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ρJ = 0.25 and Ku = 5. The bandwidth constraint, C0, is set to 500. The
constraint length of the channel code is fixed to 6. . . . . . . . . . . . . . 48
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Some of the challenges in the design of next generation wireless systems are providing

high data rate multimedia services, increasing user capacity, improving reliability and

range, terminal mobility, robustness to interference, limited spectrum availability, and

transmission power constraints. The approaches that we take in this dissertation to address

some of the aforementioned issues are cross-layer design and user cooperation.

In the first part of the dissertation, on a wideband CDMA channel with a finite trans-

mission bandwidth constraint, we consider the problem of optimal bandwidth alloca-

tion for source coding, channel coding and spread-spectrum modulation. For analytical

tractability, we assume a memoryless Gaussian source with an optimum quantizer, a con-
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volutional encoder with a soft-decision decoder, and a spread-spectrum modulator with

random spreading codes and a RAKE receiver. In the presence of both multiple access in-

terference (MAI) and narrowband interference (NBI), for frequency-selective Nakagami

fading channels, we derive upper and lower bounds on the end-to-end average source

distortion. Since an exact expression for the average distortion is difficult to derive, we

seek to obtain the three-tuple (i.e., source coding rate, channel coding rate, and spreading

factor) that optimizes the upper and lower bounds on the average distortion. Under var-

ious channel conditions and interference levels, we numerically computed the optimum

three-tuple, and verify the accuracy with system-level simulations. For small values of

spreading factor, we show that the system performance is hurt by the self-interference

of the user-of-interest, thus cautioning against aggressive channel coding. Since a multi-

carrier DS-CDMA (or, simply MC-CDMA) system is more robust to NBI, we propose to

employ an MC-CDMA system to improve the distortion performance on channels with

severe NBI. For a fixed channel code rate, we then quantify the tradeoff between source

coding and spreading for an MC-CDMA system.

In the second part of the dissertation, we consider a parallel relay channel wherein

the relay nodes help the source transmissions to provide improved reliability at the des-

tination. With multiple relay nodes, we design and analyze robust noncoherent amplify-

and-forward receivers for use on rapidly-varying Rayleigh fading channels with unknown

instantaneous channel knowledge. Next, with a sum power constraint, we consider the

problem of optimal transmit power allocation when only statistical knowledge, in terms

of the average fading power, of the channel is available at the transmitting nodes. We

quantify the improvements in both outage probability performance and asymptotic coop-

eration gain of various relaying protocols with optimal power allocation.
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C H A P T E R 1

Introduction

Next generation, also referred to as fourth generation (4G), wireless systems are ex-

pected to provide increased spectral efficiency, and high quality multimedia content with

improved reliability [1]. Some of the challenges in realizing this goal are battery power

concerns of mobile handsets, limited spectrum availability, robustness to channel quality

and interference conditions, ubiquitous coverage, and terminal mobility.

Since the transmissions over a wireless channel are broadcast in nature, and the ef-

fects of physical layer imperfections, such as packet errors, will be propagated throughout

the communication protocol stack, it is rather a challenging task to design efficient com-

munication protocols. In this context, the validity of the traditional approach of layered

communication protocol architecture is being reexamined by the research community. A

perspective, termed cross-layer design, has emerged that allows us to design a protocol

stack by actively exploiting the dependencies among protocol layers to maximize the per-

formance gains [2]-[5].

As an instructive example of cross-layer design, consider a typical communication

protocol stack as shown in Fig. 1.1. Instead of a traditional OSI (open systems inter-

connections) approach of seven layers [6], for simplicity, only five layers are shown in

Fig. 1.3. Some possible functionalities are also listed below each layer’s title. To moti-

vate the cross-layer design perspective, consider a fixed transmission bandwidth ofW Hz.

The transmission rate supported with this bandwidth can be allocated among the differ-

ent layers in a number of ways. For example, the entire rate can be allocated to source

1
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Figure 1.1 A cross-layer design example: Here, for a finite bandwidth, either the source
code rate and channel cod rate are jointly optimized, or the spreading factor and the
channel code rate are jointly optimized.

coding (i.e., the application layer), leaving no rate to channel coding (i.e., the link layer)

or modulation (i.e., the physical layer), thus seriously compromising the communication

reliability. On the other hand, the total rate can be apportioned between the link layer and

the application layer. More rate for source coding leads to less rate for channel protection,

and hence more channel errors, whereas allocating more rate for channel coding (i.e., bet-

ter protection against channel errors) potentially leads to an increase in source distortion

(i.e., fewer bits are available to represent a source sample). Thus, there exists a tradeoff

between source and channel coding, which is characterized in [7], [8], and [9]. In an anal-

ogous manner, using a spread-spectrum modulation approach, the total chip rate can also

be shared between the physical layer and the link layer. In this scenario, we observe that

more rate for channel coding leads to less robustness against interference and multipath.

On the other hand, more spreading bandwidth (i.e., higher chip rate) might lead to too

weak channel coding. This tradeoff in the literature is termed coding-spreading tradeoff,

and is addressed in [10] by Hui, [11] by Li and Milstein, [12] by Massey, [13] by Bickel

et al, [14] by Mandayam and Holtzman, [15] by Motani and Veeravalli, [16] by Veeravalli

and Mantravadi, and [17] by Lian et al.

In fact, as shown in Fig. 1.2, one can generalize the above framework by allocating the
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Figure 1.2 Cross-layer approaches considered in this dissertation: Here, for a finite band-
width, a three-way optimization of source code rate, channel code rate and spreading
factor is considered in Chapter. 2. A simple case, in which the channel code rate is fixed,
of jointly optimizing spreading factor and the source code rate is also investigated in
Chapter. 3.

available bandwidth, in an optimal manner, to source coding, channel coding and spread-

ing. Initial results in this direction are obtained in [18] for a frequency-flat Rayleigh

fading DS-CDMA (direct-sequence code-division multiple access) channel. In this dis-

sertation, we extend the results of [18] to channels with frequency-selective generalized

fading, and narrowband interference (NBI). This thesis also considers a simplified sce-

nario in which we fix the channel coding rate, also shown in Fig. 1.2, and investigate the

tradeoff between source coding and spreading for a multi-carrier DS-CDMA (or, simply

MC-CDMA) system.

The huge success of wireless local area networks (WLANs) led the 4G wireless re-

search community to consider the possibility of integrating WLAN and cellular systems

to provide improvements in mobility and range extensions for high data rate users [19]

(see Fig. 1.3). In this context, relay-based deployment concepts have recently become

popular [20], which are also finding interesting applications in infrastructure-based wire-

less systems as well as in wireless mesh networks [21]. The relay channel, shown in

Fig. 1.4, has a rich history. In [22], Van Der Meulen introduced the relay channel in the

context of his study on three-terminal communication channels. Later Meulen [23] and
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Figure 1.3 A wireless system consisting of both cellular and ad-hoc networks as compo-
nent subsystems.

Source Destination

Relay

Figure 1.4 The relay channel.

Sato [24] presented upper bounds to the relay channel capacity. Although the exact capac-

ity of a general relay channel is not yet fully characterized, Cover and El Gamal in [25]

derived upper bounds on the capacity of a general relay channel and the exact capacity of

a Gaussian degraded relay channel.

A recent study [26] by a European research organization has predicted that the future

growth in wireless might be fueled by mobile terminals cooperating with each other. In

a cooperating wireless network, a more general framework than the previously discussed

relay-assisted communication scenario, the user terminals share their available resources,

such as transmission time, antennas, battery power and channel bandwidth, in such a
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(a): Traditional uplink (b): Uplink with two-hop communication (c ): Uplink with cooperating terminals

Figure 1.5 In this figure, (a) shows a conventional uplink of a single cell. A two-hop
uplink approach of (b) might be more efficient for terminals at the cell boundary. Gener-
alization of the two-hop idea of (b) leads to the concept of cooperating terminals, shown
in (c), wherein each terminal can simultaneously act as a source as well as a relay.

way that a significant improvement in the overall network utility (such as improvements

in system throughput, or reduction in network operating cost) can be realized. As an

example, a distinction among a conventional cellular uplink, a two-hop relay-assisted

uplink, and an uplink based on cooperating terminals, is illustrated in Fig. 1.5. For a

tutorial on user cooperation, we refer the reader to [27].

In this dissertation, we consider a scenario in which multiple relay nodes help the

source transmissions by forming a parallel relay network (see Fig. 1.6). We first address

the key issue of the end-to-end reliability (as measured by the average probability of error

at the destination) when instantaneous channel state information (CSI) is not available to

the nodes in the network. In a later part of this thesis, we quantify the benefits of optimum

power allocation with various relaying protocols when the total network transmit power

is kept constant. Here, we assume that the receivers have perfect CSI, whereas only

statistical knowledge of the channel (i.e., average channel fading power) is available to

the transmitters.
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Source Destination

Relay 1

Relay 2

Relay M

Figure 1.6 A parallel relay network formed with multiple relay nodes.

1.1 Thesis Organization

The main contributions of this dissertation are contained in Chapters 2-5. The chapters

are organized in such a way that Chapters 2 and 3 can be read together, whereas Chapters 4

and 5 can be pursued independently.

In Chapter 2, with a constraint on the transmission bandwidth, we study the three

way tradeoff among source coding, channel coding and spreading for a wideband DS-

CDMA system. Assuming a Gaussian source with optimum quantizer, a convolutional

code with soft-decision decoder, and a randomly spread DS-CDMA system with RAKE

reception, we present upper and lower bounds on the end-to-end average source distortion.

Our numerical results in Chapter 2 demonstrate that the optimal three-tuple (i.e., source

coding rate, channel coding rate, and spreading factor), that is, the one that minimizes

the distortion upper bound, is quite close to the one based on the lower bound on the

average distortion. Interestingly, for small values of spreading factor, our simulations

show that the distortion performance can be compromised by the self-interference of the

user-of-interest, thus cautioning against aggressive channel coding.

In Chapter 3, we are concerned with improving the distortion performance on chan-

nels with severe NBI. Since an MC-CDMA system is more robust to NBI than a DS-

CDMA system, in Chapter 3 we propose to use an MC-CDMA system in place of the
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conventional DS-CDMA system to improve the distortion performance. Our results with

MC-CDMA show an improvement in not only the average distortion performance, but

also the three-way tradeoff performance. That is, under various channel conditions, for

the same bandwidth constraint with approximately identical receiver complexities for

both DS- and MC-CDMA systems, our results show that an MC-CDMA system sup-

ports a larger source coding rate than does a DS-CDMA system. Our results in both

Chapters 2 and 3 show that the optimal bandwidth allocation, in general, depends on the

system and the channel conditions, such as the total number of active users, the average

jammer-to-signal power ratio (JSR), and the number of resolved multipath components

together with their power delay profile.

In Chapters 4 and 5, we study the parallel relay channel model of Fig. 1.6 in de-

tail. On rapidly-varying Rayleigh fading channels with no CSI at the receiving nodes,

in Chapter 4 we present optimum noncoherent amplify-and-forward (AF) detectors for

both OOK and BFSK modulations. We derive upper and lower bounds on the average

probability of error, and prove that the asymptotic diversity order of a noncoherent AF

receiver is twice that of a noncoherent DF (decode-and-forward) receiver. To minimize

the implementation complexity, we also propose suboptimum receivers along with their

performance evaluations.

With a constraint on the average sum power of the source and all the relay nodes,

Chapter 5 considers the problem of optimal transmit power allocation. In this chapter,

we assume that the receivers have perfect knowledge of the CSI, whereas only statistical

knowledge of the channel is available at the transmitting nodes. We quantify the improve-

ments in outage probability performance, as well as the asymptotic cooperation gain of

various relaying protocols with optimal power allocation.



C H A P T E R 2

Source Coding, Channel Coding and Spreading

Tradeoffs in a DS-CDMA System

2.1 Introduction

It is well known that efficient channel coding together with the processing gain inher-

ent in the use of spread-spectrum enables a direct-sequence CDMA system to success-

fully combat the effects of multipath distortion, multiple access interference (MAI), and

intentional/unintentional narrow-band interference [28]-[30]. However, for a fixed spread

bandwidth, transmission of high quality source information competes for the available

bandwidth with channel coding and spreading. This motivates us to study the tradeoffs

involved among source coding, channel coding and spreading in a DS-CDMA system.

We first briefly review the related previous work. In [7] and [8], an information the-

oretic approach is taken to investigate the tradeoffs between source and channel coding.

In [11] and [16], the tradeoff between coding and spreading is investigated for a spread-

spectrum system. Using system level simulations, in [31], Zhao et al. studied the problem

of optimal bandwidth allocation among source coder, channel coder, and spread-spectrum

modulator for progressive transmission of images over frequency-selective fading chan-

nels with MAI. Recently, in [18], an analysis was presented for the optimal bandwidth

allocation on additive white Gaussian noise (AWGN) and flat Rayleigh fading CDMA

channels with both block coding with hard-decision decoding and convolutional coding

with soft-decision decoding.

8
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In this chapter, we extend the analysis of [18] to the case of a frequency-selective fad-

ing channel with NBI. We assume a Gaussian source with the optimum scalar quantizer

and a binary convolutional code with soft-decision decoding. For the sake of general-

ity, we model the individual multipath components as independent, Nakagami-m dis-

tributed with arbitrary fading parameters, and assume that the NBI is a Gaussian dis-

tributed partial-band interferer (PBI). Using a standard Gaussian approximation for the

MAI, we obtain an upper and a lower bound on the pairwise error probability (PEP) with

soft-decision decoding, using which we bound the end-to-end average source distortion.

In our analysis, we assume that the self-interference is negligible. As a consequence, our

analytical results apply to scenarios such as where the dominant source of interference

is due to MAI and/or jamming. We first note that the joint three-way constrained opti-

mization of the source code rate, the channel code rate, and the spreading factor can be

simplified into an unconstrained optimization problem over two variables. Upon fixing

the channel code rate, we show that both upper and lower bound-based distortion func-

tions are convex functions of the source code rate. An explicit solution for the optimum

source code rate, that minimizes the average distortion, is difficult to obtain and requires

computer-based search techniques. We note that the analysis of [18], which is valid for

both an AWGN channel and a flat Rayleigh fading channel, can be viewed as a special

case of the analysis presented in this chapter. Numerical results are given for the opti-

mum source code rate and spreading factor, parameterized by the channel code rate and

code constraint length. Results indicate that the optimal bandwidth allocation, in general,

depends on the system and the channel conditions, such as the total number of active

users, the average jammer-to-signal power ratio, and the number of resolved multipath

components together with their power delay profile.

The rest of this chapter is organized as follows. In Section 2.2, we introduce our

system and the channel model and derive upper and lower bounds on the pairwise error

probability with soft-decision decoding. Analysis of the end-to-end average distortion

with soft-decision channel decoding is presented in Section 2.3, and the optimum band-
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Figure 2.1 Block diagram of the transmitter–receiver pair for the desired user.

width allocation problem is detailed in Section 2.4. Numerical results and discussion are

provided in Section 2.5. Finally, we conclude our work in Section 2.6.

2.2 System Model

The transmitter-receiver pair for the user of interest is shown in Fig. 2.1. The infor-

mation source is quantized by the source encoder with a rate of rs bits per source sample,

which are then mapped onto a new bit index of the same length rs using an index assign-

ment block. While ordinarily the purpose of an index assignment is to permute indices so

that small Hamming distance corresponds to close quantization levels, for ease of analy-

sis, as in [32], [18], we assume a random index assignment with a one-to-one mapping of

indices from 0 through 2rs − 1.

The bit stream at the output of the index assignment block is encoded with a convo-
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lutional code of rate rc, whose output is interleaved, assumed to be ideal, before passing

through the spread-spectrum modulator. We now present the mathematical model for the

transmitter, the channel and the receiver.

2.2.1 Transmit Signal Model

With Ku simultaneous users in the system, the transmitted signal for the kth user is

denoted by S(k)(t), and is expressed in the form

S(k)(t) =
√

2Pa(k)(t)d(k)(t) cos(2πfct+ φ(k)), (2.1)

where P is the transmit power, assumed to be common to all the users, fc is the carrier

frequency in Hertz, φ(k) is the initial phase angle and a(k)(t) is the spreading code se-

quence of the kth user, which can be expressed as a(k)(t) =
∑∞

j=−∞ ak[j]hTc(t − jTc),

where ak[j] ∈ {−1,+1}, and hT (t) is a rectangular pulse shape filter with hT (t) = 1 for

0 ≤ t < T , and is zero elsewhere. The data signal of the kth user, d(k)(t), is given by

d(k)(t) =
∑∞

j=−∞ dk[j]hTs(t−jTs), where dk[j] ∈ {−1, 1} denote the coded data stream,

and Ts is the symbol duration, which is related to the bit duration, Tb, by Ts = Tbrc so

that the energy-per-bit, Eb, can be expressed as Eb = PTb = PTs/rc. We assume that the

spreading sequence {ak[j]} is long enough to be considered as a random binary sequence

with period much longer than the symbol duration. The spread factor, SF , of this coded

system is defined as SF = Ts/Tc = Tbrc/Tc.

2.2.2 Channel Model

The channel is assumed to be frequency-selective and is slowly fading over the dura-

tion of Ts. The low-pass equivalent impulse response for the kth user is given by

h(k)(t) =
L−1∑
l=0

α
(k)
l ejθ

(k)
l δ(t− τ

(k)
l ), (2.2)
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where L is the number of resolved multipaths, which is related to the multipath delay

spread Tm and the chip duration Tc by L = bTm/Tcc + 1, where bxc denotes the largest

integer that is less than or equal to x. α(k)
l is the random amplitude fade on the lth path,

which is assumed to be Nakagami-m distributed with the probability density function

(pdf) [33]

f
α

(k)
l

(x) =
2mml

l

Ωml
l Γ(ml)

exp

(
−mlx

2

Ωl

)
x2ml−1, x ≥ 0, (2.3)

where ml ≥ 0.5 is the Nakagami parameter, also known as the fading severity index,

and Ωl = E[(α
(k)
l )2] is the average fading power on the lth path, which is assumed to

be independent of the user index k. We note that the pdf expression of (2.3) allows us to

investigate the bandwidth tradeoff problem on generalized wideband fading channels with

variable severity of individual resolvable multipaths. For simplicity, similar to [34]-[35],

we assume that the random phase θ(k)
l is independent of α(k)

l , and is uniformly distributed

over [0, 2π). The random variable (r.v) τ (k)
l denotes propagation delay on the lth path, and

is assumed to be uniformly distributed in [0, Tc).

In addition to the above described multipath, the transmitted signal is also affected by

a narrow-band jammer, which, in this chapter, is modelled as a Gaussian-distributed PBI,

J(t), with a power spectral density (PSD)

SJ(f) =


ηJ

2
for fc − WJ

2
≤ |f | ≤ fc + WJ

2

0 otherwise,
(2.4)

where ηJ and WJ are the one-sided power spectral density and the bandwidth of the PBI,

respectively. Finally, the average power of the jammer is denoted by NJ , and is given by

NJ = ηJWJ .

2.2.3 Receiver Model

Without loss of generality, we assume that the first user (i.e., k = 1) is the user-

of-interest. With this, the received signal after passing through the frequency-selective
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fading channel with a PBI can be expressed as

r(t) =
Ku∑
k=1

√
2P

L−1∑
l=0

α
(k)
l a(k)(t−τ (k)

l )d(k)(t−τ (k)
l ) cos(2πfct+ψ

(k)
l )+n(t)+J(t), (2.5)

where ψ(k)
l = −2πfcτ

(k)
l +θ

(k)
l +φ(k) is the effective phase on the lth path of the kth user,

and n(t) is zero-mean AWGN with two-sided power spectral density of N0/2.

We assume that the code acquisition for the desired user is successful, so that the

matched filter on the first finger of the RAKE receiver is synchronized to the last path of

the desired user. We also assume perfect knowledge of the desired user’s fade coefficients,

{α(1)
l }. With this, the output of the RAKE receiver during the nth code symbol is given

by [34]

Zn =
L−1∑
l=0

lTc+Ts∫
lTc

r(t)α
(1)
l [n]a(1)(t− lTc) cos(wct+ ψ

(1)
l [n])dt

=
L−1∑
l=0

(
Dl[n] + ISI

l [n] + IMAI
l [n] +Nl[n] + Jl[n]

)
, (2.6)

where the subscript l and the index n denote, respectively, the path index and the symbol

index, and the other terms of (2.6) are defined as follows: a)Dl[n] is the component of

the test statistic due to the desired user, b)ISI
l is the self interference of user 1, due to the

non-impulsive nature of the autocorrelation function of the spreading code, c)IMAI
l [n] is

the MAI due to the other Ku− 1 users, d)Nl[n] is the contribution due to the AWGN, and

e)Jl[n] is the contribution made by the jammer. Following the analysis of [34], one can

show that the terms Dl[n], IMAI
l [n], ISI

l [n], Nl[n] and Jl[n] are, respectively, given by

Dl[n] =

√
P

2
d1[n]Ts

(
α

(1)
l [n]

)2

(2.7)
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IMAI
l [n] =

√
P

2

Ku∑
k=2

L−1∑
j=0

α
(1)
l [n]α

(k)
j [n]×(

dk[n− 1]Rk,1(τ
(k)
l,j [n]) + dk[n]R̂k,1(τ

(k)
l,j [n])

)
cos(ψ

(k)
l,j [n]) (2.8)

ISI
l [n] =

√
P

2

L−1∑
i=0,i6=l

α
(1)
l [n]α

(1)
i [n]×(

d1[n− 1]R1,1(τ
(1)
l,i [n]) + d1[n]R̂1,1(τ

(1)
l,i [n])

)
cos(ψ

(1)
l,i [n]) (2.9)

Nl[n] =

lTc+Ts∫
lTc

n(t)α
(1)
l [n]a(1)(t− lTc) cos(wct+ ψ

(1)
l [n])dt (2.10)

and Jl[n] =

lTc+Ts∫
lTc

J(t)α
(1)
l [n]a(1)(t− lTc) cos(wct+ ψ

(1)
l [n])dt, (2.11)

where, for k = 2, . . . , Ku, τ (k)
l,j [n] = τ

(k)
j [n] − τ

(1)
l [n], ψ(k)

l,j [n] = ψ
(k)
j [n] − ψ

(1)
l [n], and

the partial correlation coefficients Rk,1(·) and R̂k,1(·) are defined as Rk,1(τ) =
τ∫
0

a(k)(t−

τ)a(1)(t)dt and R̂k,1(τ) =
Ts∫
τ

a(k)(t− τ)a(1)(t)dt.

We are interested in obtaining the statistics of Zn at the output of the RAKE receiver.

For analytical tractability, conditioned on {α(1)
l [n]} and a(1)(t), for a large number of

users, we model the interference terms of (2.8)-(2.11) as Gaussian processes and obtain

the following conditional variance [34],[35]:

(σMAI
l [n])2 =

PTsTc

6
(α

(1)
l [n])2(Ku − 1)ΩT (2.12)

with ΩT is defined as

ΩT =
L−1∑
l=0

Ωl. (2.13)

For a large number of users, the contribution of self-interference is negligible compared
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with the MAI, allowing us to ignore the contribution due to ISI
l [n]. The variance of

AWGN can be computed as [34],[35]

(σN
l [n])2 = E[(Nl[n])2] =

Tsη0

4
(α

(1)
l [n])2, (2.14)

whereas the variance of the jammer’s contribution, after some algebra, can be shown to

be

(σJ
l [n])2 = E[(Jl[n])2] = (α

(1)
l [n])2Ts

1

4

∞∫
−∞

|H(f)|2 (SJ(f − fc) + SJ(f + fc))
df

Tc

= (α
(1)
l [n])2Ts

ηJ

4

WJ/2∫
−WJ/2

|H(f)|2df
Tc

, (2.15)

where H(f) is the Fourier transform of hTc(t). Let us define by ρJ = WJ/W the fraction

of the total bandwidth occupied by the jammer, where W = 1/Tc is the CDMA system

bandwidth. Let JSR = ηJWJ/P = NJ/P denote the jammer-to-signal power ratio, and

γb = PTb/N0 = Eb/N0 denote the signal-to-noise ratio (SNR) per information bit. We

also define ζJ =
WJ/2∫

−WJ/2

|H(f)|2df/Tc =
ρJ/2∫

−ρJ/2

sin2 πu
π2u2 du. Using integration by parts, ζJ can

be simplified as ζJ = 2(cos(πρJ) − 1)/(π2ρJ) + (2/π)Si[πρJ ], where Si[u] =
u∫
0

dt
t

sin t

[36], so that (2.15) can be simplified to

(σJ
l [n])2 = (α

(1)
l [n])2η0

4

TsJSRγbrc

SFρJ

ζJ . (2.16)

Using the results of (2.12)-(2.15), the decision statistic, Zn, at the output of the RAKE

receiver for the nth symbol is given by

Zn = d1[n]Ts

√
P

2

L−1∑
l=0

(α
(1)
l [n])2 + ηe[n] (2.17)
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where ηe[n] is approximately Gaussian with zero-mean and variance

σ2
e [n] =

L−1∑
l=0

(α
(1)
l [n])2Ne

2
,

and

Ne , 2PT 2
s

{
(Ku − 1)ΩT

6SF

+
η0

4PTs

+
η0

4PTs

JSRγbrcζJ
SFρJ

}
. (2.18)

2.2.4 Frame Error Rate with Convolutional Coding

The RAKE receiver outputs, {Zn}, corresponding to a given coded frame, are passed

to the deinterleaver and are then used by the Viterbi decoder for soft-decision decoding.

