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In this thesis, we investigate ways of enabling intelligent systems to recognize human desires and wants,

and we devise systems that automatically recover human pose and gesture information. We place special

emphasis on applications for improving the safety and comfort of vehicles.

We present a novel method for learning and tracking the pose of an articulated body by observ-

ing only its volumetric reconstruction from images. The model is called the kinematically constrained

Gaussian mixture model (kc-gmm). Pairs of components connected at a joint are encouraged to assume

a particular spatial configuration, forming joints with 1, 2 or 3 degrees-of-freedom (DOF). Pose learning

is based on the EM algorithm, and is the first to be evaluated using a common human image data-set with

optical motion capture ground-truth. The algorithm achieved estimates with mean joint position error of

15.9 cm, or 8% of the total length of the body. On synthesized hand data, the error was 0.5 cm, or 1.5%

of the total length.

Next, we present results on the characterization and recognition of driver intent using driver

gestural cues. The concepts apply towards the study of other driving maneuvers. The data-driven pattern

classification approach makes use of vehicle dynamics information and driver head and hand pose in-

formation via an optical motion capture system. We present results comparing different combinations of

input cues. We proposed a novel visualization of results to analyze the classifiers: ROC Area vs. Decision

Time and Statistical Response Over Time plots.

Driver-intent recognition algorithm above assumes the use of body part position information.

We present an in-vehicle system for detecting and tracking the position of the left and right hands in long-

wavelength infrared imagery. The results were effective in tracking hands over 90 minutes of driving.

Combined with steering information, 5 hand activities over the steering wheel could also be determined.

Finally, we present an in-vehicle system for determining which occupant is accessing the ve-

hicle infotainment controls for modulating information flow from the vehicle’s information display. The

average correct classification rate of 97.8% was achieved over 60 minutes of 30fps video under a variety

of moving vehicle operating conditions.

xiii



I

Introduction

This introductory chapter presents the motivation behind our work, the formulation of the re-

search problems for which we propose solutions, and our contributions. The chapter also includes an

overview of the thesis.

I.1 Motivation

Human gestures are the meaning conveyed through the pose and movement of the human body.

Gesture is said to be as rich and varied as spoken language itself, manifesting from the physical human

body as ideas, interests, feelings and intentions [1]. From the perspective of human computer interface

(HCI) research, there is much to be gained from a thorough understanding of gesture and pose to improve

the efficiency of the flow of information between the ever ubiquitous computer and its human operator.

Such an understanding facilitates the communication between them by allowing for more natural methods

of generating commands [2]. A special quality of some gestures is that they can be involuntarily “uttered”

in the course of human thought. Those thoughts could conceivably be inferred from observing the pose

of the human body. Together, inferred thought and explicit commands give an artificial system the ability

to efficiently collect and reliably guess the needs and desires of the human operator.

A particular set of human gestures that have gained much attention from researchers of intel-

ligent vehicles are driving gestures. In HCI terminology, we refer to both the communicative and ma-

nipulative gestures of driving [2]. An understanding of these human gestures has significant implications

for the safety and comfort of an activity that is ever present in our lives. It is expected that 2.3 million

vehicle crashes and over 43,000 fatalities will occur on U.S. roads in 2007 [3]. Driver inattention was

determined to be the contributing factor in an estimated 32% of all collisions between 2002 and 2003 [4].

Inattention is characterized by tasks secondary to driving, consisting of wireless device access, activity

1
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involving passengers, interior distractions, personal hygiene and dining as the primary types [5]. Driver

gesture recognition would enable the vehicle’s computer to automatically determine whether the driver is

being inattentive in nearly 700,000 of the collision situations expected to occur. Upon determining that

a driver was inattentive, the computer can be tasked with co-pilot-like responsibilities to assist and warn

the driver upon detecting dangerous situations, thus making the vehicle safer to drive. To realize these

potential benefits, the primary task is therefore to understand the driver and the driver’s gestures.

For an example of how gesture recognition may help, imagine the scenario in which a motorist

tries to turn right at an intersection and a bicyclist is in his blind spot. If the vehicle could detect the

bicyclist in its path, it could alert the driver and potentially avoid the collision. However, if the driver

has already seen the bicyclist, an alert might hinder rather than complement safe driving by unnecessarily

increasing the driver’s workload. Likewise, if the vehicle knew that the driver failed to notice the bicy-

clist, it could more confidently alert the driver of the danger, or even take over the driving if it is confident

enough. For an intelligent driver-assistance system to be effective, it must be able to continuously monitor

not just the surrounding environment and vehicle state, but also monitor the driver’s gestures. If a dan-

gerous situation occurs that requires intervention, the vehicle can recognize it and alert the driver more

accurately.

The driver pose estimation aspect of gesture recognition is by itself not limited to applications

in intelligent vehicles. Body pose estimation, or human motion capture as it is more widely known, has

a number of applications, including video surveillance systems, video analytics (store visitor analysis),

intelligent rooms, human computer interfaces, ergonomics studies, gait pathology studies, sports tuning,

robot control, and 3-D animation. The pose estimation problem involves estimating the parameters of the

human body model (such as joint angles) from sensed data. The sensors may be laser-range scanners,

time-of-flight sensors, long-wavelength infrared imagers or broad-spectrum visible wavelength imagers

(video cameras). The use of multiple sensors has been explored as well, capturing different perspectives

of the same scene. Each of these sensors provides 2-D or 3-D images of the scene, which a model would

then relate to the pose of the subject.

The processing flow of a gesture recognition system generally begins with sensing the subject

and extracting pertinent sensor data primitives or cues for estimating the pose, which are finally used in

determining the subject’s gestures. Tab. I.1 illustrates this basic process of recognizing human gestures

with the types of results from the intermediate processing steps.

Systems that provide the ability of recognizing driving gestures in actual vehicles require spe-

cific functionality and features that are not provided by similar systems proposed to-date which do not

have this goal in mind. Also, it is unknown to what extent gestures will contribute to improvement in

intelligent vehicles. In this thesis, we focus on the design of pose and gesture recognition techniques with

emphasis on intelligent vehicles.
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Table I.1: Abstraction layers of information contained in the physical human body.

Raw Sensed Data Sensor Features Pose Gesture
Long-wavelength
Infrared Images

Monochrome color
cameras

Time-of-flight
Imagers (LIDAR)

Laser-range scanner

Edges
Appearance
Invariant Moments
Depth Maps
Landmarks
descriptors

Region descriptors
Volume

Skeletal Structure
Limb Dimensions
Joint Location
Joint Range
-of-motion

Face Location
Body part Pose
(e.g. Head)

Posture
Person Identity
Facial, Hand, Body
Gesture

Facial Expression
Gait
Activity
Intent

I.2 Problem Statement and Challenges

The first challenge in driver gesture recognition is to identify and characterize the kinds of driver

gestures that enable a vehicle to determine the attention or comfort level of the driver. For this thesis, we

focus on developing the techniques for recognizing the driver’s intention to make an intersection turn,

and determine the occupant whose hand is hovering over the controls in the aisle console. Both kinds of

gestures are important for driving safety: intersection-turn intent can generate more accurate warnings in

collision situations, and user determination helps drivers focus on the driving by preventing their access

to the increasingly popular vehicle infotainment system, while allowing the passenger to access it.

In order to recognize these driver gestures, and gestures in general, the system requires some

description of the driver’s body pose. Depending on the needs of the application, the description can

explicitly describe the skeletal configuration of the driver’s body, i.e. joint position, joint type, body part

orientation, or be simplified to just describe position or appearance. The type of description that is both

adequate and optimal needs to be understood.

All of the system components must adhere to special properties of the vehicular environment

which introduces very specific requirements for these systems. For vision sensors, external lighting con-

ditions will influence the behavior of the captured images of the scene and therefore require a processing

algorithm that is invariant or robust to such illumination changes.

To conclude, we focus on developing gesture recognition systems that also fulfill vehicle-

specific requirements related to intersection-turn intent and user determination. In the process, we will

also investigate improvements to the general articulated body pose estimation problem and modifications

for its use in vehicles.

I.3 Contributions

This thesis contributes to the area of pose estimation, gesture recognition, and human-centric

driver assistance systems for enhancing driving safety and comfort. The main questions we address are:
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• What precisely are the driver gestures we can recognize?

• How can driver intersection-turn intent be reliably recognized?

• To what extent does body pose information improve the recognition performance of driver intent,
if any?

• How can driver body-part position be tracked in the vehicle without the use of encumbering markers
or wires?

• How can the user of the vehicle controls be determined by observing images of the hand accessing
the controls?

The detailed contributions of this thesis include:

1. A modeling framework and learning procedure that relates volumetric reconstructions of articulated

bodies with the pose of the body using the kinematically constrained Gaussian mixture model (kc-

gmm). This approach was evaluated using motion-capture generated ground-truth as part of a

common data-set. The results were competitive with other approaches.

2. A system for recognizing the driver intent to perform a “slow” intersection turn maneuver using the

kernel Relevance Vector Machine classifier and several time-series cues including vehicle dynamics

and driver head pose and hand position. A study of intersection-turn trends in vehicle and driver

data and the pertinence of various cues are also presented.

3. A hand position tracker from thermal infrared images using cascade of boosted classifiers working

with haar-like features, and multiple hand tracking with a probabilistic data association filter used

for steering wheel grasp analysis and driver activity recognition.

4. A vision-based user determination system which determines which of the two front-row seat occu-

pants, if anyone at all, is accessing the controls in the center console.

I.4 Thesis Outline

The rest of this thesis is organized as follows:

Chapter II presents a general articulated body pose estimation algorithm using the kinematically

constrained Gaussian mixture model to represent voxel images of bodies and the EM algorithm as the

estimator.

Chapter III presents the proposed driver gesture recognition system, namely a driver intersection-

turn intent inference system.

Chapter IV presents a vision-based approach for estimating the position of the driver’s hands

using thermal imagery in the vehicle.
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Chapter V presents vision-based approaches to estimating the 2-D image and 3-D spatial posi-

tion of the driver’s hands in the vehicle.

Chapter VI summarizes the work and presents final remarks. This chapter also includes future

research directions.



II

Articulated Body Pose Estimation

In our first contribution towards pose and gesture recognition, we present our study on estimat-

ing the pose of a generic articulated body.

II.1 Introduction

We present a novel method for learning and tracking the pose of an articulated body by ob-

serving only its volumetric reconstruction or “voxel image”. These voxel images are the kind that can be

derived from a set of images of the subject captured from various perspectives and calculated via shape-

from-silhouette or other techniques [6]. The primary challenge is devising a method to efficiently and

robustly extract joint parameters that describe the pose of the articulated body from unlabeled 3D voxel

image sequences.

This work stems from the desire to develop accurate tether-less, vision-based articulated body

pose estimation systems. These bodies may be the human body, hand, or articulated structures. Such a

system has several foreseeable applications, including marker-less motion capture for human-computer

interfaces, physiotherapy, 3D animation, ergonomics studies, robot control and surveillance. One of the

major difficulties in recovering pose from images of an articulated body is the high number of degrees-of-

freedom (DOF) in movement that needs to be recovered. Any rigid object requires 6 DOF to fully describe

its pose. Each additional rigid object connected to it adds at least 1 DOF. A human body contains no less

than 10 large rigid body parts, equating to more than 20 DOFs. The difficulty is compounded by the

problem of self-occlusion, where body parts occlude each other depending on the configuration. Other

challenges involve dealing with varying illumination which affects appearance, varying subject attire or

body type, required camera configuration, and required computation time.

One framework is to first extract the volume representation of the articulated body from image

6
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data. Images of the subject may be segmented, generating a silhouette image of the subject. The resulting

silhouettes can then be back-projected into a series of camera rays through the silhouette back onto the

scene. The intersection of these rays from many images from different perspectives of the subject would

constitute the visual-hull of the subject, an upper-bound to the actual volume of the articulated body [7,8].

Even tighter bounds can be achieved if the colors or texture of the surfaces are taken into account [7, 9].

From here, the volumes are used to extract the pose of the body. This isolates the problem of finding the

pose of the articulated body from voxel data from the problem of computing the volume reconstruction.

The proposed pose learning method assumes the use of only the voxel data acquired using shape-from-

silhouette or other volumetric reconstruction technique.

We propose a probabilistic technique that utilizes a multi-component Gaussian mixture model

to describe the spatial distribution of voxels in a voxel image. Each component describes a segment or

rigid body, and the collection of components are kinematically constrained according to a pre-specified

skeletal model. This model we refer to as a kinematically constrained Gaussian mixture model (kc-gmm).

The kinematic constraints are in the form of a probability density function that gives a high probability

when pairs of components connected at a common joint satisfies a particular spatial configuration, forming

a 1, 2 or 3 degree-of-freedom (DOF) joint. This is done by incorporating a constraint function as a prior

on the component means, which represent the components’ location in R3, and the covariance matrix,

which represents the orientation of the component. Component rotation is parameterized in terms of

Euler angles. All parameters are learned using the EM algorithm.

The pose learning algorithm is evaluated using synthesized hand data, and the HumanEvaII

data-set for facilitating comparison among different algorithms. Both data-sets contain ground-truth in-

formation for accuracy measurements. For the case of the hand, we illustrate hand pose learning using

a 16 component, 27 DOF mixture model. For the human body in the HumanEvaII data-set, we illustrate

human body pose learning using a 11 segment, 19 DOF mixture model. The results show that utilizing

volume data and aided by the degrees-of-freedom constraints only, this approach attains accuracies of

joint location estimates within 0.5cm mean-absolute-error from ground-truth with the hand data set and

17cm from subjects S2 and S4 from the HumanEvaII data-set. (S2 and S4 are subjects comprises of all

the subjects in HumanEvaII data-set. The HumanEvaI data-set consists of more subjects, including S2

and S4, using a different video collection hardware.)

The statistical model lends itself easily to the estimation of the two attributes of the articulated

body simultaneously: body structure and body pose, as both are parameters within this model. The model

parameters describe 1) the dimensions of each component in height, width and depth and 2) the location

and orientation of each segment or equivalently, the joint angles and component position. For this chapter,

the focus is on recovering body pose. However, we hope these results will serve as an indicator of the

promise that statistical clustering techniques of volume data can be used to resolve more than body pose.
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In the following sections, we lay the foundation for the proposed algorithm, describing the

previous research in this area in sec. II.2. The model and learning procedure are described in sec. II.3

and II.4. To demonstrate the effectiveness of the proposed technique, the pose learning algorithm is

evaluated on two sets of data with ground-truth: synthetic hand data and HumanEvaII data-set. The

results of these tests are described in sec. II.5. Finally, the chapter concludes with discussion in sec. II.6.

II.2 Related Work

There has been a tremendous amount of work in image-based recovery of articulated body

pose. Several surveys of such techniques can be found in [2, 10–12]. Numerous ways have been devised

to represent pose as a function of volumetric data. Each consists of a model and a fitting procedure to

fit the model to the data. One of the earlier works is by Cheung et al. [13], where a simple k-means like

algorithm is used to estimate the torso and 5 major appendages of the body (head, arms and legs). Largely

to demonstrate the real-time volume reconstruction technique, no actual kinematic model was assumed.

Mikic et al. [14] devised a method of tracking articulated human body hierarchically, starting by

detecting the head, then fitting a torso attached to the head. Then the remaining voxels are segmented to

locate the upper and lower legs and arms. The strength of the Mikı́c approach is an initialization procedure

to the tracking process, which the proposed kc-gmm method in its current state does not have. Mikic’s

approach however lacks generality to extend tracking articulated objects of an arbitrary skeletal structure.

Furthermore, Mikic’s approach can be described as top-down in nature and the proposed approach is

bottom-up. The result is that limbs at the end of the hierarchy contribute to the estimate of the whole

body as much as other parts that are higher up in the hierarchy, ultimately converging at a compromise

among all components.

The research most closely related to this chapter is that of the constrained mixture model work

by Hunter et al., [15]. They too utilize the concept of constraining the configuration of Gaussian com-

ponents in a mixture model but in 2-D silhouette images. We extended the Hunter model to describe vol-

umes in [16]. In both these works, the model parameters were learned utilizing Expectation-Constrained-

Maximization. This estimation procedure involves injecting a constraining step following the E- and

M-steps to project the parameter estimates onto the kinematically feasible manifold. It is conceivable

that the M-step may conflict with the so-called constraining C-step, causing instability in the optimization

process. Our primary contribution in this chapter is incorporating these kinematic constraints (confin-

ing pairs of components to have non-zero rotation along only the specified degrees-of-freedom) into the

probability model in the form of a parameter constraining prior probability. This allows us to remove

the C-step completely, stay within the EM algorithm framework, and enjoy all the proven convergence

properties as a result.



9

Two other noteworthy approaches in the volume-based pose estimation area are by Ueda et al. [17]

and Ogawara et al. [18]. Their techniques are based on the iterative-closest-point (ICP) algorithm. The

differences between our approach and theirs in this case are subtle. Each algorithm arrives at the pose

estimate result with roughly the same accuracy. Their approach utilizes the actual volume reconstruction

itself as part of their model in which they position the joints and divide the volume into segments. In

contrast, our approach requires knowing only the dimensions of the individual segments, and does not re-

quire a representative volume reconstruction for the algorithm to operate in subsequent frames. Thereby,

in cases where the volume data of the articulated object we wish to track is unknown before hand, e.g.

partially visible driver in a car, tracking can still take place with our approach. The kc-gmm approach

does not currently address the issue of adaptive dimension adjustment according to the volume data; how-

ever, the primary motivation of this approach is that body structure can also be recovered using the same

paradigm of probabilistic clustering.

The most important motivation for using a probabilistic mixture model to describe volumetric

reconstructions of bodies is that it can conceivably allow easier estimation of body structure, which is thus-

far the most elusive articulated body attribute to learn from image data. Humans can discern one rigid

body part from another quite easily by examining a sequence of voxel images of a moving articulated body

and determining which voxels move together with respect to others. The moving volume cue alone should

be adequate to determine joint locations, joint type, and body part dimensions for many applications.

Some deterministic but automatic ways have been presented illustrating this concept of grouping rigid

parts from 3-D visual-hull [19,20], 3-D color surface points [21], and 2-D image point data [22]. There is

promise that a mixture model approach will serve as a basis to learn body structure. This chapter solves

the first problem of estimating kinematically feasible pose using this probabilistic model, leaving structure

learning for future work.

II.3 Kinematically Constrained Gaussian Mixture Model

The kinematically constrained Gaussian mixture model consists of the usual mixture of Gaus-

sians model [23] with a prior probability on the constraints which in turn influences the mixture parame-

ters. Fig. II.1 shows a graphical representation of the model. If we let yn be distributed by a mixture of K

Gaussians representing K rigid body parts, zn be the hidden membership variable, and Θ be the embod-

iment of the kinematic constraints and all means and covariance matrices of every Gaussian density, the
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Figure II.1: Graphical representation of the kinematically constrained mixture model.

density function of Y = {yn}Nn=1 has the form

P (Y, c|Θ) = P (c|Θ)
∏
n

P (yn|c,Θ)

= P (c|Θ)
∏
n

[∑
zn

P (yn|zn,Θ)P (zn)

]

= P (c|Θ)
∏
n

[∑
zn

N (yn|µzn
,Σzn

)πzn

]
(II.1)

The expression in square brackets is the familiar mixture model. We introduce a zero-mean normally

distributed random variable c which constrains components pairwise. There are altogether three forms of

these constraints: spherical (3-DOF) constraint, hardy-spicer (2-DOF) constraint, and revolute (1-DOF)

constraint.

Any two components connected by a joint is constrained using the spherical constraint given by

cs(Θ) = µi + R0iaij − (µj + R0jaji) (II.2)

where µi, µj ∈ R3 are the means of components i and j, R0i,R0j ∈ SO(3) are the rotation of the com-

ponents relative to the world coordinate frame, and aij ,aji point to the joint location from the component

centers in component coordinate frame. This constraint represents a path from the origin, to the center of

one component (µi), to the joint shared between the two components, to the center of the other component

(µj), and back to the origin. Cs(Θ) equals zero if the two components meet at the joint. Likewise, the

other two constraints operate in the same manner; when the constraint given the component means and

orientations equals zero, the DOF constraint is satisfied.

