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Abstract Theoretical models of the human heart valves are
useful tools for understanding and characterizing the dynam-
ics of healthy and diseased valves. Enabled by advances
in numerical modeling and in a range of disciplines within
experimental biomechanics, recent models of the heart valves
have become increasingly comprehensive and accurate. In
this paper, we first review the fundamentals of native heart
valve physiology, composition and mechanics in health and
disease. We will then furnish an overview of the development
of theoretical and experimental methods in modeling heart
valve biomechanics over the past three decades. Next, we
will emphasize the necessity of using multiscale modeling
approaches in order to provide a comprehensive description
of heart valve biomechanics able to capture general heart
valve behavior. Finally, we will offer an outlook for the future
of valve multiscale modeling, the potential directions for fur-
ther developments and the challenges involved.

Keywords Heart valve · Multiscale modeling ·
Computational modeling · Simulation · Cardiovascular
biomechanics

1 Healthy heart valve mechanics

The heart is a pump system consisting of four chambers and
valves. As the chambers contract and expand to eject and
receive blood, the valves open and close in sequence to con-
trol the direction of flow. Like many other biological systems,
the heart valves function at different length-scales and dem-
onstrate distinct biomechanical features at each length-scale
(Sacks and Yoganathan 2007), see Fig. 1. In the following,
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healthy heart valve is described at different organ-, tissue-,
cell- and molecular-scales.

Working as an organ, each of the heart valves consists of a
number of tissue flaps.1 The aortic, pulmonary, and tricuspid
valves each normally have three flaps (or leaflets) and the
mitral valve has two. Leaflets are passive elements, opening
and closing when forced by the blood flow. Healthy heart
valves become fully wide when open, providing an unob-
structed flow path, and fully sealed when close, avoiding any
pressure drop or retrograde flow (Humphrey 2001). Open-
ing and closing of healthy heart valves occur based on an
exquisite timing which generates a smooth blood circulation
throughout the body. Healthy valves move quickly between
the open and close states and require little force to do so
(Milnor 1990).

At tissue-scale, the valve leaflet is composed of three lay-
ers with overall thickness of about 0.2–2.0 mm (Grande
et al. 1999), see Fig. 2a. The thinnest layer, ventricularis,
is below the inflow surface and consists mostly of a dense
plexus of collagen with some elastin fibers. Below the out-
flow surface is the thicker layer, fibrosa, which is composed
of organized collagen structure (Schoen and Levy 1999). The
aligned collagen fibers make fibrosa the main load-bearing
layer in the valve. Collagen fibers are crimped when the tis-
sue is unstressed and flatten when the tissue is tensed due
to pressurization of the valve (Sacks et al. 1998). Between
the two fibrous layers exists the gel-like layer called spongi-
osa, which is composed of proteoglycans (Schoen and Levy
1999).

1 Generally the tissue flaps of the aortic and pulmonary valves are
referred to as the “cusps” and those in the mitral and tricuspid valves are
referred to as “leaflets”. Throughout this article, the term leaflet refers
to natural valves together, bioprosthetic valves, or mechanical valves,
and the term “cusps” is used specifically to address the natural aortic
or pulmonary valve.
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374 E. J. Weinberg et al.

Fig. 1 Representation of the multiscale nature of heart valve mechanics: organ-, tissue-, cell-, and molecular-scale features (Schoen and Levy
1999; Schenke-Layland et al. 2004; Fastenrath 1995)

Fig. 2 Aortic valve leaflet micrographs showing: (A) tissue layers and cells (Mendelson and Schoen 2006) (B) Matrix structure (Fastenrath 1995;
Misfeld and Sievers 2007)
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On the multiscale modeling of heart valve biomechanics in health and disease 375

At cell-scale, heart valve leaflets consist of two types
of cells: valvular interstitial cells (IC) and endothelial cells
(EC), see Fig. 2a. ICs are distributed throughout, and are
responsible for maintaining, the leaflet tissue matrix and
modulating disease pathology (Liu et al. 2007). In the valve,
ICs display a number of different phenotypes at different
locations, and share some characteristics with fibroblasts
and some with skeletal, cardiac, and smooth muscle cells
(Roy et al. 2000; Taylor et al. 2003; Merryman et al. 2006a;
Chester and Taylor 2007). ICs are known to remodel over
the human lifetime (Rabkin-Aikawa et al. 2004), respond
to physical deformations (Gupta et al. 2008), and engage
in signaling with other ICs and the extracellular matrix
(Chester and Taylor 2007). On the other hand, ECs coat
all of the blood-facing surfaces and have spatially varying
phenotypes (Simmons et al. 2005), respond to mechanical
stimuli (Weinberg et al. 2010), regulate valve pathologies
(Butcher and Nerem 2007), and engage in signaling (Butcher
and Nerem 2007).

