
UCLA
Papers

Title
Autonomous Deployment and Repair of a Sensor Network Using an Unmanned Aerial Vehicle

Permalink
https://escholarship.org/uc/item/6xk216kv

Authors
P. Corke
S. Hrabar
R. Peterson
et al.

Publication Date
2004
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6xk216kv
https://escholarship.org/uc/item/6xk216kv#author
https://escholarship.org
http://www.cdlib.org/


Autonomous Deployment and Repair of a Sensor
Network using an Unmanned Aerial Vehicle

P. Corke∗, S. Hrabar‡ R. Peterson†, D. Rus†§, S. Saripalli‡ and G. Sukhatme‡,
∗ CSIRO Manufacturing & Infrastructure Technology, Queensland, Australia

peter.corke@csiro.au
† Department of Computer Science, Dartmouth College, Hanover, New Hampshire, USA

§ Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
{rapjr,rus}@cs.dartmouth.edu

‡ Center for Robotics and Embedded Systems, University of Southern California, Los Angeles, California, USA
{shrabar,srik,gaurav}@robotics.usc.edu

Abstract— We describe a sensor network deployment method
using autonomous flying robots. Such networks are suitable
for tasks such as large-scale environmental monitoring or for
command and control in emergency situations. We describe in
detail the algorithms used for deployment and for measuring
network connectivity and provide experimental data we collected
from field trials. A particular focus is on determining gaps in
connectivity of the deployed network and generating a plan for a
second, repair, pass to complete the connectivity. This project is
the result of a collaboration between three robotics labs (CSIRO,
USC, and Dartmouth.)

I. INTRODUCTION

We investigate the role of mobility in sensor networks.
Mobility can be used to deploy sensor networks, to maintain
and repair connectivity, and to enable applications such as
monitoring and surveillance. We examine sensor networks
that consist of static and dynamic nodes. The static sensor
nodes are “Motes” and the mobile nodes are autonomous
helicopters. Integrating static nodes with mobile robots en-
hances the capabilities of both types of devices and enables
new applications. Using networking, the sensors can provide
the Unmanned Aerial Vehicle (UAV) with information which
is out of the range of the robot. Using mobility, the robot
can deploy the network, localize the nodes in the network,
maintain connectivity by introducing new nodes as needed,
and and act as “data mules” to relay information between
disconnected wireless clouds.

We combine ad-hoc networking, sensing, and control to
deploy and use a sensor network. We use an autonomous heli-
copter to deploy a sensor network with a controlled topology,
for example a star, grid, or random. The helicopter deploys
the sensors one at a time at designated locations. Once on the
ground, the sensors establish an ad-hoc network and compute
their connectivity map in a localized and distributed way.

The helicopter is equipped with a sensor node so that it is
a mobile component of the sensor network and it can com-
municate to the ground. This system can handle on-demand
node deployment. The connectivity map is used to determine
ground locations that require additional nodes (for example to
repair connectivity or to increase bandwidth). The helicopter
responds by flying to that location and deploying a new

Fig. 1. AVATAR Autonomous Helicopter

node, which is incorporated into the existing network. This
approach to autonomous deployment of sensor networks will
allow the on-demand instrumentation of remote environments
that may be inaccessible by ground methods, and supporting
applications to navigation, monitoring, and search and rescue.

We have implemented the deployment algorithms on a
hardware platform that integrates hardware and software from
three labs: USC’s helicopter, Dartmouth’s sensor network,
and CSIRO’s interface between a helicopter and a sensor
network. The three groups conducted joint experiments which
demonstrate, for a desired network topology, (1) autonomous
sensor network deployment with a helicopter, (2) ground to
ground and ground to air connectivity measurements for the
resulting network and (3) uses the results to repair the network
connectivity when the deployed topology does not match the
desired topology.

II. RELATED WORK

Our work builds on important previous work in sensor
networks and robotics, and bridges the two communities by
integrating autonomous control of flying vehicles with multi-
hop message routing in ad-hoc networks.