The hardy-spicer constraint is given by

ch(Θ) = R0iqij ·R0jqji (II.3)

where qij , q̂ji are the rotational axes of each component in either component coordinate frame. In this

case, they each equal one of the two rotational axes. For example, if qij = (1, 0, 0) and qji = (0, 1, 0),

the joint between the two components i and j is a 2-DOF joint that can rotate along the x- and y-axes with

respect to either component coordinate frame.
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Figure II.2: Illustration of the joint constraints. The right column illustrates the configuration of joint

location vectors aij ,aji and rotational axes qij ,qji when the constraints are satisfied. The length of the

dotted lines are reduced to zero when the constraints are satisfied

The revolute constraint is given by

cr(Θ) = R0iqij −R0jqji (II.4)

Again, qij ,qji represent the rotational axes. When this constraint is satisfied, the two rotational axes

align resulting in a rotation along only the single DOF. Usually, qij = qji, although this need not be the

case.

Fig. II.2 illustrates the mechanics of the constraints. To describe what occurs in each constraint

physically, for every joint in the articulated body, cs pulls the pair of components together to make contact

at the specified joint, then ch and cr orients the components, possibly even translating the components

such that the relative rotation between the two components are non-zero along the 2 and 1 degrees-of-

freedom, respectively.

Finally, R0i and R0j are extracted from mixture components by parameterizing the covariance
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matrix of the Gaussian densities in the following way:

yn ∼
K∑
i=1

N (yn|µi,Σi)πi

Σi = RiΛiR>i

= RziRyiRxiΛiR>xiR
>
yiR

>
zi

= eẑθzieŷθyiex̂θxiΛie−x̂θxie−ŷθyie−ẑθzi

= Σ(θxi, θyi, θzi) (II.5)

The matrices x̂, ŷ, and ẑ are skew-symmetric matrices of axes of rotation, which are along the x-, y- and

z-axes in the world coordinate frame.

II.4 Learning Pose using EM

The maximum likelihood estimate of the pose is found using the EM algorithm. The E-step

remains the same as the E-step for the standard Gaussian mixture model. The M-step becomes an opti-

mization over the log-likelihood of the mixture model summed with the log-likelihood of c, the constraint

on the component position (means) and orientation (covariance matrices). A closed-form expression for

the mean can be found, but the orientation of each component is estimated using gradient ascent.

Using equ. II.1, the problem of finding the ML estimate of Θ can be stated as maximizing the

following log-likelihood equation:

Θ̂ML = arg max
Θ

[lnP (Y |Θ) + lnP (c|Θ)] (II.6)

By introducing the 1) hidden membership variable zn, 2) its distribution function q(zn) as of yet unknown,

and 3) the posterior of zn, and then rearranging the terms, we reveal the expression equivalent to the log-

likelihood which can then be more readily maximized.

lnP (Y |Θ)

=
∑
n

lnP (yn|Θ)
∑
zn

q(zn)−KL(q‖p) +KL(q‖p)

=
∑
n

∑
zn

[
q(zn) ln

P (yn, zn|Θ)
q(zn)

− q(zn) ln
P (zn|yn,Θ)

q(zn)

]
= L(q,Θ) + KL(q‖p) (II.7)

KL(q‖p) is the Kullback-Liebler divergence (relative entropy),
∑
zn
q(zn) = 1, and L is the so-called

lower-bound of the incomplete log-likelihood. Finally substituting equ. II.7 back into equ. II.6, we arrive
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at the desired expression.

lnP (Y |Θ) + lnP (c|Θ)

= L(q,Θ) + KL(q‖p) + lnP (c|Θ)

≥ L(q,Θ) + lnP (c|Θ) (II.8)

Maximizing the log-likelihood lower-bound L(q,Θ) is equivalent to maximizing the log-likelihood. To

find the Θ̂ML, we iteratively hold the parameters Θ fixed and find the distribution function q that max-

imizes the equation (E-step), then hold q fixed and find Θ that maximizes the log-likelihood(M-step).

Details of the EM algorithm and its derivation can be found in [26].

II.4.A E-Step: Solving for q(zn)

The E-Step consists of evaluating the posterior probability of the hidden variable zn while

holding the parameters fixed.

q(zn) = p(zn |yn,Θold)

=
N (yn|µzn

,Σ(θzn
))πzn∑

zn
N (yn|µzn

,Σ(θzn
))πzn

= αzn,i (II.9)

When q(zn) equals the posterior of zn, the KL divergence KL(q‖p) equals zero while maintaining the

same values for the incomplete log-likelihood.

II.4.B M-Step: Solving for πi and µi

The M-step consists of maximizing L(q,Θ) over Θ.

Θ̂ML = arg max
Θ
L(qold,Θ) (II.10)

= arg max
Θ

∑
n

∑
zn

qold lnP (yn, zn|Θ) + lnP (c|Θ) (II.11)

The parameters Θ consist of the means of each component µi, the orientation of each component in Euler

angles θi, and the class prior probability πi for all components i.

Because P (c|Θ) does not depend on the class prior probabilities πi, they can be found the same

way as learning them for the standard mixture model by evaluating

π̂i =
1
N

∑
i

αzn,i (II.12)

where N is the number of voxels.
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Only the incomplete log-likelihood and spherical constraint probability P (cs|Θ) depend on the

component mean µi. A single component may have one or several joints constrained by the spherical

joint constraint probability. Solving for µi involves setting the gradient of L(q,Θ) with respect to all

µi to equal zero, and solving for µi for all i simultaneously using Least Squares. The gradient of the

log-likelihood and spherical constraint probability is given by

∇µi

∑
n

lnP (yn|zn = i,Θ)

=
∑
n

αi,nΣ(θi)−1(yn − µi) (II.13)

∇µi
P (cs|Θ)

= −∇µi
c>s Σ−1

cs
cs

= −Σ−1
cs

(µi + Riaij − (µj + Rjaji)) (II.14)

∇µjP (cs|Θ)

= +∇µj
c>s Σ−1

cs
cs

= +Σ−1
cs

(µi + Riaij − (µj + Rjaji)) (II.15)

Through judicious rearrangement of terms, one can construct a system of equations for this

component mean µi and all other component means.

[
−Σ−1

cs
· · ·
∑
n

αi,nΣ(θi)−1 + γΣ−1
cs
· · · − Σ−1

cs

]



...

µj
...

µi
...

µk
...


=
∑
n

αi,nΣ(θi)−1yn

+ Σ−1
cs

(Rjaji −Riaij) + Σ−1
cs

(Riaik −Rkaik) (II.16)

The component means µ̂i ∀i that maximize the log-likelihood can be found using least squares to solve

the system of equations shown in equ. II.16.

II.4.C M-Step: Solving for θi

Finally, to solve for the orientation θi of each component, we need to consider the incomplete

log-likelihood and all relevant constraint probabilities P (cs|Θ), P (ch|Θ), and P (ce|Θ). Gradient ascent
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is employed for this task. The gradient of L(qold,Θ) with respect to θi is used to iteratively step toward

the solution until convergence using the update equation

θ
[n+1]
i = θ

[n]
i + αn∇θiL (II.17)

The gradient of L(qold,Θ) with respect to θi is given by

∇θiL = ∇θi lnP (yn|Θ)

+∇θi
[lnP (cs|Θ) + lnP (ch|Θ) + lnP (ce|Θ)] (II.18)

All constraints are included in equ. II.18, but each joint will utilize at most two of the above constraints.

The gradient of the other constraints will equate to zero in those cases. All constraint probabilities are

shown here to illustrate the positioning of the gradients.

The gradient of the incomplete likelihood is given by

∇θi
lnP (yn|Θ) = −

∑
n

αi,n
2
∇θi

mi(θi) (II.19)

where

∇θi
mi(θi) =
2(yn − µi)>eẑθzeŷθy x̂ex̂θxΛ−1R>(yn − µi)

2(yn − µi)>eẑθz ŷeŷθyex̂θxΛ−1R>(yn − µi)

2(yn − µi)>ẑeẑθzeŷθyex̂θxΛ−1R>(yn − µi)

 (II.20)

The gradient for the constraint probabilities all follow the form

∇θi lnP (c|Θ) = ∇θi lnN (c|0,Σ)

= ∇θi

[
−1

2
c>Σ−1c

]
= −(∇θi

c)Σ−1c (II.21)

Depending on the ordering of pairs of components, the gradient is of a particular form. In other words,

for a particular constraint equation, if the first component is i or the “head”, and the second component

is j or the “tail”, the second component must always be the j to the first component’s i. This head-tail

relationship must remain consistent throughout the calculation of the constraint probabilities and their

gradients.
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For the spherical constraint probability (which is used by every joint), the gradient is found by

∇θi
lnP (cs|Θ)

= −∇θi(Riaij)Σ−1
s (µi + Riaij − (µj + Rjaji))

= −


(eẑθzieŷθyi x̂ex̂θxiaij)>

(eẑθzi ŷeŷθyiex̂θxiaij)>

(ẑeẑθzieŷθyiex̂θxiaij)>

Σ−1
cs
cs (II.22)

∇θj
lnP (cs|Θ)

= −∇θj (−Rjaji)Σ−1
s (µi + Riaij − (µj + Rjaji))

= +


(eẑθzjeŷθyj x̂ex̂θxjaji)>

(eẑθzj ŷeŷθyjex̂θxjaji)>

(ẑeẑθzjeŷθyjex̂θxjaji)>

Σ−1
cs
cs (II.23)

The gradient for the hardy-spicer joint is given by

∇θi
lnP (ch|Θ)

= −∇θi(q
>
ijR
>
i Rjqji)Σ−1

h (q>ijR
>
i Rjqji)

= −


q>jiR

>
j e

ẑθzieŷθyi x̂ex̂θxiqij

q>jiR
>
j e

ẑθzi ŷeŷθyiex̂θxiqij

q>jiR
>
j ẑeẑθzieŷθyiex̂θxiqij

Σ−1
ch
ch

∇θj
lnP (ch|Θ)

= −∇θj
(q>ijR

>
i Rjqji)Σ−1

h (q>ijR
>
i Rjqji)

= −


q>ji(−x̂)e−x̂θxje−ŷθyje−ẑθzjRiqij

q>jie
−x̂θxj (−ŷ)e−ŷθyje−ẑθzjRiqij

q>jie
−x̂θxje−ŷθyj (−ẑ)e−ẑθzjRiqij

Σ−1
ch
ch

(II.24)
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The gradient for the elbow joint is given by

∇θi
lnP (ce|Θ)

= −∇θi(Riqij)Σ−1
e (Riqij −Rjqji)

= −


(eẑθzieŷθyi x̂ex̂θxiqij)>

(eẑθzi ŷeŷθyiex̂θxiqij)>

(ẑeẑθzieŷθyiex̂θxiqij)>

Σ−1
ce
ce (II.25)

∇θj
lnP (ce|Θ)

= −∇θj (−Rjqji)Σ−1
e (Riqij −Rjqji)

= +


(eẑθzjeŷθyj x̂ex̂θxjqji)>

(eẑθzj ŷeŷθyjex̂θxjqji)>

(ẑeẑθzjeŷθyjex̂θxjqji)>

Σ−1
ce
ce (II.26)

(II.27)

II.5 Evaluation

To demonstrate the validity and generality of this approach, the proposed model is constructed

for 2 types of articulated bodies: a 16 component, 15 joint hand, and a 10 component, 9 joint human body.

The volumetric reconstructions were synthetically generated for the case of the hand, and generated using

shape-from-silhouette using HumanEva II [27] image data in the case of the human body.

In both cases, ground-truth information about the position of the articulated body is available

for comparison with the estimated results. The measures of accuracy used for both hand and human body

test sequences is joint position error, proposed to be the standard measure of error [27]. Component (or

segment) position and orientation error is also used for the hand case, for comparison.

For each test, the body model is manually sized and positioned near the actual voxel reconstruc-

tion of the body, and the parameters of the model mixtures is initialized accordingly. Fig. II.3 shows the

model configured and result of the pose estimate in the first frame following initial model placement.

To generate the synthetic “voxel image” of the hand, each cylinder of voxels is positioned in

the space described by the articulated body model. A sequence of 430 voxel images were generated of

fingers bending from 0 to 90 degrees in a wave-like pattern while the palm also rotated. A few frames

from the result of pose learning on this sequence are shown in fig. II.7. Note that the hand closes to a fist

twice.

To measure its accuracy, the orientation and position of the individual segments of the estimated

and ground-truth values are compared. Various statistics of the error were calculated, including mean

absolute, root mean square, median, mode, and 95-th percentile. The histogram of component center
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Figure II.3: Articulated body models in evaluation. Joint and joint types are annotated according to the

number of degrees of freedom. The center of the palm and torso are used as the center of the body and

carry an additional 3 degrees of freedom for translational movement. Dimensions are based on actual

bodies.

position and angular orientation error over all components are illustrated in fig. II.4. The same statistics

by component is illustrated in fig. II.5(a). With a voxel resolution of 0.5 cm to the side of each voxel,

component center positional accuracy of 0.33 cm mean absolute error could be achieved with the hand

sequence. Mean angular error measured 8.51◦. Using the joint-position error metric, mean absolute error

yields 0.5 cm joint position error. Fig. II.5(b) shows the statistics of this error overall and by component.

The dimensions are based on an actual hand, so the results from this test are representative of the accuracy

of learning hand pose with ideal reconstructed volumes.

The next data-set used to test the algorithm is the HumanEva II data-set [27]. Subject 2 and

4 were both used. Shape-from-silhouette is used to generate the voxel reconstruction of the human sub-

ject. Silhouettes are generated by background subtraction in the HSI color space, followed by connected

component analysis, retaining only the largest components.

The performance measures consist of absolute and relative 3D spatial error of joint locations

using mean Euclidean distance. Relative 3D joint location error is calculated relative to the torso point.

All joints as prescribed in [27] were utilized in the error measurement. The results are tabulated in tab. II.2.

The mean joint position error over time and histogram plots are shown in fig. II.6(a) and II.6(b).

The body model is sized and positioned over the voxel reconstruction for the first frame, and

then the algorithm is allowed to process the remaining frames. Three segments of the S2 sequence were

processed separately: 1–190, 250–500, and 700–1220. The entire S4 sequence was processed in a single
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run. Several frames from the pose learning results in S2 are illustrated in fig. II.8.

The S2 sequence was processed in 3 segments because of loss of tracking during frames 190–

250 and 500–700. Within these ranges, the subject was turning at a particular position in the space such

that the voxel reconstruction produced a diamond shaped reconstruction as observed from the top. This

particular camera configuration is unable to carve away the erroneous volume in this situation. This causes

the algorithm to fall into an erroneous local maximum of a pose that is turned 90 degrees from the correct

pose along the length of the body. Just as the EM-algorithm is subject to convergence in local-maxima,

this algorithm is no different and the algorithm does not recover from this. One should keep in mind

that these results are from a generic pose learning algorithm that uses only volume information, albeit the

silhouettes are derived from imagery. This problem is left to be investigated in the future.

In sequence S4, this phenomenon can be seen between frames 350–600 when the error jumps

from 17 cm to 35 cm. During this period, the algorithm is tracking the body with the model pose reversed

(left is right and vice versa). As subject 4 walked around the second time, the model reversed a second

time and then remained in the correct direction for processing for the remaining frames. We sudden spike

that extends to 1.2 meters starting at around frame 300 is the result of an error from the ground-truth.

The primary reasons for the large differences in accuracy between the hand and human body test

sequences are the discrepancies between the dimensions of the human body in the model and reality, and

the quality of the voxel reconstruction. The human body model used for this test was created by placing

the model components in the voxel reconstruction, part by part. This implies that the joint locations are

only approximately in the position of the true joint locations, resulting in the consistently greater than

8cm error in both subjects. As compared to the hand model, the hand model itself was used to generate

the voxels and little discrepancy resulted.

The loss of track as well as diminished accuracy in the human body test sequence can also

be attributed to the quality of the voxel reconstruction. While the hand sequence can be considered

ideal voxel reconstructions, the human body voxel reconstructions are limited by several factors. Finite

number of cameras and the given camera configuration results in poorer voxel reconstruction in some

regions of scene compared to others, as described above with the diamond shape reconstruction. This is a

limitation in shape-from-silhouette [7, 8]. Another source of error is in segmentation. Although shadows

were mostly eliminated by using the HSI color space, dark areas of the subject in the scene looked very

similar to shadow and was sometimes excluded in the silhouette, carving out valid areas in the voxel

reconstruction.
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Figure II.4: KC-GMM Estimation Error: Histogram of component center and angular orientation estima-

tion error with respect to ground-truth for synthetic hand data.

II.6 Discussion and Concluding Remarks

Because the model represents an articulated body model that only encourages configurations of

Gaussian components where the joints will have the specified 1, 2, and 3 DOF, limbs bending in infeasible

directions are possible solutions in the learning process. Additional constraints are required to limit the

range of motion in the joints. This will also improve the tracking performance from one frame to the next

by eliminating some erroneous local optima in the pose space.

The model currently does not contain a mechanism to utilize temporal information from the last

processed frame, such as velocity, with which this system will benefit. The results shown merely utilize

the last estimate as a starting point for learning the pose.

Despite both these shortcomings, it is clear that volumetric data alone is sufficient to recover the

pose of a hand even through a nearly closed fist. The model is general enough to be easily extended for

other articulated bodies. The primary contribution of this chapter is a kinematically constrained Gaussian

mixture model that relates volume data and the pose of the articulated body and the means to learn the

pose using the EM algorithm; no additional constraint optimization steps external to the EM algorithm

are required. The algorithm was validated on two types of articulated bodies.
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(a) Mode, median, mean, RMS, and 95th-percentile statis-

tics of component center and angular orientation error with

respect to ground-truth from synthetic hand data.

(b) Overall and by-component joint position error with re-

spect to ground-truth on synthetic hand data. 3-D joint po-

sition error, as opposed to component center and orientation

error, is the proposed standard estimation error measures for

the HumanEvaII data set.

Figure II.5: KC-GMM Estimation Error: Error by component.

II.7 Future Work

Many aspects of the work presented in this chapter can be extended. Several directions are

presented in the following.

II.7.A Body Structure Learning.

Work in variational approximation for inferring latent variables in hierarchical graphical mod-

els, such as kc-gmm, can potentially be applied directly to learning the number of components of this

model, namely the number and arrangement of Gaussian components [28].

We believe that the proposed method of constraining the mixture components is one module in

a complete articulated body structure and pose learning algorithm. Using Gaussian mixtures as the basis

of representing volumes, it is conceivable several smaller components can represent a single rigid body,

akin to several atoms making up the larger whole. A path for further investigation can be to augment the

model to constrain the range of motion, and incorporate temporal cues. Eventually, the investigation can

lead to a structure learning computational framework that begins with composing a volume with several

small Gaussian components, and components that move together over several frames can meld together
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(a) Subject 2 Combo Trial 1 (b) Subject 4 Combo Trial 4

Figure II.6: Overall joint position error from ground-truth of articulated body pose learning on Hu-

manEvaII human body data set.

into larger components or components connected by joints constrained by the 1, 2, and 3 DOF joint

constraints as described here.

II.7.B Joint Angle Constraints and Temporal Information.

The current model does not contain a mechanism to constrain the range of motion of the joints.

This may or may not be considered a drawback depending on the application. It has been argued that

when measuring, for example, abduction of knee for knee injury analysis, one would prefer a motion

capture system that is able to allow all directions of movement of the model for that joint. For most other

applications however, such additional degrees-of-freedom limits the algorithm’s robustness.

II.7.C Alternative Volumetric Reconstruction Techniques.

Shape-from-silhouette was used to generate the visual-hull reconstructions used in this algo-

rithm. SFS makes no use of color information beyond the background-subtraction algorithm to generate

the silhouette. It is possible to utilize color information to refine the voxel reconstruction further, cre-

ating tighter upper-bounds on the actual volume and avoiding holes in the reconstruction. For example

using the photo-consistency constraint, one can arrive at the so-called photo-hull, which is a tighter upper-

bound than the visual-hull. In recent years, there has been a flurry of new approaches to extracting 3-D

reconstructions. A thorough consideration of these approaches should reveal an appropriate method for

generating data for body pose tracking in the vehicle and in other environments [7, 29].
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Figure II.7: Hand pose learning results on synthesized hand volume reconstructions of a hand moving its

fingers in a wave-like pattern while rotating at the palm.

Figure II.8: Body pose learning results on actual image data of a human subject walking, running and

balancing. Frames 49, 90, 114, 134, 170, 731, 770, 1006, 1044, and 1117 are shown.
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Table II.2: Joint position error summary for kc-gmm pose learning on the HumanEva II data-set. First
group follows the prescribed standard evaluation. Second group includes only successfully tracked
frames.

