. The first effect can be quantified by 
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requiring a high orthogonal projection error onto the space of already selected sensors, 

i.e., the candidate vector should be as orthogonal to this set as possible. The second 

effect can be quantified by requiring a low orthogonal projection error onto the space 

of remaining vectors, i.e., the candidate vector should be as colinear to this set as 

possible. 

 A score function can be used to express the relationship between these two 

effects for each candidate vector. Define a score function Y(η) by: 

 

 (3.20) 

The vector η with the maximum score amongst all candidates is then added to the jth 

subset. The particular choice of score function leads to different heuristics. In this 

dissertation we have experimented and present results with the following three score 

functions: 

 

 

 

 

 (3.21) 

The detailed subset selection algorithm is presented in Figure 3.5. The heart of 

the algorithm can be found at Line 12, where the score function of eq. (3.20) is 

computed over all candidate vectors. Computation is based on eq. (3.19) and (2.13). It 

can be seen that only inner products between specific sensors are needed, as opposed 

to possessing complete covariance information (see eq. (3.3)), and these are readily 
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available in the approximate Grammian Ĝ0 (see eq. (3.9)). When the algorithm 

terminates, there may be some remaining sensors that were not assigned to any active 

subsets (since they could not form a subset by themselves that satisfies the distortion 

target). In this case, they are distributed in a round robin fashion among existing 

subsets in such a way that each subset is assigned the sensor which maximizes the 

heuristic expression which was used for it in the first place. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3.5: Random Variable Greedy (RaVaG) subset construction algorithm 
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In Section 3.9, it will be shown through extensive simulations that the RaVaG 

heuristics with score functions Y2(⋅) and Y3(⋅) generally outperform other schemes 

proposed here with respect to the spatially averaged distortion criterion (3.6). 

 

3.7 Matrix Greedy (MaG) Algorithm  

Yet, an alternate approach to sensor selection for the spatially averaged 

distortion criterion (3.6) can be envisaged, owing to the simultaneous sparse 

approximation method described in [Cot05], [Tro06]. The latter will be hereafter 

referred to as Simultaneous Orthogonal Matching Pursuit (SOMP). The MaG 

algorithm builds upon manipulation of the centered data matrix, i.e., the data matrix 

without a spatial trend 00 µ̂−B  (see eq. (3.8) and (3.9)) and is novel for our problem. 

We now describe our MaG algorithm. The main ideas of SOMP are also 

summarized here for completeness. The goal is to approximate a target signal matrix T 

that consists of L K-dimensional column vectors using only a few of the M column 

vectors {φω}ω = 1...Μ  that comprise a dictionary matrix Φ. The dictionary is typically 

such that M is very large. The analogy with our setting is straightforward, if we think 

of the collection of time series available from the sensors, as the dictionary, i.e., B – µ 

= Φ. The dimensionality of the columns is the length of the learning phase Θ, i.e., K = 

Θ, while the total number of columns is the size of the network, i.e., M = N. A first 

important difference in our case however is that the signal to be approximated is the 

data matrix as well, i.e., L = M = N, and the target signal coincides with the dictionary. 

This creates small technical differences when actually executing the algorithm, 
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compared to [Tro06]. The modified algorithm, which we will refer to as simultaneous 

sparse approximation, is summarized in Figure 3.6, in form similar to that of [Tro06]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3.6: Matrix Greedy (MaG) subset construction algorithm 
 
 

The second important difference from SOMP is that multiple subsets are 

constructed instead of a single one. In the above code, this is denoted by κ, which is 

the counter for subsets devised so far, while t is the counter for sensors comprising a 

particular subset. The key step of the algorithm can be found at Line 5, where the next 

column is chosen by computing its aggregate Euclidean product with all other 

columns. Essentially, this appoints the column that is most collinear with all other 

1 Input: Θ x Ν data matrix T = 00 µ̂−B , target distortion D. 

 Output: Sets of column indices Λκ. 
2 Initialize the set counter κ = 0, Π0=∅. 
3 If κ = 0 initialize the residual matrix by Rκ = T. Else set Πκ = 
Πκ-1 ∪ {Λκ-1, t-1} and initialize the residual matrix by Rκ = T \ 
{Πκ}.  
4 Initialize the index set Λκ, 0 = ∅, the iteration counter t = 1. 
5 Find an index λt that solves the (easy) optimization problem: 

                                  ∑
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where en is the n-th canonical basis vector in ℜ
Θ and Θℜ

>⋅⋅< ,  

the (Euclidean) inner product in ℜΘ. 
6 Set Λκ, t = Λκ, t -1  ∪ {λt} 
7 Find the projection matrix Pκ, t onto the span of the atoms 
appearing in Λκ, t. 
8 Calculate the new residual: 
                                    1,,1,, −− ⋅−= tttt RPRR κκκκ  

9 Increment t. Return to step 4, unless the current set meets the 
target distortion, as computed by eq. (3.6). 
10 Increment κ.  
11 If no more sensors remain or remaining sensors cannot meet 
the target distortion, terminate. Else return to step 3. 
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columns by means of the Euclidean inner product. Additionally, before beginning the 

construction of a new subset, the residual matrix Rκ contains exactly those columns of 

T that correspond to sensors not yet selected in any subset. Another logical choice 

would be for Rκ to contain all columns of T anew, since each subset must be able to 

approximate the whole dataset (Line 3). This choice however, results in inferior 

performance in terms of devised subsets and will not be examined further. 

The whole algorithm can be thought of as approximating the infinite dimensional 

random variables that are elements of HS with finite dimensional (in fact, Θ-

dimensional) real vectors. The computation will then lie in the Hilbert space of 

Euclidean Θ-vectors, thus justifying the name of the method. We expect that the actual 

performance of this algorithm will depend on how well the finite length vectors 

describe the random variables, i.e., on the length of the learning phase Θ. In the 

experiments’ section this issue will in fact be revealed to be the Achilles’ heel of 

MaG.  

 

3.8 Greedy Potentials (GreePo) Algorithm for Spatially Maximum Distortion 

Heuristics discussed so far pertain to the spatially averaged MSE criterion (3.6). 

On the other hand, criterion (3.7) for spatially maximum MSE requires a more 

specialized treatment, exactly because aforementioned heuristics do not explicitly take 

into account worst case error when choosing sensors. To better understand this we can 

consider the example of the RaVaG algorithm for devising subsets. For ease of 

exposition, we rewrite distortion criteria (3.6) and (3.7) for interpolation within the 
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primary subspace based on a discrete set of locations. The expressions are then 

reduced to discrete sums and maxima over discrete sets:  

 (3.22) 

 

 (3.23) 

In the preceding equations we have simply expressed MSEs not at continuous 

locations x, but at a discrete set A of locations of interest, also referred to as ‘test’ 

locations. Intuitively, for any subset of vectors devised by RaVaG, criterion (3.22) 

performs averaging of MSEs. This effectively mitigates the effects of possible 

extremely bad MSEs at some locations in A. Criterion (3.23) is however based solely 

on the worst possible MSE. The reason heuristics such as RaVaG can and do fall short 

in this case, is that they do not proactively couple each individual sensor selection with 

the ‘worst’ regions of the observation field in terms of MSE. Intuitively, a sensor 

selection scheme is needed that keeps track of these sensitive regions throughout the 

whole selection process. Such a scheme is presented in this section. 

The optimal solution to the min-max sensing topology management problem is 

still exponentially hard in the size of the network. It requires enumeration of all 

possible subsets of sensors mk and, for each of them, computation of the maximum 

distortion over all test locations A according to eq. (3.23). Related problems are 

provably NP-hard and furthermore admit only approximation algorithms, unless P = 

NP [Kra07a]. Therefore, in this section we provide an approximate procedure for the 

min-max problem.  
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Recall from eq. (2.12) that the MMSE of the best linear interpolator with a 

subset of sensors mk at a point x can be written as a function of the Grammian matrix 

Gk and the covariance vector ck(x). We repeat the expression here for convenience: 

 

 (3.24) 

The first term thereof is the variance of the physical phenomenon at location x, while 

the second term is the variance reduction at location x achieved by interpolating with 

subset mk. Both the variance and variance reduction are quadratic forms and thus non-

negative. Since the variance depends only on the location x, a possible way to find a 

‘good’ subset from eq. (3.24) would be to require that the minimum variance reduction 

for all x is maximized. This gives rise to the following inequality: 

 

 

  

 (3.25)  

where 
2

⋅  denotes the Euclidean norm and λmax(⋅) the largest eigenvalue of the 

argument. The second inequality above, stems from considering the specific 

covariance vectors ck(x) at test locations x ∈ A. It follows from the Courant minimax 

principle for quadratic forms [Moo00], the fact that Gk
-1 is self-adjoint (because it is 

the inverse of a Grammian matrix) and that its eigenvalues are the inverse of the 

eigenalues of Gk (this can be easily seen from diagonalizing Gk and inverting). 

Inequality (3.25) defines a lower bound on variance reduction. The idea of our 
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algorithm is to greedily maximize this lower bound. Essentially, we consider how the 

Euclidean norm of the covariance vector ck(x) and the maximum eigenvalue of the 

corresponding Grammian will change over all test locations, if we add the candidate 

sensor to the current subset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3.7: Greedy Potentials (GreePo) subset construction algorithm 
 
 

The actual algorithm for subset selection is shown in Figure 3.7. One candidate 

sensor is selected at a time as shown in Line 10, in a manner resembling the lower 

bound of eq. (3.25). For each candidate sensor, two quantities must be computed: the 

minimum norm of the covariance vector 2

2
)(ˆ xkc  over all test locations, considering 
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previously selected sensors along with the candidate sensor, as well as the maximum 

eigenvalue of the Grammian Ĝk.  

Firstly, recall from eq. (3.9) that a finite dimensional approximation of the 

Grammian Ĝ0 can be computed using the matrix B0, which consists of all sensor 

measurements gathered during the learning phase. Any subset of sensors mk 

corresponds to a submatrix Bk of B0 and Ĝk of Ĝ0 adhering to eq. (3.9). Computation of 

the norm of the covariance vector ĉk(x) is slightly more involved. A straightforward 

method for it would be to first obtain W = Θ reference surfaces, utilizing data from the 

learning phase, then extract the interpolated time series at the test locations and 

explicitly estimate each element of the covariance vector. This is can be done through 

the Euclidean inner products between the time series at the test location and the time 

series measured at each sensor. Denoting the columns of the submatrix Bk with b1, …, 

bN and the time series obtained from reference surfaces at location x with r, an 

estimate of the covariance vector will be given by: 

 

 

 (3.26) 

A drawback of this method however, is the computational burden of actually 

obtaining Θ reference surfaces through interpolation, especially in the case of a large 

network. A possible option to circumvent it altogether is to consider A as the 

collection {X0
p}, p = 1…N of all initial sensor positions. This is a plausible 

approximation for practical purposes, if the network is considered to be dense. In this 
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minimize the maximum MSE over the locations of sensors not in the subset. Because 

x ∈ {X0
p}, p = 1…N, ĉk(x) then consists only of elements in the empirical covariance 

matrix Ĝ0 and can be readily computed.  

The quantity 2

2
)(ˆ xkc , can be understood as an information potential, in the sense 

that it reveals regions of the space that bear a lot of sensors in the current subset (high 

potential) as well as regions of the space that are devoid of sensors (low potential). 

Therefore, the whole algorithm is referred to as the Greedy Potentials algorithm 

(GreePo). Upon termination, there may remain some sensors that were not assigned to 

any subsets (since they could not form a subset by themselves satisfying the distortion 

target). These are distributed randomly in a round robin fashion among existing 

subsets. 

 

3.9 Evaluation 

3.9.1 Spatially Averaged Distortion 

We first tested our sensing topology management schemes with a range of 

synthetic data. A purely simulated evaluation setting has the major advantage that it 

gives us access to the ground truth, i.e., the spatial process itself. As a result, we can 

evaluate the true distortion of interpolation with a subset of sensors as compared to the 

realizations of the monitored process.  

The setting for experiments was an observation field of square shape and size 

104 m2. We considered Poisson-based random deployments with N = 500, N = 1000, N 

= 1500 sensors. This serves to evaluate the impact of the level of initial over-
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deployment on our algorithms of Figures 3.3, 3.5 and 3.6. Recall also that our 

algorithms require a learning phase of Θ time instants. Readings obtained during the 

learning phase are used for two purposes:  

• Construction of W reference surfaces Ŝ0(x, tq) for distortion estimation 

according to eq. (3.6). Distortion estimation is required by all subset 

construction algorithms presented in this chapter.  

