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ABSTRACT 
 
Distributed generation (DG) technologies, such as 
gas-fired reciprocating engines and microturbines, 
have been found to be economically beneficial in 
meeting commercial-sector electrical, heating, and 
cooling loads.  Even though the electric-only 
efficiency of DG is lower than that offered by 
traditional central stations, combined heat and 
power (CHP) applications using recovered heat can 
make the overall system energy efficiency of 
distributed energy resources (DER) greater.  From a 
policy perspective, however, it would be useful to 
have good estimates of penetration rates of DER 
under various economic and regulatory scenarios.  
In order to examine the extent to which DER 
systems may be adopted at a national level, we 
model the diffusion of DER in the US commercial 
building sector under different technical research 
and technology outreach scenarios. In this context, 
technology market diffusion is assumed to depend 
on the system's economic attractiveness and the 
developer's knowledge about the technology. The 
latter can be spread both by word-of-mouth and by 
public outreach programmes. To account for 
regional differences in energy markets and climates, 
as well as the economic potential for different 
building types, optimal DER systems are found for 
several building types and regions. Technology 
diffusion is then predicted via two scenarios: a 
baseline scenario and a programme scenario, in 
which more research improves DER performance 
and stronger technology outreach programmes 
increase DER knowledge. The results depict a large 
and diverse market where both optimal installed 
capacity and profitability vary significantly across 
regions and building types. According to the 
technology diffusion model, the West region will 
take the lead in DER installations mainly due to 
high electricity prices, followed by a later adoption 
in the Northeast and Midwest regions. Since the 

DER market is in an early stage, both technology 
research and outreach programs have the potential 
to increase DER adoption, and thus, shift building 
energy consumption to a more efficient alternative. 
 
1. INTRODUCTION 
 
Distributed energy resources (DER), small-scale 
power generating technologies close to energy 
loads, are expected to become an important part of 
the future power system. Recent improvements, in 
particular for small-scale thermal electricity 
generation and combined heat and power (CHP) 
technologies, are enabling a dramatic shift from 
traditional monopolistic electricity supply to 
empowered, semi-autonomous self-generation. 
While small-scale generators by themselves do not 
match the electrical efficiency of centralized power 
generation, they enable overall system energy 
efficiency to be higher once used together with 
CHP technologies, which allow waste heat to be 
recovered to meet heating loads.  Because of the 
significant effect widespread distributed generation 
(DG) adoption could have on the design and 
operation of building and utility systems, quality 
forecasts of DG market diffusion are vital, and 
developing them poses a major research challenge. 
This effort aims to develop a bottom-up model of 
economic DG adoption that can deliver reasonable 
forecasts of technology market diffusion and 
provide estimates of the benefits of alternative 
possible enhancements to DG equipment under 
different policy and economic scenarios. The 
method is generic in the sense that it allows for the 
inclusion of all types of DER equipment, including 
renewables, which are expected to see cost 
reductions and potentially increased public support 
in the future. 
  
Technology introductions typically follow an S-
curved pattern of diffusion with initial slow 



 

adoption followed by exponential growth and a 
later decline in the adoption rate [1]. This property 
has commonly been modelled with the use of an 
epidemic model with word-of-mouth as a driving 
underlying process, while other models have 
focused on the profitability for different actors as a 
main driver for adoption. In the Distributed Energy 
Resources Market Diffusion Model (DER-MaDiM), 
it is assumed that what determines DER market 
diffusion is a combination of knowledge about the 
technology and the economic attractiveness of the 
systems. The spread of DG knowledge is assumed 
to be spread by a central information source, here 
assumed to be a federal outreach program, and by 
word-of-mouth. The economic attractiveness is 
modelled with the use of the Distributed Energy 
Resources Customer Adoption Model (DER-CAM), 
an optimization model developed at Ernest Orlando 
Lawrence Berkeley National Laboratory (LBNL). 
The objective function in DER-CAM is to 
minimize the annual energy costs resulting from 
electricity, DG, and natural gas purchases as well as 
DG operating and maintenance (O&M) costs [2]. 
The program output is an idealized set of DER 
technologies to install along with operating 
schedules for the equipment, including patterns of 
heat recovery. Building energy loads are obtained 
via DOE-2, a building energy load simulation 
program developed at LBNL.  
  