Autonomous aerial vehicles have been an active area of
research for several years. Autonomous model helicopters

shrabar
To Appear in IEEE International Conference on Robotics and Automation (ICRA), New Orleans, USA, 2004



have been used as testbeds to investigate problems ranging
from control, navigation, path planning to object tracking
and following. Flying robot control is a very challenging
problem and our work here builds on successes with hovering
for two autonomous helicopters [1], [2]. Several other teams
are working on autonomous control of helicopters. A good
overview of the various types of vehicles and the algorithms
used for control of these vehicles can be found in [2] . Recent
work has included Autonomous Landing [3], [4] Aggressive
maneuvering of AFV’s [5] and pursuit-evasion games [6].

Research in sensor networks has been very active in the
recent past. An excellent general introduction on sensor net-
works can be found in [7]. An overview of hardware and
software requirements for sensor networks can be found in
[8] who describe the Berkeley Mica Motes. Algorithmic work
for positioning a sensor network where sensors have mobility
and can self-propel includes even dispersal of sensors from
a source point and redeployment for network rebuilding [9],
[10]. Other important contributions include [11]–[15].

In our previous work on networked robots we used flying
helicopters to localize a deployed sensor network [16], we
computed and represented paths in sensor networks that could
guide the motion of a mobile node such as a helicopter [16],
[17], and we used sensor network mobility to cover a given
area while maintaining connectivity [18].

III. DEPLOYMENT CONTROL

Our approach to deployment consists of three phases. In
the first phase, an initial network deployment is executed.
In the second phase, we measure the connection topology
of the deployed network and compare that to the desired
topology. If they match, the procedure is complete. Otherwise
the measured connectivity graph is used to compute new
deployment locations that will repair the desired topology. The
last two phases can be run at any point in time to detect
the potential failure of sensor nodes and ensure sustained
connectivity. The same approach can also be used to increase
the sensor density in an area.

A. Deployment Algorithm

Our goal is to develop control algorithms that allow a flying
robot to deploy a sensor network with a specified communi-
cation topology. Given a specified network topology, and a
deployment scale, we embed the topology in the plane and
extract desired node locations from the resulting embedding.
Network topology is represented as a graph whose edges
correspond to sensors. Edges connect sensors who are within
communication range of each other (with two-way commu-
nication between the nodes.) Embedding such a topology in
the plane reduces to computing actual GPSs coordinates for
the sensors to be deployed. The scale of the embedding is
determined by the inter-node communication range. We then
sort and convert the resulting points to waypoints in a way
that optimizes the robot’s required trajectory for covering the
points. We assume the robot can hover and deploy a node at

Fig. 2. Deployment Mechanism on the Helicopter

each point and later in the paper explain the mechanism used
to accomplish this.

Algorithm 1 Algorithm for controlling an autonomous heli-
copter to deploy a sensor network.

Input: desired network topology
Initialization: Embed topology in the plane at the desired
scale and extract waypoints.
Sort waypoints into buckets by their x coordinate.
for each x bucket do

Sort waypoints by y.
while more sensors in the deployment mechanism do

go to next way-point
hover
deploy sensor

B. Connectivity Measurement Algorithm

A Mote sensor that has been specially modified to add phys-
ical user interface controls (a potentiometer and switch) is used
to control and configure the sensor side of the connectivity
tests as shown in Algorithm 2. The controls are set for the
number of ping iterations and whether the sensors should reply
to pings or not and then a multi-hop message is broadcast to
the sensors to start an experiment. A reset message can also
be sent to reset the sensor to an initial state. Data collected
during the experiment is later read from the sensors via a
laptop basestation that sends a download command and reads
the data via RF messages.

C. Connectivity Repair Algorithm

Our general repair algorithm has the following structure.
The connectivity algorithm results in a connectivity graph.
We can compare this graph against the desired topology
embedding using graph isomorphism algorithms [19], [20]. If
the two graphs are isomorphic we are done. If they are not



Algorithm 2 Algorithm for controlling the mote side of a
connectivity experiment.

Wait for experiment configuration/start message
Initialization: Set configuration mode = air-to-ground,
ground-to-ground, or ground-to-air. Set count = number of
ping iterations.
Send a multi-hop forwarding of start message to other
motes.

Thread 1
for i=1 to count do

if mode = ground-to-ground OR mode = ground-to-air
then

broadcast a ping message.
Sleep a random interval

Thread 2
while Listen for messages do

if message is a ping then
if mode = air-to-ground OR mode = ground-to-ground
then

reply to ping.
else if Message is a ping reply. then

tabulate reply.

