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This thesis introduces a new error metric for irradiance caching that signif-

icantly outperforms the classic Split-Sphere heuristic. Our new error metric builds

on recent work using second order gradients (Hessians) as a principled error bound

for the irradiance. We add occlusion information to the Hessian computation,

which greatly improves the accuracy of the Hessian in complex scenes, and this

makes it possible for the first time to use a radiometric error metric for irradiance

caching. We enhance the metric making it based on the relative error in the irradi-
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ance as well as robust in the presence of black occluders. The resulting error metric

is efficient to compute, numerically robust, supports elliptical error bounds and ar-

bitrary hemispherical sample distributions, and unlike the Split-Sphere heuristic

it is not necessary to arbitrarily clamp the computed error thresholds. Our results

demonstrate that the new error metric outperforms existing error metrics based

on the Split-Sphere model and occlusion-unaware Hessians.
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Chapter 1

Introduction

Starting with cave paintings dating back over 30,000 years in the past,

mankind has been fascinated by the pursuit of realistic depictions of the world

that surrounds us. Artists strive to interpret our world and reproduce it through

an intensely personal point of view, while scientists rigorously study the innu-

merable phenomena that give rise to what we perceive as reality. As a tool, the

computer seems especially suited to bridge these disciplines, giving rise to the field

of computer graphics.

One particularly important branch of computer graphics is physically based

rendering, which attempts to synthesize images by simulating the physical pro-

cesses that give rise to the various visual phenomena that are visible in real life.

Of these processes, none are more fundamental than the simulation of light trans-

port, or the way in which light interacts with objects and the environment and

travels from one point to another. Features in a scene will only be visible in an

image if there is some measurable amount of light that reaches a suitable sensor,

such as a CCD in a digital camera.

A related goal in computer graphics is photorealistic rendering, which at-

tempts to produce imagery that is indistinguishable from photographs without

necessarily requiring the rigorous simulation of the real-life physical phenomena

that give rise to them. In this case, approximations to those phenomena are ac-

ceptable as long as the visual result is of sufficient quality to achieve the stated

goal.

1
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Importantly, both disciplines are concerned with the generation of realistic

images, and in many cases the advances made in one fuel further investigation in

the other. Applications of realistic image synthesis are pervasive in contemporary

society, ranging from product renderings for advertising, to special effects in movies

and television, to architectural visualization for real estate projects. It is indeed

hard nowadays to browse a magazine or watch television without being witness to

realistic computer generated imagery.

Being the most fundamental building block for realistic imagery, light trans-

port has been researched since the earliest days of computer graphics, and algo-

rithms for its efficient simulation have been key in the advancement of the field.

With increased computational power being made available through the years, new

algorithms that more rigorously simulate the light transport equations have been

proposed and implemented, resulting in ever higher realism being achieved through

computer graphics.

Global illumination is a term used to refer to those algorithms that attempt

to fully simulate the effects of light bouncing more than once in a scene, as opposed

to only visualizing the direct effect of a light source on the various surfaces in a

scene. When light hits a surface, it doesn’t merely reflect towards a suitable sensor

that detects its effects; it also bounces and affects other surfaces in the scene, giving

rise to indirect illumination effects such as color bleeding. The realism added to

images by using a global illumination algorithm can be profound.

It is possible to divide the illumination in a scene into various conceptually

separate sub-components: direct lighting is that light which leaves an emitting

source and directly hits some surface in the scene, after which it reflects and

lands on the imaging sensor; diffuse indirect lighting occurs when light strikes a

diffuse surface, after which it is reflected simultaneously in all directions and hits

other objects, one or more times, before landing on the camera; specular indirect

illumination, or caustics, are the result of light from an emitter reflecting off a

specular surface such as a mirror, or refracting through a specular object, such as

a glass, producing focused indirect lighting effects; a final sub-component is that

light which leaves an emitter and immediately hits the imaging sensor. In this
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thesis, we focus our attention on the diffuse indirect illumination component.

The diffuse component of the indirect illumination in a scene can be very

computationally expensive to compute. In order to compute the indirect light

reflected from a point in the scene towards the imaging sensor, we must account for

light arriving at the point from all directions across the hemisphere over the point.

Light arriving directly from a light source is discarded, since it should be taken

into account by a direct illumination algorithm; only light that has bounced off at

least one surface before arriving at the point where we’re measuring is important.

It should be apparent that this leads to a recursive algorithm, since to measure the

light arriving from a certain direction we will need to compute the light leaving the

surface that is visible in that direction. In reality, light can bounce infinitely many

times before reaching any single point in the scene, which would make solving the

diffuse indirect illumination for a scene intractable. However, part of the light is

absorbed when it hits a surface, so that its intensity at each subsequent bounce

is progressively diminished. This means that it is possible to compute a very

close approximation of the true indirect illumination by only computing a finite

number of bounces, though statistical methods exist that can make computing an

unbounded number of bounces possible.

One of the most widely-used algorithms for computing the diffuse indirect

illumination is Irradiance Caching [WRC88]. Irradiance is a radiometric quantity

describing the incident light hitting a surface. This algorithm is born from the

observation that indirect illumination varies slowly across diffuse surfaces, such

that it is possible to compute the actual irradiance only sparsely across the scene;

a diffuse material reflects light uniformly in all directions, meaning that the light

reflected from the surface is invariant to the direction from which the surface

is observed. This also means that, if the hemispheres over two different points

are sufficiently similar, the irradiance computed at one point can be re-used at

the other, trading a small amount of error in the resulting approximation for

a large reduction in computational expense. In this algorithm, illumination at

points where direct irradiance computation is not attempted is then approximated

by interpolating the irradiance cached at those locations where it was. While
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in reality many surfaces break the diffuse material assumption, in practice the

algorithm works surprisingly well in most real-world cases. Fundamental to the

algorithm, then, is answering the question of where in the scene to directly compute

the irradiance, such that interpolation at other locations in the scene will produce

the least possible error in the approximation.

Ward et al. [WRC88] proposed the Split-Sphere model as a way of deriving

an upper bound on the expected error of approximating the irradiance at a point

where it was not computed by interpolating the irradiance computed at other

locations. The split-sphere is an idealized representation of the environment that

produces the largest possible change in the irradiance as the point where it will be

approximated is translated, assuming that there are no strong indirect illumination

sources. Ward’s intuition for making this assumption was that strong indirect

illumination would not be taken into account by the algorithm and would instead

be directly sampled. The so-called split-sphere heuristic has been used, unchanged,

as the method for error control for Irradiance Caching ever since its introduction.

Unfortunately, the assumptions that the split-sphere heuristic makes are

broken, in practice, by even trivially simple scenes. Not only are strong indirect

diffuse illumination effects surprisingly common, but the threshold for a radiomet-

ric feature in the scene to cause the split-sphere error bound to be too loose is also

not very high. This has led to the introduction in the literature of an array of

methods that attempt to fix these shortcomings while stopping short of actually

modifying the split-sphere heuristic. This means that a state of the art implemen-

tation of Irradiance Caching must not only support the split-sphere heuristic itself,

but must also implement most or all of these fixes in order to produce acceptable

quality imagery.

Furthermore, as stated before, the split-sphere is only an idealized model

and not the actual radiometric configuration of any given scene that is to be

rendered. This leads the split-sphere heuristic to define its error measure in a

purely geometric fashion, in effect discarding the effects of the actual radiometry

of the scene, leading to cases where cache records are wastefully computed at

radiometrically unimportant locations in the scene.
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Jarosz et al. [JSKJ12] proposed the first practical replacement for the split-

sphere heuristic in the context of a complete development of 2D light transport,

by making use of the second derivative of irradiance - the irradiance Hessian - to

derive a principled method for error control in the irradiance caching algorithm.

While their results are promising, they stopped short of fully exploring the merits

of their new method. Further to this, the irradiance Hessian they derived does not

take inter-object occlusions into account, so that an important class of radiometric

phenomena, indirect shadows, have no effect on their error control method.

In this thesis, we augment the work of Jarosz et al. by deriving an occlusion-

aware irradiance Hessian, and extensively validate its use in a new method for

controlling the interpolation error in Irradiance Caching. Our new method has

the advantage over the classical split-sphere heuristic of decreased interpolation

error for a given number of cache points, as well as only having a single user-

facing parameter, leading to much simpler and intuitive control over the resulting

image quality. Moreover, our new method is able to take advantage of most of the

corrective fixes that are routinely applied to the split-sphere heuristic, leading to

even lower error in the resulting images; some of the fixes produce no noticeable

image quality improvement and can thus be discarded, leading to simpler and

faster implementation.

1.1 Summary of Original Contributions

The contributions of this thesis are related to the computation of an occlusion-

aware irradiance Hessian in arbitrary scenes, and the utilization of such a Hessian

to control the approximation error in the context of the irradiance caching algo-

rithm.

1.1.1 Occlusion-Aware Irradiance Hessian

Our first contribution is the analysis and derivation of the Hessian of the

light vector field due to partially occluded polyhedral light sources. We show that

this derivation can be successfully used to analytically compute the irradiance Hes-
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sian for an arbitrary polygonal 3D scene, and then analyze the reasons that render

it impractical for general application to error control in the irradiance caching

algorithm.

1.1.2 Practical Hessian-based Error Control for Irradiance

Caching

Our second and major contribution is the derivation of a practical method

for computing an occlusion-aware irradiance Hessian in 3D scenes of arbitrary com-

plexity and construction. We show how this method can be practically leveraged

in the context of Irradiance Caching to produce higher-quality images than have so

far been possible using this algorithm, and compare the results to those obtained

by the venerable split-sphere heuristic.

1.2 Organization of the Thesis

The thesis is divided into seven chapters. In the remaining chapters, we first

focus on background material and previous work, leading to our own contributions.

Chapter 2 describes the fundamentals of light transport and serves as a basis for

the remainder of the thesis. Chapter 3 describes the irradiance caching algorithm

in detail. Chapter 4 describes the split-sphere model and heuristic, shows its limi-

tations and shortcomings, and describes the extensions that have been proposed to

deal with them. Chapter 5 briefly describes the previous work on leveraging irradi-

ance Hessians for error control in irradiance caching. In chapter 6, we first describe

our derivation of an analytical irradiance Hessian for partially occluded polyhedral

sources, and show why it is impractical for use within the irradiance caching al-

gorithm. We then present our practical method for computing an occlusion-aware

irradiance Hessian and show how it can be used to produce high-quality renderings

using irradiance caching. Finally, we present our conclusions in chapter 7.



Chapter 2

Fundamentals of Light Transport

The goal of computer graphics rendering algorithms is to synthesize images

that provide a representation of a virtual scene. In the specific case of realistic ren-

dering, this goal is made more precise, and entails the production of imagery that

accurately portray the real-world appearance of such a scene. Global illumination

algorithms have become an integral part of this discipline, and strive to achieve

an accurate simulation of the physical behavior of light that is emitted from light

sources and then interacts with the various objects in the scene, the virtual camera

sensor being (a very important) one of them.

In this chapter, we first explore the necessary background and develop the

terminology necessary to formulate the problem that these algorithms must solve.

Sections 2.1 and 2.2 provide this background, and in section 2.3 we explain the

expressions that govern the behavior of light as it interacts with surfaces in the

scene. Sections 2.4 and 2.5 describe two of the main techniques that have been

developed to simulate these effects.

2.1 Models of Light

The dual nature of light gives rise to a variety of phenomena that computer

graphics algorithms can attempt to simulate. Several models have been proposed

that are able to capture progressively larger subsets of these phenomena, and that

are thus also progressively complex. These are, in increasing order of complexity:

7
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Quantum Optics

Electromagnetic
Optics

Wave Optics

Ray Optics

Figure 2.1: Different models for describing the properties of light, where each succes-
sive model is able to account for further optical phenomena. As for most of computer
graphics, we will restrict ourselves to the ray optics model throughout this thesis.

ray optics, wave optics, electromagnetic optics and quantum optics (see Figure

2.1). Of these models, ray optics - also called geometric optics - is the one most

commonly used in computer graphics applications.

This model makes several simplifying assumptions about the behavior of

light that preclude several interesting light effects from being simulated; light can

only be emitted, reflected and transmitted. This means that phenomena that de-

pend on the wave nature of light (such as diffraction and interference), on the

electromagnetic nature of light (such as polarization and dispersion) or the quan-

tum mechanics effects of light (such as phosphorescence and fluorescence) cannot

be easily reproduced. However, the visibility of these effects on many real-world

scenes is generally quite limited, such that the limitations of the model rarely limit

the realism of the images that can be produced. Throughout this thesis we will

use the ray optics model exclusively.

2.2 Radiometry

Radiometry is the study of the physical measurement of electromagnetic

radiation, of which an important component is visible light. Like any other rigorous

field of study, it defines a common terminology for the quantities and units involved,
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most of which is used as well in global illumination algorithms. While in reality

all of these radiometric quantities depend on the wavelength of light, we omit this

dependence due to our use of the ray optics model.

2.2.1 Radiometric Quantities

Flux.

This is the fundamental quantity in radiometry. Flux, denoted φ, expresses

the total energy that flows across a surface per unit time - for instance, we use

flux to describe the power of light bulbs. Flux is expressed in terms of watts

[W = J · s−1].

Irradiance.

Commonly referred to using the letter E, irradiance describes the amount

of power incident on a surface, per unit surface area. It is expressed in units of

[W ·m−2]:

E(x) =
dφ

dA
. (2.1)

Irradiance is only meaningful with respect to a specific surface position x,

with surface normal n. The converse quantity, measuring the flux leaving a surface,

is called radiant exitance (M) or radiosity (B).

Radiance.

Radiance is defined as flux per unit projected area, per unit solid angle,

and is measured in units of [W ·sr ·m−2]. Intuitively, radiance expresses how much

power arrives from a differential solid angle d~ω at a hypothetical differential area

dA⊥ that is perpendicular to that direction. It is a five-dimensional function that

varies with position x and direction vector d~ω that can be expressed as

L(x, ~ω) =
d2φ

d~ωdA⊥
. (2.2)

Radiance is probably the most important quantity in global illumination

algorithms because it captures the perceived brightness of objects, or their ”ap-
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Table 2.1: The fundamental radiometric quantities, with their symbol and units.

Symbol Units Description

φ W Flux or power

E W ·m−2 Irradiance

M W ·m−2 Radiant exitance

B W ·m−2 Radiosity

L W ·m−2 · sr−1 Radiance

pearance”. In practice, we are usually interested in measuring radiance at an

actual surface as opposed to the hypothetical differential surface perpendicular to

the direction of light flow. In this case, equation (2.2) becomes

L(x, ~ω) =
d2φ

d~ωdA(n · ~ω)
(2.3)

where the foreshortening term, (n · ~ω), takes into account the spreading of light at

glancing angles.

We summarize the radiometric quantities, their notation and units in Ta-

ble 2.1.

2.2.2 Radiometric Relationships

Given the importance of radiance in global illumination algorithms, it is

usually useful to express the other radiometric quantities described in the previous

subsection in terms of radiance. It is possible to invert equation (2.2) to express flux

in terms of radiance, by integrating both sides over the hemisphere of directions Ω

and area A, arriving at:

φ =

∫
A

∫
Ω

L(x→~ω)(n · ~ω)d~ωdA. (2.4)

This can be combined with equation (2.1) in order to express irradiance

and radiosity in terms of radiance:

E(x) =

∫
Ω

L(x←~ω)(n · ~ω)d~ω, (2.5)

M(x) = B(x) =

∫
Ω

L(x→~ω)(n · ~ω)d~ω. (2.6)
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Incident Radiance Exitant Radiance

Figure 2.2: We can distinguish between two distinct types of radiance at a point x.
L(x←~ω) represents radiance coming towards x from direction ~ω (left), while L(x→~ω)
represents radiance leaving x in the direction ~ω (right).