Rel. 3D Error Abs. 3D Error
Frames Mean RMS 95-th Mean RMS 95-th

Pre-
scribed
Sub-
sequences

S2 Combo 1: W 1–350 14.1 15.2 26.6 12.5 13.7 24.2
S2 Combo 1: WR 1–700 17.9 19.7 33.6 16.0 17.8 30.7
S2 Combo 1: WRB 1-1202 15.3 16.8 31.5 13.7 15.2 28.7
S4 Combo 4: W 1–350 17.1 30.8 102 16.1 18.1 42.7
S4 Combo 4: WR 1–700 21.8 29.2 36.8 21.0 22.9 34.7
S4 Combo 4: WRB 1-1220 17.7 23.6 34.5 17.7 19.6 33.3

Success-
fully
Tracked
Sub-
sequences

S2 Combo 1:W 1–160 11.0 11.1 12.3 9.2 9.3 10.3
S2 Combo 1:W 275–350 10.8 10.8 11.8 10.2 10.3 11.2
S2 Combo 1:R 350–550 13.5 13.8 19.0 11.8 12.0 16.5
S2 Combo 1:B 700–1202 12.4 12.0 13.8 10.9 11.0 12.8
S4 Combo 4:W 1–350 14.1 15.2 26.6 12.5 13.7 24.2
S4 Combo 4:R 700–1258 12.1 12.6 19.2 13.4 13.9 18.8
Average 15.9 17.9 27.7 11.9 12.3 16.9

Sequences: W-Walking, R-Running, B-Balancing
All units are in cm.

The text of Chapter II, in part, is a reprint of the material as it appears in: Shinko Y. Cheng

and Mohan M. Trivedi, “Articulated Human Body Pose Inference from Voxel Data Using a Kinematically

Constrained Gaussian Mixture Model,” in Proceedings and best paper award winner of the Workshop on

Evaluation of Articulated Human Motion and Pose Estimation in conjunction with IEEE CVPR, 2007, and

Shinko Y. Cheng, Mohan M. Trivedi, “Multimodal Voxelization and Kinematically Constrained Gaussian

Mixture Model for Full Hand Pose Estimation: An Integrated Systems Approach,” in Proceedings of

IEEE International Conference on Computer Vision Systems, Jan. 2006, pages 34-42. I was the primary

researcher of the cited materials and the co-author listed in these publications directed and supervised the

research which forms the basis of this chapter.



III

Driver Intersection Turn Intent

Inference

In this chapter we attempt to shed light on how and to what extent driver gesture indicates

driver intention to perform a driving maneuver. We first present our studies on the intersection-turn

maneuver and motivations for using body pose to determine its onset. We also introduce an algorithm

for recognizing driver intersection-turn intent, and present an analysis of the extent that driver body part

information contributes to the detection of this intent.

III.1 Introduction

There are four objectives of this chapter. The first is to present a characterization of the problem

of driver intent recognition, and introduce the “slow” intersection turn maneuver, the predominant type of

turn maneuver among intersection approaches. Second, we present a new system for recognizing driver

turn-intent before the vehicle enters the intersection by utilizing information about the driver and vehicle

dynamics. Third, we present our findings on the most appropriate performance measures for evaluating

driver intent inferencing systems, beyond receiver-operator-characteristics (ROC) curves. Finally, we

present our findings on the added value of possessing body pose information using the proposed system

and show that derived body pose information in the form of steering angle, throttle, and brake activation

together with other vehicle dynamics provide the set of cues for maximal intent recognition rates.

Our contributions of this research extend to the following 4 areas.

1. We present a characterization of intersection approaches, including intersection turns, by observing

data collected along a 4-hour-long drive through 258 intersections. Among the types of intersection

approaches, we identified “slow” intersection-turn maneuvers to have very consistent attributes

26
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representing 93.7% of all turns in our data-set. We present a study of trends in body movement and

vehicle dynamics during the course of this “slow” intersection turn maneuver.
2. We introduce an integrated system for recognizing intersection-turn intent utilizing a) a set of vehi-

cle and driver body dynamics information, b) a series of pre-processing steps for the creation of the

feature vectors to yield empirically optimal recognition rates, and c) the kernel Relevance Vector

Machine (RVM) as the pattern classifier.
3. We present the experiment design and evaluation of the driver intent recognition system using

vehicle dynamics information and high-fidelity driver body movement information from a novel

input modality. The evaluation considers ROC curves which measure performance over instances,

and event-aligned response-statistics plots to examine classifier behavior over time.
4. In the process, we also examine the extent to which driver head and hand pose information of that

fidelity contributes to improved driver intent inference.

This chapter is organized as follows: We will first present related work on driver intent recogni-

tion and the optical motion capture system as a primary source of pose data in sec. III.2. We then examine

the types of intersection approaches that exist from the data that was collected in sec. III.3. We then

present the intersection turn intent system in sec. III.4. Finally, we will evaluate the system using both the

ROC curve and the proposed statistical time-aligned response plots in sec. III.5.

III.2 Related Work

The idea of using body pose as a cue for analyzing driver maneuvering behavior only recently

appeared in literature. Much of the effort has been in designing systems that predict driver intent to

perform a lane change [30–34] which was identified as one of the more dangerous driving maneuvers [4].

A number of works also looked at intersection-turn maneuvers [32, 33] which account for 27% of U.S.

traffic collisions [35]. We describe 5 results in detail that are most related to ours. Each description is

followed with a description of our contribution to the discussion of driver maneuver intent recognition.

The work from Kuge et al. [34] and Pentland and Liu [33] proposed modeling human behavior

using the hidden-Markov model or extension. Kuge et al. [34] proposed using HMMs to model the

time-series data collected during the lane-change. They focused on the lane-change maneuver, and on

modeling the steering angle and angular velocity modality during the maneuver. Their model was able to

distinguish between a normal lane change, an emergency lane change and lane keeping maneuver 100%

of the time (with a false alarm rate of 0.29% for the emergency case) about .7s from its onset. The data

was collected from subjects driving in a simulator.

Pentland and Liu proposed a more complicated model referred to as the Markov Dynamic

Model. It consists of a lower-level dynamical model (HMM) describing small-scale prototypical hu-

man behavior capable of modeling the smoothness or temporal correlation of the measured data, and
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an upper-level model describing large-scale structure by coupling together these lower-level states into

a Markov chain. The results were very good using, again, simulation data with a true-positive rate of

95.24% ± 3% at 1.5 seconds from the onset of passing, intersection-turning and lane changing maneu-

vers. With regards to intersection-turns, entering the intersection was assumed to have always taken place

at 2.5 seconds from the start of the turn, which meant their model supposedly predicted the onset of a turn

1 second before the vehicle entered the intersection. It was difficult to read what was the associated false

alarm rate during the times when the driver was performing a different maneuver.

Both of these approaches modeled the maneuver from the point of view of the driver; the start

of the maneuver is when the driver consciously begins the maneuver. We define the starting point of

the intersection-turn at the moment when the vehicle enters the intersection. This has, as we will show,

allowed a different interpretation of recognition performance by defining it as the proportion of maneuvers

predicted before the vehicle enters the intersection, as opposed to the proportion recognized within some

seconds from the onset of the maneuver. These two ideas are not mutually exclusive. Our definition is

the cleanest definition to fulfill a requirement of defining the feature-vector for the classifier. From the

point of view of evaluation, the number of turn-intents correctly recognized is just as important to report

explicitly as the proportion recognized correctly t seconds from maneuver onset since the real danger is

when the vehicle is in the intersection.

Another point of contrast is their use of driving data from a driving simulator; our experiments

are based on data collected from driving on real streets. As a result, our performance measurements are

representative of actual performance when driving on real roads. We do acknowledge as they have pointed

out the need for time-warping, the model attribute that is able to take into account the different speeds at

which the maneuvers take place; but this can usually be avoided by training with more examples [36].

Oliver et al. [32] also proposed using HMMs to infer 7 different driving intentions including

intersection-turn intent. Data was collected from driving on actual streets. Input cues considered came

from 8 sources including driver pose information: they were speed, throttle, brake activation, gear, steer-

ing angle, gaze (depicted as 6 discrete states), relative obstacle speed and relative lane position. The 7

driving behaviors were passing, turning left and right, changing lanes left and right, starting and stopping.

They report predictive power of their models to be on average 1 second before “any significant” change

took place in car or contextual signals. The true-positive rates were 85.7% and 66.7% for the left and

right turns, respectively.

False alarm rates were not reported with these true-positive rates however. False alarm rates are

a very important performance statistic to report, because an insufficiently low rate would doom the method

to rejection by the consumer. In the discussion of human-machine interfaces for the new semi or fully

automated driver-assistance systems, such as headway distance control or lane keeping control, achieving

smooth control mode transitions from automated to manual operation is of paramount importance [32,34].
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High false alarm rates would introduce feelings of incongruity in ordinary driving.

Oliver et al.also consider the starting time of the intersection turn from the point-of-view of the

driver. Again, the difficulty here is determining where the vehicle is at 20% into the maneuver. We propose

the use of a spatial landmark as the alignment point for reporting intersection-turn intent recognition rates.

Salvucci et al. [30, 31] suggest a totally different approach by inferring driver intent to make

lane changes using model-tracing, a knowledge-based technique with roots in education and efforts in

enabling tutoring systems to predict what steps the student intends to do next in problem solving for

online interactive help. This technique involves comparing the desired steering angle and acceleration

parameters over time with several simulated parameter trajectories at various stages of maneuver comple-

tion to determine whether or not the driver is performing a lane change maneuver. The lane change start

is defined when the vehicle achieves the minimum lateral velocity and proceeds without lateral reversal

through the lane boundary into the destination lane. This research was the first to consider sample-by-

sample performance of lane change behavior recognition. The results from their experiments were 82%

detection rate within 0.5s from the onset of the maneuver, and 93% within 1s, both at 5% false alarm.

Experiments were performed in both a simulator and real vehicle.

They also claim that the same approach can be used to recognize intersection-turns, although it

was reserved for future work. One aspect different than previous work has been their analysis of spatial

positioning of the vehicle at t seconds from the onset of maneuver. In this case, they reported average

time to lane crossing enabling an understanding of the percentage of intents that were recognized before

the vehicle crossed the lane boundary. We will present analysis on intersection-turn intent that will also

provide an understanding of the algorithm’s sample-by-sample performance.

McCall et al. [36] proposed to use the kernel-RVM model under the classification framework

in recognizing lane-change intent. The algorithm detects driver intent by recognizing preparatory motion

of the driver’s head, together with the vehicle’s dynamics information. As a result, they report that an

additional 0.5 seconds lead-time could be gained for the same recognition performance without head

motion data. The performance numbers of their approach were as promising as the other approaches,

but the results were evaluated with the receiver-operator-characteristic plot, and trained with data from

a real vehicle. They report 95% detection rate at 5% false alarm for a prediction time of 2.5s before

lane crossing. These results were the main inspiration of our proposed intersection-turn intent inference

algorithm.

In contrast to the work of McCall et al., we introduce two significant differences: 1) We focus

on the intersection-turn maneuver intent. The non-trivial aspect is defining the intersection-turn “event”

as this classification approach requires. We collected over 250 intersection-turn encounters and describe

a systematic categorization of the various types one would encounter. 2) We also explore the use of very

high-fidelity head and hand pose information for use in recognizing any preparatory motion that may exist
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moments before the intersection-turn. As a minor addition, we also propose the use of a new visualization

of the results to gauge the classifier’s performance over time or sample-by-sample performance. We refer

to it as the time-aligned statistical response plot.

III.2.A Driver body-pose analysis

Driver body pose is a key element in determining the extent to which body pose contributes to

the reliable recognition of driver maneuver intent. We examined a variety of existing motion-capture tech-

nologies that can recover body pose: including mechanical, magnetic, and optical marker-based systems.

These motion capture systems provide both 3 degrees-of-freedom position information of a point on the

subjects’ body, and full 6 DOF body-part position and orientation. However, these techniques require that

the subject wear something during the capture, either the sensor device itself or markers that are tracked

from sensors placed some distance away.

For this reason, image-based motion capture is the more appropriate approach in a consumer

car, because it does not require special markers or user intervention. For more than 25 years, the computer

vision community has researched image-based body-pose recovery [10], developing algorithms that rely

only on passively sensed data of the subject to analyze and extract body-pose information.

However, vision-based body-pose recovery is complicated by the vehicular requirement for

algorithms to be robust to changing illumination. We recently showed (and will present in chap IV)

the promise of using long-wavelength infrared imaging sensors to locate exposed skin and recover hand

position and pose in the presence of lighting that changes from one moment to the next [37]. This approach

senses not the visible appearance but the thermal response of the hands, which hovers around a constant

temperature. However, this approach must also contend with varying temperatures inside the car—a much

slower source of variation in the scene—and the cost effectiveness of using multiple thermal infrared

cameras.

Consequently, we rely on a marker-based method of recovering poses. Such a method, if fast

and accurate, can help our objectives in two ways. First, it can provide ground-truth data for pose esti-

mation development. As demonstrated in Chapter II, this capability is critical in gauging a vision-based

pose-estimation systems performance among techniques. Second, it helps us understand the upper limits

of an activity-recognition system based on pose data by providing the system with the cleanest, most com-

plete data-set. Knowing this limit helps justify dedicated development efforts toward passive and likely

application-specific pose-recovery systems.

Here, we focus on the second benefit which is clean data. Using driver body-pose information

collected from marker-based motion capture, we developed a system to recognize and predict driver left

and right intersection-turn behaviors, and analyze the extent to which body pose, in the form of head and

hand position, contributes to that task.
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III.3 Types of Turning Maneuvers

We characterize an intersection turn as one that requires a change in vehicle heading of approx-

imately 90 degrees. A driver would encounter such turns when maneuvering a vehicle at T and four-way

intersections, as well as turnouts into side streets. These intersections have various numbers of start and

end lanes, combinations of one- and two-way streets, and sometimes certain traffic controls (such as

stoplights, stop signs, or yield signs).

There are many other kinds of turns–those involving freeway ramps or curves in the road, those

made to avoid road obstructions, U-turns, and so forth. We focus on intersection turns because they are

the most prevalent in urban driving (an observation made from our data-set) and are most prone to involve

road obstacles. We identified two kinds of intersection approaches: 1) the driver can stop, wait at least

two seconds, and then start into the turn (a halt turn), or 2) the driver can stop for less than two seconds

and then start into the turn, or merely slow down before entering into the turn (a slow turn). We focus

on the first kind by specifically training our system to ignore all other kinds of turns and behaviors. The

slow-turn represents 93.7% of all turns in our data-set.

The vehicle dynamics and driver body pose data was collected from the LISA-P test-bed. The

data consists of 4 hours of natural driving (from a single driver), containing 258 intersection encounters.

After the collection, the type of traffic controls at each intersection was recorded. The stop sign, yield

sign and traffic light controls were observed. The types of intersections encountered were cross (4-way)

intersection, t-intersection, curve of approximately 90◦ along the road, and end of the road. Tab III.2

summarizes the types of each intersection that were encountered.

Table III.2: Summary of Intersection Attributes.
(a) Traffic controls

# %
None 120 46.5
Light 93 36.0

Stop-sign 44 17.1
Yield-sign 1 0.4

Total 258 100.0

(b) Intersection types

# %
Curve 123 47.7

T 99 38.4
Cross (4-way) 33 12.8

End 3 1.2
Total 258 100.0

The start and end times of each intersection encounter were recorded. These times indicate

when the nose of the vehicle crosses the boundaries between the road and the intersection. Of all 258

encounters, each approach was categorized as one of the following:

1. Slow approach - Approach the intersection by stopping completely for less than 2 seconds (includ-

ing 0 seconds or just slowing down), then proceed into the intersection.
2. Halting approach - Approach the intersection by stopping completely for 2 or more seconds, then

proceed into the intersection.
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3. Fast approach - Approach the intersection without activating the brake prior entering the intersec-

tion.

As indicated in sec. III.3, when the intersection turn-maneuver is categorized according to the

slow, halting and fast approaches, we can observe that a vast majority of the turning was of the slow kind

comprising 93.7% of all turns. A total of 159 slow turns were recorded in the data-set, which represents

61% of all intersection encounters. Each instance serves as a positive example in the data-set. Tab. III.3

summarizes the number of instances of each type of intersection approach encountered and the timings of

the slow turn.

Table III.3: Collected Intersection-turn Durations.
(a) Types of Intersection Approaches

Turn type # % % of all turns
Slow go straight 15 5.8 -
Slow turn left 74 28.7 42.5
Slow turn right 85 32.9 48.9
Slow U-turn 4 1.6 2.3
Halt go straight 3 1.2 -
Halt turn left 9 3.5 5.2
Halt turn right 2 0.8 1.2
Fast go-straight 63 24.4 -
Total 255 100.0 68.2%(174/258)

(b) Slow Turn Durations

Left turn Right turn
Minimum (sec) 2.14 2.21
Average (sec) 5.89 4.06
Maximum (sec) 9.95 7.30
Standard deviation (sec) 1.59 1.24
Total number of turns 74 85

The patterns of driver body pose during these kinds of intersection turn approaches were ex-

amined, and there appeared to be distinct patterns which could be machine recognizable. These patterns

can be observed when the pose sequence of each instance of an intersection turn are plotted on top of one

another, time-aligned to the start of the intersection turn t = 0. Fig. III.1 and III.2 show the overlaid

head and hand pose parameter sequences. For a complete list of cues that were captured, see sec. III.4.

Distinct patterns can be observed between -2s and 4s surrounding the start of the turn. The warmer colors

indicate that many instances follow that particular pattern over time. The color values are normalized by

the maximum value encountered for each column of bins.

Between the sets of input cues depicted in the two figures, fig. III.1 shows the most distinct

patterns through the intersection turn. One can clearly see in these plots that the head moves with the turn

maneuver in the corresponding direction. The pattern is seen to start at -1s for the left and -2s for the right



35

turn, and last up to 4s after the turn started. The head was not observed to translate (move tangentially)

in any strong pattern. There is a pattern of head movement in the z-axis (relative to the first camera in the

set-up) for the left turn between -6s and 0s when the head moves nearly 2 cm in the negative z-direction,

which in terms of long-term predictability is a favorable observation.

Fig. III.2 shows the patterns of the hand positions. Here, a lot of movement of the hands can be

observed during the maneuver. It is very apparent that the hands move in a certain way through the turn.

However, there are large variations in hand movements over all instances of the turn. Looking at “left

hand y”, we can see that the hand sometimes begins movement at -3s, and other times only after 0s, the

start of the turn. An ascent however is always present, and it is up to the model to capture this pattern.

Another interesting observation is that the right hand is shown to move in two distinct ways for

the left and right turns. This could be seen in “right hand z” where there are two hot spots during the

duration of the intersection turn. This is an artifact of the data collection system. Although precautions

were taken to distinguish the left from the right hand with different marker configurations, there were

several instances of maneuvers when the left hand measurement was actually that of the right hand and

vice versa. Fortunately, this switching occurred only when the hands occluded each other after the turn

had begun, maintaining a certain consistency of the tracking before the start of the intersection maneuver.

This may have ultimately caused a slight degradation in recognition performance.

Vehicle dynamics cues are also visualized the same way in fig. III.3 and III.4. Again between

-2s and up to 4 seconds, there appear to be distinct patterns associated with the intersection turn. One can

see in fig. III.3 that both the throttle and torque produced by the engine dip to 0% as the driver approaches

the turn lasting between -2s and 0s. After entering the intersection, the vehicle begins to accelerate as

expected into the turn. The speed also exhibits a pattern through the turn as well, although not as tightly

correlated. The speed dips between -2s and begins to accelerate again after 0s. The brake is almost

always activated 2s before the turn, and released just after entering the intersection. We can also see

steering values change towards the direction of the turn, just like “head ty”. The change begins at around

-1s , lasting to 4 or 6s after the start of the turn. Steering angular velocity exhibits a pattern over about the

same duration.

To conclude this section, patterns appeared to exist in both the body pose and vehicle dynamics

cues. Body pose exhibited some semblance of a pattern to be recognized up to -6s from the start of the

turn. The next sections describe the challenge of devising an appropriate model to capture this pattern,

along with classifier training results using these input cues.
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III.4 Driver Intersection-Turn Intent Recognition

Following initial capture of sensor data, the driver intersection turn intent inferencing system

consists of a feature vector extraction stage and a pattern classification stage. The objective of the feature

extraction stage is to represent the raw sensor data in the form that emphasizes the discriminating patterns

of the data. The flow diagram consists of 1) sensors extracting body pose and vehicle dynamics infor-

mation, 2) a pre-processing step to construct the feature vector, and 3) the pattern recognizer taking the

feature vector as input and providing a probability of an impending turn maneuver as output. Fig. III.5

shows the flow diagram of the system.