For convenience, let us define βn =
∑L−1

l=0 (α
(1)
l [n])2, and β = (β1, . . . , βN), where N

is the frame length, and for simplicity, we have dropped the index of the desired user. It

is well known that at high SNR, the key performance metric with channel coding is the

pairwise error probability between two codewords [37]. The PEP between two codewords

x = (x1, . . . , xN) and y = (y1, . . . , yN) which differ in d positions is

P2(d|α) = Prob

(
N∑

n=1

(zn − xn)2 >
N∑

n=1

(zn − yn)2

)

= Prob

(
N∑

n=1

zn(xn − yn) < 0

)

= Prob

(
N∑

n=1

ηe[n](xn − yn) < −
√
PT 2

s

2

N∑
n=1

βnxn(xn − yn)

)
, (2.19)

where in the last step of (2.19) we have used (2.17). Without loss of generality, we assume

that the codewords x and y differ in the first d positions. Then, using the Chernoff bound,

Q(x) ≤ 1/2 exp(−x2/2) for x ≥ 0, we can upper bound (2.19) as

P2(d|β) ≤ 1

2
exp

(
−Γ

d∑
n=1

βn

)
, (2.20)
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where Γ is the signal-to-interference-plus-noise ratio (SINR) and is given by

Γ =
PTs

N0

1 + PTs

N0SF

{
2
3
(Ku − 1)ΩT + JSRζJ

ρJ

} =
rcγb

1 + rcγb

SF
∆
, (2.21)

and where we have used Ts = rcTb, Eb = PTb, and ∆ = 2
3
(Ku−1)ΩT + JSRζJ

ρJ
. Note that

∆, being a function of the multipath channel profile, the number of active users, and the

JSR, is independent of rc, SF , and the SNR-per-bit of the desired user, γb. Upon taking

the expectation of (2.20) over the distribution of (2.3), we obtain

P 2(d) = E
{
P2(d|β)

}
≤ 1

2

L−1∏
l=0

(
ml

ml + ΓΩl

)mld

<
1

2

L−1∏
l=0

(
ml

Ωl

)mld

Γ−d
PL−1

l=0 ml

= C(m,Ω, d)Γ−md, (2.22)

where m =
∑L−1

l=0 ml, m = (m0, . . . ,mL−1), Ω = (Ω0, . . . ,ΩL−1), and C(m,Ω, d) =

1
2

∏L−1
l=0

(
ml

Ωl

)mld

. In this chapter, we assume that the maximum average SINR, Γmax =

Γ×max(Ωl) is at least greater than unity (i.e., above 0 dB).

We note that an exact expression for the frame error rate (FER) for a convolutional

code with soft-decision decoding is difficult to derive, which motivates us to employ the

union bound, as it is sufficiently tight at high SNR. A tight upper bound on the FER of a

convolutional code with block lengths larger than the constraint length is obtained in [18],

using which we obtain the FER for our system as

PB ≤
∑

d

t(d)P 2(d)

<
∑

d

t(d)C(m,Ω, d)Γ−md, (2.23)

where t(d) is a function of the weight spectrum [37] of the underlying convolutional code.

We are also interested in a lower bound on the FER, which can be obtained by taking only

the dominant term of (2.23). However, the Chernoff upper bound on PEP of (2.22) is no
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longer useful. In Appendix-A, we derive a lower bound for P 2(d), using which the lower

bound on the FER can be obtained as

PB ≥ t(dfree)D(m, dfree)(1 + Γω)−mdfree , (2.24)

where dfree is the free distance of the code, and D(m, d) and ω are defined in Appendix-

A.

2.3 End-to-End Average Distortion

For simplicity, we assume that the information source is Gaussian-distributed with

independent and identically distributed source samples, each with unit variance. If rs

denotes the number of bits-per-source sample, then the average source distortion with

minimum mean square error scalar quantization on a noise-free channel is approximated,

for large rs, as D(rs) = ε2−2rs , where ε depends on the quantizer [38]. Note that each

coded frame of length N contains Nrc/rs source samples. Then, the average distortion

per source sample can be written as [39, Eqn. (10)]

D(rs, rc,SF ) =
Nrc/rs(1− PB(rc,SF ))ε2−2rs +Nrc/rsPB(rc,SF )

Nrc/rs

=
(
(1− PB(rc,SF ))ε2−2rs + PB(rc,SF )

)
≤

(
ε2−2rs + PB(rc,SF )

)
≤

(
ε2−2rs +

∑
d

t(d)C(m,Ω, d)Γ−md

)
, Du(rs, rc,SF ), (2.25)

where the above upper bound is quite accurate in the high SNR region. Note that the

term t(d) of (2.25) depends on the number of input and output bits, and on the particular

encoder used to realize the convolutional code of given rate. It also depends on the code’s
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constraint length1 (i.e., the number of memory elements used). Unfortunately, in general,

a functional relationship between t(d) and rc is not known.

A lower bound on the end-to-end average distortion can be obtained by first lower

bounding the frame error rate, PB(rc,SF ) by the term with minimum free distance dfree

as PB(rc,SF ) ≥ t(dfree)P2(dfree). With this, a lower bound on the average distortion can

be obtained as

D(rs, rc,SF ) ≥ ε2−2rs + t(dfree)P2(dfree)(1− ε2−2rs)

= ε2−2rs + t(dfree)D(m, dfree)(1 + Γω)−mdfree(1− ε2−2rs)

, Dlower(rs, rc,SF ), (2.26)

where in the second step of (2.26) we have used (2.24). In what follows, we consider

both the upper bound and lower bound on the average distortion, (2.25) and (2.26), as our

objective functions.

2.4 Optimum Bandwidth Allocation

If we denote by U the number of source samples per second available to the source

coder, then the total rate at the output of the spread-spectrum modulator is given by

Urs
1
rc
SF , which should not exceed the spread-spectrum bandwidth W . That is, the vari-

ables rs, rc and SF are related by rsSF/rc ≤ C0, where C0 = W/U . The distortion

function is given by D(rs, rc,SF ), which can also be written as D(rs, rc, C0rc/rs). We

notice that by fixing the channel code rate, rc, the distortion can be expressed only as a

function of the source rate rs together with the bandwidth constraint C0. In this section,

we minimize the objective functions, Du(rs, rc,SF ) of (2.25) and Dlower(rs, rc,SF ) of

(2.26), as a function of the source code rate rs.

1Even for the same code rate, and the same constraint length, different generator polynomials result in
different weight spectra, t(d) [37].
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2.4.1 Optimal Allocation Based on Upper Bound

With rc fixed, we substitute SF = C0rc/rs in Γ of (2.25) and simplify (2.25) in the

form of a function of rs alone as

Du(rs) = ε2−2rs +
∑

d

t(d)C(m,Ω, d)(rcγb)
−md

(
1 +

γb∆

C0

rs

)md

. (2.27)

Differentiating (2.27) with respect to rs we arrive at

d

drs

Du(rs) = −ε2 ln 22−2rs +

∑
d

t(d)C(m,Ω, d)(rcγb)
−mdmd

γb∆

C0

(
1 +

γb∆

C0

rs

)md−1

. (2.28)

If r∗s is the optimum source code rate, then we have d
drs
Du(rs)|rs=r∗s = 0. Equivalently,

r∗s satisfies

r∗s =
1

2
log2

 2ε ln 2∑
d t(d)C(m,Ω, d)(rcγb)−mdmdγb∆

C0

(
1 + γb∆

C0
r∗s

)md−1

 . (2.29)

The second derivative of Du(rs) can be calculated by differentiating (2.28) with respect

to rs and results in

d2

dr2
s

Du(rs) = 4ε(ln 2)22−2rs +
∑

d

t(d)C(m,Ω, d)(rcγb)
−md ×

md(md− 1)

(
1 +

γb∆

C0

rs

)md−2(
γb∆

C0

)2

. (2.30)

Note that (2.30) is always positive, since m =
∑L−1

l=0 ml ≥ L/2 and md ≥ Ld/2 > 1,

showing that Du(rs) is a convex function of rs. The optimal 3-tuple is then given by

(r∗s , rc, C0rc/r
∗
s), where r∗s can be obtained by solving (2.29).
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2.4.2 Optimal Allocation Based on Lower Bound

Upon taking the first derivative of (2.26) with respect to rs we obtain

d

drs

Dlower(rs) = −ε(2 ln 2)2−2rs + t(dfree)D(m, dfree)(1 + Γω)−mdfree

×ε(2 ln 2)2−2rs − t(dfree)D(m, dfree)(1− ε2−2rs)

×mdfreeω(1 + Γω)−mdfree−1 dΓ

drs

, (2.31)

where
dΓ

drs

= −
rcγb

γb∆
C0

(1 + rs
γb∆
C0

)2
= −Γ

γb∆
C0

1 + rs
γb∆
C0

, (2.32)

which is less than zero for all rs. In Appendix-B, we prove that Dlower(rs) is a convex

function of rs. Upon setting d/drsDlower(rs) = 0 and solving for rs, we arrive at the

following implicit equation:

r∗s =
1

2
log2

ε− ε2 ln 2
(
1− t(dfree)D(m, dfree)(1 + Γ∗ω)−mdfree

)
t(dfree)D(m, dfree)(1 + Γ∗ω)−mdfree−1mdfreeω

dΓ
drs

∣∣∣
rs=r∗s

 , (2.33)

where Γ∗ = Γ evaluated at rs = r∗s .

2.5 Results and Discussion

In this section, we present some numerical results based on the analysis presented in

Sections 2.2-2.4. Unless otherwise stated, it is assumed that the energy-per-bit (equiv-

alently, the SNR-per-bit, γb) is kept constant. First, Fig. 2.2 shows the tightness of the

lower and the upper bounds on the PEP for a frequency-selective i.i.d Rayleigh fading

channel with L = 4 paths. Also shown is the true PEP from (A.2) in Appendix-A, which

is numerically evaluated. We conclude from Fig. 2.2 that the bounds are sufficiently tight.

In particular, for SNR-per-bit, γb, values less than 15 dB, the upper bound is within 2 dB
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Figure 2.2 Comparison of exact pairwise error probability with the one based on the
Chernoff bound and the one based on a lower bound. Distance between two code words
is set to ten. The system parameters are the following: Ku = 25, JSR = 5 dB, ρJ = 0.2,
rc = 1/3, SF = 128 and L = 4. We assume i.i.d Rayleigh fading. That is, m= (1, 1, 1, 1)
and Ω= (1, 1, 1, 1).

of the true PEP. Fig. 2.3 shows the effect of varying both JSR and Ku on the upper bound

on the PEP for an exponentially decaying Nakagami multipath channel with L = 4 paths.

From Fig. 2.3, we note that for smaller values of JSR and Ku, the bound is within 2 dB

of the true PEP for γb less than or equal to 20 dB.

The lower and upper bounds on the average end-to-end source distortion, as derived

in Section 2.3, are plotted in Fig. 2.4. For a fixed spread bandwidth and channel code

rate, the average distortion is plotted as a function of the source code rate. A family of

such curves is obtained for varying levels of channel code complexity, as measured by

its constraint length. We notice from Fig. 2.4 that i) there exists a source code rate at

which the distortion is minimized, ii) the minimum source code rate shifts to the right for

increasing values of the channel code complexity, since a stronger channel code enables

the spread-spectrum modulator to use a smaller value of the spread factor, iii)the lower

and the upper bounds coincide at values of rs that are near the rs at which the distortion

is minimized, after which the bounds differ by an order of magnitude. This difference in
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Figure 2.3 Comparison of exact pairwise error probability with the one based on the
Chernoff bound. Distance between two code words is set to ten. ρJ = 0.2, channel
code rate, rc = 1/3, spreading factor, SF = 128. Number of multipaths, L = 4 with
m= (0.5, 1, 2.5, 5) and Ωl = exp(−δ(l−1)), l = 1, . . . , L, where δ is the decay parameter
for the multipath intensity profile which is set to 0.5.

the lower and the upper bounds can be explained as follows: For small values of rs (i.e.,

large SF ), the upper and lower bounds on the frame error rate are tight, resulting in a tight

bound on the end-to-end distortion. This explains the behavior of the curves to the left

of the minimum. However, when rs increases, we have a smaller value for SF , and the

Chernoff-based union bound is found to be less effective, and not comparable with the

dominant term-based lower bound. This results in a large difference between the upper

and lower bounds.

In Table 2.1, we present the optimum source code rate, the optimum spreading factor,

and the resulting average distortion for various channel code rates. For all the channel

codes, the complexity of the encoder is fixed at a constraint length of 6. Both lower and

upper bounds on the distortion are considered for both i.i.d and non-i.i.d Rayleigh chan-

nels, with the constraint on the bandwidth expansion factor set to 500 (i.e., rs
1
rc
SF = 500).

The number of users is fixed at Ku = 15. From Table 2.1, we observe that for both i.i.d

and non-i.i.d fading conditions, the lower bound favors allocating more bandwidth to the
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Figure 2.4 Lower and upper bounds on the average distortion on i.i.d Rayleigh fading
channels with L = 4 multipath components. The channel code rate is fixed to rc = 1/2
and the bandwidth expansion factor is set to 500. Binary convolutional codes with various
constraint lengths are used with an optimum distance spectrum, as given in [40]. The other
system parameters are: JSR = 5 dB, ρJ = 0.25, Ku = 15 and γb = 10 dB.

Table 2.1 Source code rate, spreading factor, and the minimum distortion, for a fixed
channel code rate, based on both upper and lower bounds on the end-to-end average dis-
tortion. Both i.i.d and non-i.i.d Rayleigh fading channels are considered, with a multipath
intensity profile (MIP) parameter δ = 0.5 for the case of non-i.i.d fading.

rc Channel Lower Bound Upper Bound
r∗s SF = C0rc/r∗s D(r∗s) r∗s SF = C0rc/r∗s D(r∗s)

1
2 i.i.d 6.33 39 3.04 · 10−4 5.68 43 6.56 · 10−4

non-i.i.d 8.81 28 1.02× 10−5 5.50 45 8.44 · 10−4

1
3 i.i.d 7.01 23 1.17 · 10−4 6.30 26 2.74 · 10−4

non-i.i.d 9.78 17 2.63 · 10−6 6.17 27 3.33 · 10−4

1
4 i.i.d 6.95 17 1.20 · 10−4 6.53 19 2.01 · 10−4

non-i.i.d 9.86 12 2.23 · 10−6 6.42 19 2.35 · 10−4
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Figure 2.5 Source code rate, for a fixed channel code, obtained using the upper bounds
on the average distortion on i.i.d fading channels with L = 4 multipath components. Both
Rayleigh fading and Nakagami fading with m = 5 are assumed. The channel code rate is
fixed to rc = 1/2 and the bandwidth expansion factor is varied. Number of information
bits in the frame is set to 100. The other system parameters are: γb = 10 dB, Ku = 10,
JSR = 5 dB, ρJ = 0.25.

source coder, whereas the upper bound favors increasing the spread factor. This is due to

the fact that the lower bound-based end-to-end distortion is much smaller in comparison

with the union upper bound-based one, and by increasing the spread factor (i.e., by re-

ducing rs) the upper bound-based distortion can be minimized. Table 2.1 also indicates

that with decreasing channel code rates, it is beneficial to allocate more bandwidth to

the source coder rather than to the spread-spectrum modulator. This can be explained

as follows: For a given constraint length, a low rate channel code provides higher free

distance, and hence a larger diversity order, which helps to reduce the burden on the

spread-spectrum modulator.

By fixing the channel code rate at rc = 1/2, and for constraint lengths of 7 and 15,

rs and Du(rs) are plotted as a function of the bandwidth expansion factor in Figs. 2.5

and 2.6, respectively. Both Rayleigh (i.e., m = 1) and Nakagami fading channels are

considered, with the Nakagami parameter of the latter channel set to five. From Fig. 2.5,
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Figure 2.6 Average distortion obtained using the source code rate of Fig. 2.5, for a fixed
channel code on i.i.d fading channels with L = 4 multipath components. Both Rayleigh
fading and Nakagami fading with m = 5 are assumed. The channel code rate is fixed to
rc = 1/2 and the bandwidth expansion factor is varied. Number of information bits in the
frame is set to 100. The other system parameters are: γb = 10 dB, Ku = 10, JSR = 5 dB,
ρJ = 0.25.
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Figure 2.7 Spreading factor, SF , for a fixed channel code, obtained using the upper
bounds on the average distortion on i.i.d Rayleigh fading channels with L = 4 multipath
components. The channel code rate is fixed to rc = 1/2 and the bandwidth expansion
factor is varied. Number of information bits in the frame is set to 100. The other system
parameters are: Ec/N0 = PTc/N0, Ku = 10, JSR = 5 dB, ρJ = 0.25.

we notice that as the total bandwidth increases, the source code rate increases. It is also

evident that this allocation increases with the constraint length of the channel code, and

with the fading severity index m of the Nakagami channel. That is, lighter fading (i.e.,

increasing m) and/or powerful channel code result in higher source code rate. Although

not shown in Fig. 2.5, we have also found that, while the spreading factor also increases

with the total bandwidth, it does not increase as rapidly as the source code rate. Fig. 2.6

shows the resulting minimum distortion based on the optimum source code rates obtained

in Fig. 2.5. The average distortion decreases with the bandwidth expansion factor, the

Nakagami parameter m, and the constraint length of the channel code.

In [18], some of the numerical results were obtained by fixing Ec/N0 = PTc/N0 (i.e.,

the SNR per chip) instead of the SNR per bit γb = (PTc/N0)SF/rc. Fig. 2.7 shows the

tradeoff curves parameterized by Ec/N0. Note that for a fixed Ec/N0, the spread factor

increases with the bandwidth expansion factor. This can be explained as follows: For a

fixed Ec/N0, increasing the spread factor has two effects on the system performance: a) a
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Figure 2.8 Source code rate as a function of the channel code rate, parameterized by
the fraction of the jammer’s bandwidth, ρJ = WJ/W . An RCPC code, with a mother
code rate of 1/4, is used with a frame length of 500 information bits. The other system
parameters are: γb = 15 dB, Ku = 10, JSR=10 dB, C0 = 500. Rayleigh fading channel
with L = 4 paths with uniform multipath intensity profile is assumed.

larger SF reduces the interference from the other users; b) a larger SF leads to an increase

in the SNR per bit, since γb = SF (Ec/(N0rc)). However, the channel gets better with

increasing Ec/N0, and we do not need as large a γb, so we can reduce SF , and allocate

more bandwidth to the source.

The effect of increasing the jammer’s bandwidth on the tradeoff performance is now

discussed. The source code rate and the resulting distortion are shown in Figs. 2.8 and

2.9, respectively. The fraction of the jammer’s bandwidth, ρJ = WJ/W , is chosen from

{0.1, 0.5, 0.9}. The JSR is set to 10 dB, γb = 15 dB, and Ku = 10. We have used rate-

compatible punctured convolutional (RCPC) codes with a base code rate of 1/4 [41] and

a frame length of 500 bits. The channel exhibits Rayleigh fading with a uniform MIP with

L = 4 paths. Note that, from Fig. 2.8, when rs is fixed, the tradeoff problem is reduced

to that of a channel coding-spreading tradeoff problem. In this scenario, the expression

Γ = rcγb/(1+rcγb∆/SF ) = rcγb/(1+rsγb∆/C0) of (2.21) increases with both increasing

rc and increasing ρJ . Hence, for a fixed rs, the channel code rate increases with increasing
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Figure 2.9 Minimum source distortion as a function of the channel code rate, parameter-
ized by the fraction of the jammer’s bandwidth, ρJ = WJ/W . An RCPC code, with a
mother code rate of 1/4, is used with a frame length of 500 information bits. The other
system parameters are: γb = 15 dB, Ku = 10, JSR=10 dB, C0 = 500. Rayleigh fading
channel with L = 4 paths with uniform multipath intensity profile is assumed.

ρJ , and thus the spreading factor increases. However, as seen in Fig. 2.8, when rc is fixed,

the source code rate increases with increasing ρJ , and thus the spreading factor decreases.

Lastly, Fig. 2.9 shows that the average distortion decreases with increasing ρJ .

We also investigated the effect of increasing system load (i.e., the number of users,

Ku) on the bandwidth allocation. The results are summarized in Table 2.2, which cor-

respond to constant MIP Rayleigh fading channels with L = 4 paths, γb = 20 dB and

JSR = 0 dB. The bandwidth constraint is set to 500. From Table 2.2, for a given channel

code rate, it is seen that the source code rate has to be decreased as the number of users

increases to allow sufficient processing gain to suppress the additional MAI. Also, for a

given number of users, the best performance is seen to be achieved at the lowest channel

code rate. An explanation for this is given in the following paragraph.

Finally, we found the optimal 2-tuple (i.e., optimal rs or SF ) and the resulting mini-

mum average distortion when RCPC codes are used. We used an RCPC code with mem-
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Table 2.2 Source code rate, spreading factor, and the minimum distortion, for a fixed
channel code rate, based on both upper and lower bounds on the end-to-end average
distortion. An i.i.d Rayleigh fading channel is assumed with L = 4 paths. The other
system parameters are as follows: SNR-per-bit, γb = 20 dB, JSR = 0 dB, ρJ = 0.25. The
bandwidth constraint, C0, is set to 500. The constraint length of the channel code is fixed
to 6.

rc Ku Lower Bound Upper Bound
r∗s SF = C0rc/r∗s D(r∗s) r∗s SF = C0rc/r∗s D(r∗s)

1
2 10 11.78 21 1.715 · 10−7 11.40 21 2.742 · 10−7

25 7.30 34 7.683 · 10−5 6.74 37 1.495 · 10−4

50 4.95 50 1.863 · 10−3 4.29 58 3.954 · 10−3

1
3 10 13.12 12 2.582 · 10−8 12.68 13 4.516 · 10−8

25 8.06 20 2.671 · 10−5 7.44 22 5.651 · 10−5

50 5.45 30 9.236 · 10−4 4.74 35 2.124 · 10−3

1
4 10 13.41 9 1.653 · 10−8 13.13 9 2.353 · 10−8

25 8.05 15 2.557 · 10−5 7.68 16 4.014 · 10−5

50 5.84 21 6.791 · 10−4 4.91 25 1.696 · 10−3

Table 2.3 Spreading factor, and the minimum distortion, for various punctured channel
code rates from a given RCPC code, based on both the upper bound and the simulations
on the end-to-end average distortion. An i.i.d Rayleigh fading channel is assumed with
L = 4 paths. The other system parameters are as follows: SNR-per-bit, γb = 20 dB,
JSR = 0 dB, ρJ = 0.25 and Ku = 12. The bandwidth constraint, C0, is set to 500. For
simulations, we have used Gold codes.

Upper Bound Simulation
rc Distortion r∗s S∗F = C0rc/r∗s Distortion rs SF

4/5 4.491 · 10−4 6.1538 65 1.047 · 10−4 6 63
4/7 3.185 · 10−5 8.6580 33 1.893 · 10−5 9 31
4/9 1.068 · 10−5 8.8889 25 6.872 · 10−6 7 31
4/11 5.968 · 10−6 9.5694 19 1.629 · 10−5 12 15
1/3 2.926 · 10−6 9.8039 17 4.987 · 10−3 11 15
2/7 2.353 · 10−6 10.204 14 2.714 · 10−2 9 15
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ory four and a puncturing period of eight, as given in [41]. The code can produce thirteen

punctured code rates according to a puncturing pattern. Since every possible punctured

channel code rate is considered in the optimization, the two-way optimization of rs and

SF is equivalent to the joint three-way optimization of rs, rc and SF . The minimum dis-

tortion and the resulting optimum r∗s and S∗F obtained by employing the upper bound are

tabulated in Table 2.3 as a function of a selected subset of the available rates of the chosen

RCPC code.

To carry out the simulation, we could not use the exact optimum values r∗s and S∗F
obtained from the analysis. In simulation, the rs must be restricted to be integers, and

the SF we restricted to be from the set of Gold codes with SF ∈ {7, 15, 31, 63}. For

each value of rc in Table 2.3, an (rs, SF ) pair for simulating the end-to-end distortion was

chosen to approximately match the optimum (r∗s , S∗F ) pair obtained from the upper bound-

based analytical results. The pair was chosen by first selecting the SF ∈ {7, 15, 31, 63}

which is closest to the optimum S∗F , and then obtaining rs = bC0rc/SF c. Note that, as

illustrated below, picking the (rs, SF ) pair that best approximates the corresponding ana-

lytically derived pair does not necessarily minimize distortion, because of the differences

in accounting for the self-interference.

From Table 2.3, the upper bound-based optimization shows that the minimum distor-

tion decreases with decreasing channel code rate, indicating that the optimal system has

no spreading at all. However, the simulated system in Table 2.3 shows that decreasing

the channel code rate below rc = 4/9 leads to an increase in the distortion. This is due

to the fact that, at smaller values of SF with Ku = 12 users, the system is affected by

the self-interference of the user-of-interest, which is neglected in the upper bound-based

analysis. To confirm this, we also simulated the system with rc = 2/7 and other pairs

of (rs,SF ). With (rs,SF ) = (2, 63) a distortion value of 6.197 · 10−5 is observed, and

with (rs,SF ) = (4, 31) the distortion increases to 5.813 ·10−4, but both of these are lower

than the distortion of 2.714 · 10−2 reported in Table 2.3 with (rs,SF ) = (9, 15). For high

values of rc and SF , the simulated and analytic results are close. However, the simulation
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shows that for small values of spreading factor, the system indeed suffers from the self-

interference of the user-of-interest. The analysis, with its neglect of the self-interference

term, produces unrealistically low values of distortion for these parameters, and suggests

that little spreading is needed.

2.6 Conclusion

For a fixed total bandwidth expansion factor, we have studied the problem of optimal

bandwidth allocation among the source coder, the channel coder, and the spread-spectrum

unit for a DS-CDMA system operating over a frequency-selective Nakagami fading chan-

nel with Gaussian PBI. Assuming a Gaussian source with the optimum scalar quantizer,

and a binary convolutional code with soft-decision decoding, we obtained both a lower

and an upper bound on the end-to-end average source distortion. The joint three-way

constrained optimization of the source code rate, the channel code rate, and the spread-

ing factor was simplified to an unconstrained optimization problem over two variables.

With a fixed channel code rate, it was shown that both upper and lower bound-based

distortion functions are convex functions of the source code rate. However, an explicit

solution for the optimum source code rate, that minimizes the average distortion, was

difficult to obtain. Numerical results were also presented for the optimum source code

rate and spreading factor, parameterized by the channel code rate, code constraint length,

and various system loads. The optimal bandwidth allocation, in general, depends on the

system and the channel conditions, such as the total number of active users, the average

JSR power ratio, and the number of resolved multipath components together with their

power delay profile.



C H A P T E R 3

Tradeoff Between Source Coding and Spreading

in an MC-CDMA System

3.1 Introduction

To provide wideband multimedia services with non-availability of contiguous fre-

quency spectrum, and for the purpose of overlaying a CDMA system on existing narrow-

band systems, a multi-carrier version of the traditional DS-CDMA systems can be realized

by employing more than one carrier [42]. Studies have shown that, with hostile NBI, MC-

CDMA systems with efficient channel coding can provide improved system performance

relative to their single carrier counterparts [43]-[44]. This motivates us to revisit source

coding, channel coding and spreading tradeoff problem of Chapter 2 in the context of an

MC-CDMA system.