Although DG capacity is growing in the U.S., the 
market for DG is still in an early phase as a small 
share of buildings has installed DG. The developed 
diffusion model has been applied to a study to 
estimate DG market diffusion in the U.S. 
commercial building sector under two different 
research and outreach scenarios. The work focuses 
on two of the most promising technologies, 
reciprocating engines and microturbines. Optimal 
systems, cost and energy savings and optimal 
operation are found with DER-CAM for small and 
large versions of five building types: education, 
healthcare, lodging, mercantile, and office. Four 
regions are chosen to represent the diversity in U.S. 
climate and energy rates: Atlanta, Boston, Chicago, 
and San Francisco. DER-CAM is solved for both 
research scenarios for a discrete number of years 
and annual results are found by linear interpolation 
between the years. DER-MaDiM combines the 
annual DER-CAM estimates of annual savings and 
optimal systems with the processes for spread of 
DG knowledge to estimate market diffusion. The 
model suggests there can be a significant, and 
possibly imminent, DG adoption in the U.S. There 
are large regional differences in DG attractiveness; 
in particular, DG is attractive in the West region, 
but adoption is followed also in the Northeast and 
in the Midwest regions, while there is no signs of 
any market potential the South. Heat recovery, 
especially with thermally activated cooling, is an 

essential technology for DG adoption. Research and 
outreach can play an important role in speeding up 
adoption, and funds spent on research can 
potentially be paid back via private savings and 
reduced emissions. 
  
NOMENCLATURE 
 
Indices 
i= Results (capacity, energy use, cost savings)   
j=Region (Northeast, Midwest, South, West) 
k=Building type (healthcare, lodging, mercantile,         
     education, office)           
l=Building size (small, large)       
m=Time period (year)                              
    
Variables 

, , ,E j k l mA =Annual existing floorspace that adopts DG 

, , ,N j k l mA =Annual new floorspace that adopts DG 

, , ,T j k l mA =Annual total floorspace that adopts DG 

, , ,D j k l mF =Total floorspace with DG 

, , ,N j k l mF =Net new floorspace with DG potential  

, , ,T j k l mF =Total floorspace with DG potential 

, , , ,A i j k l mR =Annual change in result metrics 

, , , ,T i j k l mR =Cumulative result metrics over time 

mX =Fraction of floorspace with DG 
 
Parameters 

Ea , Eb Ec =Adoption function parameter for      
  existing buildings  

Na , Nb , Nc ,=Adoption function parameter for new            
                    buildings 

, , , ,i j k l md =Annual DER-CAM results 

, , ,E j k l mf =Adoption function for existing buildings  

, , ,N j k l mf =Adoption function for new buildings 

, ,j k lz =Building size  

, , ,j k l ms = Percentage cost savings on energy bill 
α =Fraction of buildings without DG that gets            
       knowledge from outreach programs 
β =Strength of the word-of-mouth process 
 
2. MODELLING APPROACH  
 
A bottom-up approach is chosen to model DG 
market diffusion. Optimal DG systems and 
profitability are found for a set of representative 
buildings, while market diffusion depends on a 
combination of economics attractiveness and 
market knowledge of the technologies. The 
modelling approach can be viewed as the following 
three-stage process as shown below in Figure 1: 
 
 
 



 

1. Development of prototypical commercial 
building load profiles, with the use of the 
building energy simulation program DOE-2, 
specific to various representative U.S. locations, 
including data  

 
2. Collection of tariffs and DER technology cost 

and performance data to run the Distributed 
Energy Resources Customer Adoption Model 
(DER-CAM) to estimate economic 
attractiveness of DG in a given building type, 
region, and in a set of forecast years  

 
3. Application of the Distributed Energy 

Resources Market Diffusion Model (DER-
MaDiM) to estimate the likely annual DG 
market diffusion from the modeled economic 
attractiveness for the different building types 
and regions 

 

Energy Prices
Technology Characterizations

Building Floorspace
Diffusion Parameters

DOE-2

DER-CAM

DER-MaDiM

Building Characterizations
Climate Data

Optimal Capacity, Operation
Cost Savings

Building Energy Loads

Installed Capacity
Energy Consumption

Cost Savings  
Figure 1: Modelling approach 

 
2.1 External Modelling Tools 

To generate the load profiles, the widely used 
building energy simulation program, DOE-2, which 
was developed and is maintained by LBNL, was 
used. DOE-2 is a public domain computer program 
written in FORTRAN77 designed for analyses of 
energy consumption in buildings. DOE-2 estimates 
the hourly energy consumption in a building, given 
hourly climate data and information of the building 
heating ventilation and air conditioning (HVAC) 
equipment. Building characteristics are taken from 
Huang et al. [3]. 
 