Input data to the prediction system is collected from sensors aboard the LISA-P test vehicle.

The process of capturing these vehicle dynamics attributes is described in app. B. The vehicle dynamics

of relevance to the intent prediction system include the following attributes:

Vehicle Dynamics Attributes [units]:

1. Steering angle [degree]
2. Steering angle speed [degree/s]
3. Vehicle speed [km/h]
4. Brake activation [on/off]
5. Engine Torque [%]
6. Throttle [%]
7. Left Turn-signals [on/off]
8. Right Turn-signals [on/off]

In addition to the vehicle dynamics, body part pose position and orientation are also captured.

Specifically, the 6-degree-of-freedom (DOF) head pose and the 3-DOF hand positions are captured using

a retro-reflective marker based motion capture system. Altogether 12 parameters describe the pose of the

driver.

Body Pose Attributes [units]:

1. Driver Head Position (x, y, z) [mm]
2. Driver Head Orientation (θx, θy, θz) [radians]
3. Driver Left Hand Position (x, y, z) [mm]
4. Driver Right Hand Position (x, y, z) [mm]

The captured time-series are accumulated into windows of M -sample length sequences.

Y′n =


H′n

L′n

R′n

C′n

 =


hn hn−1 . . . hn−M+1

ln ln−1 . . . ln−M+1

rn rn−1 . . . rn−M+1

cn cn−1 . . . cn−M+1

 ∈ R
D×M (III.1)
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Each sequence consists of time-synchronized samples of the sensor input. Here, hn ∈ R6 is the 6-DOF

pose (position and orientation) of the head, ln, rn ∈ R3 is the 3-DOF position of the left and right hands,

and cn ∈ R8 is the set of vehicle dynamics information, all at time n.

Each M -sample input sequence is then sub-sampled by a rate of S by summing over time every

S samples in the time-series. The resulting sub-sampled sequence is L = M/S in length. The value of

M is chosen such that M is divisible by the integer value S. If we let {Hn,Ln,Rn,Cn} be the set of

sub-sampled L length sequences, we can then construct the un-normalized feature vector

yn = vec (Yn) = vec


Hn

Ln

Bn

Cn

 , Yn ∈ RD×L (III.2)

where vec(·) is the vectorization operation.

This un-normalized feature vector yn is finally normalized by the mean m and variance σ. The

mean and variance are learned by estimating the sample-mean and sample-variance of the un-normalized

feature vector yn from the training set. The result is the normalized feature vector xn presented to the

classifier.

xn = normalize(yn) =
[
yn,i −mi

σi

]
i=1...K

K = DL (III.3)

We employ the Relevance Vector Machine classifier to take as input the normalized feature-

vector and produce a classification among three classes. A left- and right- turn RVM are created for

recognizing driver preparatory motions for left and right intersection turns. Each RVM is trained to

produce a value of +1 for only patterns observed that lead up to a turn in the respective direction, and

produce a value of −1 for all other patterns. A classification is found by computing the response of both

classifiers and thresholding with a value τ according to the desired operating point. A classifier’s operating

point describes a mode of operation yielding a given true- and false-positive rate. If either response is

greater than the chosen threshold τ , then a turn is predicted to occur. The direction is determined to be the

one whose associated RVM classifier produced the greatest (most positive) response. If neither response

is greater than τ , then no turn is predicted.

III.4.A Driver Intersection Turn Intent Inference Algorithm

The procedure is described below

y′n
step 2−→ yn

step 3−→ xn
step 4−→ φ(xn)

step 5,6,7−→ ω (III.4)
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Feature Vector Construction:

Step 1 Concatenate new observations {hn, ln, rn, cn} into and remove the oldest observations from

Y′n ∈ RD×M , where each sample is time-aligned by linear interpolation, D is the dimension

of the feature vector, and M is the sample window length.

Step 2 Let S be an integer multiple of M . Sub-sample the set of time-series Y′n in time by S and

vectorize the result to produce yn.

Step 3 Normalize the output from the previous step such that each element has a 0 mean and unit variance

using the trained mean m and standard-deviation σ values learned from the training data to produce

xn.

Kernel-RVM Classification:

Step 4 Project the feature vector onto the kernel space using the radial-basis-function kernel (RBF) with

width parameter γ trained from data via cross-validation.

φ(x) =
‖xi − x‖2

γ

Step 5 Compute the dot-product of the resulting output kernel vector φ(xn) with trained weight vector

wl,wr for the left and right kernel-RVM classifiers to produce responses

g(l)
n = w>l φ(xn)

g(r)
n = w>r φ(xn)

Step 6 If either RVM responses g(l)
n or g(r)

n exceeds the threshold τ , go to step 7. Else, decide no im-

pending turn ω ← n. (The value of τ is set at the value which produces the desired true and

false-positive operating point.)

Step 7 If g(l)
n > g

(r)
n , ω ← l. Else, ω ← r.

III.4.B Remarks on Choice of Classifier

The kernel-RVM classifier is a probabilistic cousin of the kernel-SVM or kernel Support Vector

Machine. Together, they belong in the class of kernel-based approaches to the classification problem.

Kernel approaches emphasize different aspects of the topology of the features in feature-space, making

a nonlinearly separable feature space into a linearly separable one in a higher-dimensional kernel space,

producing better classification performance.
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The objectives of the two approaches are similar, and the attributes that distinguish one from

the other are subtle yet significant. The objective is to learn the weights to the discriminant function

g(x) = w>φ(x) (III.5)

where φ(x) : RK 7→ RN is the kernel function. Both SVM and RVM produce sparse solutions to w,

thereby requiring the classification algorithm to retain only a very small subset of the complete N vectors

φ(x). The remaining vectors are called relevance vectors for RVM and support vectors for SVM. The

manner in which RVM arrives at the solution is fundamentally different and provides better properties as

a result.

In the classification setting, the values of gSVM(x) represents the distance from the decision

boundary in the feature space. However, gRVM(x) represent the probability that an observation belongs to

one class or the other.

Also, RVM can be formulated as an M-class classifier by reformulating the likelihood function

to consist of M-classes, unlike SVM which is intrinsically a 2-class classifier. In order to use SVM in

an M-class classification setting, several SVM classifiers need to be trained and the results combined.

Each SVM classifier would be trained using a one-versus-rest scheme, where each SVM will be trained

to classify 1 of M classes as positive and the other (M-1) classes, negative. Classification then takes

place by determining in which class did the feature vector (observation) lie deepest. This creates the

drawback where observations that lie close to the decision boundary may not be modeled as well as they

could be. In M-class RVM classification on the other hand, the M target class values and the associated

observations can be utilized in the training process, optimizing the decision boundaries in one step–as

opposed to training M-classifiers and combining the results afterward with none of the training of the

SVM classifiers having knowledge of the other classes.

The one-versus-rest scheme is also the scheme used to deploy the kernel-RVM turn-intent clas-

sifier here. Reformulating the model to consider the three driving maneuvers in a multi-class classification

problem is reserved for future work.

III.5 Experimental Evaluation

This section describes the evaluation of the driver intersection turn intent inference algorithm

described in sec. III.4.

Positive examples are collected according to the specified sample window length M and the

number of samples dt between the last sample in the window and the start of the intersection turn. Neg-

ative examples are collected outside of the positive examples every 2 seconds. The sensors produced

data at 14Hz. Training was performed on 70% of the positive examples, and up to 500 of the negative
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examples, all randomly selected from the positive and negative data-set. The training-set consists of 112

positive and 500 negative examples, while the validation-set consists of 47 positive and 1500 negative

examples. These numbers were chosen to limit the training time to less than 10 minutes.

One of the performance measures used to evaluate the classifier is the receiver-operator-characteristics

(ROC) curve. This is a plot that shows the true- and false-positive rate-pairs at which a classifier can op-

erate given a particular threshold τ . The true- and false-positive rates are defined as

P (true|true) =
# of True Examples Predicted as True

# of True Examples
(III.6)

P (true|false) =
# of False Examples Predicted as True

# of False Examples
(III.7)

To span the entire range of operating points, the τ parameter is swept from the minimum to the

maximum values (g(l)
n and g(r)

n ), and the true- and false-positive rates recorded.

There are a number of free parameters that influence the classification performance. We used

the area underneath the ROC curve as the single value to gauge optimality when searching for the optimal

set of parameters. These parameters are:

1. Decision time (dt)
2. Sub-sampling rate (S)
3. Window length (M)
4. Radial-Basis-Function Kernel width (γ)

The first three parameters pertain to the construction of the feature vector from raw sensed data.

The width parameter affects the range of output values from the RBF. To determine the optimal values, a

grid search is performed over these parameters.

In order to train the classifiers with a variety of parameter values in a reasonable amount of time,

two parameter values are varied while the others are fixed. This accomplished two things: 1) Optimal val-

ues were verified for a decision time of 0 seconds, a classifier trained to make the best classification based

on information just prior the vehicle entering the intersection at t = 0. 2) Performance was compared

among 4 classifiers each given a different set of input cues.

The following lists how the variables are varied for each training run.

A. Kernel-width (γ) vs. Window length (M).

Other parameters are fixed: Sub-sampling rate S= 5, and decision-time dt= 0s.

γ = {3, 4, 5, 10, 15, 25, 40}

M = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55}
B. Kernel-width (γ) vs. Sub-sample Rate (S).

Other parameters are fixed: Window length M= 20, and decision-time dt= 0s.

γ = {3, 4, 5, 10, 15, 25, 40}

S = {2, 4, 5, 10, 20}
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Table III.4: Driver Intent Classifier Cue Set
Cues Set 1 Set 2 Set 3 Set 4
Head Orientation ◦ ◦ ◦ ×
Head Position ◦ ◦ ◦ ×
Left Hand Position ◦ ◦ ◦ ×
Right hand Position ◦ ◦ ◦ ×
Speed ◦ ◦ × ◦
Steering Angle ◦ ◦ × ◦
Steering Velocity ◦ ◦ × ◦
Torque ◦ ◦ × ◦
Throttle ◦ ◦ × ◦
Brake ◦ ◦ × ◦
Turn Signals ◦ × × ×

C. Kernel-width (γ) vs. Decision-time (dt).

Other parameters are fixed: Window length M= 20, and Sub-sampling rate S= 5.

γ = {3, 4, 5, 10, 15, 25, 40}

dt = {−28,−21,−14,−7, 0, 7, 14, 21, 28}

Data is collected at 14Hz, e.g. -7 represents -0.5 seconds from the moment the vehicle enters the

intersection.

Training-runs A and B are for verifying the optimality of the dt = 0 classifiers. Training-run C is for

comparison between classifiers trained with different input cues.

The above training-runs are performed with 4 different sets of input cues. Tab. III.4 summarizes

the 4 sets of cues used. Sets 1 and 2 vary only by the inclusion of the turn-signals, the results from which

will show the influence of turn-signal knowledge on turn intent inference. Sets 2, 3 and 4 are chosen to

compare the influence of body pose and vehicle dynamics information by considering the classification

performance given the two pieces of information individually and together.

The training results for input cue sets 1 ∼ 4 are shown in fig. III.6, III.7, III.8, and III.9. For

each set of parameters, a classifier’s ROC curve and area underneath the ROC curve are calculated. The

area value is used to determine the shade and number on each square. The area under the ROC curve

is the measure of optimality. For input cue sets 1, 2 and 4, the training runs show that the optimal

parameter values for decision-time dt = 0 seconds are γ = 5,M = 20, S = 5 for the left turn, and

γ = 15,M = 20, S = 5 for the right turn. Tab. III.5 summarizes the optimal parameter values. We arrive

at M = 20 and S = 5 as optimal values for these runs by observing the maximum ROC areas in the

results for training-runs A and B.

The grid search over 1) Kernel-width (γ), 2) Decision-time (dt) and 3) input cue sets, training-

run C begins to paint a picture of the influence of different input cues on the task of predicting an inter-

section turn. This grid-search reveals the best values of γ to use in order to create a classifier that will
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Table III.5: Optimal parameter values for intersection-turn classifiers with decision-time dt = 0 seconds.
(Window length M = 20, Sub-sampling rate S = 5).

Input Cue Set 1 2 4
γ 5 15 5 15 5 15

ROC Area .93 .93 .94 .94 .96 .93

optimally make a decision at various decision-times with the given input cue set. Again, the decision-time

dt is the time when the last sample of the window was collected relative to the start of the intersection turn

maneuver. Tab. III.6 summarizes the results from training-run C over the 4 cue sets. Fig. III.10 depicts

the same numbers in a graph.

The area under the ROC represents an ensemble performance result. Realistically, the classifier

would be tuned to a single operating point in the ROC curve, such as shown in fig. III.11. The area thus

represents the amount of flexibility a designer has for a particular classifier. The closer the area is to 1.0,

the greater the flexibility.

Using the ROC Area as the performance measure, cue set 4 (vehicle dynamics only) provides

the most flexibility for the left turn. Cue sets 1 and 2 compete with classifiers using cue set 4 for the right

turn. One explanation for why cue sets 1 and 2 performed better for the right than for the left lies in the

higher correlated patterns of head movements for the right turn than in the left turn, as can be seen in

fig. III.1. The cue set that operates consistently poorer is cue set 3 (body pose only). This was not too

surprising considering the noisy nature of the data, which could account for the diminished performance

when considering vehicle dynamics together with body pose in cue set 1 and 2. Over-training may have

occurred and thus degraded the final classification performance.

When the ROC areas are compared between cue sets 1 and 2 (with and without turn-signals),

we can clearly see that the turn-signal cue does not uniformly improve the classifier performance. In fact,

for most decision times, turn signals can be considered redundant information for the pattern classifier.

There is an exception at dt = 1s and dt = 1.5s for the left turn and dt = 1.5s and dt = 2s for the right

turn. With the classifier presented, turn-signals information is does not help, but can help if a different

pattern recognition model was used. For example, the turn signals can dictate the use of 1 of 2 classifiers,

one tuned optimally classify turn intent in the presence of turn signal activation, and the other, without.

The ROC area is a convenient measure for comparing classifiers with a scalar number, but does

not immediately convey its performance felt by the driver. For this, the actual ROC curves are needed.

Fig. III.11 shows the ROC curves of the optimal classifiers for the 4 input cues trained for a decision time

of dt = 0s. The ROC curve is the true-positive rate (y-axis) plotted as a function of the false-positive rate

(x-axis in log-scale). At 10% false-positive, the classifier utilizing cue set 4 (vehicle dynamics information

only) can achieve 80% and 86% true-positive rate for the left and right turns respectively. In a system that

operates at 10 Hz, this implies every 1 second, 1 instance in time is mistaken to be positive (impending
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Table III.6: Area under the ROC curve for classifiers trained for different decision-times (dt). A nega-
tive decision time indicates the amount of offset from the time when the vehicle enters the intersection.
(Window length M = 20, Sub-sampling rate S = 5, and optimal kernel-widths γ)

(a) Left Turns

Cue Set
dt [sec] 1 2 3 4

-2.0 0.8245 0.8100 0.7616 0.8730
-1.5 0.8003 0.8642 0.7610 0.8931
-1.0 0.8661 0.8800 0.7734 0.9210
-0.5 0.8737 0.9168 0.8877 0.9450
+0.0 0.9282 0.9393 0.8618 0.9554
+0.5 0.9486 0.9560 0.9396 0.9696
+1.0 0.9565 0.9492 0.9069 0.9644
+1.5 0.9599 0.9562 0.9246 0.9684
+2.0 0.9524 0.9595 0.9547 0.9594

(b) Right Turns

Cue Set
dt [sec] 1 2 3 4

-2.0 0.7803 0.7986 0.6753 0.8729
-1.5 0.8198 0.7970 0.7387 0.9044
-1.0 0.8745 0.9108 0.6216 0.9370
-0.5 0.8961 0.9224 0.8451 0.9230
+0.0 0.9265 0.9395 0.8663 0.9297
+0.5 0.9391 0.9456 0.9230 0.9400
+1.0 0.9476 0.9498 0.9224 0.9513
+1.5 0.9606 0.9542 0.9304 0.9466
+2.0 0.9531 0.9497 0.9462 0.9218

turn) when in fact negative. With a more stringent 2% false-positive or 1 error in every 5 seconds, the

true-positive rate dips to 50% and 60%. At 1% (a false-alarm every 10 seconds), the performance is 20%

and 40% for the left and right turn respectively. These rates may look poor, but one must keep in mind that

only 2 seconds worth of vehicle dynamics information is used, and only information prior to the moment

the vehicle enters the intersection (t = 0s) is used to make each determination.

When we examine the ROC curves, the differences between classifiers and their impact on real-

world reliability become clear. Cue set 4 classifiers can provide markedly better true-positive rates for a

given false-positive rate for the left-turn. The classifiers of all cue sets performed about the same for the

right-turn case.

To understand how the classifiers perform around the time of the intersection-turn event, the

classifier responses surrounding the start of the intersection-turn are overlaid on top of one another. The

statistics of the responses at each point in time are generated. At each time t the height of the response

where 10% of the other responses lay underneath is found. The process is repeated for 20%, 30%, 40%

and so on. A line then connects the points with the same percentages, resulting in percentile lines. We

refer to this as the time-aligned statistical response plot. Only classifier responses along intersection-turn

examples in the validation data-set are used to generate this plot. The time-aligned statistical response

plots are shown in fig. III.12 and III.13 for the classifiers utilizing 1 of the 4 cue sets. Each line represents

a percentile line. The black shaded area represents the range of response values at that time instant. The

upper and lower boundaries of the shaded area represent the maximum and minimum response values at

that time instant, i.e. 0% and 100% percentile lines.

The advantages of this visualization are that it enables the reader to see at a glance what pro-

portion of turns were correctly and incorrectly classified, and how early the proportion of turns were

classified. Take fig. III.12(d) for example. If one used a threshold τ = −0.5 in this case, one can see
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that 90% of the turns at t = 0 are above -0.5. Of these intersection-turns, 10% of the turns would have

exceeded the threshold at t = −2. Interpreted another way, 10% of all turns would be recognized 2

seconds before the vehicle entered the intersection. A full 80% would have been recognized 0.5s before

the vehicle entered the intersection.

Because only a window of 14 seconds surrounding the intersection-turn is depicted here, ROC

curves are still needed to gauge the recognition performance for entire data-sequences. Valid neighboring

intersection-turns would appear in these plots as well. So the time-aligned statistical response plot is

useful for a limited number of seconds around the turn events.

III.6 Discussion and Concluding Remarks

In this chapter, we introduced a characterization of a type of intersection turn maneuver called

the “slow” turn, which represented a large 93.7% of all turns in our data-set. This type of intersection

turn possessed relatively consistent trends in terms of body pose and vehicle dynamics moments before

and during the turn maneuver. We devised an integrated system to infer the driver’s intent to perform an

intersection turn maneuver, by presenting a kernel-RVM classifier with data including driver head and

hand pose information as well as 8 vehicle dynamics parameters (speed, throttle, torque, brake activation,

left/right turn signals, steering angle and steering angular velocity). Experimental evaluations show that

the system was capable of inferring a majority portion of the intersection turns before the vehicle enters

the intersection (dt = 0): up to 100% correct detection rate at 20% or more false alarm rate, or better than

80% correct, at 7% false alarm.

We showed that turn-signals do not improve the performance of the intersection turn intent

classifier. In the interest of recognizing turn-intent in the absence of turn-signals, we conclude omitting

those signals is beneficial at least for the presented classifier. This lifts any requirement that the training

data-set contain a mixture of turn-instances with and without turn signals.

We showed that actual body head and hand pose information, as it was utilized in this turn-intent

classifier, does not add value to the final correct classification performance. Other cues derived from

actions of the driver were better suited to capturing the movements of the driver that indicate turn-intent.

These other cues are throttle position, steering angle, steering angular velocity, and brake activation. In

terms of the most appropriate cues in the 2 seconds before the turn, the historical trajectories of these cues

yield the best classification (driver turn-intent inference) performance.

Lastly, the proposed system represents a case-study of an improving framework for the develop-

ment and evaluation of driver-intent inference systems. Beyond the ROC curve, which disregards time in

the measurement of performance, we introduced a new visualization of the soft-response of the classifier

that better shows the behavior of the classifier, which overlays all the responses of the classifier over time,
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aligned to the start of the turn maneuver. With this measure, we are able to gauge proportion of turns

whose response rose above the threshold τ before the intended decision time dt.

III.7 Future Work

Many aspects of the work presented in this chapter can be extended. Several directions are

presented.

III.7.A Temporal cues.

