
UCLA
UCLA Electronic Theses and Dissertations

Title
Primal-dual proximal optimization algorithms with Bregman divergences

Permalink
https://escholarship.org/uc/item/6tv2g91j

Author
Jiang, Xin

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6tv2g91j
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Primal–dual proximal optimization algorithms with Bregman divergences

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Xin Jiang

2022

c© Copyright by

Xin Jiang

2022

ABSTRACT OF THE DISSERTATION

Primal–dual proximal optimization algorithms with Bregman divergences

by

Xin Jiang

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Lieven Vandenberghe, Chair

Proximal methods are an important class of algorithms for solving nonsmooth, constrained,

large-scale or distributed optimization problems. Because of their flexibility and scalability,

they are widely used in current applications in engineering, machine learning, and data sci-

ence. The key idea of proximal algorithms is the decomposition of a large-scale optimization

problem into several smaller, simpler problems, in which the basic operation is the evaluation

of the proximal operator of a function. The proximal operator minimizes the function regu-

larized by a squared Euclidean distance, and it generalizes the Euclidean projection onto a

closed convex set. Since the cost of the evaluation of proximal operators often dominates the

per-iteration complexity in a proximal algorithm, efficient evaluation of proximal operators

is critical. To this end, generalized Bregman proximal operators based on non-Euclidean

distances have been proposed and incorporated in many algorithms and applications. In the

first part of this dissertation, we present primal–dual proximal splitting methods for convex

optimization, in which generalized Bregman distances are used to define the primal and dual

update steps. The proposed algorithms can be viewed as Bregman extensions of many well-

known proximal methods. For these algorithms, we analyze the theoretical convergence and

ii

develop techniques to improve practical implementation.

In the second part of the dissertation, we apply the Bregman proximal splitting algorithms

to the centering problem in large-scale semidefinite programming with sparse coefficient

matrices. The logarithmic barrier function for the cone of positive semidefinite completable

sparse matrices is used as the distance-generating kernel. For this distance, the complexity

of evaluating the Bregman proximal operator is shown to be roughly proportional to the

cost of a sparse Cholesky factorization. This is much cheaper than the standard proximal

operator with Euclidean distances, which requires an eigenvalue decomposition. Therefore,

the proposed Bregman proximal algorithms can handle sparse matrix constraints with sizes

that are orders of magnitude larger than the problems solved by standard interior-point

methods and proximal methods.

iii

The dissertation of Xin Jiang is approved.

Vwani Roychowdhury

Arash A. Amini

Wotao Yin

Lieven Vandenberghe, Committee Chair

University of California, Los Angeles

2022

iv

To my family

for their unconditional love and support.

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Algorithms for large-scale optimization problems 1

1.2 Proximal methods with Bregman distances 4

1.3 Contributions and outline of the dissertation 5

2 Primal–dual proximal splitting methods . 8

2.1 Problem formulation . 8

2.2 Duality and optimality conditions . 9

2.3 Merit functions . 11

2.4 Proximal operator . 14

2.5 First-order proximal algorithms: survey and connections 15

2.5.1 Condat–Vũ three-operator splitting algorithm 16

2.5.2 Primal–dual three-operator (PD3O) splitting algorithm 20

2.5.3 Primal–dual Davis–Yin (PDDY) splitting algorithm 22

3 Bregman proximal splitting algorithms . 24

3.1 Bregman proximal operators . 26

3.2 Bregman Condat–Vũ three-operator splitting algorithms 28

3.2.1 Derivation from Bregman proximal point method 30

3.2.2 Convergence analysis . 34

3.2.3 Relation to other Bregman proximal splitting algorithms 41

3.3 Bregman dual Condat–Vũ algorithm with line search 44

vi

3.3.1 Algorithm . 46

3.3.2 Convergence analysis . 47

3.4 Bregman PD3O algorithm . 54

3.4.1 Convergence analysis . 56

3.4.2 Relation to other Bregman proximal algorithms 59

3.5 Numerical experiment . 61

4 Application to sparse semidefinite programming 66

4.1 Sparse semidefinite programming . 67

4.2 Primal and dual barriers . 71

4.3 The centering problem . 72

4.4 Barrier proximal operator for sparse PSD matrix cone 74

4.5 Newton’s method for barrier proximal operator 76

4.6 Numerical experiments . 79

4.6.1 Maximum cut problem . 80

4.6.2 Graph partitioning . 84

5 Conclusions . 88

References . 90

vii

LIST OF FIGURES

2.1 Proximal methods derived from primal Condat–Vũ algorithm. 17

2.2 Proximal methods derived from dual Condat–Vũ algorithm. 19

2.3 Proximal algorithms derived from PD3O. 20

2.4 Proximal algorithms derived from PDDY. 22

3.1 Proximal algorithms derived from Bregman primal Condat–Vũ algorithm (3.6). 42

3.2 Proximal algorithms derived from Bregman dual Condat–Vũ algorithm (3.7). . . 43

3.3 Acceptable stepsizes in Condat–Vũ algorithms and PD3O. We assume the same

matrix norm ‖A‖ and Lipschitz constant L are used in the analysis of the two

algorithms. The light gray region under the blue curve is defined by the inequality

for the Condat–Vũ algorithms in (3.52). The region under the red curve shows

the values allowed by the stepsized conditions for PD3O. 55

3.4 Proximal algorithms derived from Bregman PD3O. 60

3.5 The blue and red curves show the boundaries of the stepsize regions for Bregman

Condat–Vũ algorithms and Bregman PD3O, respectively. The blue and red points

indicate the chosen parameters in (3.67) (red for for PD3O, blue for Condat–Vũ).

In the Bregman dual Condat–Vũ algorithm with line search, the stepsizes are

selected on the dashed straight line. The solid line segment shows the range of

stepsizes that were selected, with dots indicating the largest, median, and smallest

stepsizes. 63

viii

3.6 Comparison of three algorithms (Bregman primal Condat–Vũ, Bregman dual

Condat–Vũ with line search, and Bregman PD3O) in terms of objective values.

The top two figures plot the relative error of the function value versus CPU

time and number of iterations for one problem instance (3.65), respectively. The

bottom two figures correspond to another problem instance. 64

4.1 Left. The function ζ(ν) =
∑

i 1/(ν + λi) for λ = (−5, 0, 5, 10). We are interested

in the solution of ζ(ν) = 1 larger than −λmin = 5. Right. The function 1/ζ(ν)− 1. 76

ix

LIST OF TABLES

4.1 Results for four instances of the MAXCUT problem from SDPLIB [Bor99]. Col-

umn 3 is the optimal value computed by MOSEK. Column 4 is the difference

with the optimal value of the centering problem computed by algorithm (4.20).

The last two columns give the primal and dual residuals in the computed solution. 82

4.2 The four MAXCUT problems from SDPLIB plus four larger graphs from the

SuiteSparse collection [KAB19]. The last column (“PDHG iterations”) gives the

number of iterations in the primal–dual algorithm. Columns 3–5 describe the

complexity of one iteration of the algorithm. The CPU time is measured in

seconds. 83

4.3 Results for four graph partitioning problems from SDPLIB. Column 3 is the

optimal value computed by MOSEK. Column 4 is the difference with the optimal

value of the centering problem computed by algorithm (4.20). The last two

columns give the primal and dual residuals in the computed solution. 86

4.4 The four graph partitioning problems from SDPLIB plus four larger graphs from

the SuiteSparse collection. The last column gives the number of iterations in the

primal–dual algorithm. Columns 3–5 describe the complexity of one iteration of

the algorithm. The CPU time is measured in seconds. 87

x

ACKNOWLEDGMENTS

This dissertation is the culmination of my five years of study and research at UCLA. This

could not have been possible without the help and support of so many people.

First and foremost, I would express my sincere gratitude to my advisor, Professor Lieven

Vandenberghe, to whom this dissertation owes its existence. In his course on convex opti-

mization, he aroused my initial interest in optimization via his elegant and rigorous exposi-

tion. Moreover, he treats his students with meticulous care, provides them with appropriate

guidance and motivation, and addresses their questions seriously and carefully. I am forever

thankful for the opportunity to work with and to learn from Professor Vandenberghe.

In addition, I would like to thank my committee members. Professor Wotao Yin is an

excellent instructor at UCLA, and also a visionary leader at Alibaba. I would like to thank

him for all the knowledge I learnt in his class as well as all the help he offered during my

internship at Alibaba. I also would like to express my appreciation to Professor Arash A.

Amini, in whose class I built a solid foundation in statistics. I am very grateful to Professor

Vwani Roychowdhury, for his help and scholarly examples. I also thank the staff in ECE

department for their helpful assistance and student-centered service. Special thanks for Ryo

Arreola. My graduate student life at UCLA would not have been the same with Ryo. His

kindness made all the difference for international students like me.

I would like to thank my colleagues and friends at UCLA for many helpful support and

company. I am especially grateful to Martin S. Andersen, Yifan Sun, Cameron Gunn, Suzi

Chao, Tianyi Wang, Qiujing Lu, and Huiyu Wang, for the good time we shared with each

other. My old friends have also been unforgettable emotional support in my PhD life. Here

I would like to give special thanks to Ziyao Chen and Qianwen Yu, for their unwavering

confidence on me and forever friendship.

Finally, my parents deserve my deepest gratitude for all their love and encouragement. I

shall thank them for being there with me throughout all stages of life.

xi

VITA

2015 B.Eng., Electronic and Communication Engineering

Department of Electrical and Electronic Engineering

The University of Hong Kong, Hong Kong, China.

2017 M.S., Electrical and Computer Engineering

Department of Electrical and Computer Engineering

University of California, Los Angeles (UCLA).

2016–2022 Teaching Assistant

Department of Electrical and Computer Engineering

University of California, Los Angeles (UCLA).

2017–2022 Graduate Student Researcher

Department of Electrical and Computer Engineering

University of California, Los Angeles (UCLA).

PUBLICATIONS

Xin Jiang and Lieven Vandenberghe. Bregman three-operator splitting methods. arXiv

e-prints, arXiv:2203:00252, 2022.

Xin Jiang and Lieven Vandenberghe. Bregman primal–dual first-order method and appli-

cations to sparse semidefinite programming. Computational Optimization and Applications,

81(1):127–159, 2022.

xii

Jiarong Xu, Yizhou Sun, Xin Jiang, Yanhao Wang, Chuping Wang, Jiangang Lu and Yang

Yang. Blindfolded attackers still threatening: Strict black-box adversarial attacks on graphs.

In Proceedings of the 36th Conference on Artificial Intelligence. 2022.

Jiarong Xu, Yang Yang, Junru Chen, Xin Jiang, Chuping Wang, Jiangang Lu and Yizhou

Sun. Unsupervised adversarially robust representation learning on graphs. In Proceedings

of the 36th Conference on Artificial Intelligence, 2022.

Ziyuan Jiao, Zeyu Zhang, Xin Jiang, David Han, Song-Chun Zhu, Yixin Zhu and Hangxin

Liu. Consolidating kinematic models to promote coordinated mobile manipulations. In

IEEE/RSJ International Conference on Intelligent Robots and Systems. 2021

xiii

CHAPTER 1

Introduction

1.1 Algorithms for large-scale optimization problems

The recent development of optimization algorithms is driven by a broad spectrum of appli-

cations from engineering, machine learning, and data science. During the 1990s, the focus

of research on optimization methods was extending interior-point methods from linear pro-

gramming to nonlinear, convex optimization problems [NN94, Wri97, NT98, BN01, Ren01,

PRT02, BV04, NW06, Gon12]. To this end, a useful canonical form of optimization problems

is the conic LP:
minimize 〈c, x〉

subject to Ax = b

x ∈ K,

(1.1)

where the optimization variable is the vector x, and K is a proper (or regular) convex cone.

Examples of conic LPs include many important convex optimization problems, e.g., second-

order cone programs (SOCPs) [AG03], geometric programs (GPs), and semidefinite programs

(SDPs) [Tod01]. Due to their broad applicability to conic LPs, interior-point methods serve

as the computational backbone for a number of optimization software packages, includ-

ing many general-purpose solvers (e.g., SeDuMi [Stu99], SDPT3 [TTT02], Gurobi [Gur22],

MOSEK [MOS19], CVXOPT [ADV20]) as well as several modeling tools (e.g., CVX [GB14],

CVXPY [DB16], CVXR [FNB20]).

However, for modern applications in image processing, machine learning, and data sci-

ence, the dimensions of the optimization problems grow rapidly [SNW12, BCN18, GR18] and

1

off-the-shelf interior-point methods are often impractical for such large-scale applications.

More specifically, for conic LPs, the per-iteration complexity of interior-point methods is

dominated by the formulation and solution of a large set of linear equations. Alternative

approaches, especially for large-scale optimization problems, include first-order methods, co-

ordinate descent methods, and decomposition (or splitting) methods. Typical examples of

first-order methods include the gradient (subgradient) descent method, its acceleration and

extensions [Nes83, Nes88, NW06, Nes18, dST21]. The coordinate descent method and its

variations [LT92, Wri15] successively minimize along the coordinate directions. Decompo-

sition (or splitting) methods iteratively decompose a large-scale optimization problem into

smaller, simpler problems [GOY17, RY22] and then solve them separately.

In this dissertation, we focus on a canonical form of optimization problems

minimize f(x) + g(Ax) + h(x), (1.2)

where f , g, and h are convex functions, h is differentiable, and f , g are nonsmooth. This

general problem is a useful formulation for studying most first-order and decomposition

methods, and it is sufficient to represent many important structures arising from a wide va-

riety of large-scale applications in machine learning, signal and image processing, operations

research, control, and other fields [PB14, KP15, CP16a, GOY17, CKC22]. For example,

when f = 0 and g = 0, problem (1.2) reduces to minimizing a differentiable function, which

can be solved by the gradient descent method. As another example, when the, nonsmooth

function f is the indicator function of a closed, convex set C

δC(x) =

0 x ∈ C

∞ x /∈ C,

problem (1.2) becomes a set-constrained problem

minimize g(Ax) + h(x)

subject to x ∈ C.

2

When g = δ{b} is the indicator function of a singleton, the problem (1.2) reduces to an

equality-constrained problem

minimize f(x) + h(x)

subject to Ax = b.
(1.3)

Furthermore, when f is the indicator function of a proper, convex cone K and h(x) = 〈c, x〉

is a linear function, problem (1.3) reduces to the conic LP (1.1).

In the general problem (1.2) as well as the special cases, the structure of the nonsmooth

function f (and g) is often exploited via its proximal operator:

proxf (y) = argmin
x

(
f(x) +

1

2
‖x− y‖2

)
,

where ‖ · ‖ indicates the Euclidean norm. By definition, the proximal operator minimizes

the nonsmooth function f regularized by a squared Euclidean distance, and generalizes the

Euclidean projection onto a closed, convex set. Evaluation of proximal operators is the basic

operation in proximal splitting methods, and thus efficient evaluation is critical in these algo-

rithms. Many convex functions have simple proximal operators; i.e., the proximal operator

either has a closed-form formula or can be evaluated efficiently via a simple algorithm. For

example, when f is the indicator function of a closed, convex set C, the proximal operator

of f is the Euclidean projection onto the set C. Another classical example is the `1-norm,

i.e., f(x) = ‖x‖1, the proximal operator of f is well-known as the “soft-threshold” operation

(see, e.g., [BT09a]):

proxf (x)i =

xi − 1 xi > 1

0 |xi| ≤ 1

xi + 1 xi < 1.

Moreover, convex duality theory have also been used to design more efficient, scalable

optimization algorithms. As a result, the development of primal–dual proximal splitting

methods has become an active research area. Primal–dual proximal methods solve the

3

primal and dual problems simultaneously in an intertwined manner, and recent examples

of primal–dual proximal methods for the three-term problem (1.2) include the Condat–Vũ

algorithm [Con13, Vu13], the primal–dual three-operator (PD3O) algorithm [Yan18], and

the primal–dual Davis–Yin (PDDY) algorithm [SCM20]. Algorithms for some special cases

of (1.2) are also of interest. These include the Chambolle–Pock algorithm, also known as

the primal–dual hybrid gradient (PDHG) method [PCB09, EZC10, CP11a, CP16b] (when

h = 0), the alternating direction method of multipliers (ADMM) [GM75, GM76, BPC11]

(when h = 0), the Loris–Verhoeven algorithm [LV11, CHZ13, DST15] (when f = 0), the

proximal gradient algorithm (when g = 0), the Davis–Yin splitting algorithm [DY17] (when

A = I), and the Douglas–Rachford splitting (DRS) algorithm [LM79]. These methods are

closely related to each other. For example, ADMM is known to be equivalent to DRS applied

to the dual problem [Gab83]. More details are discussed in Chapter 2.

1.2 Proximal methods with Bregman distances

In view of the flexibility and scalability of primal–dual proximal methods for large-scale

convex optimization problems, many efforts have been made to further improve the effi-

ciency of proximal algorithms, and in particular, the evaluation of proximal operators. To

this end, proximal operators based on generalized distances have been proposed [CZ97] and

among different definitions of generalized distances, Bregman divergence (or Bregman dis-

tance) [Bre67] is often used in many optimization algorithms [CT93, Eck93, Gul94, BL00,

BMN01, BT03, AT06, Tse08, BBT17, BST18, LFN18, Teb18]. For example, the renowned

mirror descent method [NY83, BMN01, BT03, Bub15, Bec17] is shown to be the projected

subgradient descent method with Bregman distances. The Dykstra’s algorithm with Breg-

man distances [BL00] allows non-Euclidean projections onto the constraint set. Proximal

algorithms have also been integrated with Bregman distances, and examples include the

proximal point method [CT93, Ha90, CZ92, Eck93, Gul94, Kiw97, AT06], the proximal gra-

4

dient method [Tse08, BBT17, LFN18, BST18, Teb18, HRX21] and recently, primal–dual

proximal methods [CP16b, WX17, YA21].

In general, Bregman distances offer two potential benefits. First, the Bregman distance

can help build a more accurate local optimization model around the current iterate. This

is often interpreted as a form of preconditioning. For example, diagonal or quadratic pre-

conditioning [PC11, JLL19, LXY21] has been shown to improve the convergence rate of

PDHG, as well as the accuracy of the computed solution [ADH21]. As a second benefit, a

Bregman proximal operator of a function may be easier to compute than the standard Eu-

clidean proximal operator, and thus reduce the complexity per iteration of an optimization

algorithm. The idea of incorporating Bregman distances into optimization algorithms has

been exploited in many research areas, including signal processing [CV18], optimal trans-

port [CLM21, CC22], matrix optimization problems [DT08], statistical estimation [TLJ06],

and machine learning [Rd20].

1.3 Contributions and outline of the dissertation

Despite the advantages offered by the Bregman distances and the numerous applications,

extending standard proximal methods and their convergence analysis to Bregman distances

is not straightforward because some fundamental properties of the Euclidean proximal oper-

ators no longer hold for Bregman proximal operators. An example is the Moreau decomposi-

tion [Mor65]; see the definition in Section 2.4. Moreau decomposition relates the (Euclidean)

proximal operators of a closed, convex function and its conjugate, and serves as a funda-

mental pillar for the convergence analysis of most primal–dual proximal splitting methods.

Another example is the simple relation between the proximal operators of a function g and

the composition with a linear function g(Ax) when AAT is a multiple of the identity; see

also Section 2.4 for more details. This composition rule is used in [OV20] to establish the

equivalence between some well-known primal–dual proximal methods for problem (1.2) with

5

A = I and with general A.

In the first part of the dissertation, we propose several primal–dual proximal methods

that incorporate Bregman distances. The presented algorithms include most well-known

proximal algorithms as special cases. First, we discuss two variants of the Bregman Condat–

Vũ algorithm, in which generalized Bregman proximal operators are used in both primal and

dual updates. We give a new derivation for both algorithms, and based on the interpretation,

we provide a unified framework for the convergence analysis. To improve practical imple-

mentation, we propose a line search technique for the Bregman dual Condat–Vũ algorithm

for equality-constrained problems. Finally, we discuss a Bregman extension to PD3O and

establish an ergodic convergence result.

The second part of the dissertation is motivated by the difficulty of exploiting sparsity in

large-scale semidefinite programming (SDP). A semidefinite program is the conic LP (1.1)

where the cone K is the positive semidefinite (PSD) matrix cone:

minimize tr(CX)

subject to tr(AiX) = bi, i = 1, . . . ,m

X � 0,

where the optimization variable is the symmetric matrix X, and the generalized inequality

constraint X � 0 indicates that the matrix X is in the PSD matrix cone. The scalability of

interior-point methods is limited by the need to form and solve a set of m linear equations

at each iteration. Customization is often difficult, and depends on the structure of the

problem. For standard proximal methods, on the other hand, one needs to compute a

Euclidean projection onto the PSD matrix cone at each iteration. This involves an eigenvalue

decomposition, and thus exploiting sparsity is often difficult for standard proximal methods.

Therefore, to improve the efficiency and scalability of proximal algorithms, we apply the

proposed Bregman proximal methods to the centering problem in large-scale SDPs with

sparse coefficient matrices. We show that if the Bregman distance generated by the barrier

function for the cone of PSD completable matrices is used, the generalized projections can

6

be computed efficiently, with a complexity dominated by the cost of a sparse Cholesky

factorization. This is much cheaper than the eigenvalue decomposition needed in every

iteration of standard proximal algorithms for SDPs. Hence, while the Bregman proximal

method only solves an approximation of the SDP, it can handle problem sizes that are orders

of magnitude than the problems solved by standard interior-point methods and proximal

methods.

The rest of the dissertation is organized as follows. In Chapter 2 we review some basic

results from convex duality theory and present a comprehensive survey for most primal–dual

proximal splitting methods. Chapter 3 presents the proposed Bregman primal–dual proximal

methods, the convergence analysis, and line search techniques for practical implementation.

In Chapter 4 we apply the proposed Bregman proximal methods to the centering problem of

sparse SDPs. We describe in detail the Bregman proximal operator designed for sparse SDPs,

and also present results of numerical experiments. Chapter 5 concludes this dissertation with

some final remarks.

7

CHAPTER 2

Primal–dual proximal splitting methods

The main focus of this dissertation is on primal–dual proximal splitting methods. Thus in

this chapter we start by formulating the optimization problem that we study throughout

the dissertation, and review some basic results from convex duality theory. In addition, we

present a comprehensive survey of the state-of-the-art primal–dual first-order methods and

show in details the connections between them.

This chapter is organized as follows. We introduce the problem formulation in Section 2.1,

and in Section 2.2 we summarize the facts from convex duality theory that underlie the

primal–dual algorithms for the optimization problem. In Section 2.3 we describe in detail

the merit functions and give two illustrative examples. Finally, Section 2.5 discusses several

proximal methods and their connections.

2.1 Problem formulation

We discuss primal–dual proximal splitting methods for optimization problems in the form

minimize f(x) + g(Ax) + h(x), (2.1)

where the optimization variable is x ∈ Rn, and A is an m × n matrix. We assume the

functions f , g, and h are proper (with nonempty domain), closed, and convex, and h is

differentiable with an open convex domain domh. The notation 〈x, y〉 = xTy is used for the

standard inner product of vectors x and y, and ‖x‖ = 〈x, x〉1/2 for the Euclidean norm of a

vector x.

8

This general problem covers a wide variety of applications in machine learning, signal

and image processing, operations research, control and other fields [CP11b, PB14, KP15,

CP16a, CKC22]. An important example of (2.1) is g = δC, the indicator function of a closed

convex set C. With g = δC, the problem is equivalent to

minimize f(x) + h(x)

subject to Ax ∈ C.

For C = {b} the constraints are a set of linear equations Ax = b. This special case actually

covers all applications of the more general problem (2.1), since (2.1) can be reformulated as

minimize f(x) + g(y) + h(x)

subject to Ax = y,

at the expense of increasing the problem size by introducing a splitting variable y.

2.2 Duality and optimality conditions

In this section we present the dual problem as well as the primal–dual optimality conditions

for the problem (2.1). These basic results play a fundamental role in the analysis of most

primal–dual proximal algorithms.

To derive the dual of (2.1), we first reformulate the problem as

minimize f(x) + g(y) + h(x)

subject to Ax = y
(2.2)

with variables x ∈ Rn and y ∈ Rm. The Lagrangian for the reformulated problem (2.2) is

L̃(x, y, z) = f(x) + g(y) + h(x) + 〈z, Ax− y〉.

Taking the infimum with respect to y yields the convex–concave function

L(x, z) = f(x) + h(x) + 〈z, Ax〉 − g∗(z),

9

which will be referred to as the Lagrangian of (2.1). We follow the convention that L(x, z) =

+∞ if x 6∈ dom(f+h) and L(x, z) = −∞ if x ∈ dom(f+h) and z 6∈ dom g∗. The objective

function in (2.1) can be expressed as

sup
z
L(x, z) = f(x) + h(x) + g(Ax).