Termination: broadcast counts of replies per mote ID in
response to download message.

their difference can be computed using subgraph embeddings.
This step results in a list of missing graph nodes and their
coordinates, which can be represented as a set of waypoints.
These are given as input to Algorithm 1.

In our implementation we have used a simplified version
of this procedure. We wish to deploy sensor networks whose
connectivity graph is one connected component. Therefore the
task of the connectivity repair algorithm is to determine the
number of connected components in the deployed network.
Algorithm 3 shows the protocol for determining the number
of connected components. The sensors broadcast their ids
and forward the ids they hear. Each sensor keeps the largest
value it hears. The number of distinct values is the number of
connected components in the graph. The helicopter can collect
this information and determine how many components there
are. If the network has at least two connected components
we compute the separation region and determine how to
cover it with waypoints in a way that connects the two
components. In the simplest algorithm we compute the line
segment between the two closest nodes in the disconnected
components and determine waypoints along that line using
the sensor communication range. A different approach is to
compute the region of separation between the two connected
components and randomly pick waypoints in that region.

Algorithm 3 Distributed algorithm for identifying the con-
nected components in a sensor network. All the nodes in one
connected component will have the same component value as
a result of this protocol.

for each node in the sensor network do
component = id

for each node in the sensor network do
broadcast node id.
while listen for newid broadcasts do

if received id > component then
component = newid

broadcast newid

Helicopter collects all component values
Helicopter determines unique component values as the
number of connected components.

IV. EXPERIMENTS

We have implemented the algorithms for deployment and
network connectivity using a sensor network with 50 nodes
and an autonomous flying robot.

Our experiments targetted the three main control tasks: (1)
deployment; (2) connectivity measurements; and (3) repair.
We executed each of these tasks in manual mode (where the
helicopter was controled by a pilot) and in autonomous mode
(where the helicopter operated fully autonomously once in the
air.) In this section we describe our testbed and present some
of the data collected from these different sets of experiments.

A. The Helicopter

Our experimental testbed, the AVATAR (Autonomous Ve-
hicle for Aerial Tracking And Reconnaissance) [21] is a gas-
powered radio-controlled model helicopter fitted with a PC-
104 stack augmented with sensors (Figure 1). A Novatel RT-2
DGPS system provides position data with a 2 cm CEP, Cross-
bow VGX 6-axis IMU unit provides rate information to the
onboard computer where it is fused using a 16-state Kalman
filter. The ground station is a laptop that is used to send high-
level control commands and differential GPS corrections to the
helicopter. Communication with the ground station is carried
via 2.4 GHz wireless Ethernet. Autonomous flight is achieved
using a behavior-based control architecture [3].

B. The Sensor Network

Our sensor network platform is the Berkeley Mica Mote [8].
The Mote hardware configuration includes a main processor
board with a microcontroller that handles data processing
tasks, A/D conversion of sensor output, state indication via
LED’s, serial I/O, and control of a low-power radio transceiver.
It consists of an Atmel ATMega128 microcontroller (with 4
MHz 8 bit CPU, 128KB flash program space, 4K RAM, 4K
EEPROM), a 916 MHz RF transceiver (50Kbits/sec, 100ft
range), a UART, an Atmel AT90LS2343 coprocessor, and a
4Mbit serial flash memory. The radio communication consists



of an RF Monolithics 916.50 MHz transceiver (TR1000), an-
tenna, and some components to adjust the physical layer char-
acteristics such as broadcast power and transmission rate. An
auxiliary sensor board contains light, sound, and temperature
sensors with space for adding other types of sensors. Sensor
boards can be stacked for additional sensor functionality. A
Mote runs for approximately one month on two AA batteries.
The operating system support for the Motes is provided by
TinyOS, an event-based operating system. Our testbed consists
of 50 Mote sensors deployed in the form of a regular 7×7 grid,
see Figure 3. An extra Mote sensor is fitted to the helicopter
using a system developed by CSIRO, see Section IV-D.

Fig. 3. Helicopter Deploying Sensors in a 7 × 7 grid

C. The Deployment Mechanism

The deployment mechanism consists of a radio con-
troller(RC) servo which rotates a wire coil. The sensors to be
deployed are attached to the loops on the coil at even intervals,
and are dropped off the coil one at a time when it has rotated
the specified number of rotations. A toggle switch is used to
count the number of rotations. In this way we can accurately
time and drop sensors at the given GPS location, see Figure 2.