As noted above in sec. III.5, there exists trends in the body pose sequences that may not be

adequately modeled by the kernel-RVM pattern classifier. Specifically, the left hand is observed to begin

its movement in the y-direction as early as -2s and as late as 1s relative to the start of the intersection

turn. The RBF kernel-RVM classifier cannot be trained to observe such cues reliably without additional

assumptions (or more training data) because the classifier depends on when the movement started and

ended and if that pattern existed in the training set. This makes the positive examples less distinct from

other negative patterns, increasing the intra-class variance. Future work includes appropriate feature pre-

processing or changes in the model that can account for this.

The HMM may be more appropriate here. With that said, there is value in utilizing the definition

of the intersection-turn to better describe the proportion of predicted turns that actually matter, or the ones

that were predicted precisely before the vehicle entered the intersection.

III.7.B Automatic Feature Selection.

One of the unique aspects of kernel-RVM is its ability to automatically determine the rele-

vance of the basis vectors. The radial-basis-function was used in this study. However, if a different

basis-function were used, one could potentially frame the training of the kernel-RVM as simultaneously

determining which input cues (head, hand, speed, throttle, etc.) are the most relevant to the recognition of

driver intent [38].

The text of Chapter III, in part, is a reprint of the material as it appears in: Shinko Y. Cheng,

Mohan M. Trivedi, “Turn-Intent Analysis Using Body Pose for Intelligent Driver Assistance”, IEEE Per-

vasive Computing, vol. 5, number 4, pages 28-37, Oct-Dec 2006. I was the primary researcher of the cited

material and the co-author listed in this publication directed and supervised the research which forms the

basis of this chapter.
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(a) Left Turns (b) Right Turns

Figure III.1: A histogram of head-pose time-sequence. Each instance is time-aligned to the start of the

intersection turn t = 0. The plots show orientation (θx, θy, θz) and position sequence (x, y, z) of the

head. Warmer colors indicate more instances following that specific sequence of values. A pattern is

perceivable during and about 1 second before the start of the intersection turn.
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(a) Left Turns (b) Right Turns

Figure III.2: A 2-D histogram of hand position time-sequences. Each instance is time-aligned to the

start of the intersection turn t = 0. The plots show position sequence (x, y, z) of the left and right hands.

Warmer colors indicate more instances following that specific sequence of values. A pattern is perceivable

during and about 1 second before the start of the intersection turn.
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(a) Left Turns (b) Right Turns

Figure III.3: A 2-D histogram of vehicle speed, steering angle, steering angular velocity and torque time-

sequences. Each instance is time-aligned to the start of the intersection turn (to = 0). Warmer colors

indicate more instances following that specific sequence of values. A pattern is perceivable during and

about 1 second before the start of the intersection turn.
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(a) Left Turns (b) Right Turns

Figure III.4: A 2-D histogram of throttle, brake activation, left turn signal, and right turn signal time-

sequences. Each instance is time-aligned to the start of the intersection turn (to = 0). Warmer colors

indicate more instances following that specific sequence of values. A pattern is perceivable during and

about 1 second before the start of the intersection turn.
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Figure III.5: Process flow of RVM based Driver Intent Recognition.
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(c) Kernel-width (γ) vs. Decision time (dt), (M=20, S=5)

Figure III.6: Grid search results for Cue Set 1. Box numbers represent area under the ROC curve.
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(b) Kernel-width (γ) vs. Sub-sample Rate (S), (M=20, dt=0s)

Slow Left Turns

dt − Decision time [samples offset]

γ

0.77 0.82 0.86 0.90 0.90 0.88 0.91 0.85 0.81

0.78 0.80 0.88 0.89 0.94 0.90 0.92 0.88 0.85

0.81 0.76 0.88 0.84 0.93 0.88 0.91 0.88 0.90

0.79 0.86 0.85 0.92 0.83 0.89 0.91 0.79 0.73

0.79 0.86 0.88 0.89 0.74 0.92 0.88 0.92 0.89

0.72 0.78 0.78 0.83 0.91 0.96 0.93 0.94 0.96

0.74 0.77 0.81 0.83 0.92 0.95 0.95 0.96 0.95

−28 −21 −14 −7 0 7 14 21 28

3

4

5

10

15

25

40

Slow Right Turns

dt − Decision time [samples offset]

γ

0.77 0.76 0.70 0.68 0.75 0.83 0.74 0.70 0.76

0.72 0.73 0.71 0.74 0.78 0.81 0.82 0.81 0.85

0.76 0.75 0.73 0.78 0.78 0.81 0.90 0.90 0.88

0.79 0.69 0.85 0.88 0.94 0.95 0.94 0.94 0.90

0.80 0.80 0.91 0.92 0.94 0.92 0.95 0.92 0.88

0.78 0.79 0.83 0.90 0.89 0.90 0.93 0.95 0.95

0.73 0.78 0.81 0.89 0.91 0.91 0.91 0.92 0.95

−28 −21 −14 −7 0 7 14 21 28

3

4

5

10

15

25

40

(c) Kernel-width (γ) vs. Decision time (dt), (M=20, S=5)

Figure III.7: Grid search results for Cue Set 2. Box numbers represent area under the ROC curve.
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(c) Kernel-width (γ) vs. Decision time (dt), (M=20, S=5)

Figure III.8: Grid search results for Cue Set 3. Box numbers represent area under the ROC curve.
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(c) Kernel-width (γ) vs. Decision time (dt), (M=20, S=5)

Figure III.9: Grid search results for Cue Set 4. Box numbers represent area under the ROC curve.
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Figure III.10: Area under the ROC plot against Decision time for classifiers trained with window length

M = 20, sub-sampling rate S = 5 and optimal kernel-widths γ as determined from the grid-search in

training-run C.
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Figure III.11: Receiver Operator Characteristics curves for classifiers trained for various decision times.

Each classifier is trained with an optimal kernel-width γ. Window length M = 20 and Sub-sampling rate

(S = 5).
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(a) Left turn: Cue set 1
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(b) Right turn: Cue set 1
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(c) Left turn: Cue set 2
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(d) Right turn: Cue set 2

Figure III.12: Time response of kernel-RVM intersection turn classifier using Cue Sets 1 and 2.
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(a) Left turn: Cue set 3

−6 −4 −2 0 2 4 6
−1.5

−1

−0.5

0

0.5

1

time [seconds]

R
eg

re
ss

io
n 

re
sp

on
se

Time response of Regressor.
Percentile lines are in 10% increments.

 

 
min/max

(b) Right turn: Cue set 3
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(c) Left turn: Cue set 4
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(d) Right turn: Cue set 4

Figure III.13: Time response of kernel-RVM intersection turn classifier using Cue Sets 3 and 4.



IV

In-Vehicle Driver Hands Tracking in

Infrared Imagery

The in-vehicle environment presents special requirements on driver hand tracking. In this chap-

ter we present a computer vision algorithm that addresses these requirements for tracking the driver’s

hands while manipulating the steering and front console controls and present an application in steering

wheel grasp analysis.

IV.1 Introduction

The Driver Hands Tracking system is intended to fill the requirement of body part position

tracking in the vehicle for improving the safety of the vehicle. The premise of this thesis has been that

there exists useful gestural information in the driver’s pose that the vehicle system can make use of to

improve driving safety. The vehicle system would use this information to determine the attentive state of

the driver in critical situations. The challenge is to develop techniques to extract this pose and gesture

information of the driver while in the vehicle and when the vehicle is in motion.

The challenge associated with object tracking in a moving vehicle is the varying nature of il-

lumination. These variations are due to the sun and other sources of light illuminating the interior in

unpredictable ways. The illumination enters from various incident angles resulting from the continu-

ous movement of the vehicle, consists of various intensities modulated by atmospheric effects in the

environment like cloud cover, contains abrupt changes in intensity due to obstructions by objects in the

environment and the vehicle itself, and causes sharp contrasts in the scene during the day that are diffi-

cult to capture for many digital imaging sensors of limited dynamic range. All of these variations can be

sensed by the imaging devices together with the intended objects, and are considered the “noise” affecting
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Figure IV.1: Infrared images taken over 90 minutes of driving. Note that there is very little variation in

the gray levels of the subject and scene, besides where there is movement of objects.

the appearance of the observed objects in the vehicle. A requirement of high importance is to overcome

these problems by devising algorithms that perform well in the presence of this noise.

We propose a system that utilizes the long-wavelength infrared (LWIR) cameras to detect the

movement of the driver’s hands. The heat sensing attribute of the thermal infrared camera is especially

appropriate for use inside a vehicle where visible illumination is constantly changing. LWIR images

do not exhibit problems associated with visible illumination changes since the camera senses emitted

thermal-band electromagnetic radiation (25 − 350µm) from object surfaces. A change in temperature

indeed results in a change of the level of thermal radiation. However this was observed to occur much

slower in comparison to visible illumination changes. Visible illumination often changes faster than the

frame rate of the camera. Fig. IV.1 illustrates the strength of LWIR imaging. The series of images shows

the stability of intensity values of the subject’s hands and scene for over 90 minutes of driving during an

afternoon under the sun. This has simplifying implications on the algorithms, and is used to extract hand

position information.
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IV.2 Hand Detection and Tracking

IV.2.A Hand Detection

We define hand position in the vehicle to be the position of the hands in the LWIR image. The

image locations of the hands are first extracted using the object detector proposed by Viola-Jones [39].

This method performs an exhaustive search of an image by testing every point of an image of several

sizes. The speed is acquired by two things: 1) using Haar-wavelet like feature descriptors to describe

each image patch and 2) using a cascade of boosted classifiers to classify each candidate image patch.

The features can be very efficiently computed from the image when the image is first transformed into an

integral image. This step reduces the required computations for extracting the feature description of the

image patch to at most 9 memory access operations from at least 100 for a small 10x10 image patch [40].

Classification of each candidate image patch is performed using a cascade of boosted ensemble STUMP

classifiers. The result of the cascade is a speed up gained by quickly throwing out negative patches at the

beginning of the cascade, and concentrating the computations on more difficult patches with additional

classification stages of the cascade. Each ensemble STUMP classifier furthermore only uses a subset of

all the possible features that can be calculated from an image patch reducing the computation of each

stage of the cascade.

Fig. IV.2 shows examples of the 20x20 pixel positive sample thermal hand images used for

training and testing. These were extracted by hand from video captured from the LISA-P experimental

test-bed vehicle (For details of the data capture test-bed, see app. B). Negative examples are randomly

chosen from the same video sequence everywhere except the marked hand locations. The most salient

features chosen in the first 3 stages of the cascade classifier are shown in fig. IV.3.

Figure IV.2: Positive example LWIR images of hands of drivers. A total of 2153 examples were used.

Often, exactly two candidate image regions are detected as hands, but occasionally more than

two, one or no hands are detected when there should be two. To discern which of these multiple detections

are truly hands and which among those are the left and right hands, we utilize a combination of kinetic

information of the hands and their appearance. The detected hand candidates are tracked using a constant
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stage 1:

stage 2:

stage 3:

Figure IV.3: Features used in the first three stages of the classifier cascade for hand detection in LWIR

images.

velocity Kalman Filter with Probabilistic Data Association (PDA) Filter. Multiple hand targets are main-

tained, as will be explained in the next section, by producing as many tracks as necessary to accommodate

all “unclaimed” measurements. The most likely targets are classified as a left or right hand by examining

(1) the prior probability that a left or right hand is present on their respective sides of the steering wheel,

(2) the similarity of the appearance of the target with the appearance of the last recognized left or right

hand target, and (3) the longevity or confidence of the track.

The detection produces the position (x, y) and bounding-box width w of the image region

detected as a hand (both left and right). This is taken as the measurement for the Kalman Tracking,

zt,m = (x, y, w)> where m ∈ Mt is one in a set ofMt measurements at time t. The state vector of the

Kalman tracker for each track n is defined by xt,n = (x, y, vx, vy, w)> where (x, y) is the position, w is

the size, and (vx, vy) is the velocity of the target hand in the image.

IV.2.B Multi-Target Tracking and Left/Right Classification

Fundamental to the target tracking algorithm is data association, which associates candidate

measurements with tracked targets. There are a number of ways to establish the correspondence between

candidate measurements and targets, e.g. Global Nearest Neighbor, Probabilistic Data Association, and

Multiple Hypothesis Testing methods [41, 42]. Because of the sparse yet spurious errors in detection and

momentary missed detections of the correct image regions, we adopt the probabilistic data association

method. This method collects the measurements within a specified gate, or proximity to the predicted

target location, which is modulated by the estimated measurement error covariance matrix, and compares

the proximity of these measurements to the predicted target location in the presence of Poisson noise.

The resulting track score represents the likelihood that the measurement belongs to the track, and the

measurement’s likelihood to be part of the spurious background detections. These likelihoods represent

the confidence of each measurement, and are the weights applied to each measurement in calculating the

innovation in the correction step.

Measurements that are not associated to any target during the gating process are considered
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new potential targets. All potential and valid targets accumulate a track confidence score E. This score

represents the proportion of times the track had a valid measurement with which to correct the estimate.

This is calculated depending on whether or not a valid measurement is present to correct the estimate. In

other words,

Et =

 αEEt−1 + (1− αE) · 1 ∃ valid measurement

αEEt−1 + (1− αE) · 0 @ valid measurement

and αE is the forgetting factor. Upon exceeding an empirically obtained threshold τE , a potential target

is considered a valid target. Likewise, a target may lose track when the target does not have a valid

measurement at the point when E dips below the threshold.

All potential and valid targets also maintain an adaptive appearance model Ti ∈ RM×M of the

image of the hand which is updated by interpolating the detected image patch to the preset size M ×M

and incorporated into Ti using another first order autoregressive model (forgetting factor αT ). Similarly,

appearance models are used to describe the appearance of the left and right hands, UL and UR. These are

updated based on the appearance of the classified left and right hand targets, with a forgetting factor αU .

The appearance models UL, and UR are initialized to zero.

All potential and valid targets also accumulate a left hand and right hand likelihood measure.

This measure consists of two quantities: (1) a target’s proximity to the left or right hand’s usual position

in the driver’s area, and (2) the similarity in appearance of the target’s appearance model with the stored

left and right hand appearances UL and UR. The first quantity is the proximity of the target to the likely

locations either the left or right hand in the image which is a priori known. These locations are over

the left and right side of steering wheel as illustrated in fig. IV.4. This first quantity is modeled as a

bi-variate Gaussian probability, with log-likelihood values for the left and right hand given by lt,p =

logP (xt|µL,ΣL) and rt,p = logP (xt|µR,ΣR), whereµL, µR ∈ R2. The normalized sum of squared

difference is used as a measure of similarity between the appearance model of the target Ti and the left

UL and right UR hands. Together, the two quantities form a likelihood that the target is a left or a right

hand

lt = logP (xt| µL,ΣL) · (1−NSSDL)

rt = logP (xt| µR,ΣR) · (1−NSSDR)

where NNSDh = ‖Ti − Uh‖2/M2 and M × M are the dimensions of the appearance model. The

amounts are accumulated with a forgetting factor αs according to the relation

Lt = αsLt−1 + (1− αs)lt Rt = αsRt−1 + (1− αs)rt

A target with a large left hand score relative to the right-hand score indicates that the target has hovered

over the likely left hand position longer than in the likely right hand position in the image. A higher value
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Figure IV.4: Hand location prior probabilities are bi-variate Gaussian density functions centered at the

mean location of the hands in the image with a fixed variance. The two prior probabilities are illustrated

as white and black regions of the image. The left and right hands are most likely in the white and black

regions of the image

of the left hand score relative to all other target left hand scores represents a higher amount of confidence

and freshness of the target being and having been the left hand. Finally, among the valid targets (E ≥ τE),

the targets with the highest left hand score and right hand score are classified as the left and right hand,

respectively.

IV.3 Experimental Evaluation

Hand detection and tracking results are shown in fig. IV.5. At each time step, appearance models

are maintained, and updated as image patches are accumulated from the left and right hand recognition.

The row of image patches beneath the tracking illustration are the left hand, right hand, and the various

target appearance models. Since all detections that are not in the gate of the other targets cause a new track

to be formed, outlier targets are also tracked to disambiguate true targets with false ones. These outlier

tracks tend to come and go while the true targets remain consistently tracked throughout the sequence,

punctuated with moments of loss of track.

At the start of the algorithm, the left and right hand appearance model is initialized to all zeroes.

This places more importance on the proximity and duration a target lingers in the high likelihood left and

right hand positions (in the image) rather than the stored appearance of the left and right hand in deciding

which target is the left or right hand. Then, as the appearance model is slowly updated at each time step

following the target recognition, the appearance model UL and UR play an increasingly influential role in

deciding which targets are left and right hands. This then allows the tracking algorithm to decide targets

as hands even in the rare moments when the hand targets depart from the hand’s assumed usual location.

To gain an understanding of the observable pattern of hand movement, we collect segments of

hand position data surrounding the intersection turn, time-align them at the moment the driver enters the

intersection, and generate a 2-D histogram of those segments. A total of 12 such histograms were created
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Figure IV.5: Progression of the first few frames of the hand tracking result. Beneath the main image are

several image patches. They show the left and right hand appearance model and the track appearance

models. The progression shows the left and right hand appearance model being updated over time relying

on hand position prior.

Figure IV.6: 2D trajectory histogram of the detected hand tracks time-aligned to the intersection-turn

boundary crossing for the go-forward, turn-left, turn-right maneuvers (one for each row), showing the

left-hand x, left-hand y, right-hand x, and right-hand y image coordinates (one for each column).
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and shown in fig. IV.6. Sequences with a regular pattern of movement over time will appear in the 2-D

histogram as a hot streak over time. The x- and y-axis of each histogram are time in samples and the

position in the image. The first row consists of go-forward (gf) maneuvers. The second and third rows

consist of the turn-left (tl), and turn-right (tr) sequences respectively.

A comparison of the three rows clearly shows distinct motion patterns of both the left and

right hand during the 3 different activities. The comparison of the two leftmost and rightmost columns

in a given row shows the similar transition patterns of the left and right hands with different offsets.

This analysis uncovers specific hand motion patterns in each activity. The two hands’ relative position

and motion with respect to the steering wheel rotation constitutes five different types of grasp operation

triplets, explained next.

IV.4 Hand Grasp Analysis

As the development of a thermal vision-based hand tracking algorithm progressed, it became

clear that hand position with steering angle information can be combined to determine the various grasp-

ing activities of the vehicle. While the HMM-based driving activity classifier provides gross semantic-

level recognition of driving behavior such as gf, tl, tr, the grasp analysis, supported by the hierarchical

activity grammar introduced in [43], provides finer semantic-level behavior representation and analysis.

The hand tracker described in this chapter is used to provide the (x, y) positions and (vx, vy) ve-

locities of the left and right hands. Steering angle information is combined with hand tracking information

to recognize 5 hand grasping behaviors:

1. A hand grasps but does not move the steering wheel.
2. A hand grasps and moves the steering wheel in the counterclockwise (left) direction.
3. A hand grasps and moves the steering wheel clockwise (right).
4. A hand grasps the steering wheel loosely and allows the wheel to turn underneath it.
5. A hand does not grasp the steering wheel.

The grasping behavior is detected by measuring how correlated are the independently measured move-

ments of the hands and the steering wheel angle. If the steering moves together with the hands and the

hands are in proximity of being able to grasp the wheel, then the hand is presumed to be grasping the

steering wheel. If neither conditions is met, the hand is presumed otherwise.

The operation-triplet is used to describe these grasping behaviors. Borrowed from linguistics,

the operation-triplet consists of three elements: an agent, motion and target [43]. This representation can

completely describe the activities of the hand. The agents in this case are the left and right hands. The

target is either the steering wheel or null. The null target is used to describe the activity where the hand

interacts with anything else besides the steering wheel.
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To determine if the hand is grasping the steering wheel, an approximate ellipse model of the

steering wheel is used to measure the distance between the hand and the steering wheel. This is accom-

plished by manually fitting an ellipse over the steering wheel in the LWIR image, such that all points x

on the steering wheel in the image are a distance of 1.0 away from the center of the steering wheel. This

is accomplished by using the weighted 2-norm

d(x) = (x− xo)>S(x− xo) (IV.1)

where xo is the center of the steering wheel in image coordinates and S determines the shape of the

ellipse. A hand detected within a deviation 1−τd < δsw < 1+τd for some τd is considered in position to

grasp the wheel; a hand outside that range is considered performing other motions towards the null target.