The dual function is defined as

inf
x
L(x, z) = −(f + h)∗(−AT z)− g∗(z),

where (f + h)∗ and g∗ are the conjugates of f + h and g:

(f + h)∗(w) = sup
x

(〈w, x〉 − f(x)− h(x)), g∗(z) = sup
y

(〈z, y〉 − g(y)).

The conjugate (f + h)∗ is the infimal convolution of f ∗ and h∗ [Roc70], denoted by f ∗ � h∗:

f ∗ � h∗(z) = inf
w

((f ∗(w) + h∗(z − w)).

Then the problem of maximizing the dual function is called the dual problem:

maximize −(f + h)∗(−AT z)− g∗(z) (2.3)

The primal–dual optimality conditions for (2.1) and (2.3) are

0 ∈ ∂f(x) +∇h(x) + AT z, 0 ∈ ∂g∗(z)− Ax,

where ∂f and ∂g∗ are the subdifferentials of f and g∗. We often write the optimality

conditions concisely as

0 ∈

 0 AT

−A 0

x
z

+

∂f(x) +∇h(x)

∂g∗(z)

 . (2.4)

Throughout the dissertation, we assume that the optimality conditions (2.4) are solvable.

Solutions x?, z? of the optimality conditions (2.4) form a saddle-point of L, i.e., satisfy

inf
x

sup
z
L(x, z) = sup

z
L(x?, z) = L(x?, z?) = inf

x
L(x, z?) = sup

z
inf
x
L(x, z). (2.5)

In particular, L(x?, z?) is the optimal value of (2.1) and (2.3).

10

2.3 Merit functions

Most algorithms discussed in this dissertation generate primal and dual iterates and approx-

imate solutions x, z with x = dom f ∩ domh and z ∈ dom g∗. The feasibility conditions

Ax ∈ dom g and −AT z ∈ dom(f + h)∗ are not necessarily satisfied. Hence the duality gap

sup
z′
L(x, z′)− inf

x′
L(x′, z) = f(x) + h(x) + g(Ax) + (f + h)∗(−AT z) + g∗(z) (2.6)

may not always be useful as a merit to measure convergence. In this section, we introduce a

merit function that will be used later to express convergence results. The merit function can

also be used to design stopping conditions for primal–dual proximal splitting algorithms.

If we add constraints x′ ∈ X and z′ ∈ Z to the optimization problems on the left-hand

side of (2.6), where X and Z are compact sets, we obtain a function

η(x, z) = sup
z′∈Z
L(x, z′)− inf

x′∈X
L(x′, z) (2.7)

defined for all x ∈ dom(f+h) and z ∈ dom g∗. This follows from the fact that the functions

f + h+ δX and g∗+ δZ are closed and co-finite, so their conjugates have full domain [Roc70,

Corollary 13.3.1]. If η(x, z) is easily computed, and η(x, z) ≥ 0 for all x ∈ dom(f + h) and

z ∈ dom g∗ with equality only if x and z are optimal, then the function η can serve as a

merit function in primal–dual algorithms for problem (2.1). In the special case X = {x?}

and Z = {z?}, the merit function reduces to

η(x, z) = L(x, z?)− L(x?, z), (2.8)

and is widely used in the literature [CP11a, Con13, CP16b]. The function (2.8) involves

the optimal points x?, z?, so it is useful in convergence results but not in practical stopping

conditions.

If dom(f+h) and dom g∗ are bounded, then X and Z can be chosen to contain dom(f+

h) and dom g∗. Then the constraints in (2.7) are redundant and η(x, z) is the duality

gap (2.6). Boundedness of dom(f + h) and dom g∗ or existence of such compact sets X

11

and Z is a common assumption in the literature on primal–dual first-order methods [Nem04,

JN12a, JN12b, Bub15].

A weaker assumption is that (2.1) and (2.3) have an optimal primal solution x? ∈ X and

an optimal dual solution z? ∈ Z. If so, we have

η(x, z) ≥ L(x, z?)− L(x?, z) ≥ 0

for all x ∈ dom(f + h) and z ∈ dom g∗. The second inequality follows from (2.5) and is an

equality only if x and z are optimal. It follows that η(x, z) ≥ 0 with equality only if x, z are

optimal.

Whether η(x, z) is easy to evaluate depends on the problem and choice of sets X and Z.

A general expression for the first term in (2.7) is

sup
z′∈Z
L(x, z′) = f(x) + h(x) + (g � σZ)(Ax)

= f(x) + h(x) + inf
y

(g(y) + σZ(Ax− y)),

where σZ(w) = supz∈Z〈z, w〉 is the support function of Z. The corresponding expression for

the second term in (2.7) are

inf
x′∈X
L(x′, z) = −g∗(z)− ((f + h)∗ � σX)(−AT z)

= −g∗(z)− inf
w

((f + h)∗(w) + σX (AT z + w)).

Consider for example the primal and dual pair

minimize f(x) + h(x)

subject to Ax = b

maximize −bT z − (f + h)∗(−AT z).

Here g = δ{b}. If we take Z = {z | ‖z‖ ≤ ζ}, then σZ(y) = ζ‖y‖ and the infimal convolution

(g � σZ)(Ax) is given by

(g � σZ)(Ax) = inf
y

(g(y) + σZ(Ax− y))

12

= σZ(Ax− b)

= sup
‖z‖≤ζ
〈Ax− b, z〉

= ζ‖Ax− b‖.

The second equality follows from the definition g = δ{b}. If in addition dom(f + h) is

bounded and we take X ⊇ dom(f + h), then

η(x, z) = f(x) + h(x) + ζ‖Ax− b‖+ bT z + (f + h)∗(−AT z)

with domain dom(f + h) ×Rm. The first three terms are the primal objective augmented

with an exact penalty for the constraint Ax = b, with a sufficiently large ζ (i.e., ζ > ‖z?‖).

As another example, consider the pair of primal and dual problems

minimize ‖x‖1

subject to Ax ≤ b

maximize bT z

subject to ‖AT z‖∞ ≤ 1

z ≥ 0.

This is an example of (2.1) with f(x) = ‖x‖1, h(x) = 0, and g the indicator function

of the set {y | y ≤ b}. The domains dom f and dom g∗ are unbounded. If we choose

X = {x | ‖x‖∞ ≤ κ} and Z = {z | 0 ≤ z ≤ λ1}, then

σX (w) = κ‖w‖1, (f ∗ � σX)(w) = κ
n∑
i=1

max{0, |wi| − 1}

and

σZ(y) = λ
m∑
i=1

max{0, yi}, (g � σZ)(y) = λ
m∑
i=1

max{0, yi − bi}.

Hence, for this example the merit function (2.7) is

η(x, z) = ‖x‖1 + λ

m∑
i=1

max{0, (Ax− b)i} − bT z + κ

n∑
i=1

max{0, |(AT z)i| − 1}

with domainRn×Rm
+ . The second term is an exact penalty for the primal constraint Ax ≤ b.

The last term is an exact penalty for the dual constraint ‖AT z‖∞ ≤ 1.

13

Proof. The support function of the infinity norm ball X is the scaled 1-norm function

σX (w) = κ‖w‖1, and the conjugate function of the 1-norm function is the indicator function

of the unit infinity norm ball. Then the infimal convolution reduces to

(f ∗ � σX)(w) = inf
x

(f ∗(x) + σX (w)(w − x))

= inf
‖x‖inf≤1

κ‖x− w‖1

= κ
n∑
i=1

max{0, |wi| − 1}.

The support function of Z is

σZ(y) = sup
z∈Z
〈z, y〉 = λ

m∑
i=1

sup
0≤zi≤λ

yizi = λ
m∑
i=1

max{0, yi}.

Then the infimal convolution is

(g � σZ)(y) = inf
w

(g(w) + σZ(y − w))

= λ
m∑
i=1

inf
wi≤bi

max{0, yi − wi}

= λ
m∑
i=1

max{0, yi − bi}.

2.4 Proximal operator

The proximal operator or proximal mapping of a closed convex function f is defined as

proxf (y) = argmin
x

(
f(x) +

1

2
‖x− y‖2

)
. (2.9)

If f is closed and convex, the minimizer in the definition exists and is unique for all y

[Mor65]. We will call (2.9) the standard or the Euclidean proximal operator when we need

to distinguish it from Bregman proximal operators defined in Section 3.1. For detailed

discussion on the proximal operator as well as the properties, we refer interested readers to

14

the survey papers [CP11b, PB14], and the books [BC17, Bec17, RY22]. Below we review two

important properties of the proximal operator, which will be used later in this dissertation.

The first property is the composition rule with affine mapping. In general, the proximal

operator of f(x) = g(Ax + b) does not follow from the proximal operator of g. However, if

AAT = (1/α)I, then the proximal operator of f can be derived easily from that of g:

proxf (x) = (I − αATA)x+ αAT (proxα−1g(Ax+ b)− b)

= x− αAT (Ax+ b)− proxα−1g(Ax+ b)). (2.10)

This property is the cornerstone for the “completion” trick, which shows equivalence between

several primal–dual proximal splitting algorithms [OV20]; see also Section 2.5.

Another important property of the proximal operator is called Moreau decomposition or

Moreau identity. For any λ > 0 and any x ∈ Rn,

x = proxλf (x) + λproxλ−1f∗(x/λ). (2.11)

This property relates the proximal operator of a closed convex function to that of its con-

jugate, and is widely used in convergence analysis for primal–dual proximal splitting algo-

rithms.

2.5 First-order proximal algorithms: survey and connections

Over the past few decades, first-order proximal methods have been rapidly developed and

widely applied in various applications in machine learning, signal and image processing,

operations research, control, and other fields [CP11b, PB14, KP15, CP16b]. In this sec-

tion, we review several first-order proximal algorithms and their connections. We start with

four three-operator splitting algorithms for problem (2.1): the primal and dual variants

of the Condat–Vũ algorithm [Con13, Vu13], the primal–dual three-operator (PD3O) algo-

rithm [Yan18], and the primal–dual Davis–Yin (PDDY) algorithm [SCM20]. For each of the

15

four algorithms, we make connections with other first-order proximal algorithms, using re-

duction (i.e., setting some parts in (2.1) to zero) and the “completion” reformulation [OV20].

The key idea in the “completion” trick is to reformulate the problem (2.1) (assuming h = 0

for simplicity) as

minimize f̃(x, y) + g̃(x, y),

where

f̃(x, y) = f(x) + δ{0}(y), g̃(x, y) = g(Ax+By).

The auxiliary matrix B is chosen to satisfy

AAT +BBT = (1/α)I with
1

α
≥ ‖A‖22.

Here ‖A‖2 is the spectral norm of A. After simplifications and use of the properties (2.10)

and (2.11), the Douglas–Rachford splitting method applied to the reformulated problem will

reduce to the iterations of PDHG. Detailed proofs and extensions can be found in [OV20].

The rest of this section is divided into three subsections, and each subsection discusses

one primal–dual proximal splitting method. We focus on the formal connections between

algorithms, and the presented connections do not necessarily provide the best approach for

convergence analysis or the best known convergence results.

2.5.1 Condat–Vũ three-operator splitting algorithm

We start with the (primal) Condat–Vũ three-operator splitting algorithm, which was pro-

posed independently by Condat [Con13] and Vũ [Vu13],

x(k+1) = proxτf
(
x(k) − τ(AT z(k) +∇h(x(k)))

)
(2.12a)

z(k+1) = proxσg∗
(
z(k) + σA(2x(k+1) − x(k))

)
. (2.12b)

The stepsizes σ and τ must satisfy

στ‖A‖22 + τL ≤ 1,

16

reduced primal

Condat–Vũ (2.17)
(primal) DRS (2.16)

reduced Loris–Verhoeven

with shift (2.18)

(primal)

Condat–Vũ (2.12)
(primal) PDHG (2.13)

Loris–Verhoeven

with shift (2.15)

proximal gradient (2.14)

h = 0f = 0

h = 0f = 0

com
pletion

A = I

com
pletion

A = IA = I

g = 0

Figure 2.1: Proximal methods derived from primal Condat–Vũ algorithm.

where ‖A‖2 is the spectral norm of A, and L is the Lipschitz constant of ∇h with re-

spect to the Euclidean norm. Many other first-order proximal algorithms can be viewed

as special cases of (2.12), and their connections are summarized in Figure 2.1. When

h = 0, algorithm (2.12) reduces to the (primal) primal–dual hybrid gradient (PDHG)

method [PCB09, CP11a, CP16b], or PDHGMu in [EZC10]:

x(k+1) = proxτf
(
x(k) − τAT z(k)

)
(2.13a)

z(k+1) = proxσg∗
(
z(k) + σA(2x(k+1) − x(k))

)
. (2.13b)

When g = 0 in (2.12) (and assuming z(0) = 0), we apply the Moreau identity (2.11) and

obtain the proximal gradient algorithm:

x(k+1) = proxτf (x
(k) − τ∇h(x(k))). (2.14)

When f = 0, we obtain a variant of the Loris–Verhoeven algorithm [LV11, CHZ13, DST15],

x(k+1) = x(k) − τ(AT z(k) +∇h(x(k))) (2.15a)

z(k+1) = proxσg∗
(
(I − στAAT)z(k) + σA(x(k+1) − τ∇h(x(k)))

)
. (2.15b)

17

We refer to this as the Loris–Verhoeven algorithm with shift, for reasons that will be clarified

later. Furthermore, when A = I and σ = 1/τ in PDHG, we obtain the Douglas–Rachford

splitting (DRS) algorithm [LM79, EB92, CP07]:

x(k+1) = proxτf
(
x(k) − τz(k)

)
(2.16a)

z(k+1) = proxτ−1g∗

(
z(k) +

1

τ
(2x(k+1) − x(k))

)
. (2.16b)

Conversely, the “completion” technique in [OV20] shows that PDHG coincides with DRS

applied to a reformulation of the problem. Similarly, when A = I in the primal Condat–Vũ

algorithm (2.12), we obtain a new algorithm and refer to it as the reduced primal Condat–Vũ

algorithm:

x(k+1) = proxτf
(
x(k) − τ(z(k) +∇h(x(k)))

)
(2.17a)

z(k+1) = proxσg∗
(
z(k) + σ(2x(k+1) − x(k))

)
. (2.17b)

Conversely, the reduced primal Condat–Vũ algorithm reverts to (2.12) via the “completion”

trick. We can also set f = 0 in the reduced Condat–Vũ algorithm or A = I in (2.15), and

obtain the reduced Loris–Verhoeven algorithm with shift :

x(k+1) = x(k) − τ(z(k) +∇h(x(k))) (2.18a)

z(k+1) = proxσg∗
(
(1− στ)z(k) + σ(x(k+1) − τ∇h(x(k))

)
. (2.18b)

Finally, due to the absence of f in (2.18), it is not clear how to apply the “completion” trick

to (2.18) to obtain (2.15).

Condat [Con13] also discusses a variant of (2.12), which we will call the dual Condat–Vũ

algorithm:

z(k+1) = proxσg∗(z
(k) + σAx(k)) (2.19a)

x(k+1) = proxτf
(
x(k) − τ(AT (2z(k+1) − z(k)) +∇h(x(k)))

)
. (2.19b)

Figure 2.2 summarizes the proximal algorithms derived from (2.19). When h = 0, algo-

rithm (2.19) reduces to PDHG applied to the dual of (2.1) (with h = 0), which is shown to

18

reduced dual

Condat–Vũ (2.22)
dual DRS (2.23)

reduced dual Loris–Verhoeven

with shift (2.24)

dual

Condat–Vũ (2.19)
dual PDHG (2.20)

dual Loris–Verhoeven

with shift (2.21)

proximal gradient (2.14)

h = 0f = 0

h = 0f = 0

co
m
pl
et
io
n

A = I

co
m
pl
et
io
n

A = IA = I

g = 0

Figure 2.2: Proximal methods derived from dual Condat–Vũ algorithm.

be equivalent to linearized ADMM [PB14] (also called Split Inexact Uzawa in [EZC10]):

z(k+1) = proxσg∗(z
(k) + σAx(k)) (2.20a)

x(k+1) = proxτf
(
x(k) − τ(AT (2z(k+1) − z(k)))

)
. (2.20b)

Setting g = 0 in (2.19) yields the proximal gradient algorithm (2.14). When f = 0, we

obtain a new algorithm:

z(k+1) = proxσg∗(z
(k) + σAx(k)) (2.21a)

x(k+1) = x(k) − τ(AT (2z(k+1) − z(k)) +∇h(x(k))). (2.21b)

Following the previous naming convention, we call it dual Loris–Verhoeven algorithm with

shift. Furthermore, setting A = I in (2.19) gives the reduced dual Condat–Vũ algorithm:

z(k+1) = proxσg∗(z
(k) + σx(k)) (2.22a)

x(k+1) = proxτf
(
x(k) − τ(2z(k+1) − z(k) +∇h(x(k)))

)
. (2.22b)

Conversely, applying the “completion” trick to this reduced algorithm recovers (2.19). Simi-

larly, setting A = I in dual PDHG gives dual DRS:

z(k+1) = proxτ−1g∗(z
(k) +

1

τ
x(k)) (2.23a)

19

Davis–Yin (2.27) (primal) DRS (2.16)proximal gradient (2.14)

PD3O (2.25) (primal) PDHG (2.13)Loris–Verhoeven (2.26)

h = 0f = 0

h = 0f = 0

co
m
pl
et
io
n

A = I

co
m
pl
et
io
n

A = IA = I

g = 0

Figure 2.3: Proximal algorithms derived from PD3O.

x(k+1) = proxτf
(
x(k) − τ(2z(k+1) − z(k))

)
. (2.23b)

It is just DRS (2.16) with f and g switched. Conversely, the “completion” trick recovers

dual PDHG (2.20) from dual DRS (2.23). We can also set A = I in (2.21) or f = 0 in the

reduced dual Condat–Vũ algorithm, and obtain the reduced dual Loris–Verhoeven algorithm

with shift :

z(k+1) = proxσg∗(z
(k) + σx(k)) (2.24a)

x(k+1) = x(k) − τ(2z(k+1) − z(k) +∇h(x(k))). (2.24b)

Again, owing to the lack of f in (2.24), it is unclear how to apply the “completion” trick

to (2.24) to obtain (2.21).

2.5.2 Primal–dual three-operator (PD3O) splitting algorithm

The third diagram, Figure 2.3, starts with the primal–dual three-operator (PD3O) splitting

algorithm [Yan18]

x(k+1) = proxτf (x
(k) − τ(AT z(k) +∇h(x(k)))) (2.25a)

z(k+1) = proxσg∗(z
(k) + σA(2x(k+1) − x(k) + τ∇h(x(k))− τ∇h(x(k+1)))). (2.25b)

Compared with the Condat–Vũ algorithm (2.12), PD3O seems to have slightly more com-

plicated updates and larger complexity per iteration, but the requirement for the stepsizes is

20

looser: στ‖A‖22 ≤ 1 and τ ≤ 1/L. When h = 0, (2.25) reduces to the (primal) PDHG (2.13).

The classical proximal gradient algorithm (2.14) can be obtained by setting g = 0. When

f = 0, it reduces to the iterations

x(k+1) = x(k) − τ(AT z(k) +∇h(x(k))) (2.26a)

z(k+1) = proxσg∗
(
(I − στAAT)z(k) + σA(x(k+1) − τ∇h(x(k+1)))

)
. (2.26b)

This algorithm was discovered independently as the Loris–Verhoeven algorithm [LV11], the

primal–dual fixed point algorithm based on proximity operator (PDFP2O) [CHZ13], and the

proximal alternating predictor corrector (PAPC) [DST15]. Comparison with (2.15) reveals

a minor difference between these two algorithms: the gradient term in the z-update is taken

at the newest primal iterate x(k+1) in Loris–Verhoeven (2.26) and at the previous point x(k)

in the shifted version. This difference is inherited in the proximal gradient algorithm (2.14)

and its shifted version (2.18).

Furthermore, when A = I and σ = 1/τ in PD3O, we recover the well-known Davis–Yin

splitting (DYS) algorithm [DY17]:

x(k+1) = proxτf (x
(k) − τ(z(k) +∇h(x(k)))) (2.27a)

z(k+1) = proxτ−1g∗(z
(k) +

1

τ
(2x(k+1) − x(k)) +∇h(x(k))−∇h(x(k+1))). (2.27b)

We can also set A = I in (2.26) and obtain the iterations

x(k+1) = x(k) − τ(z(k) +∇h(x(k))) (2.28a)

z(k+1) = proxσg∗
(
(1− στ)z(k) + σ(x(k+1) − τ∇h(x(k+1))

)
. (2.28b)

The stepsize conditions require στ ≤ 1 and τ ≤ 1/L. Thus we can set σ = 1/τ and

apply Moreau decomposition. The resulting algorithm is exactly the proximal gradient

algorithm (2.14). The only difference in the z-update between (2.18) and (2.28) is the point

at which the gradient of h is taken. The second algorithm uses the most up-to-date iterate

x(k+1) when evaluating the gradient of h, and this choice allows a larger stepsize τ .

21

dual

Davis–Yin (2.30)
dual DRS (2.23)proximal gradient (2.14)

PDDY (2.29) dual PDHG (2.20)Loris–Verhoeven (2.26)

h = 0f = 0

h = 0f = 0

co
m
pl
et
io
n

A = I

co
m
pl
et
io
n

A = IA = I

g = 0

Figure 2.4: Proximal algorithms derived from PDDY.

2.5.3 Primal–dual Davis–Yin (PDDY) splitting algorithm

The core algorithm in Figure 2.4 is the primal–dual Davis–Yin (PDDY) splitting algo-

rithm [SCM20]

z(k+1) = proxσg∗(z
(k) + σAx(k)) (2.29a)

x(k+1) = proxτf
(
x(k) − τAT (2z(k+1) − z(k))− τ∇h(x(k) + τAT (z(k) − z(k+1)))

)
. (2.29b)

The requirement for stepsizes is the same as that in PD3O: στ‖A‖22 ≤ 1 and τ ≤ 1/L.

Figure 2.4 is almost identical to Figure 2.3 with the roles of f and g exchanged. When

h = 0, PDDY reduces to the dual PDHG (2.20). In addition, when A = I and σ = 1/τ ,

PDDY reduces to the Davis–Yin algorithm, but with f and g exchanged:

z(k+1) = proxτ−1g∗(z
(k) +

1

τ
x(k)) (2.30a)

x(k+1) = proxτf
(
x(k) − τ(2z(k+1) − z(k) −∇h(x(k) + τ(z(k) − z(k+1)))

)
. (2.30b)

Similarly, when h = 0, A = I and σ = 1/τ , PDDY reverts to the Douglas–Rachford algorithm

with f and g switched (2.23).

We have seen that the middle and right parts of Figure 2.4 are those of Figure 2.3 with f

and g switched. However, when one of the functions f or g is absent, the algorithms reduced

from PD3O and PDDY are exactly the same. In particular, when f = 0, PDDY reduces to

the Loris–Verhoeven algorithm.

22

Proof. With a change of variables u(k+1) = x(k) + τAT (z(k) − z(k+1)), (2.29) with f = 0

becomes

z(k+1) = proxσg∗(z
(k) + σAx(k))

u(k+1) = x(k) + τAT (z(k) − z(k+1))

x(k+1) = u(k+1) − τAT z(k+1) − τ∇h(u(k+1)).

Eliminating x yields

z(k+1) = proxσg∗
(
(1− στAAT)z(k) + σA(u(k) − τ∇h(u(k)))

)
u(k+1) = u(k) − τ(AT z(k+1) +∇h(u(k))),

which is Loris–Verhoeven algorithm (2.26) with the order of updates switched.

23

CHAPTER 3

Bregman proximal splitting algorithms

As seen in Chapter 2, primal–dual proximal splitting methods are prevalent in solving large-

scale convex optimization problems. In these algorithms, the proximal operator is used to

capture the structure of the problem, and its evaluation is in general the computational

bottleneck in the implementation of proximal methods. To further improve the efficiency of

proximal algorithms, proximal operators based on generalized Bregman distances have been

proposed and incorporated in many methods [CT93, Eck93, Gul94, AT06, Tse08, BBT17,

BST18, LFN18, Teb18]. A Bregman proximal operator of a function may be easier to com-

pute than the standard Euclidean proximal operator, and hence reduce the complexity per

iteration of an optimization algorithm. This idea has been exploited in the optimal transport

problem [CLM21, CC22], where the relative entropy distance and its variant are chosen as the

distance-generating kernel, and then the computation of the corresponding Bregman proxi-

mal operator is accelerated. Another example is the optimization problems over nonnegative

trigonometric polynomials. In these problems, Itakura–Saito distance is used to formulate

the Bregman proximal operator, and then advanced techniques in numerical linear algebra

can be utilized in the computation of proximal operators [CV18]. As a second benefit of Breg-

man proximal operators, the generalized Bregman distance can help build a more accurate

local optimization model around the current iterate. This is often interpreted as a form of

preconditioning. For example, diagonal or quadratic preconditioning [PC11, JLL19, LXY21]

has been shown to improve the convergence rate of PDHG, as well as the accuracy of the

computed solution [ADH21].