• Construction of the data matrix B0 and possibly estimation of the covariance 

matrix Ĝ0 through eq. (3.8) and (3.9) respectively. This is required only by the 

MaG and RaVaG algorithms. 

Distortion estimation is a computationally expensive operation and must be 

repeated after each iteration that adds a sensor to the current subset (step 4 in Figure 

3.3, step 15 in Figure 3.5 and step 11 in Figure 3.6), so a lower W is preferable. On the 

other hand, the orthogonal projection error of eq. (2.13) which is used in RaVaG by 

virtue of eq. (3.21), assumes linearly independent vectors and the covariance matrix 

estimate of eq. (3.9) should therefore be full rank [Moo00]. This translates into Θ ≥ N. 

In principle, a higher Θ also enables better estimation performance through potential 

comparison with more reference maps. The compromise we followed in our 

simulation results is to initially run the learning phase for Θ = Ν time instants and then 

use all acquired sensor values for covariance matrix estimation, but only W = 125 

reference maps for distortion estimation. In practice, we found that even the 

requirement Θ ≥ N is not essential to obtain good subsets. We will show that 

performance of the RaVaG algorithms does not significantly degrade even for Θ ≈ Ν / 

4. Data interpolation was performed with two methods: reference maps were 
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constructed with least squares spline interpolation to provide robustness against noise. 

In all other occasions, i.e., during subset construction and performance evaluation of 

the devised subsets, a standard, and much faster, interpolation method based on 

Delaunay triangulation was used. 

There is no existing solution to actually compare our scheme against. However 

we have devised and experimented with a reasonable alternate approach. The basic 

premise is to construct subsets by choosing sensors at random. Specifically: 

 

Random selection: Select k sensors at random to comprise a subset. Keep increasing k 

until the distortion criterion (3.6) is satisfied. Repeat until no sensors remain 

unselected or are too few to meet the target distortion.  

 

3.9.1.1 Stationary Processes 

We first conducted experiments with a spatially stationary physical process. 

Process realizations were generated according to a simple kriging model [Ste99], 

which is commonly used in geostatistics and atmospheric sciences to describe 

environmental data. Specifically, zero mean white noise was fed into a symmetric 2-D 

low pass spatial filter. The target distortion was set to 0.5. White Gaussian 

measurement noise of mean zero was added to sensor samples in all cases, resulting in 

a Signal to Noise Ratio equal to 10. It is worth mentioning that another well known 

model for generation of spatially correlated sensor network data [Jin06] could not be 

used in our case: for our evaluation, the ground truth needs to be continuous over the 
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entire observation area whereas this model provides data values only at specific sensor 

locations.  

Figure 3.8(a) shows the number of subsets obtained with random selection as 

well as the JiG, MaG and RaVaG algorithms with all different score functions (see eq. 

(3.21)), for N = 500, N = 1000 and N = 1500. Figure 3.8(b) shows the average size of 

subsets for each scheme, along with standard deviations. Sizes are the ones obtained 

immediately after running our selection algorithms, i.e., before assignment of 

remaining sensors among devised subsets. The different network sizes serve to 

indicate the impact of initial over-deployment on the results. 

  

 

 

 

 

 

 

 

Figure  3.8: (a) Numbers of subsets devised for N = 500, 1000, 1500 and stationary 
data (b) Average sizes of subsets with standard deviations 

 

In general, efficiency is improved with more available subsets or equivalently 

with smaller subset sizes. It can be seen that our schemes greatly improve on the 

efficiency of an unscheduled network (consisting of only one set) by 3, 6 and 9 times 

for N = 500, N = 1000 and N = 1500 respectively. The schemes that exhibit the best 

(a)  (b)  

number of subsets avg. sensors in subset 

N = 500 N = 1500 standard deviation N = 1000 
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performance in this respect are RaVaG-Y1 for Ν = 500 and RaVaG-Y2 for both N = 

1000 and N = 1500. Additionally, improvement on the number of subsets is also 

achieved in comparison to random selection, specifically by 50% for all values of N = 

500, N = 1000 and N =1500. This improvement can be explained by observing average 

subset sizes. For example, the average subset devised with RaVaG-Y2 for N = 1000 

consists of 151 sensors. This is a 33% reduction over the 225 sensors comprising the 

average random subset for the same value of N. 

Figure 3.9 plots instantaneous square error versus ground truth for one run and 

for each value of N. The schemes compared are random selection and RaVaG with 

score functions Y1(⋅) and Y2(⋅) which showed the best performance in terms of number 

of devised subsets in Figure 3.8(a). The subsets were activated in a sequential manner, 

with vertical lines indicating points of switching between subsets and numbers on top 

indicating the sequence number of the subset. The ensemble mean in time of the 

spatially averaged squared error is also shown in the figures as ‘E.M.’. Subsets used 

for these experiments were the finalized ones, i.e., the ones obtained with distribution 

of residual sensors after completion of the algorithms, as would happen in a real 

setting. In a real setting, the sensor network would also be active for periods of time 

much longer than the 250 time instants shown here; Figure 3.9 merely serves to 

examine whether distortion achieved by the sensor subsets adheres to the target. 

Realizations up to 50 correspond to distortion during the learning phase, where all 

sensors in the network are reporting. This is done to give an idea of the performance of 

the initial deployment and how a low initial distortion can be effectively traded off for 

multiple reporting subsets.  
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Figure  3.9: Instantaneous spatially averaged squared error vs. ground truth for a 
stationary process 
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It can be seen that subsets devised with the proposed schemes, although smaller, 

still succeed in providing sufficiently good interpolations of the monitored process. 

Most importantly, they do so in a much stronger sense than what is actually required 

by criterion (3.6). Specifically, eq. (3.6) asserts that the Mean Squared Error averaged 

over space should be less than the distortion target, and the ‘mean’ is taken over time. 

Mean Squared Error is approximated in the figures by the ensemble mean. Figure 3.9 

shows however, that squared error, if averaged over space, is close to the distortion 

bound for each time instant, as opposed to just the mean sense over all time instants. 

This is an important aspect of performance achievable with our schemes, for a 

spatially averaged distortion criterion, which however depends on some conditions. 

These will be discussed in Section 3.9.1.3. 

 

3.9.1.2 Non-stationary Processes 

Next, we experimented with processes characterized by a linearly growing trend 

as well as a covariance structure changing over the observation field, i.e., not spatially 

invariant. To generate appropriate process realizations we followed the procedure 

described in [Not02] for estimation of non-stationary behavior, which has been 

utilized previously in sensor network literature [Gue05], [Kra06], [Kra07b]. The basic 

idea is to model a non-stationary process as a spatially varying linear combination of 

stationary processes. In our case, two such stationary processes were generated with 

spatial filters corresponding to Nyquist sampling rates of 100 sensors and 400 

approximately. To combine them, the observation field was first divided into two 

regions along its main diagonal. The spatially varying weights were then chosen as 
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two Gaussian kernels, each centered at one of these distinct regions on the field. The 

contribution from each of the stationary processes becomes prominent only towards 

the center, i.e., the peak of the corresponding weighing kernel. A linear trend starting 

at the leftmost edge of the field at value 15 and reaching the rightmost edge of the 

field at value 35 was finally superimposed on the non-stationary covariance data. This 

could for instance describe a steadily growing trend in temperature as one moves 

towards the windows in a room. The entire procedure resulted in process realizations 

that would require approximately 225 randomly selected sensors to achieve a target 

distortion of 0.5 (same as in the stationary case).  

 

 

 

 

 

 

 

Figure  3.10: Cross section of a non-stationary realization along main diagonal of 
observation field shown (a) with trend and (b) after subtracting trend 

 

Figure 3.10(a) shows a cross section of the covariance structure for one process 

realization taken along the main diagonal of the observation field. Measured values 

increase as one moves towards the upper right corner of the field, due to the linear 

trend. Figure 3.10(b) shows the same cross section if the trend is subtracted. It can be 

seen that the resulting process shows more rapid variations for the upper half of the 
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cross section and corresponds to the component stationary process with lower 

correlation. 

Figures 3.11(a) and (b) respectively show the numbers of devised subsets and 

average subset sizes for N = 500, N = 1000 and N = 1500. The gains in terms of total 

number of subsets when compared to the unscheduled case are 3, 6 and 8 fold for N = 

500, N = 1000 and N = 1500 respectively. This superior performance was achieved by 

RaVaG-Y2 for N = 500, JiG for N = 1000 and RaVaG-Y3 for N = 1500. In comparison 

to random selection a gain in the number of subsets is only achieved for the two larger 

values of N and amounts to 50% in both cases.  

 

 

 

 

 

 

 

Figure  3.11: (a) Numbers of subsets devised for N = 500, 1000, 1500 and non-
stationary data (b) Average sizes of subsets with standard deviations 

 

 Figures 3.12(a) and (b) depict a ‘bird’s eye’ view of sensors comprising a subset 

for N = 1000, as chosen by the random scheme and RaVaG with cost function Y2(⋅) 

respectively. Small dots represent all deployed sensors; circles represent sensors 
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selected by the random scheme while squares represent sensors selected by RaVaG. It 

can be observed that randomly chosen sensors often display erratic patterns, with 

swarms and spatial gaps. By contrast, the Hilbert space approach correctly selects 

more sensors to account for the higher variability of the physical phenomenon in the 

upper right half of the observation field (compare also to Figure 3.10). 

 

 

 

 

 

 

 

 

Figure  3.12: Sensors comprising a single set for N = 1000 for (a) RaVaG-Y2 and (b) 
Random Selection 

 
The instantaneous interpolation performance of the best schemes in terms of 

number of produced subsets is shown in Figure 3.13, alongside that of random 

selection. It can be seen that the distortion target is well met by our schemes in an 

instantaneous squared error sense. 
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Figure  3.13: Instantaneous spatially averaged squared error vs. ground truth for a non-
stationary process 
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3.9.1.3 Discussion 

From Figure 3.13 it can be observed that subsets devised by random selection 

show degraded MSE performance in the case of N = 500. Specifically, squared error, 

even if averaged over time does not meet the distortion target of 0.5. The reason is 

that, in this case, distortion computed through eq. (3.6) is underestimating the true 

distortion. For proper distortion estimation, initially deployed sensors should provide a 

relatively accurate approximation of the ground truth to begin with. This is apparently 

not the case for N = 500, which is also evident by the fact that distortion during the 

learning phase is considerably close to the target distortion.  

 

 

 

 

 

 

 

Figure  3.14: Instantaneous spatially averaged squared error vs. estimated truth for a 
non-stationary process 

 

To illustrate this point further, Figure 3.14 shows the instantaneous distortion 

incurred by the sensor subsets selected when N = 500, not against the ground truth as 
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D 
1

# test realizations 

Random 

N = 500 

2 3

E.M. = 0.54 

# test realizations 

RaVaG-Y2 

N = 500 

D 
1 2 3

E.M. = 0.47 



 

 

82 

N = 500 in Figure 3.13 is due to inaccurate reference surfaces, i.e. inaccurate distortion 

estimation and not caused by a deficiency of the random sensor selection scheme. It 

also indicates that, in Figure 3.13, and for N = 500, the RaVaG-Y2 scheme, even 

though it does not achieve a gain in terms of additional subsets, nevertheless 

adequately compensates for the inaccurate distortion estimation by selecting better 

sensors altogether. Therefore, it still fares better than random selection. 

This shortcoming of distortion estimation can be remedied by ‘correcting’ the 

distortion target fed to the sensor selection algorithm in the first place. The actual 

magnitude of this correction depends on the sensed spatial process and the type of 

deployment (e.g. Poisson) and can only be determined empirically through simulation. 

To give an example pertaining to Poisson deployments, let us call estimated 

oversampling factor, the ratio of N versus the estimated size of a randomly selected 

subset necessary to achieve the target distortion. From Figure 3.11(b) the estimated 

oversampling factor would be 3.1 (≈ 500 / 160) for N = 500, 4.4 (≈ 1000 / 225) for N = 

1000 and 6.5 (≈ 1500 / 230) for N = 1500. The correction in the distortion target for 

each estimated oversampling factor can then be chosen as the difference in squared 

error when comparing to the ground truth and when comparing to a reference surface, 

averaged over time. This difference is essentially the difference (i.e. obtained by 

subtraction) in instantaneous distortion as shown in Figure 3.13 for N = 500 and the 

distortion target, averaged over time, and can be specifically computed to be ~0.08 for 

N = 500. Thus, for example, for Poisson deployments and estimated oversampling 

factor ~3.1, the correction needed will be ~0.08, i.e., the distortion target should be 

0.42 instead of 0.5. An association with oversampling factors (i.e., disregarding 
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network sizes) is reasonable in this case, because the Poisson process is a ‘completely 

random’ point process. For other types of initial deployments however, detailed curves 

of initial network size vs. distortion correction have to be built in simulation. This is 

however an issue going beyond the scope of this dissertation. 

