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Progressive Bitstream Optimization in MIMO Channels

Based on a Comparison Between OSTBC and SM

Seok-Ho Chang†, Pamela C. Cosman‡ and Laurence B. Milstein‡
†MSE Dept. Dankook University, Yongin, South Korea

‡ECE Dept. University of California at San Diego, La Jolla, CA 92093, USA

Abstract—We study the optimal design of the multimedia
communication systems that employ open-loop multiple-input
multiple-output (MIMO) techniques. We first analyze the be-
havior of the crossover point of the error probability curves
for orthogonal space-time block codes (OSTBC) and spatial
multiplexing (SM) with a zero-forcing receiver. It is proven that
in the high signal-to-noise ratio (SNR) regime, for both the
information outage probability and the uncoded bit error rate, as
data rate increases, the crossover point for the error probability
monotonically decreases, and the crossover point for the SNR
monotonically increases. Those results can be exploited for the
optimal transmission of multimedia progressive sources which
need unequal target error rates or transmission data rates in their
bitstream; we show that the computational complexity involved
with the optimal space-time coding of a progressive bitstream
can be simplified.

I. INTRODUCTION

The increasing demand for multimedia services has moti-

vated much research on cross-layer design [1], [2]. Multimedia

progressive sources such as embedded image or scalable video

[3], [4] employ a mode of transmission such that as more

bits are received, the source can be reconstructed with better

quality. However, these advances in source codecs have also

rendered the encoded bitstreams very sensitive to channel im-

pairments. Multiple-input multiple-output (MIMO) channels

are able to provide performance gains in terms of reliability

and transmission rate [5][6].

In this paper, we study the optimal design of a low-complex

MIMO system for the transmission of multimedia progressive

sources. We first compare OSTBC and SM from the viewpoint

of their error probabilities. Our approach focuses on how

the crossover point of the error probability curves for the

space-time codes behaves in the high SNR regime. In some

literature, the crossover point of the ergodic capacity curves

has been investigated [7], [8]. On the other hand, we compare

error probabilities, such as information outage probability and

uncoded bit error rate (BER), of OSTBC and SM in an analytic

manner for arbitrary numbers of antennas. Note that some

results for the uncoded BER with two tranmit antennas were

presented in [9] by the authors.

We prove that as data rate increases, the crossover point

in error probability monotonically decreases, whereas that in

the SNR monotonically increases; these results are strictly

proven for arbitrary numbers of transmit and receive antennas,

and the spatial multiplexing rate of OSTBC. Regarding SM,

our analysis is focused on a ZF linear receiver, in part

since the joint probability distribution of the post-processing

SNRs for that receiver is properly characterized such that

error probability can be obtained in a closed form. Note that

novel wireless communication systems are targeting very large

spectral efficiencies [10], and the use of low-complexity linear

receivers may be mandatory because of complexity and power

consumption.

We exploit the above analytical results for the optimal

space-time coding of multimedia progressive sources. The

progressive sources have a significant feature that they have

steadily decreasing importance for bits later in the stream,

which makes unequal target error rates useful. Our analysis

for the crossover point is used to optimally assign OSTBC or

SM techniques to each portion of the progressive bitstream to

be transmitted over Rayleigh fading channels.

II. SYSTEM MODEL

Consider a MIMO system with Nt transmit and Nr receive

antennas in a frequency flat-fading channel. A space-time

codeword S = [s1 · · · sT ] of size Nt × T is transmitted over

T symbol durations via Nt transmit antennas. At the kth time

symbol duration, we have

yk = Hsk + nk, k = 1, · · · , T (1)

where yk is the Nr × 1 received signal vector, H is the

Nr × Nt channel matrix, and nk is a Nr × 1 zero mean

complex Gaussian vector with E [nkn
H
l

]
=σ2

nINr
δ(k − l),

where (·)H denotes the Hermitian operation. We assume that

the entries of H are independent and identically distributed

(i.i.d) ∼ CN (0, 1), and that H is random but constant over the

duration T of a codeword. Let γs := E [|(sk)i|2]/σ2
n denote

SNR per symbol, where (sk)i is the ith component of the

transmit signal vector sk (i = 1, · · · , Nt). Let Ns denote the

number of symbols packed within a space-time codeword S.