To determine which of the five grasping maneuvers the hand is performing, the correlation of

the steering wheel and hand angular velocities around the center of the steering wheel is examined. The

angular positions of the hands around the steering column are found by calculating the angle

θ = arctan((y − yo)/(x− xo))− θo (IV.2)

where x = (x, y) is the position of the hands in image coordinates, xo = (xo, yo) is the center of the

steering wheel, and θo is the bias applied to align the 0 degree position to the top of the steering wheel. The

angular velocity ωh is measured by taking the difference between the last and the current angle position

of the hands normalized by the duration of time passed.

ω =
θ(t)− θ(t+ dt)

dt
(IV.3)

Finally, we define the correlation between steering wheel and hand angular velocities around the wheel to

be the difference ρ = ‖ωh − ωsw‖.

For hands in position to grasp the wheel, the hand is determined to be performing one of the

following three activities: If the difference between angular velocities of the wheel and hand exceed a

threshold τω , the hand is then determined to be grasping the wheel loosely, and allowing the wheel to

turn underneath them. If the difference of angular velocities are within that threshold, the hand and wheel

are determined to be moving together. If both the hand and wheel angular velocities are zero, the hands

are grasping and resting on the wheel. Tab. IV.1 summarizes the test conditions under which the various

operation-triplets occur.

The five grasp operation-triplets are illustrated in fig. IV.7 and IV.8.

IV.5 Discussion and Concluding Remarks

In this chapter, we presented a solution to the requirement of tracking hand positions in vehicles.

We proposed the use of long-wavelength infrared imagery to capture the nearly constant temperature of
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Table IV.1: Driver Hand Grasp Operation-Triplets

Grasp operation-triplet <agent,motion,target> Conditions

<l/r hand, grasp+no move, sw>

d(xh)− 1 ≤ τd
‖ωsw − ωh‖ ≤ τω
ωsw = 0

<l/r hand, grasp+turn left, sw>

d(xh)− 1 ≤ τd
‖ωsw − ωh‖ ≤ τω
ωsw < 0

<l/r hand, grasp+turn right, sw>

d(xh)− 1 ≤ τd
‖ωsw − ωh‖ ≤ τω
ωsw > 0

<l/r hand, grasp+sliding over, sw>
d(xh)− 1 ≤ τd
‖ωsw − ωh‖ > τω

<l/r hand, no grasp, null> d(xh)− 1 > τd

hands. Using a cascade of boosted classifiers and probabilistic multi-target tracking framework, we were

able to take advantage of the stability of the driver’s appearance in thermal imagery and demonstrate a

system that is able to track both the left and right hands of the driver over a course of 90 minutes of driving

of a single driver.

The results of the hand tracking was combined with steering information to determine 5 grasp-

ing activities using the operation-triplet construct. These 5 grasping activities compactly describe whether

either hand is grasping the wheel or not. And if grasping, whether the hands are actively turning the wheel

to the left, to the right, not turning, or allowing the wheel to spin underneath.

The text of Chapter IV, in part, is a reprint of the material as it appears in: Shinko Y. Cheng,

Sangho Park, Mohan M. Trivedi, “Multi-spectral and Multi-perspective Video Arrays for Driver Body

Tracking and Activity Analysis,” Computer Vision and Image Understanding: Special Issue on Advances

in Vision Algorithms and Systems Beyond the Visible Spectrum, vol. 106, number 2–3, pages 245-257,

May-Jun. 2007. Sangho Park and I were the primary researchers of the cited material, and Professor

Trivedi directed and supervised the research which forms the basis of this chapter.
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Figure IV.7: This figure illustrates the two grasp types: Hand on wheel turning right and left. The red and

blue bricks in the bounding box represent a hand is moving the steering wheel right and left, respectively.

(a) (b)

Figure IV.8: Illustrated are three more grasp types: (a) Left hand is grasping the wheel holding still (in

blue) while right hand is away from the wheel (in red). (b) Both hands grasping but slipping over the

steering wheel while the steering wheel straightens itself out (in purple). The grasp activity is found for

one hand independently of the other.



V

In-Vehicle Vision-based User

Determination

Knowledge of driver body pose can be used in many applications. In this chapter we present

a novel robust computer vision algorithm for discriminating which of the front-row seat occupants is

accessing the infotainment controls. The information content is intended to alleviate driver distraction

and maximize passenger infotainment experience.

V.1 Introduction

A broad new array of devices is finding its place in today’s vehicles. The infotainment device

has graduated from a term referring to the radio to a collective word to describe the navigational, vehicle

status view, climate control, personal cell-phone control, MP3 player control, and web-browsing, and

even television functionalities of the front console area of the vehicle [44, 45]. With all of these opportu-

nities for drivers to be distracted, the solution has been to limit the functionality or the output from these

infotainment systems, and make them less distracting. Often, the information provided by these devices

becomes oversimplified and not rich enough for passengers who are not required to maintain attention to

the aspects of driving. It is far more desirable to alleviate driver distraction yet at the same time allow

occupants of the vehicle access to better information.

We therefore propose a novel Vision-based User Determination (VUD) system to determine

which front-row seat occupant is accessing the infotainment controls. This device is intended to simulta-

neously improve the safety of the vehicle by alleviating driver distraction from the vehicle’s infotainment

system, and allow the passenger full access to the information device. The controls of the infotainment

system consist of buttons and a knob with rotational and directional degrees-of-freedom. They are as-

68
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sumed located in the aisle area between the driver and the passenger.

Vision systems afford additional functionalities with a single sensor. From the perspective of

sensor efficiency, an imaging device with a good wide perspective can sense a variety of useful informa-

tion about the front-row seat environment, e.g. tracking hands.

The challenges of developing such a system center on developing a robust classification algo-

rithm that is capable of maintaining high performance in all operating conditions of the vehicle. That is

to say, good performance should be maintained through changes in the appearance of people, changes in

lighting from different times of the day, and differences in the camera position during installation (trans-

lation). Because vehicles are likely to receive maintenance only between several months of operation, if

at all, much of the functionality must also require little or no maintenance. These attributes were achieved

with appropriate choices in the design of the pattern classifier and system components.

The proposed module takes as input visible and near-infrared images of the front-seat and

center-console area illuminated with a bank of near-infrared LEDs. The module then uses these im-

ages to determine which front-row occupant is accessing the device, if anyone at all. The histogram of

oriented gradients (HOG) image descriptor was chosen to create the feature vectors [46]. The module

then utilizes the kernel support-vector-machine (SVM) to classify the observed image features into the

three classes.

The evaluation of this approach uses 2 metrics: the correct classification rates of each class

forming the confusion matrix, and the average correct detection rate of the three classes. In the training

process, care was taken to ensure that a representative data-set was used, and the usual cross-validation

techniques were employed to gauge the generalizability of the pattern classifier. Data was collected at

4 different times of day with 8 different individuals for a total of 18 test-runs, over 1-hour of data at 30

observations per second. A large representative data-set allows for an understanding of the performance

on a wider range of operating conditions. We also analyzed the system’s invariance to translation in the

x- and y- directions of the image patch, where the features are extracted. These qualities influence the

flexibility in camera placement during the installation process.

The trained system can correctly recognize whether the driver, passenger, or no one has their

hand over the infotainment controls with better than 95% average correct classification rate. This rate is

the average percentage of each category that was classified correctly.

V.2 Related Work

The idea of tailoring vehicle information system functions, input and output devices, and user

interface based upon whether the user is the driver or passenger is not a new one. Chou et al. [47] have pro-

posed the use of weight sensors to determine the presence of a passenger before enabling full-functionality
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of an infotainment system. Harter et al. [48] too proposed to switch between “enhanced functionality”

and “base functionality” of the information system by determining the presence of a passenger but used

proximity sensors instead. They take a step further to determine when to engage “base functionality” by

determining whether the driver has gazed into the infotainment monitor more than 2 seconds (considered

too long) using a vision-based eye gaze tracking system. We propose to use the same vision modality

but analyze the hands of the occupants rather than the driver’s head to determine when to switch between

functionality modes. Our proposed solution can replace or complement these other systems by providing

the following advantages:

1. The proposed system is arguably simpler to implement and maintain than an eye gaze tracking

system. The proposed solution requires no camera nor person calibration.

2. The proposed system actively monitors the hands to detect the intent to access the information

system as soon as the hand nears the controls.

3. The proposed system actively detects the null case, i.e. when no one is accessing the information

system. This case can be used to automatically show and hide access controls in the display. This

cases can be construed as having a more attentive driver and require less driver assistance. Weight

sensor and proximity sensor systems cannot detect the no-one case.

4. The proposed system can detect difficult situations with occlusion, including the partial occlusion

from the other occupant’s hand.

Tab. V.1 summarizes the related work in user determination systems.

The problem of hand image based user determination can approached in two ways: 1) Active

tracking of occupant hands as the hand passes into and out of the area over the infotainment controls (or

region-of-interest) to detect intent to access. 2) Learn the appearance of the driver’s hand, the passenger’s

hand or no one’s hand over the region-of-interest. A number of works have addressed the first approach.

The first type consists of a detector which locates the hand in the images, and then tracking the

hand. Tracking is associating one hand detection in time with the next. The challenge of this approach is

in obtaining a good description of the appearance of the hand in its various poses, and a way to efficiently

check all areas of the image for the existence of a hand. The characteristics of a good descriptor is one

that would correctly associate two hand detections of the same hand in different positions and poses.

One hand detection algorithms devised is by Kölsch et al. [49] employs a cascade of boosted

classifiers using haar-wavelet-like image features and their extensions to determine whether an image

patch, among all possible patches in an image, consisted of a hand or not. The rates reported for real-time

operation were very good (92% detection rate with a false positive rate of 1e-8), but the approach detected

hands in a standard canonical position: fingers up and thumb to the right and 7 other similar forms. Kölsch
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Table V.1: Related work on User Determination for Information System Mode Control.
Objective Method and Re-

sult
Cues used Comment

Chou
et al.(’99) [47]

User
Discrimination
Control of
Vehicle
Information
Systems

Occupant
Presence using
weight sensor.

Weight sensor -

Harter
et al.(’02) [48]

User
Discrimination
Control of
Vehicle
Infotainment
System

Prolonged Driver
Eye Gaze
Detection
Passenger
Presence using
multi-modal
sensors

Weight sensor
Driver eye-gaze
sensor
Proximity sensor
seat-belt tension
sensor

-

Proposed Work Determine
whether Driver/
Passenger/
No-one’s hand is
present.

HOG feature,
3-class SVM
classifier, 97.8%
Avg. CCR

Hand imaging
sensor

Analyzed
sample-by-
sample correct
detection rate.

et al.proposed using a flock-of-features approach to track the positions of the hands after initial detection,

and to address the problem of maintaining track of hands through its many poses.

We employed a similar detection technique with long-wavelength thermal infrared images of

hands (chap. IV) [37]. The thermal infrared modality is especially appropriate in the vehicular domain

because image appearance is not at all affected by changing illumination conditions and pixel intensity

of skin is stays relatively constant. Because of the special quality of hands in thermal images, this de-

tector was also effective in detecting hands in various poses. The detector is applied on each in-coming

frame and the multiple hands are tracked using the Kalman filter and Probabilistic Data Association Filter

(PDAF) to disambiguate one track from another. This approach however suffers from the use of a thermal

camera, which are still expensive as compared to the visible-wavelength camera.

Yuan et al. [50] proposed a hand tracking system that utilizes color and motion information to

detect and the Viterbi algorithm to track the hands. Because of the vehicle’s high and low light operating

conditions and the need to discreetly illuminate the vehicle interior, color cameras — and therefore skin-

color based algorithms — were not an option.

We address the user determination problem using the second approach, which is the direct

classification of images of the infotainment controls region. No tracking is required, although some

rudimentary filtering of the classification responses over time will increase the correct classification rate.

This approach takes advantage of the fact that the region-of-interest has a stable background which is

of the vehicle interior. To the best of our knowledge, no other work approaches the user determination
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problem in a similar way.

V.3 Pattern Classification Considerations

The core of the VUD system is a pattern classifier trained from annotated examples. A sensor

observes a hand over the infotainment controls, and the task is to determine among the occupants of the

vehicle to whom the hand belongs.

The typical structure of a pattern classifier consists of the following stages:

• Sensing - Makes observations of the nature to be classified or categorized.

• Feature Extraction - Efficiently describes the raw observations by retaining only the information

that is useful for classification and composing the description in the form of a feature vector.

• Classification - Assigns the feature vector to a class or category.

Functionally, if x ∈ Rd is the d-dimensional feature vector, then the classifier g transforms x to the

intended target value, or class t̂, given by

t̂ = g(x, θ) (V.1)

where t̂ ∈ {C1, C2, ...}, and θ consists of the set of parameters to be optimized, or “learned”, through

classifier training. “Supervised learning” is training performed by presenting a set of feature vectors with

known class assignments, assigned by an expert or human observer. From a slightly different perspective,

a classifier can be described as creating decision boundaries in the d-dimensional feature space. Each fea-

ture vector has an associated class label. The task of training the classifier is to create decision boundaries

in this feature space such that the resulting regions contain only the observations (including never before

recorded observations) with the same class label. If there exists a hyperplane that can separate two classes

of features, the features are said to be linearly separable.

The factors that impact the success of a pattern classification system are: 1) The choice of the

classifier (model), 2) the training examples, and 3) the method of feature extraction.

A good choice of a classifier is one that will create decision boundaries that represent the true

boundaries in nature. For example, if the feature space is nonlinear, the model must be able to produce

nonlinear decision boundaries. The support-vector-machine (SVM) with an appropriate kernel function is

a popular technique successfully used in many applications, including optical-character-recognition and

finger print identification [38].

At its center, SVM is a two-class classifier that creates a hyperplane that separates the two

classes of features with the greatest margin or distance between the feature and the hyperplane. By itself,

SVM solves the classification problem when the features are linearly separable. A classification is made
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by taking the sign of the value resulting from the linear combination of the elements of the feature vector

with the learned weights (g(x) = sign(a>x)). Its success in applications stems from SVM’s ability to

learn sparse solutions for the weights when the feature vectors are projected onto a higher-dimensional

space using kernel functions. Kernel functions emphasize certain aspects of the spatial configuration of the

features in feature space, such as the distance between example feature vectors for the data-driven Kernel

function, and making the otherwise complex non-linearly-separable features into linearly-separable ones.

The sparseness of solutions results in efficient on-line classification. For details on the learning algorithm

for SVM, we refer the reader to many good texts [38,51,52]. More details on the SVM are also described

in the next section, sec. V.4, when the actual the VUD system is described.

The second factor that influences the success of a pattern classifier is ensuring that the example

observations presented to the classifier are representative of the kinds of observations gathered where the

classifier is deployed. The analogy is that if a person is asked to pick out Fuji apples from a case of Fuji

and Red Delicious apples having only learned about apples and oranges, the person may mistakenly pick

out all the apples. Presenting the classifier with every possible kind of observation will ensure that the

classifier is trained to react correctly in these more ambiguous situations. The examples in our data-set

were collected from various times of day with various people in both the passenger and driver positions.

The data-set also contains a sequence of a variety of clutter. We describe how the data was collected in

sec. V.5.

There is also the possibility that two classes are too similar or the feature vectors from different

classes have considerable overlap in the feature space. Such a feature space is not perfectly separable by

any division of regions. This may then indicate that a different description of the observations should be

explored in the feature extraction phase.

This brings us to the last factor that influences the success of a pattern classification system

which is feature vector construction. The histogram of oriented-gradients (HOG) and other gradient

orientation histogram-style local descriptors have been shown to be highly effective in characterizing the

appearance and shape without the need for precise positioning of the gradient or edge positions in the

image interest point [53, 54]. This type of local image descriptor has been shown to be very effective in

finding corresponding points between two images where one image is a transformed version of the other.

The SIFT and GLOH descriptors, which both have elements of the basic HOG descriptor, were shown to

be the most successful in matching points in images with very different perspectives. These descriptors

extend the HOG descriptor by adding rotation and shift invariance. The HOG component itself gives the

descriptor robustness to change in perspective, illumination level, and even focus. We chose to describe

the appearance of the infotainment controls with the HOG descriptor for these reasons. By a thorough

evaluation below, we determined that the histogram of oriented gradients feature descriptor is adequate.
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Table V.2: VUD hardware specifications
Device Attribute Value Notes

Imager

Make VidereDesign
Model STH-MDCS2-VAR
Image Resolution 640x480 px, 8bits/px 1280x960 px max
Frame Rate 30 Hz Max 7.5 Hz at 1280x960
Image Type 400-700nm monochrome visible spectrum
Sensor Type 1

2 in. CMOS
Lens focal-length 3.5 mm C/CS mount
SNR > 45dB, no gain
Sensitivity 2.1 V/lux-sec
Power 2 W
Size 1.5H x 2.6L x 1D in. without lens
Weight 425g (15 oz) without lens

Illuminator

Make SUPERCIRCUITS
Model IR14
Number of LEDs 140
Configuration Planar grid array
Power 12-15V 1A

V.4 Vision-based User Determination System

The Vision-based User Determination (VUD) system determines the individual whose hand is

accessing the infotainment device by classifying patches of captured images of the front-row seat area in

a passenger vehicle. The user is defined as one of three categories: 1) driver, 2) passenger, and 3) no-one.

The infotainment controls are assumed to be positioned just aft of the gear-shift, forward of the hand-rest,

and beside the hand-brake.

We adopt the visible and near-infrared spectrum imaging modality to provide the observations

for determining whose hand is on the infotainment controls. The primary reasons are the passive na-

ture of the camera; at night, the front-row seat area can still be captured by illuminating the area with

near-infrared illuminators without distracting the occupants. Example images are shown in fig. V.1(a)

and V.1(b). Hardware specifications are listed in tab. V.2.

The overall system has three stages: data capture, feature extraction, and classification. This is

the basic procedure for all pattern classification systems.

The system starts with the capture of monochrome images. A rectangular image patch that spans

between the edges of the driver’s and passenger’s seat and the length between the gear-shifter and the hand

rest is extracted. An example image captured from the front seat area and the image patch are shown in

fig. V.3. The histogram of orientation gradients (HOG) description of the image patch is calculated, and

then presented to the multi-class kernel support-vector-machine (SVM) classifier to determine which of 3

events occurred: the driver’s hand, passenger’s hand, or no one’s hand accessed the infotainment controls.
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(a) Example image in daylight. (b) Example image at night.

(c) Camera and illuminator. (d) Camera and illuminator set-up.

Figure V.1: Example images captured during the day and night, and the positions of the camera and

illuminator in the LISA-P test-bed for the VUD system.

Figure V.2: VidereDesign STH-MDCS2-VAR camera and SUPERCIRCUITS IR14 140 LED IR Illumi-

nator were used for the VUD system.
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Figure V.3: Image region-of-interest used to determine user in the VUD system.

Table V.3: Parameters used for the histogram of oriented gradients feature descriptor in the VUD system.
Parameters Value

Bins along x-axis 2
Bins along y-axis 2

Bins along orientation 8

V.4.A HOG Feature Extraction

The HOG descriptor for an image patch is created by first taking the gradient of the patch. The

resulting gradient image is then divided into smaller rectangular patches of pixels specified by the number

of x-bins and y-bins in the x and y directions. Within each rectangle, a orientation histogram is generated

from the pixels contained within each smaller rectangular patch. In generating this orientation histogram,

the number of o-bins specify the number of divisions along the span of gradient orientations (0 to 360

degrees) The o-bins parameter also specifies the length of each histogram for each rectangle. All the

orientation histograms are then vectorized and concatenated to form the feature vector x. Altogether, 3

parameters determine the dimensions of the final feature vector: the number of divisions along x, y, and

the number of bins in the orientation histogram. For example, a 2x2 grid of bins with 8 slices in the range

of possible gradient orientations results in a 32-dimensional feature vector (2x2x8) for each image patch.

V.4.B SVM Classifier

The objective of any classifier is to correctly assign the observed feature vector x to its cor-

responding label or class k of K classes. Mathematically, this refers to creating a set of discriminant

functions gi(x) for i ∈ 1, ...,K such that gk(x) produces the highest value when x corresponds to class

k. The discriminant function is parameterized by a set of variables represented as θ. Training a classifier

refers to optimizing the parameters θ such that the classifier will correctly classify as many input features
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vectors x as possible in a given training data-set. The data-set contains example feature vectors and their

associated class values or target values, manually assigned.

The support-vector-machine was chosen to be the underlying classifier for this application. The

SVM classifier takes the form

g(x) = sign

(
N∑
n=1

antnk(x,xn) + b

)
(V.2)

where tn ∈ {−1, 1} is the target value for feature xn, while an and b are the weights to be optimized. The

key result of SVM is the sparse solutions for an, i.e. many terms are zero. The effect of this is efficiency

in classification; only a very small subset of N examples actually need to be retained to calculate g(x).