This study used DER-CAM to examine the 
economic potential for DG in the various building 
types, regions and years. Developed at LBNL, 
DER-CAM is a mixed integer linear program 
(MILP) written in GAMS (General Algebraic 
Modeling System) designed to factor many 
variables into determining the DG investment 
decision that minimize building energy costs with a 
given payback constraint. The DER-CAM solution 
provides both the generating equipment and the 
optimal operating schedule so that DG energy costs, 
utility electricity consumption, and carbon 
emissions are minimized. Input to DER-CAM 
includes the site’s hourly end-use energy load, 

electricity and natural gas supply costs, and DG 
technology adoption options. DG generation 
technology options include photovoltaics, natural 
gas fueled reciprocating engines, microturbines, gas 
turbines, and fuel cells. By matching thermal and 
fuel cell generation to heat exchangers and 
absorption chillers, heat recovered from natural gas 
driven generators can be used to offset heating and 
cooling loads. Figure 2 shows a high-level 
schematic of DER-CAM.  
 

 
Figure 2: DER-CAM schematic 

 
3. MATHEMATICAL MODEL DESCRIPTION  
 
The objective of DER-MaDiM is to model the 
actual market diffusion of the technologies that may 
result from the optimal DG systems found by DER-
CAM. In accordance with a study by Geroski [1], it 
is assumed that the introduction of a technology 
into a market is dependent on not only the cost 
attractiveness, but also the level of knowledge and 
trust in the technology. The introduction of a new 
technology in a market usually follows an S-curve. 
Two competing ways for addressing this logistic 
function are through epidemic models and probit 
models [1]. The former explain the introduction of 
new technologies with the means knowledge of the 
technology propagates to potential users. Probit 
models, on the other hand, focus on customer 
characteristics as an explanatory factor of why 
some firms adopt new technologies before others. 
Customer characteristics, such as building energy 
profiles, will affect the investment profitability, and 
therefore the decision to adopt the technology. 
  
The model developed in this work is a combination 
of all three approaches. The central source of 
information is assumed to be outreach programs 
and research devoted to increase the understanding 
of DG, and in addition knowledge is spread by 
word-of-mouth. Further, individual building 
characteristics and DG economic attractiveness are 
modelled directly as described in the previous 
sections. The fact that DG systems are more 
suitable in some buildings than others is reflected in 
the variability of energy bill savings found from the 
DER-CAM analysis. Hence, it is reasonable to 
assume that buildings with a higher percentage of 
energy bill savings are more likely to install DG. 



 

This assumption is implemented using a logistic 
adoption function where buildings with large 
savings are assumed to adopt DG at a faster rate 
than buildings with marginal savings.   
 
Each year a constant fraction of buildings, α , 
without DG get information about the technologies 
from outreach programs. The remaining fraction of 
buildings can get knowledge by word-of-mouth. 
The factor that decides the strength of the word-of-
mouth process, β , is proportional to the fraction of 
commercial buildings with DG potential that has 
installed systems, mX . Thus, the word-of-mouth 
process is increasing in strength as more users 
become aware of the technology. Of the buildings 
with knowledge of DG only a fraction, which 
increases with percentage savings on the energy bill, 
will actually install systems. Hence, the existing 
floorspace that adopts DG each year, m, is the 
product of the percentage of the market with DG 
knowledge, the adoption function for existing 
buildings, , , ,E j k l mf , and the total floorspace with DG 
potential, , , ,T j k l mF , less the existing  floorspace with 
DG, , , ,D j k l mF , shown below  
 
 , , , 1 , , , , , , , , , 1( ) ( )E j k l m m E j k l m T j k l m D j k l mA X f F Fα β

− −
+ −= (1) 

 
New buildings adopt DG systems using the same 
process, but based on the adoption function in new 
buildings, , , ,N j k l mf , and the new floorspace with 
economic potential for DG 
 

, , , 1 , , , , , ,( )N j k l m m N j k l m N j k l mA X f Fα β −= +     (2) 
 
The upper limit, or constraint of the parameters α 
and β, is that the sum must be lower than one to 
ensure that less than 100 percent of buildings with 
DG economic potential have DG information. The 
adoption function for both existing and new 
buildings is a logistical function given as  
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   (3) 

 
where aE, aN, bE, bN, cE, cN, are parameters, and 

, , ,j k l ms is the percentage energy cost savings from 
using DG. Total annual floorspace that adopts DG 
is the sum of adoption in existing and new 
buildings 
 