2.2.3 Incident and Exitant Radiance Functions

Throughout this thesis we will use the convention that L(x → ~ω) denotes

radiance leaving x in direction ~ω while L(x ← ~ω) signifies radiance arriving at

x from direction ~ω. In both cases, the direction vector ~ω points away from the

surface, as illustrated in Figure 2.2. This distinction is important because the two

quantities measure fundamentally different sets of photons, such that in general

L(x→~ω) 6= L(x←~ω). (2.7)

Photons propagate freely as long as they don’t interact with their environ-

ment (as in a vacuum) or surfaces in the scene. This means that incident radiance

at a point, from a direction ~ω, will continue on as exitant radiance in direction −~ω

L(x←~ω) = L(x→−~ω). (2.8)

This establishes the invariance of radiance along straight paths in a vacuum,

a property due to the principle of conservation of energy, and allows us to define

a simple relationship between the incident and exitant radiance at two distinct

points. In order to do so, we first introduce the visibility function v(x, ~ω) = x′,

where x′ is the point on the surface closest to x in direction ~ω. The invariance

property means that incident radiance at a point x, from direction ~ω, is equal to

the exitant radiance at x′ in the direction −~ω. This is illustrated in Figure 2.3 and

can be expressed as:

L(x←~ω) = L(x′→−~ω). (2.9)
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Figure 2.3: The incident radiance at x from direction ~ω is equal to the exitant radiance
from the closest visible surface in that same direction.

2.3 Light and Surfaces

Photons emitted into a scene interact with the different objects in it by

being reflected or transmitted at the surface boundaries. In the remainder of this

chapter we will explore these interactions.

2.3.1 The BRDF

Different materials, under the same lighting conditions, will appear different

to an observer, due to the dissimilar interactions of the light with the materials.

When light encounters an object in a scene, it will either be reflected, refracted

or absorbed. Due to the ray optics model, we will assume that light incident at

a surface exits at the same wavelength and at the same time, so that effects such

as fluorescence and phosphorescence are ignored. We further make the simplifying

assumption that light striking at a particular point in a surface will be reflected

at the same location, precluding the simulation of subsurface scattering effects. In

this case, the interaction between the light and the surface can be described by

a reflectance function called the bidirectional reflectance distribution function of

BRDF. The BRDF at a point x is defined to be the ratio of the differential radiance

reflected in an exitant direction ~ω′, and the differential irradiance incident from a

direction ~ω:

fr(x, ~ω→~ω′) ≡ dL(x→~ω′)

dE(x←~ω)
=

dL(x→~ω′)

L(x←~ω)(n · ~ω)d~ω
. (2.10)
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where the last step follows from substituting equation (2.5) into the denominator.

Properties of the BRDF

1. Range. The BRDF can take any positive value.

2. Domain. At each point on a surface, the BRDF is a four-dimensional func-

tion; two dimensions specify the incoming direction and the other two specify

the outgoing direction. Generally, the BRDF is anisotropic, meaning that

the value of fr will change depending on the rotation around the surface

normal n. However, for many real materials the BRDF does not depend on

the orientation of the underlying surface.

3. Reciprocity. The value of fr is invariant to an exchange of the incoming and

outgoing directions. Mathematically, Helmholtz’s reciprocity states that:

fr(x, ~ω, ~ω
′) = f(x, ~ω′, ~ω). (2.11)

Therefore, the following notation is used to indicate that the directions can

be interchanged:

fr(x, ~ω↔~ω′). (2.12)

4. Relationship between incident and reflected radiance. We can use

the information in the BRDF to derive the relationship between incident

and reflected radiance. Multiplying both sides of equation (2.10) by the

denominator and integrating over the hemisphere we get:

L(x→~ω′) =

∫
Ω

fr(x, ~ω↔~ω′)L(x←~ω)(n · ~ω)d~ω. (2.13)

This equation can be used to compute the reflected radiance at a point

x, and tells us that the radiance reflected off a surface can be computed

by integrating the incident radiance arriving from the entire hemisphere of

directions.

5. Energy conservation. Energy conservation requires that a surface not

reflect more light than is incident upon it. This can be expressed as the

following constraint: ∫
Ω

fr(x, ~ω↔~ω′)(n · ~ω)d~ω ≤ 1,∀~ω′. (2.14)
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2.3.2 The Rendering Equation

In order to produce images, computer graphics algorithms must determine

the ”appearance” of all points that are visible, either directly or indirectly, in

the final rendering. In the case of realistic image synthesis, this is usually ac-

complished by solving the Rendering Equation, also known as the Light Transport

Equation [Kaj86].

Hemispherical Formulation

The rendering equation relates outgoing radiance at a point x, in a certain

direction ~ω, to the emitted and reflected radiance at that point. Since the reflected

radiance depends upon all light impinging on that point at any given moment, and

that light might in turn have been emitted or reflected from another point in the

scene, this leads to a recursive formula:

L(x→~ω′)︸ ︷︷ ︸
outgoing

= Le(x→~ω′)︸ ︷︷ ︸
emitted

+Lr(x→~ω′)︸ ︷︷ ︸
reflected

. (2.15)

The local illumination model described by Equation (2.13) expresses the reflected

radiance at a point on a surface. Substituting this into Equation (2.15) results in

the hemispherical form of the rendering equation:

L(x→~ω′)︸ ︷︷ ︸
outgoing

= Le(x→~ω′)︸ ︷︷ ︸
emitted

+

∫
Ω

fr(x, ~ω↔~ω′)L(x←~ω)(n · ~ω)d~ω︸ ︷︷ ︸
reflected

. (2.16)

Area Formulation

It is sometimes convenient to express the rendering equation not as an

integration over the hemisphere of directions, but directly over points on the surface

of scene geometry. This can be done using the change of variable relation

d~ω =
ny · −~ω
‖x− y‖2

dA(y), (2.17)

where y is a point on a surface with normal ny.

In contrast to the hemispherical formulation, where visibility is implicitly

accounted for by using the ray casting function, in this case we must make the
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accounting explicit. We introduce the visibility function V :

∀x,y ∈ A : V (x↔y) =

{
1 if x and y are mutually visible,

0 otherwise.
(2.18)

and transform Equation (2.16) into an integration over surface area:

L(x→~ω) = Le(x→~ω)

+

∫
A

fr(x,y↔x)L(x←y)V (x↔y)
(n · ~ω)(ny · −~ω)

‖x− y‖2
dA(y). (2.19)

We can simplify this expression by defining the geometric coupling term:

G(x↔y) =
(n · ~ω)(ny · −~ω)

‖x− y‖2
, (2.20)

resulting in

L(x→~ω) = Le(x→~ω)

+

∫
A

fr(x,x↔y)L(x←y)V (x↔y)G(x↔y)dA(y). (2.21)

2.4 Methods for Solving the Rendering Equation

The rendering equation is far too complex to solve analytically in the general

case, and very costly to compute even in simplified settings. This has lead to its

approximation using numerical integration methods. Many algorithms have been

proposed in the literature to fully or partially tackle this problem, which can

generally be classified into two categories: Monte Carlo ray tracing methods and

finite element methods.

2.4.1 Monte Carlo Ray Tracing Methods

In Monte Carlo methods, random samples of a function to be integrated are

used to approximate the integral. The first use of these methods can be traced back

to work on the atomic bomb during the second world war, and they have continued

to be used in the field of neutron transport ever since [MU49]. The development

of Monte Carlo methods to computer graphics was done independently, starting
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with their introduction by Appel [App68], who suggested the use of ray-casting as a

method to generate images by intersecting the scene geometry with a single ray for

each pixel in the final image. This approach was augmented by Whitted [Whi80]

who proposed the recursive evaluation of the illumination in a scene by tracing

specular reflection and refraction rays, as well as shadow rays for direct diffuse

illumination. Furthermore, he also suggested randomly perturbing the surface

normal in order to simulate rough specular reflections.

Complex surface and light interactions are naturally supported by ray trac-

ing methods and, when combined with Monte Carlo techniques, are able to sim-

ulate a wide variety of complex effects such as depth-of-field, motion blur, glossy

reflections and global illumination [CPC84, Coo86, Kaj86]. Monte Carlo ray trac-

ing methods, such as path tracing or bidirectional path tracing [Kaj86, VG94]

are able to simulate practically all effects that are possible under the ray optics

model. Unfortunately, Monte Carlo techniques suffer from variance that manifests

itself as high-frequency noise in the generated images. Though there has been am-

ple research into ways to minimize this noise [Shi91, VG95], rendering with these

methods still typically requires tracing hundreds of rays at each pixel to produce

an acceptable rendering.

2.4.2 Finite Element Methods

Finite element methods have typically been collectively called radiosity

methods in computer graphics, and where originally adapted from the radiative

heat transfer literature. Radiosity methods compute the indirect illumination in a

scene by discretizing the scene geometry into a set of small patches, which form the

basis over which the global illumination computation is performed. This computa-

tion is solved by expressing the rendering equation as a system of linear equations

describing the exchange of light energy between patches in the scene.

The initial work in radiosity was heavily restrictive of the complexity of the

scenes for which it could compute solutions, working only for scenes with large

area light sources and Lambertian surfaces - for which the BRDF is a simple con-

stant [GTGB84, CG85]. These restrictions lead to an algorithm that is simply to
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implement and for which the resulting solutions are view-independent - allowing

for a single solution to be reused when rendering multiple views of a single scene.

Due to this property, radiosity techniques were well-suited for use when rendering

walk-through animations of simple diffuse scenes, though the computation of these

solutions requires significant computation time and have very high storage require-

ments. This led to further research that attempted to address these drawbacks,

by adding support for more complex reflections [ICG86, SAWG91, CSSD96], view-

dependent computation [SAS92] and hierarchical computation [HSA91]. High-

frequency lighting effects can be supported through the use of discontinuity mesh-

ing, which can resolve sharp discontinuities in the lighting - such as hard shadow

edges - by carefully subdividing the tessellation of the solution. All these additions

greatly increase the computational complexity of the radiosity algorithm. Radios-

ity is also ill-suited for scenes with very complex geometry, since the cost of solving

the lighting equations is directly related to the geometric complexity of the scene.

One of the main advantages of radiosity techniques over unbiased Monte

Carlo ray tracing methods is that, for a certain simulation quality, the computation

time is independent of the resolution of the final image. Computational effort

can be efficiently reused over large regions of the rendered image, in contrast to

unbiased ray tracing which require independent evaluation at each pixel. Biased

Monte Carlo ray tracing relaxes this requirement and has made some of the most

efficient rendering algorithms possible. Irradiance caching [WRC88], which forms

the basis for this thesis, is one such method.



Chapter 3

Irradiance Caching

Since its introduction by Ward in 1988 [WRC88], irradiance caching has

become one of the most widely-used techniques used to compute global illumi-

nation. In this chapter we first provide a complete description of the algorithm

as originally presented by Ward, including derivations needed to fully understand

the approach. We discuss the strengths that have led to its widespread use, and

then analyze some of the shortcomings that motivate the main contributions of

this thesis. We then explore various extensions that have been proposed in the

literature to deal with them.

3.1 Algorithm Overview

Ray tracing algorithms compute a solution to the rendering equation by

recursion (see Figure 3.1). At each level, shading is computed by (1) intersecting

the ray with the scene geometry, (2) computing the direct contributions from light

sources, (3) computing specular reflection and refraction and (4) computing diffuse

contributions from reflecting surfaces. The complexity of this calculation is closely

related to the cost of step (1) and the times it must be executed given the recursion

implicit in steps 2 through 4. The contributions from steps 2 and 3 generally

subtend small solid angles, leading to their effective integration using a limited

number of rays. The diffuse contribution of step 4, in contrast, requires integration

over the entire visible hemisphere. Approximating this integral therefore requires

18
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x x

(1) Ray intersection
with surface

x x

(2) Rays to compute
direct component

(3) Rays to compute
specular component

(4) Rays to compute
diffuse component

Figure 3.1: The four steps of ray tracing.

hundreds or even thousands of rays.

Ward et al. made the critical observation that, given the separation of the

lighting integral into the disjoint components subsumed by steps 2 through 4, the

diffuse indirect illumination tends to change slowly across Lambertian surfaces -

direct lighting and specular reflection/refraction tend to be high frequency, but

these components are taken into account by steps 2 and 3. Irradiance caching

exploits this property: for the sake of efficiency, the costly indirect illumination

integration is performed only at sparse locations in the scene. The results of this

integration are stored in a cache and, where possible, reused through interpolation.

We illustrate this approach in Figure 3.2 (right).

Irradiance caching thus marries some of the most beneficial properties of

radiosity methods with the generality of Monte Carlo ray tracing approaches. Since

the computational cost of interpolating irradiance from the cache is minuscule

Figure 3.2: In irradiance caching, incident lighting is decomposed into a direct compo-
nent (far left) and an indirect component (center left). The total lighting in the scene
can be obtained by summing these two components (center right). Irradiance caching
exploits the slow-varying nature of indirect illumination on lambertian surfaces, only
computing this value at sparse locations (far right, cache records shown as white dots)
and interpolating between these records whenever possible.
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compared to directly sampling the irradiance - by performing the full integration -

the cost to render images of a scene is independent of the resolution of those images.

Whereas radiosity methods store their information in the scene’s geometry mesh,

the irradiance cache is stored in a separate data structure, decoupling it from any

specific geometric representation and granting the algorithm far wider applicability.

Finally, irradiance caching only computes the indirect illumination for points in

the scene that are visible to the camera, gaining further efficiency when compared

to radiosity approaches.

When using irradiance caching, the indirect illumination is computed as

follows: If there is at least one cache record stored in the vicinity of x, then

interpolate the irradiance from the stored value(s); otherwise, compute and store a

new irradiance value at x. The algorithm runs lazily and on-demand, in a greedy

fashion. In the following sections we will look at the algorithm in more detail,

exploring how the irradiance values are computed, how the decision is made on

whether to interpolate from the cache or to compute a new irradiance sample, and

how the interpolation is made.

3.2 Irradiance Computation

This section presents the method by which a high quality approximation

of the irradiance is computed. This method is invoked when querying the cache

results in no useable cache records.

The irradiance at a point x can be expressed in terms of incident radiance

using Equation 2.5:

E(x) =

∫
Ω

L(x←~ω)(n · ~ω)d~ω (3.1)

We can estimate this integral using ray tracing by evaluating the following Monte

Carlo estimator:

E(x) ≈ 1

N

N−1∑
i=0

L(x←~ω)(n · ~ω)

pdf(~ω)
. (3.2)

In order to reduce the variance in the estimate, Ward et al. used a cosine-

weighted sample distribution with pdf(x) = (n · ~ω)/π, allowing the foreshortening
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term in the estimator to cancel out. Furthermore, the sample distribution is strat-

ified by converting to polar coordinates, such that the estimator becomes:

E(x) ≈ π

MN

M−1∑
j=0

N−1∑
k=0

L(x, θj, φk), (3.3)

where

θj = sin−1

(√
j + ξ1

M

)
, (3.4)

φk = 2π
i+ ξ2

N
, (3.5)

and (ξ1, ξ2) ∈ [0, 1)2 are uniformly distributed random numbers. The angles θj and

φk are expressed relative to the local coordinate frame at x. As stated above, the

algorithm uses a total of M ×N samples to evaluate the irradiance at a point. In

their original formulation, Ward et al. set N = 2M .

3.3 Irradiance Interpolation

In general, the method presented in the previous section is very costly to

compute if we’re interested in a high-quality approximation of the irradiance, since

hundreds or even thousands of sample rays may be required. Irradiance caching

therefore attempts to amortize this cost by only incurring it at as few locations

of the scene as possible, and using interpolation or extrapolation everywhere else.

Where the rate of change of the irradiance is low, only a sparse set of cache

records should be computed; in parts of the scene where irradiance varies rapidly,

a denser set of records should be created to enable an accurate approximation via

interpolation. Estimating the rate of change of the irradiance is therefore of utmost

importance for the performance of the algorithm.

Ward et al. developed a heuristic, described in the following section, that

estimates an upper bound on the rate of change of irradiance for scenes assuming

there are no concentrated sources of diffuse illumination. The reason behind this is

that any concentrated light sources should be directly sampled - step 2 in section

3.1. If we denote this upper bound εi(x,n), then its inverse is used as a weight for
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Figure 3.3: The ”Split-Sphere” model. A surface is surrounded by a hypothetical sphere
environment, which is half bright and half dark. The change in irradiance with respect
to differential rotation of the normal n and translation along the surface is calculated
and used as an estimate for the maximum change in irradiance in any possible scene.

interpolation between nearby cache records:

wi(x,n) =
1

εi(x,n)
(3.6)

Whenever a new shading location is reached during rendering, the cache is queried

for any records for which the weight is higher than a user-specified threshold. If

any exist, then these are used to compute a weighted average of the irradiance. If

no records satisfy this criteria, then a new one is generated by directly computing

the irradiance using Equation 3.3.