The architecture for deployment consists of a two stage
controller (see Figure 4). The higher level controller depends
on the sensor modality being used (either GPS or vision).
For GPS based deployment, the controller obtains the current
position of the helicopter from GPS and continually checks
whether it is sufficiently close to a drop location, if it is then a
deploy command is sent to the low-level controller. For vision
based control a Kalman filter continually updates the estimate
of the object and if the estimate is within the required error a
deploy command is sent to the low-level controller.

The primary function of the low-level controller is to keep
the helicopter in hover and also to navigate the helicopter
to the desired way-points. Once this controller receives a
command for deployment from the higher level deployment

Deployment
Mechanism

Sensor
Modality
(Vision/GPS)

Position and
Orientation of
Object

Deploy

Low Level Controller 

If position within
threshold

Fig. 4. Deployment architecture

controller, it tasks the helicopter to deploy an object or sensor
at that location. This division of controllers ensures that the
autonomous control of helicopter is completely decoupled
from the task at hand. Hence if a new sensor (e.g. vision)
was used for deployment instead of GPS, only the higher level
controller needs to be changed.

D. The Helicopter-Sensor Network Interface

The helicopter carries one Mote to allow communications
with the deployed sensor network. The Mote is plugged onto a
programming and serial interface board which is serially con-
nected to the helicopter’s linux computer. Several applications
were run, depending on the experiment. The ping application
sends a broadcast message with a unique id once per second
and logs all replies along with the associated Mote identifier.
This data allows us to measure air-ground connectivity, and
results are presented in IV-G. The gps application receives
GPS coordinates via a socket from the helicopter navigation
software and broadcasts it. Simple algorithms in each Mote
are able to use these position messages to refine an estimate
of their location [16].

E. Experimental Procedure

Our field experiments have been performed on a grass field
on the USC campus. We marked a 7 × 7 grid on the ground
with flags. We used an empirical method to determine the
spacing of the grid. We established that on that ground, the
Mote transmission range was 2.5 meters1. We selected the grid

1This communication range is much lower than the expected range for
Motes. We believe the reduced range is due to the close proximity of the
ground which absorbs a significant amount of RF energy, particularly when
moist.



spacing at 2 meters so that we would guarantee communication
between any neighbors in the field.

0 200 400 600 800 1000 1200

−200

−100

0

100

200

300

8

9

10
11

12

13

14

16

18

19

20

1

2

3

3835

3637

41

39

40

Fig. 5. Measured Position of the Sensors.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

Deployment error (m)

O
cc

ur
re

nc
e

Fig. 6. Histogram of deployment error.

F. Deployment using an Autonomous Helicopter

The helicopter is given a waypoint file with the GPS
location (x, y, z) coordinates where the sensors need to be
deployed. It then flies to each of those points and drops
the sensors. Figure 5 indicates the measured position of the
sensors deployed with respect to the actual position to be
deployed. Figure 6 shows a histogram of sensor deployment
error distance which has a median value of 1.2 metres. In
this particular set-of experiments the deployment was done
manually. The Helicopter was being teleoperated by a pi-
lot on the prescribed flight path. When the helicopter was
within a radius of 1.5 meters from the deployment location a
“drop” command was issued to deploy the motes. Completely
autonomous deployment experiments were also performed,
although we haven’t collected connectivity data for them yet.

G. Air-to-ground connectivity

The number of responses to each air-to-ground ping is
shown in Figure 7. The maximum number of responses to any
ping was 6 and the mean number was 2.1. In our experience
the Mote radio is probabilistic with only a modest probability
that a message is successfully transferred. It is very likely that
more Motes received the ping and transmitted responses than
the number of responses which were actually received.

The number of responses by mote id is shown in Figure 8
where we can see that only 19 motes (39%) responded. This
is a not a limitation of the motes, but a fact of the path

0 100 200 300 400 500 600
0

1

2

3

4

5

6

ping number

nu
m

be
r 

of
 r

es
po

ns
es

Fig. 7. Number of responses to ping messages (by message).