24

In view of the two potential benefits of Bregman proximal operators, in this chapter

we present new Bregman extensions and convergence results for the Condat–Vũ and PD3O

algorithms. Specifically, the Condat–Vũ algorithm exists in a primal and dual variant. We

discuss extensions of the two algorithms that use Bregman proximal operators in the primal

and dual updates. The Bregman primal Condat–Vũ algorithm first appeared in [CP16b,

Algorithm 1], and is also a special case of the algorithm proposed in [YA21] for a more

general convex–concave saddle point problem. We give a new derivation of this method

and its dual variant, by applying the Bregman proximal point method to the primal–dual

optimality conditions. Based on the interpretation, we provide a unified framework for the

convergence analysis of the two variants, and show an O(1/k) ergodic convergence rate, which

is consistent with previous results for Euclidean proximal operators in [Con13, Vu13] and

Bregman proximal operators in [CP16b]. We also give a convergence result for the primal

and dual iterates. Moreover, we propose an easily implemented backtracking line search

technique for selecting stepsizes in the Bregman dual Condat–Vũ algorithm for problems

with equality constraints. We give a detailed analysis of the algorithm with line search and

obtain an O(1/k) ergodic rate of convergence. Last, we propose a Bregman extension for

PD3O and establish an ergodic convergence result.

This chapter is organized as follows. Section 3.1 provides some necessary background

on Bregman distances. In Section 3.2 we discuss the Bregman primal and dual Condat–Vũ

algorithms and analyze their convergence. The line search technique and its technique and

its convergence are discussed in Section 3.3. In Section 3.4 we extend PD3O to a Bregman

proximal method and analyze its convergence. Section 3.5 contains results of a numerical

experiment. Most content of this chapter is adapted from [JV22b].

25

3.1 Bregman proximal operators

In this section we give the definition of Bregman divergence, Bregman proximal operators,

and the basic properties that will be used in the dissertation. Bregman divergence was first

introduced in [Bre67], and named by Censor and Lent [CL81]. Later, Bregman divergence

has been widely used in first-order proximal methods [CZ92, CT93, Eck93, Gul94, Kiw97,

Teb97, BBC03], and some other applications of Bregman divergence arise in statistics and

information theory (see, for example, [BGW05] and references therein). We refer interested

readers to [CZ97, Bub15] for an in-depth discussion of Bregman divergence, their history,

and applications.

Let φ be a convex function with a domain that has nonempty interior, and assume φ

is continuous on domφ and continuously differentiable on int(domφ). The generalized

distance (or Bregman divergence) generated by the kernel function φ is defined as the function

d(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉,

with domain dom d = domφ × int(domφ). The distance generated by the kernel φ(x) =

(1/2)‖x‖2 is the squared Euclidean distance d(x, y) = (1/2)‖x− y‖2. The best known non-

quadratic example is the relative entropy

d(x, y) =
n∑
i=1

(xi log(xi/yi)− xi + yi), dom d = Rn
+ ×Rn

++. (3.1)

This generalized distance is generated by the kernel φ(x) =
∑

i xi log xi.

Generalized distances are not necessarily symmetric (d(x, y) 6= d(y, x)), and thus some

literature call it Bregman divergence instead of Bregman distance. But they still share

some other important properties with the Euclidean distance. An important example is the

triangle identity [CT93, Lemma 3.1]

〈∇φ(y)−∇φ(z), x− y〉 = d(x, z)− d(x, y)− d(y, z),

26

which holds for all x ∈ domφ and y, z ∈ int(domφ). This generalizes the identity

〈y − z, x− y〉 =
1

2

(
‖x− z‖2 − ‖x− y‖2 − ‖y − z‖2

)
.

Additional assumptions may have to be imposed on the kernel function φ, depending on the

application and the algorithm in which the generalized distance is used. For now we only

assume convexity, continuity, and continuously differentiability on the interior of the domain.

Other properties will be mentioned when needed.

The Bregman proximal operator of a function f is

proxφf (y, a) = argmin
x

(f(x) + 〈a, x〉+ d(x, y)) (3.2)

= argmin
x

(f(x) + 〈a, x〉+ φ(x)− 〈∇φ(y), x〉). (3.3)

It is assumed that for every a and every y ∈ int(domφ) the minimizer x̂ = proxφf (y, a) is

unique and in int(domφ). From the expression (3.3) we see that x̂ = proxφf (y, a) satisfies

∇φ(y)−∇φ(x̂)− a ∈ ∂f(x̂).

Equivalently, by definition of subgradient,

f(x) + 〈a, x〉 ≥ f(x̂) + 〈a, x̂〉+ 〈∇φ(y)−∇φ(x̂), x− x̂〉

= f(x̂) + 〈a, x̂〉+ d(x̂, y) + d(x, x̂)− d(x, y) (3.4)

for all x ∈ dom f ∩ domφ.

When d(x, y) = 1
2
‖x−y‖2, the corresponding Bregman proximal operator is the standard

proximal operator applied to y − a:

proxφf (y, a) = proxf (y − a).

For this distance, closedness and convexity of f guarantee that the proximal operator is well

defined [Mor65]. The questions of existence and uniqueness are more complicated for general

Bregman distances. There are no simple general conditions that guarantee that for every a

27

and every y ∈ int(domφ) the generalized proximal operator (3.2) is uniquely defined and in

int(domφ). Some sufficient conditions are provided (see, for example, [Bub15, Section 4.1],

[BBT17, Assumption A]), but they may be quite restrictive or difficult to verify in practice.

In applications, however, the Bregman proximal operator is used with specific combinations

of f and φ, for which the minimization problem in (3.2) is particularly easy to solve. In those

applications, existence and uniqueness of the solution follow directly from the closed-form

solution or availability of a fast algorithm to compute it. A classical example is the relative

entropy distance (3.1) with f given by the indicator function of the hyperplane {x | 1Tx = 1}.

Problem (3.2) can be written as

minimize aTx+
n∑
i=1

(xi log(xi/yi)− xi)

subject to 1Tx = 1.

For any a and any positive y, the solution of (3.2) is unique and equal to the positive vector

proxdf (y, a) =
1∑n

i=1 yie
−ai

y1e
−a1

...

yne
−an

 . (3.5)

3.2 Bregman Condat–Vũ three-operator splitting algorithms

We now discuss two Bregman three-operator splitting algorithms for the problem (2.1). The

algorithms use a generalized distance dp in the primal space, generated by a kernel φp, and

a generalized distance dd in the dual space, generated by a kernel φd. The first algorithm is

x(k+1) = proxφpτf
(
x(k), τAT z(k) + τ∇h(x(k))

)
(3.6a)

z(k+1) = proxφdσg∗
(
z(k),−σA(2x(k+1) − x(k))

)
(3.6b)

and will be referred to as the Bregman primal Condat–Vũ algorithm. The second algorithm

will be called the Bregman dual Condat–Vũ algorithm:

z(k+1) = proxφdσg∗(z
(k),−σAx(k)) (3.7a)

28

x(k+1) = proxφpτf (x
(k), τAT (2z(k+1) − z(k)) + τ∇h(x(k))). (3.7b)

The two algorithms need starting points x(0) ∈ int(domφp)∩domh, and z(0) ∈ int(domφd).

Conditions on stepsizes σ, τ will be specified later. When Euclidean distances are used for

the primal and dual proximal operators, the two algorithms reduce to the primal and dual

variants of the Condat–Vũ algorithm (2.12) and (2.19), respectively. Algorithm (3.6) has

been proposed in [CP16a]. Here we discuss it together with (3.6) in a unified framework.

In Section 3.2.1 we show that the proposed algorithms can be interpreted as the Bregman

proximal point method applied to a monotone inclusion problem. In Section 3.2.2 we analyze

their convergence. In Section 3.2.3 we discuss the connections between the two algorithms

and other Bregman proximal splitting methods.

Assumptions Throughout Section 3.2 we make the following assumptions. The kernels

φp and φd are 1-strongly convex with respect to norms ‖ · ‖p and ‖ · ‖d, respectively:

dp(x, x′) ≥ 1

2
‖x− x′‖2p, dd(z, z′) ≥ 1

2
‖z − z′‖2d (3.8)

for all (x, x′) ∈ dom dp and (z, z′) ∈ dom dd. The assumption that the strong convexity

constants are equal to one can be made without loss of generality, by scaling the norms (or

distances) if needed. We also assume that the function Lφp − h is convex for some L > 0.

More precisely, domφp ⊆ domh and

h(x)− h(x′)− 〈∇h(x′), x− x′〉 ≤ Ldp(x, x′) for all (x, x′) ∈ dom dp. (3.9)

Note that this assumption is looser than the one in [CP16a, Equation (4)]. We denote by

‖A‖ the matrix norm

‖A‖ = sup
u6=0,v 6=0

〈v, Au〉
‖v‖d‖u‖p

= sup
u6=0

‖Au‖d,∗
‖u‖p

= sup
v 6=0

‖ATv‖p,∗
‖v‖d

, (3.10)

where ‖ · ‖p,∗ and ‖ · ‖d,∗ are the dual norms of ‖ · ‖p and ‖ · ‖d.

It is also assumed that the primal–dual optimality conditions (2.4) have a solution (x?, z?)

with x? ∈ domφp and z? ∈ domφd.

29

3.2.1 Derivation from Bregman proximal point method

The Bregman Condat–Vũ algorithms (3.6) and (3.7) can be viewed as applications of the

Bregman proximal point algorithm to the optimality conditions (2.4). This interpretation

extends the derivation of the Bregman PDHG algorithm from the Bregman proximal point

algorithm given in [JV22a]. The idea originates with He and Yuan’s interpretation of PDHG

as a “preconditioned” proximal point algorithm [HY12].

The Bregman proximal point algorithm [Eck93, CZ97, Gul94] is an algorithm for mono-

tone inclusion problems 0 ∈ F (u). The update u(k+1) in one iteration of the algorithm is

defined as the solution of the inclusion

∇φ(u(k))−∇φ(u(k+1)) ∈ F (u(k+1)),

where φ is a Bregman kernel function. Applied to (2.4), with a kernel function φpd, the

algorithm generates a sequence (x(k), z(k)) defined by

∇φpd(x(k), z(k))−∇φpd(x(k+1), z(k+1)) ∈

AT z(k+1) + ∂f(x(k+1)) +∇h(x(k+1))

−Ax(k+1) + ∂g∗(z(k+1))

 . (3.11)

3.2.1.1 Primal–dual Bregman distances

We introduce four possible primal–dual kernel functions: the functions

φ+(x, z) =
1

τ
φp(x) +

1

σ
φd(z) + 〈z, Ax〉, φ−(x, z) =

1

τ
φp(x) +

1

σ
φd(z)− 〈z, Ax〉,

where σ, τ > 0, and the functions

φdcv(x, z) = φ+(x, z)− h(x), φpcv(x, z) = φ−(x, z)− h(x).

The subscripts in φ+ and φ− refer to the sign of the inner product term 〈z, Ax〉. The

subscripts in φpcv and φdcv indicate the algorithm (Bregman primal or dual Condat-Vũ) for

which these distances will be relevant. If these kernel functions are convex, they generate

30

the following Bregman distances. The distances generated by φ+ and φ− are

d+(x, z;x′, z′) =
1

τ
dp(x, x′) +

1

σ
dd(z, z′) + 〈z − z′, A(x− x′)〉

d−(x, z;x′, z′) =
1

τ
dp(x, x′) +

1

σ
dd(z, z′)− 〈z − z′, A(x− x′)〉,

respectively, and the distances generated by φdcv and φpcv are

ddcv(x, z;x′, z′) = d+(x, z;x′, z′)− h(x) + h(x′) + 〈∇h(x′), x− x′〉

dpcv(x, z;x′, z′) = d−(x, z;x′, z′)− h(x) + h(x′) + 〈∇h(x′), x− x′〉.

We now show that φ+ and φ− are convex if

στ‖A‖2 ≤ 1

and strongly convex if στ‖A‖2 < 1, and that the functions φdcv and φpcv are convex if

στ‖A‖2 + τL ≤ 1 (3.12)

and strongly convex if στ‖A‖2 + τL < 1.

Proof. To show that the kernel functions φ+ and φ− are convex, we show that d+ and d−

are nonnegative. Suppose στ‖A‖2 ≤ δ2 with 0 < δ ≤ 1. Then (3.8) and the arithmetic–

geometric mean inequality imply that

|〈z − z′, A(x− x′)〉| ≤ ‖A‖‖z − z′‖d‖x− x′‖p

≤ δ√
στ
‖z − z′‖d‖x− x′‖p

≤ δ

2τ
‖x− x′‖2p +

δ

2σ
‖z − z′‖2p

≤ δ

τ
dp(x, x′) +

δ

σ
dd(z, z′). (3.13)

Therefore

d+(x, z;x′, z′) =
1

τ
dp(x, x′) +

1

σ
dd(z, z′) + 〈z − z′, A(x− x′)〉

31

≥ 1− δ
τ

dp(x, x′) +
1− δ
σ

dd(z, z′)

≥ 1− δ
2τ
‖x− x′‖2p +

1− δ
2σ
‖z − z′‖2d,

d−(x, z;x′, z′) =
1

τ
dp(x, x′) +

1

σ
dd(z, z′)− 〈z − z′, A(x− x′)〉

≥ 1− δ
τ

dp(x, x′) +
1− δ
σ

dd(z, z′)

≥ 1− δ
2τ
‖x− x′‖2p +

1− δ
2σ
‖z − z′‖2d.

With δ = 1, this shows convexity of φ+ and φ−; with δ < 1, strong convexity.

Similarly, if στ‖A‖2 ≤ δ(δ − τL), with 0 < δ ≤ 1, then

|〈z − z′, A(x− x′)〉| ≤
√
δ(δ − τL)√

στ
‖z − z′‖d‖x− x′‖p

≤ δ − τL
2τ

‖x− x′‖2p +
δ

2σ
‖z − z′‖2d

≤ δ − τL
τ

dp(x, x′) +
δ

σ
dd(z, z′)

and

ddcv(x, z;x′, z′) =
1

τ
dp(x, x′) +

1

σ
dd(z, z′) + 〈z − z′, A(x− x′)〉

− h(x) + h(x′) + 〈∇h(x′), x− x′〉

≥ (
1− δ
τ

+ L)dp(x, x′) +
1− δ
σ

dd(z, z′)− h(x) + h(x′) + 〈∇h(x′), x− x′〉

≥ 1− δ
τ

dp(x, x′) +
1− δ
σ

dd(z, z′),

dpcv(x, z;x′, z′) =
1

τ
dp(x, x′) +

1

σ
dd(z, z′)− 〈z − z′, A(x− x′)〉

− h(x) + h(x′) + 〈∇h(x′), x− x′〉

≥ (
1− δ
τ

+ L)dp(x, x′) +
1− δ
σ

dd(z, z′)− h(x) + h(x′) + 〈∇h(x′), x− x′〉

≥ 1− δ
τ

dp(x, x′) +
1− δ
σ

dd(z, z′).

32

3.2.1.2 Bregman Condat-Vũ algorithms from proximal point method

The Bregman primal Condat–Vũ algorithm (3.6) is the Bregman proximal point method

with the kernel function φpd = φpcv. If we take φpd = φpcv in (3.11), we obtain two coupled

inclusions that determine x(k+1), z(k+1). The first one is

0 ∈ 1

τ
(∇φp(x(k+1))−∇φp(x(k)))− AT (z(k+1) − z(k))−∇h(x(k+1)) +∇h(x(k))

+ AT z(k+1) + ∂f(x(k+1)) +∇h(x(k+1))

=
1

τ
(∇φp(x(k+1))−∇φp(x(k))) + AT z(k) +∇h(x(k)) + ∂f(x(k+1)).

This shows that x(k+1) solves the optimization problem

minimize f(x) + 〈AT z(k) +∇h(x(k)), x〉+
1

τ
dp(x, x(k)).

The solution is the x-update (3.6a) in the Bregman primal Condat–Vũ method. The second

inclusion is

0 ∈ 1

σ
(∇φd(z(k+1))−∇φd(z(k)))− A(x(k+1) − x(k))− Ax(k+1) + ∂g∗(z(k+1))

=
1

σ
(∇φd(z(k+1))−∇φd(z(k)))− A(2x(k+1) − x(k)) + ∂g∗(z(k+1)).

This shows that z(k+1) solves the optimization problem

minimize g∗(z)− 〈z, A(2x(k+1) − x(k))〉+
1

σ
dd(z, z(k)).

The solution is the z-update (3.6b).

Choosing φpd = φdcv in (3.11) yields the Bregman dual Condat–Vũ algorithm (3.7).

Substituting φpd = φdcv in (3.11) gives the inclusions

0 ∈ 1

τ
(∇φp(x(k+1))−∇φp(x(k))) + AT (z(k+1) − z(k))−∇h(x(k+1)) +∇h(x(k))

+ AT z(k+1) + ∂f(x(k+1)) +∇h(x(k+1))

=
1

τ
(∇φp(x(k+1))−∇φp(x(k))) + AT (2z(k+1) − z(k)) +∇h(x(k)) + ∂f(x(k+1))

33

and

0 ∈ 1

σ
(∇φd(z(k+1))−∇φd(z(k))) + A(x(k+1) − x(k))− Ax(k+1) + ∂g∗(z(k+1))

=
1

σ
(∇φd(z(k+1))−∇φd(z(k)))− Ax(k) + ∂g∗(z(k+1)).

The second inclusion shows that z(k+1) solves the optimization problem

minimize g∗(z) + 〈z, Ax(k)〉+
1

σ
dd(z, z(k)).

The solution is given by the z-update (3.7a). Given z(k+1), one can solve the first inclusion

for x(k+1), which involves the optimization problem

minimize f(x) + 〈AT (2z(k+1) − z(k)) +∇h(x(k)), x〉+
1

τ
dp(x, x(k)).

The solution is the x-update (3.7b).

3.2.2 Convergence analysis

The derivation in Section 3.2.1 allows us to apply existing convergence theory for the

Bregman proximal point method for monotone inclusions to the proposed algorithms (3.6)

and (3.7). The literature on the Bregman proximal point method for monotone inclu-

sions [Eck93, Gul94, CZ97] focuses on the convergence of iterates, and this generally re-

quires additional assumptions on φp and φd (beyond the assumptions of convexity made

in Section 3.2.1). In this section we present a self-contained convergence analysis and give a

direct proof of an O(1/k) rate of ergodic convergence. We also give a self-contained proof of

convergence of the iterates x(k) and z(k).

We make the assumptions listed in Section 3.2.1: the strong convexity assumption (3.8)

for the primal and dual kernels φp and φd, and the relative smoothness property (3.9) of

the function h. We assume that the stepsizes σ, τ satisfy (3.12), and that the primal–dual

optimality condition (2.4) has a solution (x?, z?) ∈ domφp × domφd.

34

For the sake of brevity we combine the analysis of the Bregman primal and the Bregman

dual Condat-Vũ algorithms. In the following, d, d̃, φ̃ are defined as

d = d−, d̃ = dpcv, φ̃ = φpcv

for the Bregman primal Condat–Vũ algorithm (3.6) and as

d = d+, d̃ = ddcv, φ̃ = φdcv

for the Bregman dual Condat–Vũ algorithm (3.7).

3.2.2.1 One-iteration analysis

We first show that the iterates x(k+1), z(k+1) generated by the Bregman Condat–Vũ algo-

rithms (3.6) and (3.7) satisfy

L(x(k+1), z)− L(x, z(k+1))

≤ d(x, z;x(k), z(k))− d(x, z;x(k+1), z(k+1))− d̃(x(k+1), z(k+1);x(k), z(k)) (3.14)

for all x ∈ dom f ∩ domφp and z ∈ dom g∗ ∩ domφd. More specifically, for Bregman

primal Condat–Vũ algorithm, we have

L(x(k+1), z)− L(x, z(k+1))

≤ d−(x, z;x(k), z(k))− d−(x, z;x(k+1), z(k+1))− dpcv(x(k+1), z(k+1);x(k), z(k)),

and for Bregman dual Condat–Vũ algorithm,

L(x(k+1), z)− L(x, z(k+1))

≤ d+(x, z;x(k), z(k))− d+(x, z;x(k+1), z(k+1))− ddcv(x(k+1), z(k+1);x(k), z(k)),

Proof. We write (3.6) and (3.7) in a unified notation as

x(k+1) = proxφpτf (x
(k), τ(AT z̃ +∇h(x(k)))) (3.15a)

35

z(k+1) = proxφdσg∗(z
(k),−σAx̃) (3.15b)

where x̃ and z̃ are defined in the following table:

Bregman primal Condat–Vũ algorithm x̃ = 2x(k+1) − x(k) z̃ = z(k)

Bregman dual Condat–Vũ algorithm x̃ = x(k) z̃ = 2z(k+1) − z(k).

The optimality condition (3.4) for the proximal operator evaluation (3.15a) is that

τ(f(x(k+1))−f(x)) ≤ dp(x, x(k))−dp(x(k+1), x(k))−dp(x, x(k+1))+τ〈AT z̃+∇h(x(k)), x−x(k+1)〉

for all x ∈ dom f ∩ domφp. The optimality condition for (3.15b) is that

σ(g∗(z(k+1))− g∗(z)) ≤ dd(z, z(k))− dd(z(k+1), z(k))− dd(z, z(k+1))− σ〈z − z(k+1), Ax̃〉

for all z ∈ dom g∗ ∩ domφd. Combining the two inequalities gives

L(x(k+1), z)− L(x, z(k+1))

= f(x(k+1))− f(x) + h(x(k+1))− h(x) + g∗(z(k+1))− g∗(z) + 〈AT z, x(k+1)〉 − 〈z(k+1), Ax〉

≤ 1

τ

(
dp(x, x(k))− dp(x, x(k+1))− dp(x(k+1), x(k))

)
+

1

σ

(
dd(z, z(k))− dd(z, z(k+1))− dd(z(k+1), z(k))

)
+ h(x(k+1))− h(x) + 〈∇h(x(k)), x− x(k+1)〉

+ 〈AT z̃, x− x(k+1)〉 − 〈z − z(k+1), Ax̃〉+ 〈AT z, x(k+1)〉 − 〈z(k+1), Ax〉

≤ 1

τ

(
dp(x, x(k))− dp(x, x(k+1))− dp(x(k+1), x(k))

)
+

1

σ

(
dd(z, z(k))− dd(z, z(k+1))− dd(z(k+1), z(k))

)
+ h(x(k+1))− h(x(k)) + 〈∇h(x(k)), x(k+1) − x(k)〉

+ 〈AT z̃, x− x(k+1)〉 − 〈z − z(k+1), Ax̃〉+ 〈AT z, x(k+1)〉 − 〈z(k+1), Ax〉 (3.16)

for all x ∈ dom f∩domφp and all z ∈ dom g∗∩domφd. The second inequality follows from

convexity of h. Substituting the expressions for x̃ and z̃ in the Bregman primal Condat–Vũ

algorithm (3.6), we obtain on the last line of (3.16)

〈AT z̃, x− x(k+1)〉 − 〈z − z(k+1), Ax̃〉+ 〈AT z, x(k+1)〉 − 〈z(k+1), Ax〉

36

= 〈z(k), A(x− x(k+1))〉 − 〈z − z(k+1), A(2x(k+1) − x(k))〉+ 〈AT z, x(k+1)〉 − 〈z(k+1), Ax〉

= 〈z(k) − z(k+1), A(x− x(k+1))〉+ 〈z − z(k+1), A(x(k) − x(k+1))〉

= −〈z − z(k), A(x− x(k))〉+ 〈z − z(k+1), A(x− x(k+1))〉+ 〈z(k+1) − z(k), A(x(k+1) − x(k))〉.

Then for Bregman primal Condat–Vũ algorithm, (3.16) implies

L(x(k+1), z)− L(x, z(k+1))

≤ 1

τ
dp(x, x(k)) +

1

σ
dd(z, z(k))− 〈z − z(k), A(x− x(k))〉

−
(1

τ
dp(x, x(k+1)) +

1

σ
dd(z, z(k+1))− 〈z − z(k+1), A(x− x(k+1))〉

)
−
(1

τ
dp(x(k+1), x(k)) +

1

σ
dd(z(k+1), z(k))− 〈z(k+1) − z(k), A(x(k+1) − x(k))〉

)
+ h(x(k+1))− h(x(k))− 〈∇h(x(k)), x(k+1) − x(k)〉

= d−(x, z;x(k), z(k))− d−(x, z;x(k+1), z(k+1))− dpcv(x(k+1), z(k+1);x(k), z(k)).