In this chapter, for a fixed channel code rate, we study the bandwidth allocation prob-

lem between the source coding and spreading, when an MC-CDMA system is employed

to mitigate the NBI. The source coding and channel coding components of the considered

MC-CDMA system are identical to the ones presented in Chapter 2. However, as it will

be made clear in this chapter, the analysis with an MC-CDMA system is significantly

different from that of Chapter 2. To assess the performance improvements of MC-CDMA

over DS-CDMA, we use the same PBI as that of Chapter 2. First, using a standard Gaus-

sian approximation for the MAI, we obtain upper and lower bounds on the pairwise error

probability with soft-decision decoding, and we use these results to bound the end-to-end

33
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average source distortion. The optimal bandwidth allocation is then numerically com-

puted by optimizing upper and lower bounds on the average distortion. Our results show

an improvement in not only the average distortion performance, but also the three-way

tradeoff performance. That is, under some channel conditions, for the same bandwidth

constraint with approximately identical complexities for both DS- and MC-CDMA sys-

tems, we show that an MC-CDMA system supports a large source coding rate than a

DS-CDMA system.

The rest of this chapter is organized as follows. In Section 3.2, we introduce the

system and the channel model, and derive upper and lower bounds on the PEP with soft-

decision decoding. Analysis of the end-to-end average distortion is presented in Sec-

tion 3.3, whereas the optimum bandwidth allocation problem is detailed in Section 3.4.

Numerical results and discussion are provided in Section 3.5. Finally, we conclude this

chapter in Section 3.6.

3.2 System Model

The transmitter-receiver pair for the kth user is shown in Fig. 3.1. The information

source is quantized by the source encoder with a rate of rs bits per source sample, which

are then mapped onto a new bit index of the same length rs using an index assignment

block, whose output bit stream is denoted by {b(k)
n }. For ease of analysis, similar to [32],

[18] and Chapter 2, we assume a random index assignment with a one-to-one mapping of

indices from 0 through 2rs − 1.

Each bit b(k)
n is encoded by a convolutional code of rate rc, and the resulting code

symbols are interleaved. For the purpose of analysis, we assume an ideal interleaver.

Each code symbol d(k)
n is then spread, binary phase modulated and transmitted over the

M frequency bands, each of width W1. An optional symbol mapper can be used for

coding across the carriers, as studied by [43]. If Tc and W , respectively, denote the chip

duration and system bandwidth of a comparable single carrier DS-CDMA (or, simply SC-
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Figure 3.1 MC-CDMA System: Transmitter–receiver pair for the desired user.

CDMA) system, then we have W = (1 + β)/Tc, where β ∈ (0, 1] is the roll-off factor of

the chip wave-shaping filter. The bandwidth available per carrier in a MC-CDMA system

is then given by W1 = W/M = (1 + β)/(TcM) = (1 + β)/Tc1 , where Tc1 = MTc is the

corresponding chip duration in the MC-CDMA system.

Mathematically, the signal at the output of the kth user’s transmitter is

Sk(t) =
√

2Ec

∞∑
n=−∞

d
(k)
bn/Ncc

(k)
n h(t− nMTc)×

M∑
m=1

cos(2πfmt+ θ(k)
m ), (3.1)

where bxc is the largest integer that is less than or equal to x, c(k)
n denotes the spreading

sequence, fm is the center frequency of themth carrier, θ(k)
m denotes the initial phase angle

of the kth user’s mth carrier, N is the number of chips-per-code symbol-per-carrier, and

Ec denotes the energy-per-chip. Also, h(t) denotes the chip wave-shaping filter, and we

assume that X(f) = |H(f)|2 satisfies the Nyquist criterion, where H(f) is the Fourier

transform of h(t). If we denote by SF the spreading factor associated with a single carrier,

then we have SF = Ts/Tc = MTs/Tc1 = MN , where Ts is the code symbol duration.
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With this, we can express N as N = SF/M .

We assume that the channel is frequency-selective over a bandwidth of W . However,

the total bandwidth W is assumed to be partitioned into M disjoint frequency bands in

such a way that each of the M bands experiences independent, frequency-flat fading.

In [42], conditions were derived for satisfying this assumption. With this, the received

signal of the kth user can be written as

r(t) =
Ku∑
k=1

√
2Ec

∞∑
n=−∞

d
(k)
bn/Ncc

(k)
n h(t− nMTc − τk)×

M∑
m=1

α(k)
m cos(2πfmt+ ψk,m) + nW (t) + nJ(t), (3.2)

where τk is the random time delay corresponding to the kth user, assumed to be uniformly

distributed in [0,MTc), Ku is the total number of active users in the system, α(k)
m denotes

the fade amplitude, φ(k)
m denotes the random phase on the mth carrier of the kth user, and

ψ
(k)
m = θ

(k)
m + φ

(k)
m is the resultant phase on the mth carrier. The term nW (t) denotes

the AWGN with a two-sided PSD of η0/2, whereas nJ(t), given in (2.4), represents the

Gaussian PBI with a PSD of SJ(f).

We assume that the fades are independent across the users, the carriers, and over

time. We further assume that α(k)
m is Rayleigh distributed with density function f

α
(k)
m

(x) =

2xe−x2 , for x ≥ 0, and φ(k)
m is uniformly distributed over (−π, π].

The receiver operation, assuming the first user is the desired user, can be briefly ex-

plained as follows. We assume that perfect carrier, code, and bit synchronization for

the first user has been accomplished. The received signal of (3.2) is first chip-matched

filtered, using the band-pass filters H∗(f − fi) + H∗(f + fi), i = 1, . . . ,M , and then

low-pass filtered with
√

2 cos(2πfit + φ
(1)
i ), i = 1, . . . ,M . Each of these M outputs

are correlated using the local pseudo-noise sequences. If zi denotes the output of the
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Figure 3.2 Comparison of exact pairwise error probability with the one based on the
Chernoff bound and the one based on a lower bound. The system parameters are the
following: Ku = 25, JSR = 10 dB, ρJ = 0.25, rc = 1/3, SF = 128, and M = 4.

correlator on the ith carrier, then we have

zi = Si + Ii + Ji +Ni, (3.3)

where Si is the desired signal, Ii is the signal due to the other Ku − 1 interfering users,

Ji is the contribution due to the jammer and Ni is the output due to AWGN. From [42,

Eqn. (23)], the conditional mean of zi, conditioned upon α(1)
i and d(1)

bn/Nc, can be obtained

as

E[zi|α(1)
i , d

(1)
bn/Nc] = d(1)N

√
Ecα

(1)
i , (3.4)

where d(1) = ±1 is the corresponding transmitted code symbol. To obtain the variance

of zi, conditioned on α(1)
i , we assume that the interference from other users, the PBI, and

the AWGN are independent of each other. With this, we have

Var{zi|α(1)
i } = σ2

i = Var{Ii|α(1)
i }+ Var{Ji|α(1)

i }+ Var{Ni|α(1)
i }

≈ NRIi
(0) +NRJi

(0) +Nη0/2, (3.5)
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Figure 3.3 Lower and upper bounds on the average distortion on Rayleigh fading channels
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are used with an optimum distance spectrum. The other system parameters are: JSR = 0
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whereRIi
(τ) andRJi

(τ) are the autocorrelation functions of the interference and jammer,

respectively. In (3.5), the approximation in the last line is due to ignoring the contribution

of RIi
(τ) and RJi

(τ) when τ 6= 0 (see [42, Eqns. (25), (26) and (27)]). For simplicity, we

assume that the Gaussian PBI overlaps Ks carriers, where 1 ≤ Ks ≤M . Without loss of

generality, now assume that the first Ks bands are affected by the jammer. Then, with the

help of [42]

σ2
i =

N

2
Ec(Ku − 1)(1− β

4
) +N

ηJ

2
+
Nη0

2
, i = 1, . . . , Ks,

=
N

2
Ec(Ku − 1)(1− β

4
) +

Nη0

2
, i = Ks + 1, . . . ,M. (3.6)

We note that the total jammer power is given by PJ = ηJKsW1 = ηJW (Ks/M). By

defining JSR = PJ/(Ec/Tc) as the JSR, we can solve for ηJ as ηJ = JSR × Ec

ρJ (1+β)
,

where ρJ = Ks/M is the fraction of the carriers affected by the jammer.
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For each code symbol, the M outputs, zm,m = 1, . . . ,M , are processed using the

maximal ratio combiner (MRC) to result in an output Z. Since each zm is affected by

the fade α(1)
m and has a noise variance of σ2

m, the MRC weights should be proportional to

α
(1)
m /σ2

m to yield maximum SNR. Assuming perfect knowledge of {α(1)
m } and {σ2

m} at the

receiver, the output of the MRC, Z, can then be expressed as

Z =
M∑

m=1

α
(1)
m

σ2
m

zm = d(1)N
√
Ec

M∑
m=1

(
α

(1)
m

σm

)2 + ξ, (3.7)

where ξ, conditioned on (α
(1)
1 , . . . , α

(1)
M ), is zero-mean Gaussian with variance σ2

ξ =∑M
m=1(α

(1)
m /σm)2. The instantaneous SNR r.v, γ, at the output of MRC is given by

γ =
(E[Z|α(1)

1 , . . . , α
(1)
M ])2

2Var{Z|α(1)
1 , . . . , α

(1)
M }

=
M∑

m=1

[α(1)
m ]2γm, (3.8)

where γm = N2Ec/(2σ
2
m) is the average SINR on the mth carrier. Using (3.6) we can

simplify γm as

γm =
1

M

rcγb

1 + rc

SF
γb(Ku − 1)(1− β/4) + rc

SF
γb

JSR
ρJ (1+β)

, m = 1, . . . , Ks

=
1

M

rcγb

1 + rc

SF
γb(Ku − 1)(1− β/4)

, m = Ks + 1, . . . ,M. (3.9)

For convenience, define a = rcγb/M , ∆0 = γb(Ku − 1)(1 − β/4) + γb
JSR

ρJ (1+β)
and

∆1 = γb(Ku − 1)(1 − β/4). Clearly, ∆0 ≥ ∆1 and γm can be expressed in terms of a,

∆0, ∆1, rc, and SF as

γm =
a

1 + rc∆0/SF

, m = 1, . . . , Ks,

=
a

1 + rc∆1/SF

, m = Ks + 1, . . . ,M. (3.10)
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3.2.1 Frame Error Rate with Convolutional Coding

The MRC outputs, {Zn}, corresponding to a given coded frame are passed to the

deinterleaver and then to the Viterbi decoder for soft-decision decoding. It is well known

that at high SNR regions, the key performance metric with channel coding is the PEP

between two codewords [37]. The PEP between two codewords x = (x1, . . . , xNF
) and

y = (y1, . . . , yNF
) which differ in d positions, when x is the transmitted codeword, is

given by

P2(d|α) = Prob

(
NF∑
n=1

(Zn − xn)2 >

NF∑
n=1

(Zn − yn)2

)

= Prob
( NF∑

n=1

ξn(xn − yn) < −
NF∑
n=1

N
√
Ecxn ×

M∑
m=1

(α(1)
m,n/σm)2(xn − yn)

)
, (3.11)

where in the last step of (3.11) we have used (3.7), NF is the coded frame length of

the terminated convolutional code, and the additional subscript n in α(1)
m,n shows the time

index of the code symbol. Without loss of generality, we assume that the codewords x and

y differ in the first d positions. Then, using the Chernoff bound, Q(x) ≤ 1/2 exp(−x2/2)

for x ≥ 0, we can upper bound (3.11) as

P2(d|α) ≤ 1

2
exp

(
−

d∑
n=1

M∑
m=1

(α(1)
m,n)2γm

)
. (3.12)

Upon taking the expectation of (3.12) over the distribution of {α(1)
m,n}, we obtain

P 2(d) = E {P2(d|α)}

≤ 1

2

M∏
m=1

(
1

1 + γm

)d
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<
1

2

M∏
m=1

γ−d
m

=
1

2aMd
(1 + rc∆0/SF )Ksd(1 + rc∆1/SF )(M−Ks)d, (3.13)

where (3.10) was used in (3.13).

Following an approach similar to that of Section 2.2.4 in Chapter 2, an upper bound

on the FER for our system can be expressed as

PB ≤
∑

d

t(d)P 2(d)

<
∑

d

t(d)

2aMd
(1 + rc∆0/SF )Ksd(1 + rc∆1/SF )(M−Ks)d, (3.14)

where t(d) is a function of the weight spectrum [37] of the underlying convolutional code.

We are also interested in a lower bound on the FER. Following the same steps as outlined

in Appendix-A, and using the dominant term of (3.14), a lower bound on the FER can be

obtained as

PB ≥ t(dfree)C(M,dfree)
M∏

m=1

(1 + γm)−dfree , (3.15)

where dfree is the free distance of the code, C(M,d) = 1
2π
β
(
Md+ 1

2
, 1

2

)
, and β(p, q) is

the standard beta integral [36].

3.3 End-to-End Average Distortion

We assume that the information source is Gaussian-distributed with independent and

identically distributed source samples, each with unit variance. If rs denotes the number

of bits-per-source sample, then the average source distortion with minimum mean square

error scalar quantization on a noise-free channel is given by D(rs) = ε2−2rs , where ε

depends on the quantizer [38]. Note that each coded frame of lengthNF containsNF rc/rs

source samples. Then, the average distortion per source sample can be written as [39,
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Eqn. (10)]

D(rs, rc,SF ) = (1− PB(rc,SF ))ε2−2rs + PB(rc,SF )

≤ ε2−2rs + PB(rc,SF )

≤ ε2−2rs +
∑

d

t(d)

2aMd
(1 + rc∆0/SF )Ksd(1 + rc∆1/SF )(M−Ks)d

, Du(rs, rc,SF ), (3.16)

where the above upper bound is quite accurate in the high SNR region.

A lower bound on the end-to-end average distortion can be obtained by first lower

bounding the frame error rate, PB(rc,SF ) by the term with minimum free distance dfree

as PB(rc,SF ) ≥ t(dfree)P2(dfree). With this a lower bound on the average distortion can

be obtained as

D(rs, rc,SF ) ≥ ε2−2rs + t(dfree)P2(dfree)(1− ε2−2rs)

≥ ε2−2rs + (1− ε2−2rs)t(dfree)C(M,dfree)
M∏

m=1

(1 + γm)−dfree

, Dl(rs, rc,SF ), (3.17)

where in the second step of (3.17) we have used (3.15). In what follows, we consider

both the upper bound and lower bounds on the average distortion of (3.16) and (3.17),

respectively, as our objective functions.

3.4 Optimum Bandwidth Allocation

If we denote by U the number of source samples-per-second available to the source

coder, then the chip rate at the output of the spread-spectrum modulator is given by

Urs
1
rc
SF , which is limited to W/(1 + β), where W is the spread-spectrum bandwidth

and β is the excess fractional bandwidth due to Nyquist chip wave-shaping filtering. That
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is, the variables rs, rc and SF are related by rsSF/rc ≤ C0, where C0 = W/((1 +

β)U). The distortion function is given by D(rs, rc,SF ), which can also be written as

D(rs, rc, C0rc/rs). We notice that by fixing the channel code rate, rc, the distortion can

be expressed only as a function of the source rate rs, together with the bandwidth con-

straint C0. In this section, we minimize the objective functions, Du(rs, rc,SF ) of (3.16)

and Dl(rs, rc,SF ) of (3.17), as a function of the source code rate rs.

3.4.1 Upper Bound Based Optimal Allocation

With rc fixed, we substitute SF = C0rc/rs in (3.16) and rewrite (3.16) as a function

of only rs as follows:

Du(rs) = ε2−2rs +
∑

d

t(d)

2aMd
(1 +

∆0

C0

rs)
dKs(1 +

∆1

C0

rs)
(M−Ks)d. (3.18)

The first derivative of (3.18) with respect to rs can be obtained as

d

drs

Du(rs) = (−2ε ln 2)2−2rs +
∑

d

t(d)

2aMd

{
Ksd∆0

C0

×

(
1 +

∆0

C0

rs

)Ksd−1(
1 +

∆1

C0

rs

)(M−Ks)d

+
(M −Ks)d∆1

C0

×(
1 +

∆0

C0

rs

)Ksd(
1 +

∆1

C0

rs

)(M−Ks)d−1
}

(3.19)

By taking the derivative of (3.19) we arrive at

d2

dr2
s

Du(rs) = 4ε(ln 2)22−2rs +∑
d

t(d)

2aMd
(1 + ∆0rs/C0)

Ksd(1 + ∆1rs/C0)
(M−Ks)d ×{(

Ksd∆0

C0 + rs∆0

+
(M −Ks)d∆1

C0 + rs∆1

)2

−
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Ksd∆
2
0

(C0 + ∆0rs)2
− (M −Ks)d∆

2
1

(C0 + ∆1rs)2

}
. (3.20)

Since 1 ≤ Ks ≤ M , both the terms within (·)2 of (3.20) are positive. Using (x + y)2 ≥

x2 + y2 for x ≥ 0 and y ≥ 0, we can simplify (3.20) as

d2

dr2
s

Du(rs) ≥ 4ε(ln 2)22−2rs +∑
d

t(d)

2aMd
(1 + ∆0rs/C0)

Ksd(1 + ∆1rs/C0)
(M−Ks)d ×{

Ksd(Ksd− 1)∆2
0

(C0 + ∆0rs)2
+

(M −Ks)d((M −Ks)d− 1)∆2
1

(C0 + ∆1rs)2

}
. (3.21)

By noting that the expression inside {·} of (3.21) is non-negative, we conclude thatDu(rs)

is a convex function of rs. The optimal 2-tuple is then given by (r∗s , rc, C0rc/r
∗
s), where

r∗s uniquely solves d
drs
Du(rs) = 0.

3.4.2 Lower Bound Based Optimal Allocation

By fixing rc, and, as before, substituting SF = C0rc/rs we express Dlower(·, ·, ·) of

(3.17) as a function of only rs. For convenience, let us define

f(rs) , t(dfree)C(m, dfree)

(
1 +

a

1 + ∆0rs

C0

)−Ksdfree
(

1 +
a

1 + ∆1rs

C0

)−(M−Ks)dfree

(3.22)

so that (3.17) can be expressed as

Dl(rs) = ε2−2rs + (1− ε2−2rs)f(rs). (3.23)
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Notice that since f(rs) is a lower bound on the frame error rate, we have 0 ≤ f(rs) ≤ 1.

The first derivative of (3.23) with respect to rs can then be computed as

d

drs

Dl(rs) = −ε(2 ln 2)2−2rs + f(rs)ε(2 ln 2)2−2rs + (1− ε2−2rs)
d f(rs)

drs

, (3.24)

where, after some simplification, we can show that

d

drs

f(rs) = f(rs)×

[
Ksdfreea∆0C0

(C0 + rs∆0)((1 + a)C0 + rs∆0)
+

(M −Ks)dfreea∆1C0

(C0 + rs∆1)((1 + a)C0 + rs∆1)

]
, (3.25)

which is positive for all rs. Upon equating (3.24) to zero, and solving for rs, we arrive at

the following implicit equation:

r∗s =
1

2
log2

ε×
[

d
drs
f(rs)

∣∣
rs=r∗s

+ (2 ln 2)
(
1− f(rs)

∣∣
rs=r∗s

)]
d

drs
f(rs)

∣∣
rs=r∗s

 .

(3.26)

Since d
drs
f(rs)|rs=r∗s > 0, the argument of the logarithm in (3.26) is always positive.

3.5 Results and Discussion

In this section, we present some numerical results based on the analysis presented in

Sections 3.2-3.4. First, Fig. 3.2 shows the tightness of the lower and the upper bounds

on the PEP on Rayleigh fading channel with M = 4 carriers. Also shown is the true

PEP, which is numerically evaluated. We conclude from Fig. 3.2 that the bounds are

sufficiently tight. In particular, for SNR-per-bit, γb, values less than 15 dB, the upper

bound is within 2 dB of the true PEP.

The lower and upper bounds on the average end-to-end source distortion, as derived
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Table 3.1 Optimum source code rate, spreading factor, and the minimum distortion, for a
fixed channel code rate, based on both upper and lower bounds on the end-to-end average
distortion. Number of sub-carriersM = 4. The JSR is 10 dB with the jammer completely
overlapping one sub-carrier (i.e., Ks = 1). Ku = 5, γb = 10 dB and frame length = 500
bits.

rc Lower Bound Upper Bound
r∗s SF D(r∗s) r∗s SF D(r∗s)

1
2 9.15 27 1.07 · 10−5 8.40 29 2.68 · 10−5

1
3 10.48 15 1.57 · 10−6 9.69 17 4.23 · 10−6

1
4 10.65 11 1.16 · 10−6 10.18 12 2.11 · 10−6

in Section 3.3, are plotted in Fig. 3.3. For a fixed spread bandwidth and channel code

rate, the average distortion is plotted as a function of the source code rate. A family of

such curves is obtained for varying levels of channel code complexity, as measured by

its constraint length. We notice from Fig. 3.3 that i) there exists a source code rate at

which the distortion can be minimized, ii) the minimum source code rate shifts to the

right for increasing values of the channel code complexity, since a stronger channel code

enables the spread-spectrum modulator to use a small value of the spread factor, iii)the

lower and the upper bounds coincide at all rs that are below the rs at which the distortion

is minimized, after which the bounds differ by an order of magnitude. This difference

in the lower and the upper bounds can be explained as follows: Notice that for a fixed

channel code rate with moderate constraint lengths, increasing source code rate limits the

available spread factor. This results in increasing variances for both the MAI and the PBI,

which makes the Chernoff based union upper bound ineffective and is not comparable

with the dominant term-based lower bound.

In Table 3.1, we present the optimum source code rate, the optimum spreading factor,

and the resulting average distortion for various channel code rates. For all the channel

codes, the complexity of the encoder is fixed at a constraint length of 6. Both lower and

upper bounds on the distortion are considered with the constraint on the bandwidth expan-

sion factor set to 500 (i.e., rs
1
rc
SF = 500). The number of users is fixed at Ku = 5. From
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Table 3.2 Optimum source code rate, spreading factor, and the minimum distortion, for a
fixed channel code rate, based on both upper and lower bounds on the end-to-end average
distortion. The other system parameters are as follows: SNR-per-bit, γb = 20 dB, JSR =
0 dB, ρJ = 0.25. The bandwidth constraint, C0, is set to 500. The constraint length of the
channel code is fixed to 6.

rc Ku Lower Bound Upper Bound
r∗s SF D(r∗s) r∗s SF D(r∗s)

1
2 5 10.30 24 2.146 · 10−6 9.66 25 4.776 · 10−6

10 7.93 31 4.536 · 10−5 7.20 34 1.104 · 10−4

25 5.26 47 1.481 · 10−3 4.43 56 3.909 · 10−3

50 3.65 68 1.203 · 10−2 2.79 89 3.142 · 10−2

1
3 5 11.75 14 2.658 · 10−7 11.06 15 6.410 · 10−7

10 8.93 18 1.081 · 10−5 8.15 20 2.836 · 10−5

25 5.87 28 6.197 · 10−4 5.00 33 1.754 · 10−3

50 4.08 40 6.598 · 10−3 3.18 52 1.851 · 10−2

1
4 5 11.98 10 1.805 · 10−7 11.56 10 3.095 · 10−7

10 8.96 13 9.805 · 10−6 8.49 14 1.751 · 10−5

25 5.75 21 6.939 · 10−4 5.21 23 1.312 · 10−3

50 3.90 32 7.935 · 10−3 3.33 37 1.516 · 10−2

Table 3.1, we observe that both the lower and the upper bounds result in approximately

the same optimum bandwidth allocation. Table 3.1 also indicates that with decreasing

channel code rates, it is beneficial to allocate more bandwidth to the source coder than to

the spread-spectrum modulator. This can be explained as follows: For a given constraint

length, a low rate channel code provides higher free distance, and hence large diversity

order, which, together with the M -fold diversity provided by the MRC, helps to reduce

the burden on the spread-spectrum modulator in combating the interference.

The effect of increasing system load (i.e., the number of users, Ku) on the bandwidth

allocation is also investigated. The results are summarized in Table 3.2, which corre-

sponds to M = 4 carriers, γb = 20 dB and JSR = 0 dB. The bandwidth constraint is set

to 500. From Table 3.2, for a given channel code rate, it is seen that the source code rate

has to be decreased as the number of users increases to allow sufficient processing gain to

suppress the additional MAI. Also, for a given number of users, the best performance is

seen to be achieved at the lowest channel code rate (with the exception of the lower bound
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Table 3.3 Comparison between SC-CDMA with a RAKE receiver and MC-CDMA for
the same system bandwidth and channel code rate. The number of carriers in MC-CDMA
system is set to 4 whereas an equal number of multipath components, with i.i.d Rayleigh
fading, are assumed to be resolved by the single-carrier CDMA system. An upper bound
on the average distortion is minimized and the resulting optimal allocation is tabulated.
The other system parameters are as follows: SNR-per-bit, γb = 10 dB, ρJ = 0.25 and
Ku = 5. The bandwidth constraint, C0, is set to 500. The constraint length of the channel
code is fixed to 6.

rc JSR MC-CDMA SC-CDMA
(dB) r∗s SF D(r∗s) r∗s SF D(r∗s)

1
2 0 9.66 25 4.776 · 10−6 9.85 25 3.710 · 10−6

10 8.40 29 2.668 · 10−5 7.90 31 4.458 · 10−5

20 7.72 32 7.530 · 10−5 3.14 79 0.02012
25 7.65 32 8.540 · 10−5 1.31 190 0.1995

1
3 0 11.06 15 6.410 · 10−7 11.27 14 4.778 · 10−7

10 9.69 17 4.233 · 10−6 8.97 18 9.735 · 10−6

20 9.04 18 1.126 · 10−5 3.57 46 0.0112
25 8.97 18 1.258 · 10−5 1.52 108 0.1502

1
4 0 11.56 10 3.095 · 10−7 11.79 10 2.276 · 10−7

10 10.18 12 2.114 · 10−6 9.35 13 5.673 · 10−6

20 9.55 13 5.401 · 10−6 3.73 33 0.009006
25 9.49 13 5.988 · 10−6 1.62 77 0.13402

result for Ku = 25 and 50 users, where the use of a rate 1/3 code yielded slightly better

performance than the use of a rate 1/4 code).

Finally, we compare the performance of a single-carrier CDMA system employing

a RAKE receiver against the performance of a MC-CDMA system in terms of the op-

timum bandwidth allocation. We assume that the number of multipaths resolved by the

SC-CDMA system is the same as the number of carriers in an MC-CDMA system. Fur-

thermore, we assume that the multipath fading in SC-CDMA is Rayleigh distributed with

uniform intensity profile. The two systems are compared by varying the JSR, and the

results are tabulated in Table 3.3. It is evident, from Table 3.3, that the single-carrier ver-

sion performs worse than the MC-CDMA system for increasing values of the JSR. Also,

as the JSR increases, the source coding rate is reduced in the SC-CDMA system and

more bandwidth is allocated to spreading in order to combat the jammer. However, as we
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notice from the resulting minimum distortion in Table 3.3, even with increasing spread

factor the SC-CDMA cannot reach the performance of the MC-CDMA. This is due to the

fact that no additional signal processing is employed in SC-CDMA, apart from a simple

RAKE processing, whereas the MC-CDMA system has effectively nullified the effect of

the jammer using the MRC receiver, in a simple way, by attenuating all the carriers that

are affected by the PBI. We also note that, by incorporating a notch-filter, although at

a higher complexity, to mitigate the effects of the jammer, the tradeoff performance of

SC-CDMA can be expected to improve.