At molecular-scale, heart valve leaflets are composed of
a sponge-like fibrous matrix of elastin which surrounds bun-
dles of collagen fiber (Taylor et al. 2003), see Fig. 2b. The
fibers are aligned in the plane of the leaflet and organized into
tissue’s three layers of fibrosa, spongiosa, and ventricularis.
The collagen and elastin exist in a hydrated gel-like ground
substance composed of proteoglycans and glycosaminogly-
cans (Taylor 2007). Collagen and elastin are kinked fibers
that can straighten under small loads, allowing large exten-
sion of the tissue at low stress. The pure elastin acts as a
brittle glass-like polymer with no sign of rubbery properties
as it possesses in healthy cardiovascular tissue (Pezzin et al.
1976). Rather, hydrated elastin—as found in healthy cardio-
vascular system—shows signs of viscoelasticity—revealed
for instance by creep or stress relaxation tests—which rises
due to the interaction of elastin molecules with water mol-
ecules available in aqueous extracellular matrix (Lillie and
Gosline 1990). It is shown that a considerable stiffening of
vascular elastin occurs by losing only 10% of tissue water
content (Gosline and French 1979). The mature cross-linked
elastin molecule is so inert and stable that in normal cir-
cumstances, it lasts for the entire lifetime of the species
(Fung 1993). Elastin has a denaturation temperature of about
200◦C, which is much higher than collagen’s denaturation
temperature of about 50◦C (Pezzin et al. 1976; Fung 1993;
Samouillan et al. 2000).

Overall behavior of heart valves is regulated by differ-
ent mechanisms at different length scales. Distinct mechan-
ical behavior can be observed at the organ, tissue, cell, and
molecular scales. Additionally, functional communication
exists among different scales meaning that alteration in
behavior at one scale impacts behavior at other scales. For
example, extensibility and geometric organization of the
fibrous molecules determine the tissue stiffness and anisot-

ropy (Billiar and Sacks 2000a,b), which furthermore—along
with the tissue-scale geometry—determines the cusps motion
at organ-scale (Weinberg and Kaazempur Mofrad 2007). In
addition, there is active communication between the cell
and tissue scales, where contraction of the ICs significantly
affects tissue stiffness (Merryman et al. 2006b). On the
other hand, mechanical communication from the larger scales
down toward the smaller scales affects active biochemical
processes as well. Fluid motion at organ-scale applies shears
to the ECs at cellular-scale. Solid motion at the organ scale
causes deformation at tissue scale, which in turn deforms
the ICs in the cellular scale. It is thus increasingly real-
ized that there is a crucial and inherent connection between
the behaviors of heart valve at different length scales which
undermines studying the valve behavior at each individual
length scale separately.

2 Heart valve disorder mechanisms

Healthy heart valves move easily between the unobstructed
open and the fully sealed closed configurations, and change
shape in a regular pattern during the cardiac cycle. As the
heart ages over the species lifetime, the valves must grow
proportionally and must maintain certain material proper-
ties in order to adapt to the increasing flow pressure, to be
able to take regular configurations during cardiac cycle, and
to deform rapidly. Any deviation of heart valve from reg-
ular shape, size, or material properties can be a source of
pathological conditions. Similar to healthy conditions, path-
ological conditions can be caused by various factors at dif-
ferent length scales. Such factors at different length scales
can potentially have mutual effect on each other. For exam-
ple, gene expression in diseased ECs and ICs of heart valve
may be controlled by mechanical signals at the cell scale
which are transferred from mechanical signals at tissue- and
organ-scales through mechanotransduction (Roy et al. 2000;
Taylor et al. 2003; Butcher and Nerem 2007; Liu et al. 2007;
Weinberg et al. 2010). In the following, we provide a brief
overview of some of the most common pathological condi-
tions at different length scales which lead to heart valve major
disorders.

The disorder in which the aortic valve is not opening fully
is called aortic stenosis (AS). Aortic stenosis is the most com-
mon valve disease, occurring in 2–4% of adults of ages 65
and over (Freeman and Otto 2005). In calcific aortic stenosis
(CAS), calcified nodes develop on the aortic valve cusps and
the subsequent stiffenning will prevent the valve from open-
ing fully, leading to obstruction of blood flow (Thubrikar
1990; Otto 2003). It has been shown that calcification
causes change in valve properties at different scales (Pohle
et al. 2001; Mazzone et al. 2006; Weinberg and Kaazempur
Mofrad 2008). For instance, matrix-maintaining functions
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376 E. J. Weinberg et al.

of valvular ICs are regulated by healthy valves (Taylor et al.
2003), and in calcified valves, abnormal mechanical signals
lead to the dysfunction of the ICs (Otto 2002). Aortic steno-
sis may be caused either by age-related wear on the valve or
by rheumatic disease (Lilly 2003), the latter of which might
also cause mitral stenosis (MS).