From Figures 3.8 and 3.11, we see that obtained sizes are similar across different 

subsets for the same algorithm and for the same number of sensors N, as expected. For 

different algorithms there is a small deviation in sizes, depending on how the 

algorithm actually selects sensors, which is also expected. Subset sizes vary more for 

nonstationary data and for N = 500. In general, the variants of RaVaG more consistent 

in providing good performance were those utilizing score functions Y2(⋅) and Y3(⋅). The 

performance of the variant based on Y1(⋅), even though reasonably good in the 

stationary case, was observed to deteriorate for non-stationary data. This is indicated 

by large variations in the sizes of the subsets devised by this variant (e.g. for N = 1000 

the second subset is much smaller than the rest). Variations can be attributed to the 

cost function being ‘fooled’ into selecting many sensors in the region of the field 

characterized by lower correlation, which cripples further construction of subsets, as 

described earlier as an example in section 3.6. However, RaVaG-Y1 still devises more 

subsets in the case of N = 500 and stationary data, because it expands the span of the 

subspace corresponding to the current subset more aggressively than RaVaG-Y2 or -Y3. 

A further issue of interest is how much performance of the algorithms is actually 

affected by the length of the learning phase Θ. We have in fact run RaVaG as well as 

MaG for the case of N = 1000 with a much smaller learning phase than what is 

required to ensure linear independence in eq. (2.13), namely Θ = 250. A significant 
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advantage of RaVaG is revealed then, as shown in Figure 3.15. RaVaG fares as well as 

in the case of an ideally long learning phase, i.e., Θ = Ν = 1000 because it uses the 

data matrix only to estimate covariances. The MaG algorithm on the other hand, 

exhibits heavily degraded performance for non-stationary data, with the number of 

subsets being reduced from 6 to 4 (note that the subset sizes are still similar with the Θ 

= 1000 case). The reason is that it tries to approximate N column vectors that are Θ – 

dimensional in this case. The effect can be thought of as trying to approximate a 

redundant dictionary (because there are N columns > Θ dimensions) with itself.  

 

 

 

 

 

 

 

 

Figure  3.15: (a) Numbers of subsets devised for N = 1000 and Θ = 250 for stationary 
and non-stationary data (b) Average sizes of subsets with standard deviations 
 

Overall, the results shown in Figures 3.8-3.13, indicate that our approaches 

succeed in finding good disjoint subsets that meet a specified target distortion. No 

single one of the proposed schemes strictly outperforms others in all cases. However, 

the proposed RaVaG algorithm with score functions Y2(⋅) or Y3(⋅) does consistently 

produce good results, especially for non-stationary underlying phenomena. By having 
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only one of these subsets active at each point in time, desired sampling-interpolation 

performance can be achieved. Subsets may be activated either in a sequential manner, 

i.e., each subset is activated after the previous one has depleted its energy resources or 

in an interleaved manner to achieve better robustness. For example, the simplest such 

option would be to rotate control in a round robin fashion amongst subsets for 

consecutive time instants (this should be done intelligently nevertheless, to avoid the 

energy overhead of switching between subsets). In general, by using each subset for 

the same average percentage of time, the network can ideally remain operational for 

durations proportional to the total number of subsets. In the following section we will 

present results on the energy expenditure of our selection algorithms using a simple 

on-demand scheme of switching sensing control between different subsets. 

 

3.9.1.4 Energy Expenditure 

Exact energy expenditure for both an unscheduled network and one employing 

sensing topology management will depend on the particular radio transceivers and 

modes of transmission used, the message lengths, the wireless medium conditions (e.g. 

attenuation, fading) and the spatial reuse of this medium provided by the Medium 

Access Control (MAC) protocol. The contribution of all these aspects to energy 

consumption however, is largely dependent on the number of transmitted, received 

and overheard packets. This is a common protocol abstraction technique [Kin06] and 

the aforementioned quantities are used as energy consumption metrics for this section. 

For the majority of available sensor node radios, the power expended for reception is 

comparable with that expended for transmission [Kri05]. In our simulations therefore, 
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transmitted and received packets are added together. Additionally, overhearing power 

can either be comparable to reception power or close to zero, for example if an 

efficient overhearing avoidance technique is employed [Hu08]. Hence two extreme 

cases for overhearing would be not to count overheard packets at all and to count them 

as received packets. 

Our sensing topology management schemes have energy overhead compared to 

an unscheduled network. Specifically, sensor nodes should know if they belong to the 

currently operating subset. Therefore, whenever a switch between monitoring subsets 

is necessary, the data center floods a subset membership packet into the network. This 

packet could be a simple bit mask with length equal to the number of nodes in the 

network. During flooding, each node stores identities of nodes from which it received 

the bit mask packet to serve as possible forwarders back to the data center. We call 

these nodes ‘parents’. When flooding is complete, only sensors that belong to the 

current monitoring subset forward their data packets to a randomly selected parent, 

which in turn forwards them to one of its parents. In this manner, a data gathering tree 

is built, rooted at the data center.  

Figure 3.16 shows two extreme cases of the flooding overhead in packets per 

node versus transmission range: when overhearing is completely avoided and when it 

consumes energy similar to reception. All simulations were run on three different 

networks, of sizes N = 500, N = 1000 and N = 1500 and for a single flooding 

operation. Transmission ranges were picked as multiples of an equivalent sensing 

range, along the lines of work on event detection [Zha05]. In our interpolation setting 

we used as equivalent sensing range the average radius of Voronoi cells centered on 
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the nodes picked by the RaVaG-Y2 algorithm for a stationary process and N = 1500. 

This was specifically 5.2 m.  

 

 

 

 

 

 

 

Figure  3.16: Flooding with best and worst case overhearing 
 
 

To construct the curves, the data sink was assumed to be located at one of the 

corners of the observation field. A membership packet originating from the data sink 

was then flooded through the network. Upon reception of the packet, each node, 

broadcasts it exactly once to all of its neighbors. When overhearing can be completely 

avoided, a node effectively receives the packet exactly once, so the total number of 

transmissions and receptions per node is 2, i.e., each node receives and transmits the 

membership packet exactly once. When overhearing cannot be avoided, each node 

effectively hears the packet from a number of nodes in the order of its average number 

of neighbors. Since this number grows proportionally to the square of the transmission 

range, the overhead grows accordingly with transmission range. The quantity plotted 

in the end is obtained by summing all transmitted, received or virtually received, i.e., 

overheard, membership packets, and dividing by the total number of nodes in the 
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network. This is essentially a normalized measure for energy consumption. It can be 

equivalently interpreted as if every node in the network consumes energy equal to that 

needed for reception of the plotted amount of packets. 

Figure 3.17 shows the sum of transmissions and receptions per node for a single 

data gathering run versus transmission range, for N = 500, N = 1000, N = 1500. The 

purpose is to compare energy expended for data gathering by the best of our proposed 

schemes with that of an unscheduled network. According to Figures 3.8 and 3.11, 

these best schemes were: 

• RaVaG-Y1 for N = 500, RaVaG-Y2 for N = 1000 and N = 1500 and stationary 

data. 

• RaVaG-Y2 for N = 500, JiG for N = 1000 and RaVaG-Y3 for N = 1500 and non-

stationary data. 

 

 

 

 

 

 

 

 

Figure  3.17: Transmissions and receptions of data packets for our schemes compared 
to an unscheduled network for (a) a stationary process (b) a non-stationary process 
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To construct the curves, data packets originating at each of the nodes comprising 

the subset were forwarded through randomly selected parents towards the data sink. 

All transmissions and receptions of data packets were added together, and then divided 

by the number of nodes in the network N. Only transmissions and receptions were 

counted, because once the data senders have been decided upon, Time Division 

Multiple Access (TDMA) techniques [Deg06] can be used to avoid overhearing 

altogether. All results are shown for the second subset devised by respective 

algorithms. Results are very similar for other subsets. 

Energy expenditure is higher for small transmission ranges that force data 

packets to go through more hops towards the data center. Values are close for 

unscheduled networks with N = 1000 and N = 1500, because the networks are dense. 

Values are also close for our schemes in the stationary and non-stationary cases, 

because the sizes of devised subsets are similar as denoted by Figures 3.8 and 3.11. It 

can be seen that for all transmission ranges the energy expenditure per node is 

significantly reduced compared to an unscheduled network, specifically by 91%, 84% 

and 67% for N = 1500, 1000 and 500 respectively (percentages are roughly constant 

across transmission ranges and similar for stationary and non-stationary data).  

Switching between subsets should normally happen much less frequently than 

sending data packets. For example, if the nodes measure temperature every ten 

minutes, a whole day of monitoring with a specific subset would translate to 144 

rounds of data reporting. By comparing the absolute difference in the energy 

expenditure curves of Figure 3.17 with the overhead values in Figure 3.16 it can be 

seen that the overhead of our schemes quickly becomes negligible. This means that 
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after a short number of rounds (specifically 42 for the highest transmission range 

shown) of reporting e.g. with a RaVaG subset, we start gaining in terms of energy 

consumption compared to the unscheduled case. It is also stressed that the case of 

overhead presented in Figure 3.16 is ‘worst case’ in the sense that much more energy 

efficient flooding methods have been proposed for sensor networks [Kin06]. 

Figure 3.18 compares transmissions and receptions per node for one data 

gathering run between our schemes and random selection. Curves for our schemes are 

exactly the same as in Figure 3.17. Subsets thus devised, reduce the energy 

consumption per node compared to random selection by 37% for all values of N and 

stationary data. This means that, in the case of N = 1500 for example, and since 

plotted values are normalized, a sensor node will be able to report roughly for a factor 

of 1 / (1 – 0.37) = 1.58 more time under our schemes than under random selection. For 

non-stationary data, the reduction is 33% for N = 1500 and 36% for N = 1000. 

Although the case N = 500 shows no apparent improvement, it has already been 

pointed out in Section 3.9.1.3 that randomly selected subsets do not actually adhere to 

the distortion bound here, i.e., this case is somewhat pathological.  

Although our setup for examining energy consumption has been a simple one, 

we believe that it nevertheless captures the essence of multi-hop data gathering 

scenarios. From aforementioned results, we can therefore draw the conclusion that our 

schemes do indeed show significant merit with respect to reducing the energy 

expended for spatial interpolation with a WSN. 
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Figure  3.18: Transmissions and receptions of data packets for our schemes compared 
to random selection and (a) a stationary process (b) a non-stationary process 
 

3.9.1.5 Real Data 

Our final experiments were conducted on samples of ambient temperature from 

the LUCE Sensorscope deployment at EPFL [Sen07]. Samples were being collected 

by 97 Sensorscope nodes, which were dispersed over the entire EPFL campus and 
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reported meteorological data several times a day. For our purposes, we used 83 

sensors forming the largest subset with data available for a common, sufficiently long 

period of observation. This observation period was from April 24th to May 9th, 2007. 

As a result, we had N = 83 sensors, each reporting 12 times a day for 15 days (April 

29th was missing from available datasets). Half of these samples were used for the 

learning phase and the rest for checking instantaneous interpolation distortion.   

One of the problems, intrinsic to testing on real data, is that we do not know the 

underlying physical phenomenon (i.e. the ground truth). The only information 

available is what we can learn from all reporting sensors, and we evaluated distortion 

as compared to this situation. This means that we compared to the primary subspace 

HX0 instead of HS, and implicitly assumed that this is a sufficiently good 

approximation of the real process (i.e. we start of with sufficiently dense sampling to 

capture the relevant information). The target distortion for devising subsets was set to 

[2 0F]2. This represents mean squared distortion and corresponds to 2 0F of actual point 

distortion when predicting temperature.  

For the chosen target distortion, random selection, as well as RaVaG-Y1 and 

MaG resulted in only one reporting subset. JiG, as well as RaVaG-Y2 and RaVaG-Y3 

performed better however, devising two subsets of 42 and 41, 37 and 46 sensors and 

32 and 51 sensors respectively. Figure 3.19 shows instantaneous performance of these 

subsets for the Y3(⋅) variant. It can be seen that the target distortion is met on the 

average, rendering our approach a viable alternative to having all sensors reporting. 

Outlier values in the instantaneous distortion curve can be attributed to anomalous 

readings of specific sensors in combination with relative under-sampling. For 
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example, if a sensor sometimes happens to be near a source of excessive heat, its 

readings are going to deviate from those of the rest of the sensors which measure only 

environmental temperature. This will have a pronounced influence on interpolation for 

subsets that do not include this sensor, if no other sensors are available to sense the 

anomalies. 