3.6 Conclusions

For a fixed total bandwidth expansion factor, and for a fixed channel code rate, we

studied the problem of optimal bandwidth allocation between the source coder and the

spread-spectrum unit for an MC-CDMA system operating over a frequency-selective fad-

ing channel with NBI. By assuming a Gaussian source with the optimum scalar quantizer

and a binary convolutional code with soft-decision decoding, we obtained both a lower

and an upper bound on the end-to-end average source distortion. The optimal bandwidth

allocation was then numerically obtained by minimizing upper and lower bounds on the

average distortion. We have shown that the upper bound-based cost function is a convex

function of the source code rate, and the optimal allocation depends on the system and

the channel conditions, such as the total number of active users, the number of carriers,

and the average jammer-to-signal power ratio.



C H A P T E R 4

Cooperative Diversity with Optimum

Noncoherent Reception

4.1 Introduction

More than two decades after the seminal works of van der Meulen [23], and Cover

and El Gamal [25] on the capacity limits of relay channels, recently, there is a renewed in-

terest in the area of relay-assisted cooperative communication for mobile ad hoc wireless

networks. By sharing the transmission resources efficiently in a collaborative manner,

mobile nodes with single-antenna transceivers can increase their data rate, range and reli-

ability by forming virtual antenna arrays [45]. Sendonaris et al. in [46] showed that, with

transmitter CSI, the sum-capacity of an ergodic fading channel can be improved with user

cooperation, whereas in [47] Laneman showed that reliability can be improved with the

knowledge of CSI only at the receiver.

The performance of coherent binary PSK (BPSK) signaling with an amplify-and-

forward protocol and receiver CSI was studied in [48], whereas an improved analysis

of error probability, using the moment generating function approach, was presented in

[49]. Recently, the performance of multi-branch, multi-hop, relay channels was consid-

ered in [50] and [51]. The analyses of [48]-[51] showed that with M relay nodes, a

direct link between the source and destination, and perfect CSI at the receiver, coherent

multi-branch AF reception over independent channels achieves the full diversity order of

M + 1.

50
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To acquire the CSI, the relay channel has to be trained (typically with the help of pilot

signaling), which results in a throughput penalty. If the variation of the channel over time

is high relative to the signaling duration, then the estimates become outdated and are not

useful for signal detection. In such a scenario, one is inclined to employ noncoherent

detection techniques which do not require the knowledge of the instantaneous channel

realization. In this context, Chen and Laneman in [52] and [53] studied the performance

of noncoherent binary FSK (BFSK) signaling with a decode-and-forward protocol. In

[52] and [53], it was shown that, with M relays, the diversity order achievable with a

noncoherent DF protocol is at most (M/2) + 1 when M is even, and (M + 1)/2 when M

is odd. That is, with the DF protocol, noncoherent signaling loses approximately half of

the available diversity order.

In this chapter, we consider noncoherent communication over Rayleigh fading relay

channels with an AF protocol. While neither the relays nor the destination have knowl-

edge of the instantaneous CSI, we assume that the statistical averages of the channel gains

are known to them. This is a reasonable assumption, as an example, for a slowly vary-

ing relay network topology. The amplification gain of the relay is chosen to satisfy an

average power constraint. We consider both on-off keying (OOK) and BFSK modulation

schemes, and derive the maximum likelihood (ML) noncoherent AF (NCAF) receiver

structures at the destination. Unfortunately, even for the case of single relay node, no

closed-form expression for the ML NCAF receiver is available, and the ML metric com-

putation requires numerical evaluation of certain integrals. To gain some understanding of

the receiver performance, we assume that the relay-to-destination link is unfaded1. This

is reasonable when there is a strong line-of-sight path from the relay to the destination.

With this, we are able to derive simple closed-form expressions for the average bit error

rate (BER), with an arbitrary number of relay nodes, that serve as lower bounds on the

optimal performance. We derive the Upper bounds on the average BER by employing the

Bhattacharyya bound [29]. We propose simple suboptimum receivers, for both OOK and

1Similar assumption is made in [54] for diversity analysis.
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BFSK, along with their performance evaluations. We also show that, using asymptotic

diversity order analysis [55], with M relay nodes plus a link between the source and the

destination, the OOK achieves a diversity order of at least (M + 1)/2, but never M + 1,

whereas BFSK achieves the full diversity of M +1. However, one of our more surprising

results is that for OOK system, without relay, the asymptotic diversity analysis predicts a

diversity order of less than unity. Since we could not find a good physical interpretation

of this result, it suggests that the use of asymptotic diversity analysis should be used with

caution.

The rest of this chapter is organized as follows. We present the system model in Sec-

tion 4.2. Optimum NCAF receiver structures for OOK and BFSK are formulated in Sec-

tions 4.2.1 and 4.2.2, respectively. With the assumption that the relay-to-destination link

is unfaded, Sections 4.3.1 and 4.3.2, respectively, derive the average BER expressions for

both OOK and BFSK modulations, whereas Bhattacharyya distance-based upper bounds

on the BER are discussed in Section 4.4. Suboptimum receiver structures are presented

in Section 4.5. In Section 4.6 we study the asymptotic diversity order analysis, whereas

numerical and simulation results are presented in Section 4.7. Finally, we conclude this

work in Section 4.8.

4.2 System Model

Consider a source node S that wishes to communicate with an intended destination

node D with the help of M relay nodes, R1, . . . , RM , as shown in Fig. 4.1. We assume

frequency-flat fading on the links between the source and the destination, between the

source and the relays, and between the relays and the destination. Let g1 denote the

channel gain on the path from the source to the destination D, and, for j = 1, . . . ,M ,

gj
2 denote the channel gain on the path from the source to the relay node Rj . Also, let gj

3

denotes the channel gain on the path from the relay Rj to the destination. We assume that

g1, {gj
2}, and {gj

3}, j = 1, . . . ,M , are zero-mean complex Gaussian random variables
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Figure 4.1 Block diagram of the system with M relays. Here, rDS is the received signal
from the source to the destination on the direct path, whereas rj

RS and rj
DR respectively

denote the signal received from the source to the jth relay, and from the jth relay to the
destination. The random variables γ1, γj

2 and γj
3, respectively denote the instantaneous

link SNRs on the path from the source to the destination, from the source to the relay Rj ,
and from the relay Rj to the destination.

(r.vs) with variances E[|g1|2] = Ω1, and E[|gj
2|2] = Ωj

2, and E[|gj
3|2] = Ωj

3, j = 1, . . . ,M ,

respectively.

The source employs a binary signal constellation, X , and neither the relays nor the

destination know the instantaneous channel gains, and hence employ noncoherent de-

modulation. We also assume that the relays amplify the signal received from the source

in such a way that they meet their respective average power constraints. Even though the

relays and the destination do not have instantaneous knowledge of the gains {gj
2, g

j
3}M

j=1
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and g1, we do assume that they have the knowledge of the statistical averages, {Ωj
2,Ω

j
3}M

j=1

and Ω1. Our communication protocol is the same as that of [56], where in the first time

slot the source broadcasts its signal to the destination and the relays, whereas in the sec-

ond time slot the relays forward their copies to the destination. That is, if T and W ,

respectively, denote the message duration and bandwidth required for a single-hop sys-

tem, then the message duration and bandwidth requirements with M relays are 2T and

MW , respectively.

Throughout this chapter, we employ low-pass equivalent complex baseband signal

models so that X , in general, represents a complex-valued constellation. Let X ∈ X be

the symbol transmitted by the source in the first time slot. Then, the matched-filer (MF)

output at the jth relay is then given by

rj
RS = gj

2X + ηj
RS, (4.1)

where ηj
RS is a complex-valued Gaussian noise random variable (r.v) with zero-mean and

variance E[|ηj
RS|2] = σ2

N . The output of MF at the destination due to the direct link is

given by

rDS = g1X + ηDS, (4.2)

where ηDS is a complex-valued Gaussian noise r.v with zero-mean and varianceE[|ηDS|2] =

σ2
N . The relay Rj amplifies the signal rj

RS by a factor Aj , where Aj is chosen in such a

way that the constraint E[|Ajr
j
RS|2] = Es is satisfied. Clearly, Aj =

√
Es

EsΩ
j
2+σ2

N

. In the

second time slot, the relays transmit their respective signals to the destination. The output

of the MF at the destination due to the relay Rj is given by

rj
DR = Ajg

j
3r

j
RS + ηj

DR = Ajg
j
3g

j
2X + Ajg

j
3η

j
RS + ηj

DR, (4.3)

where ηj
DR is a complex-valued Gaussian noise r.v with zero-mean and varianceE[|ηj

DR|2] =

σ2
N . One of the main goals in this chapter is to derive the optimal receiver structure at the
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destination, based only on the statistical knowledge of Ω1, {Ωj
2,Ω

j
3}M

j=1. In what follows,

we consider two kinds of binary signal constellations that are amenable to noncoherent

detection: 1)OOK modulation, and 2)BFSK modulation.

4.2.1 On-Off Keying

With OOK, the signal set is given by X = {0,
√

2Es}. The signal 0 is transmitted

when the bit b = 0, whereas
√

2Es is transmitted when the bit b = 1. The information

bits ‘0’ and ‘1’ are assumed to be equally likely, so that the average transmit energy at the

output of the source is Es.

When the information bit b = 1 is transmitted, the joint pdf of {rj
DR}M

j=1, and rDS ,

conditioned on X =
√

2Es, is given by

fr1
DR,...,rM

DR,rDS |X=
√

2Es
= Eg1

[
fnDS |g1

(
rDS −

√
2Esg1

)]
×

M∏
j=1

Egj
2,gj

3

[
fñj

DR|g
j
2,gj

3

(
rj
DR − Ajg

j
2g

j
3

√
2Es

)]
, (4.4)

where EU [·] denotes the expectation over the r.v U , and ñj
DR, conditioned on gj

2 and gj
3,

is a zero-mean complex Gaussian r.v with variance E[|ñj
DR|2|g

j
2, g

j
3] = σ2

N(1 + A2
j |g

j
3|2).

Also, fnDS |g1(·) and fñj
DR|g

j
2,gj

3
(·) are the conditional density functions of nDS and ñj

DR, re-

spectively. For simplicity, we define the following variables. We define γ1 , |g1|2Es/σ
2
N ,

γj
2 , |gj

2|2Es/σ
2
N , and γj

3 , |gj
3|2Es/σ

2
N , and their respective statistical averages by

γ1 , E[γ1] = Ω1Es/σ
2
N , γj

2 , E[γj
2] = Ωj

2Es/σ
2
N , and γj

3 , E[γj
3] = Ωj

3Es/σ
2
N . In

order to proceed further, we need the following lemma:

Lemma 1. If Z is a complex Gaussian r.v, having independent real and imaginary parts,

with mean E[Z] = m and variance E[|Z − m|2] = N , then the expected value of
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exp(−|Z|2) is given by

E[exp(−|Z|2)] =
1

1 +N
exp

(
− |m|2

1 +N

)
. (4.5)

Proof. Refer to [57, Eqn. (2.1-117)].

Since (rDS−
√

2Esg1)/
√
σ2

N is complex Gaussian with mean rDS/
√
σ2

N and variance

(2Es/σ
2
N)E[|g1|2] = 2EsΩ1/σ

2
N = 2γ1, using Lemma 1, the first term in (4.4) can be

simplified to

Eg1

[
fnDS |g1

(
rDS −

√
2Esg1

)]
=

1

πσ2
N

× 1

1 + 2γ1

exp

(
− ZDS

1 + 2γ1

)
, (4.6)

where ZDS = |rDS|2/σ2
N . Following a similar argument as that for (4.6), the jth term in

the product of the second term in (4.4) can now be simplified to

Egj
2,gj

3

[
fñj

DR|g
j
2,gj

3

(
rj
DR − Ajg

j
2g

j
3

√
2Es

)]
=

Egj
2,gj

3

[
1

πσ2
N(1 + A2

j |g
j
3|2)

exp

(
−|r

j
DR − Ajg

j
2g

j
3

√
2Es|2

σ2
N(1 + A2

j |g
j
3|2)

)]

= Egj
3

 1

πσ2
N

exp

(
− |rj

DR|
2/σ2

N

1+A2
j |g

j
3|2(1+2γj

2)

)
(1 + A2

j |g
j
3|2(1 + 2γj

2))

 . (4.7)

By defining λ(γj
2) = (1 + 2γj

2)/(1 + γj
2), and Zj

DR = |rj
DR|2/σ2

N , we can express (4.7)

by the following integral:

Egj
2,gj

3

[
fñj

DR|g
j
2,gj

3

(
rj
DR − Ajg

j
2g

j
3

√
2Es

)]
=

1

πσ2
N

∞∫
x=0

exp(−x)
1 + λ(γj

2)γ
j
3x

exp

(
− Zj

DR

1 + λ(γj
2)γ

j
3x

)
dx. (4.8)

Note that, unfortunately, the integral in (4.8) does not have a closed-form solution.
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When X = 0 is transmitted, we have

fr1
DR,...,rM

DR,rDS |X=0 = Eg1 [fnDS
(rDS)]×

M∏
j=1

Egj
2,gj

3

[
fñj

DR|g
j
2,gj

3

(
rj
DR

)]
. (4.9)

Following the analysis of (4.6) and (4.7), we can simplify the terms in (4.9) to

Eg1 [fnDS
(rDS)] =

1

πσ2
N

exp (−ZDS) (4.10)

and Egj
2,gj

3

[
fñj

DR

(
rj
DR

)]
= Egj

2,gj
3

[
1

πσ2
N(1 + A2

j |g
j
3|2)

exp

(
− |rj

DR|2

σ2
N(1 + A2

j |g
j
3|2)

)]

=
1

πσ2
N

∞∫
x=0

exp(−x)
1 + µ(γj

2)γ
j
3x

exp

(
− Zj

DR

1 + µ(γj
2)γ

j
3x

)
dx, (4.11)

where µ(γj
2) = 1/(1 + γj

2).

Finally, the log-likelihood ratio of the transmitted bit at the destination is given by

LLR(b) , log

(
fr1

DR,...,rM
DR,rDS |X=

√
2Es

fr1
DR,...,rM

DR,rDS |X=0

)

= F (ZDS, γ1) +
M∑

j=1

G
(
Zj

DR, γ
j
2, γ

j
3

)
, (4.12)

where

F (ZDS, γ1) = − log (1 + 2γ1) +

(
2γ1

1 + 2γ1

)
ZDS (4.13)

and G
(
Zj

DR, γ
j
2, γ

j
3

)
= log

 ∞∫
x=0

exp
(
−x− Zj

DR

1+λ(γj
2)γj

3x

)
1 + λ(γj

2)γ
j
3x

dx

−

log

 ∞∫
x=0

exp
(
−x− Zj

DR

1+µ(γj
2)γj

3x

)
1 + µ(γj

2)γ
j
3x

dx

 . (4.14)

The optimum receiver at the destination, implementing (4.12), is shown in Fig. 4.2. The
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destination decodes b̂ = 1 if LLR ≥ 0 and b̂ = 0 otherwise.

4.2.2 Binary FSK

With BFSK signaling, the signal constellation is given byX = {
√
Ese

j2πf1t,
√
Ese

j2πf2t},

where f1 and f2 are two orthogonal frequency tones. When b = 1 is the transmitted bit,

we have X =
√
Ese

2πf1t. After matched filtering of the received signals rDS and rj
DR,

j = 1, . . . ,M , by e−2πf1t and e−j2πf2t over the signaling duration, we obtain the following

low-pass equivalent complex-valued outputs as

rDS,1 , rDS,c,1 + jrDS,s,1 =
√
Esg1 + ηDS,1 (4.15)

rDS,2 , rDS,c,2 + jrDS,s,2 = ηDS,2 (4.16)

rk
DR,1 , rk

DR,c,1 + jrk
DR,s,1

= Ak

√
Esg

k
2g

k
3 + Akg

k
3η

k
RS,1 + ηk

DR,1 k = 1, . . . ,M (4.17)

rk
DR,2 , rk

DR,c,2 + jrk
DR,s,2 = Akg

k
3η

k
RS,2 + ηk

DR,2 k = 1, . . . ,M. (4.18)

In (4.15)-(4.18), the subscripts 1 and 2 represent the outputs due to correlating with fre-

quencies f1 and f2, respectively, whereas the subscripts c and s denote the in-phase and

quadrature components, respectively.

Conditioned on f1 being transmitted, the conditional probability density of rDS,1,

rDS,2, r
k
DR,1, r

k
DR,2, k = 1, . . . ,M , is given by

frDS,1,rDS,2,r1
DR,1,r1

DR,2,...,rM
DR,1,rM

DR,2|f1
= Eg1 [fηDS,1|g1(rDS,1 −

√
Esg1)]fηDS,2

(rDS,2)

×
M∏

k=1

Egk
2 ,gk

3

[
fη̃k

DR,1|g
k
2 ,gk

3
(rk

DR,1 − Ak

√
Esg

k
2g

k
3)fη̃k

DR,2|g
k
2 ,gk

3
(rk

DR,2)
]
, (4.19)

where η̃k
DR,1 = Akg

k
3η

k
RS,1 + ηk

DR,1 and η̃k
DR,2 = Akg

k
3η

k
RS,2 + ηk

DR,2, conditioned on

gk
2 and gk

3 , are two independent complex Gaussian r.vs with zero-mean and variances

E[|η̃k
DR,1|2|gk

2 , g
k
3 ] = E[|η̃k

DR,2|2|gk
2 , g

k
3 ] = σ2

N(1 + A2
k|gk

3 |2).
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Using Lemma 1, the terms of (4.19) can be simplified to

Eg1 [fηDS,1|g1(rDS,1 −
√
Esg1)] =

1

πσ2
N

× 1

1 + EsΩ1

σ2
N

exp

(
− |rDS,1|2/σ2

N

1 + EsΩ1/σ2
N

)
=

1

πσ2
N

× 1

1 + γ1

exp

(
− ZDS,1

1 + γ1

)
. (4.20)

fηDS,2
(rDS,2) =

1

πσ2
N

exp

(
−|rDS,2|2

σ2
N

)
=

1

πσ2
N

exp (−ZDS,2) (4.21)

Egk
2 ,gk

3

[
fη̃k

DR,1|g
k
2 ,gk

3
(rk

DR,1 − Ak

√
Esg

k
2g

k
3)fη̃k

DR,2|g
k
2 ,gk

3
(rk

DR,2)
]

=

Egk
3

[
1

π2N2
0 (1 + A2

k|gk
2 |2)2

× exp

(
−

|rk
DR,2|2

σ2
N(1 + A2

k|gk
3 |2)

)

1

1 +
A2

kEs|gk
3 |2Ωk

2

σ2
N (1+A2

k|g
k
3 |2)

exp

− |rk
DR,2|

2

σ2
N (1+A2

k|g
k
3 |2)

1 +
A2

kEs|gk
3 |2Ωk

2

σ2
N (1+A2

k|g
k
3 |2)

]

=
1

π2N2
0

Eγk
2

[
1

1 + µ(γk
2)γ

k
3

× 1

1 + γk
3

exp

(
−
Zk

DR,1

1 + γk
3

−
Zk

DR,2

1 + µ(γk
2)γ

k
3

)]

=
1

π2N2
0

∞∫
x=0

dx

1 + µ(γk
2)γ

k
3x
× exp(−x)

1 + γk
3x

exp

(
−

Zk
DR,1

1 + γk
3x
−

Zk
DR,2

1 + µ(γk
2)γ

k
3x

)
︸ ︷︷ ︸

,Ψ(Zk
DR,1,Zk

DR,2,γk
2 ,γk

3)

=
1

π2N2
0

Ψ(Zk
DR,1, Z

k
DR,2, γ

k
2, γ

k
3). (4.22)

In (4.22), we have ZDS,1 = |rDS,1|2/σ2
N , ZDS,2 = |rDS,2|2/σ2

N , Zk
DR,1 = |rk

DR,1|2/σ2
N ,

Zk
DR,2 = |rk

DR,2|2/σ2
N , and Ψ(Zk

DR,1, Z
k
DR,2, γ

k
2, γ

k
3) is given by the integral of (4.22).

When frequency f2 is transmitted, the above analysis remains valid but, since the

correlation with e−j2πf1t would yield only the noise, and the correlation with e−j2πf2t

would yield signal-plus-noise, we need to exchange Zk
DR,1 and Zk

DR,2, and ZDS,1 and
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ZDS,2. With this, the LLR of the transmitted bit at the destination is then given by

LLR(b) = log

(
frDS,1,rDS,2,r1

DR,1,r1
DR,2,...,rM

DR,1,rM
DR,2|f1

frDS,1,rDS,2,r1
DR,1,r1

DR,2,...,rM
DR,1,rM

DR,2|f2

)

= log

exp
(
−ZDS,1

1+γ1
− ZDS,2

)∏M
k=1 Ψ(Zk

DR,1, Z
k
DR,2, γ

k
2, γ

k
3)

exp
(
−ZDS,2

1+γ1
− ZDS,1

)∏M
k=1 Ψ(Zk

DR,2, Z
k
DR,1, γ

k
2, γ

k
3)


=

(
γ1

1 + γ1

)
[ZDS,1 − ZDS,2] +

M∑
j=1

H
(
Zj

DR,1, Z
j
DR,2, γ

j
2, γ

j
3

)
, (4.23)

where, using the definition of Ψ(·, ·, ·, ·) in (4.22), we have

H
(
Zj

DR,1, Z
j
DR,2, γ

j
2, γ

j
3

)
= log


∞∫

0

dx exp

(
−x− Zj

DR,1

1+γj
3x
− Zj

DR,2

1+µ(γj
2)γj

3x

)
(1 + γj

3x)(1 + µ(γj
2)γ

j
3x)



− log


∞∫

0

dx exp

(
−x− Zj

DR,2

1+γj
3x
− Zj

DR,1

1+µ(γj
2)γj

3x

)
(1 + γj

3x)(1 + µ(γj
2)γ

j
3x)

 . (4.24)

The optimum receiver at the destination, implementing (4.23), is shown in Fig. 4.3. The

destination decodes b̂ = 1 if LLR ≥ 0 and b̂ = 0 otherwise.

4.3 Lower Bounds on the Average BER

Due to the complicated nature of the detection metrics of (4.12) and (4.23), an analy-

sis of the performance of the optimum NCAF is difficult to perform. As a consequence,

we now consider a simple case of having a strong line-of-sight path on the relay-to-

destination link. An example scenario could be terrestrial communication from the relay

to the destination in a rural environment. In this case, we assume that the channel gain

from the relay to the destination is unfaded. That is, we have fγj
3
(x) = δ(x− γj

3), where

δ(x) is the Dirac delta function. With this assumption, we derive simple closed-form
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expressions for the average probability of bit error. It is to be noted that, even if this

assumption is not satisfied in practice, the resulting expressions can still serve as lower

bounds on the average error performance.

4.3.1 On-Off Keying

We first realize that the term exp(−x) in the integrands of (4.11) and (4.22) is due

to the fact that we are averaging Eγj
2
[·] over the pdf of γj

2/γ
j
2, which is exponentially

distributed with unity mean. Upon replacing exp(−x) in the integrands of (4.11) by

δ(x− 1), we can simplify the optimum receiver for this special case as

LLR(b) = − log (1 + 2γ1) +

(
2γ1

1 + 2γ1

)
ZDS +

M∑
j=1

{
log

(
1

1 + λ(γj
2)γ

j
3

exp

(
− Zj

DR

1 + λ(γj
2)γ

j
3

))
−

log

(
1

1 + µ(γj
2)γ

j
3

exp

(
− Zj

DR

1 + µ(γj
2)γ

j
3

))}
. (4.25)

Eqn. (4.25) can be expressed in a convenient form as

LLR(b) = c1ZDS +
M∑

j=1

cj2Z
j
DR − Th (4.26)

where

where c1 =
2γ1

1 + 2γ1

(4.27)

cj2 =
2γj

2γ
j
3

(1 + γj
2 + γj

3)(1 + λ(γj
2)γ

j
3)

j = 1, . . . ,M (4.28)

and Th = log(1 + 2γ1) +
M∑

j=1

{
log(1 + λ(γj

2)γ
j
3)− log

(
1 + µ(γj

2)γ
j
3

)}
. (4.29)
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In Appendix-C, we present a closed-form expression for the average BER of the detector

of (4.26) which is given by

P e,On-Off =
1

2

(
1− F

(
X0, Y

1

0, . . . , Y
M

0 ,Th

))
+

1

2
F
(
X1, Y

1

1, . . . , Y
M

1 ,Th

)
, (4.30)

where

F (U1, U2, . . . , UN ,Th) =
N∑

j=1

{
N∏

i=1,i6=j

U j

U j − U i

}(
1− e

−Th
Uj

)
(4.31)

X0 =
2γ1

1 + 2γ1

(4.32)

Y
j

0 =
2γj

2γ
j
3

(1 + γj
2)(1 + λ(γj

2)γ
j
3)

j = 1, . . . ,M (4.33)

X1 = 2γ1 (4.34)

and Y
j

1 =
2γj

2γ
j
3

1 + γj
2 + γj

3

j = 1, . . . ,M. (4.35)

In (4.31), the function F (U1, U2, . . . , UN ,Th) is defined as the probability of U1 + U2 +

. . . + UN less than Th, where U1, . . . , UN are independent exponentially distributed r.vs

with the mean of Ui being U i.

We now study the behavior of (4.30) at high SNR. Similar to [53], we let γ1 = t1γ,

and, for j = 1, . . . ,M , γj
2 = tj2γ and γj

3 = tj3γ, so that the average link SNR goes to in-

finity with γ, while still maintaining a fixed proportionality among them. The variables t1

and {tj2, t
j
3}M

j=1 capture the relay placement and path-loss variability in the relay network.