The disorder in which the aortic valve is not closing sealed
is called regurgitation or insufficiency (Humphrey 2001),
which is most commonly observed in the mitral valve. Mitral
regurgitation (MR) is caused by a variety of conditions,
including valve degeneration and stiffening (Grande-Allen
et al. 2005), papillary muscle dysfunction, infective endocar-
ditis, rheumatic disease, and enlargement of the left ventricle
(Lilly 2003), some of which occur in organ-, tissue-, cell-, and
molecular-scales. Aortic regurgitation (AR) can also occur
with similar causes of either tissue disease or orifice enlarge-
ment (Otto 2003). Specifically, dehydration of elastin mol-
ecules because of water molecules blockade, either through
binding of elastin to cholesterol esters or due to high density
of glycosaminoglycans, causes aortic stiffening (Lillie and
Gosline 1990). Tricuspid and pulmonary valve regurgitation
are generally functional rather than structural, meaning they
develop in response to pressure overload and not due to a
mechanical defect of the valve itself (Lilly 2003).

Besides the heart valve diseases of stenosis and regurgi-
tation, there exist other less severe disorders which are often
precursors to stenosis and regurgitation (Thubrikar et al.
1986; Lilly 2003). Mitral valve prolapse (MVP) refers to
a condition wherein the mitral valve bulges out significantly
under pressure. Bicuspid aortic valve (BAV) is another valve
disorder in which the aortic valve has two cusps instead
of three and it occurs congenitally in 1–2% of the popula-
tion (Thubrikar 1990; Otto 2002; Weinberg and Kaazempur
Mofrad 2008).

Since different pathological conditions of valve can be
caused by factors at different organ-, tissue-, cell- and molec-
ular-scales, treatment schemes should also be developed at
appropriate length scales. For example, progression of cal-
cification in stenotic valves can potentially be inhibited at
cell- and molecular-scales through pharmaceutical statins
(Rosenhek et al. 2004; Moura et al. 2007; Otto 2007). On the
other hand, surgical methods at tissue scale might be used to
repair abnormal valve; however, surgery is currently possible
only for specific cases of stenosis and regurgitation (Yacoub
and Cohn 2004a,b), with new methods continuously being
developed (Dagenais et al. 2005; Carmody et al. 2006). In
the vast majority of cases, the existing treatment method is
through implant surgery at organ scale. Development of valve
replacement methods has traditionally proceeded using both
mechanical and bioprosthetic valve types (He et al. 1995;
Vlessis et al. 1997; Yau et al. 2000) and autologous valves
in more recent years (Mol et al. 2006). For a comprehensive
up-to-then review on artificial heart valve, see pioneering

work of Grunkemeier et al. (Grunkemeier and Rahimtoola
1990). The current focus in valve replacement research is
on reducing thrombogenicity of mechanical valves (Dumont
et al. 2007), increasing durability of bioprosthetic valves
(Sacks et al. 2006), and development of tissue-engineered
solutions ( Mendelson and Schoen 2006). Much research has
thus been carried out on simulating biomechanics of mechan-
ical and bioprosthetic valves than that of the native valves.

3 Existing approaches in modeling heart valve

Enabled by the experimental and theoretical methods,
an increasing number of investigations has been carried out to
model heart valve biomechanics. Except few studies, exist-
ing approaches in modeling heart valve, experimental and
theoretical, have been developed by focusing on a single
length scale, whether organ-, tissue-, cell-, or molecular-
scale. Experimental methods in studying heart valve bio-
mechanics at each length-scale rely on advancements in
techniques from a disparate range of disciplines. The field of
mathematical modeling of heart valve mechanics has grown
from nonexistent in three decades ago to a broad discipline
today. This expansion is due both to development of mathe-
matical approaches in describing relevant mechanical behav-
ior and to the increased availability of computational power
necessary for simulating complex biomechanical dynamics.
In the following, we will highlight the existing heart valve
models at each length-scale, with highlighting the fact that no
single-scale model is capable of capturing the overall behav-
ior of the heart valve. In particular, merely capturing the heart
valve bulk material properties by a model does not guarantee
the capability of the model in predicting any arbitrary valve
behavior. The incapability of single-scale models emphasizes
the need for developing multi-scale models, which will be
discussed in the next section.