 

 

 

 

 

 

 

Figure  3.19: Instantaneous spatially averaged error for real temperature data  
 

3.9.2 Spatially Maximum Distortion 

We now turn our attention to the GreePo algorithm described in Section 3.8 for 

spatially maximum distortion. The simulation setup is exactly the same as in the 

spatially averaged distortion case, albeit only the case N = 1500 is examined. The 

reason behind this choice is that for the same distortion target of 0.5 and a Poisson 

type deployment, the spatially maximum distortion criterion (3.7) is much more 

demanding in terms of sensors needed, when compared to the spatially averaged 

criterion (3.6). When evaluating related sensing topology management approaches, an 

application to smaller networks would thus be less meaningful.  
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Figure  3.20: Sizes of subsets devised for N = 1500 and (a) a stationary process (b) a 
non-stationary process 

 

Figure 3.20 shows the exact sizes of subsets obtained for N = 1500 and each of 

the two cases of underlying process statistics, for random selection and GreePo. 

Random selection devised 2 subsets for both stationary and non-stationary data, while 

GreePo devised 3 and 2 subsets respectively. The sizes shown are those before 

assigning unselected sensors among devised subsets, upon termination of the selection 

algorithms. The significantly larger size of the last subset for GreePo in the case of 

stationary data can be attributed to the characteristics of the uniform deployment used. 

As certain locations have been ‘occupied’ by previously constructed subsets, the last 

subset inevitably contains sensors in swarms around these locations. 

In general, efficiency is improved with more available subsets or equivalently 

with smaller subset sizes. It can be seen that our scheme greatly improves on the 

efficiency of an unscheduled network (consisting of only one set) by 3 and 2 times for 

stationary and non-stationary data respectively. Additionally, in the former, it also 
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improves on the number of subsets devised in comparison to random selection by 

50%. The improvement can be explained by observing subset sizes. For example, the 

best subset devised with GreePo consists of 330 sensors. This is a 42% reduction over 

the 570 sensors comprising the best random subset. For non-stationary data, although 

there is no additional subset devised, the actual sizes of subsets are smaller: overall 

970 sensors are employed by the two subsets of GreePo which represents a 24% 

reduction over the 1280 sensors of random selection. 

 

 

 

 

 

 

 

 

Figure  3.21: Spatially maximum MSE performance, for N = 1500 and (a) a stationary 
process (b) a non-stationary process 

 

Figure 3.21 shows the maximum MSE incurred over space, for subsets obtained 

with random selection and GreePo. Test data consisted of N process realizations 

generated with the same procedure as the training data. The observation field F was 

discretized with a test grid of 100x100 locations and distortion was checked on this 

grid. To mitigate edge effects, locations within a small distance (~0.5 m) from the 

edge of the observation field were disregarded for distortion calculation. For proof of 
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concept we also ran the RaVaG subset selection algorithm with score function Y2(⋅), 

targeted at spatially averaged distortion.  The algorithm devised nine subsets in total 

(see Figure 3.8), but only the best three have been included in Figure 3.21. It can be 

seen that subsets devised with both random selection and GreePo strictly adhere to the 

maximum distortion target of 0.5, while those devised with the average distortion 

algorithm do not. Note also that distortion shown in Figure 3.21 is no longer 

instantaneous as in Figures 3.9 and 3.13. 

Our next step was to study the energy consumption of our proposed algorithm. 

Data gathering experiments were set up exactly in the same manner as in Section 

3.9.1.4, based on an equivalent sensing range of 4.4 m. The overhead incurred for 

communicating subset membership to individual nodes is identical to that shown in 

Figure 3.16. Figures 3.22 (a) and (b) depict data gathering packet counts incurred by 

GreePo, random selection and an unscheduled network for both stationary and non-

stationary data. The second subset devised by GreePo and random selection was 

employed in each case.  

A subtle point here is that, in the non-stationary case, devised subsets were not 

finalized with redistribution of residual sensors (as has been the rule in all results so 

far). This was done to preserve the advantage over randomly selected subsets, which 

would have been obscured with such redistribution, since the total number of available 

subsets is the same. This is also the reason why energy expended by the GreePo 

subsets appears to be roughly the same for the stationary and non-stationary process 

case. The final reductions in packet counts for these cases are 89% over an 

unscheduled network and 42% and 24% respectively over random selection. 
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Figure  3.22: Transmissions and receptions of data packets for GreePo compared to 
random selection and an unscheduled network and (a) a stationary process (b) a non-

stationary process 
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additional approximation was to test for maximum distortion only at the locations of 

sensors not in the current subset, i.e., as opposed to a regular grid of locations. This 

was done without loss of generality, since real data were available only at the locations 

of the sensors anyway and any interpolation scheme would have to rely on them. With 

this setup, random selection devised two subsets consisting of 44 and 39 sensors and 

GreePo three subsets consisting of 40, 15 and 28 sensors. The maximum MSE 

performance of these subsets is shown in Figure 3.23.  

 

 

 

 

 

 

 

Figure  3.23: Spatially maximum MSE performance for real temperature data 
 

Overall, it can be concluded that GreePo achieves the desired distortion 

performance either with a larger number of subsets or with subsets of smaller size, 

compared to simpler selection schemes. It is therefore a strong choice when min-max 

interpolation objectives are involved. 
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3.10 Related Work 

We now provide a brief overview of related work. Such work can be roughly 

categorized into two major themes: work within the sensor networks community 

related to the specific problem of sensing topology management itself and work within 

the signal processing community related to the specific approaches proposed in this 

chapter to tackle it.  

 

3.10.1 Sensing Topology Management 

The idea of sensing topology management, i.e., keeping fewer sensors active at 

each time instant in order to accomplish a task, is directly related to the redundancy 

elimination aspect of our work. So far, efforts have mainly focused on event detection 

applications. The problem of whether or not each point in the observation field is 

sensed by at least k sensors has been examined in [Hua03]. Many authors have 

proposed resilient protocols that maintain k-coverage for any point on the field at all 

times, either in a centralized [Sli01] or distributed [Ai07], [Car04] manner. Set k-cover 

algorithms [Abr04], [Sli01] aim at obtaining subsets of sensors, such that each is 

individually capable of k-coverage. These have been the main inspiration for our own 

work. The problem of simultaneous coverage and wireless connectivity has been 

investigated in papers such as [Hua03], [Zha05]. Attention has also been given to error 

resilient coverage [You07]. All of these approaches define coverage on the basis of a 

circular sensing range. The main drawback is that sensing range has no direct physical 

interpretation in a sampling-interpolation setting, as opposed to an event detection 
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setting. In addition, it is not clear how the sensing range can be defined online in a 

newly deployed network at unfamiliar terrain.  

There exists work in this area that forfeits the sensing range assumption. 

Researchers have considered a Gaussian point source, which could represent time 

progression of an event, and the correlated random field created around the point. 

Some have used this type of formulation to define correlation regions of roughly 

equally informative sensors and partition the network based on a Voronoi tessellation, 

so that it can best estimate the value of the point source [Vur06]. In a similar vein, 

other authors have looked at the problem of detecting the source, i.e., whether an event 

exists or not. Treating detection as a statistical hypothesis problem, they have 

proposed optimal placements and scheduling of sensors [Sun05]. However, although 

cognizant of an underlying random process, this work still only targets an event driven 

type of application, which is different from constructing an entire spatial map. 

Similarly, the orthogonalization approach of [Qua07] addresses efficient estimation of 

a deterministic vector parameter with a sensor network, as opposed to prediction of a 

physical quantity over the entire field. 

Redundancy in sampling type applications has been considered, but from a point 

of view significantly different from ours. Koushanfar et al. [Kou06] aim at pairing 

sensors, such that the readings from one can be used to predict those of the other. 

However, they do not study the effect on the overall interpolation quality, but only 

consider predicting the value at a specific sensor location. 
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3.10.2 Geostatistics 

A relevant theme in statistics and especially geostatistics literature is sampling 

design: finding the best locations to sample, out of a finite set of possible locations 

[Kun03]. This is often coupled with Bayesian models for the observed data [Dig06]. 

An application that has been examined in the context of sensor networks is that of 

optimum sensor placement. Guestrin et al. have developed algorithms within a 

Gaussian process framework [Gue05], and have extended their approach to also take 

communication cost among proposed locations into account [Kra06]. The main idea is 

to gather data from an initial expert placement of sensors, estimate continuous mean 

and covariance functions for the Gaussian process, and then redeploy sensors at 

optimal locations based on the concept of mutual information. A crucial difference 

between this method and our topology management is that, in our case, sensor 

locations cannot be changed, i.e., they are restricted to initial ones. More recently, a 

method for selection of monitoring stations based on Bayesian entropy was proposed 

[Fue07]. The method does not rely on redeployment of stations, but rather estimates a 

parameterized covariance function and associated entropy using data from those 

stations already deployed. However, in our case multiple disjoint subsets of sensors 

need to be devised as opposed to a single one. An additional drawback of both 

aforementioned methods is that estimation of the continuous covariance function 

[Gue05] or of the posterior distribution of its parameters [Fue07] is a much more 

intricate procedure than simple manipulation of Hilbert space inner products as done 

here. Furthermore, the Bayesian method [Fue07] still relies on entropy to select 

stations, a criterion which can often lead to unbalanced selections [Gue05].  
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It is worth mentioning however, that the mathematical form of the Y1(⋅) and Y3(⋅) 

score functions for our RaVaG algorithm of Section 3.6, are identical to that for 

greedy maximization of entropy and mutual information respectively [Gue05], if the 

random variables in the primary subspace are assumed jointly Gaussian. The 

connection between the methods would be interesting to investigate further, but goes 

beyond the scope of this dissertation. The theme of network design for interpolation 

will be revisited in Chapter 4, with a more thorough account of related methodologies. 

 

3.10.3 Compressive Sensing 

A fairly recent development in the sensor networks regime is compressive 

sensing. Consider an n-dimensional data vector with elements in ℜ which is 

compressible in some basis of ℜn. This means that it can be recovered with small error 

from its projections, i.e., its Euclidean inner products, with k out of the n vectors 

comprising the basis. The basic premise of compressive sensing is that, in such a case, 

the data vector can also be recovered from its Euclidean inner products with k random 

n-dimensional vectors, i.e., not necessarily with the specific vectors forming the basis. 

With this technique, each sensor can effectively multiply its datum with a random 

value (in case of a scalar datum) or with a random vector (in case of vector data), with 

all such vectors being generated locally at each sensor with the same random seed. 

Sensors then only have to forward these projection values to the data center instead of 

their complete data. 

Redundancy in signals measured by the sensors has been considered in [Dua06], 

where all sensors report compressed data. However, authors thereof do not specifically 
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aim at providing distortion guarantees for spatial interpolation as we do here, but 

rather aim at reconstruction of individual sensor signals in time. As such, they focus 

more on temporal redundancy whereas we focus on spatial redundancy. Additionally, 

compressive sensing results in compressed data for all sensors in the network, i.e., all 

of them have to send data packets, albeit smaller. Our approaches explicitly leverage 

spatial redundancy and reduce the number of data packets produced by the network, as 

opposed to data packet sizes, to meet the demands of a specific application.  

The spatial dimension in sensor readings has been exploited in two other 

compressive sensing papers namely [Baj06], [Wan07]. In both of these, the collection 

of n real data values from all sensors at a single time instant forms the data vector. In 

the former paper, the goal is to communicate this data vector to the data center: using 

an uncoded coherent transmission scheme, sensors report their projection values 

during k channel uses, where k is the number of necessary compression coefficients. 

The total number of necessary channel uses is hence reduced from n to k. However, 

since the random projection vectors are not sparse, at each channel use all n sensors 

still have to transmit data, which represents a fundamental difference with our 

objective of reducing the total number of data packets. In the latter paper, the goal is to 

distribute random projection values throughout the network in such a way as to be able 

to reconstruct the data vector by querying any k sensors. The distributed protocol used, 

incurs a normalized (i.e. per sensor) packet overhead that is logarithmic in the number 

of sensors in the network, but is also incurred every time the values measured by the 

sensors change. The associated energy cost is combined with the cost of actually 

querying k sensors, leading to a potentially large energy overhead, if the measured 
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values change rapidly. Thus the major difference of this scheme with what we have 

proposed so far is that it primarily targets robust data storage rather than real time 

monitoring and interpolation. 

Compressive sensing overall provides a fruitful ground for interaction with our 

schemes after disjoint sensor subsets have been devised, because it can further 

compress the data of chosen sensors. However, exploring this is outside the scope of 

this dissertation.  