, , , , , , , , ,T j k l m E j k l m N j k l mA A A= +     (4) 
 
 

Net new floorspace, , , ,N j k l mF  is added to the total 
floorspace 
 

, , , , , , 1 , , ,T j k l m T j k l m N j k l mF F F−= +     (5) 
 
Cumulative floorspace with DG, , , ,D j k l mF , is 
floorspace with DG last period added the new 
adoption 
 

, , , , , , 1 , , ,D j k l m D j k l m T j k l mF F A−= +     (6) 
 
The fraction of buildings with DG is total 
floorspace with DG divided by floorspace with 
potential in U.S. commercial building sector 
 

, , ,

, , ,

D j k l m
j k l

m
T j k l m

j k l

F
X

F
=
∑∑∑
∑∑∑

    (7) 

 
The different result metrics  in each time period, are 
defined as the DER-CAM results, , , , ,i j k l md , divided 
by building size multiplied by the floorspace that 
actually adopts DG 
 

, , , ,
, , , , , , ,

, ,

i j k l m
A i j k l m T j k l m

j k l

d
R A

z
=     (8) 

 
Cumulative values over time, , , , ,T i j k l mR , of the 
different results, installed capacities, changes in 
energy consumption and private cost savings, are 
given as   
 

, , , , , , , , 1 , , , ,T i j k l m T i j k l m Ai j k l mR R R−= +     (9) 
 
Results over different dimensions are obtained by 
summing over the indices.  
 
4. MODEL DATA 
 
Logistically, it is impossible to simulate the broad 
range of buildings that characterize all commercial 
buildings in the U.S. using DOE-2 and DER-CAM. 
The data and computational demands would simply 
be too burdensome; therefore, judicious selection of 
representative buildings in representative locations 
is necessary. Based on the availability of weather 
data and a desire to include a representative range 
of climates and electricity and fuel cost 
environments, a set of buildings and regions is 
chosen for the analysis. Four cities are chosen to 
represent four U.S. regions: Boston represents the 
Northeast, Chicago the Midwest, Atlanta the South 
and San Francisco the West region. Figure 3 shows 
the total U.S. floorspace in the five buildings 
categories used in the study. As can be seen, 
mercantile and office buildings dominate U.S. 



 

commercial floorspace. However, DG possesses 
varying degrees of potential with varying building 
size 
 

 
Figure 3: U.S. floorspace by building type [4] 

 
To determine which building sizes to model in 
DER-CAM, a simple analysis to estimate the peak 
loads of each selected building type was conducted. 
The Commercial Building Energy Consumption 
Survey (CBECS) [5] categorizes each building type 
by area and also reports the energy intensity of each 
building type. The building area and energy 
intensity are used to determine the buildings sizes 
where peak electricity is more important than other 
characteristics. The peak load to total energy 
consumption ratio and intensity were applied to 
estimate the peak load of each building type in each 
building size category defined by CBECS. 
 
Reciprocating engines and microturbines are 
typically attractive for buildings with peak 
electricity load from a few hundred kW, to the 
largest sites where reciprocating engines are still 
preferable to turbines, i.e., 1-2 MW. Motivated by 
this, buildings with peak demand in the range 300-
2,000 kW are considered attractive sites for 
microturbines and reciprocating engines. Two 
buildings, one large and one small, corresponding 
to the midpoint in the smallest size bin (with peak 
load over 300 kW) and the largest size bin (with 
peak load under 2 MW) in the CBECS size 
distribution respectively, were selected for analysis 
in DER-CAM. Boston electricity intensity was used 
to define the two building sizes. The same building 
sizes are used for all regions. For this attractive DG 
size range 80 percent of existing and 90 percent of 
new floorspace are assumed to have DG potential. 
For buildings with a lower peak, DG incurs high 
investment costs and low capacity factor and is not 
likely to be cost-effective for most buildings. 
However, some niche markets might exist and some 
development might come from the introduction of 
microgrids, where neighboring buildings can add 
their loads together to become an attractive DG site. 
For buildings with peak electricity loads under 300 
kW, 16 percent of existing and 18 percent of new 
floorspace are assumed to have DG potential. 
Smaller buildings are assumed to adopt systems at 
the same capacity and energy consumption changes 
per floorspace as the small building and with the 

same percentage savings on the energy bill. For 
buildings with a peak load over 2 MW, 32 percent 
of existing and 36 percent of new floorspace is 
assumed to have DG potential. Similarly, buildings 
larger than the largest modelled building are 
assumed to adopt systems with a capacity and 
energy consumption per square meter equal to the 
large building, and have the same percentage 
annual savings on the energy bill 
 