3.3.1 The Split-Sphere Model

In order to estimate an upper bound on the change in irradiance in a scene,

εt(x,n), Ward et al. introduced the ”split-sphere” heuristic. In this simple model,

a surface element is located at the center of a hypothetical sphere (see Figure 3.3).

Half of the sphere is bright while the other half is dark, and the surface element’s

normal points towards the dividing line between both halves. This hypothetical

environment has the largest possible irradiance gradient for a scene without con-

centrated sources of illumination.

Within this environment, irradiance is a function of x, the position, and n,
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the orientation, of the surface element. Therefore, a conservative upper bound on

the change of irradiance is given by the first-order Taylor expansion of irradiance

at x, and we have

εi(x,n) = E(xi)

(
4

π

‖x− xi‖
R(xi)

+
√

1− (n · ni)
)
, (3.7)

where:

xi = irradiance sample location

ni = surface normal at xi

E(xi) = irradiance at xi

R(xi) = harmonic mean distance to surfaces from xi.

(3.8)

R(xi) represents the average distance to surfaces that are visible from the sampling

point, and corresponds to the radius of the hypothetical ”split-sphere”. It can be

computed during rendering by measuring the length of the rays cast from that

location during computation of Equation 3.3 as:

R(xi) =
MN∑M−1

j=0

∑N−1
k=0

1
rj,k

, (3.9)

where rj,k is the sample distance corresponding to the (j, k)th ray.

As mentioned in the previous section, the weight for each irradiance cache

record is given by the inverse of this estimated error bound. The estimated irradi-

ance at a new location x is then the weighted average:

E(x,n) ≈
∑

i∈S wi(x,n)E(xi)∑
i∈S wi(x,n)

, (3.10)

where:

S =

{
i : wi(x,n) >

1

a

}
a = user set error threshold

(3.11)
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Ward et al. further simplified the weight computation by removing the constant

terms from Equation 3.7, since they are valid only for the hypothetical ”split-

sphere” environment. The weight then becomes:

wi(x,n) =
1

‖x−xi‖
R(xi)

+
√

1− n · ni
. (3.12)

This formulation of irradiance averaging easily supports the computation

of the maximum distance from xi at which the weight wi(x,n) will still be over

the 1
a

error threshold, which is given simply by aR(xi). This observation allowed

Ward et al. to store the irradiance cache records in an octree, which enables

efficient search for all records that will be valid for a certain shading location x in

order to calculate Equation 3.10. It is straightforward to see that cache records at

locations that are surrounded by ”nearby” geometry surfaces will have small valid

radii, while records at locations that are far from any visible geometric features

will have larger valid radii.

Weighting Function Variations

A few more notes should be given regarding the weighting function. As

defined, it has the unfortunate property that it does not fall to zero at the cache

record boundary, which Krivanek and Gautron [KG09] showed can lead to dis-

tracting artifacts in the final image, and proposed to fix this by subtracting 1
a

from

the cache weight, resulting in:

wki (x,n) =
1

‖x−xi‖
R(xi)

+
√

1− n · ni
− 1

a
. (3.13)

When using this modified weight formula, cache records are used as long as wki (x,n)

is greater than zero.

Tabellion and Lamorlette [TL04] also proposed a variation to the weighting

function:

wti(x,n) = 1− εi(x,n), (3.14)

where the weights also fall off to zero at the cache record boundaries (note that

Tabellion and Lamorlette also extensively modified the error term, εi(x,n), though
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dn dx

Figure 3.4: Top- and side-views of the ”Split-Sphere” model, illustrating the method
for computing the change in irradiance with rotation (purple) and translation (red).

we ignore this as it does not affect the weight computation). This formulation has

the added benefit that wti(x,n) ∈ [0, 1], whereas the value for either Ward et al’s

or Krivanek and Gautron’s weights is unbounded and goes to infinity close to the

recorded cache record location, which can also lead to artifacts.

3.3.2 Derivation of the Model

We now present a more rigorous derivation of the irradiance gradient de-

scribed in the previous section, and illustrate the process in Figure 3.4. The change

in irradiance is dependent upon the translation of x and the rotation angle of the

surface normal, θ. A conservative upper bound on this change is given by the first

order Taylor expansion about xi:

ε(x, θ) = Ei

(
∂E

∂x
(x− xi) +

∂E

∂θ
(θ − θi)

)
. (3.15)

Within the hypothetical ”split-sphere” environment, the irradiance at a

sample point will be proportional to the projected area of the bright half of the

hemisphere. As x is translated, this area will incur change that can be approxi-

mated by the ratio of the added area (shown red in Figure 3.4.) to the old area:

∂E

∂x
∆x ≈ 2R∆x

1
2
πR2

=
4∆x

πR
. (3.16)
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where the numerator is an upper bound on the added area, and is a good approx-

imation when ∆x is small.

In the case of rotation of the surface normal, we use the same technique. In

order to maximize the change in irradiance, the axis of rotation should be aligned

with the line splitting the sphere into dark and bright halves. By looking at Figure

3.4, we can see that this change in orientation induces a change in the projected

area of the bright half of the hemisphere, shaped as one half of an ellipse. The

area of an ellipse is given by πr1r2 and, in our case, r1 = R is simply the radius of

the ”split-sphere” while r2 = R sin ∆θ. We again take the ratio of the added area

to the old area and have

∂E

∂θ
∆θ ≈

1
2
πR2 sin ∆θ

1
2
πR2

= sin ∆θ. (3.17)

We can now substitute these terms into Equation 3.15:

ε(x, θ) = Ei

(
4

π

|x− xi|
R

+ sin(θ − θi)
)
. (3.18)

This derivation has assumed a fixed, imaginary split-sphere environment

that is a constant distance R away from x. However, we need to apply this gradient

to the actual scene that is sampled using Equation 3.3. Generalization of the above

formula into vector-based quantities brings us to Equation 3.7.

3.3.3 Limitations of the Model

It can be seen by inspecting Equation 3.7 that the irradiance gradient im-

plied by the ”split-sphere” model is defined purely by the geometry in the scene -

while there is an Ei term corresponding to the irradiance at the sample location,

this acts only as a scaling factor. The model disregards the actual radiometric

configuration of the scene. While this leads to a useful heuristic, it suffers from

several limitations that make it harder to obtain high-quality results.

One of the main assumptions underlying the model is that there are no

concentrated sources of indirect illumination. As stated previously, Ward et al.

reasoned that any such sources should be taken into account as direct sources and,

thus, not be a part of the indirect illumination at all. However, there are many
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examples in real scenes where strong sources of indirect illumination arise: the sun

shining through an open door, for example. If it has a material with a high albedo,

the surface that the sun shines on will become very bright - in effect, becoming an

indirect diffuse light source. In this case, the irradiance gradient estimated using

the ”split-sphere” model will be too low, and the resulting cache will have too few

samples in that area, leading to a sub-optimal result.

Another limitation arises from its geometric nature. Since the ”split-sphere”

model doesn’t take into account the actual amounts of light that the various parts

of the environment cast upon the sample location, but only the distances to them,

the cache record distribution doesn’t properly adapt to changes in the relative

brightness of objects in the scene. For example, imagine a scene where one of

the walls was painted perfectly black, such that its albedo is 0. If we render this

scene using the ”split-sphere” heuristic, then many irradiance cache samples will be

placed along the floor, close to that wall, even though the wall induces no changes

whatsoever to the irradiance at any point on the floor.

These limitations, precisely, give rise to the new method we propose in

this thesis for bounding the change in the irradiance, and are analyzed further in

Section 4.2.1.

3.4 First-Order Irradiance Gradients

As described thus far, the irradiance caching algorithm produces a piecewise-

constant approximation of the irradiance on a surface, due to the extremely simple

weighted average interpolation scheme. Ward and Heckbert [WH92] realized that

it is possible to greatly improve the quality of this estimate by making better use

of the information provided by the irradiance sampling process. While the ”split-

sphere” model provides only a directionless upper bound on the magnitude of the

irradiance gradient, suitable for deciding the placement of cache records, it is also

possible to compute the actual irradiance gradient from the information available

in the sampled hemisphere. If both the irradiance and its gradient are available,

it is possible to formulate a higher-order interpolation of the irradiance samples.
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Figure 3.5: Simple scene rendered to show the advantage of using the irradiance gra-
dients to improve the quality of the irradiance reconstruction. Images from Ward and
Heckbert. [WH92].

Sampling the hemisphere through ray-tracing (Equation 3.2) provides us

with not only the final approximation of the irradiance, but also tells us the di-

rection, distance and brightness for each sample ray. Using this information, it

is possible to compute an accurate approximation of the gradient to the sampled

irradiance function. Since the irradiance is a five-dimensional function (three for

position and two for direction), the irradiance gradient is a five-dimensional vec-

tor. However, it is more convenient to separate the gradient into its translational

and rotational components, and compute both separately as two three-dimensional

vector quantities, ∇tE and ∇rE, respectively.

We extend Equation 3.10 to take advantage of this information, resulting

in:

E(x,n) ≈
∑

i∈S wi(x,n)(E(xi) + (ni × n) · ∇rE(xi) + (x− xi) · ∇tE(xi))∑
i∈S wi(x,n)

.

(3.19)

This modification adds the contribution of the translational and rotational gradi-
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ents as we move and / or rotate the surface away from a cache record’s location, and

can be interpreted as performing a piecewise-linear interpolation of the irradiance

function (see Figure 3.5).

3.4.1 Derivation of the Rotational Gradient

Derivation of the rotational component of the irradiance gradient is simpler

than that of the translational component, so we shall tackle it first. Recalling

Equation 2.5 we have that the irradiance at x is equal to the integration over the

visible hemisphere of the incoming radiance weighted by the cosine foreshortening

term:

E(x) =

∫
Ω

L(x←~ω)(n · ~ω)d~ω. (3.20)

As we rotate the surface at x, the incoming radiance L(x← ~ω) remains constant

for any given direction ~ω, but the foreshortening term changes. Transforming

Equation 2.5 to polar coordinates we have:

E(x) =

∫ 2π

φ=0

∫ π/2

θ=0

L(x, θ, φ) cos θdθdφ, (3.21)

such that the rotational gradient becomes:

∇rE(x) = ∇r

(∫ 2π

φ=0

∫ π/2

θ=0

L(x, θ, φ) cos θdθdφ

)

=

∫ 2π

φ=0

∫ π/2

θ=0

L(x, θ, φ)∇r(cos θ)dθdφ. (3.22)

Rotations of the surface that change φ have no effect. Only rotations that

change θ affect the irradiance, and we have that d
dθ

cos θ = − sin θ. In order

to compute the rotational gradient for the entire hemisphere, we integrate this

differential change over the entire hemisphere, multiplied by the corresponding

rotation axis v̂ (see Table 3.1):

∇rE(x) = −
∫ 2π

φ=0

v̂

∫ π/2

θ=0

L(x, θ, φ) sin θdθdφ. (3.23)

The gradient resulting from Equation 3.23 can be approximated through

Monte Carlo integration. In the irradiance caching algorithm the hemispherical
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Table 3.1: Definitions used for the derivation of the translational irradiance gradient.

Symbol Description

N Number of hemisphere divisions in azimuthal angle φ

M Number of hemisphere divisions in elevation angle θ

~ωj,k Sample direction for the (j, k)th cell

Aj,k Area of the (j, k)th cell, (MN)−1pdf(~ωj,k)

φk Azimuthal angle at the center of cells (·, k)

θj Elevation angle at the center of cells (j, ·)
(j−, k), (j+, k) Cell boundaries (j↔j − 1, k) and (j↔j + 1, k)

(j, k−), (j, k+) Cell boundaries (j, k↔k − 1) and (j, k↔k + 1)

φk− Azimuthal angle at boundary (·, k−)

φk+ Azimuthal angle at boundary (·, k+)

θj− Elevation angle at boundary (j−, ·)
θj+ Elevation angle at boundary (j+, ·)
ûk Tangent vector in the φk direction

v̂k Tangent vector in the φk + π
2

direction

v̂k− Tangent vector in the φk− + π
2

direction

samples are constructed using a cosine-weighted distribution, and thus we have:

∇rE(x) ≈ − π

MN

N−1∑
k=0

{
v̂
M−1∑
j=0

L(x, θj, φk)
sin θj
cos θj

}

= − π

MN

N−1∑
k=0

{
v̂
M−1∑
j=0

L(x, θj, φk) tan θj

}
. (3.24)

3.4.2 Derivation of the Translational Gradient

Derivation of the translational gradient is more involved than that for ro-

tation, because we must now take possible changes in visibility into account: as

we translate around x, the surfaces visible to us will change. Ward and Heck-

bert’s original derivation of the translation gradient looked at the change in area

of the projected hemispherical cells as the sampling point is translated, deriving

it from the independent motions of its walls along two almost-perpendicular vec-
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Figure 3.6: The stratified hemisphere used by Ward and Heckbert [WH92] in deriving
the irradiance gradients. Figure from Jarosz [Jar08].

tors. Krivanek et al. [KGBP05] and then Jarosz [JSKJ12] presented closely related

derivations that instead track these motions in the un-projected cells, and it is this

approach that we present here. Notation for the following discussion is shown in

Table 3.1 and illustrated in Figure 3.6.

We can think of the irradiance computation of Equation 3.2 as a weighted

sum of the incoming radiance, where the contribution of each sample is the prod-

uct of the radiance through L(x ← ~ωj,k), the solid angle of the corresponding

hemispherical cell Aj,k, and the foreshortening term n · ~ωj,k:

E(x) ≈
M−1∑
j=0

N−1∑
k=0

Aj,kL(x←~ωj,k)(n · ~ωj,k). (3.25)

Aj,k is simply the integral over the bounds of each cell:

Aj,k =

∫ φk+

φk−

∫ θj+

θj−

sin θdθdφ

= (cos θj− − cos θj+)(φk+ − φk−). (3.26)

We can obtain the translational gradient by differentiation of Equation 3.25:

∇tE(x) ≈
M−1∑
j=0

N−1∑
k=0

∇t(Aj,kLj,k cos θj).

Since translation of the projection center does not affect the incoming radiance

from any cell and, furthermore, maintains the cosine term constant, we can simplify
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the expression to:

∇tE(x) ≈
M−1∑
j=0

N−1∑
k=0

∇t(Aj,k)Lj,k cos θj. (3.27)

We are only interested in the irradiance gradient along a surface - the irra-

diance function is discontinuous if one looks at translation in the normal direction.

We can then reduce the change in cell area Aj,k to computing the differential change

in the cell walls with respect to translation along the base plane. For each cell, we

express the gradient with respect to directional derivatives of the four neighboring

cell walls:

∇tAj,k = ûk ·∇ûk
Aj−,k− ûk ·∇ûk

Aj+,k + v̂k− ·∇v̂k−
Aj,k−− v̂k+ ·∇v̂k+

Aj,k+ , (3.28)

where ∇ûk
Aj−,k is the scalar directional derivative of Aj−,k due to movement of

boundary (j−, k) in the ûk direction, and the other quantities are similarly defined

(see Table 3.1). Each of these derivatives can be interpreted as the product of the

length of the respective cell wall with its rate of motion due to translation in the

perpendicular direction.

While the gradient in Equation 3.27 is written in term of the translation

gradients of the cells, it is more convenient to express it as a summation over all cell

boundaries instead, given that neighboring cells share these. The movement of one

of the cell walls will induce a larger contribution from a given cell, while reciprocally

diminishing the contribution from the neighbor sharing that wall. Because of this,

we consider the difference in incoming radiance between the two adjacent cells in

computing the effect on the overall irradiance:

∇tE(x) ≈
N−1∑
k=0

(
ûk

M−1∑
j=1

∇ûk
Aj−,k(Lj,k − Lj−1,k) cos θj−

)

+

(
v̂k−

M−1∑
j=0

∇v̂k−
Aj,k(Lj,k − Lj,k−1) cos θj

)
.