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

mote id

nu
m

be
r 

of
 p

in
gs

Fig. 8. Number of responses to ping messages (by mote).

flown during the experiment. The range over which these
motes responded is shown in Figure 9 where we see that
the maximum range was nearly 13 meters, but the median
range was 9 meters. Note that the air-to-ground range is
much greater than the 2.5 meter ground-to-ground range we
measured, which is a typical asymmetry between ground-to-
ground and air-to-ground radio transmissions.

H. Ground to ground connectivity

The sensor network as first deployed exhibited some discon-
nection in communications between sensors. This was mea-
sured by having each of the fourteen sensors broadcast ping
messages and listen for replies from its neighbors. Figures 10



0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

mote id

m
ax

im
um

 d
is

ta
nc

e 
(m

)

Fig. 9. Maximum range at which ping message was acknowledged (by mote).

12

16

10

3

1

9

2

8

35

19

18

20

13

14

Fig. 10. Connectivity of the originally deployed sensors.

and 11 show the resulting connectivity pattern as both a
circular connection diagram and a diagram with the sensors
in their actual locations. Each sensor is a vertex in the graphs
and the lines show which sensor could communicate via a
round trip path with its neighbors. The thickness of the lines
correspond to the percentage of ping replies received, with
thicker lines indicating better connectivity. Although connec-
tivity is good between some of the motes, overall the graphs
are sparsely linked indicating disconnection in the network.
Based on this connectivity analysis another seven motes were
deployed from the helicopter to repair the communication
gaps. Figures 13 and 12 show the result of the round trip
connectivity analysis on the repaired network. Connectivity
has been greatly improved, with all sensors (except sensor

Fig. 11. Connectivity of the originally deployed sensors.

Fig. 12. Connectivity of the repaired network of deployed sensors.

1) now participating in the network. Sensor 1 was found to
have been disconnected due to a hardware failure in its radio
transceiver. Note that the connectivity of the outlying sensors
(8, 14, 19, 20) has been improved even though the sensors that
were deployed to improve connectivity were not near them.
While intuitively this may not appear to make sense, there are a
variety of factors that can account for it. In particular, increases
in message traffic can alter packet collision characteristics
which could improve connectivity in areas. For example, note
that although the connectivity between 20 and 14 improved,
the connectivity between 14 and 19 did not. This suggests that
deployment patterns for network repair may need to take into
account some characteristics of the radios used in the sensor
network. E.g., VHF radios which can penetrate obstacles may
require a different repair strategy than UHF radios which are
line of sight.

I. Lessons Learned

Our experiments have given us several insights into mobile
networks.

• The communication range is highly dependent on relative
antenna orientation, shielding (eg. helicopter between
two Motes), and when close to the ground, on ground
moisture. We found widely different ranges in Brisbane,
LA, Dartmouth, and Pittsburgh.

• The communication links are asymmetric and congestion
is a significant concern.

• In all our experiments two passes with the helicopter
were required for deploying and subsequently repairing
the network.

• With Good Control of the Helicopter a disconnected
network can be repaired in one more pass. Note that
this assumes that the Helicopter can carry the required
number of sensors to repair the network and the topology
for repair is known.



1
2

3

8

9

10

11

12

13

14
1618

19

20

35

36

37

38

39

40

41

Fig. 13. Connectivity of the repaired network of deployed sensors.

• Deployment strategies are likely to need to be tailored
to sensor radio characteristics such as range, obstacle
penetrating capabilities, and antenna patterns.

V. CONCLUSION

We have described control algorithms and experimental
results from sensor network deployment with an autonomous
helicopter. By sprinkling sensor nodes using a flying robot, we
can reach remote or dangerous environments such as rugged
mountain slopes, burning forests, etc. We believe that this
kind of autonomous approach will enable the instrumentation
of remote sites with communication, sensing, and computa-
tion infrastructure, which in turn will support navigation and
monitoring applications. From what we’ve learned in these
experiments we plan to develop systems for automatic network
repair. This will require the ground sensors and helicopter
to cooperate to identify network disconnections and guide
the helicopter to appropriate locations for autonomous sensor
deployment.

ACKNOWLEDGMENT

Support for this work was provided through the Institute
for Security Technology Studies, NSF awards EIA-9901589,
IIS-9818299, IIS-9912193, EIA-0202789 and 0225446, ONR
award N00014-01-1-0675 and DARPA Task Grant F-30602-
00-2-0585. This work is also supported in part by NASA
under JPL/caltech contract 1231521, by DARPA under grants
DABT63-99-1-0015 and 5-39509-A 9 (via UPenn) as part of
the Mobile Autonomous Robot Software (MARS) program.
Our thanks to our safety pilot Doug Wilson for keeping our
computers from (literally) crashing.