As γ →∞, (4.32)-(4.35) approach

X0 = 1 (4.36)

Y
j

0 = 1 j = 1, . . . ,M (4.37)

X1 = 2t1γ (4.38)
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and Y
j

1 =
2tj2t

j
3

tj2 + tj3
γ j = 1, . . . ,M, (4.39)

respectively. As γ → ∞, the threshold Th in (4.29) can be approximated as (M +

1) log(γ). In view of (4.36) and (4.37), the first term,
(
1− F (X0, Y

1

0, . . . , Y
M

0 ,Th)
)

, in

(4.30) is nothing but the probability that the sum of M + 1 independent and identically

distributed (i.i.d.) exponential r.vs, each having unity mean, exceeds Th. This has a

well-known closed form, which is given by [57]

(
1− F (X0, Y

1

0, . . . , Y
M

0 ,Th)
)

=

∞∫
Th

e−xxM

Γ(M + 1)
dx

≈ e−ThTh
M

Γ(M + 1)
(Th →∞)

≈ (M + 1)M

M !
× (log(γ))M

(γ)M+1
(γ →∞), (4.40)

where in the second step of (4.40) we employed the asymptotic behavior of incomplete

Gamma function [36]. The third step in (4.40) is due to Th ≈ (M + 1) log(γ). To

characterize the behavior of F (X1, Y
1

1, . . . , Y
M

1 ,Th) in (4.30), we notice that the con-

stituent r.vs X1, Y
1

1, . . . , Y
M

1 have a linear growth in their expected values with γ (see

(4.38) and (4.39)). Let us define tmax = max(t1,
t12t13

t12+t13
, . . . ,

tM2 tM3
tM2 +tM3

). The probability

F (X1, Y
1

1, . . . , Y
M

1 ,Th) can be lower bounded as

F (X1, Y
1

1, . . . , Y
M

1 ,Th) = Prob
(
X1 + Y 1

1 + · · ·+ Y M
1 < Th

)
≥ Prob

(
max

[
X1, Y

1

1, . . . , Y
M

1

]
×

(
X1

X1

+
Y 1

1

Y
1

1

+ · · ·+ Y M
1

Y
M

1

)
< Th

)

= Prob

(
X1

X1

+
Y 1

1

Y
1

1

+ · · ·+ Y M
1

Y
M

1

<
Th

2tmaxγ

)
. (4.41)

Observe that the r.vs X1/X1, Y 1
1 /Y

1

1, . . . , Y
M
1 /Y

M

1 are i.i.d. r.vs each with unity mean.

That is, the sum X1

X1
+
∑M

j=1
Y j
1

Y
j
1

is Gamma distributed [57]. As a result, (4.41) simplifies



66

to [57]

F (X1, Y
1

1, . . . , Y
M

1 ,Th) ≥

Th
2tmaxγ∫
x=0

e−xxM

Γ(M + 1)
dx

= 1− e−
Th

2tmaxγ

M∑
j=0

1

j!

(
Th

2tmaxγ

)j

≥ (M + 1)M+1

(2tmax)M+1(M + 1)!

(
log(γ)

γ

)M+1

(γ →∞). (4.42)

Combining (4.42) with (4.40), we have

P e,On-Off ≥ (M + 1)M

M !
× (log(γ))M

2(γ)M+1
+

(M + 1)M+1

2(2t1)M+1(M + 1)!

(
log(γ)

γ

)M+1

>
(M + 1)M+1

2(2t1)M+1(M + 1)!

(
1

γ

)M+1

(γ →∞). (4.43)

4.3.2 Binary FSK

By replacing exp(−x) in the integrals of (4.22) by δ(x − 1), we can simplify the

function H(·, ·, ·, ·) to

H
(
Zj

DR,1, Z
j
DR,2, γ

j
2, γ

j
3

)
=
(
Zj

DR,1 − Zj
DR,2

) γj
2γ

j
3

(1 + γj
3)(1 + γj

2 + γj
3)
. (4.44)

With this, we can simplify LLR(b) of (4.23) to

LLR(b) =

(
γ1

1 + γ1

)
[ZDS,1 − ZDS,2] +

M∑
j=1

(
γj

2γ
j
3

(1 + γj
3)(1 + γj

2 + γj
3)

)(
Zj

DR,1 − Zj
DR,2

)
. (4.45)

An analysis of the average error rate for the detector of (4.45) can be performed as follows:

Without loss of generality, we assume that the frequency f1 is transmitted. Then ZDS,1

is exponentially distributed with mean 1 + γ1, whereas ZDS,2 is exponentially distributed
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with mean 1. Similarly, Zj
DR,1 is exponentially distributed with mean 1 + γj

3, whereas

Zj
DR,2 is exponentially distributed with mean 1 + µ(γj

2)γ
j
3. Also, note that ZDS,1, ZDS,2,

Zj
DR,1, Zj

DR,2, j = 1, . . . ,M , are independent r.vs. With this, we can define the following

r.vs:

U1 =
γ1

1 + γ1

ZDS,1

Uj+1 =

(
γj

2γ
j
3

(1 + γj
3)(1 + γj

2 + γj
3)

)
Zj

DR,1 j = 1, . . . ,M, (4.46)

V1 =
γ1

1 + γ1

ZDS,2

and Vj+1 =

(
γj

2γ
j
3

(1 + γj
3)(1 + γj

2 + γj
3)

)
Zj

DR,2 j = 1, . . . ,M. (4.47)

The r.vs of (4.46) and (4.47), respectively, have the following mean values:

U1 = γ1 (4.48)

U j+1 =
γj

2γ
j
3

1 + γj
2 + γj

3

j = 1, . . . ,M, (4.49)

V 1 =
γ1

1 + γ1

=
U1

1 + U1

(4.50)

and V j+1 =
γj

2γ
j
3

(1 + γj
2)(1 + γj

3)
=

U j+1

1 + U j+1

j = 1, . . . ,M. (4.51)

The average BER is then given by

P e,BFSK = Prob

(
M+1∑
j=1

Uj <

M+1∑
j=1

Vj

)
=

M+1∑
i=1

M+1∑
j=1

κiζj

(
V i

V i + U j

)
, (4.52)

where the details of (4.52) can be found in Appendix-D, and the ζj and κj of (4.52) are

given by

ζj =
M+1∏

i=1,i6=j

U j

U j − U i

and κi =
M+1∏

j=1,j 6=i

V i

V i − V j

. (4.53)
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We now consider the behavior of (4.52) at high SNR. With γ1 = t1γ, and for j =

1, . . . ,M , γj
2 = tj2γ and γj

3 = tj3γ, and upon letting γ → ∞, the mean values in (4.48)-

(4.51) simplify to

U1 = t1γ (4.54)

U j+1 =
tj2t

j
3

tj2 + tj3
γ j = 1, . . . ,M, (4.55)

V 1 = 1 (4.56)

and V j+1 = 1 j = 1, . . . ,M. (4.57)

Define V =
∑M+1

j=1 Vj . At high SNR, from (4.56) and (4.57), V is a sum of M + 1 i.i.d.

exponential random variables of unity mean, and hence V is Gamma distributed [57].

Using (4.54)-(4.57), the expression in (4.52) can be simplified as

P e,BFSK = Prob

(
M+1∑
j=1

Uj < V

)

≥ E

[
Prob

(
max

(
U1, . . . , UM+1

)
×

{
M+1∑
j=1

Uj

U j

}
< v

)∣∣∣V = v

]
. (4.58)

Since max
(
U1, . . . , UM+1

)
= tmaxγ, and

∑M+1
j=1

Uj

Uj
is again Gamma distributed, (4.58)

can be simplified as

P e,BFSK ≥
∞∫

v=0

dv
e−vvM

Γ(M)
×

v
tmaxγ∫

u=0

du
e−uuM

Γ(M + 1)

=

∞∫
v=0

dv
e−vvM

Γ(M)
× e−

v
tmaxγ

∞∑
j=M+1

1

j!

(
v

tmaxγ

)j

=
1

Γ(M + 1)

∞∑
j=M+1

1

j!

1

(tmaxγ)j
× Γ(M + j + 1)

(1 + 1
tmaxγ

)M+j+1

≥ (2M + 1)!

M !(M + 1)!

(
1

tmaxγ

)M+1

(γ →∞). (4.59)
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4.4 Upper Bounds on the Average BER

In this section, we present upper bounds on the average BER for both OOK and BFSK

signals on noncoherent relay channels. To accomplish this task, we use the likelihood

functions of the transmitted bits along with the Bhattacharyya bound. The Bhattacharyya

upper bound on the probability of error in discriminating two hypotheses, H0 and H1, is

given by [29]

P b ≤
∞∫

z=−∞

√
fH1(z)fH0(z)dz, (4.60)

where fHj
(z) is the likelihood function for the hypothesis Hj , j ∈ {0, 1}.

For OOK, when the signal is present, the conditional density function, fH1 , takes the

form of fZDS ,Z1
DR,...,ZM

DR|X=
√

2Es
, whereas fH0 , when the signal is absent, takes the form of

fZDS ,Z1
DR,...,ZM

DR|X=0. Since fZDS ,Z1
DR,...,ZM

DR|X=
√

2Es
= fZDS |X=

√
2Es

×
∏M

j=1 fZj
DR|X=

√
2Es

and fZDS ,Z1
DR,...,ZM

DR|X=0 = fZDS |X=0 ×
∏M

j=1 fZj
DR|X=0, the integral in (4.60) can be ex-

pressed as

P b,On−Off ≤
∞∫

ZDS=0

√
1

1 + 2γ1

exp

(
− ZDS

1 + 2γ1

− ZDS

)
dZDS ×

M∏
j=1

∞∫
Zj

DR=0

√
A(Zj

DR, 1, λ(γj
2)γ

j
3)A(Zj

DR, 1, µ(γj
2)γ

j
3)dZ

j
DR, (4.61)

where

A(Z, a, b) =

∞∫
x=0

exp(−ax)
1 + bx

exp

(
− Z

1 + bx

)
dx

=
1

b

∞∫
t=0

exp(−at/b)
1 + t

exp

(
− Z

1 + t

)
dt

=
1

b
A(Z, a/b, 1). (4.62)
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Except for the first term, which can be evaluated as
√

1 + 2γ1/(1 + γ1), (4.61) does not

appear to have a closed-from. As a result, one must resort to numerical integration. At

high SNR, using (4.36)-(4.39), the functions A(Zj
DR, 1, λ(γj

2)γ
j
3) and A(Zj

DR, 1, µ(γj
2)γ

j
3)

in the jth integral of the product of (4.61) can be approximated as

A(Zj
DR, 1, λ(γj

2)γ
j
3) ≈ 1

2γj
3

A

(
Zj

DR,
1

2γj
3

, 1

)
≈ 1

2tj3γ
A
(
Zj

DR, 0, 1
)

(4.63)

and A(Zj
DR, 1, µ(γj

2)γ
j
3) ≈ A

(
Zj

DR, 1,
tj3
tj2

)
. (4.64)

The first term of (4.61),
√

1 + 2γ1/(1 + γ1), at high SNR, can be approximated as√
2/γ1 =

√
2/t1/

√
γ. Using this, along with (4.63) and (4.64), the high SNR version of

(4.61) can be written as

P b,On−Off ≤ 1√
γ

√
2

t1
×

M∏
j=1

1√
2tj3γ

∞∫
Zj

DR=0

√√√√A
(
Zj

DR, 0, 1
)
A

(
Zj

DR, 1,
tj3
tj2

)
dZj

DR

=
1

(γ)
M+1

2

×

[√
2

t1
×

M∏
j=1

1√
2tj3

∞∫
Zj

DR=0

√√√√A
(
Zj

DR, 0, 1
)
A

(
Zj

DR, 1,
tj3
tj2

)
dZj

DR

]
. (4.65)

Note that the term in square brackets of (4.65) is not a function of γ.

For the case of BFSK, the Bhattacharyya bound, analogous to (4.61), can be written

as

P b,BFSK ≤
∞∫

0

∞∫
0

√
1

(1 + γ1)
2

exp

(
−[ZDS,1 + ZDS,2]

(2 + γ1)

(1 + γ1)

)
×
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dZDS,1 dZDS,2 ×
M∏

j=1

∞∫
0

∞∫
0

√
Ψ(Zj

DR,1, Z
j
DR,2, γ

j
2, γ

j
3)Ψ(Zj

DR,2, Z
j
DR,1, γ

j
2, γ

j
3)×

dZj
DR,1 dZ

j
DR,2, (4.66)

where the function Ψ(·, ·, ·, ·) is given in (4.22). Only the first term in (4.66) has a closed-

form solution, and is given by 4(1 + γ1)/(2 + γ1)
2. However, similar to (4.61), (4.66)

must be evaluated numerically. At high SNR, the first term 4(1 + γ1)/(2 + γ1)
2 in (4.66)

behaves as 4
t1γ

, and the functions Ψ(Zj
DR,1, Z

j
DR,2, γ

j
2, γ

j
3) and Ψ(Zj

DR,2, Z
j
DR,1, γ

j
2, γ

j
3),

with the help of (4.22) and (4.36)-(4.39), can be simplified to

Ψ(Zj
DR,1, Z

j
DR,2, γ

j
2, γ

j
3) ≈ 1

tj3γ

∞∫
u=0

e−Zj
DR,1−

Z
j
DR,2
1+u

1 + u
du

=
1

tj3γ
Θ(Zj

DR,1, Z
j
DR,2) (4.67)

and Ψ(Zj
DR,2, Z

j
DR,1, γ

j
2, γ

j
3) ≈ 1

tj3γ

∞∫
u=0

e−Zj
DR,2−

Z
j
DR,1
1+u

1 + u
dt

=
1

tj3γ
Θ(Zj

DR,2, Z
j
DR,1), (4.68)

where

Θ(Z1, Z2) =

∞∫
t=0

e−Z1− Z2
1+t

1 + t
dt. (4.69)

Using (4.67) and (4.68), (4.66) becomes

P b,BFSK ≤ 4

t1γ
×

M∏
j=1

∞∫
0

∞∫
0

1

tj3γ

√
Θ(Zj

DR,1, Z
j
DR,2)Θ(Zj

DR,2, Z
j
DR,1)dZ

j
DR,1 dZ

j
DR,2

=
1

(γ)M+1
×

[
4

t1

M∏
j=1

1

tj3
×



72

M∏
j=1

∞∫
0

∞∫
0

√
Θ(Zj

DR,1, Z
j
DR,2)Θ(Zj

DR,2, Z
j
DR,1)dZ

j
DR,1 dZ

j
DR,2

]
. (4.70)

Note that, in (4.70) the term in square brackets is not a function of γ.

4.5 Suboptimum Receivers

In this section, we present easy to implement suboptimum receivers for both OOK

and BFSK. For OOK, we propose the following detector:

LLR(b)Subopt (OOK) = c1ZDS +
M∑

j=1

cj2Z
j
DR − Th, (4.71)

where c1, cj2, j = 1, . . . ,M , and Th are given by (4.27), (4.28) and (4.29), respectively. It

is to be noted that (4.71) is optimum only when the relay-to-destination link is unfaded.

Performance analysis of (4.71) is carried out in Appendix-E.

For BFSK, we propose the following suboptimum receiver:

LLRSubopt(b) =

(
γ1

1 + γ1

)
[ZDS,1 − ZDS,2] +

M∑
j=1

(
γj

2γ
j
3

(1 + γj
3)(1 + γj

2 + γj
3)

)(
Zj

DR,1 − Zj
DR,2

)
. (4.72)

Again, (4.72) is optimal only when the relay-to-destination link is unfaded. In Appendix-

F, we present an analysis on the performance of (4.72).

4.6 Asymptotic Diversity Order Analysis

In this section, we consider the use of the expression from [55] for the asymptotic

diversity orders of the systems discussed in this chapter. As will be seen, it is unclear as

to how much credence one should put on the results of this type of analysis. However, we
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present them because similar results for other systems are prevalent in the literature (see,

e.g., [53], [54]).

From [55], the asymptotic diversity order of a system with M relay nodes is taken as

dM , − lim
γ→∞

log P
(M)

b (γ)

log(γ)
, (4.73)

where γ is the average SNR, and P
(M)

b (γ) is the average BER for M -relay system with

an SNR of γ. The use of this expression yields the following results for the noncoherent

relay channels discussed in Sections 4.3 and 4.4: Using the lower bound on the BER for

OOK, (4.43), in (4.73) yields the following upper bound on the diversity order:

dM,OOK < M + 1, (4.74)

Also, the upper bound on the BER of (4.65) yields the following lower bound on the

diversity order:

dM,OOK ≥ M + 1

2
. (4.75)

Taken together, (4.74) and (4.75) show that OOK achieves a diversity order of at least

(M + 1)/2, but cannot achieve the full diversity of M + 1. For BFSK, using the lower

bound of (4.58) and the upper bound of (4.70), on the BER, in (4.73), we conclude that

dM,BFSK ≤ M + 1,

and dM,BFSK ≥ M + 1, (4.76)

respectively. That is, BFSK achieves a full diversity order of M + 1. Furthermore, using

(F.11) in (4.73), we conclude that the suboptimum BFSK receiver of (4.72) also achieves

a full diversity of M + 1 as γ → ∞. Note, in particular, that for a noncoherent OOK

system without the relay, upon setting M = 0 in (4.74), the asymptotic diversity order is

less than unity. This result seemingly makes no sense in the context of physical diversity,
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and thus suggests that the conclusions drawn from the use of the above expressions should

be viewed with at least some degree of skepticism.

4.7 Results and Discussion

We now present some numerical and simulation results to illustrate the performance

of the receivers for OOK and BFSK signal sets that were derived in the previous sections.

First, notice that for OOK modulation, the ML receiver at the destination has to compute

two integrals per relay node, as given by G(·, ·, ·) of Eqn. (4.14), totaling 2M integrals

for the M -relay channel. For BFSK, from Eqn. (4.24), the number of required integral

computations is also 2M . In order to reduce this computational complexity, we would

like to approximate these integrals. Fortunately, each integral in Eqns. (4.14) and (4.24)

is of the form
∞∫
0

exp(−x)h(x)dx, which can be approximated with high accuracy using

the Gauss-Laguerre quadrature (GLQ) rule [58] as
∑N

n=1wnh(xn), where {x1, . . . , xN}

is a set of abscissae, and {w1, . . . , wN} is a set of weighting coefficients. Throughout this

section, unless otherwise stated, we assume the following: i)M = 1 relay node placed

on the path from the source to the destination, at a distance dRS from the source, ii)the

distance dDS between the source and the destination is set to unity, whereas the location

of the relay is varied, and iii)the path loss exponent δ is set to 4. If γ denotes the average

received SNR for a system without the relay, then we have γ1 = 0.5γ, γ1
2 = 0.5γd−δ

RS , and

γ1
3 = 0.5γd−δ

DR, where dDR = dDS − dRS . Here, the factor 0.5 is chosen to ensure that

the total transmit power of the source plus the relay is equal to the source transmit power

without the relay.

Fig. 4.4 plots the exact and the GLQ-based approximate LLR with N = 5 points

for a run of 100 randomly generated information bits with γ = 10 dB. From Fig. 4.4, we

conclude that even with a small number of points, the approximation-based LLR provides

almost the same performance as that of the exact integral-based one, and the sign of the

LLR is preserved, thus maintaining the detection accuracy. Negligible performance im-
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Figure 4.4 Comparison of the exact and the GLQ-based log-likelihood ratio computation
for noncoherent OOK modulation. ρ = dRS .

provement is observed (not shown in Fig. 4.4) by increasing N . However, for guaranteed

accuracy, in all the subsequent plots we show the results with N = 100.

Fig. 4.5 shows the average BER of the optimum OOK receiver of Eqn. (4.12) as a

function of γ. Three scenarios of the relay placement are considered: 1)relay is closer to

the source than to the destination, with dRS = 0.1, 2)relay is closer to the destination than

to the source, with dRS = 0.9, and 3)relay at the midpoint between the source and the

destination with dRS = 0.5. Also shown is the average BER for single-hop transmission,

which is obtained analytically by evaluating Eqn. (4.30) with M = 0, and the BER

performance obtained by using the suboptimum detector of Eqn. (4.71). From Fig. 4.5,

we observe that placement of the relay at the midpoint uniformly minimizes the average

BER, whereas relay placement close to the destination results in worse BER performance.

In fact, at lower values of γ, single-hop transmission performs slightly better than the case

with dRS = 0.9, which can be attributed to an increase in the noise amplification at the

relay, power split between the source and the relay, and, consequently, a reduction in the

average SNR at the destination. Compared with single-hop performance, as γ increases,
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Figure 4.5 Average probability of error for OOK modulation with noncoherent demod-
ulation. Three cases of relay placements are considered: a)Relay close to the source,
b)relay at the midpoint between the source and the destination, and c)relay close to the
destination. Also shown is the analytical error probability performance of a system with
no relay and the performance with the suboptimum detector of Eqn. (4.71).

we notice from Fig. 4.5 an improved performance with a single relay node. We also

conclude from Fig. 4.5 that the suboptimum detector performs reasonably well, compared

with the ML NCAF receiver, when the relay is close to the source. This can be explained

by the fact that noise amplification at the relay is less severe when the relay is close to the

source.

The average BER for the optimum BFSK receiver of Eqn. (4.23) is plotted in Fig.

4.6 as a function of γ. The placement of the relay is the same as that of Fig. 4.5. The

suboptimum receiver as given in (4.72) is also considered. The following observations can

be made from Fig. 4.6. First, with optimum reception, BER performance with ρ = 0.5 is

uniformly better than with ρ = 0.1 and 0.9, which is due to the fact that, with ρ = 0.5,

the noise amplification at the relay is roughly balanced by the strong signal from the relay

to the destination. The suboptimum receiver of (4.71) has identical performance to that

of the optimum one (over the plotted range of SNR values) at ρ = 0.1 and performs

very close to the optimum one at ρ = 0.5, whereas its performance is inferior to the
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optimum one at ρ = 0.9. We conjecture that, for relay placement closer to the destination

than to the source, the suboptimum receiver suffers from more noise amplication than

the optimum one. Also, notice from Fig. 4.6 that, over the range of the plotted average

SNR, γ, performance with the relay is uniformly better than the single-hop transmission.

We also study the effect of relay placement on the average BER performance. We choose

γ ∈ {15, 20, 25} dB, and vary dRS from 0.1 to 0.9. The average BER curves for OOK and

BFSK are plotted, as a function of dRS , in Figs. 4.7 and 4.8, respectively. For both OOK

and BFSK, relay placement in the vicinity of dRS = 0.5 minimizes the average BER.

Finally, we present upper and lower bounds on the average BER performance of the

NCAF receivers. Fig. 4.9 shows the average BER performance with OOK modulation.

In Fig. 4.9, the upper bound is obtained by evaluating (4.61), whereas the lower bound

is given by (4.30). Fig. 4.10 plots the average BER for BFSK using the upper bound of

(4.66), and the lower bound of (4.52). The average BER is parameterized by ρ = dRS ∈

{0.1, 0.5, 0.9} in Fig. 4.9, and by ρ ∈ {0.2, 0.5, 0.8} in Fig. 4.10. The lower bounds in

Figs. 4.9 and 4.10 show that the placement of relay at the midpoint between the source
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Figure 4.9 Comparison of the average BER for OOK modulation with noncoherent de-
modulation. The plots with legend “Upper Bound” correspond to Bhattacharyya distance
between the likelihood functions, whereas the plots with legend “Lower Bound” corre-
spond to the assumption that the link between the relay and the destination is unfaded.
The plots with legend “Simulations” are essentially the same as that of the simulation
results of Fig. 4.5.

and the destination is optimal, whereas relay placement close to the source yields the same

performance as that of placement close to the destination. This can be explained with the

observation that (4.30) and (4.52) are symmetric with respect to γj
2 and γj

3. That is, by

exchanging γj
2 and γj

3, the resulting average BER does not change. For OOK, the upper

bounds in Fig. 4.9 indicate that single-hop transmission has better performance over the

relay-based one when ρ ∈ {0.1, 0.5}, whereas with BFSK Fig. 4.10 shows that, at high

SNR, the relay-based system performs better than the single-hop system.

4.8 Conclusion

We have presented ML receiver structures for noncoherent amplify-and-forward com-

munication when multiple relay nodes are employed. We considered both OOK and

BFSK modulation schemes on Rayleigh fading channels with no receiver CSI. It was
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Figure 4.10 Comparison of the average BER for BFSK modulation with noncoherent de-
modulation. The plots with legend “Upper Bound” correspond to Bhattacharyya distance
between the likelihood functions, whereas the plots with legend “Lower Bound” corre-
spond to the assumption that the link between the relay and the destination is unfaded.

observed that, even for the simplest case of having only one relay node, the optimum

noncoherent receiver is quite involved, and the ML metric computation requires evalua-

tion of certain integrals. Next, we presented lower and upper bounds on the average BER,

and also proposed simple suboptimum receivers along with their performance evaluation.

Our asymptotic diversity analysis showed that, with M relay nodes, and a link between

the source and the destination, OOK achieves a diversity order of atleast (M + 1)/2,

whereas BFSK achieves the full diversity of M + 1.



C H A P T E R 5

Transmit Power Allocation in a Parallel Relay

Network

5.1 Introduction

The lifetime [59] of a wireless ad hoc network crucially depends on how efficiently

the transmission power is utilized [60]. Conservation of transmit power not only increases

the network lifetime, but also reduces undesirable interference to the other nodes in the

network, thereby improving the communication reliability as well. This chapter is con-

cerned with optimizing the reliability performance of a power constrained cooperative

network with various relaying protocols. With receiver CSI (or CSIR) alone, we consider

the decode-and-forward and distributed space-time coded (DSTC) protocols of [61], and

the amplify-and-forward protocol of [48] and [56].

Numerous works have shown that with perfect CSI at both the transmitters and the

receivers (denoted by CSI-TR), the relay channel performance can be improved signif-

icantly through optimal transmit power allocation. In [62], subject to short term power

constraint, the authors presented an information theoretic study of the channel capacity

as well as the outage probability of wireless relay channels with perfect CSI-TR. Outage

behavior of various relaying protocols with optimal power control and CSI-TR is inves-

tigated in [63]. In [64], subject to individual long term power constraints on the source

and the relay, Liang and Veeravalli consider transmitter power allocation on a Gaussian

relay channel with perfect CSI-TR. With an average total energy constraint, Larsson and

81
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Cao in [65] consider the possibility of adapting not only the transmission power but also

the time slot and bandwidth allocation for the source and the relay. In [66], the authors

report the impact of relay gain allocation on the performance of an AF protocol. Adaptive

transmit power allocation schemes are proposed in [67] and [68] for maximizing the in-

stantaneous capacity of a two-hop Rayleigh fading relay channel. In [67], a regenerative

(i.e., the relay decodes and then re-encodes the source bits) system is analyzed, whereas

the performance of a non-regenerative system is considered in [68]. With an Alamouti

space-time block code (STBC) [69], adaptive transmit power allocation based on perfect

CSIT is investigated in [70].

While the above works assume that perfect CSI is available at the transmitters for op-

timum power allocation, power allocation can still be performed even when perfect CSIT

is not available (which, for example, is true on a fast varying fading channel), provided

some statistical knowledge of the channel gains is available to the transmitting nodes.