Similarly, if we substitute the expressions for x̃ and z̃ in the Bregman dual Condat–Vũ

algorithm, the last line of (3.16) becomes

〈AT z̃, x− x(k+1)〉 − 〈z − z(k+1), Ax̃〉+ 〈AT z, x(k+1)〉 − 〈z(k+1), Ax〉

= 〈AT (z − z(k)), x− x(k)〉 − 〈AT (z − z(k+1)), x− x(k+1)〉 − 〈AT (z(k+1) − z(k)), x(k+1) − x(k)〉,

and then (3.16) implies that

L(x(k+1), z)− L(x, z(k+1))

≤ 1

τ
dp(x, x(k)) +

1

σ
dd(z, z(k)) + 〈z − z(k), A(x− x(k))〉

−
(1

τ
dp(x, x(k+1)) +

1

σ
dd(z, z(k+1)) + 〈z − z(k+1), A(x− x(k+1))〉

)
−
(1

τ
dp(x(k+1), x(k)) +

1

σ
dd(z(k+1), z(k)) + 〈z(k+1) − z(k), A(x(k+1) − x(k))〉

)
+ h(x(k+1))− h(x(k))− 〈∇h(x(k)), x(k+1) − x(k)〉

= d+(x, z;x(k), z(k))− d+(x, z;x(k+1), z(k+1))− ddcv(x(k+1), z(k+1);x(k), z(k)).

37

3.2.2.2 Ergodic convergence

We define averaged iterates

x(k)avg =
1

k

k∑
i=1

x(i), z(k)avg =
1

k

k∑
i=1

z(i) (3.17)

for k ≥ 1. We show that for both algorithms (3.6) and (3.7),

L(x(k)avg, z)− L(x, z(k)avg) ≤
2

k

(1

τ
dp(x, x(0)) +

1

σ
dd(z, z(0))

)
(3.18)

for all x ∈ dom f ∩ domφp and z ∈ dom g∗ ∩ domφd.

Proof. From (3.14), since L(u, v) is convex in u and concave in v,

L(x(k)avg, z)− L(x, z(k)avg) ≤
1

k

k∑
i=1

(
L(x(i), z)− L(x, z(i))

)
≤ 1

k

(
d(x, z;x(0), z(0))− d(x, z;x(k), z(k))

)
≤ 1

k
d(x, z;x(0), z(0))

≤ 2

k

(1

τ
dp(x, x(0)) +

1

σ
dd(z, z(0))

)
for all x ∈ dom f ∩domφp and z ∈ dom g∗∩domφd. The last step follows from (3.13).

Substituting x = x?, z = z? in (3.18) gives

L(x(k)avg, z
?)− L(x?, z(k)avg) ≤

2

k

(1

τ
dp(x?, x(0)) +

1

σ
dd(z?, z(0))

)
.

More generally, if X ⊆ domφp and Z ⊆ domφd are compact sets that contain optimal

solutions x?, z?, respectively, then the merit function η (2.7) is upper bounded by

η(x(k)avg, z
(k)
avg) ≤

2

k

(1

τ
sup
x∈X

dp(x, x(0)) +
1

σ
sup
z∈Z

dd(z, z(0))
)
.

38

3.2.2.3 Monotonicity properties

For x = x?, z = z?, the left-hand side of (3.14) is nonnegative and therefore

d(x?, z?;x(k+1), z(k+1)) ≤ d(x?, z?;x(k), z(k))− d̃(x(k+1), z(k+1);x(k), z(k)) (3.19)

for k ≥ 0. Hence d(x?, z?;x(k+1), z(k+1)) ≤ d(x?, z?;x(k), z(k)) and

d(x?, z?;x(k), z(k)) ≤ d(x?, z?;x(0), z(0)). (3.20)

The inequality (3.19) also implies that

k∑
i=0

d̃(x(i+1), z(i+1);x(i), z(i)) ≤ d(x?, z?;x(0), z(0)).

Hence d̃(x(k+1), z(k+1);x(k), z(k))→ 0.

3.2.2.4 Convergence of iterates

Convergence of iterates can be shown under additional assumptions about the primal and

dual distance functions. The following two assumptions are common in the literature on

Bregman distances [CT93, Eck93, Gul94, CZ97].

1. For fixed x and z, the sublevel sets

{x′ | dp(x, x′) ≤ γ}, and {z′ | dd(z, z′) ≤ γ}

are closed. In other words, the distances dp(x, x′) and dd(z, z′) are closed functions of x′

and z′, respectively. Since a sum of closed functions is closed, the distance d(x, z;x′, z′)

is a closed function of (x′, z′), for fixed (x, z).

2. If x̃(k) ∈ int(domφp) converges to x ∈ domφp, then dp(x, x̃(k)) → 0. Similarly, if

z̃(k) ∈ int(domφd) converges to z ∈ domφd, then dd(z, z̃(k))→ 0.

39

We also assume that στ‖A‖2 + τL < 1. As shown in Section 3.2.1.1 this implies that the

kernel functions φpcv and φdcv are strongly convex and that

d̃(x, z;x′, z′) ≥ α

2τ
‖x− x′‖2p +

α

2σ
‖z − z′‖2d (3.21)

for some α > 0. Similarly, στ‖A‖2 < 1 implies that

d(x, z;x′, z′) ≥ β

2τ
‖x− x′‖2p +

β

2σ
‖z − z′‖2d (3.22)

for some β > 0. Recall that d = d−, d̃ = dpcv for the Bregman primal Condat–Vũ algo-

rithm (3.6), and d = d+, d̃ = ddcv for the Bregman dual Condat–Vũ algorithm.

Proof. We first note that d̃(x(k+1), z(k+1);x(k), z(k))→ 0 and (3.21) imply that

x(k+1) − x(k) → 0, and z(k+1) − z(k) → 0.

The inequality (3.20), together with (3.22), implies that the sequence (x(k), z(k)) is bounded.

Let (x(ki), z(ki)) be a convergent subsequence of (x(k), z(k)) with limit (x̂, ẑ). Since x(ki+1) −

x(ki) → 0 and z(ki+1) − z(ki) → 0, the sequence (x(ki+1), z(ki+1)) also converges to (x̂, ẑ). We

show that (x̂, ẑ) satisfies the optimality condition (2.4).

From (3.20), d(x?, z?;x(ki), z(ki)) is bounded. Since the sublevel sets

{(x′, z′) | d(x?, z?;x′, z′) ≤ γ}

are closed subsets of int(domφp) ∩ int(domφd), so is the limit:

(x̂, ẑ) ∈ int(domφp) ∩ int(domφd).

The iterates in the subsequence satisfy

∇φpd(x(ki), z(ki))−∇φpd(x(ki+1), z(ki+1)) +

−AT z(ki+1)

Ax(ki+1)

 ∈
∂f(x(ki+1)) +∇h(x(ki+1))

∂g∗(z(ki+1))

 ,
(3.23)

40

where φpd = φpcv in the Bregman primal Condat–Vũ algorithm and φpd = φdcv in the

Bregman dual Condat–Vũ algorithm. The left-hand side of (3.23) converges to (−AT ẑ, Ax̂)

because ∇φpd is continuous on int(domφpd). Since the operator on right-hand side of (3.23)

is maximal monotone the limit point (x̂, ẑ) satisfies the optimality condition−AT ẑ
Ax̂

 ∈
∂f(x̂) +∇h(x̂)

∂g∗(ẑ)

(see [Bre73, page 27], [Tse00, Lemma 3.2]).

To show convergence of the entire sequence (x(k), z(k)), we substitute (x̂, ẑ) in (3.14):

L(x(k+1), ẑ)− L(x̂, z(k+1)) ≤ d(x̂, ẑ;x(k), z(k))− d(x̂, ẑ;x(k+1), z(k+1)).

Since the left-hand side is nonnegative, we have d(x̂, ẑ;x(k), z(k)) ≤ d(x̂, ẑ;x(k−1), z(k−1)) for

all k ≥ 1. This further implies that

d(x̂, ẑ;x(k), z(k)) ≤ d(x̂, ẑ;x(ki), z(ki))

for all k ≥ ki. By the second additional assumption mentioned above, the right-hand side

converges to zero. Then the left-hand side also converges to zero and, from (3.22) x(k) → x̂

and z(k) → ẑ.

3.2.3 Relation to other Bregman proximal splitting algorithms

Following similar steps as in Section 2.5, we obtain several Bregman proximal splitting

methods as special cases of (3.6) and (3.7). The connections are summarized in Figure 3.1

and Figure 3.2. A comparison of Figures 2.1 and 3.1 shows that all the reduction relations

(A = I) are still valid. However, it is unclear how to apply the “completion” operation to

algorithms based on non-Euclidean Bregman distances.

When h = 0, (3.6) reduces to Bregman PDHG [CP16b]:

x(k+1) = proxφpτf (x
(k), τAT z(k)) (3.24a)

41

reduced Bregman primal

Condat–Vũ (3.27)

Bregman (primal)

Douglas–Rachford (3.28)

Bregman proximal gradient

with shift (3.29)

Bregman primal

Condat–Vũ (3.6)

Bregman

(primal) PDHG (3.24)

Bregman Loris–Verhoeven

with shift (3.26)

Bregman

proximal gradient (3.25)

h = 0f = 0

h = 0f = 0

A = I A = IA = I

g = 0

Figure 3.1: Proximal algorithms derived from Bregman primal Condat–Vũ algorithm (3.6).

z(k+1) = proxφdσg∗(z
(k),−σA(2x(k+1) − x(k))). (3.24b)

When g = 0, g∗ = δ{0} (and assuming z(0) = 0), we obtain the Bregman proximal gradient

algorithm [BBT17]:

x(k+1) = proxφpτf (x
(k), τ∇h(x(k))). (3.25)

When f = 0 in (3.6), we obtain the Bregman Loris–Verhoeven algorithm with shift:

x(k+1) = argmin
x

(
〈∇h(x(k))− AT z(k), x〉+

1

τ
dp(x, x(k))

)
(3.26a)

z(k+1) = proxφdσg∗
(
z(k),−σA(2x(k+1) − x(k))

)
. (3.26b)

Furthermore, when A = I in (3.6), we recover the reduced Bregman primal Condat–Vũ

algorithm:

x(k+1) = proxφpτf
(
x(k), τ(z(k) +∇h(x(k))

)
(3.27a)

z(k+1) = proxφdσg∗
(
z(k),−σ(2x(k+1) − x(k))

)
. (3.27b)

Similarly, setting A = I in Bregman PDHG (3.24) yields the Bregman Douglas–Rachford

42

reduced Bregman dual

Condat–Vũ (3.32)

Bregman dual

Douglas–Rachford (3.34)

reduced Bregman dual

Loris–Verhoeven with shift (3.33)

Bregman dual

Condat–Vũ (3.7)

Bregman dual

PDHG (3.30)

Bregman dual Loris–Verhoeven

with shift (3.31)

Bregman proximal gradient (3.25)

h = 0f = 0

h = 0f = 0

A = I A = IA = I

g = 0

Figure 3.2: Proximal algorithms derived from Bregman dual Condat–Vũ algorithm (3.7).

algorithm:

x(k+1) = proxφpτf (x
(k), τz(k)) (3.28a)

z(k+1) = proxφdσg∗(z
(k),−σ(2x(k+1) − x(k))). (3.28b)

Last, when we set A = I in (3.26), we have the Bregman reduced Loris–Verhoeven algorithm

with shift:

x(k+1) = argmin
x

(
〈∇h(x(k))− z(k), x〉+

1

τ
dp(x, x(k))

)
(3.29a)

z(k+1) = proxφdσg∗
(
z(k),−σ(2x(k+1) − x(k))

)
. (3.29b)

Similarly, the Bregman dual Condat–Vũ algorithm (3.7) can be reduced to some other

Bregman proximal splitting methods, as summarized in Figure 3.2. When h = 0, (3.7)

reduces to the Bregman dual PDHG:

z(k+1) = proxφdσg∗(z
(k),−σAx(k)) (3.30a)

x(k+1) = proxφpτf (x
(k), τAT (2z(k+1) − x(k))). (3.30b)

43

When g = 0, g∗ = δ{0} (and assuming z(0) = 0), we obtain the Bregman proximal gradi-

ent algorithm (3.25). When f = 0 in (3.7), we obtain the Bregman dual Loris–Verhoeven

algorithm with shift :

z(k+1) = proxφdσg∗(z
(k),−σAx(k)) (3.31a)

x(k+1) = argmin
x

(
〈AT (2z(k+1) − z(k)) +∇h(x(k)), x〉+

1

τ
dp(x, x(k))

)
. (3.31b)

Moreover, if we set A = I in the Bregman dual Condat–Vũ algorithm (3.7), we obtain its

reduced variant:

z(k+1) = proxφdσg∗(z
(k),−σx(k)) (3.32a)

x(k+1) = proxφpτf
(
x(k), τ(2z(k+1) − x(k) +∇h(x(k)))

)
. (3.32b)

Similarly setting A = I in (3.31) yields the reduced Bregman Loris–Verhoeven algorithm with

shift:

z(k+1) = proxφdσg∗(z
(k),−σx(k)) (3.33a)

x(k+1) = argmin
x

(
〈2z(k+1) − z(k) +∇h(x(k)), x〉+

1

τ
dp(x, x(k))

)
, (3.33b)

and setting A = I in (3.30) gives the Bregman dual Douglas–Rachford algorithm:

z(k+1) = proxφdσg∗(z
(k),−σx(k)) (3.34a)

x(k+1) = proxφpτf (x
(k), τ(2z(k+1) − x(k))). (3.34b)

3.3 Bregman dual Condat–Vũ algorithm with line search

The algorithms (3.6) and (3.7) use constant parameters σ and τ . The stepsize condi-

tion (3.12) involves the matrix norm ‖A‖ and the Lipschitz constant L in (3.9). Estimating

or bounding ‖A‖ for a large matrix can be difficult. As an added complication, the norms

‖·‖p and ‖·‖d in the definition of the matrix norm (3.10) are assumed to be scaled so that the

strong convexity parameters of the primal and dual kernels are equal to one. Close bounds on

44

the strong convexity parameters may also be difficult to obtain. Using conservative bounds

for ‖A‖ and L results in unnecessarily small values of σ and τ , and can dramatically slow

down the convergence. Even when the estimates of ‖A‖ and L are accurate, the require-

ments for the stepsizes (3.12) are still too strict in most iterations, as observed in [ADH21].

In view of the above arguments, line search techniques for primal–dual proximal methods

have recently become an active area of research. Malitsky and Pock [MP18] proposed a line

search technique for PDHG and the Condat–Vũ algorithm in the Euclidean case. The algo-

rithm with adaptive parameters in [VMC21] focuses on a special case of (2.1) (i.e., f = 0)

and extends the Loris–Verhoeven algorithm (2.26). A Bregman proximal splitting method

with line search is discussed in [JV22a] and considers the problem (2.1) with h = 0 and

g = δ{b}. In this section, we extend the Bregman dual Condat–Vũ algorithm (3.7) with a

varying parameter option, in which the stepsizes are chosen adaptively without requiring any

estimates or bounds for ‖A‖ or the strong convexity parameter of the kernels. The algorithm

is restricted to problems in the equality constrained form

minimize f(x) + h(x)

subject to Ax = b.
(3.35)

This is a special case of (2.1) with g = δ{b}, the indicator function of the singleton {b}.

The details of the algorithm are discussed in Section 3.3.1 and a convergence analysis is

presented in Section 3.3.2. The main conclusion is an O(1/k) rate of ergodic convergence,

consistent with previous results for related algorithms [MP18, JV22a].

Assumptions We make the same assumptions as in Section 3.2.1, but define

φd(z) =
1

2
‖z‖2, dd(z, z′) =

1

2
‖z − z′‖2, ‖z‖d = ‖z‖,

where ‖ · ‖ is the Euclidean norm, and define ‖A‖ accordingly as

‖A‖ = sup
u6=0,v 6=0

〈v, Au〉
‖v‖‖u‖p

= sup
u6=0

‖Au‖
‖u‖p

= sup
v 6=0

‖ATv‖p,∗
‖v‖

.

45

3.3.1 Algorithm

The algorithm uses the following iteration, with starting points x(0) ∈ int(domφp)∩domh

and z(−1) = z(0):

z̄(k+1) = z(k) + θk(z
(k) − z(k−1)) (3.36a)

x(k+1) = proxφpτkf
(
x(k), τk(A

T z̄(k+1) +∇h(x(k)))
)

(3.36b)

z(k+1) = z(k) + σk(Ax
(k+1) − b). (3.36c)

With constant parameters θk = 1, σk = σ, τk = τ , the algorithm can be simplified as

x(k+1) = proxφpτf
(
x(k), τAT (2z(k) − z(k−1)) + τ∇h(x(k)))

)
z(k+1) = z(k) + σ(Ax(k+1) − b).

Except for the numbering of the dual iterates, this is the Bregman dual Condat–Vũ algo-

rithm (3.7) applied to (3.35).

In the line search algorithm, the parameters θk, τk, σk are determined by a backtracking

search. At the start of the algorithm, we set τ−1 and σ−1 to some positive values. To start

the search in iteration k we choose θ̄k ≥ 1. For i = 0, 1, 2, . . ., we set θk = 2−iθ̄k, τk = θkτk−1,

σk = θkσk−1, and compute z̄k+1, xk+1, zk+1 using (3.36). For some δ ∈ (0, 1], if

〈z(k+1) − z̄(k+1), A(x(k+1) − x(k))〉+ h(x(k+1))− h(x(k))− 〈∇h(x(k)), x(k+1) − x(k)〉

≤ δ2

τk
dp(x(k+1), x(k)) +

1

2σk
‖z̄(k+1) − z(k+1)‖2, (3.37)

we accept the computed iterates z̄(k+1), x(k+1), z(k+1) and parameters θk, σk, τk, and ter-

minate the backtracking search. If (3.37) does not hold, we increment i and continue the

backtracking search.

The backtracking condition (3.37) is similar to the condition in the line search algorithm

for PDHG with Euclidean proximal operators [MP18, Algorithm 4], but it is not identical,

even in the Euclidean case. The proposed condition is weaker and allows larger stepsizes

than the condition in [MP18, Algorithm 4].

46

3.3.2 Convergence analysis

In this section we present the convergence analysis for the line search algorithm (3.36). The

main conclusion is an O(1/k) rate of ergodic convergence, shown in equation (3.45).

3.3.2.1 Lower bound on algorithm parameters

We first show that the stepsizes are bounded below by

τk ≥ τmin , min
{
τ−1,
−L+

√
L2 + 4δ2β2‖A‖2
2β2‖A‖2

}
, σk ≥ σmin , βτmin, (3.38)

where β = σ−1/τ−1. The lower bounds imply that the backtracking eventually terminates

with positive stepsizes σk and τk.

Proof. Applying the result in Section 3.2.1.1, with τ = τk/δ
2, σ = σk, we see that the

backtracking condition (3.37) holds at iteration k if

τkσk‖A‖2 + τkL ≤ δ2.

Then mathematical induction can be used to prove (3.38). The two lower bounds (3.38)

hold at k = 0 by the definition of τmin and σmin. Now assume τk−1 ≥ τmin, σk−1 ≥ σmin, and

consider the kth iteration. The first attempt of θk is θk = θ̄k ≥ 1. If this value is accepted,

then

τk = θ̄kτk−1 ≥ τk−1 ≥ τmin, σk = θ̄kσk−1 ≥ σk−1 ≥ σmin.

Otherwise, one or more backtracking steps are needed. Denote by θ̃k the last rejected value.

Then θ̃2kτ 2k−1β2‖A‖2 + θ̃kτk−1L > δ2 and the accepted θk satisfies

θk =
θ̃k
2
≥
−L+

√
L2 + 4δ2β2‖A‖2

2τk−1β2‖A‖2
.

Therefore,

τk = θkτk−1 >
−L+

√
L2 + 4δ2β2‖A‖2
2β2‖A‖2

, σk = βτk ≥ βτmin.

47

3.3.2.2 One-iteration analysis

The iterates x(k+1), z(k+1), z̄(k+1) generated by the algorithm (3.36) satisfy

L(x(k+1), z)− L(x, z̄(k+1)) ≤ 1

τk

(
dp(x, x(k))− dp(x, x(k+1))− (1− δ2)dp(x(k+1), x(k))

)
+

1

2σk

(
‖z − z(k)‖2 − ‖z − z(k+1)‖2 − ‖z̄(k+1) − z(k)‖2

)
(3.39)

for all x ∈ dom f ∩ domφp and all z. Here the Lagrangian is given by

L(x, z) = f(x) + h(x) + 〈z, Ax− b〉.

Proof. The optimality condition for the primal prox-operator (3.36b) gives

f(x(k+1))− f(x)

≤ 1

τk

(
dp(x, x(k))− dp(x, x(k+1))− dp(x(k+1), x(k))

)
+ 〈AT z̄(k+1) +∇h(x(k)), x− x(k+1)〉

for all x ∈ dom f ∩ domφp. Hence

f(x(k+1)) + h(x(k+1))− f(x)− h(x)

≤ 1

τk
(dp(x, x(k))− dp(x, x(k+1))− dp(x(k+1), x(k))) + 〈AT z̄k+1, x− x(k+1)〉

+ h(x(k+1))− h(x) + 〈∇h(x(k)), x− x(k+1)〉

≤ 1

τk
(dp(x, x(k))− dp(x, x(k+1))− dp(x(k+1), x(k))) + 〈AT z̄(k+1), x− x(k+1)〉

+ h(x(k+1))− h(x(k))− 〈∇h(x(k)), x(k+1) − x(k)〉. (3.40)

The second inequality follows from the convexity of h:

h(x) ≥ h(x(k)) + 〈∇h(x(k)), x− x(k)〉.

The dual update (3.36c) implies that

〈z − z(k+1), Ax(k+1) − b〉 =
1

σk
〈z − z(k+1), z(k+1) − z(k)〉 for all z. (3.41)

This equality at k = i− 1 is

〈z − z(i), Ax(i) − b〉 =
1

σi−1
〈z − z(i), z(i) − z(i−1)〉

48

=
1

2σi−1

(
‖z − z(i−1)‖2 − ‖z − z(i)‖2 − ‖z(i) − z(i−1)‖2

)
. (3.42)

The equality (3.41) at k = i− 2 is

〈z − z(i−1), Ax(i−1) − b〉 =
1

σi−2
〈z − z(i−1), z(i−1) − z(i−2)〉

=
θi−1
σi−1
〈z − z(i−1), z(i−1) − z(i−2)〉

=
1

σi−1
〈z − z(i−1), z̄(i) − z(i−1)〉.

We evaluate this at z = z(i) and add it to the equality at z = z(i−2) multiplied by θi−1:

〈z(i) − z̄(i), Ax(i−1) − b〉 =
1

σi−1
〈z(i) − z̄(i), z̄(i) − z(i−1)〉

=
1

2σi−1

(
‖z(i) − z(i−1)‖2 − ‖z(i) − z̄(i)‖2 − ‖z̄(i) − z(i−1)‖2

)
. (3.43)

Now we combine (3.40) for k = i− 1, with (3.42) and (3.43). For i ≥ 1,

L(x(i), z)− L(x, z̄(i))

= f(x(i)) + h(x(i)) + 〈z, Ax(i) − b〉 − f(x)− h(x)− 〈z̄(i), Ax− b〉

≤ 1

τi−1

(
dp(x, x(i−1))− dp(x, x(i))− dp(x(i), x(i−1))

)
+ 〈AT z̄(i), x− x(i)〉+ 〈z, Ax(i) − b〉

− 〈z̄(i), Ax− b〉+ h(x(i))− h(x(i−1))− 〈∇h(x(i−1)), x(i) − x(i−1)〉

=
1

τi−1

(
dp(x, x(i−1))− dp(x, x(i))− dp(x(i), x(i−1))

)
+ 〈z − z̄(i), Ax(i) − b〉

+ h(x(i))− h(x(i−1))− 〈∇h(x(i−1)), x(i) − x(i−1)〉

=
1

τi−1

(
dp(x, x(i−1))− dp(x, x(i))− dp(x(i), x(i−1))

)
+ 〈z(i) − z̄(i), A(x(i) − x(i−1))〉+ 〈z − z(i), Ax(i) − b〉+ 〈z(i) − z̄(i), Ax(i−1) − b〉

+ h(x(i))− h(x(i−1))− 〈∇h(x(i−1)), x(i) − x(i−1)〉

=
1

τi−1

(
dp(x, x(i−1))− dp(x, x(i))− dp(x(i), x(i−1)))

)
+

1

2σi−1

(
‖z − z(i−1)‖2 − ‖z − z(i)‖2 − ‖z̄(i) − z(i−1)‖2 − ‖z̄(i) − z(i)‖2

)
+ 〈AT (z(i) − z̄(i)), x(i) − x(i−1)〉+ h(x(i))− h(x(i−1))− 〈∇h(x(i−1)), x(i) − x(i−1))〉

≤ 1

τi−1

(
dp(x, x(i−1))− dp(x, x(i))− (1− δ2)dp(x(i), x(i−1))

)
49

+
1

2σi−1

(
‖z − z(i−1)‖2 − ‖z − z(i)‖2 − ‖z̄(i) − z(i−1)‖2

)
,

which is the desired result (3.39). The first inequality follows from (3.40). In the second last

step we substitute (3.42) and (3.43). The last step uses the line search exit condition (3.37)

at k = i− 1.