3.1 Organ-scale

Organ-scale heart valve models have traditionally been of
great significance, both in clinical diagnosis and in valve
implant researches. Majority of clinical models have been
developed with the aim of detecting valve abnormal condi-
tions based on organ-scale symptoms. The classic method
of listening to heart sounds can detect and, along with other
physical examination, diagnose abnormalities (Lilly 2003;
Bonow et al. 2006). Cardiac catheterization can be used to
examine the valve for calcification or other defects (Bonow
et al. 2006). Valve disease is most commonly evaluated
by chest echocardiograph (Handke et al. 2003; Otto 2006),
which allows measurements of fluid motion and valve geom-
etry that can be compared to various indices for valve dis-
ease (Antonini-Canterin et al. 1999; Garcia et al. 2000; Blais
et al. 2001; Antonini-Canterin et al. 2002; VanAuker 2006).
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Researchers have recently demonstrated MRI (John et al.
2003) and CT (Alkadhi et al. 2005; Feuchtner et al. 2006a,b)
imaging technologies able to resolve valve motion, holding
promise that modern imaging methods may be applied to
clinical examination of valves. However, some of the labora-
tory methods available to examine organ-scale valve motion
cannot be practically used on patients. A pulse chamber can
be used to subject physiological flows to valves, wherein
the valve deformation can be monitored by optical methods
(Fenner et al. 1995; Gao et al. 2000; Iyengar et al. 2001; He
et al. 2005; Sun and Sacks 2005) and fluid motion can be mea-
sured by particle velocimetry (Chandran et al. 1989). Valve
motion has been measured in large-animal models by track-
ing sonocrystals attached to the leaflets (Thubrikar 1990)
and fluid velocity profiles have been measured in the animal
models by hot-wire anemometry (Falsetti et al. 1972).

Attempts in developing replacement for native heart valve,
whether with mechanical or bioprosthetic substitutes, pri-
marily aim to capture organ-scale features of the natural
valve. The organ-scale motion of native and bioprosthetic
valves is very similar, but quite different from that of mechan-
ical valves. Simulation of mechanical valves, however, car-
ries attention because the simulation methods developed for
mechanical valves can provide guidelines for analyzing bio-
prosthetic valves. The simplest organ-scale valve simulation
is the static case of a mechanical valve closed against pres-
sure. This situation can be examined without a fluid phase,
representing the fluid simply as a pressure load against the
valve leaflets which are modeled as isotropic and linear solid
(Cataloglu et al. 1976, 1977; Chong and Missirlis 1978;
Hamid et al. 1985a,b). Analysis of the static, closed-valve
case has continued (Beck et al. 2001), and present models
include rigorous accompanying work in material modeling
and experimental verification (Sun et al. 2005). The next
step in complexity of organ-scale models is to move from
the static to the dynamic case. The fluid can again be repre-
sented simply as a pressure load applied on the surfaces of the
solid, but in dynamic simulation of the valve the leaflets are
moving through large deformations. The first dynamic solid-
phase models were developed a few years after, tending to
include more advanced descriptions of both geometry and
material properties. Grande-Allen et al. simulated the aortic
valve including realistic asymmetric geometry and the aortic
root (Grande et al. 1998, 1999; Grande-Allen et al. 2001),
whose simulation geometry is shown in Fig. 3a. Other mod-
els added anisotropic (Kunzelman et al. 1993) and nonlinear
(Black et al. 1991; Howard et al. 2003) material descriptions.
As with the static case, the dynamic solid-phase case is pres-
ently being used with advanced material models and relevant
experimental work (Kim et al. 2006, 2008), whose simulation
results are shown in Fig. 3b. An entirely new level of com-
plexity and computational expense is added by incorporating
the presence of fluid through a fluid-solid interaction (FSI)

Fig. 3 Results of aortic valve dynamic, solid-only simulation with
a realistic geometry (Grande-Allen et al. 2001) and b realistic mate-
rial model (Kim et al. 2006)

analysis. These models were created after the solid-phase
models, and thus usually include more advanced material
models as well. Possessing realistic geometries, well-defined
fibrous material models, and the interaction of fluid and solid,
these models represent the current state of the art.

Application of finite element (FE) methods in enhanc-
ing the heart valve organ-scale simulation results has also
been considered. A major challenge in simulating valve
organ-scale motion with FE is related to the leaflets’ large
strains (up to 40%) as well as the valve’s large displace-
ments and rotations. Simulation of these deformations has
been enabled by the development of the nonlinear “updated
Lagrange” and “total Lagrange” approaches in large-
deformation solid mechanics (Bathe 1996; Bathe et al. 1999).
Another challenge in FE simulation of valve organ motion is
modeling the fluid-solid interaction (FSI) between the leaf-
lets and blood, both of which move dynamically throughout
the cardiac cycle. Using ALE (Arbitrary Lagrange–Eulerian)
mesh smoothing method, FSI models have been developed
for leaflet-blood large displacement interactions. The fluid
and solid computational grids can be modeled as either con-
forming with a Lagrangian interface, or non conforming
with an interpolated interface, two different methods being
used by commercial FE software packages ADINA (Water-
town, MA) (Bathe 1996) and LS-DYNA (LSTC, Livermore
CA) (Hallquist 2006), respectively. Many other finite ele-
ment simulation methods have been used to capture the FSI
behavior in heart valves. The De Hart group impressively
has coded fictitious domain software to perform the FSI and
included a fibrous material (De Hart et al. 2003a,b, 2004) to
model a bioprosthetic valve, see Fig. 4a. Loon et al. extended
fictitious domain method through coupling a Navier-Stokes
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Fig. 4 Organ-scale simulations with realistic geometries, fibrous mate-
rial models, and fluid-structure interaction. a Bioprosthetic valve sim-
ulation (De Hart et al. 2003b) and b mitral valve simulation (Einstein
et al. 2004)