Figure 4 is an example of the energy load data input 
to DER-CAM. It shows the weekday profiles for 
the large San Francisco office building. The load 
input is given as hourly loads in three representative 
days for each month. Peak days have the average 
energy profile for the three non-holidays weekdays 
with the highest electricity demand, weekdays have 
the average load profile for remaining non-holiday 
weekdays and weekend days have the average load 
profile for weekend days and holidays. There are 
large differences in electricity capacity factors 
between the building types. Healthcare buildings 
have by far the highest capacity factor while 
lodging buildings have the lowest. 
 

 
Figure 4: January and July weekday energy loads 

for the large San Francisco office building 
 
Three gas-fired DG technology types were 
considered in the analysis: reciprocating engines, 
gas turbines, and microturbines. Cost and 
performance data for these technologies in 2004 are 
interpolated from data provided in a study by the 
National Renewable Energy Laboratory [6] with 
additional data provided from work done at LBNL 
[7]. In DER-CAM, each device can be purchased in 
one of three packages: as an electricity generation 
unit, as an electricity generation unit with heat 
recovery for space and water heating applications 
or as an electricity generation unit with heat 
recovery for space and water heating applications 
and cooling via an absorption chiller. Cost and 
performance data for the technologies in 2004 are 



 

summarized in Table 1. For this project, heat 
exchangers used to convert waste heat from DG 
equipment to useful end-use heat are assumed to be 
80 percent efficient, as are combustors used to 
convert natural gas to useful end-use heat. The 
coefficient of performance (COP) of electric 
chillers is assumed to be 5 and that of absorption 
chillers to be 0.7.  
 

Table 1:  2004 technology cost and performance 
data used in the DER-CAM analysis 

 Gas 
Turbine 

Micro- 
turbines 

Reciprocating
Engines 

Capacity 
(kW) 

 1000  100  250 
 

200 
 

500 
 

Capital Costs 
($/W) 
El. only 1.4 1.7 1.4 0.9 0.8 
Heat exch. 1.9 2 1.7 1.2 1.1 
Abs. cooling 2.1 2.4 2 1.6 1.3 
O&M Costs 
Fixed w/ abs. 
cooling($/kW) 

12 17 13 16 11 

Variable 
($/MWh) 

10 15 15 15 12 

Lifetime 
(years) 

20 10 10 20 20 

Electrical 
efficiency 

0.22 0.26 0.28 0.31 0.33 

Heat-to- 
power ratio 

2.45 2.29 2.29 1.88 1.55 

 
The 2004 electricity tariffs for electric utilities 
serving the four cities of consideration are obtained 
from the LBNL Tariff Analysis Project’s database 
of U.S. electricity rates [8]. The three main 
components of a typical electricity tariff are: 
volumetric charges, demand charges, and monthly 
fees. Volumetric charges are in proportion to the 
electricity consumed each month; there are often 
different rates for different times of the day. 
Demand charges are in proportion to the maximum 
power of electricity consumption during the month, 
regardless of how often the maximum rate occurs. 
There are often different rates for different times of 
the day, as well as occasionally a non-coincident 
rate which is applicable to all hours of the day.  
Table 2 shows the 2004 electricity rates for all four 
cities. 
 

Table 2: Assumed 2004 electricity rates for 
commercial buildings (summer/winter) [8] 

 Atlanta Boston Chicago San 
Francisco 

Volumetric 
($/MWh) 

    

on-peak 61/61 82/69 56/56 164/- 
mid-peak 61/61 -/- -/- 100/108 
off-peak 61/61 59/56 23/23 89/89 
Demand 
($/kW) 

    

on-peak -/- -/- 14/11 12/- 
mid-peak -/- -/- -/- 3/3 
non-coincident -/- 25/12 -/- 3/3 

 

The 2004 natural gas rates for the regions 
containing the four cities under consideration were 
obtained from the AEO2005 Reference Case [9], 
and are shown in Table 3. The rate used for non-
DG natural gas consumption is the average 
commercial rate for each respective region. The rate 
for DG consumption is the average of the 
commercial rate and the core electricity generator 
rate. This reflects the lower volumetric cost of 
natural gas when it is consumed in higher quantities 
and more consistent rates of prime power DER 
rather than typical commercial building 
consumption.  
 