3.3.2.3 Ergodic convergence

We define the averaged primal and dual sequences

x(k)avg =
1∑k

i=1 τi−1

k∑
i=1

τi−1x
(i), z̄(k)avg =

1∑k
i=1 τi−1

k∑
i=1

τi−1z̄
(i)

for k ≥ 1. We show that

L(x(k)avg, z)− L(x, z̄(k)avg) ≤
1∑k

i=1 τi−1

(
d(x, x(0)) +

1

2β
‖z − z(0)‖2

)
(3.44)

≤ 1

kτmin

(
d(x, x(0)) +

1

2β
‖z − z(0)‖2

)
(3.45)

for all x ∈ dom f ∩ domφp and all z. This holds for any choice of δ ∈ (0, 1] in (3.37). If

we compare (3.44) and (3.18), we note that the two left-hand sides involve different dual

iterates (z̄(k)avg as opposed to z(k)avg).

Proof. From (3.39),

L(x(i), z)− L(x, z̄(i)) ≤ 1

τi−1

(
dp(x, x(i−1))− dp(x, x(i)) +

1

2β
‖z − z(i−1)‖2 − 1

2β
‖z − z(i)‖2

)
.

Since L is convex in x and affine in z,

(
k∑
i=1

τi−1)
(
L(x(k)avg, z)− L(x, z̄(k)avg)

)
≤

k∑
i=1

τi−1(L(x(i), z)− L(x, z̄(i)))

≤ dp(x, x(0))− dp(x, x(k)) +
1

2β
(‖z − z(0)‖2 − ‖z − z(k)‖2)

50

≤ dp(x, x(0)) +
1

2β
‖z − z(0)‖2. (3.46)

Dividing by
∑k

i=1 τi−1 and plugging in x = x?, z = z? gives (3.44).

If we substitute an optimal x = x? in (3.46), we obtain that

f(x(k)avg) + h(x(k)avg) + zT (Ax(k)avg − b)− f(x?) ≤ 1∑k
i=1 τi−1

(
dp(x?, x(0)) +

1

2β
‖z − z(0)‖2

)
for all z, since Ax? = b. More generally, suppose X ⊆ dom f ∩ domφp is a compact set

containing an optimal solution x?, and Z = {z | ‖z‖ ≤ ζ} contains a dual optimal z?, then

the merit function η defined in (2.7) satisfies

η(x(k)avg, z̄
(k)
avg) = f(x(k)avg) + h(x(k)avg) + ζ‖Ax(k)avg − b‖ − inf

x∈X
(f(x) + h(x) + zT (Ax− b))

≤ 1∑k
i=1 τi−1

(
sup
x∈X

dp(x, x(0)) +
1

2β
(ζ + ‖z(0)‖)2

)
≤ 1

kτmin

(
sup
x∈X

dp(x, x(0)) +
1

2β
(ζ + ‖z(0)‖)2

)
.

Especially, we have

f(x(k)avg) + h(x(k)avg) + ζ‖Ax(k)avg − b‖ − f(x?)− h(x?)

≤ η(x(k)avg, z̄
(k)
avg)

≤ 1

kτmin

(
sup
x∈X

dp(x, x(0)) +
1

2β
(ζ + ‖z(0)‖)2

)
.

For ζ > ‖z?‖, the penalty function in the merit function is exact, so

f(x) + h(x) + ζ‖Ax− b‖ − f(x?)− h(x?) ≥ 0

with equality only if x is optimal. Therefore, the above inequality the inequality shows that

the merit function decreases as O(1/k).

3.3.2.4 Monotonicity properties

For x = x?, z = z?, the left-hand side of (3.39) is nonnegative and we obtain

dp(x?, x(k+1)) +
1

2β
‖z? − z(k+1)‖2

51

≤ dp(x?, x(k)) +
1

2β
‖z? − z(k)‖2 −

(
(1− δ2)dp(x?, x(k)) +

1

2β
‖z? − z(k)‖2

)
≤ dp(x?, x(k)) +

1

2β
‖z? − z(k)‖2 (3.47)

for k ≥ 0. Moreover,

k∑
i=0

(
(1− δ2)(dp(x(i+1), x(i)) +

1

2β
‖z̄(i+1) − z(i)‖2

)
≤ dp(x?, x(0)) +

1

2β
‖z? − z̄(0)‖2. (3.48)

These inequalities hold for any value δ ∈ (0, 1]. In particular, the last inequality implies that

z̄(i+1) − z(i) → 0. When δ < 1 it also implies that dp(x(i+1), x(i)) → 0 and, by the strong

convexity assumption on φp, that x(i+1) − x(i) → 0.

3.3.2.5 Convergence of iterates

With additional assumptions similar to those in Section 3.2.2.3, one can show the convergence

of iterates. More specifically, we make two additional assumptions on the Bregman kernel φp.

1. For fixed x, the sublevel sets {x′ | d(x, x′) ≤ γ} are closed. In other words, the distance

d(x, x′) is a closed function of x′.

2. If x̃(k) ∈ int(domφp) converges to x ∈ domφp, then dp(x, x̃(k))→ 0.

Again, these two assumptions are not restrictive and are very common in the literature on

Bregman distances [CT93, Eck93, Gul94, CZ97].

We also make the (minor) assumptions that δ < 1 in (3.37) and that θk is bounded above

(which is easily satisfied, since the user chooses θ̄k). With these additional assumptions it

can be shown that the sequences x(k), z(k) converge to optimal solutions.

Proof. The inequality (3.47) and strong convexity of φp show that the sequences x(k), z(k) are

bounded. Let (x(ki), z(ki)) be a convergent subsequence with limit (x̂, ẑ). With δ < 1, (3.48)

shows that dp(x(ki+1), x(ki)) converges to zero. By strong convexity of the kernel, x(ki+1) −

52

x(ki) → 0 and therefore the subsequence x(ki+1) also converges to x̂. Since z(ki+1)− z(ki) → 0,

the subsequence z(ki+1) converges to ẑ. Since θk is bounded above,

z̄(ki+1) = z(ki) + θk(z
(ki) − z(ki−1))

also converges to ẑ.

The dual update (3.36c) can be written as

Ax(ki+1) − b =
1

σki
(z(ki+1) − z(ki)). (3.49)

Since z(ki+1) − z(ki) → 0 and σki ≥ σmin, the left-hand side converges to zero, so Ax̂ = b.

From (3.47), dp(x?, x(ki)) is bounded above. Since the sublevel set

{x′ | dp(x?, x′) ≤ γ}

are closed subsets of int(domφp), the limit x̂ is in int(domφp). The left-hand side of the

optimality condition

1

τki
(∇φp(x(ki))−∇φp(x(ki+1)))− (AT z̄(ki+1) +∇h(x(k))) ∈ ∂f(x(ki+1)) (3.50)

converges to −AT ẑ, because τk ≥ τmin and ∇φp is continuous on int(domφp). By maximal

monotonicity of ∂f , this implies that −AT ẑ −∇h(x̂) ∈ ∂f(x̂) (see [Bre73, page 27], [Tse00,

Lemma 3.2]). We conclude that x̂, ẑ satisfy the optimality conditions Ax̂ = b and −AT ẑ ∈

∂f(x̂) +∇h(x̂).

To show that the entire sequence converges, we substitute x = x̂, z = ẑ in (3.39):

L(x(k), ẑ)− L(x̂, z̄(k)) ≤ 1

τk

(
dp(x̂, x(k))− dp(x̂, x(k+1))

)
+

1

2σk

(
‖ẑ − z(k)‖2 − ‖ẑ − z(k+1)‖2

)
.

The left-hand side is nonnegative, and thus

dp(x̂, x(k+1)) +
1

2β
‖ẑ − z(k+1)‖2 ≤ dp(x̂, x(k)) +

1

2β
‖ẑ − z(k)‖2

for all k. This shows that

dp(x̂, x(k)) +
1

2β
‖ẑ − z(k)‖2 ≤ dp(x̂, x(ki)) +

1

2β
‖ẑ − z(ki)‖2

53

for all k ≥ ki. By the second additional assumption mentioned above, the right-hand side

converges to zero. Therefore dp(x̂, x(k))→ 0 and z(k) → ẑ. If dp(x̂, x(k))→ 0, then the strong

convexity property of the kernel implies that x(k) → x̂.

3.4 Bregman PD3O algorithm

In this section we propose the Bregman PD3O algorithm, another Bregman proximal splitting

method for the problem (2.1). Bregman PD3O also involves two generalized distances, dp

and dd, generated by φp and φd, respectively, and it consists of the iterations

x(k+1) = proxφpτf (x
(k), τAT z(k) + τ∇h(x(k))) (3.51a)

z(k+1) = proxφdσg∗(z
(k),−σA(2x(k+1) − x(k) + τ(∇h(x(k))−∇h(x(k+1))))). (3.51b)

The only difference between Bregman PD3O and Bregman primal Condat–Vũ algorithm (3.6)

is the additional term τ(∇h(x(k)) −∇h(x(k+1))). Thus the two algorithms (3.6) and (3.51)

reduce to the same method when h is absent from problem (2.1). The additional term allows

PD3O to use larger stepsizes than the Condat–Vũ algorithm. If we use the same matrix

norm ‖A‖ and Lipschitz constant L in the analysis for the two methods, then the conditions

are
Condat–Vũ: στ‖A‖2 + τL ≤ 1

PD3O: στ‖A‖2 ≤ 1, τ ≤ 1/L.
(3.52)

The range of possible parameters is illustrated in Figure 3.3.

In Section 3.4.1 we provide the detailed convergence analysis of the Bregman PD3O

method. The connections between Bregman PD3O and several other Bregman proximal

methods are discussed in Section 3.4.2.

Assumptions Throughout Section 3.4 we make the following assumptions. The kernel

functions φp and φd are 1-strongly convex with respect to the Euclidean norm and an arbi-

54

1/L
τ

σ

Figure 3.3: Acceptable stepsizes in Condat–Vũ algorithms and PD3O. We assume the same

matrix norm ‖A‖ and Lipschitz constant L are used in the analysis of the two algorithms.

The light gray region under the blue curve is defined by the inequality for the Condat–Vũ

algorithms in (3.52). The region under the red curve shows the values allowed by the stepsized

conditions for PD3O.

trary norm ‖ · ‖d, respectively:

dp(x, x′) ≥ 1

2
‖x− x′‖2, dd(z, z′) ≥ 1

2
‖z − z′‖2d. (3.53)

The assumptions that the strong convexity constants are one can be made without loss of

generality, by scaling the distances. The definition of ‖A‖ follows (3.10) and reduces to

‖A‖ = sup
v 6=0

‖Av‖d,∗
‖v‖

.

We also assume that the gradient of h is L-Lipschitz continuous with respect to the Euclidean

norm: domh = Rn and

h(y)− h(x)− 〈∇h(x), y − x〉 ≤ L

2
‖y − x‖2, for any x, y ∈ domh. (3.54)

The parameters τ and σ must satisfy

στ‖A‖2 ≤ 1, τ ≤ 1/L. (3.55)

Finally, we assume that the optimality condition (2.4) has a solution

(x?, z?) ∈ domφp × domφd.

55

Note that (3.54) is a stronger assumption than (3.9). (Combined with the first inequality

in (3.53), it implies (3.9).) We will use the following consequence of (3.54):

h(y)− h(x)− 〈∇h(x), y − x〉 ≥ 1

2L
‖∇h(y)−∇h(x)‖2 (3.56)

for all x, y [Nes18, Theorem 2.1.5].

3.4.1 Convergence analysis

In this section we present the convergence analysis for Bregman PD3O. The main result is

an O(1/k) rate of ergodic convergence, given in (3.61).

3.4.1.1 A primal–dual Bregman distance

We introduce a primal–dual kernel

φpd3o(x, y, z) =
1

τ
φp(x) +

1

σ
φd(z) +

τ

2
‖y‖2 − 〈y, x〉 − 〈z, A(x− τy)〉,

where σ, τ > 0. If φpd3o is convex, the generated Bregman distance is given by

dpd3o(x, y, z;x′, y′, z′) (3.57)

=
1

τ
dp(x, x′) +

1

σ
dd(z, z′) +

τ

2
‖y − y′‖2

−〈y − y′, x− x′〉 − 〈z − z′, A(x− x′)〉+ τ〈z − z′, A(y − y′)〉. (3.58)

We now show that φpd3o is convex if στ‖A‖2 ≤ 1.

Proof. It is sufficient to show that dpd3o is nonnegative:

dpd3o(x, y, z;x′, y′, z′) ≥ 1

2τ
‖x− x′‖2 +

τ

2
‖AT (z − z′)‖2 +

τ

2
‖y − y′‖2

− 〈y − y′, x− x′〉 − 〈z − z′, A(x− x′)〉+ τ〈z − z′, A(y − y′)〉

=
1

2

∥∥∥ 1√
τ

(x− x′)−
√
τ(y − y′)−

√
τAT (z − z′)

∥∥∥2
≥ 0. (3.59)

56

In step 1 we use the strong convexity assumption (3.53), the definition of ‖A‖ (3.10) with

‖ · ‖p = ‖ · ‖, and the assumption στ‖A‖2 ≤ 1. The bound on dd(z, z′) follows from

1

σ
dd(z, z′) ≥ 1

2σ
‖z − z′‖2d ≥

‖AT (z − z′)‖2

2σ‖A‖2
≥ τ

2
‖AT (z − z′)‖2.

Note that the convexity of φpd3o only requires the first inequality in the stepsize condi-

tion (3.55). Although the Bregman PD3O algorithm (3.51) is not the Bregman proximal

point method for the Bregman kernel φpd3o, the distance dpd3o will appear in the key in-

equality (3.60) of the convergence analysis.

3.4.1.2 One-iteration analysis

We first show that the iterates x(k+1), z(k+1) generated by Bregman PD3O (3.51) satisfy

L(x(k+1), z)− L(x, z(k+1))

≤ dpd3o
(
x,∇h(x), z;x(k),∇h(x(k)), z(k)

)
− dpd3o

(
x,∇h(x), z;x(k+1),∇h(x(k+1)), z(k+1)

)
− dpd3o

(
x(k+1),∇h(x), z(k+1);x(k),∇h(x(k)), z(k)

)
(3.60)

for all x ∈ dom f ∩ domφp and z ∈ dom g∗ ∩ domφd.

Proof. Recall that Bregman PD3O differs from the Bregman primal Condat–Vũ algorithm (3.6)

only in an additional term in the dual update. The proof in Section 3.3.2.2 therefore applies

up to (3.16), with

x̃ = 2x(k+1) − x(k) + τ(∇h(x(k))−∇h(x(k+1))), z̃ = z(k).

Hence,

L(x(k+1), z)− L(x, z(k+1))

≤ d−(x, z;x(k), z(k))− d−(x, z;x(k+1), z(k+1))− d−(x(k+1), z(k+1);x(k), z(k))

57

− τ〈AT (z − z(k+1)),∇h(x(k))−∇h(x(k+1))〉

− h(x(k+1)) + h(x(k)) + 〈∇h(x(k)), x(k+1) − x(k)〉

= d−(x, z;x(k), z(k)) +
τ

2
‖∇h(x)−∇h(x(k))‖2

− 〈(x− τAT z)− (x(k) − τAT z(k)),∇h(x)−∇h(x(k))〉

−
(
d−(x, z;x(k+1), z(k+1)) +

τ

2
‖∇h(x)−∇h(x(k+1))‖2

−
〈
x− τAT z − (x(k+1) − τAT z(k+1)),∇h(x)−∇h(x(k+1))

〉)
−
(
d−(x(k+1), z(k+1);x(k), z(k)) +

τ

2
‖∇h(x)−∇h(x(k))‖2

−
〈
(x(k+1) − τAT z(k+1))− (x(k) − τAT z(k)),∇h(x)−∇h(x(k))

〉)
− (h(x)− h(x(k+1))− 〈∇h(x(k+1)), x− x(k+1)〉 − τ

2
‖∇h(x)−∇h(x(k+1))‖2)

= dpd3o(x,∇h(x), z;x(k),∇h(x(k)), z(k))− dpd3o(x,∇h(x), z;x(k+1),∇h(x(k+1)), z(k+1))

− dpd3o(x(k+1),∇h(x), z(k+1);x(k),∇h(x(k)), z(k))

− (h(x)− h(x(k+1))− 〈∇h(x(k+1)), x− x(k+1)〉 − τ

2
‖∇h(x)−∇h(x(k+1))‖2)

≤ dpd3o(x,∇h(x), z;x(k),∇h(x(k)), z(k))− dpd3o(x,∇h(x), z;x(k+1),∇h(x(k+1)), z(k+1))

− dpd3o(x(k+1),∇h(x), z(k+1);x(k),∇h(x(k)), z(k))

≤ dpd3o(x,∇h(x), z;x(k),∇h(x(k)), z(k))− dpd3o(x,∇h(x), z;x(k+1),∇h(x(k+1)), z(k+1)).

Step 3 follows from definition of dpd3o (3.58). In step 4 we use the Lipschitz condition (3.56)

and the second inequality in the stepsize condition (3.55). The last step follows from the

fact that dpd3o is nonnegative (3.59).

3.4.1.3 Ergodic convergence

The iterates generated by Bregman PD3O (3.51) satisfy

L(x(k)avg, z)− L(x, z(k)avg) ≤
2

k

(1

τ
dp(x, x(0)) +

1

σ
dd(z, z(0)) +

τ

2
‖∇h(x)−∇h(x(0))‖2

)
, (3.61)

for all x ∈ dom f ∩ domφp and all z ∈ dom g∗ ∩ domφd, where the averaged iterates are

defined in (3.17).

58

Proof. From (3.60), since L(u, v) is convex in u and concave in v,

L(x(k)avg, z)− L(x, z(k)avg)

≤ 1

k

k∑
i=1

(
L(x(i), z)− L(x, z(i))

)
≤ 1

k

(
dpd3o(x,∇h(x), z;x(0),∇h(x(0)), z(0))− dpd3o(x,∇h(x), z;x(k),∇h(x(k)), z(k))

)
≤ 1

k
dpd3o(x,∇h(x), z;x(0),∇h(x(0)), z(0))

≤ 2

k

(1

τ
dp(x, x(0)) +

1

σ
dd(z, z(0)) +

τ

2
‖∇h(x)−∇h(x(0))‖2

)
for all x ∈ dom f ∩ domφp and z ∈ dom g∗ ∩ domφd.

3.4.2 Relation to other Bregman proximal algorithms

The proposed algorithm (3.51) can be viewed as an extension to PD3O (2.25) using gen-

eralized distances, and reduces to several Bregman proximal methods by reduction. These

algorithms can also be organized into a diagram similar to Figure 2.3. Figure 3.4 starts

from Bregman PD3O (3.51), and summarizes its connection to several Bregman proximal

methods. When h = 0, (3.51) reduces to Bregman PDHG (3.51), and when g = 0, (3.51)

reduces to the Bregman proximal gradient algorithm (3.25). More interestingly, when f = 0,

Bregman PD3O reduces to the Bregman Loris–Verhoeven algorithm

x(k+1) = argmin
x

(
〈∇h(x(k))− AT z(k), x〉+

1

τ
dp(x, x(k))

)
(3.62a)

z(k+1) = proxφdσg∗
(
z(k),−σA

(
2x(k+1) − x(k) + τ

(
∇h(x(k))−∇h(x(k+1))

)))
. (3.62b)

Setting A = I (with σ = 1/τ), we obtain a new variant of Bregman proximal gradient

algorithm:

x(k+1) = argmin
x

(
〈∇h(x(k))− z(k), x〉+

1

τ
dp(x, x(k))

)
(3.63a)

z(k+1) = proxφdτ−1g∗

(
z(k),−1

τ
A
(
2x(k+1) − x(k))− A(∇h(x(k))−∇h(x(k+1)))

)
. (3.63b)

59

Bregman

Davis–Yin (3.64)

Bregman (primal)

Douglas–Rachford (3.28)

new Bregman

proximal gradient (3.63)

Bregman

PD3O (3.51)

Bregman

(primal) PDHG (3.24)

Bregman

Loris–Verhoeven (3.62)

Bregman proximal gradient (3.25)

h = 0f = 0

h = 0f = 0

A = I A = IA = I

g = 0

Figure 3.4: Proximal algorithms derived from Bregman PD3O.

The difference between (3.63) and (3.29) is the additional term τ(∇h(x(k)) − ∇h(x(k+1))),

the same as the difference between (3.6) and (3.51). When the Euclidean proximal operator

is used, (3.63) reduces to the proximal gradient method. However, the new algorithm (3.63)

does not seem to be equivalent to the Bregman proximal gradient algorithm due to the lack of

Moreau decomposition in the generalized case. Nevertheless, the new algorithm (3.63) may

still be interesting on its own, especially when the generalized proximal operator of g∗ is easy

to compute while the (Euclidean or generalized) proximal operator of g is computationally

expensive. Finally, setting A = I (and σ = 1/τ) in Bregman PD3O (3.51) gives a Bregman

Davis–Yin algorithm:

x(k+1) = proxφpτf
(
x(k), τ(z(k) +∇h(x(k))

)
(3.64a)

z(k+1) = proxφdτ−1g∗

(
z(k),−1

τ
(2x(k+1) − x(k)) +∇h(x(k))−∇h(x(k+1))

)
. (3.64b)

60

3.5 Numerical experiment

In this section we evaluate the performance of the Bregman primal Condat–Vũ algorithm (3.6),

Bregman dual Condat–Vũ algorithm with line search (3.36), and Bregman PD3O (3.51).

The main goal of the example is to validate and illustrate the difference in the stepsize

conditions (3.52), and the usefulness of the line search procedure. We consider the convex

optimization problem

minimize ψ(x) = λ‖Ax‖1 + 1
2
‖Cx− b‖2

subject to 1Tx = 1, x � 0,
(3.65)

where x ∈ Rn is the optimization variable, C ∈ Rm×n, and A ∈ R(n−1)×n is the difference

matrix

A =

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · −1 1

 . (3.66)

This problem is of the form of (2.1) with

f(x) = δH(x), g(y) = λ‖y‖1, g∗(z) =

0 ‖z‖∞ ≤ λ

+∞ otherwise,
h(x) =

1

2
‖Cx− b‖2,

and δH is the indicator function of the hyperplane H = {x ∈ Rn | 1Tx = 1}. We use the

relative entropy distance

dp(x, y) =
n∑
i=1

(xi log(xi/yi)− xi + yi), dom dp = Rn
+ ×Rn

++.

in the primal space. This distance is 1-strongly convex with respect to `1-norm [BT09b]

(and also `2-norm). With the relative entropy distance, all the primal iterates x(k) remain

feasible. In the dual space we use the Euclidean distance. Thus, the matrix norm (3.10) in

the stepsize condition (3.12) for the Bregman Condat–Vũ algorithms is the (1,2)-operator

61

norm

‖A‖1,2 = sup
v 6=0

‖Av‖
‖v‖1

= max
i=1,...,n

‖ai‖ =
√

2,

where ai is the ith column of A. In the Bregman PD3O algorithm, we use the squared

Euclidean distance dp(x, y) = 1
2
‖x−y‖2, and the matrix norm in the stepsize condition (3.55)

is the spectral norm ‖A‖2. For the difference matrix (3.66), ‖A‖2 is bounded above by 2,

and very close to this upper bound for large n.

The Lipschitz constant for h with respect to the `1-norm is the largest absolute value of

the elements in CTC, i.e., L1 = maxi,j |(CTC)ij|. This value is used in the stepsize condi-

tion (3.12) for the Bregman Condat–Vũ algorithms. The Lipschitz constant with respect to

the `2-norm is L2 = ‖C‖2, which is used in the stepsize condition (3.55) for Bregman PD3O.

The matrix norms and Lipschitz constants are summarized as follows:

matrix norm Lipschitz constant

Bregman Condat–Vũ ‖A‖1,2 =
√

2 L1 = maxi,j |(CTC)ij|

Bregman PD3O ‖A‖2 ≤ 2 L2 = ‖C‖2.

In the example we use the exact values of L1 and L2,

The Bregman proximal operator of f has a closed-form solution, given in (3.5), and the

(Euclidean) proximal operator of g∗ is the projection onto the infinity norm ball:

proxg∗(z)i =

λ zi > λ

zi |zi| ≤ λ

−λ zi < −λ.