 

3.10.4 Sparse Methods 

A tremendous amount of effort has been devoted in efficiently obtaining sparse 

approximations of data sets. A topic relevant to our work is Sparse Principal 

Components Analysis [Asp04], [Mog06], [Zou06]: the eigen-components (i.e. 

dimensions) of a data matrix are sought as linear combinations of only a subset of all 

initial dimensions (i.e. columns). The decomposition is such that derived components 

capture maximum variance in the data. In our particular problem setup, Sparse 

Principal Components Analysis is not applicable, since it is based on the criterion of 

capturing variance. In other words, sensors that measure highly correlated values are 

all likely to be selected, as long as their values are characterized by high enough 

variance. Intuitively, our goal of devising equivalent monitoring subsets relies on the 

principle that highly correlated sensors should at least be in different subsets. 

Another related line of research is subset selection for linear regression in 

statistics. The goal of linear regression is to approximate a dependent or response 

random variable by a linear combination of explanatory random variables. Subset 
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selection aims at keeping only a subset of representative variables to perform 

approximation. Practical greedy methods such as forward selection and backward 

elimination are detailed in [Mil02]. Recent work has investigated approaches to the 

problem when multiple response variables are entailed [Sim06] as well as for cases 

where the statistical correlation among explanatory variables adheres to certain 

structure [Das08a]. Subset selection for linear regression is also not applicable to our 

particular problem since there are no fixed response variables. Essentially, all sensors 

are response variables. Our goal is to approximate the space spanned by all response 

variables with the space spanned by an appropriate subset of these.  

On the other hand, the signal processing community has focused on a more 

concrete systems problem: sparse approximation of a finite-dimensional real or 

complex vector with a dictionary of vectors, as described in the Section 3.4. The basic 

problem can be formulated as [Wip04]: 

 

 (3.27) 

where t ∈ ℜΚ is a vector of targets, Φ ∈ ℜK x M with M ≥ K is a dictionary of Μ 

columns or atoms that have been observed or determined by experimental design, w is 

a vector of unknown weights and ε is noise. After observing t and given Φ, the goal is 

to estimate w, taking into account the prior belief that t has been generated by a sparse 

subset of the atoms, i.e., that most of the elements in w are equal to zero. The general 

problem has been proven to be NP-hard, as mentioned in Section 3.4 [Dav97]. 

Relevant approaches include the forward greedy matching pursuit and the well known 

Orthogonal Matching Pursuit [Dav97], convex minimization of the 1l  norm of the 

ε+⋅Φ= wt
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vector of coefficients w (sometimes called Basis Pursuit) [Don03], iterative 

minimization of general pl  norms of w, with p ≤ 1 (known as the FOCUSS 

algorithms) [Rao03], as well as backward elimination [Cot02]. An effective approach 

based on the use of data-adaptive priors for the weights, appears in [Wip04], and is 

known as Sparse Bayesian Learning.  

The case more relevant to our setup is that of multiple response vectors: 

 

 (3.28) 

where T is now an aggregate of L target columns and W is the aggregate of 

corresponding weights, with the added constraint that W has a minimal number of 

non-zero rows. This essentially means that the responses T are all supposed to have 

been generated by the same dictionary atoms, perhaps with different coefficients. The 

single vector methods have been extended to address this problem known as 

simultaneous sparse approximation: a few representative examples are Simultaneous 

Orthogonal Matching Pursuit (SOMP) [Tro06], minimization of diversity measures for 

the matrix of weights W [Cot05], as well as the extension of Sparse Bayesian Learning 

to the multiple response case [Wip07].  

Simultaneous sparse approximation algorithms thus devise representations for a 

deterministic signal, usually a Euclidean matrix with real or complex elements, based 

on an external dictionary. In our problem setup, there is no straightforward notion of a 

deterministic matrix to approximate, since elements of the involved Hilbert space are 

abstract quantities (random variables). Applicability of such algorithms can be sought 

if one tries to sparsely approximate the data matrix B0, i.e., the matrix of 

ε+⋅Φ= WT
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measurements from all sensors gathered during the learning phase, also using B0 as the 

dictionary. This inherently suffers from a generalization problem: existing methods 

would try to sparsely approximate the data matrix B0 itself, instead of trying to 

minimize the error induced by selected subsets on future data. By contrast, our own 

RaVaG algorithm uses the data matrix B0 only for estimation of inner products in the 

Hilbert space of second order random variables and has better generalization 

performance as shown in Section 3.9. 

A major additional problem is that existing sparse approximation methods 

eventually produce one as opposed to many approximating subsets for the signal. 

Recall that the data matrix B0 of eq. (3.8) effectively constitutes both the dictionary 

and the target vectors. The target vectors are hence not to be approximated by an 

external dictionary, but by ‘subsets of themselves’. An equivalent interpretation is that 

the dictionary is to be approximated with itself. In this case, it is not clear how to use 

algorithms that minimize the pl  norm of the weight vector, after the first subset has 

been constructed: for the usual case Θ = Κ = Ν for example, some columns of the 

dictionary will have to be excluded from the selection process, rendering Κ > Μ in eq. 

(3.28), and the problem automatically ceases to adhere to the definition of sparse 

approximation. Simple greedy methods such as Orthogonal Matching Pursuit on the 

other hand, are more amenable to modification so as to devise multiple subsets. This 

modification has led to the MaG algorithm presented in Section 3.7.  
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3.10.5 Min-Max Objectives 

Min-max problems have not yet received as much attention in the literature as 

problems involving averages. A possible reason for this is that average objectives (e.g. 

eq. (3.22)), unlike maximum ones (e.g eq. (3.23)), are convex and, as such, susceptible 

to a rich pool of convex optimization methods.  

A state-of-the-art geostatistical min-max design approach appears in [Wie05]. 

However, the goal thereof is to minimize maximum distortion not over spatial 

locations as we do here, but over the worst case misspecification of the covariance 

model. Authors in [Das08b] examine worst case prediction of the value of aggregate 

functions against hard constraints as quantified by a distance metric. This is different 

from our specific definition of distortion in eq. (3.23) and our goal to optimize over 

spatial locations. In [Kra07a] authors select observation locations against min-max 

objectives. Spatial locations are taken into account, albeit through a collection of 

deterministic models (specifically, a collection of submodular functions) one for each 

candidate location. These may be difficult to estimate in practice or may be altogether 

unsuitable in certain interpolation scenarios (e.g. submodularity may not always hold). 

On the other hand, we have presented in Section 3.8 a method that directly takes into 

account the stochastic interdependencies of sensor values in a way specifically geared 

towards interpolation. 

 

3.11 Summary 

In this chapter we have presented strategies towards efficient operation of an a-

priori deployed wireless sensor network for the task of spatial interpolation. The 
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problem is organizational in nature: the sensor network is initially overdeployed, i.e., 

some sensors are redundant and disjoint subsets must be devised such that each of 

them is individually capable of achieving the desired interpolation accuracy. Sensing 

functionality is rotated among these subsets, forming the notion of sensing topology 

management. Our main motivation has been to reduce the amount of raw data packets 

produced by the network at any given time.  

We have proposed a number of schemes which addressed two different 

interpolation objectives, namely spatially averaged MSE and spatially maximum 

MSE. Our approaches are generic enough to effectively handle spatial non-

stationarities in the observed physical processes. Experiments on real as well as 

synthetic data have shown substantial gains in the number of devised subsets that can 

support a user specified target distortion compared to simpler sensor selection 

techniques. Specifically regarding spatially averaged distortion, the RaVaG algorithm 

achieved the best overall performance. This translates to a significant reduction in the 

number of data producing sensors at any point in time. Associated energy 

consumption has indeed been shown to be significantly improved compared to that of 

an unscheduled network. By using subsets in sequential activation, the network can 

therefore remain operational for a longer duration of time. 
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CHAPTER 4 

 

4. SPATIAL INTERPOLATION: THE PROACTIVE CASE 

 

4.1 Background 

In this chapter, we will examine approaches to the proactive management 

scenario of Section 1.6. Unlike the reactive methodology of the previous chapter, the 

scenarios of interest here are ones where there is no network already deployed. The 

fundamental difference is that, instead of managing redundant sensors, here we are 

required to guide the deployment from scratch, i.e., to design how exactly sensors are 

going to be deployed to support the specific purpose of spatial interpolation. Whereas 

in the reactive management scenario the goal was to minimize the amount of data 

packets injected in the network, the important goal here is to minimize the total 

number of sensors deployed to begin with, because physically deploying them induces 

material as well as programming cost. Therefore the problem can be succinctly 

expressed as minimizing how many sensors to place and decide where to place them, 

so as to achieve an accurate enough interpolation over time.  

In developing solutions for this problem, our main assumption is that we possess 

no information on the statistics of the phenomenon to be monitored, prior to 

deployment. This is the case in many real-life situations and was implied when 

reactively managing the network in Chapter 3 as well. However, the crucial difference 

in the present scenario is that there is no existing network to draw data values from 
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and promptly infer the necessary covariance information. Instead, we have to estimate 

the statistics by specifically deploying sensors for this purpose. Placements should be 

done in an intelligent manner, so as to have only a minimum number of sensors 

deployed in the end.  

To achieve this, we propose an incremental deployment framework, consisting of 

two steps:  

1. The first step is an exploration phase. The goal of this phase is to sequentially 

deploy sensors at certain locations so as to learn relevant statistics of the 

physical quantity of interest.  

2. The second step is a design phase. The goal of this phase is to utilize statistics 

learned during the exploration phase and sequentially deploy sensors to 

monitor the physical phenomenon. Sensing at the deployment locations ought 

to collectively satisfy the quality criteria of the spatial interpolation 

application. 

There are indeed practical cases where such incremental deployments are plausible as 

well as possible to implement. Consider the example of a wireless sensor network 

(WSN) monitoring temperature or air flow within a manufacturing plant. Cases such 

as this one arise frequently in contemporary indoor scenarios where the very 

architecture or arrangement of objects provides a natural framework for the 

placements of sensors. An additional factor to take into account is that the size of such 

networks, at least with current technology, is not large. Straightforward approaches 

such as placing ‘a sensor in every room’ are both common and realizable. In the 
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following sections we will further elaborate on our methodology and show how it 

leads to deployments featuring a minimum number of sensors. 

 

4.2 Objectives 

The objective of our methodology is ultimately to choose physical locations such 

that, if sensors are placed at them, the requirements of the sampling-interpolation 

application are met. It is often appropriate to consider a discrete set of possible 

locations to place sensors at, instead of the continuous 2-D physical space. In an 

indoor temperature monitoring scenario for example, a continuum of possible 

locations would not be allowed on account of walls or other obstructions. 

The setup for the problem follows along the lines of the generic setup for 

interpolation described in detail in Section 2.2, with one important difference: Here 

there are N possible locations to deploy sensors at, instead of N sensors already 

deployed. Locations {X0
p}, p = 1…N are distributed over the observation field F and 

their number N is possibly very large. The two distinct phases of the methodology can 

then be formalized as follows: 

• Exploration phase: The goal of this phase is to select a subset Xe of 

exploratory locations, where Xe ⊂ X0. 

• Design phase: The goal of this phase is to select a subset Xm of monitoring 

locations, where Xm ⊂ X0.  

A network design or simply design is the subset of monitoring locations Xm (as 

opposed to the exploratory subset Xe). A network design will in general be represented 
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by the Boolean vector m of length N, where each element is 1 for a position bearing a 

sensor and 0 otherwise. The exact positions comprising the design will be denoted by 

the tuple Xm
p = (xp, yp), p=1…|m|, where |⋅| is the size of a set. Essentially the 

monitoring subset m is a subset mk in the notation introduced for the generic 

interpolation case at Chapter 2. In what follows we will rely on this notational 

correspondence, obtained if the subscript m is substituted by the subscript k.  

A ‘good’ network design should be based on how sensor data are ultimately used 

by the user application. Consider the situation where sensors have actually been 

deployed at the monitoring locations Xm. Then an interpolator that is linear on the 

measured data will have the form (see eq. (2.1)) 

  

 (4.1) 

The design problem for spatial interpolation is thus to find a minimum monitoring 

subset Xm of all possible locations Χ0, so that if sensors are deployed at these 

locations, the interpolation (4.1) meets a specific distortion criterion. We focus on the 

following two distortion criteria (see eq. (3.22)-(3.23)): 

 (4.2) 

 

 (4.3) 

The reasoning behind this choice of criteria as well their interpretation have been 

extensively discussed in Sections 3.2, 3.3 and 3.8. 

The minimum Mean Squared Error (MSE) inflicted by the best linear 

interpolator of the form (4.1) is given by (see eq. (2.12)): 
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 (4.4) 

where Gm and cm(x) have been effectively defined in eq. (2.11). The important 

conclusion that can be drawn from the form of these equations is that in order to apply 

algebraic operations, such as orthogonal projection, to our design setting, it is 

sufficient to know the spatial covariance function C(⋅, ⋅). 