The feature vectors xn for which the corresponding an is non-zero are also called the “support vectors.”

The vector of coefficients an can be seen as a hyper-plane (n-dimensional plane) separating

the two sets of features (one corresponding to t = −1, and the other to t = +1) in the feature space.

The optimal condition is when the two sets of features are separated by this hyper-plane with the largest

possible spacing, or margin, between the hyper-plane and the closest feature vectors in this feature space.

Specifically, the objective function that is maximized over a is

L̃(a) =
N∑
n=1

an −
1
2

N∑
n=1

M∑
m=1

anamtntmk(xn,xm) (V.3)

subject to the constraints

0 ≤ an ≤ C (V.4)

N∑
n=1

antn = 0 (V.5)

where n = 1, ..., N . This is an example of a quadratic programming problem in which we are trying

to minimize a quadratic function subject to a set of linear inequality constraints. For a more detailed

treatment of the SVM, please refer to [38, 51, 52].

SVM by itself is a two-class classifier. Multi-class SVM is used to classify the feature vectors

into the 3 classes for the VUD system. This extension is achieved by training 3 SVM classifiers with

the one-versus-rest approach. Each two-class SVM classifier will be trained with the feature vectors

annotated as one class with a target value t = +1, and the other feature vectors grouped together with

target value t = −1. There are three two-class SVM classifiers in all. Each SVM classifier can be seen as

one of 3 discriminant functions as defined in equ. V.1, and the final classification is done by determining

which of the 3 functions yields the highest value, i.e. determine which of 3 regions in feature space does

the feature vector lie in the deepest. Formally, the classified result C is given by

C = arg max
Ck

gCk
(x) (V.6)
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Because the raw features do not neatly lie in their respective sides of this hyper-plane in the raw

feature space, i.e. the raw features x are not “linearly separable,” we project these features onto a higher-

dimensional kernel space k(xi,xj). Depending on the chosen kernel function, different aspects of the

spatial configuration of the raw features are emphasized by the kernel function. The radial-basis-function

(RBF) for example is one type of kernel function where each kernel function depends on the distance

(usually Euclidean), from a specified mean µi. The means are set to the feature points, producing as

many kernel functions as there are example feature points. The use of the kernel function effectively

projects the raw feature space from a d-dimensional space onto an N-dimensional space, where d << N .

Arriving at a sparse solution where only a small subset of N is retained as part of the classifier is the

problem that SVM solves.

The proposed system was prototyped with the SVM implementation in OpenCV Machine

Learning Library.

V.5 Experimental Evaluation

The experimental evaluation consists of the definition of relevant performance metrics, vali-

dation of the performance evaluation as being representative of the true performance, validation of the

optimality of the algorithm parameters, and finally discussion of the results pertaining to robustness of

the system in conditions in which they may fail.

V.5.A Performance Metric

The evaluation of the VUD system utilizes 2 metrics: 1) the confusion-matrix summarizing

the classification rate of a feature vector of a given class as a given class, and 2) the average correct

classification rate among the three classes. The confusion matrix consists of 3 rows and columns for each

of the 3 classes. The row represents the actual class of novel examples (excluding examples used for the

training of the classifier), and the columns represent the predicted category of those examples. Perfect

recognition will yield a confusion matrix with zero values in the off-diagonal elements. A normalized

confusion-matrix represents the percentage of, or the probability that a particular class will be predicted

as one of the classes. The normalized confusion-matrix is calculate by dividing each element of the row

by the sum of that row in the confusion matrix. Worst performance is considered the performance that can

be achieved by random guessing, which generates a normalized confusion matrix with 33% classification

rate in each matrix element.
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V.5.B Validation of Performance

During the training of any pattern classifier, there is a risk of over-fitting, where the classifier is

trained to the point when the training set is classified perfectly, but when presented with novel examples

the correct classification rate is worse than can otherwise be achieved. This is due to noise associated with

overlapping class regions in feature-space. A classifier that has been over-fitted would create decision

boundaries to classify these noisy samples correctly and thereby degrade classification performance for

non-noisy samples.

To address this, 5-fold cross-validation is used to estimate the expected recognition rate, a better

indicator of the generalizability of the pattern classifier to as-yet-unseen data. That is to say in order

to generate a performance measure that represents more closely the true classification performance on

as-yet-unseen data, we use cross-validation to estimate the correct classification rates. The data-set was

divided into 5 sub-sets. A multi-class SVM classifier was trained on all but 1 of the 5 sub-sets of examples

(frames), and the classification rates are calculated from the remaining sub-set to produce 5 normalized

confusion matrices. The average of all 5 recognition rates are found and reported. The standard deviation

of each element in the confusion matrix is also found and were always less than .5% difference.

To ensure that the trained results would perform well in real situations, the data-set was collected

at various times-of-day (noon, afternoon, twilight, night) with various individuals (8 individuals) in both

the driver and passenger position. One sequence was captured with a variety of clutter (flashlight, card-

board, paper, mouse-pad, tools, cups) introduced into the region-of-interest to capture the statistics of

feature vectors of those instances. A total of 18 video sequences containing a 114,886 examples and 63

minutes of video in various illumination conditions were used for training and testing. The conditions

under which the data-set was collected is summarized in tab V.4 and V.5. The people present in the data

capture are denoted as A through H for the 8 people. An asterisk denotes no occupant for that video

sequence. Individuals wore short and long-sleeve shirts. For most sequences, the data was captured while

the vehicle was in motion, driven along a route in which the direction of sunlight could shine into the

vehicle from every direction at least once. Different times of day yielded different angles of the sun and

character of the sun.

Each frame of the video is manually annotated with the category to which it belongs. Namely,

each frame may show either no one, the driver, or the passenger is placing their hand over the infotainment

controls area. There are a total of 68,467, 20,179 and 25,340 unique frames collected for each of the three

classes, respectively.
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Table V.4: Summary of attributes of the 18 sequences of video data used for training and testing for the
VUD system. Test subjects are labeled A through H, for 8 subjects in all.

Group Seq. Frames
Occupant and

Position (Driver/
Passenger)

Vehicle State Weather Condition Time-of-Day

1st

1 4814 A/* Stationary Indoor N/A
2 6000 */A Stationary Indoor N/A
3 6947 A/* Stationary Overcast 6pm
4 4089 */A Stationary Overcast 6pm
5 11,740 A/B Moving Overcast 7pm
6 7093 C/A Moving Sunny 12pm
7 7699 D/E Moving Sunny 12pm

Group Total 48,382 Examples in each class: {31,963, 8650, 7769}

2nd

8 13,012 A/A Moving Night 9pm
9 4978 B/G Moving Sunny 12pm

10 4202 G/B Moving Sunny 12pm
11 6908 C/A Moving Sunny 12pm
12 5445 A/C Moving Sunny 12pm
13 4845 A/* Moving Sunny 12pm
14 5039 H/G Moving Sunny 4pm
15 5002 G/H Moving Night 4pm
16 6961 H/A Moving Night 9pm
17 3987 A/H Moving Night 9pm
18 6125 A/H Moving Night 9pm

Group Total 65,604 Examples in each class: {36,504, 11,529, 17,571}
Total 114,886 Examples in each class: {68,467, 20,179, 25,340}

Table V.5: Summary of users.
Class Description Examples

1 No One 68,467
2 Driver 20,179
3 Passenger 25,340
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(a) Exp 1 (b) Exp 2 (c) Exp 3

Figure V.4: Various image patch sizes were used in evaluating the VUD system.
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Figure V.5: In training the multi-class SVM for user determination, optimal values of C (slack parameter)

and γ (RBF kernel width) need to be found. This was done by grid-search and the average correct

classification rate is the quantity to maximize. Randomly selected 5000 samples of each class were used

to train the classifiers for this grid-search. A total of 15,000 samples was used.

V.5.C System Parameters Optimization

Three feature types were analyzed to validate our choice of image patch dimensions. Intuitively,

the forearm is a good indicator of whose hand is accessing the infotainment controls. A rectangular image

ROI of size 140x80 as depicted in fig. V.4(a) appears to capture both the hand and the forearm compactly.

The other two image patches consisted of a square image patch of sizes 80x80 and 140x140, centered

around the hand as shown in fig. V.4(b), and V.4(c).

The multi-class SVM classifier with the RBF kernel has 2 parameters that require tuning: the

slack parameter C, and the RBF kernel width γ. This is done by searching a grid of values for the

optimal tuple (C, γ) that yields the highest average correct detection rate (mean of the diagonal elements

of the normalized confusion matrix). A subset of the complete data-set was used to efficiently generate

the values in the grid-search: 5000 examples of each class were randomly selected for a total of 15,000

examples in the new training set. The results the grid-search for all three feature-types is shown in fig V.5.

The result from this search indicates that the optimal values are C = 25 and γ = 100.
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The results of the parameter optimized kernel SVM classifiers are summarized in tab. V.6. The

differences in percentage points were subtle, but the rectangular image patch produced the best results

of the three different sized patches with a correct detection rate of 95.42%, 97.6% and 97.3% for the

instances when no-one, driver, and passenger was accessing the controls, respectively. The columns of the

confusion-matrix represent the instances of each predicted class while each row represents the instances

in an actual class.

To give a better sense of the performance as a function of time, duration of time in error were

calculated. The amount of time when the system was in error in one hour is calculated by multiplying

the percentage of time in error by 60 minutes. The average number of minutes in error in one hour

for the three types of features were 1.926, 2.544, 2.526 minutes respectively. There is an improvement

in confining the image patch to a rectangular area of the aisle by 0.5 seconds on average. Of course, the

error was not uniformly distributed over all time. Most of the error clustered together during the transition

regions, described next.

During the annotation of the data, care was taken to ensure that a consistent strategy was used

for when a hand is in transition to and from the image patch region. Usually, the percentage of the hand

remaining in the image patch is used to determine whether or not the hand is still in the region. There

may still exist some inconsistencies in the transition frames; some annotated as hand still in the region

when in fact not, and vice versa. Furthermore, in transition frames, the hands are often blurred.

To determine how much of the inconsistency adversely influences the performance, we examine

the proportion of errors which exist in the transition region. A transition region is defined as ±L samples

surrounding the point of transition in the annotation file. The width of the transition region is 2L+ 1. As

expected 50% of the errors occur within 0.5 seconds of the transition. This means that the most confusing

frames are when the hands enter and exit the image patch region. The proportion of errors taper off as the

transition window increases as shown in fig. V.6. The implication is that 50% of errors can be avoided by

utilizing a delay before deciding on the presence of a hand.

In light of this, median filtering of the classification responses over time and a delay to the

responses was introduced. The average correct detection rate was then remeasured. The rates for various

median filter window widths were used and the resulting average correct classification rates vs. median

filter lengths is shown in fig. V.7. A window of 0.63 s in width (19 samples) gave the best average correct

detection rate of 97.9%, or 1.257 minutes per hour in error, an improvement of nearly 1 minute worth of

errors.

V.5.D Robustness

The VUD system’s invariance to translation in the x- and y-axis directions was also analyzed.

These qualities influence the flexibility in camera placement during the installation process. The image
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Table V.6: Summary of VUD performance. The performance is described using the confusion matrix
and average proportion of 1 minute in error. The classifiers are multi-class kernel SVMs (C=25, RBF,
Gamma=100) and the confusion matrices are averages of 5 training results via 5-fold cross validation.
5000 randomly selected examples per class were selected for each training.

(a) Exp 1

P(predicted|actual)
NoOne Drver Psngr

NoOne 95.42 2.01 2.57
Drver 1.82 97.63 0.54
Psngr 2.12 0.57 97.31

Average Correct Classification Rate 96.79%
Average Minutes per Hour in Error 1.926 mins

(b) Exp 2

P(predicted|actual)
NoOne Drver Psngr

NoOne 94.98 2.44 2.58
Drver 2.66 96.41 0.93
Psngr 3.02 1.08 95.90

Average Correct Classification Rate 95.76%
Average Minutes per Hour in Error 2.544 mins

(c) Exp 3

P(predicted|actual)
NoOne Drver Psngr

NoOne 93.73 2.77 3.49
Drver 2.40 97.18 0.42
Psngr 2.94 0.59 96.47

Average Correct Classification Rate 95.79%
Average Minutes per Hour in Error 2.526 mins
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Figure V.6: Errors in the VUD system are examined to determine proportion of errors in the transition

times, which are when the hands of the occupants enter or exit the image patch region.
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Figure V.7: Average Correct Classification Rate vs. median Filtering with Delay. Applying a smoothing

median filter yields better correct classifications rate with an optimal window of .63 seconds in width.

The corresponding delay is 0.235 seconds. The frame-rate is 30Hz.

patch region-of-interest (ROI) is specified as shown in fig. V.3, but repeated for convenience in fig. V.8.

This ROI was shifted to various positions in the image ±30 px along the x and y directions. The range

of translations is depicted in fig. V.8(a). The effect of those translations on average correct classification

rate is shown as a heat image in fig. V.8(b). The average correct classification rates are collected from

non-training frames from sequence 5 (see tab. V.4).

The results show that using the rectangular ROI, the performance of the VUD remains above

85% at ±5 px deviation from the original location, and above 80% at ±10 px. The latter amount of

deviation amounts to approximately half the length of the occupant’s finger.

V.6 Discussion and Concluding Remarks

We presented a vision-based user determination system. The system consisted of a visible

and near-infrared imaging device observing the front-row seat area in the vehicle. Using histograms of

oriented gradients features to describe the area over the controls, a support-vector-machine was shown to

be able to provide 97.9% average correct classification with median filtering. With an offset of 10 pixels

in any direction, the rate could still be maintained at better than 80%.

The system is intended to improve the safety and comfort of the vehicle by enabling the vehicle

to determine which occupant is accessing the vehicle’s infotainment controls, often characterized as one

of the more distracting elements in a vehicle. It is a safety device in the sense that the vehicle would

know whether there is a potential of the driver to be distracted in a critical situation, adding one more

piece to the puzzle of automatically determining the driver’s situational awareness. It is a comfort device

in the sense that the passenger can still be allowed to access the infotainment controls to aide the driver in
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Figure V.8: VUD translation-invariance evaluation. (a) This figure shows the image region-of-interest

used to determine the user. The larger rectangle marks the boundary of all the translations of the

image patch in measuring translation-invariance of the VUD system. (b) The corresponding average-

classification rate for each translation of the image patch is shown in the heat-image to the right. The

image and the graph can be used as reference in positioning the camera and image patch location during

the installation of the VUD system.
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navigational and convenience needs.

V.7 Future Work

For consideration in future work, two aspects of the system can be investigated further.

V.7.A Data collection of larger demographic.

Although the process of data collection was considered at length to ensure a representative

training sample, there are other variations that should also have been considered. Namely, all the test

subjects were adults and no children were asked to be subjects, and there should be to ensure children are

successfully detected. Although one subject had very long sleeves, covering half of his hand, gloves were

not used in the data capturing process. The system also does not consider different backgrounds besides

that of the vehicle. For this system to function for other vehicles, a training set for that particular vehicle

would need to be acquired, something that can be done relatively easily as part of the development of

this system for deployment. Although the performance is not expected to decrease by much with these

variations, having a representative data-set is critical to ensure that the measured performance is the

performance of a deployed system.

V.7.B Upgrading to Affine-Invariance.

Also, to increase the affine-invariance of the image descriptors, the image ROI can be reposi-

tioned (re-calibrated) when the controls are visible on a regular basis to correct for any vibrations of the

camera over time. A scheme as simple as template matching of the gradient images with the stored image

may be used to align the ROI to the location that produces the best classification rates.



VI

Conclusion

This chapter presents a summary of the work in this thesis. We refer the reader to the end of

each chapter for a discussion of future research directions.

VI.1 Summary

In this thesis, our motivations were to enable an intelligent system with the knowledge of human

desires and wants by developing the necessary concepts, algorithms, and systems to automatically recover

human pose and gesture information. We focused on improving techniques for recovering pose and

gesture with special emphasis on applications for improving the safety and comfort of vehicles. Our

contributions have been in the following areas:

1. Articulated Body Pose Estimation

2. Driver Intersection-turn Intent Recognition

3. In-Vehicle Hand Tracking using Thermal Infrared Imagery.

4. In-Vehicle Vision-based User Determination using Hand images for Infotainment Control Safety

We first presented a novel method for learning and tracking the pose of an articulated body

by observing only its volumetric reconstruction. We propose a probabilistic technique that utilizes an

extended Gaussian mixture model to describe the spatial distribution of voxels in a voxel image. Each

component of the GMM describes a segment or body part, and the collection of components are kinemat-

ically constrained according to a pre-specified skeletal model. This model we refer to as a kinematically

constrained Gaussian mixture model (kc-gmm), where pairs of components connected at a common joint

are encouraged to assume a particular spatial configuration, forming a joint with 1, 2 or 3 degrees-of-

freedom (DOF). The pose learning algorithm, based on the EM algorithm, is evaluated using synthesized
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hand data, and the HumanEvaII data-set for facilitating comparison among different algorithms. Both

data-sets contain ground-truth information for accuracy measurements. A hand model with 16 compo-

nents, 27 DOF’s and a body model with 11 components, 19 DOF’s were evaluated. The results show

that utilizing volume data, aided only by the degrees-of-freedom constraints, accuracies of joint location

estimates within 0.5 cm mean-absolute-error from ground-truth can be achieved with the hand data set

and 17 cm MAE from ground-truth can be achieved from subjects S2 and S4 in the HumanEvaII data-set.

Next we present results on the characterization and recognition of driver intent. We focused on

the intersection-turn maneuver, but the concepts may apply towards the study of other driving maneuvers.

The data-driven approach makes use of vehicle dynamics information and driver head and hand pose in-

formation via an optical motion capture system. We describe the details of the preprocessing that resulted

in the best performance, and the consideration of the kernel Relevance Vector Machine as the pattern

classifier. A series of different measures to examine the performance were proposed, based on true- and

false-positive rates and time-aligning the soft response of the classifiers to the start of the maneuver. With

this system, we examine the effectiveness of body pose cue for driver intersection-turn intent prediction.

Different intent classifiers were trained using vehicle dynamics alone, driver body pose alone, the two

together, and other finer permutations of the input cues. We were able to determine that the use of 3-D

driver body part position information, in the current state of research, provides only minor benefit beyond

recognizing intent with derived gestural cues or vehicle dynamics alone. This is an encouraging finding

from the point of view of driver assistance systems development since body pose is a challenging attribute

to measure at a distance without the use of entangling markers.

The use of the driver-intent recognition algorithm assumes the availability of body part position

information. To fill this requirement, we presented next an in-vehicle system for tracking the position of

hands. The first system utilizes a particularly interesting modality, the long-wavelength infrared camera,

to detect the movement of the driver’s hands. Because the appearance of the driver’s hands is more stable

in thermal images, a cascade of boosted classifiers using Haar-wavelet like features could be used to detect

the hands in images. The detections were used as measurements in a multi-target tracking algorithm based

on the Kalman filter and Probabilistic Data Association filter. The results were shown to effectively track

the hands over a course of 90 minutes of driving. The results of the hand tracking were combined with

steering information to determine any of 5 hand activities over the steering wheel, including grasping the

wheel and turning it.

Finally, we presented an in-vehicle system for determining which occupant is accessing the

vehicle controls. A vehicle possessing this information can selectively allow access to the infotainment

system of the vehicle to the occupant who presents the least danger to the driving. This system utilizes

an image patch from a visible-spectrum gray-scale image, and computes a histogram-of-gradients feature

to be used in a support-vector-machine classifier. The output of this system represents the 3 possible
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outcomes: the driver, passenger or no-one is accessing the infotainment controls. The results are very

promising, with detection rates of 97.8% average correct classification rate over 60 minutes of video at

30fps under a variety of moving vehicle operating conditions, including different subjects and lighting

conditions.



A

Dynamic Active Display

In this appendix chapter, we introduce the Dynamic Active Display. It is a unique heads-up-

display used to present safety-critical visual information to the driver in the driver’s view, minimizing

deviation of the driver’s gaze direction while driving.