The spatial multiplexing rate is defined as Ns/T . We assume

no channel state information (CSI) at the transmitter, and

perfect CSI at the receiver.

III. THE BEHAVIOR OF THE CROSSOVER POINTS OF THE

ERROR PROBABILITY CURVES

A. Average Uncoded BER

We first express the BER of the OSTBC for an M -ary

square QAM constellation. A closed-form expression for the

BER of SISO systems in an AWGN channel is given by

[11, Eq. (14)]. For OSTBC, the same constellation symbol,
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(sk)i, is transmitted Nt times during T symbol durations;

thus, for an M -ary QAM, the SNR per bit, γb, is given by

γb = Nt × γs/ log2 M . The post-processing SNR per symbol

is given by γs ‖H‖2F , where ‖·‖F denotes the Frobenius norm.

From these, it can be readily shown that the exact BER of the

OSTBC for an M -ary square QAM is given by

Pb,OSTBC =
4√

M log2 M

log2

√
M∑

k=1

(1−2−k)
√
M−1∑

i=0[
(−1)

⌊
i·2k−1√

M

⌋(
2k−1 −

⌊
i · 2k−1

√
M

+
1

2

⌋)(
1− μ(i)

2

)NtNr

×
NtNr−1∑

j=0

{(
NtNr − 1 + j

j

)(
1 + μ(i)

2

)j
}]

(2)

where

μ(i) =

√
3(2i+ 1)2 (log2 M) γb

2Nt(M − 1) + 3(2i+ 1)2 (log2 M) γb
.

We next present the BER of the SM scheme. For a ZF

receiver, the post-processing SNR on each substream is a chi-

square random variable, and thus the exact BER expression is

achievable. The BER of SM with a ZF receiver for an M -ary

QAM, denoted by Pb,SM−ZF , is given by [12, Eq. (3.12)].

In the following, we find the crossover point of the BER

curves of OSTBC and SM with a ZF receiver. The BER

expressions given by (2) and [12, Eq. (3.12)] are polynomials

in γb with degrees greater than four, even for the simplest case

of a 2×2 channel matrix. For these equations, there exists no

closed-form solution for the crossover point. Thus, we will

explore the asymptotic regime of high SNR; if we discard the

error function terms having non-minimum Euclidian distances,

and use
√

x
1+x ≈ 1− 1

2x for x >> 1, we have

Pb,OSTBC ≈ P app
b,OSTBC =

(
2NtNr − 1

NtNr

)

× 4(
√
M − 1)√

M log2 M

(
Nt(M − 1)

6 log2 M

)NtNr
(

1

γb

)NtNr

. (3)

In the same way, Pb,SM−ZF is approximated as [12, Eq.

(3.19)]. We compare the BERs of OSTBC and SM under the

condition that the transmission data rates of both are set to be

equal. To do this, we employ m-ary QAM for the SM, and

mNt/rs -ary QAM for the OSTBC, where 0 < rs ≤ 1 denotes

the spatial multiplexing rate of the OSTBC. We assume that

m ≥ 4 (i.e., QPSK), and Nr ≥ Nt ≥ 2. We let M = mNt/rs

in (3), and let M = m in [12, Eq. (3.19)]. Then, we find the

SNR, γ∗b , for which the two resultant equations are equal. It

can be shown that γ∗b is given by

γ∗b =

( (
2NtNr−1

NtNr

)
rNtNr+1
s

√
m(

2(Nr−Nt)+1
Nr−Nt+1

)
6(Nr+1)(Nt−1)Nt(

√
m− 1)mNt/2rs

× (mNt/2rs − 1)(mNt/rs − 1)NtNr

(log2 m)(Nr+1)(Nt−1)(m− 1)Nr−Nt+1

) 1
(Nr+1)(Nt−1)