Table 3:  AEO2005 natural gas rates in 2004 
 ($/MWh, HHV) [9] 

 For Heating 
Purposes 

For Electricity 
Generators 

Atlanta 37 29 
Boston 40 29 
Chicago 32 27 
San Francisco 32 29 

 
The AEO2005 Reference Case [9] is used to 
determine the change in electricity and natural gas 
prices in the two other years DER-CAM is solved 
for, 2012 and 2022, relative to these same prices in 
2004.  The change in each region for the two future 
years is represented as a scaling factor; this scaling 
factor is applied to the 2004 rates from the LBNL 
Tariff Analysis Project [8] to estimate rates for 
2012 and 2022. All components of the electricity 
tariff are multiplied by these scaling factors to 
obtain the future electricity tariffs used in DER-
CAM.  
 
Forecasted estimates of technology cost and 
performance in 2004 and 2022 that reflect the 
Baseline and Program case assumptions are used to 
estimate the percentage improvements in cost and 
performance from 2004 to 2022. These percentage 
improvements were then applied to the 2004 
technology data to obtain the 2022 data for both the 
Baseline and Program cases. For the Baseline case, 
technology improvement from 2004 to 2022 is 
assumed to progress linearly; data for 2012 are, 
therefore interpolated from the initial and final 
years. For the Program case, the technology is 
assumed to reach maturation in 2012, so that cost 
and performance data for 2022 are also used for 
2012. The scaling factors used to convert 2004 cost 
and performance data to 2012 and 2022 data are 
provided in Table 4. Note that microturbines are 
predicted to improve in electrical efficiency and 
capital cost to a much greater extent than 
reciprocating engines, while gas turbine 
improvement is intermediate to these two 
technologies. Microturbines are expected to 
improve the most because they are the least 
developed of the three technologies.  
 



 

Table 4: Scaling factors for 2012 and 2022  
DER-CAM technology data 

 Gas 
Turbine 

Micro-
turbines 

Recip. 
Engines 

2012 Baseline Case    
Capital costs 0.890 0.737 0.882 
Maintenance costs 0.834 0.907 0.928 
Efficiency 1.112 1.324 1.045 
Heat-to-power ratio 1.017 0.892 0.994 
2012/2022 Program / 
2022 Baseline Cases 

   

Capital costs 0.837 0.479 0.807 
Maintenance costs 0.834 0.773 0.800 
Efficiency 1.215 1.389 1.080 
Heat-to-power ratio 1.043 0.950 1.011 

 
In the Baseline case, two percent of buildings with 
DG potential are assumed to get DG information 
from outreach programs, while in the Program case 
ten percent are reached. In both cases, the factor 
determining the strength of the word-of-mouth 
process, β, is at its maximum. The parameters 
determining the adoption function, which are the 
percentage of customers with DG information that 
actually install systems for a given cost-
effectiveness, are assumed to be equal in both cases. 
Figure 5 is a plot of the adoption function for 
existing and new buildings. This figure illustrates a 
more aggressive DG adoption rate in new buildings. 
This is based on the assumption that when new 
buildings are constructed it is more likely that 
energy considerations are made, and that new 
buildings can be more flexible in incorporating DG 
systems. The maximum adoption rate for new 
buildings is 80 percent and for existing buildings 60 
percent. Note that the percentage of all considered 
buildings that adopt systems can be much lower, 
because actual relative adoption is calculated as the 
product of the adoption function and the floorspace 
with DG knowledge.  
 

 
Figure 5: Relative adoption in new and existing 

buildings where owners has DG knowledge 
 
5. RESULTS 
 
DER-CAM is solved for the 2004, the 2012 
Baseline case, the 2012 Program case and for the 
2022 case. In the 2022 case, there is no difference 
between the Baseline and Program case as 
technology improvements from the baseline case 
have caught up with the program case. Four 

scenarios, five building types in two sizes and four 
regions leave 160 different problems for DER-
CAM to solve. The results are used as input to 
DER-MaDiM. 
  