The experiment is carried out in Python 3.6 on a desktop with an Intel Core i5 2.4GHz

CPU and 8GB RAM. We set m = 500 and n = 10, 000. The elements in the matrix

C ∈ Rm×n and b ∈ Rm are randomly generated from independent standard Gaussian distri-

butions. For the constant stepsize option, we choose

Condat-Vũ σ = L1/2 τ = 1/(2L1)

PD3O σ = L2/4 τ = 1/L2.
(3.67)

62

1/L11/L2

τ

σ

Figure 3.5: The blue and red curves show the boundaries of the stepsize regions for Bregman

Condat–Vũ algorithms and Bregman PD3O, respectively. The blue and red points indicate

the chosen parameters in (3.67) (red for for PD3O, blue for Condat–Vũ). In the Bregman

dual Condat–Vũ algorithm with line search, the stepsizes are selected on the dashed straight

line. The solid line segment shows the range of stepsizes that were selected, with dots

indicating the largest, median, and smallest stepsizes.

These two choices, as well as the range of possible parameters, are illustrated in Figure 3.5.

The two choices are on the blue and red curve, respectively, and satisfy the requirement (3.52)

with equality. For the line search algorithm, we set θ̄k = 1.2 to encourage more aggressive

updates, and β = σ−1/τ−1 = L2
1, which is consistent with the choice in (3.67).

Numerical results We solve the problem (3.65) using the Bregman primal Condat–Vũ al-

gorithm (3.6), the Bregman dual Condat–Vũ algorithm with line search (3.36), and Bregman

PD3O (3.51). Figure 3.6 reports the relative distance between the function values to the op-

timal value ψ?, which is computed via CVXPY [DB16]. Comparison between the Bregman

primal Condat–Vũ algorithm and Bregman PD3O shows that Bregman PD3O converges

faster. Figure 3.6 also compares the performance between the Bregman primal Condat–Vũ

algorithm with constant stepsizes and Bregman dual algorithm with line search. One can

see clearly that the line search significantly improves the convergence. On the other hand,

the line search does not add much computation overhead, as the plots of the CPU time and

63

0 20 40 60

1
0
−

3
1
0
−

2
1
0
−

1

time (sec)

(ψ
(x

(k
)
)
−
ψ
?
)/
ψ
?

Bregman CV
Bregman CV w. LS
Bregman PD3O

0 0.5 1 1.5 2

·104

1
0
−

3
1
0
−

2
1
0
−

1

num. of iterations
(ψ

(x
(k

)
)
−
ψ
?
)/
ψ
?

Bregman CV
Bregman CV w. LS
Bregman PD3O

0 20 40 60

1
0
−

3
1
0
−

2
1
0
−

1

time (sec)

(ψ
(x

(k
)
)
−
ψ
?
)/
ψ
?

Bregman CV
Bregman CV w. LS
Bregman PD3O

0 2,000 4,000 6,000 8,000

1
0
−

3
1
0
−

2
1
0
−

1

num. of iterations

(ψ
(x

(k
)
)
−
ψ
?
)/
ψ
?

Bregman CV
Bregman CV w. LS
Bregman PD3O

Figure 3.6: Comparison of three algorithms (Bregman primal Condat–Vũ, Bregman dual

Condat–Vũ with line search, and Bregman PD3O) in terms of objective values. The top two

figures plot the relative error of the function value versus CPU time and number of iterations

for one problem instance (3.65), respectively. The bottom two figures correspond to another

problem instance.

64

the number of iterations are roughly identical. In these experiments Bregman PD3O and the

Bregman dual Condat–Vũ algorithm with line search have a similar performance, without

one algorithm being conclusively better than the other.

65

CHAPTER 4

Application to sparse semidefinite programming

Bregman proximal splitting methods presented in Chapter 3 offer the flexibility of choosing

specific Bregman distances for different problems, with the goal of accelerating the evalua-

tion of proximal operators. In this chapter, we apply this idea to the centering problem in

sparse semidefinite programming (SDP). It is motivated by the difficulty of exploiting spar-

sity in large-scale semidefinite programming in general and, for proximal methods, the need

for eigenvalue decompositions to compute Euclidean projections on the positive semidefinite

matrix cone. In this chapter, the logarithmic barrier function for the cone of positive semidef-

inite completable sparse matrices is used as the distance-generating kernel. For this distance,

the complexity of evaluating the Bregman proximal operator is shown to be roughly propor-

tional to the cost of a sparse Cholesky factorization, and thus Bregman proximal methods

in Chapter 3 can be applied to solve large-scale SDP centering problems efficiently.

This chapter is organized as follows. We first introduce sparse semidefinite programming

in Section 4.1. Section 4.2 reviews the logarithmic barriers for two sparse matrix cones and

in Section 4.3 we describe the centering problem for sparse SDPs. Based on the discussion

in Sections 4.2 and 4.3, we present in Section 4.4 the Bregman proximal operator generated

by the logarithmic barrier function for the sparse PSD matrix cone. Then in Section 4.5

we describe in detail the Newton’s method used to compute the barrier proximal operator.

Section 4.6 contains results of numerical experiments. In the experiments, we apply the

Bregman dual PDHG with line search presented in Chapter 3 to solve two sets of sparse

SDPs. Most content in this chapter is adapted from [JV22a].

66

4.1 Sparse semidefinite programming

We consider semidefinite programs (SDPs) in the standard form

primal: minimize tr(CX) dual: maximize bTy

subject to A(X) = b subject to A∗(y) + S = C

X ∈ Sn+ S ∈ Sn+,

(4.1)

with primal variable X ∈ Sn and dual variables S ∈ Sn, y ∈ Rm, where Sn is the set of

symmetric n× n matrices. The linear operator A : Sn → Rm is defined as

A(X) =
(
tr(A1X), tr(A2X), . . . , tr(AmX)

)
and A∗(y) =

∑m
i=1 yiAi is its adjoint operator. The coefficients C,A1, . . . , Am are symmetric

n×n matrices. The notation Sn+ is used for the cone of positive semidefinite (PSD) matrices

in Sn.

In many large-scale applications of semidefinite programming, the coefficient matrices

are sparse. The sparsity pattern of a symmetric n × n matrix can be represented by an

undirected graph G = (V,E) with vertex set V = {1, 2, . . . , n} and edge set E. The set of

matrices with sparsity pattern E is then defined as

SnE = {Y ∈ Sn | Yij = Yji = 0 if i 6= j and {i, j} 6∈ E}.

In this chapter, E will denote the common (or aggregate) sparsity pattern of the coefficient

matrices in the SDP, i.e., we assume that C,A1, . . . , Am ∈ SnE. Note that the sparsity

pattern E is not uniquely defined (unless it is dense, i.e., the sparsity graph G is complete):

if the coefficients are in SnE then they are also in SnE′ where E ⊂ E ′. In particular, E can

always be extended to make the graph G = (V,E) chordal or triangulated [BP93, VA15].

Without loss of generality, we will assume that this is the case.

Although aggregate sparsity is not always present in large SDPs with sparse coefficients,

it appears naturally in applications with an underlying graph structure. The graph struc-

ture in the application is often inherited by all the coefficients of the SDP. Examples include

67

relaxations of combinatorial graph optimization problems [Lov79, Ali95, GW95, GR00] and

symmetric eigenvalue optimization problems associated with graphs [BDX04, XB04]. Aggre-

gate sparsity also arises in SDP formulations of Euclidean distance geometry problems with

network structure, with applications to network node localization [BY04, BLT06, BLW06,

KKW09, DKQ10] and machine learning [WS06, WSZ07]. Another important source of SDPs

with aggregate sparsity is given by the semidefinite relaxations of the optimal power flow

problem in electricity networks [Jab12, Low14a, Low14b, MKL15, MHL13, Tay15]. When

the aggregate sparsity pattern is dense or almost dense, it is sometimes possible to introduce

or enhance sparsity via variable transformation [FKM01, Section 6]. Applications of this

technique arise in the graph partition problem [FKM01] and the SDP formulation of the

maximum variance unfolding problem [WS04].

Sparse semidefinite programming Even when the coefficient matrices in the SDP (4.1)

share an aggregate sparsity pattern, the primal variable X generally needs to be dense to

be feasible. However, the cost function and the linear equality constraints only depend on

the diagonal entries Xii and the off-diagonal entries Xij = Xji for {i, j} ∈ E. For the other

entries the only requirement is to make the matrix positive semidefinite. In the dual problem,

S ∈ SnE holds at all dual feasible points. These observations imply that the SDPs (4.1) can

be equivalently rewritten as a pair of primal and dual conic linear programs

primal: minimize tr(CX) dual: maximize bTy

subject to A(X) = b subject to A∗(y) + S = C

X ∈ K S ∈ K∗,

(4.2)

with sparse matrix variables X,S ∈ SnE, and a vector variable y ∈ Rm. The primal cone K

in this problem is the set of matrices in SnE which have a positive semidefinite completion,

i.e., K = ΠE(Sn+) where ΠE stands for projection on SnE. The dual cone K∗ of K is

the set of positive semidefinite matrices with sparsity pattern E, i.e., K∗ = Sn+ ∩ SnE. The

formulation (4.2) is attractive when the aggregate sparsity pattern E is very sparse, in which

68

case SnE is a much lower-dimensional space than Sn. The nonsymmetric formulation of sparse

semidefinite programming was applied in [ADV10, Bur03, SV04, SAV14]; see also [VA15,

Section 14.4].

Algorithms for sparse SDPs Sparse structure in semidefinite programming has been

extensively explored by many authors and leveraged in many algorithms. The scalability of

interior-point methods is limited by the need to form and solve a set of m linear equations

in m variables, known as the Schur complement system, at each iteration. This system is

usually dense. Sparsity in the coefficients Ai can be exploited to reduce the cost of assembling

the Schur complement equations. This process is efficient especially in extremely sparse

problems, where the coefficients Ai may also have low rank. In dual barrier methods, one

can also take advantage of sparsity of dual feasible variables S. These properties are leveraged

in the dual interior-point methods described in [BYZ00, BY08, BGM13, BGP19, BGP21].

In another line of research, techniques based on properties and algorithms for chordal

sparsity patterns have been applied to semidefinite programming since the late 1990s [FKN97,

FKM01, NFF03, BYZ00, Bur03, KKK08, KKM11, ADV13, ZL21, SAV14, PHA18, SV04];

see [VA15, ZFP21] for recent surveys. An important tool from this literature is the conver-

sion or clique decomposition method proposed by Fukuda et al. [FKM01, NFF03]. It is based

on a fundamental result from linear algebra, stating that for a chordal pattern E, a matrix

X ∈ SnE has a positive semidefinite completion if and only if Xγkγk � 0 for k = 1, . . . , r,

where γ1, . . . , γr are the maximal cliques in the graph [GJS84]. In the conversion method,

the large sparse variable matrix X in (4.2) is replaced with smaller dense matrix variables

Xk = Xγkγk . Each of these new variables is constrained to be positive semidefinite. Linear

equality constraints need to be added to couple the variables Xk, as they represent overlap-

ping subblocks of a single matrix X. Thus, a large sparse SDP is converted in an equivalent

problem with several smaller, dense variables Xk, and additional sparse equality constraints.

This equivalent problem may be considerably easier to solve by interior-point methods than

69

the original SDP (4.1). Recent examples where the clique decomposition is applied to solve

large sparse SDPs can be found in [EDA20, ZL21].

Proximal splitting methods, which are surveyed in Chapter 2, are perhaps the most pop-

ular alternatives to interior-point methods in machine learning, image processing, and other

applications, involving large-scale convex programming, and typical examples include (ac-

celerated) proximal gradient methods [BT09a, BT09b, Nes18], ADMM [BPC11], and the

primal–dual hybrid gradient (PDHG) or Chambolle–Pock method [PCB09, EZC10, CP11a]

(see more examples in Chapter 2). When applied to the SDPs (4.1), they require at each

iteration a Euclidean projection on the positive semidefinite cone Sn+ and hence, a symmetric

eigenvalue decomposition of order n. This contributes an order n3 term to the per-iteration

complexity. In the nonsymmetric formulation (4.2) of the sparse SDP, the projections on K∗

or (equivalently) K cannot be computed directly, and must be handled by introducing split-

ting variables and alternating projections on SnE, which is trivial, and on Sn+, which requires

an eigenvalue decomposition. The clique decomposition used in the conversion method

described above, which was originally developed for interior-point methods, lends itself nat-

urally to splitting algorithms as well. It allows us to replace the matrix constraint X ∈ K

with several smaller dense inequalities Xk � 0, one for each maximal clique in the sparsity

graph. In a proximal method, this means that projection on the n× n positive semidefinite

cone can be replaced by less expensive projections on lower-dimensional positive semidefinite

cones [MKL15, SV15, ZFP17, ZFP20]. This advantage of the conversion method is tempered

by the large number of consistency constraints that must be introduced to link the splitting

variables Xk. First-order methods typically do not compute very accurate solutions and if

the residual error in the consistency constraints is not small, it may be difficult to convert the

computed solution of the decomposed problem back to an accurate solution of the original

SDP [EDA20].

70

4.2 Primal and dual barriers

In this section we introduce the logarithmic barrier functions for the pair of primal and

dual cones K and K∗, and later in Section 4.4 the primal barrier will be used as the kernel

function to generate the Bregman distance. The logarithmic barrier functions for the cones

K∗ = Sn+ ∩ SnE and K = ΠE(Sn+) are defined as

φ∗(S) = − log detS, φ(X) = sup
S

(
− tr(XS)− φ∗(S)

)
, (4.3)

with domains domφ∗ = intK∗ and domφ = intK, respectively. Note that φ(X) is the

conjugate of φ∗ evaluated at −X.

In [ADV13, VA15] efficient algorithms are presented for evaluating the two barrier func-

tions, their gradients, and their directional second derivatives, when the sparsity pattern E

is chordal. The value of the dual barrier φ∗(S) = − log detS is easily computed from

the diagonal entries in a sparse Cholesky factor of S. More specifically, if a factorization

PSP T = LDLT is available, with P a permutation matrix, D positive diagonal and L unit

lower-triangular, then φ∗(S) = −
∑

i logDii. The gradient and Hessian are given by

∇φ∗(S) = −ΠE(S−1), ∇2φ∗(S)[V] =
d

dt
∇φ∗(S + tV) = ΠE(S−1V S−1). (4.4)

Given a Cholesky factorization of S, these expressions can be evaluated via one or two

recursions on the elimination tree [ADV13, VA15], without explicitly computing the entire

inverse S−1 or the matrix product S−1V S−1. The cost of these recursions is roughly the same

as the cost of a sparse Cholesky factorization with the sparsity pattern E [ADV13, VA15].

The primal barrier function φ and its gradient can be evaluated by solving the optimiza-

tion problem in the definition of φ(X). The optimal solution ŜX is the matrix in Sn++ ∩ SnE

that satisfies

ΠE(Ŝ−1X) = X. (4.5)

Its inverse Ŝ−1X is also the maximum determinant positive definite completion of X, i.e.,

71

Z = Ŝ−1X is the solution of

maximize log detZ

subject to ΠE(Z) = X
(4.6)

(where we take Sn++ as the domain of the cost function). The solution Z is also called the

maximum entropy completion ofX, since it maximizes the entropy of the normal distribution

N (0, Z), which is given by
1

2
(log detZ + n log(2π) + n),

subject to the constraint ΠE(Z) = X; see [Dem72]. From ŜX , one obtains

φ(X) = log det ŜX − n, ∇φ(X) = −ŜX , ∇2φ(X) = ∇2φ∗(ŜX)−1. (4.7)

Comparing the expressions for the gradients of φ and φ∗ in (4.7) and (4.4), and using (4.5),

we see that ∇φ and ∇φ∗ are inverse mappings, up to a change in sign:

∇φ(X) = −ŜX = −(∇φ∗)−1(−X), ∇φ∗(S) = −(∇φ)−1(−S).

For general sparsity patterns, the determinant maximization problem (4.6) or the convex

optimization problem in the definition of φ must be solved by an iterative optimization

algorithm. If the pattern is chordal, these optimization problems can be solved by finite

recursive algorithms, again at a cost that is comparable with the cost of a sparse Cholesky

factorization for the same pattern [ADV13, VA15].

4.3 The centering problem

To apply Bregman proximal methods discussed in Chapter 3, we consider the centering

problem for the sparse SDP (4.2)

minimize tr(CX) + µφ(X)

subject to A(X) = b,
(4.8)

72

where φ is the logarithmic barrier function for the cone K, given in (4.3). The centering

parameter µ > 0 controls the duality gap at the solution. Since the barrier function φ is

n-logarithmically homogeneous (see [VA15]), the optimal solution of the centering problem

is a (µn)-suboptimal solution for the original SDP (4.2). The centering problem (4.8) is

useful as an approximation to the original problem, because it yields more easily computed

suboptimal solutions, with an accuracy that can be controlled by the choice of the barrier

parameter µ. The centering problem is also a key component of barrier methods, in which

a sequence of centering problems with decreasing values of the barrier parameter are solved.

Traditionally, the centering problem in interior-point methods is solved by the Newton’s

method, possibly accelerated via the preconditioned conjugate gradient method [BGP19,

VB95], but recent work has started to examine the use of proximal methods such as the

alternating direction method of multipliers (ADMM) or the proximal method of multipliers

for this purpose [LMY21, PG21, PG22].

We will assume that the equality constraints in (4.2) include a constraint tr(NX) = 1,

where N ∈ Sn++ ∩ SnE. To make this explicit we write the centering problem (4.2) as

minimize tr(CX) + µφ(X)

subject to A(X) = b,

tr(NX) = 1.

(4.9)

For N = I, the normalized cone {X ∈ K | tr(NX) = 1} is a matrix extension of the

probability simplex {x � 0 | 1Tx = 1}, sometimes referred to as the spectraplex. With

minor changes, the techniques we discuss extend to a normalization in the inequality form

tr(NX) ≤ 1, with N ∈ Sn++ ∩ SnE. Here we will discuss (4.9) to retain the standard form of

the centering problem.

The constraints tr(NX) = 1 and tr(NX) ≤ 1 guarantee the boundedness of the primal

feasible set, a common assumption in first-order methods. The added constraint does not

diminish the generality of our approach. In many applications an equality tr(NX) = 1 is

implied by the contraints A(X) = b and easily derived from the problem data (see Section 4.6

73

for two typical examples). When an equality constraint of this form is not readily available,

one can add a bounding inequality tr(NX) ≤ 1 with N sufficiently small to ensure that the

optimal solution is not modified.

To apply first-order proximal methods, we view the problem (4.9) as a linearly constrained

optimization problem

minimize f(X)

subject to A(X) = b,
(4.10)

where f is defined as

f(X) = tr(CX) + µφ(X) + δH(X), H = {X ∈ SnE | tr(NX) = 1}, (4.11)

and δH is the indicator function of the hyperplane H. Therefore problem (4.10) is in the

canonical form (2.1) with g = δ{b} and h = 0.

4.4 Barrier proximal operator for sparse PSD matrix cone

The reformulated problem (4.10) can be solved by Bregman proximal splitting methods

presented in Chapter 3. Here the primal kernel is chosen as the barrier function φ (4.3)

for the cone K, and the dual kernel is the squared Euclidean kernel. The primal kernel φ

satisfies the assumptions listed in Section 3.1, i.e., it is convex, continuous, continuously

differentiable on the interior of the cone, and strongly convex on intK ∩{X | tr(NX) = 1}.

It generates the Bregman divergence

d(X, Y) = φ(X)− φ(Y)− tr (∇φ(Y)(X − Y))

= φ(X)− log det ŜY + n+ tr (ŜY (X − Y))

= φ(X)− log det ŜY + tr (ŜYX).

On line 2 we used the properties (4.7) to express φ(Y) and ∇φ(Y). The Bregman proximal

operator (3.2) for the function f defined in (4.11) then becomes

X̂ = proxφf (Y,A)

74

= argmin
tr(NX)=1

(tr(CX) + µφ(X) + tr(AX) + d(X, Y))

= argmin
tr(NX)=1

(
tr
(
(C + A−∇φ(Y))X

)
+ (µ+ 1)φ(X)

)
= argmin

tr(NX)=1

(tr(BX) + φ(X))

where

B =
1

1 + µ
(C + A+ ŜY).

To compute X̂ we therefore need to solve an optimization problem

minimize tr(BX) + φ(X)

subject to tr(NX) = 1,
(4.12)

where B ∈ SnE and N ∈ Sn++ ∩ SnE. If we introduce a Lagrange multiplier ν for the equality

constraint in (4.12), the optimality condition can be written as

∇φ(X) +B + νN = 0, tr(NX) = 1.

Equivalently, since ∇φ∗(S) = −(∇φ)−1(−S),

X = −∇φ∗(B + νN) = ΠE((B + νN)−1), tr(NX) = 1.

Eliminating X we obtain a nonlinear equation in ν:

tr(N(B + νN)−1) = 1. (4.13)

(The projection in tr(NΠE((B + νN)−1)) can be omitted because the matrix N has the

sparsity pattern E.) The unique solution ν that satisfies B + νN � 0 defines the solution

X = ΠE((B + νN)−1) of (4.12).

The equation (4.13) is also the optimality condition for the Lagrange dual of (4.12),

which is a smooth unconstrained convex optimization problem in the scalar variable ν:

maximize − φ∗(B + νN)− ν. (4.14)

75

−10 −5 0 5 10
−3

−2

−1

0

1

2

3

ν

ζ
(ν

)

3 4 5 6 7 8 9 10
−6

−5

−4

−3

−2

−1

0

1

2

ν

1/
ζ
(ν

)
−

1

Figure 4.1: Left. The function ζ(ν) =
∑

i 1/(ν + λi) for λ = (−5, 0, 5, 10). We are interested

in the solution of ζ(ν) = 1 larger than −λmin = 5. Right. The function 1/ζ(ν)− 1.

4.5 Newton’s method for barrier proximal operator

In this section we discuss in detail Newton’s method applied to the dual problem (4.14) and

the equivalent nonlinear equation (4.13). We write the equation as ζ(ν) = 1 where

ζ(ν) = tr(N(B + νN)−1), ζ ′(ν) = − tr(N(B + νN)−1N(B + νN)−1). (4.15)

The function ζ and its derivative can be expressed in terms of the generalized eigenvalues λi

of (B,N) as

ζ(ν) =
n∑
i=1

1

ν + λi
, ζ ′(ν) = −

n∑
i=1

1

(ν + λi)2
. (4.16)

Figure 4.1 shows an example with n = 4, N = I, and eigenvalues 10, 5, 0,−5.

We are interested in computing the solution of ζ(ν) = 1 that satisfies B + νN � 0, i.e.,

ν > −λmin, where λmin = mini λi is the smallest generalized eigenvalue of (B,N). We denote

this interval by J = (−λmin,∞). The equation ζ(ν) = 1 is guaranteed to have a unique

solution in J because ζ is monotonic and continuous on this interval, with

lim
ν→−λmin

ζ(ν) =∞, lim
ν→∞

ζ(ν) = 0.

76

Furthermore, on the interval J , the function ζ and its derivative can be expressed as

ζ(ν) = − tr(N∇φ∗(B + νN)), ζ ′(ν) = − tr(N(∇2φ∗(B + νN)[N])).

Therefore ζ(ν) and ζ ′(ν) can be evaluated by taking the inner product of N with

∇φ∗(B + νN) = −ΠE

(
(B + νN)−1

)
∇2φ∗(B + νN)[N] = −ΠE

(
(B + νN)−1N(B + νN)−1

)
.

Since B,N ∈ SnE, these quantities can be computed by the efficient algorithms for computing

the gradient and directional second derivative of φ∗ described in [ADV13, VA15].

We note a few other properties of ζ. First, the expressions in (4.16) show that ζ is convex,

decreasing, and positive on J . Second, if ν ∈ J , then ν̃ ∈ J for all ν̃ that satisfy

ν̃ > ν − 1√
|ζ ′(ν)|

. (4.17)

This follows from

|ζ ′(ν)| =
n∑
i=1

1

(ν + λi)2
≥ 1

(ν + λmin)2
,

and is also a simple consequence of the Dikin ellipsoid theorem for self-concordant functions

[NN94, Theorem 2.1.1.b].

The Newton iteration for the equation ζ(ν)− 1 = 0 is

ν+ = ν + α
1− ζ(ν)

ζ ′(ν)
, (4.18)

where α is a step size. The same iteration can be interpreted as a damped Newton method

for the unconstrained problem (4.14). If ν+ ∈ J for a unit step α = 1, then

ζ(ν+) > ζ(ν) + ζ ′(ν)(ν+ − ν) = 1,

from strict convexity of ζ. Hence after one full Newton step, the Newton iteration with

unit steps approaches the solution monotonically from the left. If ζ(ν) < 1 then in general

77

a non-unit step size must be taken to keep the iterates in J . From the Dikin ellipsoid

inequality (4.17), we see that ν+ ∈ J for all positive α that satisfy

α <

√
|ζ ′(ν)|

1− ζ(ν)
.

The theory of self-concordant functions provides a step size rule that satisfies this condition

and guarantees convergence:

α =

√
|ζ ′(ν)|√

|ζ ′(ν)|+ 1− ζ(ν)
if

1− ζ(ν)√
|ζ ′(ν)|

< η, α = 1 otherwise,

where η is a constant in (0, 1). As an alternative to this fixed step size rule, a standard

backtracking line search can be used to determine a suitable step size α in (4.18). Checking

whether ν+ ∈ J can be done by attempting a sparse Cholesky factorization of B + ν+N .