REFERENCES

[1] G. Buskey, J. Roberts, P. Corke, P. Ridley, and G. Wyeth, “Sensing
and control for a small-size helicopter,” in Experimental Robotics,
B. Siciliano and P. Dario, Eds. Springer-Verlag, 2003, vol. VIII, pp.
476–487.

[2] S. Saripalli, J. M. Roberts, P. I. Corke, G. Buskey, and G. S. Sukhatme,
“A tale of two helicopters,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, Las Vegas, USA, Oct 2003, (To appear).

[3] S. Saripalli, J. F. Montgomery, and G. S. Sukhatme, “Visually-guided
landing of an unmanned aerial vehicle,” IEEE Transactions on Robotics
and Automation, vol. 19, no. 3, pp. 371–381, June 2003.

[4] O. Shakernia, Y. Ma, T. J. Koo, and S. S. Sastry, “Landing an unmanned
air vehicle:vision based motion estimation and non-linear control,” in
Asian Journal of Control, vol. 1, September 1999, pp. 128–145.

[5] V. Gavrilets, I. Martinos, B. Mettler, and E. Feron, “Control logic for
automated aerobatic flight of miniature helicopter,” in AIAA Guidance,
Navigation and Control Conference, Monterey, CA, USA, Aug 2002.

[6] R. Vidal, O. Shakernia, H. J. Kim, D. Shim, and S. Sastry, “Probabilistic
pursuit-evasion games: Theory, implementation and experimental eval-
uation,” IEEE Transactions on Robotics and Automation, Oct 2002.

[7] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century
challenges: Scalable coordination in sensor networks,” in ACM Mobi-
Com 99, Seattle, USA, August 1999.

[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for network sensors,” in ASPLOS, 2000.

[9] M. Batalin and G. Sukhatme, “Spreading out: A local approach to multi-
robot coverage,” in Distributed Autonomous Robotic Systems 5, 2002,
pp. 373–382.

[10] A. Howard, M. Mataric, and G. Sukhatme, “Mobile sensor network
deployment using potential fields: A distributed, scalable so lution to the
area coverage problem,” in Distributed Autonomous Robotic Systems 5,
2002, pp. 299–308.

[11] G. J. Pottie, “Wireless sensor networks,” in IEEE Information Theory
Workshop, 1998, pp. 139–140.

[12] J. Agre and L. Clare, “An integrated architeture for cooperative sensing
networks,” Computer, pp. 106 – 108, May 2000.

[13] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Transactions on Information Theory, vol. IT-46, no. 2, pp. 388–404,
March 2000.

[14] A. Scaglione and S. Servetto, “On the interdependence of routing and
data compression in multi-hop sensor networks,” in ACM Mobicom,
Atlanta, GA, 2002.

[15] Y. Chen and T. C. Henderson, “S-NETS: Smart sensor networks,” in
Seventh International Symposium on Experiemental Robotics, Hawaii,
Dec. 2000.

[16] P. Corke, R. Peterson, and D. Rus, “Networked robots: Flying robot
navigation with a sensor network,” in ISRR, 2003.

[17] Q. Li, M. DeRosa, and D. Rus, “Distributed algorithms for guiding
navigation across sensor networks,” in MOBICOM, 2003.

[18] M. Batalin and G. S. Sukhatme, “Coverage exploration and deployment
by a mobile robot and communication network,” in 2nd International
Workshop on Information Processing in Sensor Networks, Palo Alto
Research Center, Palo Alto, California, USA, April 2003, pp. 376–391.

[19] D. Corneil and C. Gotlieb, “An efficient algorithm for graph isomor-
phism,” Journal of the ACM, vol. 17, no. 1, pp. 51–64, March 1970.

[20] J. E. Hopcraft and J. K. Wong, “Linear time algorithm for isomorphism
of planar graphs,” in 6th Annual ACM Symposium on Theory of
Computing, Seattle, Washington, 1974, pp. 172–184.

[21] University of Southern California Autonomous Flying Vehicle Home-
page, “http://www-robotics.usc.edu/˜avatar.”