Figure 6 shows the modelled installed DG capacity 
in U.S. commercial buildings from 2005 to 2025. 
The Program case leads to an earlier and greater 
adoption of DG than the Baseline case. Cumulative 
capacity follows an S-curve with the highest growth 
in DG capacity around 2014. In the Baseline case, 
installed capacity shows exponential growth during 
the forecast period with a potential inflection point 
around 2025. The largest difference in installed 
capacity is in year 2019 at 11.1 GW. After 2019, 
growth is higher in the Baseline case because 
technology advancement is catching up to the 
Program case and because there is a larger 
undeveloped potential than in the Program case. 
Furthermore, observe that there is path dependence 
in these curves, whereby the difference between the 
Program and Baseline cases is not only a delayed 
development, but the path has also changed. This is 
due to two factors: first, stronger outreach programs 
create higher growth, and second, increased DG 
knowledge in periods where prices are favorable for 
DG can lead to an increase in capacity that will not 
be made up for later. A commercial building DG 
capacity of 20 GW in 2025 can correspond to 
around 1.5 percent of U.S. electric capacity [9]. 
 

 
Figure 6: Cumulative installed DG capacity in U.S. 
commercial sector in Baseline and Program cases 

 
Reciprocating engines are expected to experience 
marginal improvements in performance during the 
forecast horizon. However, these improvements 
combined with a stronger technology outreach 
program and increased word-of-mouth from the 
successful implementation of microturbines leads to 
a higher installed capacity in the Program case than 
in the Baseline case (see Figure 7). Microturbines 
represent a promising technology with expected 
cost reductions and performance improvements 
over time. In the Program case, investments in 
microturbines are expected to grow rapidly from 
2010 and exceed the capacity of reciprocating 
engines by 2017. Notice the difference in the 
diffusion curves for reciprocating engines and 
microturbines in the Program case. Reciprocating 



 

engine capacity grows fast initially, but as 
microturbines become more competitive, they take 
a larger share of the market. However, there is still 
a market growth for both, reflected by different 
buildings suitability to each technology. For 
example, in the Baseline case reciprocating engines 
are superior to microturbines.  
 

 
Figure 7: Cumulative installed capacity by 

technology 
 
Electricity consumption decreases because of on-
site electricity generation and the use of recovered 
heat through absorption chillers to offset electricity 
otherwise used for cooling. Natural gas 
consumption increases from on-site generation, but 
is partially offset by heat recovery for heating loads. 
Figure 8 shows that the reduction in electricity 
purchases and the increase in natural gas purchases 
follows the same S-curved pattern as installed 
capacity. In the Program case, 100 TWh of 
electricity is expected to be produced in 
commercial buildings in 2025. The largest 
difference in the two graphs is in 2017 when 67 
TWh are produced in the Program case and 19 
TWh in the Baseline case. The ratio of electricity 
generation to increased natural gas consumption 
can be viewed upon as an efficiency metric, which 
can be compared to the central efficiency for 
delivery to the end-used. In Figure 8 the ratio is 
around 0.5. Combined heat and power systems have 
the potential to generate at higher overall 
efficiencies. The reason for this discrepancy is that 
some of the recovered heat is used for cooling, 
which has a lower efficiency than direct heat use 
and that the generators are allowed to produce 
without any heat recovery if prices justify such 
operation. A considerable amount of the on-site 
generation occurs at peak hours when the efficiency 
is lower and the grid is heavily strained. In 
comparison to a central system, where some 
electricity will be lost under transmission and 
distribution, DG provides electricity on-site. The 
results represent a laissez-faire solution, exclusive 
of any policies to improve efficiency, such as a 
lower bound on efficiency or promotion of the use 
of waste heat. 

 
Figure 8: Changes in utility energy consumption 

 
When buildings install DG systems, they reduce 
their energy costs. The cumulative annual private 
cost savings from building energy use for all U.S. 
commercial buildings with DG is shown in Figure 9. 
In 2015 the annual savings are $2.0 billion in the 
Program case and $0.5 billion in the Baseline case. 
In 2025 the difference in savings is reduced with 
savings of $3.5 billion in the Program case and $2.3 
billion in the Baseline case. 
 

 
Figure 9: Annual private cost savings from DG 

 
The U.S. consists of regions with diverse climates 
and energy markets. These differences are of major 
importance for DG attractiveness. As seen in Figure 
10, the West region, which is dominated by the 
dense population of California and high electricity 
prices and a cooling demand, is in position to be the 
leader in DG expansion. Also, the Northeast seems 
to be an area suited for DG with a later, but 
significant, development. DG expansion in the 
Midwest is expected to be more modest, while the 
low electricity rates in the South are a barrier to any 
DG potential. Both the Baseline and the Program 
cases show the same regional pattern. The West and 
Northeast are still expected to develop the majority 
of DG capacity in the Baseline case, but toward the 
end of the forecast period. In the Midwest, DG 
development is delayed 10 years and is 
considerably slower.  