Figure 4.1 shows that the function ζ can be quite nonlinear around the solution of the

equation if the solution is near −λmin. Instead of applying Newton’s method directly to

(4.15), it is useful to rewrite the nonlinear equation as ψ(ν) = 0 where

ψ(ν) =
1

ζ(ν)
− 1. (4.19)

The negative smallest eigenvalue −λmin is a pole of ζ(ν), but a zero of 1/ζ(ν). Also the

derivative of ψ changes slowly near this zero point; in Figure 4.1, the function ψ is almost

linear in the region of interest. This implies that Newton’s method applied to (4.19), i.e.,

ν+ = ν + β
ψ(ν)

ψ′(ν)
= ν + β

ζ(ν)(1− ζ(ν))

ζ ′(ν)
,

should be extremely efficient in this case. Starting the line search at β = 1 is equivalent to

starting at α = ζ(ν) in (4.18). This often requires fewer backtracking steps than starting at

α = 1.

Newton’s method requires a feasible initial point ν0 ∈ J . Suppose we know a positive

lower bound γ on the smallest eigenvalue of N . Then ν̂0 ∈ J where

ν̂0 > max {0, −λmin(B)

γ
}.

78

A lower bound on λmin(B) can be obtained from the Gershgorin circle theorem, which states

that the eigenvalues of B are contained in the disks{
s
∣∣∣ |s−Bii| ≤

∑
j 6=i

|Bij|
}
, i = 1, . . . , n.

Thus, λmin(B) ≥ mini (Bii −
∑

j 6=i |Bij|). Apart from the above initialization, we find an-

other practically useful initial point ν̃0 = n− trB/ trN , which is the solution for tr(N(B+

νN)−1) = 1 when B happens to be a multiple of N . This choice is efficient in many practical

examples but, unfortunately, not guaranteed to be feasible. Thus, in the implementation,

we use ν̃0 if it is feasible and ν̂0 otherwise.

4.6 Numerical experiments

In this section we evaluate the performance of Bregman PDHG with line search, i.e. (3.36)

with h = 0, applied to the centering problem (4.10). For clarity we rewrite the algorithm

here in matrix notation:

z̄(k+1) = z(k) + θk(z
(k) − z(k−1)) (4.20a)

X(k+1) = argmin
x

(
f(X) + 〈z̄(k+1),A(X)〉+

1

τk
d(X,X(k))

)
(4.20b)

z(k+1) = z(k) + σk(A(X(k+1))− b), (4.20c)

where d is the Bregman distance generated by the barrier function φ (4.3). The numeri-

cal results illustrate that the cost for evaluating the Bregman proximal operator (4.12) is

comparable to the cost of a sparse Cholesky factorization with sparsity pattern E. This

prox-evaluation dominates the computational cost in each iteration of (4.20), since A and

A∗ are usually easy to evaluate for large-scale problems with sparse or other types of struc-

ture. In particular, the proposed method does not need to solve linear equations involving

A or A∗, an important advantage over ADMM and interior-point methods.

In this section we consider the centering problem for two sets of sparse SDPs, the max-

imum cut problem and the graph partitioning problem. The experiments are carried out

79

in Python 3.6 on a laptop with an Intel Core i5 2.4GHz CPU and 8GB RAM. The Python

library for chordal matrix computations CHOMPACK [AV15] is used to compute chordal

extensions (with the AMD reordering [ADD96]), sparse Cholesky factorizations, the primal

barrier φ, and the gradient and directional second derivative of the dual barrier φ∗. Other

sparse matrix computations are implemented using CVXOPT [ADV20].

In the experiments, we terminate the iteration (4.20) when the relative primal and dual

residuals are less than 10−6. These two stopping conditions are sufficient for our algorithm,

as suggested by the convergence proof, in particular, equations (3.49) and (3.50). The two

residuals are defined as

primal residual =
‖zk − zk−1‖2

σk max{1, ‖zk‖∞}
, dual residual =

‖∇φ(Xk)−∇φ(Xk−1)‖2
τk max{1, ‖Xk‖max}

,

where ‖Y ‖max = maxi,j |Yij|.

4.6.1 Maximum cut problem

Given an undirected graph G = (V,E), the maximum cut problem is to partition the set of

vertices into two sets in order to maximize the total number of edges between the two sets.

(If every edge {i, j} ∈ E is associated with a nonnegative weight wij, then the maximum

cut problem is to maximize the total weight of the edges between the two sets.) One can

show that the maximum cut problem can be represented as a binary quadratic optimization

problem

maximize (1/4)xTLx

subject to x ∈ {±1}n,

where L ∈ Sn is the Laplacian of an undirected graph G = (V,E) with vertices V =

{1, 2, . . . , n}. The SDP relaxation of the maximum cut problem is

maximize (1/4) tr(LX)

subject to diag(X) = 1

X � 0,

(4.21)

80

with variable X ∈ Sn. The operator diag : Sn → Rn returns the diagonal elements of the

input matrix as a vector: diag(X) = (X11, X22, . . . , Xnn). If moderate accuracy is allowed,

we can solve the centering problem of the SDP relaxation

minimize −(1/4) tr(LX) + µφ(X)

subject to diag(X) = 1

X ∈ ΠE′(S
n
+)

(4.22)

with optimization variable X ∈ SnE′ where E ′ is a chordal extension of E. Note that tr(X) =

n for all feasible X. The centering problem has the form of (4.10) with

C = −1

4
L, N =

1

n
I, A(X) = diag(X).

The Lagrangian of (4.22) is given by

L(X, z) = f(X) + 〈z,A(X)− b〉,

where f is defined in (4.11), and z is the Lagrange multiplier associated with the equality

constraint diag(X) = 1. Thus we have

1

4
tr(LX?) ≤ p?sdp ≤ 1T z?, −1

4
tr(LX?) + 1T z? = µn, (4.23)

where X? and z? are the primal and dual optimal solutions of the centering problem (4.22),

and p?sdp is the optimal value of the SDP (4.21).

Numerical results We first collect four MAXCUT problems of moderate size from SDP-

LIB [Bor99]. The SDP relaxation (4.21) is solved using MOSEK [MOS19] and the optimal

value computed by MOSEK is denoted by p?sdp. (Note that the source file for the graph

maxcutG55 was incorrectly converted into SDPA sparse format. Thus the objective value

for the maxG55 problem obtained from the original data file is 1.1039× 104 instead of

9.9992× 103 as reported in SDPLIB.)

In (4.22), we set µ = 0.001/n, and report in column 4 of Table 4.1 the difference be-

tween p?sdp and the cost function (1/4) tr(LX) at the suboptimal solution returned by the

81

n p?sdp p?sdp −
1

4
tr(LX)

primal

residual

dual

residual

maxG51 1000 4.0039× 103 3.12× 10−4 2.24× 10−7 6.43× 10−8

maxG32 2000 1.5676× 103 6.95× 10−4 6.48× 10−7 2.23× 10−7

maxG55 5000 1.1039× 104 1.02× 10−4 5.32× 10−7 7.13× 10−7

maxG60 7000 1.5222× 104 9.91× 10−5 1.21× 10−7 2.33× 10−7

Table 4.1: Results for four instances of the MAXCUT problem from SDPLIB [Bor99].

Column 3 is the optimal value computed by MOSEK. Column 4 is the difference with the

optimal value of the centering problem computed by algorithm (4.20). The last two columns

give the primal and dual residuals in the computed solution.

algorithm. The last two columns of Table 4.1 give the relative primal and dual residuals.

These results show that the proposed algorithm is able to solve the centering SDP (4.22)

with the desired accuracy. A comparison of the third and fourth columns of Table 4.1 con-

firms (4.23), i.e., the objective value of the SDP at X is within µn = 10−3 of the optimal

value. Considering the values of p?sdp, we see that the computed points on the central path

are close to the optimal solutions of the SDPs.

To test the scalability of algorithm (4.20), we add four larger graphs from the SuiteSparse

collection [KAB19]. In Table 4.2 we report the time per Cholesky factorization, the number

of Newton steps per iteration, the time per PDHG iteration, and the number of iterations

in Bregman PDHG for the eight test problems. As can be seen from the table, the number

of Newton iterations per prox-evaluation remains small even when the size of the problem

increases. Also, we observe that the time per PDHG iteration is roughly the cost of a sparse

Cholesky factorization times the number of Newton steps. This means that the backtracking

in Newton’s method does not cause a significant overhead. Since the evaluations of A and

A∗ in this problem are very cheap, the cost per prox-evaluation is the dominant term in the

per-iteration complexity.

82

n
time per Cholesky

factorization

Newton steps

per iteration

time per PDHG

iteration

PDHG

iterations

maxG51 1000 0.05 2.45 0.12 267

maxG32 2000 0.12 1.56 0.18 240

maxG55 5000 0.29 2.10 0.58 249

maxG60 7000 0.60 2.55 1.22 279

barth4 6019 0.42 3.57 1.55 346

tuma2 12992 0.48 4.36 1.89 375

biplane-9 21701 0.95 2.58 2.12 287

c-67 57975 0.76 3.58 3.56 378

Table 4.2: The four MAXCUT problems from SDPLIB plus four larger graphs from the

SuiteSparse collection [KAB19]. The last column (“PDHG iterations”) gives the number

of iterations in the primal–dual algorithm. Columns 3–5 describe the complexity of one

iteration of the algorithm. The CPU time is measured in seconds.

83

4.6.2 Graph partitioning

The problem of partitioning the vertices of a graph G = (V,E) in two subsets of equal size

(here we assume an even number of vertices), while minimizing the number of edges between

the two subsets, can be expressed as

minimize (1/4)xTLx

subject to 1Tx = 0

x ∈ {−1, 1}n,

where L is the graph Laplacian. The ith entry of the n-vector x indicates the set that vertex i

is assigned to. To obtain an SDP relaxation we introduce a matrix variable Y = xxT and

write the problem in the equivalent form

minimize (1/4) tr(LY)

subject to 1TY 1 = 0

diag(Y) = 1

Y = xxT ,

and then relax the constraint Y = xxT as Y � 0. This gives the SDP

minimize (1/4) tr(LY)

subject to 1TY 1 = 0

diag(Y) = 1

Y � 0.

(4.24)

The dual SDP is
maximize 1T z

subject to diag(z) + ξ11T � (1/4)L,

with variables ξ ∈ R and z ∈ Rn.

The aggregate sparsity pattern of the SDP (4.24) is completely dense, because the equality

constraint 1TY 1 = 0 has a coefficient matrix of all ones. We therefore eliminate the dense

84

constraint using the technique described in [FKM01, page 668]. Let P be the n × (n − 1)

matrix

P =

1 0 · · · 0 0

−1 1 · · · 0 0

0 −1 · · · 0 0
...

...
...

...

0 0 · · · 1 0

0 0 · · · −1 1

0 0 · · · 0 −1

.

The columns of P form a sparse basis for the orthogonal complement of the multiples of the

vector 1. Suppose Y is feasible in (4.24) and define X u

uT v

 =
[
P 1

]−1
Y
[
P 1

]−T
. (4.25)

From 1TY 1 = 0, we see that

0 = 1TY 1 = 1T
[
P 1

] X u

uT v

[P 1
]T

1 = n2v,

and therefore v = 0. Since the matrix (4.25) is positive semidefinite, we also have u = 0.

Hence every feasible Y can be expressed as Y = PXP T , with X � 0. If we make this

substitution in (4.24) we obtain

minimize (1/4) tr(P TLPX)

subject to diag(PXP T) = 1

X � 0.

The (n− 1)× (n− 1) matrix P TLP has elements

(P TLP)ij =

 Lii − 2Li,i+1 + Li+1,i+1 i = j

Lij − Li+1,j − Li,j+1 + Li+1,j+1 i 6= j.

85

n p?sdp p?sdp −
1

4
tr(P TLPX)

primal

residual

dual

residual

gpp100 100 −44.943551 3.78× 10−4 3.24× 10−7 8.34× 10−7

gpp124-1 124 −7.3430761 4.02× 10−4 3.86× 10−8 7.45× 10−8

gpp250-1 250 −45.444917 8.23× 10−4 1.28× 10−7 8.39× 10−7

gpp500-1 500 −25.320544 5.17× 10−4 7.42× 10−8 7.12× 10−7

Table 4.3: Results for four graph partitioning problems from SDPLIB. Column 3 is the

optimal value computed by MOSEK. Column 4 is the difference with the optimal value of

the centering problem computed by algorithm (4.20). The last two columns give the primal

and dual residuals in the computed solution.

Thus the sparsity pattern E ′ of the matrix P TLP is denser than E, i.e., E ⊆ E ′. The n

constraints diag(PXP T) = 1 reduce to

X11 = 1, Xi−1,i−1 +Xii − 2Xi,i−1 = 1, i = 2, . . . , n− 1, Xn−1,n−1 = 1.

To apply algorithm (4.20), we first rewrite the graph partitioning problem as

minimize (1/4) tr(P TLPX)

subject to diag(PXP T) = 1

X ∈ ΠE′′(S
n−1
+)

(4.26)

where E ′′ is a chordal extension of the aggregate sparsity pattern E ′. Note that tr(P TPX) =

n−1 for all feasible X. The centering problem for this sparse SDP is of the form (4.10) with

C =
1

4
P TLP, N =

1

n− 1
P TP, A(X) = diag(PXP T), A∗(y) = P T diag(y)P.

Numerical results Table 4.3 shows the numerical results for four problems from SDPLIB[Bor99].

The SDP relaxation (4.24) is solved by MOSEK and its optimal value is denoted by p?sdp.

In solving (4.26), we set µ = 0.001/n, and report in Table 4.3 the value (1/4) tr(P TLPX),

86

n
time per Cholesky

factorization

Newton steps

per iteration

time per PDHG

iteration

PDHG

iterations

gpp100 100 0.01 2.43 0.02 305

gpp124-1 124 0.01 2.00 0.02 392

gpp250-1 250 0.01 2.65 0.03 365

gpp500-1 500 0.02 3.01 0.07 394

delaunay_n10 1024 0.37 4.36 1.76 403

delaunay_n11 2048 0.48 4.70 2.54 420

delaunay_n12 4096 0.60 4.43 3.05 367

delaunay_n13 8192 1.02 4.42 4.98 375

Table 4.4: The four graph partitioning problems from SDPLIB plus four larger graphs from

the SuiteSparse collection. The last column gives the number of iterations in the primal–dual

algorithm. Columns 3–5 describe the complexity of one iteration of the algorithm. The CPU

time is measured in seconds.

where X is the solution returned by the algorithm (4.20). As in the first experiment, the

numerical results show that the algorithm is able to solve the centering SDP (4.26) with

desired accuracy.

In addition, we test the algorithm for four additional graphs from the SuiteSparse collec-

tion [KAB19]. Table 4.4 reports the time per Cholesky factorization, the number of Newton

steps per iteration, the time per PDHG iteration, and the number of iterations in the primal–

dual algorithm. The same observations as in Section 4.6.1 apply: the number of Newton

steps remains moderate as the size of the problem increases, and the cost per iteration is

roughly linear in the cost of a Cholesky factorization.

87

CHAPTER 5

Conclusions

In the first part of the dissertation we presented two variants of Bregman Condat–Vũ al-

gorithms, in which generalized Bregman proximal operators are used in both primal and

dual updates. The proposed algorithms extend the Condat–Vũ three-operator splitting

algorithm [Con13, Vu13] for convex optimization, and include most well-known proximal

splitting methods as special cases. We gave a new derivation for both methods, by applying

the Bregman proximal point method to the primal–dual optimality conditions. Based on

the interpretation, we provided a unified framework for the convergence analysis. More-

over, we introduced a line search technique for the Bregman dual Condat–Vũ algorithm for

equality-constrained problems, and proposed a Bregman extension to PD3O [Yan18].

In the second part of the dissertation, we applied the proposed Bregman proximal split-

ting algorithms to the centering problem in large-scale semidefinite programming with sparse

coefficient matrices. The Bregman distance used in the proximal operator is generated by the

logarithmic barrier function for the cone of sparse matrices with a positive semidefinite com-

pletion. With this choice of Bregman distance, the per-iteration complexity of the Bregman

proximal algorithm is dominated by the cost of a Cholesky factorization with the aggregate

(or common) sparsity pattern of the semidefinite program, plus the cost of evaluating the

linear mapping in the constraints and its adjoint. Therefore, when applied to the centering

problem of SDP, Bregman proximal methods obviate the expensive eigenvalue decomposi-

tion needed for standard proximal methods, and are able to handle sparse matrix constraints

with sizes that are orders of magnitude larger than the problems solved by general-purpose

88

solvers.

Many open research directions remain. First, there are still some theoretical questions

on how to incorporate Bregman distances into primal–dual proximal methods. For example,

it is unclear how to use Bregman distances in PDDY [SCM20]. The derivation of PD3O and

other Bregman proximal methods from the Bregman proximal point algorithm is unknown.

The Bregman version of the accelerated proximal methods [AT06, CP16b, Teb18] is largely

unexplored. Developing Bregman proximal methods for nonconvex optimization problems is

also interesting. To further improve the efficiency of practical implementation, it would be

useful to conduct a plane search for the two parameters τ and σ,

In addition to the above theoretical questions, we believe that the results in the disser-

tation will lead to new efficient algorithms for convex optimization applications in control,

signal processing, machine learning, and data science, in which domain knowledge is used to

formulate specialized Bregman proximal operators that reduce the cost per iteration. Further

developing the sparse SDP methods from the results in Chapter 4 is also important.

89

REFERENCES

[ADD96] P. Amestoy, T. Davis, and I. Duff. “An approximate minimum degree ordering
algorithm.” SIAM Journal on Matrix Analysis and Applications, 17(4):886–905,
1996.

[ADH21] D. Applegate, M. Dóaz, O. Hinder, H. Lu, M. Lubin, B. O’Donoghue, and
W. Schudy. “Practical large-scale linear programming using primal–dual hybrid
gradient.” arXiv eprints, arXiv:2106.04756, 2021.

[ADV10] M. S. Andersen, J. Dahl, and L. Vandenberghe. “Implementation of nonsym-
metric interior-point methods for linear optimization over sparse matrix cones.”
Mathematical Programming Computation, 2:167–201, 2010.

[ADV13] M. S. Andersen, J. Dahl, and L. Vandenberghe. “Logarithmic barriers for sparse
matrix cones.” Optimization Methods and Software, 28(3):396–423, 2013.

[ADV20] M. S. Andersen, J. Dahl, and L. Vandenberghe. CVXOPT: A Python Package
for Convex Optimization, 2020. Available at www.cvxopt.org.

[AG03] F. Alizadeh and D. Goldfarb. “Second-order cone programming.” Mathematical
Programming, 95(1):3–51, 2003.

[Ali95] F. Alizadeh. “Interior point methods in semidefinite programming with applica-
tions to combinatorial optimization.” SIAM Journal on Optimization, 5(1):13–51,
1995.

[AT06] A. Auslender and M. Teboulle. “Interior gradient and proximal methods for convex
and conic optimization.” SIAM Journal on Optimization, 16(3):697–725, 2006.

[AV15] M. S. Andersen and L. Vandenberghe. CHOMPACK: A Python Package for
Chordal Matrix Computations, 2015. cvxopt.github.io/chompack.

[BBC03] H. H. Bauschke, J. M. Borwein, and P. L. Combettes. “Bregman monotone op-
timization algorithms.” SIAM Journal on Control and Optimization, 42(2):596–
636, 2003.

[BBT17] H. H. Bauschke, J. Bolte, and M. Teboulle. “A descent lemma beyond Lipschitz
gradient continuity: first-order methods revisited and applications.” Mathematics
of Operations Research, 42(2):330–348, 2017.

[BC17] H. H. Bauschke and P. Combettes. Convex Analysis and Monotone Operator The-
ory in Hilbert Spaces. Springer Publishing Company, Incorporated, 2nd edition,
2017.

90

www.cvxopt.org

[BCN18] L. Bottou, F. Curtis, and J. Nocedal. “Optimization methods for large-scale
machine learning.” SIAM Review, 60(2):223–311, 2018.

[BDX04] S. Boyd, P. Diaconis, and L. Xiao. “Fastest mixing Markov chain on a graph.”
SIAM Review, 46(4):667–689, 2004.

[Bec17] A. Beck. First-Order Methods in Optimization. Society for Industrial and Applied
Mathematics, 2017.

[BGM13] S. Bellavia, J. Gondzio, and B. Morini. “A matrix-free preconditioner for sparse
symmetric positive definite systems and least-squares problems.” SIAM Journal
on Scientific Computing, 35(1):A192–A211, 2013.

[BGP19] S. Bellavia, J. Gondzio, and M. Porcelli. “An inexact dual logarithmic barrier
method for solving sparse semidefinite programs.” Mathematical Programming,
178(1-2):109–143, 2019.

[BGP21] S. Bellavia, J. Gondzio, and M. Porcelli. “A relaxed interior point method for low-
rank semidefinite programming problems with applications to matrix completion.”
Journal of Scientific Computing, 89(2):1–36, 2021.

[BGW05] A. Banerjee, X. Guo, and H. Wang. “On the optimality of conditional expectation
as a Bregman predictor.” IEEE Transactions on Information Theory, 51(7):2664–
2669, 2005.

[BL00] H. H. Bauschke and A. Lewis. “Dykstra’s algorithm with Bregman projections:
A convergence proof.” Optimization, 48(4):409–427, 2000.

[BLT06] P. Biswas, T.C. Liang, K. C. Toh, Y. Ye, and T. C. Wang. “Semidefinite pro-
gramming approaches for sensor network localization with noisy distance measure-
ments.” IEEE Transactions on Automation Science and Engineering, 3(4):360–
371, 2006.

[BLW06] P. Biswas, T.-C. Lian, T.-C. Wang, and Y. Ye. “Semidefinite programming based
algorithms for sensor network localization.” ACM Transactions on Sensor Net-
works, 2(2):188–220, 2006.

[BMN01] A. Ben-Tal, T. Margalit, and A. Nemirovski. “The ordered subsets mirror de-
scent optimization method with applications to tomography.” SIAM Journal on
Optimization, 12(1):79–108, 2001.

[BN01] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization. Anal-
ysis, Algorithms, and Engineering Applications. SIAM, 2001.

[Bor99] B. Borchers. “SDPLIB 1.2, a library of semidefinite programming test problems.”
Optimization Methods and Software, 11(1–4):683–690, 1999.

91

[BP93] J. R. S. Blair and B. Peyton. “An introduction to chordal graphs and clique trees.”
In A. George, J. R. Gilbert, and J. W. H. Liu, editors, Graph Theory and Sparse
Matrix Computation. Springer-Verlag, 1993.

[BPC11] S. P. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.”
Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

[Bre67] L. M. Bregman. “The relaxation method of finding the common point of con-
vex sets and its application to the solution of problems in convex program-
ming.” USSR Computational Mathematics and Mathematical Physics, 7(3):200–
217, 1967.

[Bre73] H. Brézis. Opérateurs maximaux monotones et semi-groupes de contractions dans
les espaces de Hilbert, volume 5 of North-Holland Mathematical Studies. North-
Holland, 1973.

[BST18] J. Bolte, S. Sabach, S. Teboulle, and Y. Vaisbourd. “First order methods beyond
convexity and Lipschitz gradient continuity with applications to quadratic inverse
problems.” SIAM Journal on Optimization, 28(3):2131–2151, 2018.

[BT03] A. Beck and M. Teboulle. “Mirror descent and nonlinear projected subgradient
methods for convex optimization.” Operations Research Letters, 31(3):167–175,
2003.

[BT09a] A. Beck and M. Teboulle. “A fast iterative shrinkage-thresholding algorithm for
linear inverse problems.” SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[BT09b] A. Beck and M. Teboulle. “Gradient-based algorithms with applications to signal
recovery problems.” In Y. Eldar and D. Palomar, editors, Convex Optimization in
Signal Processing and Communications, pp. 42–88. Cambridge University Press,
2009.

[Bub15] S. Bubeck. “Convex optimization: algorithms and complexity.” Foundations and
Trends in Machine Learning, 8(3–4):231–357, 2015.

[Bur03] S. Burer. “Semidefinite programming in the space of partial positive semidefinite
matrices.” SIAM Journal on Optimization, 14(1):139–172, 2003.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, New York, NY, USA, 2004.

[BY04] P. Biswas and Y. Ye. “Semidefinite programming for Ad-Hoc wireless sensor
network localization.” In Proceedings of the 3rd International Symposium on In-
formation Processing in Sensor Networks, pp. 46–54, 2004.

92

[BY08] S. J. Benson and Y. Ye. “Algorithm 875: DSDP5—software for semidefinite
programming.” ACM Transactions on Mathematical Software (TOMS), 34(3):16,
2008.