With the knowledge of the mean channel power gains (or simply, mean channel gains)

alone, this idea is explored in [71] in the context of a multihop diversity system, whereas

the authors in [72] investigate the optimal power allocation problem for a transmit di-

versity system. Recently, [73] presented both SNR maximizing and outage probability

minimizing optimal power allocation schemes with the knowledge of the mean channel

gains. However, the main limitations of [73] are that the results are valid for only AF

protocol with a single relay node. The coding gain of AF and DF protocols, with equal

power allocation, is computed in [74], wherein it is shown that when the average channel

gain between the source and the relay is smaller than the average channel gain between

the relay and the destination, the DF protocol is inferior to the AF protocol, in terms of

the asymptotic coding gain (ACG) [75].

In this chapter, building upon the equal power allocation-based information theoretic

results presented in [61] and [56], we study the optimal transmit power allocation prob-

lem for AF, DF and DSTC protocols with multiple relay nodes. Similar to [71],[72], and

[73], we assume that only knowledge of the mean channel gains is known to the nodes in
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the network, which can easily be realized with a low-rate feedback for a slowly varying

network topology, and obtain the optimum transmit power vector that minimizes the out-

age probability of mutual information (or simply, outage probability) at the destination.

We show that, at high SNR, the outage probability expressions for various protocols are

convex functions of the transmit power vector, and the optimal power allocation depends

on whether or not a direct link exists between the source and the destination. Additionally,

for AF and DF protocols, this allocation depends only on the ratio of the mean channel

gains (i.e., the ratio of the source-to-relay channel gain to the relay-to-destination channel

gain), whereas with a DSTC protocol with a direct link this allocation also depends on the

transmission rate. Interestingly, our results without a direct link show that both the DF

and DSTC protocols have identical optimal power vector and identical asymptotic coding

gain ratio (CGR, i.e., the ratio of the ACG with optimal power allocation to the ACG with

equal power allocation). Our analysis reveals that, in addition to the outage probability

improvements, optimal power allocation also brings impressive coding gains over equal

power allocation. Furthermore, with a single relay, our results show that optimal power

allocation can also reduce the ACG gap between the DF and AF protocols. While our

optimization is performed with a sum power constraint, our results can be modified to ac-

count for a per-node maximum power constraint by simply clipping the excess power of

a given node, and reallocating the remaining power to the nodes satisfying the constraints

in an optimal manner [71].

The rest of this chapter is organized as follows. In Section 5.2, we describe the system

and the channel model. High SNR approximations for the outage probabilities expres-

sions with AF, DF and DSTC protocols are developed, and validated through simulations,

in Section 5.3. We formulate the optimum power allocation problem in Section 5.4, and

derive the optimum power allocation vector for AF, DF and DSTC protocols. The cod-

ing gain improvements with power allocation are presented in Section 5.5. We provide

numerical results and discussions in Section 5.6, and conclude our work in Section 5.7.
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5.2 System Model

We assume a single source communicating with a single destination with the help of

M relay nodes. The channels between all the nodes are assumed to be random, indepen-

dent, frequency-flat, and constant over the signaling duration. We employ low-pass equiv-

alent complex-valued representation for the transmit and receive signals, for the channel

gains and for background additive noise. Specifically, the channel gain between the source

and the destination is denoted by g1, which is assumed to be a zero-mean, circularly sym-

metric, complex Gaussian r.v with varianceE[|g1|2] = Ω1. In a similar fashion, for the jth

relay, the gain from the source to the relay is denoted by gj
2, and the gain from the relay

to the destination by gj
3, with variances E[|gj

2|2] = Ωj
2 and E[|gj

3|2] = Ωj
3. The noise r.v

on each link is assumed to be zero-mean, independent, additive, and Gaussian distributed.

In this chapter, we consider three relaying protocols, namely a) amplify-and-forward, b)

decode-and-forward, and c) distributed space-time coded protocols. The description of

these protocols can be found in [61] and [56]. While [61] and [56], in their mutual in-

formation (MI) analysis, always assume the existence of a direct link between the source

and destination, in this chapter we separately analyze the two systems with/without a di-

rect link. When there is no direct link (NDL) between the source and the destination,

which is true, for example, when there is an obstruction on the source-destination path,

mathematically, we set Ω1 = 0 for all the analysis with NDL. On the other hand, when

there exists a direct link (DL) between the source and the destination Ω1 is non-zero. The

total bandwidth available for the source transmission without cooperation is denoted by

W . Similar to [61] and [56], half-duplex constraints are imposed on the relay nodes (i.e.,

the relays cannot transmit and receive simultaneously). With repetition-based AF and DF

protocols, we assume that the total bandwidth is divided into M + 1 equi-width, disjoint

channels, so that the bandwidth available for the source and for each one of the M relay

nodes is W/(M + 1). Throughout this chapter, the transmission rate of the source, R̃, is

normalized by the bandwidth, W . That is, R = R̃/W . In a similar way, the MI is also
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normalized by W . Let us denote by P̃s the average transmit power of the source, and by

P̃r,j the average transmit power of the jth relay. The single-sided power spectral density

of the additive Gaussian noise is denoted by N0, so that noise power in a bandwidth W is

σ2
N = N0W .

We assume that the transmitted baseband samples of the nodes are independent Gaus-

sian distributed r.vs with zero-mean and variance equal to the respective average transmit

power. When the source transmits at a power level of P̃s, the instantaneous SNR at the

destination is P̃s|g1|2/(N0W/(M + 1)) = (M + 1)P̃s|g1|2/σ2
N , which is denoted by γ1.

In a similar manner, the instantaneous received SNR at the jth relay from the source is

denoted by γj
2, which is given by γj

2 = (M + 1)P̃s|gj
2|2/σ2

N . When the relays transmit

their respective signals to the destination, the SNR at the destination from the jth relay

is γj
3 = (M + 1)P̃r,j|gj

3|2/σ2
N . Let us define Ps = (M + 1)P̃s, and, for j = 1, . . . ,M ,

Pr,j = (M + 1)P̃r,j; also, we denote by P = [Ps, Pr,1, . . . , Pr,M ], the transmit power

vector. Finally, we define the following variables: γ1

4
= E[γ1] = PsΩ1/σ

2
N , and for

j = 1, . . . ,M , γj
2

4
= E[γj

2] = PsΩ
j
2/σ

2
N and γj

3

4
= E[γj

3] = Pr,jΩ
j
3/σ

2
N .

5.3 High SNR Outage Analysis

In this section we develop high SNR approximations for the outage probability of MI

with AF, DF and DSTC protocols, which is defined as the probability that the instanta-

neous MI at the destination falls below a target rate of R [76].

5.3.1 AF Protocol

With the AF protocol, assuming a direct link between the source and the destination,

the output SNR at the destination, with maximal ratio combining, is [50],[51]

γAF,DL = γ1 +
M∑

j=1

γj
2γ

j
3

1 + γj
2 + γj

3

.
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The instantaneous MI at the destination can be written as

IAF,DL =
1

M + 1
log2 (1 + γAF,DL)

=
1

M + 1
log2

(
1 + γ1 +

M∑
j=1

γj
2γ

j
3

1 + γj
2 + γj

3

)
. (5.1)

The fraction 1/(M + 1) in (5.1) is due to the fact that the source uses only 1/(M + 1)

of the total bandwidth W . This outage probability with AF protocol, POut,AF,DL(P ), is

given by

POut,AF,DL(P ) = Prob(IAF,DL < R)

= Prob

(
γ1 +

M∑
j=1

γj
2γ

j
3

1 + γj
2 + γj

3

< 2(M+1)R − 1

)
. (5.2)

At high SNR, following the approach of [51], we can approximate (5.2) as1

POut,AF,DL(P ) ≈
[
2(M+1)R − 1

]M+1

(M + 1)!

1

γ1

M∏
j=1

(
1

γj
2

+
1

γj
3

)

=

[
(2(M+1)R − 1)σ2

N

]M+1

(M + 1)!

1

Ω1Ps

M∏
j=1

(
1

PsΩ
j
2

+
1

Pr,jΩ
j
3

)
. (5.3)

Upon defining αj = Ωj
2/Ω

j
3 and a constant CAF,DL =

[
(2(M+1)R − 1)σ2

N

]M+1
/((M +

1)!Ω1

∏M
j=1 Ωj

2), (5.3) simplifies to the following compact form:

POut,AF,DL(P ) ≈ CAF,DL
1

Ps

M∏
j=1

(
1

Ps

+
αj

Pr,j

)
. (5.4)

In the absence of a direct link, since Ω1 = 0 the source to the destination SNR r.v γ1 does

not contribute to the MI expression of (5.1). As a result, analogous (5.3) and (5.4), we

1Note that the steps required to arrive at (5.3) are very similar to those in [51] and hence are skipped for
brevity.
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can write the outage probability as

POut,AF,NDL(P ) ≈ CAF,NDL

M∏
j=1

(
1

Ps

+
αj

Pr,j

)
, (5.5)

where CAF,NDL =
[
(2(M+1)R − 1)σ2

N

]M
/(M !

∏M
j=1 Ωj

2).

5.3.2 DF Protocol

With a DF protocol, a relay is assumed to correctly decode the source transmission if

the instantaneous MI is above the attempted transmission rate R. Assuming a direct link,

the instantaneous SNR at the destination, conditioned on a set D of correctly decoded

relays, is given by γDF,DL = γ1 +
∑

j∈D γ
j
3, where we assumed that the destination per-

forms MRC of the received signals. The instantaneous MI at the destination, conditioned

on D, can be written as

IDF,DL(D) =
1

M + 1
log2 (1 + γDF,DL) =

1

M + 1
log2

(
1 + γ1 +

∑
j∈D

γj
3

)
. (5.6)

The outage probability at the destination can then be written as

POut,DF,DL(P ) = Prob(IDF,DL < R)

=
∑
D

Prob(D)Prob (IDF,DL < R|D)

=
∑
D

Prob(D)Prob

(
γ1 +

∑
j∈D

γj
3 < 2(M+1)R − 1

)
. (5.7)

The probability of the decoding set, Prob(D), is simply the probability that a subset D

of relays correctly decodes the source signals. This event happens when all the relays in

D have their conditional MI above the target rate R, and the relays outside D have their
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conditional MI below the rate R. That is,

Prob(D) =

[∏
j∈D

Prob
(

1

M + 1
log2(1 + γj

2) > R

)]
×

∏
k 6∈D

Prob
(

1

M + 1
log2(1 + γk

2 ) < R

)

=

[∏
j∈D

e
− 2(M+1)R−1

γ
j
2

]
×
∏
k 6∈D

(
1− e

− 2(M+1)R−1

γk
2

)

≈
∏
k 6∈D

2(M+1)R − 1

γk
2

, (5.8)

where the approximation in the last step of (5.8) is valid for high SNR, and is due to the

fact that, for small x, exp(−x) ≈ 1 and 1− exp(−x) ≈ x [61], [56], [72], [75]. With the

help of Appendix-G, the second term of (5.7) can be approximated as

Prob

(
γ1 +

∑
j∈D

γj
3 < 2(M+1)R − 1

)
≈
[
2(M+1)R − 1

]|D|+1

(|D|+ 1)!

1

γ1

∏
j∈D

1

γj
3

. (5.9)

Using (5.8) and (5.9) in (5.7), we arrive at the following high SNR approximation:

POut,DF,DL(P ) ≈
∑
D

[∏
k 6∈D

2(M+1)R − 1

γk
2

]
×
[
2(M+1)R − 1

]|D|+1

(|D|+ 1)!

1

γ1

∏
j∈D

1

γj
3

= CDF,DL

∑
D

1

(|D|+ 1)!

(
1

Ps

)M+1−|D|∏
j∈D

αj

Pr,j

, (5.10)

where CDF,DL =
[
(2(M+1)R − 1)σ2

N

]M+1
/(Ω1

∏M
j=1 Ωj

2). In the absence of a direct link,

(5.10) can be modified as follows: First, the probability Prob(D) in (5.8) is not related

to the existence of a direct link, and hence it remains unchanged. However, since there

is no direct link, the r.v γ1 does not contribute to the outage expression of (5.9), and the
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modified expression, with the help of Appendix-G, is

Prob

(∑
j∈D

γj
3 < 2(M+1)R − 1

)
≈
[
2(M+1)R − 1

]|D|
(|D|)!

∏
j∈D

1

γj
3

. (5.11)

Using (5.8) and (5.11) in (5.7), and following the steps in (5.10) for the simplification, we

arrive at

POut,DF,NDL(P ) ≈
[
(2(M+1)R − 1)σ2

N

]M∏M
j=1 Ωj

2

∑
D

1

(|D|)!

(
1

Ps

)M−|D|∏
j∈D

Ωj
2

Ωj
3Pr,j

= CDF,NDL

∑
D

1

(|D|)!

(
1

Ps

)M−|D|∏
j∈D

αj

Pr,j

, (5.12)

where CDF,NDL =
[
(2(M+1)R − 1)σ2

N

]M
/(
∏M

j=1 Ωj
2).

5.3.3 Distributed STC Protocol

Let us now turn our attention to a DSTC protocol. With a DSTC protocol, the band-

width is divided into two disjoint bands of width W/2 each. In the first phase of the

protocol, the source transmits over a bandwidth of W/2. Each relay node independently

attempts to decode the source transmission. In the event that multiple relay nodes able

to successfully decode the source information, they collaborate their transmissions by

forming a virtual orthogonal STBC2 and simultaneously transmit over the remaining

bandwidth of W/2. Practical issues such as construction of distributed STBCs, chan-

nel feedback requirements, and communication theoretic performances can be found, for

example, in [77] and [78]. Compared with the repetition based AF/DF protocols, a DSTC

protocol is bandwidth efficient by a factor of (M +1)/2. When a direct link exists, Lane-

man and Wornell [61] showed that a DSTC protocol achieves a full spatial diversity order

2 Note that very low rate but highly reliable side channels are assumed to exist between the relays to
communicate which nodes have successfully decoded, and to convey the choice of the space-time block
code to be used.
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equal to the total number of nodes (in our case, it is M + 1). In the presence of a direct

link, conditioned on the set of decoding nodes D, the conditional MI at the destination

with DSTC is

IDTSC,DL(D) =
1

2
log2

(
1 +

P̃s

N0W/2
|g1|2

)
+

1

2
log2

(
1 +

∑
j∈D

P̃r,j

N0W/2
|gj

3|2
)

=
1

2
log2

(
1 +

2

M + 1
γ1

)
+

1

2
log2

(
1 +

2

M + 1

∑
j∈D

γj
3

)
, (5.13)

which is the sum of MIs of two independent parallel channels, the first one from the

source to the destination, and the second one from the successfully decoded relays to the

destination. Eqn. (5.13) is achievable when relays re-encode the decoded source infor-

mation using independent code books, and when the all code books are available to the

destination [25]. The factor 1/2 in front of the logarithm in (5.13) is due to the fact that

the nodes transmit in half of the available bandwidth.

In the absence of a direct link, (5.13) reduces to

IDTSC,NDL(D) =
1

2
log2

(
1 +

2

M + 1

∑
j∈D

γj
3

)
. (5.14)

Similar to (5.7), the outage probability with DSTC is

POut,DSTC,DL(P ) = Prob(IDSTC,DL < R)

=
∑
D

Prob(D)Prob (IDSTC,DL < R|D)

=
∑
D

Prob(D)×

Prob

(
(1 +

2

M + 1
γ1)× (1 +

2

M + 1

∑
j∈D

γj
3) < 22R

)
(5.15)
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with a direct link, and

POut,DSTC,NDL(P ) =
∑
D

Prob(D)Prob

(
2

M + 1

∑
j∈D

γj
3 < 22R − 1

)
(5.16)

without a direct link. Analogous to (5.8), the probability Prob(D) is

Prob(D) =

[∏
j∈D

Prob
(

1

2
log2(1 +

2

M + 1
γj

2) > R

)]
×

∏
k 6∈D

Prob
(

1

2
log2(1 +

2

M + 1
γk

2 ) < R

)
≈

∏
k 6∈D

(22R − 1)(M + 1)

2γk
2

, (5.17)

whereas the second term of (5.15) can be approximated as3.

Prob

(
(1 +

2

M + 1
γ1)× (1 +

2

M + 1

∑
j∈D

γj
3) < 22R

)
≈

(
(22R − 1)(M + 1)

2

)|D|+1

×A|D|(2
2R − 1)

1

γ1

∏
j∈D

1

γj
3

, (5.18)

where

An(t) =
1

(n− 1)!

1∫
u=0

un−1(1− u)

1 + tu
du n > 0, (5.19)

and A0(t) = 1. Without a direct link, using (G.9) of Appendix-G, the second term of

(5.16) approximately equals

Prob

(
2

M + 1

∑
j∈D

γj
3 < 22R − 1

)
≈
(

(22R − 1)(M + 1)

2

)|D|
1

(|D|)!
∏
j∈D

1

γj
3

. (5.20)

3Eqn. (5.18) can be obtained from [61] by setting the variables SNR = 1, λs,d(s) = 1/γ1, and λr,d(s) =
1/γr

3 in [61, Eqn. (19)].
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Plugging (5.17) and (5.18) in (5.15), we have

POut,DSTC,DL(P ) ≈
(

(22R − 1)(M + 1)

2

)M+1

∑
D

A|D|(2
2R − 1)

1

γ1

[∏
k 6∈D

1

γk
2

]∏
j∈D

1

γj
3

= CDSTC,DL

∑
D

A|D|(2
2R − 1)

∏
j∈D

αj

Pr,j

(
1

Ps

)M+1−|D|

,(5.21)

where CDSTC,DL =
(
(22R − 1)(M + 1)σ2

N/2
)M+1

/(Ω1

∏M
j=1 Ωj

2). Using (5.17) and

(5.20) in (5.16), the approximate outage probability without a direct link is

POut,DSTC,NDL(P ) ≈ CDSTC,NDL

∑
D

1

(|D|)!

(
1

Ps

)M−|D|∏
j∈D

αj

Pr,j

, (5.22)

where CDSTC,NDL =
(
(22R − 1)(M + 1)σ2

N/2
)M

/(
∏M

j=1 Ωj
2). It is worth noticing the

similarity between (5.22) and (5.12), which can be explained by the fact that the same

number, |D|, of relay nodes are employed in both DF and DSTC protocols4.

5.3.4 Accuracy of High SNR Outage Probability Approximations

We now compare the high SNR approximations of (5.4), (5.5), (5.10), (5.12), (5.21),

and (5.22) against their respective exact outage expressions. One hundred million (108)

channel realizations, for each SNR value, were simulated to evaluate the exact outage

expressions. We used M = 3 relay nodes, both with and without a direct link between

the source and the destination. Due to lack of consensus on the relay network topology, we

assumed that the source, the destination, and the relay nodes were placed on a circle with

radius 1/2. The source was located at (0, 0), the destination at (1, 0), and the jth relay at

((1 + cos θj)/2, (sin θj)/2), j = 1, 2, 3, with θ1 = π/3, θ2 = π/4 and θ3 = π/6. For a

4Eqns. (5.12) and (5.22) differ only in the scale factor, which captures the bandwidth efficiency of a
given protocol.
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Figure 5.1 Comparison of exact outage probability against the high SNR approximation
for an amplify-and-forward protocol. M = 3 relay nodes are considered both without
and with a direct link between the source and the destination. Equal power allocation is
assumed with R = 0.1 bits/sec/Hz.

given path loss exponent η, we have Ω1 = 1, Ωj
2 = [cos(θj/2)]−η, and Ωj

3 = [sin(θj/2)]−η,

j = 1, 2, 3. Throughout this paper, we use η = 4. For simplicity, we assumed equal

power allocation among the source and the 3 relays. Then, Ps = PT/4, and Pr,j = PT/4,

j = 1, . . . , 4, where PT is the average total power. The target information rate was set

to R ∈ {0.1, 1.0} bits/sec/Hz. The outage probability results are shown, as a function

of PT/σ
2
N , in Figs. 5.1, 5.2 and 5.3 for AF, DF, and DSTC protocols, respectively, with

R = 0.1. Figs. 5.4, 5.5 and 5.6 show a similar outage behavior with R = 1.0 for AF, DF,

and DSTC protocols, respectively. From Figs. 5.1, 5.2 and 5.3 we conclude that the high

SNR approximations are quite accurate. When the information rate is increased to ten

folds, from R = 0.1, Figs. 5.4, 5.5 and 5.6 show that the outage performance degrades

signficantly, and a large value of SNR is needed to maintain a desired level of outage

probability.
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Figure 5.2 Comparison of exact outage probability against the high SNR approximation
for a decode-and-forward protocol. M = 3 relay nodes are considered both without
and with a direct link between the source and the destination. Equal power allocation is
assumed with R = 0.1 bits/sec/Hz.
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Figure 5.3 Comparison of exact outage probability against the high SNR approximation
for a distributed space-time code protocol. M = 3 relay nodes are considered both with-
out and with a direct link between the source and the destination. Equal power allocation
is assumed with R = 0.1 bits/sec/Hz.
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Figure 5.4 Comparison of exact outage probability against the high SNR approximation
for an amplify-and-forward protocol. M = 3 relay nodes are considered both without
and with a direct link between the source and the destination. Equal power allocation is
assumed with R = 1.0 bits/sec/Hz.
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Figure 5.5 Comparison of exact outage probability against the high SNR approximation
for a decode-and-forward protocol. M = 3 relay nodes are considered both without
and with a direct link between the source and the destination. Equal power allocation is
assumed with R = 1.0 bits/sec/Hz.
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Figure 5.6 Comparison of exact outage probability against the high SNR approximation
for a distributed space-time code protocol. M = 3 relay nodes are considered both with-
out and with a direct link between the source and the destination. Equal power allocation
is assumed with R = 1.0 bits/sec/Hz.

5.3.5 Convexity of High SNR Outage Probability Expressions

Upon examining (5.4), (5.5), (5.10), (5.12), (5.21), and (5.22), we notice that the out-

age probability of each protocol can be expressed as a linear combination (with positive

weights) of the function

Ψ(P ) =
1

P n0
s

∏M
j=1 P

nj

r,j

, (5.23)

where nj ≥ 0 for j = 0, 1, . . . ,M . The determinant of the Hessian matrix of the objective

function of (5.23) can be shown to be

det
(
∇2Ψ(P )

)
= Ψ(P )M+1 ×

(1 +
∑M

j=0 nj)
∏M

j=0 nj

P 2
s

∏M
j=1 P

2
r,j

(5.24)

which is strictly positive. That is, (5.23) is a strictly convex function of P . Since a linear

combination (with positive weights) of convex functions is also convex, we conclude that

(5.4), (5.5), (5.10), (5.12), (5.21), and (5.22) are also convex functions of P . Since (5.23)
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is in the form of a monomial [79], upon using the following change of variables

Ps = ex0 (5.25)

and Pr,j = exj , j = 1, . . . ,M, (5.26)

in (5.23), we can express our objective functions as geometric programs [79]. Since we

have a linear constraint on the transmission powers, we can in fact efficiently solve the

resulting geometric programs using commercial software, such as MOSEK [80].

5.4 Optimal Power Allocation

In this section, for AF, DF and DSTC protocols, we derive the optimal transmit power

vector, P , that minimizes the outage probability, subject to a sum power constraint. That

is, our optimization problem is

minimize POut(P ) subject to Ps +
M∑

j=1

Pr,j ≤ PT , (5.27)

where PT is the total transmit power. With equal power allocation, we have Ps = Pr,j =

PT/(M + 1), j = 1, . . . ,M . In our optimization, we devote equal attention to the cases

without and with a direct link between the source and the destination. As will be clear at

the end of this section, the presence or absence of a direct link significantly affects the op-

timum power vector, and the resulting performance gains. For all the protocols, we simply

ignore the constants CAF,DL,CAF,NDL,CDF,DL,CDF,NDL,CDSTC,DL, and CDSTC,NDL, as

they appear as multiplicative factors to the objective functions, and hence do not affect

the resulting optimal power vector.
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5.4.1 Amplify-and-Forward Protocol

When there is a direct link, using (5.4), the optimization problem of (5.27) is

minimize
1

Ps

M∏
j=1

(
1

Ps

+
αj

Pr,j

)
subject to Ps +

M∑
j=1

Pr,j ≤ PT . (5.28)

The Lagrange cost function can be written as

J (P , λ) =
1

Ps

M∏
j=1

(
1

Ps

+
αj

Pr,j

)
+ λ

(
Ps +

M∑
j=1

Pr,j − PT

)
, (5.29)

where λ is the Lagrange parameter.

Upon setting the derivatives of J (P , λ) with respect to (w.r.t) Ps, Pr,j , j = 1, . . . ,M ,

and λ, to zero, we have

− 1

P 2
s

M∏
j=1

(
1

Ps

+
αj

Pr,j

)
+

M∑
k=1

1

Ps

(
M∏

j=1,j 6=k

(
1

Ps

+
αj

Pr,j

))(
− 1

P 2
s

)
+ λ = 0

=⇒ λ =
POut,AF,NDL(P )

Ps

(
1 +

M∑
k=1

Pr,k

Psαk + Pr,k

)
, (5.30)

1

Ps

[
M∏

k=1,k 6=j

(
1

Ps

+
αk

Pr,k

)](
− αj

Pr,j

)
+ λ = 0 j = 1, . . . ,M

=⇒ λ =
POut,AF,NDL(P )αjPs

Pr,j(Psαj + Pr,j)
, j = 1, . . . ,M, (5.31)

and

Ps +
M∑

j=1

Pr,j = PT . (5.32)

Using (5.31) and (5.32) in (5.30), we obtain

λ

POut,AF,NDL(P )
=
M + 1

PT

. (5.33)
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Substituting (5.33) in (5.31), we arrive at the following quadratic equation over Pr,j:

P 2
r,j + Pr,jPsαj − αjPsPT/(M + 1) = 0, (5.34)

whose solution, in terms of Ps, is

Pr,j =
−Psαj +

√
P 2

s α
2
j + 4PsαjPT/(M + 1)

2
, j = 1, . . . ,M. (5.35)

Let Ps = δ0PT , and for j = 1, . . . ,M , Pr,j = δjPT , where δ0 > 0, 0 ≤ δj ≤ 1,

j = 1, . . . ,M , and
∑M

j=0 δj = 1. Then, by substituting (5.35) in (5.32), δ0 can be

expressed in the following transcendental equation:

M∑
j=1

√
δ2
0α

2
j + 4αjδ0/(M + 1) = 2(1− δ0) + δ0

M∑
j=1

αj. (5.36)

Once δ0 is found, Ps can be obtained as Ps = δ0PT and (5.35) yields Pr,j . As a special

case, let us assume αj = α, ∀ j = 1, . . . ,M , which might be thought of as a result of a

symmetric relay placement. In this case, δj = (1− δ0)/M , j = 1, . . . ,M , and we obtain

the following closed-form expression for δ0:

δ0 =
1

1−Mα

[
1− αM

2(M + 1)

(
1 +

√
1 + 4

M + 1

α

)]
. (5.37)

As α → 0, δ0 → 1 indicating that all the power should be allocated to the source. Intu-

itively, this makes sense, since, when the relay is arbitrarily close to the destination, we

expect the source to use as much of the available power as possible to reach the destina-

tion, and only a small amount of power is needed for the relay to reach the destination. On

the other hand, when α→∞ (i.e., the relay is arbitrarily close to the source) δ0 → 1
M+1

.