(3.29)

We derive the rate of motion of each cell type in the following sections.
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Translation Along û

Translation of cell wall (j−, k) along ûk induces a change in cell area given

by:

∇ûk
Aj−,k = ∇ûk

θj− ·
∂Aj,k
∂θj−

,

= ∇ûk
θj− · (φk+ − φk−) sin θj− , (3.30)

where (φk+ −φk−) sin θj− arises from the differentiation of Aj,k as defined in Equa-

tion 3.26. We now only need to determine the change in the elevation angle θj− ,

for which we turn to the canonical hemispherical parametrization:

x = r cosφ sin θ, (3.31)

y = r sinφ sin θ, (3.32)

z = r cos θ, (3.33)

r =
√
x2 + y2 + z2, (3.34)

φ = arctan
(y
x

)
, (3.35)

θ = arccos
(z
r

)
, (3.36)

and determine the change in θ as we translate along x:

dθ

dx
=

zx

r3

√
1− z2

r2

, by differentiating Equation 3.36,

=
cos θx

r2
√

1− cos2 θ
, since

z

r
= cos θ,

=
cos θx

r2 sin θ
, because sin2 θ + cos2 θ = 1,

=
cos θ cosφ sin θ

r sin θ
, since

x

r
= cosφ sin θ,

=
cos θ

r
, because at y = 0, cosφ = 1. (3.37)

In order to apply this derivation to the hemispherical samples, we need to

determine r. Ward and Heckbert [WH92] made the observation that, as the sample

location moves, the rate of motion of the boundary between two neighboring cells

depends upon the closer of the two samples - this observation takes the changes
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in occlusion that happen with translation into account. We therefore have:

∇ûk
Aj−,k =

(φk+ − φk−) sin θj− cos θj−
min(rj,k, rj−1,k)

. (3.38)

Translation Along v̂

In the case of cell walls of the form (j, k−), we consider motion along v̂k− ,

where the change in area is given by:

∇v̂k−
Aj,k− = ∇v̂k−

φk− ·
∂Aj,k
∂φk−

,

= ∇v̂k−
φk− · (cos θj+ − cos θj−). (3.39)

We again turn to the canonical parametrization in order to compute ∇v̂k−
φk− :

dφ

dy
=

x

x2 + y2
, by differentiating Equation 3.35,

=
1

x
, since we evaluate at y = 0,

=
1

r cosφ sin θ
, from Equation 3.31,

=
1

r sin θ
, because cosφ = 1 at y = 0. (3.40)

Again, we use the minimum of the neighboring cell distances for r:

∇v̂k−
Aj,k− =

(cos θj+ − cos θj−)

sin θjmin(rj,k, rj−1,k)
. (3.41)

Bringing everything together

We can now use the values derived for the cell wall differentials from Equa-

tions 3.38 and 3.41 in Equation 3.29 to get the final translation gradient:

∇tE(x) ≈
N−1∑
k=0

(
ûk

M−1∑
j=1

(φk+ − φk−) sin θj− cos θj−
min(rj,k, rj−1,k)

(Lj,k − Lj−1,k) cos θj−

)

+

(
v̂k−

M−1∑
j=0

(cos θj+ − cos θj−)

sin θjmin(rj,k, rj−1,k)
(Lj,k − Lj,k−1) cos θj

)
.

(3.42)
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3.5 Tricks and Extensions

Several extensions to the original irradiance caching algorithm have been

proposed in the literature, that attempt to work around some of the limitations

of the split-sphere heuristic and improve the quality of the images rendered using

the method. There is also a multitude of tricks that implementers have come up

with to address these issues. We briefly summarize some of the most relevant ones

in this section.

3.5.1 Overture Pass

The original irradiance caching algorithm, as described by Ward et al. [WRC88]

and in Section 3.1, can result in distracting artifacts in the final rendered image.

In many areas, there might only be a single suitable irradiance cache record from

which the irradiance at a new location is extrapolated, resulting in a piecewise-

constant approximation of the true irradiance. Before the introduction of first-

order gradients by Ward and Heckbert [WH92], the use of an overture pass was a

necessity for rendering pleasing images using irradiance caching.

When using an overture pass, the final image is computed in a multi-pass

fashion: during the first pass, the irradiance cache is filled by rendering the entire

image without actually computing the actual pixel values, which are computed

during a second rendering pass. This approach ensures that the irradiance at all

points in the image is always reconstructed by interpolation of at least two irradi-

ance cache records, greatly reducing the appearance of distracting artifacts. The

greatest drawback of this extension to the algorithm is the requirement to render

the image in multiple passes, which Ward and Heckbert [WH92] acknowledge as

one of the motivations behind their work on first-order irradiance gradients, aimed

precisely at improving the quality of a single-pass irradiance reconstruction.

While originally used to reduce the artifacts from the piecewise-constant

approximation of irradiance produced by the classical algorithm, this technique is

still used in most modern implementations to improve the quality of the resulting

images. Part of the motivation for this thesis is to improve the algorithm such
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that it can be used as a robust single-pass method.

3.5.2 Gradient-Based Record Density Control

This small extension was introduced by Ward and Heckbert [WH92] along

with the use of the first-order gradients to improve the interpolation quality of the

algorithm. Their observation was that, since the actual irradiance gradient could

be computed from the sampling information, it was possible to use it instead of the

split-sphere bound in guiding the irradiance cache record density. However, some

locations in the scene might have a very small gradient even if nearby geometric

features might lead to sudden changes in illumination, leading to artifacts in the

image if only the actual gradient is used. They therefore proposed to use the

minimum of both gradients - generally bounding the cache record radii using the

gradient estimated using the split-sphere model, but switching to the true gradient

approximation for regions of the image where the split-sphere might underestimate

it.

While Ward and Heckbert fail to mention it, their observation and decision

to use the first-order irradiance gradient as a bound for the irradiance cache record

radii points to a fundamental deficiency in the split-sphere model: its hypothetical

basis precludes it from taking the actual illumination in a scene into account. It

should be noted that, as derived, the split-sphere model was defined to be a con-

servative bound to the possible change in irradiance with rotation and translation.

As we have explained, though, this only holds if there are no concentrated sources

of illumination in the environment. In reality this is seldom the case, and there

usually are at least some such sources in most scenes.

The improvement afforded by this extension can be great in areas where the

split-sphere heuristic under-estimates the true first-order gradient, but is unfortu-

nately not enough to produce high-quality cache record distributions: in many

areas the true gradient is too small to effectively control the record density, and

extensive radius clamping is often still necessary to render pleasing images with

irradiance caching. This observation is one of the strongest motivations for the

work presented in this thesis.
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3.5.3 Hierarchical Refinement

Irradiance caching uses a ”lazy evaluation” technique. As rendering pro-

gresses to a new pixel in the image, the cache is checked for records that are valid

at the new location and, if none are found, the irradiance is computed using Equa-

tion 3.3 and a new record is stored; if suitable records are found, irradiance is

interpolated from them. This leads to a dependence between the cache records

computed for a scene and the order in which the pixels are visited - usually, a

scanline order. Furthermore, it creates a problem in that pixels that have already

been evaluated might fall into the validity region of newly created cache records;

since those pixels will never be re-evaluated, unless an overture pass is used, the

contribution of the new records is never taken into account, resulting many times

in distracting image artifacts.

Hierarchical refinement is a technique that tries to deal with this situation.

For a chosen value n, the renderer first processes only one out of every 2n pixels of a

scanline and only one out of every 2n scanlines. A subsequent pass renders one out

of every 2n−1 pixels, for one out of every 2n−1 scanlines, effectively quadrupling the

number of image locations rendered, while skipping the pixels that have already

been processed. This continues until all pixels in the image have been processed.

This process generally results in better irradiance cache record distribu-

tions and less evident image artifacts. The problem of some pixels not receiving

the contribution from suitable records that were computed later in the process still

remains, but is greatly ameliorated by the way in which the cache is progressively

refined. Most implementations of irradiance caching combine hierarchical refine-

ment with an overture pass, greatly improving the resulting image quality. Even

so, this technique does nothing to address the more fundamental problems with

the split-sphere heuristic, and extensive cache record radius clamping is often still

required to produce acceptable images.

3.5.4 Neighbor Clamping

Whenever a new cache record needs to be computed, the irradiance at a

scene location is computed using Equation 3.3. Because the sample rays used do
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not cover all directions in the hemisphere, small geometric features in the scene

can be missed entirely, leading to a mean-distance to surfaces R(xi) that is too

large, producing a low local record density. If the missed feature is a strong source

of indirect illumination, this can lead to visible image artifacts. Furthermore, the

stochastic nature of the hemisphere sampling means that a nearby record might

not miss the relevant geometric feature, exacerbating these artifacts.

One solution to this problem was proposed by Tabellion and Lamorlette [TL04],

who use the minimum distance to surfaces, instead of the harmonic-mean, for

R(xi). However, this can lead to an overzealous algorithm that places too much

importance on even minuscule features and generally results in caches that are

denser than required.

Instead, neighbor clamping was proposed by Krivanek et al. [KBPZ06].

Two observations motivate this technique: first, as was mentioned earlier, that

the stochastic nature of hemisphere sampling means that small features missed at

any given cache record location will probably be ”seen” by a neighboring record;

second, that basic geometric coherence of the scene dictates that the radius of any

given cache record should differ from that of its neighbors by no more than the

distance between them - essentially satisfying the triangle inequality. While this

second observation is not exactly true unless the minimum distance to surfaces is

used for R(xi), the resulting algorithm works surprisingly well even when using

the harmonic-mean.

Technically, the algorithm works as follows: when a new record i is being

added to the cache, all nearby records j are located and the value of R(xi) is

clamped to R(xi) = min{R(xi), R(xj)+‖xi−xj‖}. After this, the nearby records’

R(xj) value is similarly clamped using the new R(xi) value.

Because neighbor clamping progressively modifies the irradiance cache, us-

ing an overture pass is necessary. The final image is only rendered once the entire

cache has been computed.
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3.5.5 Adaptive Caching

This technique was introduced by Krivanek et al. [KBPZ06] in the context

of the Radiance Caching rendering algorithm, but is just as applicable to irradiance

caching, and attempts to further improve the perceived quality of images rendered

using it for global illumination computation.

The goal of adaptive caching is to eliminate artifacts that arise due to in-

terpolation of the irradiance between neighboring cache records, which appear as

discontinuities at the boundary of the area of influence of two or more records.

This area is defined, for a record i, as {x : wi(x,n) ≥ 1
a
} where a is the user-

defined error-threshold parameter. The idea is to modulate this parameter on a

per-record basis, such that visible discontinuities due to interpolation are elimi-

nated. A discontinuity is reported if two records have a visibly different outgoing

radiance contribution anywhere in the overlap of their influence areas; wherever

such discontinuities are discovered, one of the records’ a parameter is reduced,

effectively reducing that record’s influence area. As with neighbor clamping, an

overture pass is required to use this technique, so that the irradiance cache has

fully converged before the actual pixel values are computed. We direct the reader

to the relevant paper for an in-depth description of the algorithm, which is beyond

the scope of this thesis.

While this technique can produce very good results, it fails to address any

of the fundamental shortcomings of the split-sphere model, which is still the model

used to derive the cache record weights. Furthermore, its implementation is fairly

involved, especially in order to achieve sufficient performance - the method requires

extensive re-visiting of image locations and proper tracking of each cache record’s

area of influence, which can easily require either excessive computation time or

storage (or both) if the implementer is not careful.



Chapter 4

The Occlusion-Agnostic

Irradiance Hessian

Though more than 20 years have passed since its inception, and many pa-

pers and techniques have been published to improve the irradiance caching algo-

rithm, the venerable ”Split-Sphere” heuristic has been used without major modifi-

cation as the error metric to define, during rendering, whether to compute and add

a new record or use those already in the cache. Minor changes have been proposed:

Tabellion and Lamorlette [TL04] used the minimum instead of the harmonic-mean

distance as the ”split-sphere” radius; Krivanek et al. [KBPZ06] proposed several

multi-pass techniques to improve upon the results obtained by using the split-

sphere heuristic.

Jarosz et al. [JSKJ12] proposed, for the first time, to do away with the split-

sphere heuristic entirely. Following a complete derivation of light transport in two

dimensions, they observed that it is possible to follow a more principled approach

in bounding the error induced by a first-order Taylor expansion approximation

of the irradiance in a scene. Instead of deriving a loose error bound based on the

hypothetical ”split-sphere” environment, they derived the second-order translation

gradient of irradiance - the irradiance Hessian - and showed how it can be used

to guide the local record density of an irradiance cache, but stopped short of

describing a practical replacement for the split-sphere heuristic. Their derivation

of the irradiance Hessian fails to take object inter-occlusions into account - an

40
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interesting feature in many scenes, leading to important illumination phenomena.

The rotational component of the gradient is also not taken into account. Their

work serves as a base on which we build our new, practical irradiance cache error

control method, and so we present in this chapter the most relevant derivations in

that work.

4.1 Derivation of the Occlusion-Agnostic Trans-

lation Hessian

Jarosz et al. derived the translation component of the irradiance first- and

second-order gradients by explicitly differentiating the surface-area formulation of

the irradiance equation. We can transform Equation 2.5 into this form following

the same steps we did for the rendering equation in Section 2.3.2:

E(x) =

∫
Ω

L(x←~ω)(n · ~ω)d~ω,

=

∫
A

L(x←y)V (x↔y)G(x↔y)dA(y), (4.1)

where we have again used the geometric coupling term, G(x↔ y), to transform

the integration over the hemisphere of directions into an integration over points on

the surfaces of scene geometry, and the visibility function V (x↔ y) to explicitly

account for the inter-visibility of points in the scene.

Differentiating this equation once, applying the product rule and omitting

obvious parameters, we arrive at the following definition of the irradiance gradient:

∇xE(x) = ∇x

∫
A

L(x←y)V (x↔y)G(x↔y)dA(y),

=

∫
A

∇xLV G+ L∇xV G+ LV∇xGdA(y). (4.2)

In the general case, each term in this equation would need to be solved to obtain

a full irradiance gradient. However, if we restrict ourselves to diffuse scenes, then

the exitant radiance from y, L(x←y), is constant, and thus its gradient is zero.

Furthermore, differentiation of the binary visibility function is tricky; if we assume
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Figure 4.1: The quantities and geometric relationships used in deriving the transla-
tional derivative of the geometric term. Figure from Jarosz et al. [JSKJ12].

that there are no changes in visibility with translation, then this term of the

equation is also zero. This leaves us with a much simpler equation to solve:

∇xE(x) ≈
∫
A

L(x←y)V (x↔y)∇xG(x↔y)dA(y), (4.3)

where we only require to solve the gradient of the geometric term, ∇xG(x↔ y).

Applying the product rule to that differentiation yields:

∇xG(x↔y) = (nx · ~ω)(ny · −~ω)∇x
1

r2
+

nx · ~ω
r2
∇x(ny · −~ω) +

ny · −~ω
r2

∇x(nx · ~ω),

(4.4)

where r = ‖x−y‖ and we assume without loss of generality that x is the origin

and nx =
(

0
0
1

)
, as illustrated in Figure 4.1. The gradients of the individual terms

are:

∇xy = ∇x



y1

y2

y3


=



−1

−1

−1


, (4.5)

∇x
1

rn
= − n

rn+1
∇xr =

n

rn+2
y, (4.6)

∇xnx · ~ω = ∇x
nx · y
r

=
1

r
∇x(nx · y) + (nx · y)∇x

1

r
= −nx

r
+

nx · ~ω
r2

y, (4.7)

∇xny · −~ω = −∇x
ny · y
r

=
ny

r
+

ny · −~ω
r2

y. (4.8)

Inserting these terms into Equation 4.4 gives us the following formula for the

gradient of the geometric term:

∇xG(x↔y) = 4
cos θx cos θy

r4
y − cos θy

r3
nx +

cos θx
r3

ny, (4.9)
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where we have substituted the dot products in the original formula for the cor-

responding cosines, for clarity of exposition. Inserting this expression into Equa-

tion 4.3 gives us a formula for an occlusion-agnostic irradiance gradient.