 

 
Figure 10: Cumulative  installed DG capacity in 

U.S. regions 
 
In the Program case, most DG is expected in office 
buildings followed by mercantile buildings (see 
Figure 11). Although the total floorspace for 
education buildings is much higher than for the 
healthcare and lodging buildings, the installed DG 
capacity is only slightly higher in the education 
buildings. Healthcare buildings are among the most 
attractive for DG sites, but they constitute a 
relatively small portion of U.S. commercial 
floorspace. The Baseline case shows a similar, but 
not identical, pattern. Mercantile buildings are 
leading DG adopters until 2018 when healthcare 
buildings install more DG than both education and 
lodging. An explanation for this can be that office 
buildings are more suited to the improved 
microturbines than reciprocating engines. 
 

 
Figure 11:Cumulative installed DG capacity for 

building types 

Most of the installed capacity in both the Baseline 
and the Program cases comes with systems for heat 
recovery, as can be seen in Figure 12. The most 
common installations have thermally activated 
cooling, which also comes with a heat exchanger 
and can be used to supply both cooling and heating 
loads. Notice that in the Baseline case, the most 
common technology until around 2022 can be used 
for electricity generation only while this is never 

the case in the Program case. Although most of the 
installed capacity has the ability to recover heat, a 
large share of the installed capacity does not. 
Capacity without the ability to recover heat does 
not have a high potential efficiency (see Table 1). 
The electricity-only generators’ profitability is 
reflected in the high volumetric electricity rates and 
demand charges for several utilities, probably due 
to expensive and, therefore, inefficient on-peak 
power and high transmission and distribution costs 
(see Table 2).  
  

 
Figure 12: Cumulative installed capacity with only 

electricity generation, heat recovery and  
absorption cooling 

 
6. CONCLUSIONS AND FURTHER WORK 
 
The results from the DER-MaDiM model suggest 
that there can be a large market for DG in U.S. 
commercial buildings, even with only a modest 
research program and little technology outreach. It 
reveals how significant an impact a stronger 
research program combined with more technology 
research can have on the potential to accelerate and 
increase DG investments. Investment in the 
research and outreach programs can be balanced by 
private savings on the energy bill. Satisfying 
electricity, heat loads, and cooling loads with DG 
leads to a net increase in building natural gas 
consumption that is approximately double the 
increase in electricity production on-site. Over half 
of the installed capacity has the ability to recover 
heat, and absorption cooling is the most common 
technology. However, a large share of the installed 
systems only has electricity generation capability. 
Regulation and incentives have the potential to 
further improve the environmental benefits of DG. 
The West and Northeast are the regions where most 
DG capacity expansion is expected. The office and 
mercantile buildings can play a key role in wide-
scale DG development. 
 
A weakness in the DER-MaDiM modelling 
approach is that the model does not directly allow 
for operational changes in the DG systems after 
they are installed as market conditions change. 



 

Similarly, the investment decision is based only on 
the energy prices in a particular year and does not 
include any expectation of future price 
developments. Neither the vintage structure of the 
existing building stock nor the demolition of 
buildings is included in the analysis, but only a 
fraction of the entire building stock is included as 
potential DG buildings, and most buildings have an 
expected lifetime far beyond the analysis horizon. 
Competition from other DER technologies is 
included to some extent. This is accounted for by 
reducing the floorspace with DG potential, such as 
including a low fraction of the floorspace for larger 
buildings where gas turbines can be a strong 
competitor. It could also be possible to include 
more technologies, such as photovoltaic systems, 
directly as a competing technology if either they 
prove to be more competitive or there is a strong 
regulatory support for them. 
 
Predicting market diffusion of new technologies is 
not straightforward, and finding appropriate 
parameters for the model is a challenge. A possible 
approach could be to base parameters on empirical 
data from the introduction of similar technologies 
such as energy efficiency equipment, but each 
technology is itself unique and has a unique market, 
which makes comparisons difficult. Another 
possibility is to base parameters on surveys of 
building owners’ knowledge of DG and their 
willingness to invest under various cost-saving 
levels. Also, as DG capacity increases, there will be 
more data available to estimate parameters for the 
diffusion processes. 
 
Despite the inherent challenges in modelling 
technology diffusion, DER-MaDiM captures the 
major dynamics of technology diffusion for DG in 
modelling the spread of information from a central 
source and from a word-of-mouth process 
combined with the bottom-up DER-CAM approach 
to decide DG attractiveness for specific sites. The 
modelling approach can further be used to analyze 
the effect of other energy market policies in future 
studies. 
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