 

4.3 Exploration Phase 

4.3.1 Fundamentals 

As mentioned previously, the stepping stone to utilizing vector operations in our 

Hilbert space framework is knowledge of the spatial covariance function C(⋅, ⋅). In 

most real life situations the covariance function will be not known a-priori. Our 

reactive management scenario dealt with this hurdle by initially overdeploying and 

then using data from all available sensors to compute necessary covariance values. 

Here nevertheless, there is no pre-existing network to rely on; thus we must first 

utilize an exploration phase to obtain an estimate of the covariance function and 

subsequently use it to design. As a sidenote, in practical cases where the covariance 

function is reliably known before deployment, e.g. from legacy sensory mechanisms, 

the exploration phase can be skipped altogether. 

In the most general case, the spatial covariance is a ℜ4→ ℜ function, i.e., it is 

mapping every pair of positions in 2-D space to a real value. An important special case 

however, arises when the physical phenomenon can be regarded as isotropic. The 

)()(),(]})),(),(ˆ[({min),( 12

ˆ
xcxcxxxxxm mmmm ⋅⋅−=−= −GCtStSEMMSE T

ii
S



 

 

116 

isotropic model has been widely used to describe geostatistical and atmospheric data 

[Ber01], [Ste99]. For this type of physical phenomenon, the spatial covariance 

between any two locations depends only on their distance, i.e., C(x1, x2) = C( 21 xx − ) 

and ⋅  denotes Euclidean distance. In the present section we focus on this special case. 

It should be stressed that the general mathematical tools used here are applicable to a 

higher number of dimensions. The details thereon can be considered as extensions to 

our present work. 

 

 

 

 

 

 

 

Figure  4.1: Ground truth covariance curve (dashed line) and estimated covariance 
points from exploration (dots). 

 

The isotropic covariance function is essentially a curve C(d) that describes the 

behavior of spatial correlation with distance d. The objective of our exploration 

procedure is to obtain covariance values at known distances and then deduce a reliable 

estimate of the ground truth curve C(⋅) by interpolating these values. An example is 

shown in Figure 4.1. Estimating C(⋅) essentially constitutes a new interpolation 

problem albeit at a higher conceptual level than interpolating measurements: we are 

d(m) 
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now trying to devise a reliable model to describe the correlation between 

measurements. 

In the remainder of this section, we elaborate on how data points are chosen 

and interpolated to lead to the estimate of C(d).  Exploration starts with two sensors 

deployed at random in the observation field, at locations Xe
1 and Xe

2. These sensors 

simultaneously sample the physical phenomenon for a time period of Θ time instants. 

The time series of values from each sensor are stacked together in a Θx2 matrix B2. 

We call this the exploration data matrix based on two sensors:  

  

 (4.5) 

 

The data matrix can be thought of as a finite dimensional approximation to the infinite 

dimensional random variables corresponding to the locations of the sensors. Similarly, 

the exploration covariance matrix Ĝ2 is an approximation to the Grammian matrix of 

actual inner products between these two sensors: 

 

 (4.6) 

where 2µ̂  is a matrix with all rows equal to the row vector of means of the columns of 

B2, i.e., the empirical means of the random variables corresponding to the sensors. 

After computing the exploration covariance matrix, and since the locations bearing 

sensors are known, we essentially possess data values y for two different distances d, 

i.e., d = 0 and d = d12, where d12 is the distance between the two locations. Note that 

one of these distances, d = 0, typically bears as many different values as the number of 
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deployed sensors (in this case two), each corresponding to variance at the respective 

location. 

To explore, we sequentially add sensors to this initial set of two. There are two 

possibilities for deployment of additional sensors: either we can have control over the 

deployment locations or not. Relevant scenarios mentioned in Section 4.1 mainly 

involve settings in limited areas (e.g. indoors), where possessing such control is 

actually possible. The very sequential nature of our methodology also implies that 

some control over actual deployments would be beneficial from a logistics point of 

view (i.e. physically going into the observation field and throwing out a sensor at 

random every time seems wasteful). Hence we will first focus on the case where we 

can indeed choose exactly where to add a new sensor and defer the uncontrollable case 

for later on.  

After each addition, all sensors simultaneously sample the physical phenomenon 

for Θ time instants. With k sensors in the exploration subset, the exploration data 

matrix Bk has size Θxk and provides n = k⋅(k - 1) / 2 + k data values y at k⋅(k - 1) / 2 + 

1 different distances. We will denote the pairwise Euclidean distances between any 

two sensors in the exploration subset as dlq:  

 

 (4.6) 

In what follows, all available data values (including sensor variances) will be denoted 

by {yj}j=1…n. The problem posed by exploration is then how to select as few locations 

as possible to deploy sensors at, so as to obtain a good enough estimate of the 

covariance curve C(d) based on the values {yj}. This is essentially a new interpolation 
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problem, with the important characteristic that statistics of the data values are not 

available. Therefore, straightforward methods, such as statistical least squares, cannot 

be applied. 

 

4.3.2 Greedy Kernel Regression 

Our way to model the actual covariance curve with respect to the data values 

{yj} is kernel regression [Bow97]. The key element of kernel regression is to describe 

the data points y by a curve representing the ground truth, contaminated by a white 

noise term with mean 0 and variance σ2:  

 

 (4.7) 

Obtaining an estimate Ĉ(d) of the ground truth curve, is the main objective of kernel 

regression. For reasons that will be elaborated shortly, our specific choice in this 

family of estimators is local linear kernel regression. Extensive details thereof can be 

found in [Bow97]. Here, we only describe those aspects essential to our scheme.  

Local linear regression produces a curve which, for each argument d, has the 

value of a straight line fitting especially those data y whose support is close to d. This 

proximity is quantified by a positive-definite kernel w(⋅; h), where h is a bandwidth 

parameter. In what follows we will use as kernel the Gaussian density function with 

mean 0 and standard deviation h. Specifically, with n available data values, the 

following least squares problem must be solved for each d:  

 

 (4.8) 
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This ultimately yields an estimate that is linear in the data: 

 

 (4.9) 

The reliability of this estimate for a set of points {yj} at distances {dj} can be 

expressed through the MSE with respect to the probability distribution of the noise: 

 

 (4.10) 

The first term in the above sum is the squared bias while the second is the variance of 

the estimate. Equation (4.10) cannot be computed for an arbitrary choice of dj without 

knowledge of the actual covariance curve C(d) [Bow97], [Har04]. Only asymptotic 

expressions have been derived in related literature. A reliability measure that is 

independent of the particular choice of {dj}, is the Mean Integrated Square Error 

(MISE) [Bow97]: 

 

 (4.11) 

where f(x) denotes the density of arguments {dj}. This will be used as a stopping 

criterion in our exploration, in a manner that will soon be elaborated. 

The exploration problem now becomes that of selecting as few locations as 

possible out of N to make the estimate Ĉ(d) as reliable as possible, according to eq. 

(4.11). This is in general a hard combinatorial problem: optimal solution requires 

enumeration of all possible subsets and evaluation of the reliability of the estimate 

resulting from each subset. The number of possible subsets is exponential in N, which 

can be in the order of thousands.  
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Here we propose a greedy exploration scheme instead. Our scheme relies on two 

important properties of local linear regression. Firstly, asymptotically, the bias term in 

eq. (4.10) does not depend on the arguments {dj}, but only on the bandwidth h. This 

means that, asymptotically, the flexibility of the kernel regression estimate (which 

controls the bias) can only be enhanced through the bandwidth parameter and is 

insensitive to the addition of more data points. This is the design adaptive property of 

local linear regression [Bow97]. However, for small constant h, addition of more data 

points does affect the variance, i.e., the reliability of the estimate. Secondly that, 

asymptotically, the variance of local linear regression is the same as the variance of 

local constant regression, i.e., the regression resulting from the optimization (4.8) by 

setting b = 0. Interestingly, in the local constant case, this variance does not depend on 

the measured data directly. Instead, it depends on the arguments {dj} and the 

bandwidth parameter h and can be analytically expressed in the following form: 

 

 

 

 (4.12) 

The subscript k is indicative of the fact that the variance Vk(d) is computed with k 

exploratory sensors (recall from the previous subsection that n = k⋅(k - 1) / 2 + k). 

Note also that in the above expression we have allowed the bandwidth parameter to 

change with each new sensor addition.  

To minimize the variance one would equivalently have to maximize the 

following fitness function Qk(d): 
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 (4.13) 

Intuitively, maximizing this fitness function places more kernels, i.e., more data points 

close to those distances d that have the largest variance. An important observation is 

that the number of data points n is quadratic in the number of sensing locations k. 

Hence, their number grows fast and, although the above formulation depends on 

asymptotics, eq. (4.13) still gives pragmatic results even for a small number of sensing 

locations. This will be shown in Section 4.6. 

Our entire exploration scheme GreeX, is shown in Figure 4.2. It first finds the d 

for which Qk(d) is minimum (see eq. (4.13)) within the range ]2}{max,2[ hdh j
j

⋅−⋅  

(to avoid edge effects) and then selects as next monitoring location the one that 

maximally increases this Qk(d). Optimization is essentially performed over the 

variance part of the MSE of eq. (4.10), which depends on the actual data arguments 

{dj}. Exploration stops when addition of a new location does not significantly change 

the MISE (Mean Integrated Square Error) of eq. (4.11). The MISE is used to indicate 

convergence because it asymptotically does not depend on {dj}, and hence the same 

convergence threshold can be used to characterize and compare various exploration 

strategies. MISE can be approximately computed through the cross-validation (or 

‘leave-one-out’) formula [Bow97]: 
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where Ĉ-j(dj) is the estimate (4.9) computed at dj when the data point yj has been 

excluded. By virtue of the Law of Large Numbers, this expression is guaranteed to 

converge to the true MISE, within a constant [Bow97].  

An approximately optimal bandwidth parameter h can also be computed from 

the cross-validation formula every time a new sensing location is added. This is done 

in Line 16 by trying several different values of h and selecting the one that minimizes 

eq. (4.14). It can be shown that the bandwidth thus found is asymptotically decreasing 

with the number of available data points and therefore allows for a small bias in the 

estimate [Bow97]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.2: Greedy Exploration (GreeX) algorithm 

 

1  Input: X0, δ  
2 Output: subset of locations Xe 

3   Initialization: 
4     Select two locations from X0 at random  
5     Compute Ĉ(d) from eq. (10) 
6     h2 ← (CV(h))

)){d, (h jmax0
minarg

∈
 

7     Compute Q2(d) from eq. (15) 
8 begin 
9  k ← 2 
10  repeat 

11        dmin  ← ))((minarg
]2}{max,2[

dQk
hdhd kk

k
k ⋅−⋅∈

 

12   X*←    ))((maxarg min1
0

dQ k +
X

 

13   Xe ← Xe ∪ X*
 

14   X0 ← X0 \ X
*
 

15   k ← k + 1 
16   hk ← (CV(h))

)){d, (h jmax0
minarg

∈

 

17  until (|CV(hk) - CV(hk-1)| ≤ δ) 

18 end 
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As a final remark, if no control over sensor deployment locations can be 

exercised, we can resort to a completely random exploration scheme: 

 

Random exploration: Select k locations at random to comprise the exploration subset 

Xe. Keep increasing k until the cross-validation criterion (Line 17 of Figure 4.2) is 

satisfied. 

 

In section 4.5 we will demonstrate results both for random exploration and GreeX. 

 

4.4 Design Phase 

When the covariance function C(d) has been estimated, the inner product of the 

space of sensors may also be computed. Hence, the quality of different locations with 

respect to interpolation can be readily quantified through the orthogonal projection 

error of eq. (4.4). The general design problem, i.e., selecting a subset Xm of locations 

to deploy sensors at, is a hard combinatorial problem, even with a-priori known 

statistics [Dig06], [Gue05]. Optimal solution requires enumeration of all possible 

sensor configurations and validation of each of them against the design objectives. 

This specific problem has been extensively studied in the context of geostatistics and 

has been proved to be hard for a variety of related objectives, such as kriging variance 

[Zhu06], [Zim06], entropy [Ko95] and mutual information [Gue05]. However, a well 

established optimal design theory does not yet exist [Zim06]. Good approximation 

approaches should be pursued instead.  
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In the following subsections, we briefly describe two such tractable design 

methods for spatially averaged and min-max monitoring respectively. The approaches 

are based on tools developed in Chapter 3 for the reactive management scenario: 

having already deployed a large sensor network and selecting subsets of sensors 

adequate for interpolation.  