It is furthermore possible to differentiate Equation 4.3 in order to define

the Hessian of irradiance, keeping the same assumptions that were used to arrive

at that formulation for the gradient:

HxE(x) ≈
∫
A

L(x←y)V (x↔y)HxG(x↔y)dA(y). (4.10)

We only need to differentiate the gradient of the geometric term, which we do by

independently differentiating the terms in Equation 4.9:

Jx

(
cos θx cos θy

r4
y

)
= (cos θx cos θyy)∇ᵀ

x

1

r4
+

(
cos θx
r4

y

)
∇ᵀ

x cos θy

+

(
cos θy
r4

y

)
∇ᵀ

x cos θx +

(
cos θx cos θy

r4

)
Jᵀ
x(y)

= 6
cos θx cos θy

r6
yyᵀ − cos θy

r5
ynᵀ

x

+
cos θx
r5

ynᵀ
y −

cos θx cos θy
r4

I3, (4.11)

Jx

(
cos θy
r3

nx

)
= 4

cos θy
r5

nxy
ᵀ +

1

r4
nxn

ᵀ
y, (4.12)

Jx

(
cos θx
r3

ny

)
= 4

cos θx
r5

nyyᵀ − 1

r4
nynᵀ

x, (4.13)

where Jx denotes the Jacobian operator taken with respect to x, and I3 is the 3×3

identity matrix. Combining these terms according to Equation 4.9 results in:

HxG(x↔y) = 24
cos θx cos θy

r6
(yyᵀ)− 4

cos θx cos θy
r4

I3

− 1

r4
(nxn

ᵀ
y + nynᵀ

x)− 4
cos θy
r5

(nxy
ᵀ + ynᵀ

x)

+ 4
cos θx
r5

(nyyᵀ + ynᵀ
y). (4.14)

Finally, combining Equations 4.23 & 4.14 results in the formula for the occlusion-

agnostic irradiance Hessian. One important feature of Equations 4.3 & 4.23 is that

they can be solved using Monte Carlo integration for arbitrary sample distributions.

It is important to note that Jarosz et al. [JSKJ12] also derived an occlusion-

aware irradiance gradient, the derivation of which was already shown in Sec-
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tion 3.4.2. Unfortunately, they found that extending that derivation to a Hes-

sian is infeasible. It makes the simplification of operating on the strata boundary

edges and only considering motion perpendicular to each edge which, in effect,

makes the implicit assumption that, after translation of the center of projection,

the strata remain rectangles in the spherical parametrization. However, in reality,

the edges of each stratum might warp into an arbitrary quadrilateral. While this

approximation is reasonable in the case of the gradient and, in effect, produces

very good results practically in that case, it becomes increasingly problematic for

higher-order differentiation, and error overwhelms the calculations.

4.2 Application to Irradiance Caching

As we saw in Section 3.3.3, one of the primary contributors to error in

irradiance caching is the suboptimal placement of cache records when the algorithm

is guided by the split-sphere heuristic. With the formulas for the irradiance Hessian

in hand, we can investigate an alternative to that heuristic that is greatly superior.

Our goal is to use each cache record as far from its location as possible,

while ensuring that the resulting extrapolation error is below some user-defined

threshold. We first define the total error, εt, of a cache record as the integrated

absolute difference between the true irradiance and the extrapolated irradiance:

εt =

∫∫
A

|E(xi + x)− E ′(xi + x)|dx, (4.15)

where A is the area of support of the cache record, and E ′(xi + x) = E(xi) +

∇xE(xi) · x is the first-order Taylor expansion of the irradiance around the ith

cache record. Ideally, this equation should be solved as-is, but that would require

knowledge of the true irradiance E(xi + x) - which is precisely the value we are

attempting to approximate. Instead, we can use a second-order Taylor expansion

of the irradiance as an oracle for this ground-truth. We approximate E(xi + x) ≈
E(xi)+∇xE(xi) ·x+ 1

2
xᵀHxE(xi)x, which simplifies Equation 4.15 tremendously:

εt ≈ 1

2

∫∫
A

|xᵀHxE(xi)x|dx. (4.16)
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Here we assume that x is a 2D point on a surface, and that the Hessian is a

2× 2 matrix defining the second derivatives of irradiance on the tangent space of

such surface. This can be obtained by projecting the 3 × 3 Hessian matrix from

Equation 4.23 onto the tangent plane. To do so, we define a = HxE(xi)u1 and

b = HxE(xi)u2 and the tangential Hessian becomes:

H2×2
x =

[
u1 · a u1 · b
u2 · a u2 · b

]
(4.17)

where u1 and u2 are any two orthonormal vectors in the tangent space of the

surface.

The Hessian inside Equation 4.16 defines a quadric surface. In order to de-

fine the radius for the cache record, we conservatively bound the Hessian using the

maximum curvature of the surface, which is given by λ1, the maximum eigenvalue

of H2×2
x E(xi):

εt ≤ 1

2

∫∫
A

|λ1x
2|dx,

≤ π

∫ Ri

0

|λ1|r2rdr

≤ π

4
λ1R

4
i , (4.18)

where the last r term in the integral arises from the change of variables to polar

coordinates. Inverting this equation and solving for Ri results in a formula for the

radius of cache record i:

Ri = 4

√
4εt

πλ1

, (4.19)

that induces a total integrated error below εt in the extrapolated irradiance. Jarosz

et al. termed this the “Radiometric Hessian” error measure.

4.2.1 Analysis

Jarosz et al. performed a cursory evaluation of the performance of the

“Radiometric Hessian” error metric, and showed that it significantly outperforms

the split-sphere heuristic in a few simple but representative test cases, reducing

the RMS error of the reconstructed irradiance by as much as 10x, as can be seen in
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Box scene Box scene with occluder

Figure 4.2: Scene configuration for the relevant comparison renderings. Figure from
Jarosz et al. [JSKJ12].
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Figure 4.3: Comparison of the results produced by irradiance caching using both the
split-sphere heuristic, as well as the radiometric hessian, as error-control methods. Figure
from Jarosz et al. [JSKJ12].
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Figure 4.3 (Figure 4.2 shows the scene configurations). Irradiance is interpolated

in a similar way as introduced by Ward and Heckbert [WH92]:

E(x) ≈
∑

i∈S wi(x)(E(xi) + (x− xi) · ∇tE(xi))∑
i∈S wi(x)

.

We should note that Jarosz et al. did not indicate the weighting function they

used for the cache records during interpolation (wi(x) in the Equation), and they

did not consider the rotational component of the irradiance gradient at all. These

two factors preclude the implementation of their approach, as-is, in a practical,

general rendering algorithm. Since their analysis was performed on such simple

scenes, the rotational component was not a requirement in order to produce their

results. With respect to the weights, they used a modified version of the Tabellion

and Lamorlette weighting function 1 (described in Section 3.3.1):

wi(x) = 1− ‖xi − x‖
Ri

, (4.20)

where Ri is the cache record radius derived using the methods of the previous

section.

The test cases illustrate several of the shortcomings detailed in Section 3.3.3

for the split-sphere heuristic. Cache records aggressively concentrate around edges

and corners, which is wasteful and leads to high error in areas of the scene that

remain under-sampled. It is very difficult to improve the record distribution pro-

duced by the split-sphere without relying on additional heuristics, such as minimum

and maximum radius clamping, Krivanek et al.’s neighbor-clamping, or adaptive

caching, which increase the number of parameters that need to be finely tuned and

balanced. In contrast, the Hessian-based approach obtains a high-quality record

distribution without relying on additional corrective measures.

Another fundamental deficiency of the split-sphere is visible in Figure 4.3:

radiometrically equivalent scenes can produce vastly different record distributions

and error profiles. The second row for both methods shows the result of removing

the black right wall and revealing the environment. Even though this results in a

radiometrically identical image, the record distribution for the split-sphere changes

1This was discussed with the authors of that paper.
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dramatically; the Hessian-based approach, on the other hand, produces the same

record distribution for both cases.

4.2.2 Anisotropic Cache Records

As previously mentioned, the Hessian in Equation 4.16 describes a quadric

surface, giving us a natural way to obtain anisotropic cache records. Instead of

bounding the Hessian using only its maximum eigenvalue λ1, we can work in the

coordinate system defined by both principal curvatures, an orthonormal basis for

which are the two eigenvectors v1 and v2 with the corresponding curvatures defined

by the eigenvalues, and express the integrated error in the support of the cache

record as:

εt ≤ 1

2

∫∫
A

(
|λ1|x2 + |λ2|y2

)
dydx. (4.21)

The shape that minimizes the integrated error while maximizing the support area

of the cache record is an ellipse with axes v1 and v2. We again invert this equation,

providing us with the radii along these axes:

(
Rλ1
i , R

λ2
i

)
=

4

√
4εt

π

(
4

√
1

λ1

, 4

√
1

λ2

)
. (4.22)

Using elliptical records further reduces the error in the image by allowing

cache records to be used farther along the direction in which irradiance is varying

slowly; this in turn allows samples to pack more densely across directions of higher

irradiance variation, reducing the overall error in the irradiance reconstruction.

While the idea of using anisotropic cache records is not a new one, and

was suggested by Herzog et al. [HMS09], their approach relied on simply reducing

the cache record radius along the gradient direction to produce elliptical support

areas. This unfortunately means that the eccentricity of the cache records must be

set by the user, whereas using the Hessian deduces the eccentricity automatically

in a principled fashion by minimizing error.
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4.3 Limitations

The most severe limitation on the method described by Jarosz et al. is

that it does not provide a complete solution to replace the split-sphere heuristic in

an irradiance caching implementation, since it foregoes analysis of the rotational

component.

Furthermore, their formula for computing the error in the irradiance ap-

proximation results in an absolute measure of error, which is impractical because

it means that the resulting error is dependent upon the absolute values of the ir-

radiance in the scene. In the context of rendering, this means that two scenes that

vary only in the power of the light sources will produce different cache record dis-

tributions, even though renderings of both scenes would be equivalent to a scaling

factor.

These and other practical issues of implementation will be discussed in

Chapter 6.

4.3.1 The Geometric Hessian

One practical problem that any radiometrically-dependent method for error

control must deal with, and that was specifically addressed by Jarosz et al., arises

in situations where points in the scene receive extremely little or no irradiance.

In this case, the irradiance Hessian is either ill- or un-defined, which can result in

large errors in the rendered image, as shown in Figure 4.4.

In order to deal with this problem, we first note that the irradiance Hes-

sian eigenvalues are directly proportional to the incoming radiance over the hemi-

sphere. It is therefore possible to conservatively bound the error induced by the

second-order Taylor approximation by replacing the incident radiance L(x←y) in

Equation 4.23 with the maximum radiance Lmax of any surface in the scene:

HxE
max ≈

∫
A

LmaxHxG(x↔y)dA(y). (4.23)

The maximum Hessian of irradiance now reduces to the integral of the

Hessian of the geometric coupling term: HxE
max ∝

∫
HxG(x ↔ y), and Lmax
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Figure 4.4: Rendering illustrating a failure case for the purely radiometric hessian error-
control method, which fails when the occluder is nearly black. In this case, the geometric
hessian is able to robustly resolve this issue. Figure from Jarosz et al. [JSKJ12].

simply acts as a constant scaling factor. This allows us to fold it into the user

parameter εt and replace the actual maximum irradiance, which is difficult to

estimate, with a canonical value Lmax = 1.

Inserting this new Hessian bound in place of HxE(x) in Equation 4.16

results in a conservative error bound, which can be solved in the same way as

Equation 4.19. Jarosz et al. termed this the Geometric Hessian.

Figure 4.4 examines the performance of the geometric Hessian in comparison

to the radiometric Hessian for the failure case, and shows that the new formulation

robustly deals with the issue of extremely low or null irradiance.

One issue with the upper-bound on the Hessian is that it is a purely ge-

ometric quantity, which means that changes in the scene geometry will produce

different cache point distributions even for radiometrically identical scenes. This

is unfortunate, because it means that there are situations where a radiometric

approach might produce more optimal cache record distributions. Even so, the

geometric Hessian retains the error reduction properties of the radiometric Hes-
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sian while being more robust to arbitrary lighting configurations, making it a more

practical candidate for replacing the venerable Split-Sphere heuristic.



Chapter 5

The Occlusion-Aware Irradiance

Hessian

While the ideas presented by Jarosz et al. [JSKJ12] and discussed in the

previous section produce compelling results when applied to irradiance caching,

they still result in sub-optimal cache record distributions due to the use of an

irradiance Hessian that does not take object inter-occlusions into account.

Jarosz et al. derived their 3D irradiance Hessian by first analyzing the

behavior of irradiance in a 2D setting, leading to an occlusion-aware derivation

of a 2D irradiance Hessian. In this 2D analysis, it was observed that including

occlusion information in the Hessian leads to important accuracy improvements in

the irradiance reconstruction when compared to an occlusion-agnostic Hessian.

These findings motivate the current chapter, where we present a full deriva-

tion of an occlusion-aware irradiance Hessian for polyhedral light sources. We begin

by going over the work of Arvo [Arv94], who derived the first derivative of the light

field due to diffuse polygonal emitters (the irradiance Jacobian), and then extend

that derivation to the second derivative. This results in a rank-3 tensor, which we

project to a 3x3 irradiance Hessian. We then discuss how we might apply this new

Hessian derivation to irradiance caching.

52
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vk+1
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Θk
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Figure 5.1: The notation and geometric relationships used. Figure from Arvo [Arv94].

5.1 The Irradiance Jacobian for Polyhedral

Sources

Principal to this section is a vector field Φ : R3→ R3 known as the light

field. In terms of radiance, the light field is given by

Φ(x) ≡
∫
S2

L(x→~ω)~ωd~ω, (5.1)

where S2 is the unit sphere in R3. In simple terms, Φ(x) is the integral over all

unit vectors through x weighted by the radiance in each direction. At all points

in space it defines a vector quantity termed the vector irradiance. On surfaces, it

is simple to relate the vector irradiance to irradiance if we recall Equation (2.5):

E(x) =

∫
Ω

L(x←~ω)(n · ~ω)d~ω, (5.2)

from which it follows that E(x) and Φ(x) are related by

E(x) = −Φ(x) · n(x), (5.3)

since on surfaces only the visible hemisphere carries radiance (such that radiance

in any direction below the horizon is zero).
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For a diffuse polyhedral source with constant emission M and vertices

v1, v2, . . . , vn, the light field Φ(x) can be expressed analytically:

Φ(x) =
M

2π

n∑
i=1

Θi(x)Γi(x) (5.4)

where Θ1, . . . ,Θn are the angles subtended by the edges of the occluder as seen

from x and the vectors Γ1, . . . ,Γn are unit normals of the polygonal cone with

cross section P and apex x (see Figure 5.1). For any 1 ≤ k ≤ n we have:

Θk(x) = cos−1

(
vk − x

‖vk − x‖
· vk+1 − x

‖vk+1 − x‖

)
, (5.5)

and

Γk(x) =
(vk − x)× (vk+1 − x)

‖(vk − x)× (vk+1 − x)‖
, (5.6)

where vn+1 ≡ v1. When M = 1, the corresponding expression −Φ(x) · n(x) is

the form factor between a differential patch at x and the polygonal patch P .

Importantly, because the light field is a true vector field, the vector irradiance

due to multiple sources may be obtained by summing the contributions from each

source individually.

The derivative DF of a differentiable vector function F : R3→R3 is repre-

sented by a 3 × 3 Jacobian matrix. We shall denote the Jacobian matrix for the

vector irradiance at x as Jx(Φ), that is,

Jx(Φ) ≡ DΦ(x) =

[
∂Φi(x)

∂xj

]
. (5.7)

The obvious approach to obtaining this matrix is to differentiate Equation (5.4)

with respect to x. This result holds for unoccluded polygonal sources.

To derive an expression that applies for partially occluded sources, we ex-

press Φ(x) in terms of vertex vectors, which correspond to vertices of the spherical

projection of the polygon, as depicted in Figure 5.1. These vectors point toward

vertices of two distinct types, depending on how they arise. Intrinsic vertices exist

either on the source or the blocker geometry explicitly, while apparent vertices

arise when the edge of a blocker, as seen from x, crosses the edge of the source or

of another blocker (see Figure 5.2). We will express Jx(Φ) in terms of derivatives
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(b)

x
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P

v1 v1

v2

v2

B1 B1
B2

Figure 5.2: (a) The view from x of the two types of ”apparent” vertices. (b) The vertex
vector for v1 resulting from a blocker edge and a source edge. (c) The vertex vector for
v2 resulting from two blocker edges. Figure from Arvo [Arv94].

of these vectors. The derivative of a vertex vector is a 3×3 matrix, which we term

the vertex Jacobian.