flow solver in Eulerian description to a Neo-Hookean solid
model in Lagrangian description to model valve-leaflet blood
interaction (Loon et al. 2006). Nicosia et al. modeled the aor-
tic valve using an anisotropic elastic material model (Nicosia
et al. 2003), followed by Weinberg et al. modeling the aortic
valve with a discrete fiber model (Weinberg and Kaazem-
pur Mofrad 2007) and Einstein modeling the mitral valve
with a splayed-fiber model (Einstein et al. 2004, 2005a,b;
Kunzelman et al. 2007). The last two models notably are ver-
ified against various experimental measures, and Einstein’s
model is able to predict heart sounds (Einstein et al. 2004);
see Fig. 4b for a representation of the mitral valve model
which also includes the chordae tendinae, not depicted. Pro-
gress in simulation of mechanical heart valves has perhaps
outpaced that of bioprosthetic valves. Unlike in native valves,
latest models for mechanical valves have incorporated FSI
analysis with a sophisticated description of blood as a non-
Newtonian fluid and were able to predict thrombogenicity of
the valve (Bluestein et al. 2000; Cheng et al. 2003, 2004; Yin
et al. 2004; Bluestein et al. 2004; Fallon et al. 2006; Dumont
et al. 2007), see Fig. 5. We expect that future bioprosthetic
valve models will also incorporate these advancements in
blood flow modeling. Increased computational power has
enabled more complete models of heart valve organ-scale
behavior. While running a solid-phase simulation of a valve
linear elastic model once required nearly a day on a super-
computer (Gnyaneshwar et al. 2002), only 5 years later a full

Fig. 5 FSI simulation of a mechanical heart valve (Dumont et al. 2007)

FSI simulation of a valve nonlinear model was performed in a
few hours on a personal computer (Weinberg and Kaazempur
Mofrad 2007).

3.2 Tissue-scale

With primary focus on quantifying the material properties of
heart valve leaflets, efforts have been made on modeling heart
valve properties at the tissue scale. Like for many other soft
tissues, initial measurements of valve leaflet tissue were mea-
sured by Instron-type uniaxial tester (Clark 1973; Missirlis
and Chong 1978; Thubrikar et al. 1980; Rousseau et al. 1983;
Sauren et al. 1983; Vesely and Noseworthy 1992; Vesely and
Lozon 1993). Valve tissue, even compared to other biologi-
cal tissues, is particularly nonlinear, nonhomogeneous, and
anisotropic. The Sacks group has pioneered use of optically
measured methods that, in concert with development of theo-
retical tools, has enabled rigorous description of multilayer,
anisotropic and nonlinear tissue properties in both biaxial
and bending deformations (Sacks and Sun 2003; Sacks and
Yoganathan 2007). Standard histology methods give two-
dimensional pictures of tissue microstructure. New high-
frequency ultrasound imaging methods extend this capability
to three dimensions (Lacefield et al. 2004). The two main
advancements in mechanical modeling at the tissue scale
are the development of constitutive models for biological
tissues and the tools to implement those models in the FE
setting. Constitutive modeling of tissue behavior requires
the theoretical framework provided by continuum mechan-
ics (Fung 1993; Holzapfel 2000a). The initial insight upon
which the rest of the field is based was Fung’s demonstra-
tion that biological tissues behave in a pseudoelastic manner.
That is, these matrices of fiber and water have nonlinear,
usually exponential loading curve, which matches closely
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to unloading curve (Fung 1967, 1993). There exist other
reports on heart valve tissue demonstrating pseudoelastic
(May-Newman and Yin 1998) and viscoelastic behaviors
(Billiar and Sacks 2000a; Grashow et al. 2006a); nevertheless
modeling the valve tissue as an elastic material is currently an
accepted practice, primarily due to tissue’s low level of visco-
elasticity (Grashow et al. 2006b) enabling the valvular tissue
to function with little viscous dissipation. With the assump-
tion of elasticity, and the additional assumption that the tissue
can be represented as continuous, the material behavior can
be described by an elastic strain energy density function.
Once energy function is defined, the stress in the tissue can
be calculated by taking the derivative with respect to strain.
One approach for defining strain energy function is through
constructing sum of simple terms expected to give the cor-
rect behavior, and then fit constants to the experimental data.
Li et al. extended the linear transverse isotropy to nonlin-
ear in order to model aortic valve tissue (Li et al. 2001).
May-Newman and Yin constructed a Fung-like exponen-
tial strain energy function from the three usual strain invari-
ants and two directional pseudo-invariants (Holzapfel et al.
2000b; Humphrey 2003) for modeling mitral valve leaflet
behavior (May-Newman and Yin 1998). Researchers are now
able to construct strain energy functions that can describe the
complex behavior of biological tissues such as anisotropy,
nonlinearity, and nonhomogeneity, all with large deforma-
tions. For implementation in FE software, the function must
additionally be numerically well-behaved. Some reasonably
constructed models for biological tissue have been shown to
not possess a necessary feature, namely convexity (Holzapfel
et al. 2000b). Once an appropriate energy function has been
formulated, it is another matter to implement the model in
FE software. A number of examples have been published
wherein analytical models for valve tissue are implemented
for use in FE simulations. Since the valve leaflets are fairly
thin, most researchers have modeled them with shell, rather
than three-dimensional, elements (Holzapfel et al. 1996;
Klinkel and Govindjee 2002). For these elements, a separate
and equally significant effort has been made toward creat-
ing a theoretical framework for using shells to model large
deformations in general (Dvorkin et al. 1995; Betsch et al.
1996; Basar and Kintzel 2003; Chapelle et al. 2004; Sze et al.
2004; Weinberg and Kaazempur-Mofrad 2006) and devel-
oping tools for handling complex material models (Klinkel
and Govindjee 2002). Bioprosthetic valves have been mod-
eled with shells having aligned-fiber models (Black et al.
1991; Carmody et al. 2004). Shell models have also been
implemented for mitral valve leaflet tissue (Prot et al. 2007),
including the effect of changes in thickness (Weinberg and
Kaazempur-Mofrad 2006). Currently, the most widely used
models incorporate a splayed-fiber model into a shell. This
approach has been used successfully in simulating biopros-
thetic valves (Sun et al. 2005; Sun and Sacks 2005) and mitral