A final point of interest is that proposed methods assume the availability of a 

discrete set of candidate locations (the set X0 of Section 4.2) at which sensors can be 

exactly deployed. This is the most relevant assumption for scenarios of interest, as has 

been discussed previously. In the case where sensor placement cannot be controlled, 

the design problem is no longer deterministic but statistical: the only insight a 

practitioner can hope to obtain from a design strategy is estimates for the parameters 

governing the probability distribution of the envisioned deployment. If uniform 

Poisson sampling is to be used for example, the goal would be to estimate the intensity 

of the Poisson distribution necessary to provide accurate enough interpolations. A way 

to tackle this situation would be empirically, through simulation. We would have to 

simulate actual deployments for many different values of the involved parameters and 

compute either spatially averaged distortion (eq. (4.2)) or spatially maximum 

distortion (eq. (4.3)) by virtue of eq. (4.4). Then we would select appropriate values 

for these parameters so as to meet the target distortion. The prominent issue in this 

case is how to accurately simulate different types of deployments, i.e., different types 

of point processes. This is a well studied subject [Mol03] and hence will not be further 

examined it here. Instead we focus on the case of having to make deterministic choices 

about where to place sensors. 
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4.4.1.1 Spatially Averaged Distortion 

In this case, we seek locations such that, if sensors are placed at them, the 

averaged distortion over space adheres to a bound D (see eq. (4.2)). Our method 

sequentially selects sensing locations until the distortion criterion of eq. (4.2) by virtue 

of eq. (4.4) is met. Consider, in general, a situation where we are in the process of 

creating the monitoring design. At this point, the initial sensor locations Χ0 can be 

considered as being partitioned in two subsets: 1) the subset HA of locations already 

selected by the design; 2) the subset HR of locations not yet selected by the design. 

Our algorithm considers all candidate locations η from those not yet belonging to the 

design. For each of them, it computes the MMSE of eq. (4.4) as if a sensor on location 

η was to be approximated by sensors placed at all locations HA or HR (always 

excluding the sensor at η): 

 

  

 (4.15) 

Eventually, the location η is added to the subset such that: 

 

 (4.16) 

The justification for this choice of cost function is to expand the expressive capability 

of locations currently selected (large EA(η)) while also describing well locations that 

remain (small ER(η)). The rationale is essentially the same as that of the RaVaG-Y2 

algorithm of Section 3.6. 
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4.4.1.2 Spatially Maximum Distortion 

In this case, we seek locations such that, if sensors are placed at them, the 

maximum distortion over space adheres to a bound D (see eq. (4.3)). Our method 

again sequentially selects sensing locations until the distortion criterion of eq. (4.3) by 

virtue of eq. (4.4) is met. At each iteration, the location η is added to the subset such 

that: 

 

 

 (4.17) 

where A is the set of test locations, HA and HR are defined as in the previous 

subsection, ĉ(⋅) and Ĝ(⋅) are estimates of quantities first defined in eq. (4.4), 
2

⋅  is the 

Euclidean norm and λmax(⋅) denotes the largest eigenvalue of the argument. The cost 

function selects a location such that a lower bound on the variance reduction achieved 

by sensors at selected locations is maximized. The rationale in this case is the same as 

that behind the GreePo algorithm of Section 3.8.  

 

4.5 Evaluation 

We tested our design methodology for the proactive management scenario with a 

range of synthetic data. The simulated evaluation setting was exactly the same as that 

used for the reactive management scenario in Section 3.9: zero mean uniform white 

noise was fed into a symmetric 2-D low pass filter. White Gaussian noise of mean 

zero was added to sensor samples in all cases, resulting in a Signal to Noise Ratio 
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(SNR) equal to 10. The spatial support for the realizations was a field of square shape 

and size 104 m2. We considered N = 1500 candidate locations, spread uniformly over 

an observation field. The only difference with the setup of Section 3.9 was that here, 

the observation field excluded a small strip of width 10 m around the edges of the 

100x100 m2 spatial support of the realizations, in order to avoid edge effects on 

measured covariances.  

 

4.5.1 Exploration 
 

The first step was to estimate the covariance curve C(d) by sequentially placing 

exploratory sensors in the observation field. To accomplish this, we used our GreeX 

exploration algorithm of Figure 4.2, setting the convergence parameter δ to 10-6. This 

roughly corresponded to 0.1% of the scale of the initial cross-validation error of eq. 

(4.14).  

 

 

 

 

 

 

 

Figure  4.3: (a)GreeX exploration covariance curve (b)Random exploration covariance 
curve 
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Figure 4.3 shows the estimated covariance curves produced by GreeX and 

random exploration. It is well known that for isotropic (and generally for weakly 

stationary) random processes, the part of the covariance function closer to the origin 

has the most significant impact on interpolation [Ste99]. Intuitively, a good spatial 

interpolant at point x should depend mainly on observations near x. It can be seen that 

both models capture the important region of the covariance curve which starts from 

distance 0 m and extends up to roughly 11 m. 

However, in doing so, random exploration appoints 46 locations in total to place 

sensors at, while our GreeX exploration appoints 34 locations. GreeX thus achieves a 

26% improvement in the number of exploratory sensors. To further illustrate the 

behavior of these exploration schemes, Figure 4.4 shows the values of the fitness 

function of eq. (4.13) after the addition of the final sensor into the exploratory subset.  

 

 

 

 

 

 

 

Figure  4.4: Fitness function 
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function level at its most pronounced dips. This eventually results to data points being 

spread uniformly across the whole range of d. On the other hand, random exploration 

shows a high concentration of data points at distances around 42 m, which is a 

characteristic of the particular deployment and observation field used. Intuitively, 

random exploration would have to select many more locations in order to provide data 

values at any single argument distance far away from the characteristic one. 

 

4.5.2 Design 

The second step was deciding on actual locations to deploy sensors at, so as to 

perform interpolation. Specifically, we applied our greedy schemes of eq. (4.16) and 

(4.17) to obtain designs for criteria (4.2) and (4.3) respectively.  Distortion was 

checked in the ensemble mean sense against N process realizations generated with the 

same procedure as the training data. In both the spatially averaged and the maximum 

case, the observation field F was discretized with a test grid of 80x80 locations and 

distortion was checked on this grid. To mitigate edge effects, locations within a small 

distance (~0.1m) from the edge of the observation field were disregarded for distortion 

calculation. The distortion target D was set to 0.5, which roughly corresponds to half 

the variance of the simulated process realizations at any point in space. 

When applying our design schemes, we used two approximations. These were 

strictly targeted at reducing the computational burden of the design. Firstly, as per eq. 

(4.2) and (4.3), the algorithms should terminate when the estimated spatially averaged 

or maximum distortion respectively fall below the threshold D. To estimate distortion 

for each point on the test grid, we truncated the estimated covariance curves of Figure 
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4.3 to their respective practical ranges. According to geostatistical convention, the 

practical range is the distance where the value of covariance drops below 5% of its 

value at the origin [Dig06] (roughly 9 m in Figure 4.3). Intuitively, this means that 

sensors where considered to be correlated with locations within their practical range in 

a way quantified by the curves in Figure 4.3 and uncorrelated with all other locations. 

Secondly, for the maximum distortion heuristic of eq. (4.17) the minimum norm in the 

numerator was taken over the subset of possible design locations not yet selected in 

the design, instead of the actual test grid of 80x80 locations. This does not 

significantly impact the actual distortion performance of the design, because the initial 

set of possible locations X0 densely covered the observation field. In general, any such 

dense set of points would service the algorithm well.  

Here, we are provided with a fixed set X0 of possible locations to deploy at. This 

is more realistic from a practical point of view and it generally precludes a regular grid 

design for example. We thus compared our design schemes with a completely random 

design: 

 

 Random design: Select k sensors at random to comprise the monitoring subset Xm. 

Keep increasing k until the spatially averaged distortion criterion (eq. (4.2)) or the 

maximum distortion criterion (eq. (4.3)) is satisfied. 

 

The random design was used in conjunction with the random exploratory curve of 

Figure 4.3(b) while both the greedy schemes of eq. (4.16) and (4.17) were used in 

conjunction with the GreeX curve of Figure 4.3(a).  
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Figure 4.5(a) shows the sizes of monitoring subsets obtained with random design 

and our schemes, for both distortion criteria (4.2) and (4.3). Figure 4.5(b) further 

shows the distortion performance achieved, if sensors are actually deployed at these 

locations. It can be seen that all schemes meet the distortion target D for the 

corresponding distortion criteria. In some cases, achieved distortion is in fact 

significantly smaller than the target. In these cases, the exploration curves of Figure 

4.3, truncated at their practical ranges, are leading to overestimation of the actual 

distortion. 

 

 

 

 

 

 

 

 

Figure  4.5: (a) Obtained designs, with vertical bars within the same scheme 
corresponding to different distortion objectives (b) Distortion performance 
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design and 300 monitoring locations for greedy design based on eq. (4.17). Therefore, 

the schemes we propose here are overall a good choice for sensor network design 

driven by spatial interpolation applications, in the sense that they require a smaller 

total number of sensors. 

 

4.6 Related Work 

Extensive research on the design of monitoring networks has been carried out in 

the field of geostatistics [Dig06], [Ste99]. The basic difference of the geostatistical 

setting as compared to the sensor network one is that, in the former, repeated 

measurements at observation locations are generally not available, i.e., the time 

dimension cannot be exploited. Geostatistical methodologies only utilize a single 

measurement at each observation location to infer underlying statistical structure. 

Consequently, and in order to make mathematically sound inferences, they have to 

rely on assumptions about this structure. The prevalent choice is to assume that the 

physical phenomenon at any given set of monitoring sites follows a jointly Gaussian 

distribution with parameterized mean and covariance functions.  

Based on this view, some authors describe locally optimal network designs. 

These are obtained by fixing the values of the mean and covariance parameters and 

finding monitoring locations that optimize an estimate of the MSE of interpolation. 

The parameter values can then be varied over a range and the best overall design, 

according to some criterion, kept [Zhu06], [Zim06]. Fully Bayesian methodologies 

have also been proposed which assume that a prior distribution on the model 

parameters is available. The prior can then be augmented through the use of data from 
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pre-existing designs. Working examples of such methods again use Gaussian 

processes [Dig06]. There is also a significant amount of work on designing a network 

especially to estimate values or priors for the model parameters [Bog99], [Zhu05], 

[Zim06]. Our approach on the other hand, does not assume a particular distribution on 

the data and performs exploration of the physical phenomenon as opposed to 

exploration of a parameter space. Additionally, this does not presume availability of 

past datasets, but rather is done in an online fashion: measurements gathered from 

sensors at already chosen exploratory locations affect choice of the next exploratory 

location. 

In a sensor networks context, work related to ours appears in [Gue05]. Authors 

again utilize jointly Gaussian statistics and sequentially choose monitoring locations 

so as to maximize mutual information between already chosen and not yet chosen 

locations. However, their methodology assumes that the mean and covariance of the 

underlying Gaussian process model are known accurately enough beforehand, by 

means of a prior expert design. The same authors also present observation selection 

approaches for gradually learning a Gaussian process model [Kra07b]. Augmentation 

of their model is performed by maximizing the likelihood of observed data, based on a 

prior distribution over a predetermined set of parameter values. Initial parameter 

values and the exact distribution on them are themselves based on prior expert 

knowledge, which may not always be available. By contrast, in our work, the model 

relinquishes the need for data-dependent parameters in a great degree. Furthermore, 

unlike [Kra07b] our approach is also specifically applicable to min-max interpolation 

objectives.  
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Apart from the aforementioned greedy maximization of mutual information 

[Gue05], the design problem with a known covariance function has been addressed in 

geostatistical literature with greedy maximization of the kriging variance [Zim06] or 

with branch and bound maximization of the entropy [Ko05]. The last method, 

although exact, is practical only for a small number of monitoring locations while it 

additionally targets entropy. The shortcomings of using entropy as a guide to design 

are described in [Gue05]. The specific greedy heuristics we propose for this problem 

in Section 4.4 are distinct from those appearing in the literature.  

Simulation has been routinely used in the context of Bayesian geostatistical 

design. Authors have simulated datasets according to Gaussian process models to 

statistically characterize interpolation error in the face of unknown model parameters 

[Ste99], [Zim06]. Others have proposed design approaches based solely on simulation 

[Dig06]. In Section 4.5 we have discussed a complimentary setup: regarding the 

second order statistics of the physical phenomenon as known, perform simulation on 

the deployment, i.e., the number and position of monitoring locations, as opposed to 

the interpolation model itself.  