(4)

We define the function f(m) as

f(m) =

√
m(mNt/rs − 1)

(
√
m− 1)(m− 1)

· m
Nt/2rs − 1

mNt/2rs

×
(
mNt/rs − 1

m− 1

)NtNr−1(
m− 1

log2 m

)(Nr+1)(Nt−1)

. (5)

It can be proven that f(m) is a strictly increasing function

in m, under the condition that m ≥ 4, Nr ≥ Nt ≥ 2, and

0 < rs ≤ 1.1 From (4) and (5), it has been shown that as the

alphabet size, m, increases, γ∗b strictly increases, regardless of

the numbers of transmit and receive antennas, and the spatial

multiplexing rate of the OSTBC. If we substitute both γ∗b ,

given by (4), and M = mNt/rs into (3), the corresponding

BER, P ∗b , is given by

P ∗b =

4rNtNr+1
s

Nt

(
2NtNr − 1

NtNr

)(
Nt

(
2(Nr−Nt)+1
Nr−Nt+1

)
rNtNr+1
s

(
2NtNr−1

NtNr

)
) NtNr

(Nr+1)(Nt−1)

×
(
(
√
m− 1)mNt/2rs

√
m(mNt/2rs − 1)

) NtNr
(Nr+1)(Nt−1)

× mNt/2rs − 1

mNt/2rs log2 m

(
m− 1

mNt/rs − 1

)NtNr(Nr−Nt+1)
(Nr+1)(Nt−1)

. (6)

It can also be proven that P ∗b is a strictly decreasing function

in m. That is, as the alphabet size, m, increases, P ∗b strictly

decreases, for an arbitrary number of transmit and receive

antennas, and the spatial multiplexing rate of OSTBC. Further,

from (3) and [12, Eq. (3.19)], it can be shown that

P app
b,OSTBC < P app

b,SM−ZF for γb > γ∗b ,

P app
b,OSTBC > P app

b,SM−ZF for γb < γ∗b . (7)

Let P ∗b,1 and γ∗b,1 denote the crossover point when a modu-

lation alphabet size m = M1 is employed, and P ∗b,2 and γ∗b,2
denote the crossover point when an alphabet size m = M2 is

used. Suppose that M1 < M2. Then, from the results above,

we have

γ∗b,1 < γ∗b,2 and P ∗b,1 > P ∗b,2. (8)

B. Information Outage Probability
The information outage probability of the OSTBC is given

by [14]

Pout,OSTBC = P

[
rs log2

(
1 +

γs
rs
‖H‖2F

)
< R

]
(9)

where R is the transmission data rate (bits/s/Hz). Using the

cumulative density function (CDF) of ‖H‖2F , which is a chi-

square random variable with 2NtNr degrees of freedom, it

can be shown that

Pout,OSTBC = 1− exp

(
− rs
γs

(
2R/rs − 1

))

×
NtNr∑
k=1

1

(k − 1)!

(
rs
γs

(
2R/rs − 1

))k−1

. (10)

1The detailed steps of all the analysis in Section III can be found in [13].
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For the SM scheme, we consider pure spatial multiplexing

where data is split into several substreams, one for each

transmit antenna, and each substream undergoes independent

temporal coding to avoid a complex joint decoding of sub-

streams at the receiver. For this scheme, an outage event occurs

when any of the subchannels cannot support the data rate

assigned to it. Thus, the information outage probability is given

by [10]

Pout,SM−ZF = P

[
Nt⋃
k=1

{
log2 (1 + γsηk) <

R

Nt

}]
(11)

where ηk is a chi-square random variable with 2(Nr−Nt+1)
degrees of freedom (k = 1, · · · , Nt). Based on the assumption

that ηk’s are independent for a ZF receiver [15], and using the

CDF of a chi-square random variable, it can be shown that

Pout,SM−ZF = 1−
[
exp

(
− 1

γs

(
2R/Nt − 1

))

×
Nr−Nt+1∑

k=1

1

(k − 1)!