[BYZ00] S. J. Benson, Y. Ye, and X. Zhang. “Solving large-scale sparse semidefinite
programs for combinatorial optimization.” SIAM Journal on Optimization,
10(2):443–461, 2000.

[CC22] A. Chambolle and J. P. Contreras. “Accelerated Bregman primal–dual methods
applied to optimal transport and Wasserstein barycenter problems.” arXiv e-
prints, arXiv:2203.00802, 2022.

[CHZ13] P. Chen, J. Huang, and X. Zhang. “A primal–dual fixed point algorithm for
convex separable minimization with applications to image restoration.” Inverse
Problems, 29(2), 2013.

[CKC22] L. Condat, D. Kitahara, A. Contreras, and A. Hirabayashi. “Proximal splitting
algorithms for convex optimization: a tour of recent advances, with new twists.”
SIAM Review, 2022. To appear. Preprint available at https://arxiv.org/abs/
1912.00137.

[CL81] Y. Censor and A. Lent. “An iterative row-action method for interval convex
programming.” Journal of Optimization Theory and Applications, 34(3):321–353,
1981.

[CLM21] C. Clason, D. A. Lorenz, H. Mahler, and B. Wirth. “Entropic regularization of
continuous optimal transport problems.” Journal of Mathematical Analysis and
Applications, 494(1):124432, 2021.

[Con13] L. Condat. “A primal–dual splitting method for convex optimization involving
Lipschitzian, proximable and linear composite terms.” Journal of Optimization
Theory and Applications, 158(2):460–479, August 2013.

[CP07] P. L. Combettes and J.-C. Pesquet. “A Douglas–Rachford splitting approach to
nonsmooth convex variational signal recovery.” IEEE Journal of Selected Topics
in Signal Processing, 1(4):564–574, 2007.

[CP11a] A. Chambolle and T. Pock. “A first-order primal–dual algorithm for convex prob-
lems with applications to imaging.” Journal of Mathematical Imaging and Vision,
40(1):120–145, 2011.

[CP11b] P. L. Combettes and J.-C. Pesquet. “Proximal splitting methods in signal pro-
cessing.” In Fixed-Point Algorithms for Inverse Problems in Science and Engi-
neering, Springer Optimization and Its Applications, pp. 185–212. Springer New
York, 2011.

93

https://arxiv.org/abs/1912.00137
https://arxiv.org/abs/1912.00137

[CP16a] A. Chambolle and T. Pock. “An introduction to continuous optimization for
imaging.” Acta Numerica, 25:161–319, 2016.

[CP16b] A. Chambolle and T. Pock. “On the ergodic convergence rates of a first-order
primal–dual algorithm.” Mathematical Programming, 159(1):253–287, 2016.

[CT93] G. Chen and M. Teboulle. “Convergence analysis of a proximal-like minimization
algorithm using Bregman functions.” SIAM Journal on Optimization, 3(3):538–
543, 1993.

[CV18] H. Chao and L. Vandenberghe. “Entropic proximal operators for nonneg-
ative trigonometric polynomials.” IEEE Transactions on Signal Processing,
66(18):4826–4838, 2018.

[CZ92] Y. Censor and S. A. Zenios. “Proximal minimization algorithm with D-functions.”
Journal of Optimization Theory and Applications, 73(3):451–464, 1992.

[CZ97] Y. Censor and S. Zenios. Parallel Optimization: Theory, Algorithms and Appli-
cations. Oxford University Press, 1997.

[DB16] S. Diamond and S. Boyd. “CVXPY: A Python-embedded modeling language for
convex optimization.” Journal of Machine Learning Research, 17(83):1–5, 2016.

[Dem72] A. P. Dempster. “Covariance selection.” Biometrics, 28(1):157–175, 1972.

[DKQ10] Y. Ding, N. Krislock, J. Qian, and H. Wolkowicz. “Sensor network localization,
Euclidean distance matrix completion, and graph realization.” Optimization and
Engineering, 11(1):45–66, 2010.

[DST15] Y. Drori, S. Sabach, and M. Teboulle. “A simple algorithm for a class of non-
smooth convex-concave saddle-point problems.” Operations Research Letters,
43(2):209–214, 2015.

[dST21] A. d’Aspremont, D. Scieur, and A. Taylor. “Acceleration methods.” Foundations
and Trends in Optimization, 5(1–2):1–245, 2021.

[DT08] I. S. Dhillon and J. A. Tropp. “Matrix nearness problems with Bregman diver-
gences.” SIAM Journal on Matrix Analysis and Applications, 29(4):1120–1146,
2008.

[DY17] D. Davis and W. Yin. “A three-operator splitting scheme and its optimization
applications.” Set-Valued and Variational Analysis, 25:829–858, 2017.

[EB92] J. Eckstein and D. Bertsekas. “On the Douglas–Rachford splitting method and
the proximal point algorithm for maximal monotone operators.” Mathematical
Programming, 55(1):293–318, 1992.

94

[Eck93] J. Eckstein. “Nonlinear proximal point algorithms using Bregman functions,
with applications to convex programming.” Mathematics of Operations Research,
18(1):202–226, 1993.

[EDA20] A. Eltved, J. Dahl, and M. S. Andersen. “On the robustness and scalability
of semidefinite relaxation for optimal power flow problems.” Optimization and
Engineering, 21(2):375–392, 2020.

[EZC10] E. Esser, X. Zhang, and T. F. Chan. “A general framework for a class of first
order primal–dual algorithms for convex optimization in imaging science.” SIAM
Journal on Imaging Sciences, 3(4):1015–1046, 2010.

[FKM01] M. Fukuda, M. Kojima, K. Murota, and K. Nakata. “Exploiting sparsity in
semidefinite programming via matrix completion I: general framework.” SIAM
Journal on Optimization, 11(3):647–674, 2001.

[FKN97] K. Fujisawa, M. Kojima, and K. Nakata. “Exploiting sparsity in primal–dual
interior-point methods for semidefinite programming.” Mathematical Program-
ming, 79(1–3):235–253, 1997.

[FNB20] A. Fu, B. Narasimhan, and S. Boyd. “CVXR: An R package for disciplined convex
optimization.” Journal of Statistical Software, 94(14):1–34, 2020.

[Gab83] D. Gabay. “Applications of the method of multipliers to variational inequalities.”
In M. Fortin and R. Glowinski, editors, Augmented Lagrangian Methods: Applica-
tions to the Numerical Solution of Boundary-Value Problems, volume 15 of Studies
in Mathematics and Its Applications, pp. 299–331. Elsevier, 1983.

[GB14] M. Grant and S. Boyd. “CVX: Matlab Software for Disciplined Convex Program-
ming, version 2.1.” http://cvxr.com/cvx, 2014.

[GJS84] R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz. “Positive definite comple-
tions of partial Hermitian matrices.” Linear Algebra and its Applications, 58:109–
124, 1984.

[GM75] R. Glowinski and A. Marrocco. “Sur l’approximation, par éléments finis d’ordre
un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirich-
let non linéaires.” Revue française d’automatique, informatique, recherche opéra-
tionnelle, 9(2):41–76, 1975.

[GM76] D. Gabay and B. Mercier. “A dual algorithm for the solution of nonlinear varia-
tional problems via finite element approximation.” Computers and Mathematics
with Applications, 2(1):17–40, 1976.

[Gon12] J. Gondzio. “Interior point methods 25 years later.” European Journal of Opera-
tional Research, 218(3):587–601, 2012.

95

http://cvxr.com/cvx

[GOY17] R. Glowinski, S. J. Osher, and W. Yin. Splitting Methods in Communication,
Imaging, Science, and Engineering. Scientific Computation. Springer, 2017.

[GR00] M. Goemans and F. Rendl. “Combinatorial optimization.” In H. Wolkowicz,
R. Saigal, and L. Vandenberghe, editors, Handbook of Semidefinite Programming,
chapter 12, pp. 343–360. Kluwer Academic Publishers, 2000.

[GR18] P. Giselsson and A. Rantzer. Large-Scale and Distributed Optimization. Springer,
2018.

[Gul94] O. Güler. “Ergodic convergence in proximal point algorithms with Bregman func-
tions.” In D.-Z. Du and J. Sun, editors, Advances in Optimization and Approxi-
mation, pp. 155–165. Springer, 1994.

[Gur22] Gurobi Optimization, LLC. “Gurobi Optimizer Reference Manual.”, 2022.

[GW95] M. X. Goemans and D. P. Williamson. “Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming.” Jour-
nal of the ACM, 42(6):1115–1145, 1995.

[Ha90] C. Ha. “A generalization of the proximal point algorithm.” SIAM Journal on
Control and Optimization, 28(3):503–512, 1990.

[HRX21] F. Hanzely, P. Richtarik, and L. Xiao. “Accelerated Bregman proximal gradient
methods for relatively smooth convex optimization.” Computational Optimization
and Applications, 79(2):405–440, 2021.

[HY12] B. He and X. Yuan. “Convergence analysis of primal–dual algorithms for a saddle-
point problem: from contraction perspective.” SIAM Journal on Imaging Sci-
ences, 5(1):119–149, 2012.

[Jab12] R. A. Jabr. “Exploiting sparsity in SDP relaxations of the OPF problem.” IEEE
Transactions on Power Systems, 27(2):1138–1139, 2012.

[JLL19] M. Jacobs, F. Leger, W. Li, and S. Osher. “Solving large-scale optimization
problems with a convergence rate independent of grid size.” SIAM Journal on
Numerical Analysis, 57(3):1100–1123, 2019.

[JN12a] A. Juditsky and A. Nemirovski. “First-order methods for nonsmooth convex large-
scale optimization, I: general purpose methods.” In S. Sra, S. Nowozin, and S. J.
Wright, editors, Optimization for Machine Learning, pp. 149–183. MIT Press,
2012.

[JN12b] A. Juditsky and A. Nemirovski. “First-order methods for nonsmooth convex large-
scale optimization, II: utilizing problem’s structure.” In S. Sra, S. Nowozin, and
S. J. Wright, editors, Optimization for Machine Learning, pp. 149–183. MIT Press,
2012.

96

[JV22a] X. Jiang and L. Vandenberghe. “Bregman primal–dual first-order method and
applications to sparse semidefinite programming.” Computational Optimization
and Applications, 81(1):127–159, 2022.

[JV22b] X. Jiang and L. Vandenberghe. “Bregman three-operator splitting methods.”
arXiv e-prints, arXiv:2203.00252, 2022.

[KAB19] S. Kolodziej, M. Aznaveh, M. Bullock, J. David, T. A. Davis, M. Henderson,
Y. Hu, and R. Sandstrom. “The SuiteSparse matrix collection website interface.”
Journal of Open Source Software, 35(4), 2019.

[Kiw97] K. C. Kiwiel. “Proximal minimization methods with generalized Bregman func-
tions.” SIAM Journal on Control and Optimization, 35(4):1142–1168, 1997.

[KKK08] K. Kobayashi, S. Kim, and M. Kojima. “Correlative sparsity in primal–dual
interior-point methods for LP, SDP, and SOCP.” Applied Mathematics and Op-
timization, 58(1):69–88, 2008.

[KKM11] S. Kim, M. Kojima, M. Mevissen, and M. Yamashita. “Exploiting sparsity in linear
and nonlinear matrix inequalities via positive semidefinite matrix completion.”
Mathematical Programming, 129(1):33–68, 2011.

[KKW09] S. Kim, M. Kojima, and H. Waki. “Exploiting sparsity in SDP relaxations for sen-
sor network localization.” SIAM Journal on Optimization, 20(1):192–215, 2009.

[KP15] N. Komodakis and J. Pesquet. “Playing with duality: an overview of recent
primal–dual approaches for solving large-scale optimization problems.” IEEE Sig-
nal Processing Magazine, 32(6):31–54, 2015.

[LFN18] H. Lu, R. M. Freund, and Y. Nesterov. “Relatively smooth convex optimiza-
tion by first-order methods, and applications.” SIAM Journal on Optimization,
28(1):333–354, 2018.

[LM79] P. Lions and B. Mercier. “Splitting algorithms for the sum of two nonlinear
operators.” SIAM Journal on Numerical Analysis, 16(6):964–979, 1979.

[LMY21] T. Lin, S. Ma, Y. Ye, and S. Zhang. “An ADMM-based interior-point method
for large-scale linear programming.” Optimization Methods and Software, 36(2–
3):389–424, 2021.

[Lov79] L Lovász. “On the Shannon capacity of a graph.” IEEE Transactions on Infor-
mation Theory, 25:1–7, 1979.

[Low14a] S. H. Low. “Convex relaxation of optimal power flow part I: formulations and
equivalence.” IEEE Transactions on Control of Network Systems, 1(1):15–27,
2014.

97

[Low14b] S. H. Low. “Convex relaxation of optimal power flow part II: exactness.” IEEE
Transactions on Control of Network Systems, 1(2):177–189, 2014.

[LT92] Z. Q. Luo and P. Tseng. “On the convergence of the coordinate descent method
for convex differentiable minimization.” Journal of Optimization Theory and Ap-
plications, 72(1):7–35, 1992.

[LV11] I. Loris and C. Verhoeven. “On a generalization of the iterative soft-thresholding
algorithm for the case of non-separable penalty.” Inverse Problems, 27(12), 2011.

[LXY21] Y. Liu, Y. Xu, and W. Yin. “Acceleration of primal–dual methods by precon-
ditioning and simple subproblem procedures.” Journal of Scientific Computing,
86(2):21, 2021.

[MHL13] D. K. Mohlzahn, J. T. Holzer, B. C. Lesieutre, and C. L. DeMarco. “Implemen-
tation of a large-scale optimal power flow solver based on semidefinite program-
ming.” IEEE Transactions on Power Systems, 28(4):3987–3998, 2013.

[MKL15] R. Madani, A. Kalbat, and J. Lavaei. “ADMM for sparse semidefinite program-
ming with applications to optimal power flow problem.” In Proceedings of the
54th IEEE Converence on Decision and Control, pp. 5932–5939, 2015.

[Mor65] J. Moreau. “Proximité et dualité dans un espace Hilbertien.” Bulletin de la Société
Mathématique de France, 93:273–299, 1965.

[MOS19] MOSEK ApS. The MOSEK Optimization Tools Manual. Version 8.1., 2019.
Available at www.mosek.com.

[MP18] Y. Malitsky and T. Pock. “A first-order primal–dual algorithm with linesearch.”
SIAM Journal on Optimization, 28(1):411–432, 2018.

[Nem04] A. Nemirovski. “Prox-method with rate of convergence O(1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-
concave saddle point problems.” SIAM Journal on Optimization, 15(1):229–251,
2004.

[Nes83] Y. Nesterov. “A method of solving a convex programming problem with conver-
gence rate O(1/k2).” Soviet Mathematics Doklady, 27(2):372–376, 1983.

[Nes88] Y. Nesterov. “On an approach to the construction of optimal methods of minimiza-
tion of smooth convex functions.” Ekonomika i Mateaticheskie Metody, 24(3):509–
517, 1988.

[Nes18] Y. Nesterov. Lectures on Convex Optimization. Springer Publishing Company,
Incorporated, 2018.

98

www.mosek.com

[NFF03] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, and K. Murota. “Exploiting
sparsity in semidefinite programming via matrix completion II: implementation
and numerical results.” Mathematical Programming, 95(2):303–327, 2003.

[NN94] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex
Programming. Society for Industrial and Applied Mathematics, 1994.

[NT98] Y. Nesterov and M. J. Todd. “Primal–dual interior-point methods for self-scaled
cones.” SIAM Journal on Optimization, 8(2):324–364, May 1998.

[NW06] J. Nocedal and S. Wright. Numerical Optimization. Springer-Verlag, 2nd edition,
2006.

[NY83] A. Nemirovsky and D. Yudin. Problem Complexity and Method Efficiency in
Optimization. Wiley–Interscience, 1983.

[OV20] D. O’Connor and L. Vandenberghe. “On the equivalence of the primal–dual hybrid
gradient method and Douglas–Rachford splitting.” Mathematical Programming,
179(1–2):85–108, 2020.

[PB14] N. Parikh and S. Boyd. “Proximal algorithms.” Foundations and Trends in Opti-
mization, 1(3):127–239, 2014.

[PC11] T. Pock and A. Chambolle. “Diagonal preconditioning for first order primal–dual
algorithms in convex optimization.” In International Conference on Computer
Vision, pp. 1762–1769, 2011.

[PCB09] T. Pock, D. Cremers, H. Bischof, and A. Chambolle. “An algorithm for minimizing
the Mumford–Shah functional.” In International Conference on Computer Vision,
pp. 1133–1140, 2009.

[PG21] S. Pougkakiotis and J. Gondzio. “An interior point-proximal method of mul-
tipliers for convex quadratic programming.” Computational Optimization and
Applications, 78:307–351, 2021.

[PG22] S. Pougkakiotis and J. Gondzio. “An interior point-proximal method of multipliers
for linear positive semi-definite programming.” Journal of Optimization Theory
and Applications, 192:97–129, 2022.

[PHA18] S. K. Pakazad, A. Hansson, M. S. Andersen, and A. Rantzer. “Distributed semidef-
inite programming with application to large-scale system analysis.” IEEE Trans-
actions on Automatic Control, 63(4):1045–1058, April 2018.

[PRT02] J. Peng, C. Roos, and T. Terlaky. Self-Regularity. A New Paradigm for Primal–
Dual Interior-Point Algorithms. Princeton University Press, 2002.

99

[Rd20] M. Romain and A. d’Aspremont. “A Bregman method for structure learning on
sparse directed acyclic graphs.” arXiv e-prints, arXiv:2011.02764, 2020.

[Ren01] J. Renegar. A Mathematical View of Interior-Point Methods in Convex Optimiza-
tion. Society for Industrial and Applied Mathematics, 2001.

[Roc70] R. T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics and
Physics. Princeton University Press, 1970.

[RY22] E. K. Ryu andW. Yin. Large-Scale Convex Optimization via Monotone Operators.
Cambridge University Press, 2022. To be published.

[SAV14] Y. Sun, M. S. Andersen, and L. Vandenberghe. “Decomposition in conic op-
timization with partially separable structure.” SIAM Journal on Optimization,
24:873–897, 2014.

[SCM20] A. Salim, L. Condat, K. Mishchenko, and P. Richtárik. “Dualize, split, random-
ize: fast nonsmooth optimization algorithms.” arXiv preprint, arXiv:2004.0263,
2020.

[SNW12] S. Sra, S. Nowozin, and S. J. Wright. Optimization for Machine Learning. The
MIT Press, 2012.

[Stu99] J. F. Sturm. “Using SeDuMi 1.02, A MATLAB toolbox for optimization over
symmetric cones.” Optimization Methods and Software, 11(1–4):625–653, 1999.

[SV04] G. Srijuntongsiri and S. A. Vavasis. “A fully sparse implementation of a primal–
dual interior-point potential reduction method for semidefinite programming.”
arXiv preprint, arXiv:cs/0412009, 2004.

[SV15] Y. Sun and L. Vandenberghe. “Decomposition methods for sparse matrix nearness
problems.” SIAM Journal on Matrix Analysis and Applications, 36(4):1691–1717,
2015.

[Tay15] J. A. Taylor. Convex Optimization of Power Systems. Cambridge University
Press, 2015.

[Teb97] M. Teboulle. “Convergence of proximal-like algorithms.” SIAM Journal on Opti-
mization, 7(4):1069–1083, 1997.

[Teb18] M. Teboulle. “A simplified view of first order methods for optimization.” Mathe-
matical Programming, 170(1):67–96, 2018.

[TLJ06] B. Taskar, S. Lacoste-Julien, and M. I. Jordan. “Structured prediction, dual
extragradient and Bregman projections.” Journal of Machine Learning Research,
7(60):1627–1653, 2006.

100

[Tod01] M. J. Todd. “Semidefinite optimization.” Acta Numerica, 10:515–560, 2001.

[Tse00] P. Tseng. “A modified forward-backward splitting method for maximal monotone
mappings.” SIAM Journal on Control and Optimization, 38(2):431–446, 2000.

[Tse08] P. Tseng. “On accelerated proximal gradient methods for convex-concave opti-
mization.” Unpublished preprint available at https://www.mit.edu/~dimitrib/
PTseng/papers/apgm.pdf, 2008.

[TTT02] K. C. Toh, R. H. Tütüncü, and M. J. Todd. SDPT3 version 3.02. A MATLAB
software for semidefinite-quadratic-linear programming, 2002. Available at www.
math.nus.edu.sg/~mattohkc/sdpt3.html.

[VA15] L. Vandenberghe and M. S. Andersen. “Chordal graphs and semidefinite opti-
mization.” Foundations and Trends in Optimization, 1(4):241–433, 2015.

[VB95] L. Vandenberghe and S. Boyd. “A primal–dual potential reduction method for
problems involving matrix inequalities.” Mathematical Programming, 69(1):205–
236, 1995.

[VMC21] M.-L. Vladarean, Y. Malitsky, and V. Cevher. “A first-order primal–dual method
with adaptivity to local smoothness.” In Advances in Neural Information Pro-
cessing Systems, 2021.

[Vu13] B. C. Vũ. “A splitting algorithm for dual monotone inclusions involving cocoercive
operators.” Advances in Computational Mathematics, 38(3):667–681, 2013.

[Wri97] S. J. Wright. Primal–dual interior-point methods. SIAM, Philadelphia, 1997.

[Wri15] S. J. Wright. “Coordinate descent algorithms.” Mathematical Programming,
151(1):3–34, 2015.

[WS04] K. Q. Weinberger and L. K. Saul. “Unsupervised learning of image manifolds by
semidefinite programming.” In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, volume 2, 2004.

[WS06] K. Q. Weinberger and L. K. Saul. “An introduction to nonlinear dimensionality
reduction by maximum variance unfolding.” In National Conference on Artificial
Intelligence, pp. 1683–1686, 2006.

[WSZ07] K. Q. Weinberger, F. Sha, Q. Zhu, and L. Saul. “Graph Laplacian regularization
for large-scale semidefinite programming.” In Advances in Neural Information
Processing Systems. MIT Press, 2007.

[WX17] J. Wang and L. Xiao. “Exploiting strong convexity from data with primal–dual
first-order algorithms.” In International Conference on Machine Learning, pp.
3694–3702, 2017.

101

https://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf
https://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf
www.math.nus.edu.sg/~mattohkc/sdpt3.html
www.math.nus.edu.sg/~mattohkc/sdpt3.html

[XB04] L. Xiao and S. Boyd. “Fast linear iterations for distributed averaging.” Systems
& Control Letters, 53(1):65–78, 2004.

[YA21] E. Yazdandoost Hamedani and N. S. Aybat. “A primal–dual algorithm with line
search for general convex-concave saddle point problems.” SIAM Journal on Op-
timization, 31(2):1299–1329, 2021.

[Yan18] M. Yan. “A new primal–dual algorithm for minimizing the sum of three func-
tions with a linear operator.” Journal of Scientific Computing, 76(3):1698–1717,
September 2018.

[ZFP17] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and A. Wynn. “Fast
ADMM for semidefinite programs with chordal sparsity.” In American Control
Conference, pp. 3335–3340, 2017.

[ZFP20] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and A. Wynn. “Chordal
decomposition in operator-splitting methods for sparse semidefinite programs.”
Mathematical Programming, 180:489–532, 2020.

[ZFP21] Y. Zheng, G. Fantuzzi, and A. Papachristodoulou. “Chordal and factor-width
decompositions for scalable semidefinite and polynomial optimization.” Annual
Reviews in Control, 52, 2021.

[ZL21] R. Y. Zhang and J. Lavaei. “Sparse semidefinite programs with guaranteed near-
linear time complexity via dualized clique tree conversion.” Mathematical Pro-
gramming, 188(1):351–393, 2021.

102

	Introduction
	Algorithms for large-scale optimization problems
	Proximal methods with Bregman distances
	Contributions and outline of the dissertation

	Primal–dual proximal splitting methods
	Problem formulation
	Duality and optimality conditions
	Merit functions
	Proximal operator
	First-order proximal algorithms: survey and connections
	Condat–Vu three-operator splitting algorithm
	Primal–dual three-operator (PD3O) splitting algorithm
	Primal–dual Davis–Yin (PDDY) splitting algorithm

	Bregman proximal splitting algorithms
	Bregman proximal operators
	Bregman Condat–Vu three-operator splitting algorithms
	Derivation from Bregman proximal point method
	Convergence analysis
	Relation to other Bregman proximal splitting algorithms

	Bregman dual Condat–Vu algorithm with line search
	Algorithm
	Convergence analysis

	Bregman PD3O algorithm
	Convergence analysis
	Relation to other Bregman proximal algorithms

	Numerical experiment

	Application to sparse semidefinite programming
	Sparse semidefinite programming
	Primal and dual barriers
	The centering problem
	Barrier proximal operator for sparse PSD matrix cone
	Newton's method for barrier proximal operator
	Numerical experiments
	Maximum cut problem
	Graph partitioning

	Conclusions
	References