We let v′1, v
′
2, . . . , v

′
m be the vertices of P ′, the light source P after clipping

away portions that are occluded with respect to point x. We then define the vertex

vectors u1(x),u2(x), . . . ,um(x) by

uk(x) =
v′k − x

‖v′k − x‖
. (5.8)

We define w1(x), . . . ,wm(x) to be the cross products

wk(x) = uk(x)× uk+1(x). (5.9)

From this point on we assume that uk and wk are functions of position and

thus omit the explicit dependence on x. Expressing Θk and Γk in terms of wk we

have

Θk = sin−1‖wk‖ (5.10)

and

Γk =
wk
‖wk‖

(5.11)

In order to compute J(Φ) we first consider the kth term of the summation.

Differentiating, we have

J(ΘkΓk) = Γk∇Θk + ΘkJ(Γk), (5.12)

where Γk∇Θk is the outer product of the vector Γk and the gradient ∇Θk. We now

compute ∇Θk and J(Γk). For brevity, we denote the vertex vectors uk and uk+1
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by a and b respectively, and the cross product a× b by w. Then the gradient of

Θk with respect to x is

∇Θk = ∇ sin−1‖w‖

=
1√

1−wᵀw

(
wᵀ

‖w‖

)
J(w)

=

(
wᵀ

aᵀb

)
J(w)

‖w‖
(5.13)

and in the case of Γk

J(Γk) = D

(
w

‖w‖

)
=

J(w)

‖w‖
− wwᵀ

‖w‖3
J(w)

=

(
I− wwᵀ

wᵀw

)
J(w)

‖w‖
. (5.14)

From the previous equations we obtain an expression for J(ΘkΓk) in terms

of J(w) and the vertex vectors a and b:

J(ΘkΓk) =

[
w

‖w‖

(
wᵀ

aᵀb

)
+ sin−1‖w‖

(
I− wwᵀ

wᵀw

)]
J(w)

‖w‖
The above expression may be written compactly as

J(ΘkΓk) = E(a,b)J(a× b), (5.15)

where the function E is the edge matrix defined by

E(a,b) ≡
(

1

aᵀb

)
wwᵀ

wᵀw
+

cos−1 aᵀb

‖w‖

(
I− wwᵀ

wᵀw

)
. (5.16)

To simplify the Jacobian of a× b, we define another matrix-valued function Q by

Q(p) ≡


0 −pz py

pz 0 −px
−py px 0

 . (5.17)

Then for any pair of vectors p and q, we have p × q = Q(p)q. Writing the

cross product as a matrix multiplication leads to a convenient expression for the

Jacobian matrix of F ×G, where F and G are vector fields in R3. Thus,

J(F ×G) = Q(F )J(G)−Q(G)J(F ). (5.18)
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We thus arrive at an expression for the irradiance Jacobian due to the visible

portion of polygonal source P :

J(Φ) =
M

2π

m∑
i=1

E(ui,ui+1)[Q(ui)J(ui+1)−Q(ui+1)J(ui)]. (5.19)

This expression can be simplified further by collecting the factor of each J(ui) into

a single matrix. We therefore define the corner matrix C to be the matrix-valued

function

C(a,b, c) ≡ E(a,b)Q(a)− E(b, c)Q(c). (5.20)

Then the final expression for the irradiance Jacobian can be written as the sum

over all vertex Jacobians transformed by corner matrices:

J(Φ) =
M

2π

m∑
i=1

C(ui−1,ui,ui+1)J(ui), (5.21)

where u0 ≡ um and um+1 ≡ u1.

In the case of the vertex Jacobians, we shall take a small detour from Arvo’s

derivation in order to produce an expression of the Jacobian that is both slightly

more general as well as more amenable to extension to a second order. For this,

we need to re-define the vertex vectors u so that they explicitly depend upon the

polygonal edges that cause them to arise. We let ui be the vertex vector associated

with the ith vertex on the emitter, whether it corresponds to the case of an apparent

vertex or not. Let ei and ei+1 be the polygon edges whose intersection, from the

point of view of x and in clockwise order, defines the vertex. These edges may

belong to the emitter (in the case of intrinsic vertices), to blockers, or to both (in

the case of apparent vertices). Furthermore, let Oi and Pi be any two points on

the ith edge. We can now define the edge vectors mi as:

mi = (Oi − x)× (Pi −Oi) (5.22)

and we also define, for convenience, another vector as:

di = mi ×mi+i (5.23)

which, in turn, allow us to write a new expression for the vertex vectors:

ui =
di
‖di‖

(5.24)



58

We are now ready to find the vertex Jacobian, which we do by simply

differentiating the expression for the vertex vectors. We have:

J(u) =
‖d‖J(d)− d∇ᵀ(‖d‖)

‖d‖2

=
1

‖d‖
J(d)− ddᵀ

‖d‖
J(d)

= (I3 − ddᵀ)
J(d)

‖d‖
. (5.25)

In the case of J(d) we have the Jacobian of a cross product, so we make

use of the Q function as before:

J(d) = Q(mi)J(mi+1)−Q(mi+1)J(mi) (5.26)

and the same happens with J(mi):

J(mi) = Q(Oi − x)J(Pi −Oi)−Q(Pi −Oi)J(Oi − x)

= Q(Pi −Oi). (5.27)

5.2 Derivation of the Irradiance Hessian

We now move on to the vector irradiance Hessian. We repeat the expression

for the Jacobian:

J(Φ) =
M

2π

m∑
i=1

C(ui−1,ui,ui+1)J(ui).

We only need to derive the expression for the derivative of the kth element

in the summation, given that differentiation is a linear operation. We see that this

is

H(ΘkΓk) = D [C(uk−1,uk,uk+1)J(uk)]

= C ′(uk−1,uk,uk+1)J(uk) + C(uk−1,uk,uk+1)H(uk) (5.28)

We first dive into the derivative of C(uk−1,uk,uk+1). We remember that

C(a,b, c) ≡ E(a,b)Q(a)− E(b, c)Q(c).
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and switch from the explicit subscripts on u to a, b and c for compaction, so

D [C(a,b, c)] = D [E(a,b)Q(a)− E(b, c)Q(c)] (5.29)

Again due to linearity of the differentiation operator, we need only focus

on one of the products, where we have

D [E(a,b)Q(a)] = D [E(a,b)] Q(a) + E(a,b)D [Q(a)] . (5.30)

We now begin by differentiating Q(a). Remembering that a is a function

of x, and that we are differentiating with respect to x, we have that

d

dx
Q(a) =

dQ(a)

da

da

dx

=
dQ(a)

da
· J(a) (5.31)

where · represents the tensor inner product, given that dQ(a)
da

is a rank-3 tensor,

and J(a) was given in Equation 5.25. Given the form of Q(a) (see Equation 5.17)

differentiation is fairly simple. In order to avoid the space usage of displaying rank-

3 tensors, we switch to index notation here and where applicable in the future:

∂Q(a)

∂a ijk
=
∂Q(a)ij
∂ak

. (5.32)

We now turn our attention to d [E(a,b)]. Returning to the definition of

w ≡ a× b, we have

D [E(a,b)] = D

[
wwᵀ

aᵀbwᵀw
+

cos−1 aᵀb

‖w‖

(
I− wwᵀ

wᵀw

)]
(5.33)

and again we’ll look at the derivatives of each element separately. First,

D

[
wwᵀ

aᵀbwᵀw

]
= D

[
wwᵀ

‖w‖2aᵀb

]
=

(‖w‖2aᵀb)d(wwᵀ)−∇(‖w‖2aᵀb)⊗wwᵀ

‖w‖4(aᵀb)2
(5.34)

where ∇(‖w‖2aᵀb)⊗wwᵀ is an outer product. We have

∇(‖w‖2aᵀb) = ∇(‖w‖2)aᵀb + ‖w‖2∇(aᵀb) (5.35)

∇(‖w‖2) = 2wᵀJ(w) (5.36)

∇(aᵀb) = ∇(
√

1− ‖w‖2)

=
−‖w‖2√
1− ‖w‖2

wᵀJ(w) (5.37)
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and J(w) = Q(a)J(b)−Q(b)J(a), as we have seen before.

In the case of d(wwᵀ), we notice that this corresponds to a rank-1 tensor

outer product, and differentiate accordingly, resulting in the following expression:

d(wwᵀ) = d(w ⊗w)

= (J(w)⊗w)[i,k,j] + w ⊗ J(w) (5.38)

where (J(w)⊗w)[i,k,j] indicates a generalized transposition in which elements of the

tensor with index [i, j, k] become the elements with index [i, k, j]. The motivation

for this transposition is straightforward if we look at the expressions in index

notation. We have that:

(wwᵀ)i,j = (w ⊗w)i,j

= wiwj (5.39)

and so
∂(w ⊗w)i,j

∂xk
=
∂wi

∂xk
wj + wi

∂wj

∂xk
(5.40)

which corresponds to the previous expression (Equation 5.38).

For the second element of D (E(a,b)) we have

∇
[

cos−1 aᵀb

‖w‖

]
⊗
(

I− wwᵀ

wᵀw

)
+

cos−1 aᵀb

‖w‖
d

(
I− wwᵀ

wᵀw

)
(5.41)

∇
[

cos−1 aᵀb

‖w‖

]
= ∇

(
sin−1‖w‖
‖w‖

)
=
‖w‖∇ sin−1‖w‖−∇‖w‖sin−1‖w‖

‖w‖2

=
‖w‖

(
wᵀ

aᵀb

)
J(w)
‖w‖ −

wᵀ

‖w‖J(w) sin−1‖w‖
‖w‖2

=

(
1

aᵀbwᵀw
− sin−1‖w‖
‖w‖3

)
wᵀJ(w)

=

(
1

aᵀbwᵀw
− cos−1 aᵀb

‖w‖3

)
wᵀJ(w) (5.42)
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and finally,

d

(
I− wwᵀ

wᵀw

)
= −d

(
wwᵀ

wᵀw

)
=

(∇‖w‖2)⊗ (wwᵀ)− ‖w‖2d(wwᵀ)

‖w‖4

=
(2wᵀJ(w))⊗ (wwᵀ)− (wᵀw)d(wwᵀ)

(wᵀw)2
(5.43)

We now only need to derive the vertex Hessian in order to complete our

derivation of the vector irradiance Hessian. This simply means differentiating the

expression for the vertex Jacobian once more. We remember that:

J(u) = (I3 − ddᵀ)
J(d)

‖d‖

(see Equation 5.25) and have that

H(u) =
‖d‖d [(I3 − uuᵀ)J(d)]−∇(‖d‖)⊗ [(I3 − uuᵀ)J(d)]

‖d‖2
(5.44)

and we tackle each component of this expression separately to aid comprehension:

d [(I3 − uuᵀ)J(d)] = d(I3 − uuᵀ) · J(d) + (I3 − uuᵀ) ·H(d) (5.45)

d(I3 − uuᵀ) = −d(uuᵀ)

= −(J(u)⊗ u)[i,k,j] − u⊗ J(u)(See Equation 5.38) (5.46)

H(d) = d [Q(mi)J(mi+1)−Q(mi+1)J(mi)] (5.47)

d [Q(mi)J(mi+1)] = dQ(mi) · J(mi+1) + Q(mi)H(mi+1) (5.48)

H(mi) = d [Q(Pi −Oi)] = 0 (5.49)

d(‖d‖) =
d

‖d‖
J(d) = uᵀJ(d). (5.50)

5.3 Evaluation

In order to evaluate our new analytic formulation, we implemented it in

a small C++ path-tracer and used it to evaluate the irradiance Hessian within

a simple scene, which features a lambertian ground plane, a diffuse planar light

source directly over it, and two planar occluders at varying distances between the
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Scene Finite Differences Analytic Formulation

Figure 5.3: Visualization of the irradiance Hessian eigenvalues, after projection onto

the surface. The scene is shown on the left: a diffuse plane is illuminated by a large diffuse

source, which is occluded by two rectangular planes at varying distances. The result of

our new analytic formula closely matches that of a finite-differences computation.

ground plane and light source (see Figure 5.3, left). The simple nature of the

scene also allows us to compute the irradiance analytically at any point on the

ground plane, which enables us to efficiently and accurately compute an accurate

irradiance Hessian using finite differences.

Figure 5.3 compares the results of our new analytic formulation to those

obtained using a finite-differences method. Since the full irradiance Hessian is a

rank-3 tensor, we ease visualization by performing two transformations: first, the

full Hessian is projected onto the ground plane, giving us a 3x3 Hessian matrix.

Secondly, even though the ground plane exists within a 3D world, it is only a 2D

surface, and we can further project the Hessian onto it, resulting in a 2x2 Hessian

matrix. We then visualize the two eigenvalues for this 2x2 matrix. As can be seen

in the Figure, the results obtained using our analytic formulation perfectly match

the reference.

5.4 Limitations

We can now put together a complete expression for the occlusion-aware

vector irradiance Hessian, using the expressions derived in the previous section.
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Analytic (explicit clipping)

Stratified - 100 samples Stratified - 1156 samples Stratified - 4356 samples

Figure 5.4: Visualization of the irradiance Hessian eigenvalues, after projection onto

the surface. Even for this simple scene, our proposed geometric reconstruction from the

hemispherical samples results in an unusable Hessian estimate.

Unfortunately, there are several practical limitations that prevent doing so within

the context of the irradiance caching algorithm.

First and foremost, the computation required is quite intense - we need to

solve for the full rank-3 tensor Hessian, even though we are only interested in the

Hessian matrix describing the second derivative of irradiance on a surface.

Secondly, while the Hessian works well in a general case, it is not easy

to apply it within the context of irradiance caching. Our idea in deriving the

Hessian was to apply it to the polygons implicit in a stratified hemisphere sampling

pattern, but this does not work well in practice (see Figure 5.4). This corresponds

to a pathological case where the irradiance derivatives are always undefined (the

derivatives are undefined whenever three or more polygon edges coincide at a single

“apparent vertex” from the perspective of the shade point [Arv94].)
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Therefore, though deriving the vector irradiance Hessian proved an inter-

esting and enlightening exercise, we decided not to use it in our work. We present

it here as it might still prove useful in other contexts.



Chapter 6

A New Hessian-Based Error

Control Method

In this chapter we develop a novel, practical error heuristic for irradiance

caching based on irradiance Hessians. Inspired by the preliminary results shown by

Jarosz et al. and discussed in Chapter 4, we extend and improve the approach and

perform the necessary evaluation to turn this idea into a practical error heuristic for

general, complex scenes. The core of our error heuristic is a new formulation of irra-

diance Hessians which accounts for occlusion changes. This leads to higher-quality

images compared to previously proposed techniques (see Figure 6.1), especially

in scenes with complex indirect illumination containing occlussion and indirect

penumbra as we will show in our results. Furthermore, our approach naturally

supports elliptical cache records by exploiting the anisotropic error information

contained within the Hessian. We also show that, compared to modifications of

the Split-Sphere heuristic, our approach produces substantially better cache point

distributions without relying on radius clamping and excessive parameter tuning.

Finally, our formulation is not bound to any particular stratification of the hemi-

sphere, which we show by replacing the traditional polar coordinates stratification

for a concentric-mapped approach [SC97].

65
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Pure Split-Sphere
RMSE: 0.0901

Reference Reference (Irradiance) Bounded Split-Sphere
RMSE: 0.0290

Radiometric Hessian
RMSE: 0.0912

Geometric Hessian
RMSE: 0.0105

Occlusion Hessian
RMSE: 0.0071

Figure 6.1: The Cornell box scene demonstrates how the Occlusion Hessian significantly
outperforms both the Pure and the Bounded Split-Sphere (clamped to the gradient and
150px max spacing) for irradiance caching. It also performs significantly better than the
occlusion-unaware Hessian error metrics by Jarosz et al. [JSKJ12].

Approach & Contributions.

In this chapter, we follow the same basic recipe as suggested by Jarosz et

al. [JSKJ12] and outlined in Chapter 4, but propose a number of fundamental

improvements that turn it into a practical, well-tested error control for irradiance

caching in complex scenes:

• We derive an occlusion-aware Hessian for the error term, accounting for irradi-

ance changes in scenes with occlusions.

• We also automatically obtain an occlusion-aware gradient which (unlike previ-

ous formulations) can easily be applied to general hemispherical sample distri-

butions.