valves in healthy and diseased states (Einstein et al. 2004,
2005a,b). Modeling of valve tissue-scale mechanics has been
recently reviewed (Weinberg and Kaazempur Mofrad 2005;
Sacks and Yoganathan 2007), and the field continues to pro-
gress rapidly. A great deal of effort has gone into the creation
of rigorous methods for modeling three-dimensional materi-
als in FE. Sussman et al. have created the mixed formulation
commonly used to model arbitrary incompressible materials
with three-dimensional finite elements (Sussman and Bathe
1987), Driessen et al. have developed valve tissue models
with preferably directed collagen structure (Driessen et al.
2003, 2005), and others have implemented anisotropic and
biological material models (Almeida and Spilker 1998; Ruter
and Stein 2000).

An approach used widely in modeling other hyperelastic
materials and biological tissues but not, to our knowledge, in
heart valve mechanics yet, is the unit-cell approach (Bischoff
et al. 2002). Unit-cell models base their strain energy func-
tions on the theoretical behavior of a unit cell of entropic
chains. While it might be helpful to incorporate cell-scale
information in strain energy function, unit-cell models alone
are not sufficient to describe complex multiscale behavior
of valve mechanics. The most advanced strain energy func-
tions for valve mechanics include fiber splay as well as fiber
direction. Such models have been constructed and fit to exper-
imental data for aortic (Billiar and Sacks 2000a,b) and mitral
(Einstein et al. 2004) valves. Current research in continuum
models for leaflet mechanics aims to create a multi lay-
ered model of the tissue with continuum models for each
layer. Using existing microdissection techniques (Vesely and
Noseworthy 1992), Stella et al. have microdissected different
layers of aortic valve leaflet to characterize material prop-
erties of each layer through biaxial testing. Based on their
results, they have created a model having multiple layers
with different splayed-fiber material descriptions (Stella and
Sacks 2007). Also drawing from that data, Weinberg et al.
have modeled each layer with a continuum model and added
the undulated geometry and transversely isotropic behavior
for each layer (Weinberg and Kaazempur Mofrad 2007), see
Fig. 6. While most existing constitutive models for aortic
valve tissue mechanics are continuum-based, in some cases
other approaches may be useful. Weinberg et al. have created
a discrete fiber tissue model, illustrated in Fig. 7, that is com-
putationally efficient when particularly used in explicit finite
element codes such as LS-DYNA (Weinberg and Kaazempur
Mofrad 2007).

3.3 Cell-scale

Enabled by the methods for quantifying cell properties, cell-
scale models have been developed for heart valve. Recently
developed methods to measure cell mechanical properties
(Lim et al. 2006) have been applied to heart valve ICs
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Fig. 6 Geometry of multilayered, undulated tissue model (Weinberg
and Kaazempur Mofrad 2007)

Fig. 7 Single solid element of discrete fiber model for aortic valve
tissue (Weinberg and Kaazempur Mofrad 2007)

(Merryman et al. 2006b) whose results indicate IC being
probed by micropipette aspiration. Pressure is applied to
the cell via the pipette, and cell mechanical properties are
deduced from the observed deformations. Two main types
of models have been proposed for cell mechanical behavior:
Majority of models follow the continuum assumption and
describing the cell as some combination of fluid and solid
enveloped by the cell membrane (Lim et al. 2006; Mofrad
and Kamm 2006), while others take a structural approach,
treating the cytoskeleton as the main structural component
(Lim et al. 2006; Mofrad and Kamm 2006). Although many
groups have reported simulation of organ- and tissue-scale
heart valve mechanics over the past three decades, simula-
tion at the cell-scale has been reported only recently and
rarely. Huang et al. modeled the deformation of ICs in pres-
surized valves and compared results to experiment (Huang
et al. 2007), see Fig. 8a. Weinberg et al. extended that work
to the three-dimensional dynamic deformations (Weinberg
and Kaazempur Mofrad 2007) as well as to the pathological
conditions (Weinberg and Kaazempur Mofrad 2008).