That is, equal power allocation is optimal only for large values of α. As α → 1/M ,

there is a discontinuity in the function, but using the L’Hospital rule in (5.37), we have

δ0 → (M + 1)/(1 + 2M).
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In the absence of a direct link, with (5.5), the optimization problem is

minimize
M∏

j=1

(
1

Ps

+
αj

Pr,j

)
subject to Ps +

M∑
j=1

Pr,j ≤ PT . (5.38)

The Lagrange cost function can be written as

J (P , λ) =
M∏

j=1

(
1

Ps

+
αj

Pr,j

)
+ λ

(
Ps +

M∑
j=1

Pr,j − PT

)
. (5.39)

Upon setting the derivatives of J (P , λ) w.r.t Ps, Pr,j , j = 1, . . . ,M , and λ, to zero, we

have

M∑
k=1

(
− 1

P 2
s

) M∏
i=1,i6=k

(
1

Ps

+
αi

Pr,i

)
+ λ = 0

=⇒ λ =
POut,AF,NDL(P )

Ps

M∑
k=1

Pr,k

Ps(Psαk + Pr,k)
(5.40)[

M∏
i=1,i6=j

(
1

Ps

+
αi

Pr,i

)](
− αj

P 2
r,j

)
+ λ = 0 j = 1, . . . ,M

=⇒ λ =
POut,AF,NDL(P )αjPs

Pr,j(Psαj + Pr,j)
j = 1, . . . ,M, (5.41)

and (5.32). Using (5.41) and (5.32) in (5.40), we obtain

λ

POut,AF,NDL(P )
=
M

PT

. (5.42)

Substituting (5.42) in (5.41), we arrive at the quadratic

P 2
r,j + Pr,jPsαj − αjPsPT/M = 0, (5.43)
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whose solution, as a function of Ps, is

Pr,j =
−Psαj +

√
P 2

s α
2
j + 4PsαjPT/M

2
, j = 1, . . . ,M. (5.44)

Let Ps = ζ0PT , and for j = 1, . . . ,M , Pr,j = ζjPT , where ζ0 > 0, 0 ≤ ζj ≤ 1,

j = 1, . . . ,M , and
∑M

j=0 ζj = 1. Then, by substituting (5.44) in (5.32), ζ0 can be

expressed in the following implicit equation:

M∑
j=1

√
ζ2
0α

2
j + 4αjζ0/M = 2(1− ζ0) + ζ0

M∑
j=1

αj. (5.45)

Once ζ0 is found, we get Ps = ζ0PT and (5.44) yields Pr,j . As a special case, let us

assume αj = α, ∀ j = 1, . . . ,M , so that ζj = (1 − ζ0)/M , j = 1, . . . ,M , where ζ0 is

given by

ζ0 =
1

1 +
√
Mα

. (5.46)

As α → 0, ζ0 → 1 indicating that a large fraction of the available power should be

allocated to the source, consistent with the case with a direct link. On the other hand,

unlike the case with a direct link, α → ∞ gives us ζ0 → 0. That is, since the relay is

arbitrarily close to the source, very little transmit power is needed by the source, and the

rest of the available power has to be shared by the relays equally. Only when α = M does

the equal power allocation become optimal.

5.4.2 Decode-and-Forward Protocol

Unlike the case with the AF protocol, due to the nature of (5.10) and (5.12), arriving at

an optimal power vector for the DF protocol is rather cumbersome, even for a symmetric

relay network with αj = α, ∀ j = 1, . . . ,M . In what follows, we restrict our attention to

M = 1 and 2 relay nodes.
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5.4.2.1 M = 1 Relay Node

Let us consider M = 1 first. The possible decoding sets are D = φ (i.e., the relay is

unable to decode) andD = {1} (the relay successfully decodes). Then, with a direct link,

using (5.10), and ignoring the constant, the optimization problem of (5.27) reduces to

minimize
1

P 2
s

+
1

2

1

Ps

α1

Pr,1

=
1

Ps

(
1

Ps

+
α̂1

Pr,1

)
subject to Ps + Pr,1 ≤ PT , (5.47)

where α̂1 = α1/2. Comparing (5.47) with (5.28) with M = 1, we notice that the DF

protocol outage probability expression is very similar to that of the AF protocol. It then

follows that, upon defining Ps = τ0PT and Pr,1 = (1 − τ0)PT , 0 < τ0 ≤ 1, τ0 can be

obtained directly from (5.37) with M = 1 and α in (5.37) replaced by α̂1 = α1/2. That

is,

τ0 =
2

2− α1

[
1− α1

8

(
1 +

√
1 +

16

α1

)]
. (5.48)

As α1 → 2, using the L’Hospital rule in (5.48), we have τ0 → 2/3.

In the absence of a direct link, from (5.12) with D = φ and {1}, the optimization

problem is

minimize
1

Ps

+
α1

Pr,1

subject to Ps + Pr,1 ≤ PT . (5.49)

Comparing (5.49) with (5.38) with M = 1, we notice that the DF protocol outage proba-

bility expression is exactly the same as that of the AF protocol. It then follows that, upon

defining Ps = µ0PT and Pr,1 = (1 − µ0)PT , 0 < µ0 ≤ 1, µ0 can be obtained directly

from (5.46) with M = 1 as

µ0 =
1

1 +
√
α1

, (5.50)

which also coincides with [71, Eqn. (8)].
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5.4.2.2 M = 2 Relay Nodes

With M = 2 relays, we have D = φ, {1}, {2}, and {1, 2}, and the optimization

problem with a direct link is

minimize
1

P 3
s

+
1

2

1

P 2
s

(
α1

Pr,1

+
α2

Pr,2

)
+

1

6

1

Ps

α1α2

Pr,1Pr,2

subject to Ps + Pr,1 + Pr,2 ≤ PT . (5.51)

Upon setting the derivatives of the Lagrange cost function w.r.t Ps, Pr,1, Pr,2, and λ to

zero, we have

− 3

P 4
s

− 2

P 3
s

(
α1

Pr,1

+
α2

Pr,2

)
− 1

P 2
s

1

6

α1α2

Pr,1Pr,2

+ λ = 0

=⇒ λ =
3

P 4
s

+
2

P 3
s

(
α1

Pr,1

+
α2

Pr,2

)
+

1

P 2
s

1

6

α1α2

Pr,1Pr,2

, (5.52)

− 1

2P 2
s

α1

P 2
r,1

− 1

6Ps

α1α2

P 2
r,1Pr,2

+ λ = 0 =⇒ λ =
1

2P 2
s

α1

P 2
r,1

+
1

6Ps

α1α2

P 2
r,1Pr,2

, (5.53)

− 1

2P 2
s

α2

P 2
r,2

− 1

6Ps

α1α2

Pr,1P 2
r,2

+ λ = 0 =⇒ λ =
1

2P 2
s

α2

P 2
r,2

+
1

6Ps

α1α2

Pr,1P 2
r,2

, (5.54)

and

Ps + Pr,1 + Pr,2 = PT . (5.55)

Equating (5.53) with (5.52), and (5.53) with (5.54), we have

P 3
s (α1α2/3)− P 2

s (α1α2Pr,1/3− α1Pr,2)−

Ps(2α1Pr,1Pr,2 + 2α2P
2
r,1)− 6P 2

r,1Pr,2 = 0 (5.56)

and Ps(Pr,2 − Pr,1)α1α2/3− (α2P
2
r,1 − α1P

2
r,2) = 0. (5.57)
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Eqns. (5.55), (5.56) and (5.57) constitute three equations in three unknowns, Ps, Pr,1, and

Pr,2, and can be solved numerically to arrive at the optimal power vector. For the case

of a symmetric relay network, we have α1 = α2. With this, (5.57) gives us Pr,1 = Pr,2.

Further, let Ps = εPr,1 = εPT/(2 + ε), 0 < ε < 1. Then substituting in (5.57) results in

the following cubic equation5 in ε:

ε3 − ε2(1− 3/α)− ε(12/α)− 18/α2 = 0 (5.58)

which has at least one real root. Since the objective function is strictly convex in P , it

then follows that there exists only one positive root of (5.58). When α → ∞, (5.58)

yields ε = 1. That is, Ps = Pr,1 = Pr,2 = PT/3, implying the optimality of equal power

allocation as α→∞.

In the absence of a direct link, with M = 2, the Lagrangian cost function is

J (P , λ) =
1

P 2
s

+
1

Ps

α1

Pr,1

+
1

Ps

α2

Pr,2

+
1

2

α1α2

Pr,1Pr,2

+ λ

(
Ps +

M∑
j=1

Pr,j − PT

)
. (5.59)

Upon setting the derivatives of (5.59) w.r.t Ps, Pr,1, Pr,2, and λ to zero, we have

− 2

P 3
s

− 1

P 2
s

α1

Pr,1

− 1

P 2
s

α2

Pr,2

+ λ = 0 =⇒ λ =
2

P 3
s

+
1

P 2
s

(
α1

Pr,1

+
α2

Pr,2

)
, (5.60)

− 1

Ps

α1

P 2
r,1

− 1

2

α1α2

P 2
r,1Pr,2

+ λ = 0 =⇒ λ =
1

Pr,1

(
1

Ps

α1

Pr,1

+
1

2

α1α2

Pr,1Pr,2

)
, (5.61)

− 1

Ps

α2

P 2
r,2

− 1

2

α1α2

Pr,1P 2
r,2

+ λ = 0 =⇒ λ =
1

Pr,2

(
1

Ps

α2

Pr,2

+
1

2

α1α2

Pr,1Pr,2

)
, (5.62)

5In general, for a symmetric relay network with M relay nodes, one has to find the unique positive root
of a polynomial of degree M + 1.
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and (5.55). Upon equating (5.61) with (5.62), and (5.61) with (5.60), we have

(α1P
2
r,2 − α2P

2
r,1) = α1α2Ps(Pr,1 − Pr,2)/2 (5.63)

and P 3
s (α1α2/2) + P 2

s (α1Pr,2) = Ps(α1Pr,1Pr,2 + α2P
2
r,1) + 2P 2

r,1Pr,2. (5.64)

For a general (α1, α2), a numerical approach is needed to solve the above nonlinear equa-

tions. On the other hand, with α1 = α2 = α, we once again have Pr,1 = Pr,2 from (5.63).

Upon letting Ps = κPr,1 = κPT/(2 + κ), (5.64) results in

κ3 + κ2(2/α)− κ(4/α)− 4/α2 = 0. (5.65)

Eqn. (5.65) is significantly different from (5.58) in the following way: While (5.58) shows

that ε→ 1 as α→∞, (5.65) gives us κ→ 0 as α→∞. That is, arbitrarily small power

is needed for the source to transmit, instead of one-third of the total power allocation,

when α→∞.

5.4.3 Distributed Space-Time Coded Protocol

Upon comparing the outage probability expression for DSTC of (5.21) with that of

(5.10) for the DF protocol, we notice that, in addition to differing in multiplicative con-

stants, the factor 1/(|D| + 1)! in (5.10) is replaced by A|D|(2
2R − 1) in (5.21). In fact,

An(0) =
1

(n− 1)!

1∫
u=0

un−1(1− u)du =
1

(n+ 1)!
, (5.66)

which implies that the optimal power vector of the DF protocol is indeed a special case

of that of the DSTC protocol. The important difference is that the optimal power allo-

cation vector of the DSTC protocol depends on the transmission rate R. A simple, but

interesting, case is that with M = 2 relay nodes, which forms a basis for implementing

distributed Alamouti STBC.
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With M = 2 relays, the analysis is very similar to that in Section 5.4.2, and hence

we skip it for brevity. For a general (α1, α2), we obtain sets of equations very similar to

(5.56) and (5.57), but with a dependence on A1(2
2R − 1) and A2(2

2R − 1). That is, we

have

P 3
s (A2(2

2R − 1)α1α2)− P 2
s (A2(2

2R − 1)α1α2Pr,1 −A1(2
2R − 1)α1Pr,2)

−Ps(2A1(2
2R − 1)α1Pr,1Pr,2 + 2A1(2

2R − 1)α2P
2
r,1)− 3P 2

r,1Pr,2 = 0, (5.67)

and A1(2
2R − 1)

(
α1P

2
r,2 − α2P

2
r,1

)
= A2(2

2R − 1)α1α2Ps (Pr,1 − Pr,2) . (5.68)

On the other hand, when α1 = α2 = α, similar to (5.58) we have the cubic equation

ε3 − ε2
(
1−A1(2

2R − 1)/(A2(2
2R − 1)α)

)
−ε
(
4A1(2

2R − 1)/(A2(2
2R − 1)α)

)
−
(
3/(A2(2

2R − 1)α2)
)

= 0. (5.69)

As α → ∞ (5.69) gives us ε → 1, which is not a function of R, thus showing the

optimality of equal power allocation. As a quick check, by setting A1(2
2R − 1) = 1/2

and A2(2
2R − 1) = 1/6, (5.69) reduces to (5.58) of the DF protocol.

Without a direct link, ignoring the constant, the outage probability expression in (5.22)

of the DSTC protocol has a form very similar to that of the DF protocol of (5.12). Since

the optimum power vector is not a function of the multiplicative constant of the objective

function, it then follows that the optimal power vector of the DSTC protocol is exactly

the same as that of the DF protocol.

5.5 Coding Gain Considerations

For simplicity, let us define Γ = PT/σ
2
N , the average SNR. For sufficiently large

Γ, the outage probability can be written as POut ≈ (GcΓ)−Gd [75], where Gd is the so-

called diversity gain, and Gc can be viewed as the asymptotic coding gain. Note that
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the use of the term “coding gain” is seemingly a misnomer, since there is no explicit

forward error correction in the systems being analyzed. However, the term has been used

in the literature, and so we adopt it here. With equal power allocation, [74] studied the

coding gain performance of both AF and DF protocols. We now present the coding gain

expressions for the AF, DF and DSTC protocols with optimal power allocation. First,

upon setting P = [δ0, δ1, . . . , δM ]×PT in (5.4), the ACG of the AF protocol with a direct

link is

Gc,AF,DL =
δ0

2(M+1)R − 1

[
(M + 1)!Ω1

M∏
j=1

(
Ωj

2δj
δj + δ0αj

)] 1
M+1

. (5.70)

Upon letting P = [ζ0, ζ1, . . . , ζM ]× PT in (5.5), the ACG without a direct link is

Gc,AF,NDL =
ζ0

2(M+1)R − 1

[
M !

M∏
j=1

(
Ωj

2ζj
ζj + ζ0αj

)] 1
M

. (5.71)

By setting δj = PT/(M + 1) in (5.70) and ζj = PT/(M + 1) in (5.71), j = 0, 1, . . . ,M ,

we obtain the ACG expressions with an equal power allocation [74]. Similar expressions

can easily be found for the DF and DSTC protocols. The coding gain ratio of a protocol

with optimal power allocation is defined as

CGR ,
Gc(Optimal Alloc)
Gc(Equal Alloc)

.

With the AF protocol, these are

CGRAF,DL = δ0 × (M + 1)×

(
M∏

j=1

δj(1 + αj)

δj + δ0αj

) 1
M+1

(5.72)

and CGRAF,NDL = ζ0 × (M + 1)×

(
M∏

j=1

ζj(1 + αj)

ζj + ζ0αj

) 1
M

, (5.73)
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with and without a direct link, respectively. With a single relay, the CGRs of the DF

protocol are

CGRDF,DL = 2τ0

√
(1− τ0)(2 + α1)

2(1− τ0) + τ0α1

(5.74)

and CGRDF,NDL =
2(1 + α1)

(1 +
√
α1)2

, (5.75)

with and without a direct link, respectively. With either α1 → 0 or α1 → ∞, (5.75) pre-

dicts a 3 dB improvement in ACG with a single relay node and optimal power allocation.

5.6 Results and Discussion

We now present some numerical results illustrating the performance gains of various

relaying protocols with optimal transmit power allocation. The relay network topology is

the same as that described in Section 5.3.4. The outage performance of the AF protocol

is studied in Figs. 5.7 and 5.8 without and with a direct link, respectively. M = 1, 2, and

3 relays are considered. The information rate is R = 1 bit/sec/Hz. Without a direct link,

Fig. 5.7 shows that a 2 dB improvement can be obtained with optimal power allocation

at an outage level of 10−2 with a single relay, whereas these gains, at an outage level of

10−3, increase to 3.5 dB with two relays, and 4 dB with three relays. As shown in Fig. 5.8,

existence of a direct link boosts the outage performance by providing an additional diver-

sity path. Fig. 5.8 shows that, at an outage of 10−3, optimal allocation with a single relay

provides a significant gain of 3 dB. The gains increase to 3.8 and 4 dB with two and three

relay nodes, respectively, at an outage level of 10−5. With the same topology as that of the

AF protocol, the outage performance of a single relay (location at θ1) based DF protocol

is presented in Fig. 5.9 without and with a direct link. Fig. 5.9 shows that, at an outage

probability of 10−2, the SNR gain without a direct link is 5 dB, whereas, at 10−3 outage

probability, the existence of a direct link provides a gain around 2.0 dB. These gains, by

judicious allocation of transmit power across various nodes, and based on the knowledge
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Figure 5.7 Outage probability of the AF protocol with both equal and optimal power
allocation. One, two and three relays are considered without a direct link between the
source and the destination.

of the mean channel power gains alone, directly improve the energy efficiency, and thus

lead to a longer network lifetime.

Fig. 5.10 shows the optimal transmit power allocation for the AF protocol under the

symmetric relay network assumption. That is, αj = α, ∀ j = 1, . . . ,M . Due to this

symmetry, as shown before, the source transmits at a power level of Ps, and all other

relays transmit at an identical power level of Pr such that Ps + MPr = PT . Fig. 5.10

shows Ps as a function of α, parameterized by the number of relays, M . Both the cases

of direct and no direct link between the source and the destination are considered. Two

observations are made regarding the behavior of Ps as α is varied: First, when there is

no direct link between the source and the destination, a larger value of α implies that

the relay is closer to the source than the destination, and it enjoys less path loss from the

source. This allows the source to reduce its transmit power, and helps the relay to transmit

at a higher power level in order to compensate for the path loss between the relay and the

destination. This also explains why the source transmit power decreases gradually with α

as the number of relays is increased. However, the situation is quite different when there
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Figure 5.8 Outage probability of the AF protocol with both equal and optimal power
allocation. One, two and three relays are considered with a direct link between the source
and the destination.
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Figure 5.9 Outage probability of the DF protocol with both equal and optimal power
allocation. A single relay is assumed without and with a direct link between the source
and the destination.



111

−30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α (dB)

F
ra

ct
io

n 
of

 th
e 

to
ta

l p
ow

er
 a

llo
ca

te
d 

to
 th

e 
so

ur
ce

Transmit power allocation with AF protocol

M=1, Without Direct Link

M=2, Without Direct Link

M=3, Without Direct Link

M=1, With Direct Link

M=2, With Direct Link

M=3, With Direct Link

Figure 5.10 The fraction of the total power allocated to the source with M -relay AF pro-
tocol. Both the cases without and with a direct link between the source and the destination
are considered.

exists a direct link between the source and the destination. In this case, irrespective of

the value of α, the source has to expend a non-negligible amount of transmit power in

order to reach the destination via the direct link. As α → ∞, the existence of a direct

link leads to Ps → 1/(M + 1) (i.e., equal power allocation is asymptotically optimum as

α → ∞), whereas without the direct link we have Ps → 0 (which is to be interpreted as

the negligible transmit power required by the source to reach the relays).

Next, we present the optimal transmit power allocation for the DF and DSTC proto-

cols for a symmetric network topology. With M = 2 relays, the fraction of the power

utilized by the source is plotted in Fig. 5.11 with M = 2 relay nodes, without and with a

direct link. Similar to the case of the AF protocol, existence of a direct link requires the

source to draw significantly more power than without a direct link. For example, when

α = 10 dB, the source power with a direct link is twice the power without a direct link, and

is approximately three times the power without a direct link when α = 17 dB. The results

of Fig. 5.11 are also applicable for a DSTC protocol without a direct link. However, with

a direct link, the power allocation for a DSTC protocol is dependent on the transmission
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Decode−and−Forward protocol with M=2 relay nodes

With direct link
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Figure 5.11 Fraction of the total power expended by the source as a function of α =
Ω2/Ω3. A DF protocol is assumed with a direct link from the source to the destination
with M = 2 relay nodes in a symmetric relay network (i.e., α1 = α2 = α = Ω2/Ω3).
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Figure 5.12 Fraction of the total power expended by the source as a function of α. A
DSTC protocol is assumed with a direct link from the source to the destination with
M = 2 relay nodes in a symmetric relay network (i.e., α1 = α2 = α = Ω2/Ω3).
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Figure 5.13 Outage probability of DSTC protocol with M = 2 relay nodes and optimum
transmission power allocation. A symmetric relay placement is assumed with α1 = α2 =
α = Ω2/Ω3 and a direct link between the source and the destination. The outage curves
are parameterized by the transmission rate R, in bits/sec/Hz, and the SNR PT/σ

2
N .

rate. Fig. 5.12 shows this dependency with the transmission rate R ∈ {1/4, 1/2, 1, 2}

bits/sec/Hz, and with two relays. From Fig. 5.12, we notice that more power should be

invested in the source transmissions for increasing data rates.

Outage performance of the DSTC protocol with two relays is presented, as a function

of α, for a symmetric network in Figs. 5.13 and 5.14 for scenarios with and without a di-

rect link, respectively. The outage curves are parameterized by the rate R ∈ {1/4, 1/2, 1}

and the average SNR, PT/σ
2
N ∈ {15, 20} dB. Without loss of generality, we set Ωj

2 = 1

for j = 1, 2, and let Ω1 = 1 with a direct link. In Figs. 5.13 and 5.14, a large value

of α implies that the relay nodes are far away from the destination, and their signals are

received at the destination with severe attenuation. This leads to a degradation in the out-

age performance, and is more pronounced at low SNR and when there is no direct link

between the source and the destination (i.e., no signal contribution from the source to

the destination). Upon comparing Fig. 5.14 with Fig. 5.13 in terms of attempted trans-

mission rate, we observe that an increase in the rate can significantly degrade the outage

performance when there is no direct link.
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Figure 5.14 Outage probability of DSTC protocol with M = 2 relay nodes and optimum
transmission power allocation. A symmetric relay placement is assumed with α1 = α2 =
α = Ω2/Ω3 without a direct link between the source and the destination. The outage
curves are parameterized by the transmission rate R, in bits/sec/Hz, and the SNR PT/σ

2
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Figure 5.15 Asymptotic coding gain (ACG) improvement with the AF protocol with op-
timum power allocation. Both the cases without and with a direct link between the source
and the destination are considered.
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Figure 5.16 Comparison of coding gain improvements (CGI) for both AF and DF pro-
tocols with optimal power allocation. A single relay node is considered. The coding
gain gap between AF and DF protocols is also shown. As seen in this figure, this gap is
reduced by the use of optimal power allocation.

The CGR improvement of the AF protocol with optimal power allocation is plotted

as a function of α in Fig. 5.15 for both the cases without and with a direct link between

the source and the destination. The following conclusions can be drawn from Fig. 5.15:

i) In the absence of a direct link, the optimal power allocation provides more coding gain

than the equal power allocation for all values of α, except when α = M . When α = M ,

from (5.46), we have Ps = Pr = PT/(M + 1), and the resulting ACG over equal power

allocation is zero. ii) When a direct link exists, the CGR improvement is significant for

smaller values of α (i.e., when the relay is farther away from the source than from the

destination); on the other hand, as α →∞, we have Ps = Pr = PT/(M + 1), leading to

no further improvement in CGR. In this regime (i.e., for large values of α) the case without

a direct link provides more coding gain than the case with a direct link. iii) Interestingly,

without a direct link, a large number of relays is beneficial for smaller values of α, in

terms of the CGR benefits, whereas a single relay is good enough for large α.

Fig. 5.16 presents a comparative study of the CGR improvements of the AF and DF

protocols with a direct link when a single relay is employed. The ACG of AF over DF,
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without and with optimal allocation, and the individual CGRs of AF and DF protocols

with optimal power allocation over equal power allocation, are considered. Fig. 5.16

shows that the mean channel gain-based optimal power allocation is more beneficial to

the DF protocol than to the AF protocol. We also notice from Fig. 5.16 that, for −20 ≤

α (dB) ≤ 0, the coding gain gap between the AF and DF protocols is reduced by as much

as 0.4 dB with optimal power allocation.

5.7 Conclusions

We have presented the optimum transmit power allocation for wireless relaying proto-

cols with mean channel gain information. The results were established, at high SNR, for

AF, DF and DSTC protocols operating over a Rayleigh fading network. At high SNR, the

optimal power allocation was shown to depend not only on the ratio of mean power gains,

but also on whether or not a direct link between the source and the destination exists. Our

results showed that, in addition to the improvements in the outage probability, optimal

power allocation yields impressive coding gains over equal power allocation. Further-

more, our analysis revealed that the coding gain gap between the AF and DF protocols

can be reduced by the optimal power allocation.



C H A P T E R 6

Contributions and Future Directions

6.1 Contributions

This dissertation presented a cross-layer study of wideband CDMA systems, and co-

operative diversity aspects of wireless ad-hoc networks. The following are the main con-

tributions of this thesis.

In Chapter 2, we looked at the three way tradeoff among source coding, channel cod-

ing and spreading for a wideband DS-CDMA system. Our results in Chapter 2 demon-

strated that the optimal three-tuple that minimizes the distortion upper bound is quite

close to the one based on the lower bound on the average distortion. For small values

of spreading factor, our simulations showed that the system performance is hurt by the

self-interference of the user of interest, thus cautioning against aggressive channel cod-

ing. The optimal bandwidth allocation, in general, is shown to depend on the system and

the channel conditions, such as the total number of active users, the average JSR power

ratio, and the number of resolved multipath components together with their power delay

profile.

To improve the distortion performance on channels with severe NBI, in Chapter 3

we assessed the benefits of using an MC-CDMA system in place of the conventional

DS-CDMA system. Our results in Chapter 3 reported an improvement in not only the

average distortion performance, but also the three-way tradeoff performance. That is,

under various channel conditions, for the same bandwidth constraint with approximately

117
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identical receiver complexities for both DS- and MC-CDMA systems (the DS-CDMA

system does not use a notch filter for NBI suppression), our results showed that an MC-

CDMA system supports a higher information rate (i.e., a larger source coding rate) than

a DS-CDMA system.