• We derive a more perceptually-motivated error criterion based on relative in-

stead of absolute error, further reducing artifacts.

• We show how to make a radiometric (and not geometric) error metric robust,

resulting in the first practical error metric for irradiance caching that is radio-

metrically meaningful.

• In contrast to Jarosz et al. [JSKJ12], we address how to take rotations of the

surface normals into account, resulting in a complete and practical error-control

formulation.

• We validate our proposed metric in complex scenes and compare to previous

approaches, including the Split-Sphere with radius and gradient clamping, pro-
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gressive refinement, and neighbor clamping [KBPZ06].

6.1 Overview

Jarosz et al. [JSKJ12] derived irradiance caching in a 2D setting and pro-

posed the Hessian-based strategy for controlling error in irradiance caching. They

derived a Hessian for irradiance assuming no occlusions in the scene. The Hes-

sian based error metric is promising, but it becomes inaccurate in the presence of

occlusions and consequently Jarosz et al. presented a Geometric Hessian that ig-

nored the actual radiance values and instead provided a smooth cache distribution

throughout the scene. The Geometric Hessian performs well in most scenes, but

like the Split-Sphere heuristic it does not adapt in scenes where indirect illumi-

nation varies significantly. Consider a floor next to a wall that is either dark or

bright. In the case of the dark wall, the sampling density on the floor can be quite

low. In the case of the bright wall the floor needs more samples to account for the

rapid local changes in the irradiance. The Geometric Hessian (as well as the Split-

Sphere heuristic) will use the exact same sampling density in both cases. Having a

radiometric error metric would enable the necessary variation in the sampling, and

it would also enable a more precise control of the actual error in the extrapolated

irradiance, which would lead to a higher quality irradiance estimation throughout

the scene.

6.2 A Practical Occlusion-Aware Hessian

The core to our approach is an irradiance gradient and Hessian that accu-

rately considers scenes with occlusions, like the one shown in Figure 6.2 (A). Ward

et al. [WH92] previously derived an accurate occlusion-aware irradiance gradient

by interpreting the hemispherical samples as a coarse sampling of the surround-

ing geometry (Figure 6.2 (B)) and considering the change of strata areas due to

occlusions as x is translated.

A natural next step would be to consider this geometric approximation
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Ω

(A) Scene with Occlusions (B) Ward and Heckbert (C) Scene w/o Occlusions (D) Scene Approximation

Ω’Ω Ω’Ω

x xx x’ x x’ x

Figure 6.2: The scene depicted in (C) has the same irradiance first and second derivative
as the one in (A), but there are no occlusions. (B) shows Ward and Heckbert’s [WH92]
interpretation of the stratified sample information used to derive the irradiance gradient,
while (D) shows the interpretation we perform in order to approximate (C).

of the environment, and compute the Hessian of the contribution of each strata.

Jarosz et al. [JSKJ12] considered this while ignoring occlusions between strata.

This makes the computation far simpler, but, unfortunately, ignoring occlusion

derivatives is known to produce suboptimal results in irradiance caching [KGBP05].

This problem is in fact the same as computing the occlusion-aware form-

factor Hessian of each polygonal stratum, which has been derived previous in the

context of radiosity [Hol96, HS98]. Unfortunately, the discontinuous geometric

approximation in Figure 6.2 (B) corresponds to a pathological case for these meth-

ods where the irradiance derivatives are always undefined1. Hence, these previous

approaches do not produce usable results when applied to Ward et al.’s stratified

environment.

Geometric Interpretation of Hemispherical Samples.

To address this problem, we take a different approach. Our key insight is

that we can convert a scene with occlusions (Figure 6.2 (A)) into a scene which

is radiometrically equivalent at the shade point x, but which contains no occlu-

sions (Figure 6.2 (C)). Remarkably, this modified scene has the same irradiance,

irradiance gradient, and irradiance Hessian at x as the original scene.

Equivalence arises because irradiance at point x is directly proportional to

the solid angle subtended by the uniform diffuse emitter, as seen from x. The

gradient and Hessian are, then, proportional to the change in solid angle as x is

1The derivatives are undefined whenever three or more polygon edges coincide at a single
“apparent vertex” from the perspective of the shade point [Arv94].
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translated. In the case of Figure 6.2 (C), the emitter subtends the same solid

angles Ω and Ω′, as it does in Figure 6.2 (A); hence, the irradiance, gradient and

Hessian must also be the same. Of course for very large displacements this is not

necessarily true, but we are only concerned with this equivalence at a differential

scale.

Given this insight about equivalence, our procedure becomes clear. We

interpret the hemispherical samples and construct a continuous, piecewise-linear

approximation (Figure 6.2 (D)) of the surrounding scene geometry, which contains

no occlusions from the point of view of x. We can then compute an irradiance gra-

dient and Hessian of this triangulated environment which accounts for occlusions

occurring in the physical scene, while not explicitly considering occlusions in our

calculations.

Assuming we have a triangulated representation of the hemispherical en-

vironment, the irradiance at x defined in Equation (3.3) can be re-expressed in

terms of this approximate geometry as:

E(x,n) ≈
M∑
j=1

L4j
F4j

(x), (6.1)

where M is the number of triangles in the tessellated hemisphere, and L4 and

F4(x) are the observed radiance and form-factor of triangle 4 at x.

The gradient and Hessian of Equation (6.1) can be readily computed by

summing the gradients and Hessians of the triangle form-factors:

∇xE ≈ ∇x

(
M∑
j=1

L4j
F4j

(x)

)
=

M∑
j=1

L4j
∇xF4j

(x), (6.2)

and

HxE ≈ Hx

(
M∑
j=1

L4j
F4j

(x)

)
=

M∑
j=1

L4j
HxF4j

(x). (6.3)

Luckily, since our interpretation of the stratified samples induces no occlusion

changes with translation, we can compute these form-factor derivatives indepen-

dently for each triangle while ignoring occlusions.
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xn
ri

ri +1ei

γ
i

Figure 6.3: Illustration of the notation used in the form-factor, its gradient and Hessian.

Form Factor, Gradient, and Hessian

The formula for the point-to-triangle form-factor F4(x) is given by [HS98]:

F4(x) =
1

2π
n ·

3∑
i

Γi (6.4)

where i indexes the three vertices, ri, expressed as vectors from x, and Γi = ri×ri+1

and has norm γi (see Figure 6.3).

Holzschuch and Sillion derived the following formulas for the gradient and

Hessian of the form-factor:

∇xF4(x) =− −1

2π

∑
i

n× eiI1

+ 2n · (ri × ri+1)(riI2 + eiJ2) (6.5)

and

HxF4(x) =− 1

π

∑
i

Q(n× ei, riI2 + eiJ2)

− n · (ri × ei)I2I3×3

+ 2n · (ri × ei)(Q(ri, ri)I3

+Q(ei, ei)K3 + 2J3Q(ri, ei)), (6.6)
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where:

I1 =
γi

‖ei × ri‖
,

I2 =
1

2‖ei × ri‖2

(
ei · ri+1

‖ri+1‖2
− ei · ri
‖ri‖2

+ ‖ei‖2I1

)
,

I3 =
1

4

1

‖ei × ri‖2

(
ei · ri+1

‖ri+1‖4
− ei · ri
‖ri‖4

+ 3‖ei‖2I2

)
,

J2 =
1

2‖ei‖2

(
1

‖ri‖2
− 1

‖ri+1‖2

)
− ei · ri
‖ei‖2

I2,

J3 =
1

4‖ei‖2

(
1

‖ri‖4
− 1

‖ri+1‖4

)
− ei · ri
‖ei‖2

I3,

K3 =
1

‖ei‖2

(
I2 − ‖ri‖2I3 − 2(ri · ei)J3

)
, and

Q(a,b) = abᵀ + baᵀ.

Note that a and b are column vectors, such that Q(a,b) results in a 3x3 matrix.

Arvo [Arv94] presented a formula for the irradiance Jacobian due to a dif-

fusely emitting triangle, which results in an alternate, but equivalent, expression

for the form-factor gradient. This is discussed in section 5.1

The Hessian in Equation (6.3) is fully 3D, whereas we are interested only

in the Hessian across the surface on which it was computed. To project the 3× 3

Hessian matrix onto the surface, we use the same method outlined in section 4.2.

Constructing the Triangulated Environment.

To construct our triangulated environment, we consider the hit distance/position

for each sample ray we trace. We then go over all the samples and connect neigh-

bors into triangles, defining a triangular mesh that covers the entire hemisphere.

Though any triangulation algorithm could be used, we use the connectivity in-

formation implicit to the stratification to make this step efficient (see Figure 6.5).

The mesh, along with the incoming radiance information, becomes a 3-dimensional

snapshot of the scene, as it is seen from x. Figure 6.4 illustrates this for a shade

point in the Cornell box scene.

The most important features visible in Figure 6.4 are the large triangles

that connect the surface of the occluder geometry to that of the wall. It is these
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Figure 6.4: Example of our mesh-based geometry approximation using the stratified
sample data. The left image shows the Cornell Box with a red dot indicating the visual-
ized location in the scene. The right image shows the triangle mesh approximation after
applying our method, in this case using a total of 4096 gather rays. Note that rays that
hit nothing are not shown.

1

2

3

4

Figure 6.5: The implicit connectivity information inherent in the stratified sampling
allows efficient triangulation of the environment approximation. Final gather rays are
shown as red points, and the implicit triangulation is shown in green.
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polygons that encode the occlusion information of the scene from the point of view

of the sampling location x. While these triangles have a large geometric extent,

they subtend a similar solid angle as other triangles, and thus their contribution

to irradiance is not disproportionate. As x is translated, however, the solid angle

of these large triangles will grow (or shrink) much faster than for other triangles,

leading to a large gradient and Hessian due to occlusion changes.

To evaluate the irradiance gradient and Hessian, we need to define the

incoming radiance L4 due to each of the triangles in the mesh. In 2D, as shown in

Figure 6.2(d), this corresponds to the incoming radiance stored at the vertex that

is farthest away from the shading location x. The same idea applies in 3D, though,

we choose the farthest of the three vertices of each triangle (instead of two as in the

2D case). Intuitively, vertices that are farthest from x define the color of objects

that become disoccluded during translation of x. Ward and Heckbert [WH92] used

a similar idea to estimate the differential change in occlusion between strata when

computing the gradient. As shown in Figure 6.6, this heuristic results in a good

approximation of the true first and second derivatives of the irradiance for scenes

with significant occlusions. Not surprisingly, the previous occlusion-less Hessian

derived by Jarosz et al. [JSKJ12] does not match the ground truth.

Our formulation allows us to implicitly account for occlusion changes in

both the gradient and Hessian without resorting to more complex form factor

computations which account for occlusions explicitly, and while avoiding the patho-

Scene Analytic New Ward et al. Analytic Occlusion Radiometric
Gradient Gradient Gradient Hessian Hessian Hessian

Figure 6.6: The left figure shows the scene configuration: a bright area emitter
was placed over a large plane, with two occluders located between the light and
the plane at different distances. The three middle-left figures show a visualization
of the first derivative of the irradiance across the bottom plane, using the mapping
(dE/dx, dE/dy) → (r, g), while the three right figures show the eigenvalues of the irra-
diance Hessian using the mapping (λ1, λ2, λ3) → (r,g,b). The numerical results use 4K
sample rays per pixel.
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Figure 6.7: Quality comparison between the classic Ward et al. irradiance gradient
and our new formulation. While the gradient approximations differ slightly – especially
at lower gather ray counts the Ward et al. gradient suffers from stronger artifacts – the
qualitative results are similar.

logical cases that preclude their use in irradiance caching. Furthermore, our for-

mulation has practical benefits over the the standard approach proposed by Ward

because it allows us to use arbitrary hemispherical distributions without re-deriving

the method. Though we tried the standard longitude-latitude stratification, we use

Shirley and Chiu’s [SC97] concentric mapping in our implementation because it

produces more regular sampling patterns, leading to better results.

6.3 Application to Irradiance Caching

To compute the anisotropic validity region for the cache records, we could

now use Equations (4.21) and (4.22), while using our improved occlusion-aware

Hessian. However, Equation (4.21) is suboptimal since it defines the error with

respect to the absolute variation in irradiance. We would instead like to define a

relative error term. This has a number of advantages: 1) it more strongly relates to

our visual system’s response to contrast instead of absolute changes in intensity and

2) it makes the error independent of the absolute scale of the scene and absolute
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intensity of the light sources used, making its parameters more compatible across

scenes. To accomplish this, we modify the error formula by dividing the Hessian

by the indirect irradiance computed at the sample location:

εri ≈
1

2

∫∫
A

|∆xᵀ H2×2
x (Ei) ∆x|
Ei

d∆x (6.7)

=
1

2

∫∫
A

(
|λ1|
Ei

x2 +
|λ2|
Ei

y2

)
dy dx. (6.8)

This leads to the following anisotropic cache record radius equation:

(
Rλ1
i , R

λ2
i

)
=

4

√
4εrEi
π

(
4

√
1

λ1

, 4

√
1

λ2

)
, (6.9)

where εr becomes the primary (relative) error control parameter in our algorithm.

The primary differences compared to Equation (4.22) are that we use our new

occlusion-aware Hessian, and that the cache point size is scaled by the fourth-root

of the indirect irradiance (more absolute error can be tolerated in bright regions

of the scene than in dark regions).

In Figure 6.8 we compare the radius derived using a relative error versus

an absolute error in the Sponza scene. The walls in the inner part of the Sponza

courtyard have much brighter indirect irradiance, which allows for larger radii

when accounting for relative error. For an absolute error, doubling the intensity

of the lighting would modify the sample distribution (forcing the user to manip-

ulate the error threshold to obtain the same image), whereas this would have no

effect on our relative metric. In Figure 6.9 we additionally visualize the effect of

allowing anisotropic cache records compared to forcing isotropic records (by us-

ing the minimum of the two radii from Equation 6.9). Anisotropic records adapt

their eccentricity to the local irradiance curvature, allowing for fewer cache records

(16.5K vs. 20.5K) for the same error threshold. In practice, we clamp the major

axis of the elliptical cache records at twice the length of the minor axis, to prevent

artifacts that can arise in cases where the irradiance Hessian is locally very small

in one direction.
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Occlusion Hessian (Absolute) Occlusion Hessian (Relative)

Figure 6.8: Visualization of the radii estimated for the Occlusion Hessian using both
absolute and relative measures for the total error. The relative measure allows larger
radii in bright regions where absolute differences in irradiance have a smaller impact on
the perceived error.

Isotropic Occlusion Hessian Anisotropic Occlusion Hessian

Figure 6.9: Comparison of isotropic to anisotropic cache records for the relative Oc-
clusion Hessian metric with the same threshold. The eccentricity of the cache records is
visualized as the filled-in color, with green representing isotropic records and dark blue
representing maximum anisotropy. Note that we have clamped the major axis at twice
the length of the minor axis.
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Pathological Cases.

One of the fundamental problems with any radiometric approach is that

pathological cases (where all or most of the gather rays return black) can result

in undefined or infinite radii. When computing full global illumination with many

bounces, this is rarely a problem; however, when computing only a single bounce

of indirect, this problem occurs more often. Jarosz et al. [JSKJ12] noted this issue,

which forced them to revert to a completely geometric approach (the Geometric

Hessian). To retain the benefits of a radiometric approach, we instead add 1% of

the indirect irradiance Ei to all the triangle radiances L4j
before computing the

Hessian in Equation (6.3). In the case where all gather rays return black, we set all

triangle radiances L4j
= 1. This has the effect of switching to an occlusion-aware

geometric Hessian only for this special case. Note that we only add 1% during the

Hessian computation and do not modify the irradiance stored in the cache.

Evaluation.

In Figure 6.10 we show the effect of incorporating these improvements (mov-

ing from an absolute to a relative error, and adding 1% of the irradiance) when

applied to both the occlusion-less Radiometric Hessian, and our Occlusion Hes-

sian. These two changes (moving left to right) improve both methods, but the

most striking improvement comes from accounting for occlusions in the Hessian

itself (bottom row vs. top row).

To validate that our radius computation is robust to low gather ray counts,

in Figure 6.11 we compare the cache point distribution for the Cornell box scene

using 256 gather rays and 4096 gather rays. Even with 16 times less gather rays,

the cache point distribution remains qualitatively the same.