3.4 Molecular-scale

Relying on the tools developed in the field of molecular
mechanics, there have been attempts to model molecular-
scale properties of heart valves. Methods for single-mole-
cule mechanics, such as laser traps demonstrated on collagen
(Luo et al. 1997) are directly applicable to heart valve matrix
components. Imaging capabilities have reached the molecu-
lar-level and have recently been applied to examining heart
valve leaflet structure. Figure 9 illustrates an image pro-
duced by femtosecond laser pulse of the three-dimensional
network of collagenous and elastic fibers in the heart valve
leaflet (Schenke-Layland et al. 2004). While mechanics at
the cell-, tissue-, and organ-scale can usually be described
by continuum mechanics, the continuum assumption does
not generally hold at the molecular-scale. Molecular dynam-
ics (MD) simulations must be used to analyze molecule-scale
interactions. Like in FE analysis, MD has progressed rapidly
in the recent years, due in part to advancements in computa-
tional capabilities. To the authors’ best knowledge, MD sim-
ulation techniques have not yet been applied systematically
to model heart valve behavior. See Sotomayor for a review
on the MD field (Sotomayor and Schulten 2007). Few efforts
do exist, however, that are directly applicable. In particu-
lar, research is carried out to simulate various aspects of the
behavior of collagen fiber on the molecular-scale (Park et al.
2007; Raman et al. 2006, 2008a,b; Salsas-Escat and Stultz
2008).

4 Multiscale modeling approach for heart valve

The heart valves have been shown to function at multiple
length-scales as extensively reviewed by Sacks et al. (Sacks
and Yoganathan 2007). Describing the heart valve biome-
chanics in a single length scale, whether organ-, tissue-,
cell- or molecular, is not sufficient to capture valve’s overall
behavior. In order for a heart valve model to describe any
arbitrary behavior, the model should incorporate elements
from all different length scales.

While many experimental tools are available to investigate
the mechanical behavior at each individual scale, few have
been developed that span multiple scales. Huang et al. mea-
sured the cell-scale deformations in response to pressures
applied at the organ-scale (Huang et al. 2007), Merryman
et al. measured the tissue-scale mechanical behavior in
response to cellular contraction (Merryman et al. 2006a),
Mol et al. quantified cell-scale growth mechanisms when
engineered-valve is loaded at tissue-scale (Mol et al. 2003,
2005), and Weinberg et al. measured the cellular response to
organ-scale shear (Weinberg et al. 2010).

Computational approaches have also been adapted to
incorporate various multiscale effects into cardiovascular

123



On the multiscale modeling of heart valve biomechanics in health and disease 381

Fig. 8 Theoretical and
experimental investigation of IC
deformation in valves under
pressure. a Simulation
geometry. b Image processing
measurement of IC aspect ratios
(Huang et al. 2007)

Fig. 9 Three-dimensional reconstruction of ovine aortic heart valve
leaflet by femtosecond laser pules. Collagenous fibers are shown in
blue and elastic fibers in red (Schenke-Layland et al. 2004)

modeling. Carmody et al. have embedded the valve organ-
scale motion to the larger organ-scale motion of the left ven-
tricle (Carmody et al. 2006). Huang et al. have used analytical
calculations to link the cell-scale model to pressure applied at
the organ-scale, and have notably compared to experimental
data with good agreement (Huang et al. 2007). An image from
their measurement of IC aspect ratios under pressure is shown
in Fig. 8b. Cellular and molecular events have been related
to organ-scale physiology in heart left ventricle (Watanabe

et al. 2004). Once simulations are created across individ-
ual length-scales, new methods are needed to link different
scales together. Just recently, few researchers have performed
such links for specific cases, such as linking the tissue- and
organ-scales in a model of the arterial wall (Stylianopoulos
and Barocas 2007) and linking collagen matrix tissue-scale
behavior to molecular mechanics (Chandran and Barocas
2007; Katz et al. 2007). Weinberg et al. performed a com-
prehensive multiscale simulation of heart valve mechanics.
They introduced a system of multiple reference configura-
tions set up at different cell-, tissue- and organ-scales, see
Fig. 10, with appropriate linkage between scales from top to
bottoms (Weinberg and Kaazempur Mofrad 2007). Within
this linked framework, illustrated in Fig. 11, they computed
organ-scale motion, from which tissue-scale deformations
were extracted, and tissue deformation was similarly trans-
lated to the cell-scale. The complete effort thus is a dynamic,
three-dimensional simulation of AV mechanics spanning the
cell-, tissue-, and organ length-scales. The model has been
particularly verified with valve experimental data at static
case, in which, boundary conditions and deformation were
made at organ-scale and the model outcomes were evalu-
ated at cell-scale. This multiscale model has many promising
applications in studying valve behavior in health and disease.
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Fig. 10 Different reference configurations in multiscale simulation of heart valve (Weinberg and Kaazempur Mofrad 2007)