 

4.7 Summary 

Our purpose in this chapter has been to address the problem of proactively 

managing the deployment of a wireless sensor network to support spatial interpolation. 

This is inherently a design problem and is of interest especially when the statistical 

structure of the underlying physical phenomenon is not known a-priori. We have 

presented a two-phase approach for design, applicable when the underlying covariance 
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function can be adequately modeled as an isotropic curve. First, through a sequential 

exploration scheme, which we called GreeX, this curve can be efficiently learned by 

online placement of sensors. Knowledge of the estimated statistics then allowed us to 

design the network to meet specific interpolation objectives. Simulation results 

indicate that our design methodology can provide significant gains in terms of 

required sensors when compared to simpler schemes. 
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CHAPTER 5 

 

5. PERSPECTIVES AND CONCLUSION 

 

5.1 Background 

In previous chapters we essentially studied and proposed solutions for a series of 

problems arising within the specific context of sampling and interpolation with a 

wireless sensor network (WSN). The network has in all cases been viewed as a 

distributed sampling system, measuring the values of a physical quantity in space and 

time. The goal was to obtain a continuous spatial estimate for the quantity of interest 

over time, i.e., even in areas where no sensors exist. The model employed for analysis 

was to regard the values measured at individual sensors as samples from realizations 

of a spatiotemporal random process, i.e., as random variables. We have seen that 

under the assumption of a spatial mean that is constant in time and ergodicity in time, 

the Mean Squared Error (MSE) based accuracy of such an estimate depends solely on 

the second order covariance structure of the random process. 

Our goal in this chapter will be mainly to discuss possible extensions to the 

methods proposed previously and outline some additional ‘uncharted’ terrain 

regarding sampling-interpolation scenarios. 
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5.2 Sensing Model Generalizations 

Often in real life scenarios, no knowledge on the second order covariance 

structure of the underlying phenomenon is available to us a-priori. In the reactive 

management setup of Chapter 3 this absence of statistical information was 

compensated by overdeploying the network to begin with, a step warranted by the low 

envisioned cost of sensors and similar practices in event detection scenarios. Then, 

during an initial learning phase, data were gathered from all sensors and were used to 

guide sensor selection and monitoring in a subsequent sensing topology management 

phase. Essentially, although there is no covariance model a-priori, through 

overdeployment, an abundant amount of data becomes available to the practitioner and 

can ultimately be used to estimate all necessary values of the covariance.  

In this respect, the problem we addressed in Chapter 4, namely proactive 

management of the deployment, is much more demanding. In this case, the covariance 

function is still a-priori unknown in general, but data acquisition through sensor 

placement comes at a price: sensor placements ought to be done in an intelligent 

manner so that the covariance function is efficiently learnt online. The greatest 

difficulty posed by this situation is what interpolation model to use for inference on 

the covariance function itself so as to reliably capture the spatial correlations in 

measured data. Such inference should be capable of explicitly characterizing the 

effects of data addition to the covariance model either from a single or multiple 

sensors, without however relying on actual observed data because they are not yet 

available.  
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Chapter 4 introduced the use of local linear regression as a potential such model. 

The advantages of local linear regression are that it is largely non-parametric, since the 

bandwidth parameter h only loosely depends on observed data and its bias, i.e. the 

absolute difference of the estimate from the ground truth, is asymptotically 

independent from the pattern of supporting points in space. A first straightforward 

extension of our work, is to incorporate general, non-stationary covariance functions 

into the design methodology described here. Local linear regression is in fact directly 

extendable to the case of two spatial dimensions [Har04].  

On the other hand, a fruitful direction for expansion in the reactive management 

scenario, is investigating the ability of the model to more directly exploit temporal 

correlations. So far we have seen how spatial correlation can be leveraged to reveal 

redundancy in a sampling-interpolation sensor network. The reason for this has been 

that the behavior of phenomena monitored in interpolation scenarios is known to be 

cohesive in space, especially at the scale of envisioned sensor network deployments. 

Many real world scenarios however also include attributes that evolve over time. If, 

for example the temporal evolution of values measured at sensors is highly 

predictable, we could take advantage of past measurements in addition to spatial 

correlations and employ a decreasing number of sensors over time.  

At present, our model related assumptions entail spatial means and a spatial 

covariance structure that are constant in time (see eq. (2.5)-(2.8)). Time evolving 

properties can be detected by repeating the learning phase after fixed time intervals. A 

first possibility for experimentation is to forfeit the constant mean assumption and fit a 

linear or cubic trend to the time series obtained at each sensor during the learning 
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phase. This trend will then be subtracted from instantaneous sensor measurements and 

residuals will be used to explain spatial correlations. Linear time trends have been 

employed for the explanation of meteorological data [Le06], [Pac03], but the degree to 

which they preserve the spatial covariance structure, if at all, is still an open question. 

Note that, in the case of subtracted temporal trends, the resulting spatial covariance 

may generally be changing in time, although in an implicit manner. 

A second possibility would be to assume an explicit dynamic model to describe 

time evolution of the spatial covariance. Dynamic behavior is often captured in the 

literature through Gauss-Markov models combined with Kalman filters [Des04]. 

However, a characteristic that requires special consideration here is that the input 

measurements for updating the state of the system will be potentially generated by a 

small set of sensors at each step, i.e., by the current monitoring subset. The challenge 

will then be to make correct inferences about the covariance structure over the whole 

observation field whilst relying only on few spatial locations.  

Overall, the models and methods presented in the previous chapters are still 

appropriate in a wide range of situations. It should additionally be emphasized that 

enhancements described in this section are aimed more at completeness of the 

framework, without necessarily avoiding complexity.  

 

5.3 Network Model Generalizations 

Apart from issues relevant to modeling of sensor measurements, there is also a 

number of interesting network modeling aspects to our setup that have yet to be 

investigated. Specifically, for the problem of reactive management of Chapter 3, we 
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have proposed subset construction algorithms with the objective of extracting 

acceptable distortion performance from each individual subset while maximizing the 

number of subsets. Each subset thus contains a minimum number of sensors, in the 

sense that, if any one of the sensors comprising it depletes its energy reserves, the 

subset can no longer achieve the desired interpolation fidelity. However, during actual 

network operation, and under realistic circumstances, the initial battery energy as well 

as the rate of battery energy absorption may well differ among individual sensors. 

Patterns of individual sensor shutdowns have in fact been modeled as Markov 

processes [Kar05].  

In this case the strict notion of a ‘subset’ of sensors becomes vague: a subset can 

contain sensors that are still operational, even after it cannot support the target 

distortion as a whole any longer. Since this will be occurring for all subsets, schemes 

can be envisaged which will dynamically and efficiently combine residual sensors 

from all ‘failed’ subsets to create new ones. An immediate consequence of a 

formulation that takes sensor shutdowns into account, would be a gradual degradation 

of the distortion performance of the network as a combined sensing entity, instead of 

the strict ‘hit-or-miss’ measure of performance that has been pursued so far. The rate 

of decay of the performance and its interaction with various factors would then be an 

interesting subject of investigation.  

 

5.4 Performance Analysis 

As has been mentioned quite frequently in the previous chapters, the problem of 

subset construction is inherently combinatorial. The performance analysis of solutions 
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proposed, and especially of the RaVaG algorithms which have shown the most 

promise, should rely on manipulation of expressions involving MSEs, i.e., of eq. 

(3.21). To date there are very few theoretical analyses even of the generic MSE 

expression of eq. (2.12), when the elements of the Grammian matrix are generated by 

observed data or by ideal models describing such data. In our case for example, the 

Grammian of all sensor vectors G0, is ideally populated by evaluations of the 

covariance function of a space-time random process (as per eq. (2.11)); in actuality, it 

is populated only by estimates of such values (e.g. as per eq. (3.9)).  

The reason behind this gap in the literature can be found in the highly non-linear 

behavior of the matrix inverse G0
-1. The mathematical tools currently available to 

attack the problem involve perturbation theory [Das08a]. Very recently, a novel view 

of the covariance structure as a graph appeared in the literature [Das08a]. Translated 

in terms of our particular problem setup, vertices of the graph would be the sensor 

nodes and edges would exist among correlated sensors, bearing weights equal to 

respective correlations, as defined by the inner product (2.8). Based on this view and 

utilizing various perturbation bounds, analytical results involving the matrix inverse 

term (which was also called variance reduction in Section 3.8) have been derived for 

particular cases of graph structures [Das08a]. This demonstrates the usefulness of the 

graph view of covariance.  

As discussed in the related work of Chapter 3, our particular problem is even 

more intricate than the one examined by these authors, since all sensors are random 

variables to be approximated simultaneously. Furthermore, our early experimentation 

has shown that, for our particular datasets, either the constraints imposed by the 
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perturbation analysis are too stringent or the bounds eventually obtained are too loose. 

This may call for the development of even more sophisticated tools to facilitate the 

analysis of algorithms such as RaVaG. The first step towards such a direction would 

be to initially assume very simple structures for the covariance of the underlying 

random process.  

 

5.5 Multi-pass Deployments 

Implicitly, our exposition of spatial interpolation scenarios for WSNs has so far 

focused on two extreme cases: ‘one pass’ deployments and ‘infinitely controllable’ 

deployments. These two extremes can in fact be relaxed under the unifying scope of 

multiple pass deployments. To elucidate this, consider the case where we have to 

deploy a sensor network in order to monitor a physical quantity over the entire 

observation field. The only information available to us before deployment is two 

bounds on the total number of sensors necessary: an absolute upper bound and a 

corresponding absolute lower bound, meaning that the necessary number of sensors 

definitely exceeds the lower bound but not the upper. If only a single pass may be used 

for deployment, a sensible solution would be to deploy the maximum possible number 

of sensors from the beginning and then impose reactive management on them, as 

described in Chapter 3. If, on the other hand, unlimited passes may be used, then 

sequential exploration and design can be employed instead, as described in Chapter 4. 

However, if exactly two passes may be utilized (e.g. we can only pay for 

airplane fuel twice) and since efficient use of resources is the foremost objective, a 

sensible approach would perhaps dictate to initially deploy only the minimum possible 
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number of sensors. At that point, data from these sensors could be used to infer a 

tighter upper bound on the total number of sensors necessary. Given the luxury of 

more than two deployments, even more such inferences could be furnished to further 

tighten the upper and lower bounds and lead to fewer total sensors deployed 

eventually. The key idea behind such inferences is to see how much additional 

information these intermediate deployments can provide about the covariance 

function. In other words, multi-pass deployments may potentially be used to predict 

the quality of covariance function estimation before the actual estimation takes place.  

 

5.6 Conclusion 

The vision for networks of wireless microsensors has been rapidly gaining 

proportions in the last decade. The scope of envisioned applications is vast and thus 

necessitates a diverse set of techniques. This spectrum can be roughly categorized into 

two different types of relevant applications, namely event detection and 

spatiotemporal sampling and interpolation. These differ fundamentally in terms of 

how correlations among sensor readings can be characterized and interpreted.  

Our research focus has specifically been on sampling-interpolation type 

scenarios. The ultimate goal was to identify and exploit inter-sensor correlations in 

this setting so as to efficiently achieve desired interpolation accuracy. In lieu of 

assuming a particular probability distribution for the measured values, we have relied 

on the generic Hilbert space of second order random variables, each corresponding to 

a single sensor. Within this model, best linear interpolation can be expressed as an 

orthogonal projection and the associated Mean Squared Error depends only on a 
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spatial covariance function. This function essentially encompasses all information 

about sensor interdependencies.  

We then examined the class of scenarios where we have to manage sampling and 

interpolation reactively in an already (over)deployed sensor network. The strategy we 

proposed was to devise subsets of sensors, each individually capable of producing data 

to support the interpolation task. Specific algorithms thereon have shown substantial 

improvements in terms of the number of data producing sensors and energy expended 

to convey these data to a central processing location. Additionally, we pursued 

solutions to cater for two distinct notions of interpolation quality: spatially averaged 

and spatially maximum MSE.  

Another class of scenarios we examined was that of proactive network 

deployment: how to deploy a minimum number of sensors from scratch in order to 

meet desired interpolation objectives. The path we proposed was to first explore the 

covariance space and then place sensors according to the estimated covariance curve. 

Described algorithms have succeeded in producing placements that provide accurate 

enough interpolations using far fewer sensors than simpler design schemes.  

Perhaps a key methodological aspect of our work has been that, in a sensor 

network context, a collection of infinite dimensional random variables, such as 

temperature readings, can be approximated by finite length time series measured at the 

sensor locations. The associated Hilbert space quantities and operators can then be 

approximated through algebraic, i.e., matrix formulations and this development 

suggests a strong potential for impacting the field, even beyond the scope of the 

particular problems discussed here. 
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