In Figure 6.12 we evaluate the Radiometric Hessian and Occlusion Hessian

on a simple scene with an indirect occluder. The Occlusion Hessian successfully

concentrates samples in regions of rapid irradiance change due to occlusions (the

indirect penumbra regions).
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Figure 6.10: Comparison of the Radiometric and Occlusion Hessian methods and our
improvements for relative error and robustness. The first column shows the result when
using an absolute error, while the second column uses a relative measure. The third
column adds 1% of the total irradiance Ei to all the triangle radiances L4j

prior to
computing the Hessian. While this improves the result for the Radiometric Hessian
method, it still retains a few distracting artifacts, that are not present for the Occlusion
Hessian.
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256 Gather Rays 4096 Gather Rays

Figure 6.11: Our method is robust to low gather ray counts, producing nearly identical
cache point distributions with 256 (left) as with 4096 (right) gather rays per cache record.

6.3.1 The Rotational Component

To account for changes in irradiance due to rotation, we could follow a

similar procedure and derive a rotational irradiance Hessian by using rotational

form-factor derivatives in Equations (6.2) and (6.3). Since the rotational deriva-

tives only account for the change in the cosine foreshortening term as the surface

normal is rotated, and no occlusion changes occur, the computation simplifies to

the first and second derivatives of a cosine. Unfortunately, this approach does not

work well. The problem is that occlusions in fact do occur: for any significant

rotation, the change in the cosine factor is insignificant compared to the impact

of regions from the lower hemisphere becoming disoccluded and contributing to

the irradiance. In effect, rotational derivates in the upper hemisphere ignore all

occlusions (the occlusions along the hemispherical boundary), and this has by far

the biggest impact on the change in irradiance. Unfortunately, since we can only

reliably sample the upper hemisphere, we have little hope of detecting what is

under the upper hemisphere to accurately predict the change in irradiance.

In the face of these challenges, we opt for a simple but intuitive strategy as

originally proposed by Tabellion and Lamorlette [TL04]. We enforce a maximum

deviation angle ∆nmax that is allowed during extrapolation: no cache records are

allowed to extrapolate beyond an e.g. 10◦ deviation in surface normal. We set the
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default value to ∆nmax = 0.2 radians, but allow the user to modify this if needed.

6.3.2 Irradiance Storage and Interpolation

With each cache point i we store: the location and normal (xi,ni), the

irradiance (Ei), irradiance gradients (∇xEi, ∇nEi), the two anisotropic radii (Rλ1
i ,

Rλ2
i ), and the corresponding eigenvectors (vλ1i ,v

λ2
i ).

Note that computing the eigenvalue decomposition for H2×2
x in Equation (6.8)

results in eigenvectors in the tangent-space defined by vectors u1 and u2. To make

these usable during interpolation, we transform each tangent-space eigenvector (v′i)

into world-space coordinates (vi = [u1 · v′i,u2 · v′i]ᵀ) before storing it in the cache.

To interpolate cache records, we use the same first-order extrapolation strat-

egy as proposed by Ward and Heckbert [WH92], but with a modified weighting

function:

E(x,n) ≈
∑

i∈S wi(x)(Ei +∇xEi ·∆xi +∇nEi ·∆ni)∑
wi(x)

(6.10)

where ∆xi = x−xi and ∆ni = n×ni are the translational and rotational deviation

of the shading location x with normal n to the cache point.

The set S includes all cache records whose valid regions (Equation (6.9))

overlap x and whose normal deviation is less than ∆nmax. To weight the cache

records, we propose to use a kernel weighting in both translation and orientation

that falls off to zero at the boundaries:

wi(x) = k(1− tx, 0, 1)× k(tn, cos ∆nmax, 1), (6.11)

where k is a simple tent filter, k(t, tmin, tmax) = t−tmin

tmax−tmin
, and

tx =

√[
∆xi · vλ1i
Rλ1
i

]2

+

[
∆xi · vλ2i
Rλ2
i

]2

+

[
∆xi · ni
Rλ1
i

]2

, (6.12)

tn = (n · ni), (6.13)

are the translational and rotational distances. We use the cache record only if

wi(x) is greater than zero. Note that k could easily be replaced with a higher-

order smooth kernel that falls off to zero, but we did not find this to provide a

significant benefit.



81

Scene Radiometric Hessian Occlusion Hessian

Figure 6.12: A simple scene with indirect occlusions (left) where we visualize the
emitted radiance on the emitter above and the indirect illumination on the other surfaces.
The Radiometric Hessian (middle) ignores occlusions, producing a relatively uniform
distribution whereas our Occlusion Hessian method (right) successfully adapts to the
irradiance change near the penumbra region.

6.4 Results

We implemented the new error metric by modifying the native Irradiance

Cache implementation in version 2 of PBRT [PH10]. All results were rendered

using 4 samples per pixel on a PC with a 2.66Ghz Intel Core i7-920 CPU. Our

implementation of the Split-Sphere heuristic follows Ward’s [WRC88] original for-

mulation and uses the harmonic mean distance. For the Bounded Split Sphere we

clamp this radius to a maximum pixel size and to the computed irradiance gradient

(increasing the sample density in areas where the first-order gradient magnitude

exceeds the Split-Sphere prediction). All methods use 4096 rays per irradiance

sample, and we enforce a minimum cache point radius equivalent to the projected

size of 1 pixel at the sample location, except where noted. For the Hessian based

Table 6.1: Rendering times for the scenes and methods presented.

Cornell Box Sponza San Miguel
Method Figure 6.1 Figure 6.16 Figure 6.18

Split-Sphere 01:02.3 53:08.4 07:15:22.4
Radiometric Hessian 01:06.5 n/a n/a
Geometric Hessian 01:04.7 n/a n/a
Occlusion Hessian 01:16.5 54:35.6 07:17:43.7
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methods there is no upper bound for the cache point radii. All Hessian based re-

sults use the default value ∆nmax = 0.2 radians as the maximum normal deviation

angle. We report the render times in Table 6.1.

Figure 6.1 shows a comparison of the Occlusion Hessian error control method

against the Split-Sphere Heuristic as well as the Geometric and Radiometric Hes-

sian metrics defined by Jarosz et al. [JSKJ12]. All images were rendered at a

resolution of 1800x1800 pixels with a single bounce of indirect illumination. The

error thresholds were adjusted for each method to enable the use of 1700 +/- 2%

cache records. With just 1700 cache records the Split-Sphere method shows severe

interpolation artifacts. Even with a maximum radius of 150px (a lower threshold

is not possible with 1700 cache records) the Bounded Split-Sphere method shows

significant errors throughout the rendered image. The Radiometric Hessian works

well in lit regions, but has artifacts in shadowed regions. The Geometric Hessian

works well in most of the scene, but shows interpolation artifacts on the walls and

the ceiling. The Occlusion Hessian produces the best overall result, resolving the

detail in the shadow while maintaining a sufficient density of samples on the walls

and ceiling to reconstruct the irradiance. For the simple geometry in this scene the

Occlusion Hessian added roughly 20% overhead to the computation time. For our

more complex scenes this overhead becomes negligible as the time is dominated by

ray tracing.

Figure 6.13 compares the behavior of our Occlusion Hessian method to the

Bounded Split-Sphere heuristic with increasing cache point densities. All images

used 4096 gather rays, and the Split-Sphere used a maximum radius of 150px (a

tighter bound was not possible for very limited cache point counts). Note how the

Occlusion Hessian produces a high-quality result even with 500 cache points, while

the Split-Sphere suffers from large artifacts even with 1000 cache points.

In Figure 6.14 we extended the Split-Sphere with progressive refinement,

neighbor clamping, and an overture pass [KBPZ06]. Rendering of the enhanced

Split-Sphere image took 123.4s while the Occlusion Hessian rendering, with the

overture pass, took 122.6s. The quality obtained by the Occlusion Hessian is

visibly better, even though the improvement for the Split-Sphere is significant.
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500 Records 1K Records 2K Records 4K Records

Figure 6.13: Comparison of the convergence behavior for the Bounded Split-Sphere
(top) and our Occlusion Hessian (bottom).

Note that the overture pass has less impact on the Occlusion Hessian as the error

metric more closely follows the actual error in the irradiance.

The Geometric Hessian is generally robust in most scenes, but since it is

a purely geometric metric, like the Split-Sphere it does not adapt to changes in

the illumination. In Figure 6.15 the Cornell box has been changed such that

the backwall is completely black. This adds contrast to the indirect illumination,

which the Occlusion Hessian is able to detect and consequently it produces a higher

quality output with fewer artifacts than the Geometric Hessian.

Figure 6.16 shows close-ups of Sponza rendered using the Occlusion Hessian

and the Split Sphere heuristic (both unbounded and with a maximum radius of 20

pixels). For this scene we used a photon map to add multiple bounces of indirect

illumination. The irradiance cache is used to gather the irradiance at the first

diffuse surface seen by the eye, and we used 32K +/- 1% cache records for the full

images. The resulting images show how the Split-Sphere heuristic has interpolation

artifacts in the shadows on the columns, while the Occlusion Hessian is much better

at reconstructing the lighting details. Figure 6.17 shows a direct visualization of

the cache point radii for the Sponza scene with the various methods. Note that we

only visualize the smaller of the two radii for the anisotropic methods. The Split-
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Reference Enhanced Split-Sphere Occlusion Hessian Occlusion Hessian (O)
123.4s 76.5s 122.3s

RMSE: 0.0117 RMSE: 0.0071 RMSE: 0.0049

Figure 6.14: We show the result of adding progressive refinement, neighbor clamping
and an overture pass [KG09] to the Split-Sphere, and compare to our Occlusion Hessian
method without and with an overture pass. While these additions significantly improve
the Split-Sphere result, render time is increased, and it still does not match the quality
achieved by the Occlusion Hessian without an overture pass.

Sphere images show that additionally bounding the cache point radii by the true

first-order gradient leads to smaller radii in areas of high irradiance variance, such

as the indirect penumbras visible at the base of the columns. This behavior is, as

expected, mirrored by the Occlusion Hessian, which defines the radii in proportion

to the rate of change of irradiance. However, the contrast is much higher for the

Split-Sphere images - the radii variations are much larger - which explains the

worse results obtained from this metric (e.g. sampling the scene outside of the

penumbra regions leads to cache points with very large radii and the penumbra

regions become severely under-sampled).
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Reference Geometric Hessian Occlusion Hessian

Figure 6.15: Irradiance rendering of the Cornell Box after changing the back wall so
it has an albedo of 0. The Geometric Hessian does not take the radiometry of the scene
into account, so its cache point distribution is the same as for the standard Cornell Box,
which is sub-optimal. Our new Occlusion Hessian adapts its distribution to match the
radiometry in this new configuration, producing a higher quality result. Note that we
have scaled the difference image color range to ease comparison.
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Reference Pure Split-Sphere Bounded
Split-Sphere

Occlusion Hessian

Figure 6.16: In Sponza the Occlusion Hessian is superior to the Split-Sphere in both
defining shadow details and eliminating interpolation artifacts across surfaces. The shad-
ows at the base on the column are captured by the Occlusion Hessian, while the Split-
Sphere heuristic shows severe interpolation artifacts, even when bounded to 20px and
clamped by the gradient.

Figures 6.18 and 6.19 show interior and exterior views of the PBRT San

Miguel scene. The methods were tuned so that 50K cache points (+/- 1%) would

be produced. A photon map was used for the secondary light bounces, with 1

million photons stored. Our Occlusion Hessian approach was able to properly

define all indirect shadows in the image, and exhibits fewer interpolation artifacts

in areas of the scene where the irradiance varies slowly. Rendering times for both

the Bounded Split-Sphere and the Occlusion Hessian were within 0.5% of each

other.

6.5 Conclusion

In this chapter we have described a new method for controlling the ap-

proximation error in irradiance caching. The new method is based on computing

the second derivative of irradiance - the translation Hessian - while taking object

inter-occlusions into account. A second-order Taylor expansion of irradiance is

used as an oracle to the true irradiance, in order to estimate the error induced

by first-order Taylor expansion during rendering. The Hessian also naturally sup-

ports anisotropic cache points. As a result, record density closely matches the

rate of change of irradiance in the scene, leading to reduced error in the rendered

images when compared to all previous approaches. Furthermore, our method does
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Figure 6.17: Direct visualization of the radii (left) and footprints (right) of the cache
records for various error metrics. The Pure Split-Sphere, Radiometric and Geomet-
ric Hessians are all unable to detect the indirect shadows on the columns, while the
Bounded Split-Sphere (clamped to 20px and the gradient) as well as the Occlusion Hes-
sian correctly predict smaller radii in these rapidly changing regions. Unfortunately, the
contrast in the Split-Sphere is too high, leading to lost detail due to the greedy nature
of the irradiance caching algorithm.
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Reference Bounded Split-Sphere Occlusion Hessian

Figure 6.18: An interior of San Miguel with strong indirect illumination. The close-
ups show how the Occlusion Hessian is able to resolve the shadows behind the paintings,
while the Split-Sphere heuristic (clamped to 20px and the gradient) largely misses these
shadows.

Reference Bounded Split-Sphere Occlusion Hessian

Figure 6.19: An exterior of San Miguel with strong indirect illumination (only the
irradiance is shown). The close-ups show how the Occlusion Hessian is able to resolve
the shadows above the door frames, while the Split-Sphere heuristic (clamped to 20px
and the gradient) results in broken, unrealistic shadows.
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not rely heavily on user-defined minimum and maximum cache point radii, lead-

ing to more intuitive user control. The robustness of our new Occlusion Hessian

method also minimizes the need to use other corrective techniques, such as pro-

gressive refinement, neighbor clamping, or an overture pass, resulting in a simpler

implementation.
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Chapter 7

Conclusions

The goal of this thesis was the improvement of the irradiance caching al-

gorithm. To reach this goal we have derived a new method for controlling the

approximation error inherent to the algorithm, which is based on a new formu-

lation of the irradiance Hessian that takes object inter-occlusions into account.

We estimate the error induced by a first-order Taylor expansion by turning to a

second-order Taylor expansion as an oracle of the true irradiance. Our Hessian

also naturally supports anisotropic cache points, so that record density closely

matches the rate of change of irradiance in the scene, leading to reduced error in

the rendered images when compared to all previous approaches.

The results in the preceding chapter clearly show that we have produced a

method that significantly improves upon the state of the art regarding irradiance

caching. While the original algorithm was derived in a very principled manner, it

was subsequently improved upon using much more ad-hoc methods that attempted

to ameliorate specific perceived short-comings, leading to a state where implement-

ing a good irradiance caching algorithm required referencing many sources and

understanding how to control the parameters of however many of these fixes one

wished to support. One of our primary goals in this work was to derive a principled

and robust error metric that would render the original algorithm usable in real-

world, modern scenes, without needing to rely on (too many) extra parameters,

and we feel we have achieved this.

The work we performed in deriving our final occlusion-aware method, where

90
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we perform a transformation of the three-dimensional scene so it has no occlusions,

shows very clearly how it is sometimes required to think outside the box in order

to come to a good, practical solution to a problem. In our case, we wanted to

find a way to accurately and - just as importantly - quickly compute the second

derivative of irradiance in scenes with occlusions; it is only too ironic that the

ultimate answer to this required us to strip occlusions away from our input scenes!

Given the simplicity of our approach and the generality it gains when using a

sampling-based approach - since we don’t need to find the true transformation but

only the one for our sampled representation of the scene - we are quite hopeful

that it will find use beyond that which we have given it.

We have also contributed a full derivation of the second derivative of the

light-field (vector irradiance) in the presence of occlusions, which though ultimately

unsuitable for our purposes might yet prove useful in some other context, and fur-

ther research as to the applicability of the derivation in the area of light transport

would be interesting. Indeed, the mathematical framework exists already in or-

der to extend these formulas to a third derivative of Irradiance. While it would

be algebraically complex - it would, after all, be a rank-4 tensor - it could be

used, for instance, to bound the error arising from a second-order Taylor expan-

sion of irradiance. Jarosz et al. [JSKJ12] performed a cursory evaluation of using

a second-order Taylor expansion for approximating the irradiance in a scene and

found that it held promise, but was hard to control - a good error bound becomes

much more important than for a first-order expansion because the rate of change

of the interpolation can vary much more wildly for the second-order case.
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