Fig. 11 Linking of multiscale aortic valve mechanical simulations
from the organ-scale down to the tissue- and cell-scales (Weinberg and
Kaazempur Mofrad 2007)

For instance, the calcific aortic stenosis and aortic stiffening
are shown to have initiation and progression factors in dif-
ferent length-scales which can be simulated by this model.

5 Conclusions and future directions

Investigating the health and disease mechanisms in heart
valves involves a complex, multiscale, and multidisciplin-
ary process with important clinical outputs. Research in this
field has already contributed enormously to patient care, most
notably the development of prosthetic and bioprosthetic valve
replacements. Simulation of valve biomechanics is a vital

tool in improving valve replacement design as well as in
increasing our fundamental understanding of valve behavior.

The heart valve has been shown to function at multi-
ple length-scales as reviewed by Sacks et al. (Sacks and
Yoganathan 2007). Describing the heart valve biomechan-
ics in a single length scale, whether organ-, tissue-, cell- or
molecular-scale, is not sufficient to capture valve’s overall
behavior. In order for a heart valve model to describe any
arbitrary behavior, the model should incorporate elements
from all different length-scales.

One key challenge that is common in modeling all bio-
logical systems is the fact that these systems are living and
actively remodeling. This phenomenon is perhaps more rele-
vant at the cell-scale simulations where the time scale of sim-
ulations may be of the same order as those of active response
of the cells. Active, remodeling models of cell mechan-
ics are at their infancy (Chandran et al. 2009; Chandran
and Mofrad 2010). Modeling heart valve biomechanics at
organ- and tissue-scales has been going through genera-
tions of refinement over the past three decades; however,
it has only been within the past few years that research-
ers have begun to identify that the need to incorporate the
valve mechanics at the cell- and molecular-scale in order to
fully appreciate valve biomechanics. Enabled by advances
in cutting-edge experimental methods and computational
tools in characterizing heart valve properties and behavior
in cell- and molecular-scales, further investigations are pos-
sible and necessary to bring the smaller-scale simulations
to the same level of refinement as the larger-scale models.
A number of groups are currently active in developing
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experimental tools, numerical methods, and mechanical
simulations of heart valves in cell- and molecular-scales
(Watanabe et al. 2004; Huang et al. 2007; Sacks and
Yoganathan 2007; Weinberg and Kaazempur Mofrad 2007)
but the field calls for further investment.

After sophisticated models in each of the length-scales
are developed, the next challenge would involve establish-
ing systematic methods to robustly link the single-scale
models together. This is an essential step toward develop-
ing the multiscale model of heart valve which should be
able to describe behavior of valve in any scale caused by
behavior of valve at other scales through mechanotrans-
duction (Mofrad and Kamm 2009). Developing the linkage
between multiple scales is in its first generation (Weinberg
and Kaazempur Mofrad 2007). Except for few attempts, in
which specific length-scales have been linked together to
study particular multiscale phenomenon (Mol et al. 2003,
2005; Merryman et al. 2006a; Huang et al. 2007; Weinberg
and Kaazempur Mofrad 2007, 2008), we are not aware of
any model which develops a comprehensive linkage sys-
tem spanning over multiple length-scales. To the authors’
knowledge, Weinberg et al. developed the most compre-
hensive multiscale model of valve to date, linking organ-,
tissue-, and cell-scales (Weinberg and Kaazempur Mofrad
2007). However, their model establishes a unidirectional
linkage from organ-scale to tissue-scale and from tissue- to
cell-scales and does not yet capture the true bidirectional
linkage which can also occur from small scales toward large
scales. Major effort is needed to further develop multiscale
linkage systems.

Refinement of computational models will surely continue,
but to have a significant clinical impact and to increase
our fundamental understanding of the heart valves in health
and disease, these simulations must be performed in concert
with experimental efforts. Recent works combining multi-
scale modeling with experiment have elucidated the defor-
mation of ICs in response to valve motion (Huang et al. 2007;
Weinberg and Kaazempur Mofrad 2007) and the phenotypic
expression of ECs in response to blood flow through the valve
(Weinberg et al. 2010). Further multiscale, multidisciplinary
efforts will similarly increase our ability to understand valve
function and treat valve disease.
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noncommercial use, distribution, and reproduction in any medium,
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