(
1

γs

(
2R/Nt − 1

))k−1
]Nt

. (12)

Next, we will find the crossover point of the outage probability

curves of OSTBC and SM with a ZF receiver. Since the ex-

pressions given by (10) and (12) are not analytically tractable,

to obtain a closed-form solution of the crossover point, we

consider high SNR approximate expressions; if we use only

the dominant terms in the numerator and denominator of the

Taylor series expansion of (10), we have

Pout,OSTBC ≈ P app
out,OSTBC =

1

(NtNr)!

(
rs
γs

(
2R/rs − 1

))NtNr

. (13)

For the SM scheme, the high SNR approximate expression is

given by [15]

Pout,SM−ZF ≈ P app
out,SM−ZF =

Nt

(Nr −Nt + 1)!

(
1

γs

(
2R/Nt − 1

))Nr−Nt+1

. (14)

We find the SNR, γ∗s , for which (13) and (14) are the same:

γ∗s =(
(Nr −Nt + 1)! rNtNr

s (2R/rs − 1)NtNr

(NtNr)! Nt (2R/Nt − 1)Nr−Nt+1

) 1
(Nr+1)(Nt−1)

(15)

It can be proven that γ∗s is a strictly increasing function in

R, under the condition that R > 0, Nr ≥ Nt ≥ 2, and 0 <
rs ≤ 1. If we substitute γ∗s into (13), the corresponding outage

probability, P ∗out, is given by

P ∗out =
rNtNr
s

(NtNr)!

(
2R/rs − 1

)NtNr
(

(NtNr)! Nt

(Nr −Nt + 1)! rNtNr
s

× (2R/Nt − 1)Nr−Nt+1

(2R/rs − 1)NtNr

) NtNr
(Nr+1)(Nt−1)

. (16)

It can also be proven that P ∗out is a strictly decreasing function

in R. Hence, as the transmission data rate, R, increases, γ∗s
strictly increases and P ∗out strictly decreases, regardless of

the numbers of transmit and receive antennas, and the spatial

multiplexing rate of OSTBC. Further, from (13) and (14), it

can be shown that

P app
out,OSTBC < P app

out,SM−ZF for γs > γ∗s ,
P app
out,OSTBC > P app

out,SM−ZF for γs < γ∗s . (17)

Let P ∗out,1 and γ∗s,1 denote the crossover point when a trans-

mission data rate R = R1 is employed, and P ∗out,2 and γ∗s,2
denote the crossover point when a data rate R = R2 is used.

Suppose that R1 < R2. Then, from the results above, we have

γ∗s,1 < γ∗s,2 and P ∗out,1 > P ∗out,2. (18)

Based on (17) and (18), the high SNR approximate outage

probabilities of OSTBC and SM with a ZF receiver are

qualitatively depicted in Fig. 1. For data rate R1 < R2, in

Fig. 1, the outage probabilities have the following properties:

i) γ∗s,1 < γ∗s,2 ii) P ∗out,1 > P ∗out,2 iii) P app
out,i,OSTBC <

P app
out,i,SM−ZF for γs,i > γ∗s,i, and P app

out,i,OSTBC >
P app
out,i,SM−ZF for γs,i < γ∗s,i (i = 1, 2). Suppose that a

target outage probability, Pout,T , is smaller than P ∗out,1 but

greater than P ∗out,2. Then, from Fig. 1, it is seen that OSTBC is

preferable to SM for a data rate R1, whereas SM is preferable

for a data rate R2. Note that the results for the uncoded BER,

given by (7) and (8), are coincidentally analogous to those

for the information outage probability, given by (17) and (18).

Hence, the same argument above can be made for the uncoded

BER.

IV. OPTIMAL SPACE-TIME CODING FOR THE

PROGRESSIVE SOURCES

The analysis in the previous section can be exploited

to optimally design a low complex MIMO system for the

transmission of the applications which require need unequal

target error rates or transmission data rates in their bitstream.