Regarding relay-assisted user cooperation diversity, Chapter 4 introduced a parallel

relay channel model, and, for both OOK and BFSK modulations, derived optimum non-

coherent AF detectors when the receiving nodes have no instantaneous knowledge of CSI.

Our upper and lower bounds on the average probability of error showed that the diversity

order of a noncoherent AF receiver is twice that of a noncoherent DF receiver. Subopti-

mum receivers were also proposed along with their performance evaluations.

By constraining the average sum power of the source and all the relay nodes, Chapter 5

considered the problem of optimal transmit power allocation when only the knowledge of

average second moments of the channel fading is available at the transmitting nodes. We

quantified the improvements in outage probability performance as well as the asymptotic

cooperation gain of AF, DF, and DSTC protocols with optimal power allocation.

6.2 Future Directions

We now briefly outline some of the possible extensions to the work presented in this

dissertation. For clarity, these extensions are organized chapter-wise.

6.2.1 Chapter 2

In Chapter 2, for tractability reasons, we restricted our analysis to the simplest case

of a Gaussian source. It is highly desirable to investigate the tradeoff performance in the

presence of a practical source coder, such as an image or a video codec. For example, a

progressive image coding scheme such as SPIHT (set-partitioning in hierarchical trees )

coding [81] may be a good starting point in this direction. Our analysis is also restricted
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in a sense that only a bandwidth constraint is considered. In an energy constrained com-

munication scenario, a system designer is usually faced with both energy and bandwidth

constraints. Therefore, it is also of interest to revisit the tradeoff problem with both band-

width and transceiver energy (i.e., the combined energy required for both sending and

receiving the information) constraints.

6.2.2 Chapter 3

We have showed in Chapter 3 that the tradeoff performance in the presence of NBI

can be significantly improved by replacing the DS-CDMA system with an MC-CDMA

system. However, the performance improvements rely on the assumption that the receiver

perfectly knows both the location as well as the power of the jammer. When the jammer

is rapidly varying, it may be difficult in practice to identify the location of the jammer,

let alone know its power. An evaluation of the degradation in the end-to-end distortion

performance due to lack of knowledge of the jammer location and power is very important

to assess the true benefits of employing an MC-CDMA system.

In both Chapters 2 and 3, we assumed that the receiver has access to perfect CSI.

In practice, power and bandwidth have to be invested to estimate the CSI. Effects of

imperfect CSI on the tradeoff among source coding, channel coding and spreading is a

promising research area.

6.2.3 Chapter 4

In Chapter 4, we employed the Bhattacharyya upper bound to analyze the asymptotic

diversity order of noncoherent OOK and BFSK receivers. Unfortunately, at practical SNR

values, the Bhattacharyya bound is not very tight. An immediate extension to the results

of Chapter 4 is to tighten the upper bounds. While only binary modulations are consid-

ered in Chapter 4, extensions of the receiver structures and error probability performances

to M -ary modulations, such as M -ary DPSK and orthogonal modulations, is an impor-
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tant research problem. Performance comparison between a coherent AF receiver with

imperfect CSI and a noncoherent AF receiver without CSI, as a function of the Doppler

spread, is needed to determine the conditions under which a noncoherent receiver is more

attractive than a coherent receiver on rapidly varying fading channels.

6.2.4 Chapter 5

In Chapter 5, we assumed equal bandwidth for the source and theM relays. However,

it may be possible to improve the outage performance by jointly optimizing the trans-

mission power and the channel time/bandwidth resources [65]. Notice that the presented

power allocation approach requires a centralized controller to optimally allocate the trans-

mission powers. In practical systems, due to complexity/implementation concerns, it may

be highly useful to have a distributed alternative to the approach presented here. In ad-

dition to the Lagrange formulation, ideas such as primal- or dual-decomposition tech-

niques [82] may be starting points to perform power allocation in a distributed manner.

Finally, we assume that the mean channel gains are perfectly known, whereas, in practice,

they have to be estimated from the received signal [83]. Assessing the effects of noisy

estimates of mean channel gains on the outage performance is very important to gain a

better understanding of the power allocation policies.



A P P E N D I X A

A Lower Bound on the Pairwise Error

Probability

We start with the conditional PEP of (2.19). With the assumption of x and y differing

in the first d positions, using (2.21), the conditional PEP of (2.19) can be conveniently

written as

P2(d|β) = Q


√√√√2Γ

d∑
n=1

β2
n

 =
1

π

π
2∫

θ=0

dθ exp

(
−Γ

∑L−1
l=0

∑d
n=1 α

2
l [n]

sin2 θ

)
, (A.1)

where Q(x) = 1/
√

2π
∞∫
x

exp(−u2/2)du and the second step of (A.1) is due to the al-

ternate representation of Q(x) as Q(x) = 1/π
π/2∫
0

exp(−x2/(2 sin2 θ))dθ, as presented in

[84]. Upon averaging (A.1) over the pdf of {α}, as given in (2.3), we obtain

P 2(d) =
1

π

π
2∫

θ=0

dθ
L−1∏
l=0

(
sin2 θ

sin2 θ + ΓΩl

ml

)mld

. (A.2)

A lower bound on P 2(d) can be obtained by using the inequality sin2 θ + ΓΩl/ml ≤

1 + ΓΩl/ml ≤ 1 + 2ΓΩl ≤ 1 + 2Γ maxl Ωl. By defining ω = 2 maxl Ωl, we now lower

bound (A.2) as

P 2(d) ≥ (1 + Γω)−d
PL−1

l=0 ml
1

π

π
2∫

θ=0

dθ
[
sin2 θ

]dPL−1
l=0 ml
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, D(m, d)(1 + Γω)−md, (A.3)

where, as previously defined in Chap. 2, m =
∑L−1

l=0 ml, and

D(m, d) =
1

π

π
2∫

θ=0

dθ
[
sin2 θ

]dPL−1
l=0 ml

=
1

2π
β

(
md+

1

2
,
1

2

)
, (A.4)

where β(p, q) = 2
π/2∫
0

dθ sin2p−1 θ cos2q−1 θ is the standard beta integral [36].



A P P E N D I X B

Convexity of Dlower(rs)

Upon taking the derivative of (2.31), we obtain

d2

dr2
s

Dlower(rs) = 4ε(ln 2)22−2rs + 2t(dfree)D(m, dfree)ε(ln 2)×(
−2−2rsmdfreeω(1 + Γω)−mdfree−1 dΓ

drs

)
− 4εt(dfree)D(m, dfree)(1 + Γω)−mdfree(ln 2)22−2rs

+ 2εt(dfree)D(m, dfree)(ln 2)2−2rs ×(
−mdfreeω(1 + Γω)−mdfree−1 dΓ

drs

)
+ t(dfree)D(m, dfree)(1− ε2−2rs)×(

mdfree(mdfree + 1)(1 + Γω)−mdfree−2ω2

(
dΓ

drs

)2

−

mdfreeω(1 + Γω)−mdfree−1d
2Γ

dr2
s

)
, (B.1)

where dΓ/drs is given in (2.32), whose derivative, d2Γ/dr2
s , can be calculated as

d2Γ

dr2
s

= − dΓ

drs

(
∆γb

C0

1 + rs
∆γb

C0

)
+

Γ∆γb

C0

(1 + rs
∆γb

C0
)2

∆γb

C0

= 2Γ

(
∆γb

C0

1 + rs
∆γb

C0

)2

, (B.2)

which is always positive. Upon rearranging (B.1), by keeping in mind that

t(dfree)D(m, dfree)(1 + Γω)−mdfree < 1,
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we arrive at

d2

dr2
s

Dlower(rs) = −4ε(ln 2)2−2rst(dfree)D(m, dfree)×

mdfreeω(1 + Γω)−mdfree−1 dΓ

drs

+

4ε(ln 2)22−2rs
(
1− t(dfree)D(m, dfree)(1 + Γω)−mdfree

)
+

(1− ε2−2rs)(1 + Γω)−mdfree−2t(dfree)D(m, dfree)mdfreeω ×(
∆γb

C0

1 + rs
∆γb

C0

)2 (
ω(mdfree + 1)Γ2 − 2(1 + Γω)Γ

)
. (B.3)

Note that the first two terms of (B.3) are always positive. Now consider the expression

ω(mdfree + 1)Γ2 − 2(1 + Γω)Γ in the third term of (B.3), which can be simplified as

ω(mdfree + 1)Γ2 − 2(1 + Γω)Γ = (Γω(mdfree − 1)− 2) Γ

=
(
2Γ max

l
{Ωl}(mdfree − 1)− 2

)
Γ

= 2
(
Γ max

l
{Ωl}(mdfree − 1)− 1

)
Γ. (B.4)

Since mdfree > 1 and Γ maxl{Ωl} = Γmax is the maximum average SINR ratio which

we have assumed to be greater than unity (i.e., 0 dB), (B.4) is always positive. Thus, the

third term of (B.3) is also positive, which proves that Dlower(rs) is convex.



A P P E N D I X C

Derivation of Eqn. (4.30)

We need to find the distribution of U =
∑N

j=1 Uj , N ≥ 1, where the Ujs are indepen-

dent exponential rvs. The mean of Uj is given by U j . We consider the case where all U j

are distinct. The Laplace transform of the pdf of Uj , LUj
(s) = E[exp(−sUj)], is given by

1/(1 + sU j), and the Laplace transform of the pdf of U , LU(s) = E[exp(−sU)], is given

by the product of the individual Laplace transforms,
∏N

j=1 1/(1 + sU j). Using partial

fractions techniques, we can write LU(s) =
∑N

n=1
ζj

(1+sUj)
, where ζj =

∏N
i=1,i6=j

Uj

Uj−U i
.

Upon inversion, we have the following expression for the pdf of U :

fU

(
x;U1, . . . , UN

)
=

N∑
j=1

ζj

U j

exp

(
− x

U j

)
x ≥ 0. (C.1)

Integrating (C.1) from 0 to y, the cumulative distribution function of U becomes

FU

(
y;U1, . . . , UN

)
=

N∑
j=1

ζj

(
1− exp

(
− y

U j

))
y ≥ 0. (C.2)

When the signal is not present, from (4.2) and (4.3), we note that ZDS = |rDS|2/σ2
N and

Zj
DR = |rj

DR|2/σ2
N , j = 1, . . . ,M , are independent, exponentially distributed r.vs with

mean values 1 and 1 +
γj
3

1+γj
2

, j = 1, . . . ,M , respectively. That is, c1ZDS and cj2Z
j
DR are

exponentially distributed with mean values X0 = 2γ1

1+2γ1
and Y

j

0 =
2γj

2γj
3

(1+γj
2+γj

3)(1+λ(γj
2)γj

3)
,
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respectively. The probability of error is given by

Prob

(
c1ZDS +

M∑
j=1

cj2Z
j
DR > Th

)
,

which can be evaluated by applying (C.2) as

1− FU

(
Th;X0, Y

1

0, . . . , Y
M

0

)
. (C.3)

In the presence of signal, again from (4.2) and (4.3), notice that ZDS and Zj
DR are inde-

pendent exponentially distributed rvs with mean values 1 + 2γ1 and 1 +
γj
3

1+γj
2

+
2γj

2γj
3

1+γj
2

=

1 + λ(γj
2)γ

j
3, respectively. That is, c1ZDS and cj2Z

j
DR are exponentially distributed with

mean values X1 = 2γ1 and Y
j

1 =
2γj

2γj
3

(1+γj
2+γj

3)
, respectively. The probability of error is

given by

Prob

(
c1ZDS +

M∑
j=1

cj2Z
j
DR < Th

)
,

and is simplified by using (C.2) as

FU

(
Th;X1, Y

1

1, . . . , Y
M

1

)
. (C.4)

Finally, upon averaging (C.3) and (C.4), we arrive at (4.30).
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Derivation of Eqn. (4.52)

In this appendix, we derive an expression for the probability that U =
∑N

j=1 Uj is

less than V =
∑N

j=1 Vj , where Uj, Vj , j = 1, . . . , N , are independent exponentially

distributed r.vs with Uj having mean U j and Vj having mean V j . For simplicity, We

assume that all U j and V j are distinct. The case with U j and V j having non-distinct

values can be treated in a similar manner. Conditioned on V , we have already obtained

an expression for FU |V (·) in (C.2). Upon averaging (C.2) over the pdf of V , as given in

(C.1), we obtain

Prob (U < V ) =
N∑

i=1

N∑
j=1

κiζj

V i

∞∫
x=0

{
e
− x

V i − e
−

x(V i+Uj)

V iUj

}
dx

=
N∑

i=1

N∑
j=1

κiζj

(
V i

V i + U j

)
, (D.1)

where κj =
∏N

i=1,i6=j
V j

V j−V i
.
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Performance of Suboptimum OOK Receiver of

Eqn. (4.71)

In this appendix, we present an analysis for the performance of the suboptimum OOK

receiver of (4.26) with M relay nodes. To start with, when the signal present, we denote

(c1ZDS +
∑M

j=1 c
j
2Z

j
DR)/Th by W1, whereas the same expression is denoted by W0 when

the signal is absent. With this, the average BER of OOK receiver of (4.26) is given by

P e,On-Off,Subopt =
1

2
Prob(W1 < 1|b = 1) +

1

2
Prob(W0 > 1|b = 0)

=
1

4πj

p1+j∞∫
p1−j∞

dsLW1(s)
es − 1

s
− 1

4πj

p2+j∞∫
p2−j∞

dsLW0(s)
es

s
, (E.1)

where LW0(s) and LW1(s) are the Laplace transforms of the pdf of W0 and W1, respec-

tively, p1 > 0, p2 < 0, and the second equality in (E.1) is due to the fact that

Prob(w0 < W < w1) =

w1∫
w0

fW(w)dw =

w1∫
w0

dw

p+j∞∫
p−j∞

LW(s)ews ds

2πj

=

p+j∞∫
p−j∞

dsLW(s)
esw1 − esw0

2πjs
. (E.2)

In (E.2), we have used the relationship fW(w) = 1/(2πj)
p+j∞∫
p−j∞

LW(s)eswds between the

pdf of W and its Laplace transform LW(s). Here, p is chosen to ensure the convergence
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of the integral.

Note that, when the signal is present, we see that ZDS is exponentially distributed

with mean 1 + 2γ1, whereas Zj
DR, conditioned on γj

3, is exponentially distributed with

mean 1 + λ(γj
2)γ

j
3. Since ZDS and Zj

DR, j = 1, . . . ,M , are independent, the conditional

Laplace transform of W1, conditioned on {γj
3}M

j=1, is given by

LW|{γj
3}M

j=1
(s) =

1

1 + s(1 + 2γ1)c1/Th

M∏
j=1

1

1 + s(1 + λ(γj
2)γ

j
3)c

j
2/Th

. (E.3)

Upon averaging over {γj
3}M

j=1, the Laplace transform LW1(s) is given by

LW1(s) =
Th

Th + s(1 + 2γ1)c1

M∏
j=1

∞∫
x=0

Th exp(−x)dx
Th + s(1 + λ(γj

2)γ
j
3x)c

j
2

. (E.4)

Using the result [36]
∞∫

x=0

exp(−x)
x+ c

dx = exp(c)E1(c), (E.5)

where E1(x) =
∞∫
x

e−udu/u is the exponential integral defined in [36], we can further

simplify (E.4) as

LW1(s) =
Th

c1(1 + 2γ1)
× 1

s+ Th/(c1(1 + 2γ2))
×

M∏
j=1

Th

sλ(γj
2)γ

j
3c

j
2

exp

(
Th + scj2
sλ(γj

2)γ
j
3c

j
2

)
E1

(
Th + scj2
sλ(γj

2)γ
j
3c

j
2

)
. (E.6)

When b = 0, we note that ZDS is exponentially distributed with mean 1, and Zj
DR, con-

ditioned on γj
3, is exponentially distributed with mean 1 + µ(γj

2)γ
j
3. Upon following the

steps of (E.3)-(E.6), LW0(s) can be shown to be given by

LW0(s) =
1

1 + sc1/Th

×
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M∏
j=1

Th

sµ(γj
2)γ

j
3c

j
2

exp

(
Th + scj2
sµ(γj

2)γ
j
3c

j
2

)
E1

(
Th + scj2
sµ(γj

2)γ
j
3c

j
2

)
. (E.7)

Upon substituting (E.6) and (E.7) in (E.1), we obtain an expression for the average BER

for the suboptimum OOK receiver which can be evaluated numerically.
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Performance of Suboptimum BFSK Receiver of

Eqn. (4.72)

In this appendix, we present an analysis on the performance of the suboptimum BFSK

receiver of (4.72) with M relay nodes. Note that, from (4.72), when frequency f1 is

assumed to be transmitted, the r.vs ZDS,1 and ZDS,2 are independent, exponentially dis-

tributed with respective mean values 1 + γ1 and 1. For j = 1, . . . ,M , the r.vs Zj
DR,1 and

Zj
DR,2, conditioned on γj

3, are independent and exponentially distributed with respective

mean values 1 + γj
3 and 1 + µ(γj

2)γ
j
3. Let us define the constants a0 = γ1/(1 + γ1) and

aj = γj
2γ

j
3/((1 + γj

3)(1 + γj
2 + γj

3)), j = 1, . . . ,M . With this, (4.72) can be written as

LLRSubopt(b) = a0 [ZDS,1 − ZDS,2] +
M∑

j=1

aj

[
Zj

DR,1 − Zj
DR,2

]
. (F.1)

The probability of error is then given by

P e,BFSK = Prob (LLRSubopt(b) < 0) =
1

2πj

p+j∞∫
p−j∞

LLLRSubopt(b)(s)
ds

s
, (F.2)

where, in (F.2), LLLRSubopt(b)(s) is the Laplace transform of the pdf of LLRSubopt(b), and p >

0. All we now need is a closed-form expression for LLLRSubopt(b)(s), which can be found as

follows: Due to the independence of the r.v pairs (ZDS,1, ZDS,2), (Z1
DR,1, Z

1
DR,2), . . . , (ZM

DR,1, Z
M
DR,2),
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we can write

LLLRSubopt(b)(s) = E [exp (−sa0 [ZDS,1 − ZDS,2])]×
M∏

j=1

E
[
exp

(
−saj

[
Zj

DR,1 − Zj
DR,2

])]
= E [exp (−sa0ZDS,1)]× E [exp (sa0ZDS,2)]×

M∏
j=1

Eγj
3

{
E
[
exp

(
−saj

[
Zj

DR,1 − Zj
DR,2

]) ∣∣∣γj
3

]}
=

1

1 + sγ1

× 1

1− γ1

1+γ1
s
×

M∏
j=1

Eγj
3

{
E
[
exp

(
−sajZ

j
DR,1

) ∣∣∣γj
3

]
E
[
exp

(
sajZ

j
DR,2

) ∣∣∣γj
3

]}
=

1 + γ1

1 + sγ1

× 1

1 + γ1(1− s)
×

M∏
j=1

Eγj
3

{
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j
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. (F.3)

Each integral in the product of (F.3) can be simplified as follows:

∞∫
x=0

exp(−x)dx
(1 + saj(1 + γj

3x))(1− saj(1 + µ(γj
2)γ

j
3x))

=
1
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×
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3
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2)γj

3
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x)

=
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×
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x=0

exp(−x)dx
{

K1(j)

1 + β1(j)x
+

K2(j)

1 + β2(j)x

}
, (F.4)
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where, with the help of partial fractions,

β1(j) =
sajγ

j
3

1 + saj

(F.5)

β2(j) =
sajµ(γj

2)γ
j
3

saj − 1
(F.6)

K1(j) =
β1(j)

β1(j)− β2(j)
(F.7)

and K2(j) =
β2(j)

β2(j)− β1(j)
. (F.8)

With the help of (E.5), the integral in (F.4) can be written in closed-form as

∞∫
x=0

exp(−x)dx
(1 + saj(1 + γj

3x))(1− saj(1 + µ(γj
2)γ

j
3x)

=
1

(1− s2a2
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×
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1
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)
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β2(j)
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(
1
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E1

(
1

β2(j)

)}
. (F.9)

Upon using (F.9), (F.4) and (F.3) in (F.2), a single integral-based expression can be ob-

tained for the average BER of the suboptimum BFSK receiver.

We now examine the behavior of (F.2) at high SNR. To be consistent with the ap-

proaches taken in Sections 4.3 and 4.4, we use γ1 = t1γ, and, for j = 1, . . . ,M , γj
2 = tj2γ,

and γj
3 = tj3, and let γ → ∞. We first notice that the coefficients aj , j = 0, 1, . . . ,M , in

(F.1) are not functions of γ. To analyze (F.2) as γ →∞, we need to capture the behavior

of LLLRSubopt(b)(s) as γ →∞. From (F.3), LLLRSubopt(b)(s) can be approximated as

LLLRSubopt(b)(s) =

1
γ

+ t1
1
γ

+ st1
× 1

γ
× 1

1
γ

+ t1(1− s)
×

M∏
j=1

1
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×
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x=0

exp(−x)dx

( 1
γ

+ saj(
1
γ

+ tj3x))× (1− saj(1 +
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1+γtj2
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≈
(

1
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s
× 1
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4
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. (F.10)

Note that the term, Λ(s), in square brackets of (F.10) is not a function of γ. As a result,

the average BER of (F.2), as γ →∞, can be expressed as

P e,BFSK ≈
(

1

γ

)M+1

×

 1

2πj

p+j∞∫
p−j∞

Λ(s)
ds

s

 . (F.11)

Eqn. (F.11) shows that the proposed suboptimum BFSK detector achieves the full diver-

sity order of M + 1 as γ →∞.



A P P E N D I X G

Asymptotic CDF Approximations

In this appendix, we develop an approximation for the cdf of a r.v

Z =
N∑

i=1

X2
i , (G.1)

where the Xis belong to a population of independent Rician or Nakagami r.vs with arbi-

trary parameters, when the second moments of Xis are large.

G.1 All Xs belong to the Rician Family

Let Xi be a Rician r.v with Rice factor Ki and second moment E[X2
i ] = Ωi. That is,

the pdf of Xi is [57]

fXi
(x) =

2x(1 +Ki)

Ωi

e
−Ki−

(1+Ki)

Ωi
x2

I0

2x

√
Ki(1 +Ki)

Ωi

 x ≥ 0, (G.2)

where I0(·) is the zero-order modified Bessel function of first kind [85]. The Laplace

transform of the pdf of X2
i is [57]

LX2
i
(s) = E[e−sX2

i ] =

exp

(
−

sKiΩi
1+Ki

1+
Ωis

1+Ki

)
1 + Ωis

1+Ki

. (G.3)
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The Laplace transform of the pdf of Z in (G.1) is simply

LZ(s) =
N∏

i=1

LX2
i
(s). (G.4)

For large Ωi, we can approximate (G.3) as

LX2
i
(s) ≈

(
1 +Ki

Ωi

)
e−Ki

s
. (G.5)

Then, using (G.5), an approximation to (G.4) is

LZ(s) ≈
N∏

i=1

(
1 +Ki

Ωi

)
e−Ki

s

=
e−
PN

i=1 Ki

sN

N∏
i=1

(
1 +Ki

Ωi

)
. (G.6)

The inverse Laplace transform of (G.6), using [85], gives us an approximation to the pdf

of Z as

fZ(z) ≈

[
N∏

i=1

(
1 +Ki

Ωi

)]
e−
PN

i=1 Ki

Γ(N)
zN−1 z ≥ 0. (G.7)

Therefore, the probability that Z is less than α is

Prob (Z < α) ≈

[
N∏

i=1

(
1 +Ki

Ωi

)]
e−
PN

i=1 Ki

Γ(N + 1)
αN . (G.8)

When the Xis are Rayleigh distributed, we have Ki = 0, ∀ i = 1, . . . , N . Then (G.8)

simplifies to

Prob (Z < α) ≈ 1∏N
i=1 Ωi

× αN

Γ(N + 1)
. (G.9)
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G.2 All Xs belong to the Nakagami Family

WhenXi is a Nakagami r.v with Nakagami parametermi and second momentE[X2
i ] =

Ωi, then the pdf of Xi is [57]

fXi
(x) =

2mmi
i

Ωmi
i Γ(mi)

exp

(
−mix

2

Ωi

)
x2mi−1 x ≥ 0, (G.10)

The Laplace transform of the pdf of X2
i is [86]

LX2
i
(s) =

(
mi

mi + Ωis

)mi

. (G.11)

The Laplace transform of the pdf of Z in (G.1) is then

LZ(s) =
N∏

i=1

(
mi

mi + Ωis

)mi

. (G.12)

For large Ωi, we can approximate (G.11) as

LX2
i
(s) ≈

(
mi

Ωi

)mi 1

smi
. (G.13)

Then, using (G.13), an approximation to (G.12) is

LZ(s) ≈

{
N∏

i=1

(
mi

Ωi

)mi

}
× 1

s
PN

i=1 mi

. (G.14)

The inverse Laplace transform of (G.14), using [85], is

fZ(z) ≈

{
N∏

i=1

(
mi

Ωi

)mi

}
× z(

PN
i=1 mi)−1

Γ
(∑N

i=1mi

) z ≥ 0. (G.15)
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Therefore, the probability that Z is less than α is

Prob (Z < α) ≈

{
N∏

i=1

(
mi

Ωi

)mi

}
× α

PN
i=1 mi

Γ
(
1 +

∑N
i=1mi

) . (G.16)

With Rayleigh fading, we have mi = 1, ∀ i = 1, . . . , N , and (G.16) reduces to (G.9).

G.3 The General Case

Let us now assume that out of N Xis N1 of them come from the Rician distribution,

whereas the remaining N2 = N −N1 ones come from the Nakagami distribution. Then,

using (G.6) and (G.14), an approximation to the Laplace transform of Z is

LZ(s) ≈ e−
PN1

i=1 Ki

sN1+
PN2

j=1 mj

N1∏
i=1

(
1 +Ki

Ωi

) N2∏
j=1

(
mj

Ωj

)mj

. (G.17)

Upon inversion, the pdf of Z is

fZ(z) ≈ e−
PN1

i=1 KizN1−1+
PN2

j=1 mj

Γ
(
N1 +

∑N2

j=1mj
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. (G.18)

The cdf of Z is then

Prob (Z < α) ≈ e−
PN1

i=1 KiαN1+
PN2

j=1 mj

Γ
(
N1 + 1 +

∑N2

j=1mj

) N1∏
i=1

(
1 +Ki
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) N2∏
j=1

(
mj
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)mj

. (G.19)
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