A.1 Introduction

Driving an automobile safely depends on events and interactions of three main components

of a system: (1) the environment, (2) the vehicle, and (3) the driver (EVD). Human centric computing

environments with integrated sensing, processing, networking and displays provide an appropriate frame-

work to develop effective driver assistance systems. Embedded sensors, processors and interfaces have

great promise in improving the safety and overall driving experience. However, it is very important that

such technologies be introduced in a very careful manner without adverse impact on the attentive state

of the driver and safety in traffic. Design of effective “Driver-Vehicle Interfaces” is a multidisciplinary

endeavor where expertise in various fields, such as engineering, computer science, cognitive science and

psychology is required. Systematic efforts to understand and characterize driver behavior and ethnogra-

phy surrounding the task of driving are essential in the development of human-centric driver assistance

systems.

The key system introduced in this appendix chapter is that of Dynamic active displays (DAD).

The DAD presents visual information to the driver in such a way that the driving view and safety-critical

visual icons are presented together to the driver, thus minimizing deviation of the driver’s gaze direction

without adding to unnecessary visual clutter. Dynamic Active Displays have a clear promise to make

a positive impact on safety by providing the driver with timely warnings which will reduce the risks

associated with accidents due to lane departure, rear-end collisions, vehicles/pedestrians in the blind spots,
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limited visibility (night/fog) conditions, providing assistance to the driver in these situations. In this

chapter, we describe a framework for holistic sensing and displays for enhancing automobile safety

The new contribution towards the design of the human-centric Intelligent Driving Support Sys-

tems is the augmentation with a unique windshield display. Where previously our emphasis was in the

fine-grain study of driving behavior, and systems development for extracting EVD information by visual,

aural or other modalities, we now close the loop and provide feedback to the driver by way of a novel

visual windshield display. In utilizing this display, safety-critical warnings are projected directly into the

driver’s field-of-view (FOV). The location and timing of these projections are determined by the driver’s

body posture, awareness and intent. Displaying graphics in a HUD minimizes the time to look away from

the road, as well as reduces the need for re-accommodation of focus (an issue of increasing importance

for drivers as they age). Studies have shown that time savings of 0.8s to 1.0s in driver reaction time can be

achieved with the use of HUDs over conventional heads-down-displays when displaying vehicle warning

information [55].

We highlight that by integrating cues associated with the vehicle dynamics, environment, and

driver’s body pose, these warnings will be provided to allow the driver to take corrective maneuvers only

when it is appropriate and at the most appropriate location in the FOV in a manner that is modulated

by the criticality/severity index. Our proposed DAD framework is divided into the following 3 subsys-

tems: 1) the Windshield Heads-up-display, 2) Multi-functional Integrated Vision and Sensory Array, and

3) Driver Intent Analysis and Situational Awareness System. The display subsystem presents appropriate

information obtained from the other subsystems onto an augmented reality-based heads-up-display, regis-

tering it with real objects in the scene using the knowledge of 3D location of the object and eyes, and gaze

direction obtained from the sensory array. The multi-functional sensory array collects and analyzes data

from video and other sensors to obtain other cues about the driving situation, such as lane position and

obstacle positions. Finally, the driver intent analysis and situational awareness system analyzes the visual

and other cues from the visual/sensory system to obtain information about driver state, driver situational

awareness, and situation criticality to be used to determine what, where, and when the information is

presented by the display system.

In the next section, we describe the three (3) display modes of the DAD, and the role of head

pose and hand position in displaying alerts when and where appropriate.

A.2 Methods of Display with EVD Cues

Different types of HUDs are reported in the literature [56, 57]. The particular heads-up-display

considered in this paper provides a large field-of-view (FOV) display with programmable content drawn

using a laser projector. The two prominent features of the display we make use of are 1) large FOV
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Figure A.1: Data, Information and processing flow in Dynamic Active Display System.

spanning essentially the entire windshield (approximately 65 to 100 degrees in the test vehicle, fig A.2)

and 2) high transparency of the display surface. The large FOV attribute is one of the unique aspects

of this display. These attributes present several new possibilities in its utility for when the car is in

motion. Besides the already established benefits of a HUD in increased eyes-on-the-road time and reduced

re-accommodation time, we expect that this type of display has the potential to further increase driver

awareness of the driving situation with the system given additional knowledge of driver head pose and

hand position. For experimental purposes, a transparent acrylic screen made specifically for projectors

is positioned over the windshield with a second non-transparent projection screen placed ahead of the

vehicle displaying a video of a forward view of a drive through city streets and freeways to simulate the

view while driving. The test set-up is shown in fig. A.3a.

An area that the driver is usually least informed about is the blind spot. On one level, a graphic

such as the one shown in fig. A.3b could be displayed to indicate the presence as well as the proximity and

dynamics of an obstacle in the driver’s blind spot, all without losing peripheral sight of the road ahead.

Furthermore, with the knowledge of head pose, the driver can be made aware of potential dangers by way

of a visual arrow directing the driver to look at certain directions, as shown in fig. A.3c. Last but not least,

with the additional knowledge of hand position and vehicle state, the vehicle can anticipate maneuvers

and place emphasis on providing information specific to the maneuver. The vehicle can even refrain from

displaying alerts if the driver was already aware of the obstacles ahead. The impact of this feature is

foreseeably greatest during lane-change and intersection turn maneuvers, during which time the driver

needs to pay attention both to what is in front as well as obstacles on the side of the vehicle.

These scenarios suggest that graphics in a dynamic active display can be displayed in three

ways, or display modes: 1) a constant single location on the windshield, 2) at or near the driver’s line-of-

sight, and 3) on top of obstacles as perceived by the driver just beyond the windshield. For the second

and third modes of display, additional knowledge of the driver and environment is required, but it pro-
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vides level of danger localization in the automobile that previously could only be achieved in fighter

airplanes. Displaying alerts in a constant location is trivial. In the remainder of this section, we describe

the procedure to implement functionalities 2) and 3).

The second mode of display, to display a graphic on the windshield along the driver’s line of

sight, a description of the windshield’s surface geometry and the driver’s gaze is required. Gaze can either

be eye gaze or head gaze for fine or coarse alerts placement. We represent gaze as the gaze origin and

gaze normal vector (o,d), where o = (x, y, z)> and d = (dx, dy, dz) where ‖d‖ = 1.This represents 5

degrees-of-freedom in all. In the same coordinate space as the head, the geometry of the display surface

can be described as

w(p) = 0 (A.1)

where p = (x, y, z)> is a point in R3 space. Any point that satisfies this equation lies on the windshield

in this coordinate space. Finally, points on the windshield in 3D coordinates are transformed to display

coordinates by a transformation function f : R3 7→ R2

u = f(p) (A.2)

This function can be constructed by assuming a distortion model from a perfect plane, or a table look-up

and piece-wise linear interpolation relating windshield points to display coordinates.

The task of displaying an alert just below the driver’s line-of-sight for example is then the

problem of finding the point p∗ on the line formed by the gaze that intersects the windshield, i.e. finding

a point that satisfies equ. A.1. Then to find the corresponding point in display coordinates u∗. The

resulting point is transformed using equ. A.2.

We assume for now that the windshield is perfectly planar with a surface normal n and origin

wo. The windshield surface equation can then be given by

wplanar(p) =

 n

−n>wo

>  p

1

 = 0 (A.3)

The points along the line formed by the driver’s gaze is

p = o + µd ∀µ ∈ R (A.4)

where µ describes the location of point p as a proportion of ‖d‖ along the d direction from o. The point

p∗ that lies on the windshield plane can be found by combining equ. A.3 and A.4, arriving at

p∗ = o +
(

n>wo − n>o
n>d

)
d (A.5)

Because of our planar assumption, the transformation function f is given by a matrix transformation

u∗ = KRp∗ =

 a 0 0

0 b 0

[ x y (x× y)
]
p∗ (A.6)
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Figure A.2: Diagram illustrates the span occupied by the windshield in the driver’s field-of-view.

where x and y are the local x- and y-axes of the windshield plane, and a and b are the scaling factors

across these axes to translate physical coordinates to display coordinates.

The third mode of display is overlaying alerts on top the driver’s view of objects ahead of

the vehicle. This requires knowledge of the driver’s head position o, the object’s position q, the wind-

shield surface geometry w(p) = 0, and windshield transformation function f . The intersection point

p+ between the windshield surface and the line formed between o and q is the point on the windshield

(in physical coordinates) that lies directly over the driver’s view of the object. The transformed point

u+ = f(p+) is the corresponding point in display coordinates.

To demonstrate the efficacy of these display modes, we employed the simulation set-up de-

scribed above. Head pose is acquired from optical motion capture is used to generate gaze origin and

gaze direction. The position of objects ahead of the vehicle is found by annotating the video of object

locations in image frames and determining the corresponding location on the forward projection screen,

also found through the use of the motion capture system. Fig. A.3b-c illustrates the results of the three

display modes: static, gaze aligned, and driver head/obstacle position aligned graphics.

The text of Appendix A, in part, is a reprint of the material as it appears in: Mohan M. Trivedi,

Shinko Y. Cheng, “Holistic Sensing and Active Displays for Intelligent Driver Support Systems” IEEE

Computer Magazine: Special Issue on Human-Centered Computing, 40(5):60-68, May 2007. I was the

primary researcher of the Dynamic Active Display experiments, and the co-author listed in this publication

was the primary researcher for the remaining parts, as well as directed and supervised the research which

forms the basis of this chapter.



95

(a) Experimental heads-up-display setup.
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Figure A.3: These images illustrate (a) the experimental heads-up-display setup used in the paper, (b-d)

the various graphics showing the efficacy of gaze/position dependent and independent graphics. Surround

awareness graphic. Picture zoomed in to emphasize graphic. Actual size of graphic is approximately

10cm square.
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LISA-P Test-bed

B.1 Introduction

One of the key criteria in data collection is the capture of representative data of actual operating

conditions of the module under development. The need for a vehicular test-bed was clear from an algo-

rithms development standpoint. Data collected from a vehicle in motion will provide data most closely

resembling that of the actual data collected from a deployed module.

The research involves the investigation of ways to utilize output from other modules that are also

being developed as part of the same research. Algorithms that extract body pose and algorithms utilizing

body pose information for activity analysis are simultaneously under investigation. For that reason, we

equipped the test-bed with an optical motion capture system while developing an alternative system that

performs the same function. This device provides clean, relatively reliable body pose information utilizing

markers placed on the body. At the same time, optical mocap also provides ground-truth and training data

for data-driven approaches to the body pose estimation problem.

Other considerations of the test-bed pertained to ease of development via accessibility to AC

power and data synchronization via time-stamping. The AC power system allows for operation of more

prevalent AC-powered equipment in and out of the vehicle, facilitating the preparation of experiments.

Time-stamping input allows system designers to consider data as an ensemble and use the data together

to interpret the driving situation.

The input cues considered are listed in tab. B.2. In addition to the sensors is a suite of interface

cards and devices used to access data from each sensor. They are listed in tab. B.1.
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Table B.1: Sensor Interfaces
Device Description Source
Euresys Picolo Diligent NTSC Video PCI capture card http://www.euresys.com
Cygnal C8051F040-TB CAN Interface Development

Board
http://www.silabs.com

Keyspan USA-19HS USB to RS232 Adapter http://www.keyspan.com
Linksys USBBTT100 USB to Bluetooth Adaptor http://www.linksys.com
Sensormatic ROBOT MV87 4-way Video Combiner http://www.cctvpros.com

http://www.euresys.com
http://www.silabs.com
http://www.keyspan.com
http://www.linksys.com
http://www.cctvpros.com
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B.2 Capture Framework

The information flow diagram is depicted in fig. B.1. This illustration shows the suite of sensors,

corresponding interface devices and its connection to the data collection software. At the bottom of the

diagram shows the Display Controller via the RGL SDK is the component that controls the graphics

on the large-area windshield display. Data capture is performed with up to four independently running

processes: LabVIEW, Euresys Capture, Mocap Capture, and FireWire Video Capture. An overview

illustration showing the arrangement of the sensors, computers and power systems in the vehicle is shown

in fig. B.2. The various sensors and interface devices are illustrated in fig. B.3 and B.4.

A Pentium D processor PC was used as the central capturing and processing computer. The PC

is connected to all the devices via a series of interface cards or ports to access the information from the

sensors listed in tab. B.2. The primary method of collecting Vehicular Dynamics and GPS data is with

National Instruments LabVIEW with its built-in serial bus and file saving functions. Vehicle Dynamics

were captured with an additional CAN interface card to translate the CAN packets into an RS232 byte

stream. The primary method for collecting optical motion capture data is via TCP/IP network, accessed

using the included Tarsus Client SDK software library to communicate with the motion capture data-

station. Finally, both infrared and visible wavelength images is captured using an extensible software

library to access the NTSC cameras via the Euresys Picolo Diligent video capture boards. The video and

body pose information is captured in the same process.

The vehicle dynamics and GPS information is captured using LabVIEW. The script that collects

this data is created with a graphical programming language. In fig. B.5, the LabVIEW script is shown.

The panel views showing the progress of the capture during deployment can be seen in fig. B.6. The script

consists of 3 end-less while loops processing data from 2 serial ports and 1 USB port. The script is started

and stopped with a button. Each piece of information is stored in a comma-separated-values file with the

hour, minute, second and millisecond when the packet was received.

Both the LabVIEW and custom application accesses the PC’s internal millisecond-accurate

clock. Upon receiving a packet of information, each piece of software also independently stamps that

packet with the current time.
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(a) Optical Motion Capture Cameras (b) ThermalEye Microbolometer Infrared Camera

(c) Cygnal C8051F040-TB CAN Capture Card (d) U12Labjack USB-based A/D Converter

Figure B.3: Data capture devices provide 6-DOF driver body part pose, thermal imagery of the driver’s

hands, vehicle dynamics and battery power level.

(a) Blue-tooth GPS Re-

ceiver

(b) Hitachi KP-D20A

Color CCD Camera

(c) VidereDesign STH-

MDCS-VAR gray-scale

CMOS Camera

(d) Linksys USBBT100

Blue-tooth Adapter

Figure B.4: Additional data capture devices provide GPS coordinates of the vehicle and images of the

head and hands.
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Figure B.5: LabVIEW capture script - Diagram View
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(a) Panel view 1 (b) Panel view 2

Figure B.6: LabVIEW capture script - Panel Views.



C

Aligning Two World Coordinate

Frames

This section describes the task of relating the world coordinate systems of two rigid body pose

estimation systems using the pose estimates of a common body. This algorithm specifically has the Vicon

Motion Capture and FaceLab eye gaze and head pose estimation systems in mind, but the algorithm

applies to any systems that produce pose estimates of a common rigid body using two separate world

coordinate frames.

Suppose System A produces a pose estimate of a head {VAR,V OA} and System B produces

pose estimates of the same head but with a different coordinate system {FBR,F OB}. The rotation V
AR

rotates points from reference frame A (local coordinate frame A) to V (world coordinate frame V) and

the translation VOA aligns the origins of the two coordinate frames after rotation. The translation VOA

is also the location of the local coordinate frame origin in V world coordinates.

To find the coordinates of a point in world coordinates from its coordinates in the local coordi-

nate frame for the Vicon and FaceLab systems, the relationship is given by

Vp =V
ARAp +V OA (C.1)

Fq =F
BRBq +F OB (C.2)

This information can be verified in the manual for the FaceLab and Vicon systems. As a quick

proof, the head location is often given by these systems in a 3-element vector. To find the head location

in world coordinates, we set the head locations in local coordinates to (0, 0, 0) and find its locations in

world coordinates using (C.4) and (C.5), yielding FOB and VOA.

Problem: The problem is defined as estimating the rigid transformation {R, t} that relates the

two estimates of the head (or rigid body) in the respective world coordinate frames. This aligns the two
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world coordinate frames so that the head pose estimates from both systems can be directly compared for

performance evaluation or other purposes.

Let Ap and Bq represent the points around the head in Vicon and FaceLab local (head) coordi-

nates. Points in these local coordinate frames should equal.

Ap =Bq = p (C.3)

This replaces (C.1) and (C.2) with

Vp =V
ARp +VOA (C.4)

Fp =F
BRp +FOB (C.5)

We assume the same points in FaceLab and Vicon world coordinates are related by a rigid

transformation

Vp = RFp + t (C.6)

where Vp and Fp are given by (C.4) and (C.5).

Solution: This solution requires the head pose estimates from the Vicon and FaceLab systems

taken of a person at the same time. This yields (VAR,VOA) and (FBR,FOB). We can then estimate (R, t)

by first estimating R .

To estimate R we the ROT_MATRIX_RANGE algorithm described in [58]. The algorithm esti-

mates R by estimating the entries in R directly, then ensure that the resulting matrix is orthonormal.

The first step is to eliminate t from (C.6) by taking the difference between two arbitrary points

in Vicon world coordinates Vpi and Vpj .

Vpi −Vpj = RFqi + t− (RFqj + t)

Vpi −Vpj = R(Fqi −Fqj)

nk = Rmk (C.7)

At least three such vector equations must be formed to create a fully constrained system of equations to

estimate R. From our assumption (C.3), the two points (Vpi,F qi) represented in their respective world

coordinate frames both originate from a common point in local (head) coordinates pi. Two points (pi,pj)

(C.7) yields one vector equation with nk and mk. Six points in all are needed to create a fully constrained

system of equations.

n1 = Rm1 (C.8)

n2 = Rm2 (C.9)

n3 = Rm3 (C.10)
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The points are chosen after the head pose estimates are collected. To ensure that an independent system of

equations are created, a good procedure to generating nk and mk is to set {pi}6i=1 = {(1, 0, 0), (−1, 0, 0),

(0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)}, and generate mk and nk for k = {1, 2, 3} from (i, j) = {1, 2},

i = {3, 4}, and i = {5, 6}, respectively. This procedure is however not necessary. The only requirement

is that the vectors formed are as orthogonal to each other as possible.

To solve for R, we formulate a least squares problem (C.10) where we minimize

R̂ = arg min
R
{
N∑
k=1

‖nk −Rmk‖2} (C.11)

To solve problem (C.11), we introduce a vector, r = [r11, r12, r13, r21, ..., r33] formed by the entries of

the unknown rotation matrix, and write the associated over-constrained system of equations

Mr = f (C.12)

where M is a 3N × 9 block-diagonal matrix, and f is a 3N -element vector. Compute the least-squares

solution, r̂ corresponding to the matrix R′. To enforce R′ ∈ SO(3), we compute its SVD decomposition

R′ = UΛV >, where

Λ = V


1 0 0

0 1 0

0 0 r

U> (C.13)

and set r to 1 or -1, whatever is closest to det(V U>). Finally compute R̂ = UΛV > using the corrected

Λ. The output R̂ is the best least-squares estimate of the rotation matrix.

Estimating for t̂ is then a matter of solving for t with any point p that yields non-zero Vp and
Fp in (C.3).

t̂ =V p− R̂Fp (C.14)

=V
A Rp +VOA − R̂(FBRp +FOB) (C.15)

Using this rotation and translation, one can translate the camera position



D

Vision-based User Determination

System Development Kit

A set of executables and libraries have been prepared for further development of the VUD

module as part of Technology Transfer. The package is titled “UCSD CVRR Hand Identification System

Development Kit” The components of this package are listed as follows:

Applications:

AnnotateWidgetStatus This windows console application reads and annotates whose hands are in the

widget area as defined by rectangle parameters in this windows application. Certain key strokes

can navigate through the video.

hi create samples This windows console application takes as input arguments 1) the location of the

region-of-interest to extract the HOG features, and 2) the location of the annotation file to prep the

associated design and target matrix for classifier training. The program then concatenates them into

a single D and T matrix which is then saved as yml and csv files.

kNN train This windows console application takes the D and T files in yml format and trains a multi-

class k-NN classifier. M-fold cross-validation as well as the maximum number of samples of each

class to be considered can be configured.

svm train This windows console application takes the D and T files and trains a multi-class SVM clas-

sifier. M-fold cross-validation as well as the maximum number of samples of each class to be

considered can be configured.

hi app This windows console application processes a video file with the hand identification system.
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Output files include response (class predication) file, confusion matrix file, and output video file.

The required input files are the annotation file, .svm file, input video, and image ROI parameters.

Libraries:

cvrr core This library contains useful functions for applications above regarding windows console ap-

plications, consisting of functions for argument parsing and exporting matrices to csv files.

HandID Common This library contains functions specifically used for user determination. This in-

cludes functions such as reading annotation files, reading D and T yml files. It also contains the

TransRect class used for easily iterating over different sizes of rectangles.

ml common This library contains function specifically used for machine learning. This includes func-

tions such as finding the number of categories, randomly permuting the elements of an array con-

taining indices to the m sample sets for m-fold cross validation, and generating the sample_idx

indicating samples to be considered for training.

The applications are typically called in the order listed when training from the captured video.

A set of samples are also provided to illustrate the usage of these windows console applications.
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