In the following, we present the transmission of multimedia

progressive sources [3], [4].

Progressive encoders employ progressive transmission so

that encoded data have gradual differences of importance in

their bitstreams. Suppose that the system takes the bitstream

from the progressive source encoder, and transforms it into a

Outage 

Probability

SNR

Spatial MultiplexingOSTBC

Outage 

Probability

SNR

Spatial Multiplexing

OSTBC

A B A B

Data rate R1 Data rate R2

Tout
P ,

∗

1,out
P

Tout
P ,

∗

2,out
P

∗

1,sγ
∗

2,sγ

Fig. 1. High SNR approximate outage probabilities of OSTBC and SM with
a ZF receiver for the same transmission data rates.
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Fig. 2. Progressive source transmission system combined with open-loop
MIMO techniques. Ri and Ci denote the transmission data rate and the space-
time code assigned to ith packet, respectively (1 ≤ i ≤ NP ).

sequence of NP packets. Such a system is depicted in Fig. 2.

Each of these NP progressive packets can be encoded with

different transmission data rates, as well as different MIMO

techniques, so as to yield the best end-to-end performance

as measured by the expected distortion of the source. The

error probability of an earlier packet needs to be lower than or

equal to that of a later packet, due to the gradually decreasing

importance in the progressive bitstream. Thus, given the same

transmission power, the earlier packet requires a transmission

data rate which is lower than or equal to that of the later

packet.

Let NR denote the number of candidate transmission data

rates employed by a system. The number of possible assign-

ments of NR data rates to NP packets would exponentially

grow as NP increases. Further, in a MIMO system, if each

packet can be encoded with different space-time codes (e.g.,

OSTBC or SM in this case), the assignment of space-time

codes as well as data rates to NP packets yields a more com-

plicated optimization problem, compared to a SISO system.

Note that each source, e.g., an image, has its inherent rate-

distortion characteristic, from which the performance of the

expected distortion is computed. Hence, for example, when a

series of images is transmitted, the above optimization should

be addressed in a real-time manner, considering which specific

image (i.e., rate-distortion characteristic) is transmitted in the

current time slot.

For a MIMO system, we use the analytical results presented

in the previous section to optimize the assignment of space-

time codes to progressive packets. Recall that, for a progressive

source, the error probability of an earlier packet needs to be

lower than or equal to that of a later packet, and the earlier

packet requires a transmission data rate which is lower than
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(R=10)

Exact (R=10)

Fig. 3. The exact and high SNR approximate outage probabilities of OSTBC
and SM with a ZF receiver for 2 × 4 MIMO systems in i.i.d Rayleigh
fading channels. Solid curves denote the exact outage probabilities, and dashed
curves denote the high SNR approximate outage probabilities. The exact and
approximate crossover points are marked with circles.

or equal to that of the later packet. Suppose that the kth

packet in a sequence of NP packets is encoded with SM.

Then, our analysis tells us that the k + 1st, k + 2nd, . . . ,

NP th packets also should be encoded with SM rather than

with OSTBC. This is because we have proven that, when SM

is preferable for a packet with a transmission data rate of

R1, a packet with a data rate of R2(> R1) also should be

encoded with SM, as long as the target error rate of the latter

is the same as or higher than that of the former (Fig. 1 can be

referred to). As a result, it can be shown that the number of

possible assignments of space-time codes to NP packets can

be reduced by 2NP /(NP + 1) times, which indicates that the

computational complexity involved with the optimization can

be exponentially simplified. Note that a progressive bitstream

is typically transformed into a sequence of packets, in part

because multiple levels of unequal error protection are required

for the progressive transmission.

V. NUMERICAL EVALUATION AND DISCUSSION

We first numerically evaluate the outage probabilities and

the uncoded BERs of OSTBC and SM with a ZF receiver for

the same data rate. The error probabilities are evaluated in

2 × 4 MIMO systems for various data rates R = 6, 9, and

12 bits/s/Hz. The results are shown in Figs. 3 and 4, where

solid curves denote the exact error probabilities, and dashed

curves show the high SNR approximate error probabilities.

Figs. 3 and 4 show that, for both the outage probabilities and

the BERs, the gap between the approximate crossover point

and the exact one becomes smaller as transmission data rate

increases. For novel wireless communication systems targeting

high data rates, the closed-form expressions of the approximate

547



0 5 10 15 20 25 30 35
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR per bit (dB)

B
it 

E
rr

or
 R

at
e

R = 6 bits/s/Hz: SM

R = 6 bits/s/Hz: OSTBC

R = 8 bits/s/Hz: SM

R = 8 bits/s/Hz: OSTBC

R = 10 bits/s/Hz: SM

R = 10 bits/s/Hz: OSTBC

Exact (R=8)

Approx
(R=10)

Approx (R=8)

Exact (R=10)Approx (R=6)

Exact (R=6)

Fig. 4. The exact and high SNR approximate uncoded BERs of OSTBC and
SM with a ZF receiver for 2 × 4 MIMO systems in i.i.d Rayleigh fading
channels. Solid curves denote the exact BERs, and dashed curves do the high
SNR approximate BERs. The exact and approximate crossover points are
marked with circles.

crossover points, given by (4), (6), (15) and (16), will become

more accurate. From Figs. 3 and 4, it is seen that as data rate

increases, the crossover points for the outage probabilities as

well as the uncoded BERs behave in a way predicted by the

analysis given by (8) and (18) (refer to Fig. 1).

In Section IV, we presented the optimal space-time coding

for the transmission of progressive sources. In the following,

we will compare the performances of the optimal space-time

coding and the suboptimal ones for progressive transmission.

We evaluate the performances for 2× 2 MIMO systems using

the source coder SPIHT [16], and provide results for the

standard 8 bits per pixel (bpp) 512×512 Lena image with

a transmission rate of 0.5 bpp. We assume a slow fading

channel, such that channel coefficients are nearly constant

over an image, and the channel estimation at the receiver

is perfect. The end-to-end performance is measured by the

expected distortion of the image, denoted by E[D].

We describe the evaluation of the expected distortion. The

system takes a compressed progressive bitstream from the

source encoder, and transforms it into a sequence of packets

with error detection and correction capability. Then, as shown

in Fig. 2, the packets are encoded by the space-time codes.

At the receiver, if a received packet is correctly decoded, the

next packet is considered by the source decoder. Otherwise,

the decoding is terminated and the source is reconstructed

from only the correctly decoded packets due to the nature

of progressive source code. Let dn denote the distortion of

the source using the first n packets for the source decoder

(0 ≤ n ≤ NP ), where NP is the number of packets for an

image. The dn can be expressed as dn = D (
∑n

i=1 ri), where

ri is the number of source bits in the ith packet (1 ≤ i ≤ NP ),

and D(x) denotes the operational distortion-rate function of

the source. We also let Pe, n denote the probability that no

decoding errors occur in the first n packets with an error in

the next one (1 ≤ n ≤ NP −1). Then, the expected distortion,

E[D], can be calculated from both dn and Pe, n. Note that

E[D] is a function of the SNR as well as the transmission

data rate and the space-time code that are assigned to each

packet. Let Ci denote the space-time code assigned to ith
packet (1 ≤ i ≤ NP ). One can find the optimal set of space-

time codes, Copt = [C1, · · · , CNP
]opt, which minimizes the

expected distortion over a range of average SNRs using the

weighted cost function as follows:

arg min
C1,··· ,CNP

∫∞
0

ω(γs)E[D]dγs∫∞
0

ω(γs)dγs
(19)

where w(γs) in [0, 1] is the weight function. For example,

w(γs) can be given by ω(γs) = u(γs − γA
s ) − u(γs − γB

s ),
where u(x) is the unit step function. Eq. (19) indicates

that the C1, · · · , CNP are chosen such that the sum of the

expected distortion of the receivers distributed in the range

of γA
s ≤ γs ≤ γB

s is minimized. Note that the amount of

computation involved in Eq. (19) exponentially grows as NP

increases. Alternatively, as presented in Section IV, we may

choose the codes, C1, · · · , CNP
, with the constraint that the

k + 1st, k + 2nd, . . . , NP th packets should be encoded with

SM (i.e., OSTBC is excluded) if the kth packet is encoded

with SM.

To compare the image quality, we use the peak-signal-to-

noise ratio (PSNR), defined as 10log 2552

E[D] (dB). We evaluate

the PSNR performance as follows: We first compute (19) using

the expected distortion, E[D], which is obtained from simu-

lation, and the weight function, w(γs), described below (19).

Next, with the optimal set of codes, Copt = [C1, · · · , CNP ]opt,
obtained from (19), we evaluate the PSNR over a range of

SNRs, γA
s ≤ γs ≤ γB

s . In this evaluation, error correction

coding is not considered. The performance is evaluated for

the case when a sequence of 15 packets is transmitted (i.e.,

NP = 15) as an example, and we assume that the transmission

data rates are assigned in a manner such that R1 = R2 =
R3 = 4 (bits/s/Hz), R4 = R5 = R6 = 6 (bits/s/Hz),

R7 = R8 = R9 = 8 (bits/s/Hz), R10 = R11 = R12 = 10
(bits/s/Hz), and R13 = R14 = R15 = 12 (bits/s/Hz), where

Ri denotes the data rate employed by the ith packet. For this

specific setup, the optimal set of space-time codes computed

from (19) is given by C1 = C2 = · · · = C6 = OSTBC, and

C7 = C8 = · · · = C15 = SM. Fig. 5 shows the PSNR of such

an optimal set of space-time codes, in addition to showing

the PSNRs of other suboptimal sets of codes, such as the

second best set of codes and the worst set of codes. Fig. 5

also shows the PSNR corresponding to the expected distortion

that is averaged over all the possible sets of space-time codes

(note that the number of possible sets of space-time codes is

2NP ). From this example, it is seen that PSNR performance of

the progressive source tends to be sensitive to the way space-

time codes are assigned to a sequence of packets, due to the
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Fig. 5. The PSNR performance of the optimal set of space-time codes and
suboptimal ones for the transmission of progressive 8 bpp 512 × 512 Lena
image for 2× 2 MIMO systems in i.i.d Rayleigh fading channels.

unequal transmission data rates and target error rates of the

progressive bitstream.

Fig. 5 also shows the PSNR performance when (19) is

computed with the constraint presented in Section IV (in

this case, the number of possible sets of space-time codes is

reduced to NP+1). We note that the same optimal set of codes

has been obtained when (19) is computed with and without the

constraint. That is, without losing any PSNR performance, the

computational complexity involved with the optimization can

be reduced by exploiting the proof of the monotonic behavior

of the crossover point, as shown in Fig. 1. It is also seen that

the expected distortion, averaged over all the possible sets of

space-time codes, gets better when the constraint in Section IV

is introduced, which shows that, on the average, the constraint

in Section IV is a good strategy for the space-time coding of

progressive sources.

VI. CONCLUSIONS

Due to the differences of importance in the bitstream, when

progressive multimedia are transmitted over MIMO channels,

the tradeoff between the space-time codes should be clarified

in terms of their target error rates and data rates. To address

this matter, we analyzed the behavior of the crossover point

of the error probability curves for OSTBC and SM with a ZF

linear receiver. To make the analysis tractable, we explored

the asymptotic regime of high SNR. The analytical results

for the information outage probability and the uncoded BER

coincided such that, as data rate increases, the crossover point

in error probability monotonically decreases, whereas that in

the SNR monotonically increases. We next showed that those

analytical results can be used to simplify the computations

involved with the optimal space-time coding of a sequence

of numerous progressive packets. The work in this paper has

significance in terms of its impact in the area of multimedia

communications, and its analysis for the monotonic behavior

of the crossover points.
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