
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Contemporary data path design optimization

Permalink
https://escholarship.org/uc/item/6xv8j2nx

Author
Liu, Jianhua

Publication Date
2006

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6xv8j2nx
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Contemporary Data Path Design Optimization

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science

by

Jianhua Liu

Committee in charge:

Professor Chung-Kuan Cheng, Chair
Professor Paul Chau
Professor Fan Chung Graham
Professor Russell Impagliazzo
Professor Tajana Rosing

2006

.

Copyright

Jianhua Liu, 2006

All rights reserved.

The dissertation of Jianhua Liu is approved, and it is ac-

ceptable in quality and form for publication on microfilm:

Chair

University of California, San Diego

2006

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . viii

Acknowledgements . ix

Vita, Publications, and Fields of Study x

Abstract . xi

I Introduction . 1
I.A Introduction . 1
I.B Computing Arithmetic . 2
I.C Challenges on Data-path Design 4
I.D Dissertation Overview . 6

II Binary Addition Background . 8
II.A Binary Addition Basic . 8
II.B Parallel Prefix Addition . 10

II.B.1 Prefix Computation . 10
II.B.2 Regular Prefix Adders . 12
II.B.3 Irregular Prefix Adders . 15

II.C Binary Addition Summary . 18

III ILP on Prefix Addition . 20
III.A Area/Timing/Power Model . 20

III.A.1 Area Model . 20
III.A.2 Timing Model . 21
III.A.3 Power Model . 23

III.B Basic ILP Formulation . 23
III.B.1 Structural Constraints and Physical Placement 24
III.B.2 Capacitance Constraints . 26
III.B.3 Timing Constraints . 28
III.B.4 Power Consumption Objective 29

III.C Extended ILP Formulations . 29
III.C.1 Supporting Gate Sizing . 29
III.C.2 Supporting Buffer Insertion 31

III.D Experimental Results . 34

iv

III.D.1 Uniform Input Arrival Time 34
III.D.2 Non-uniform Arrival and Required Times 38
III.D.3 Hierarchical Design . 40

III.E Summary . 42

IV Division Background . 43
IV.A Division Basic . 43

IV.A.1 Binary Division Definition 43
IV.A.2 Fundamental Division Algorithm 44
IV.A.3 Iteration Effort . 46

IV.B High-Radix Division Algorithms 47
IV.B.1 SRT Division . 47
IV.B.2 Prescaling Division . 48
IV.B.3 Memory Effort . 50

IV.C Very-High-Radix Division Algorithms 50
IV.C.1 Taylor Expansion Division 51
IV.C.2 Series Expansion Division 51
IV.C.3 Arithmetic Effort . 52

IV.D Division Algorithms Summary . 53

V PST Division Algorithm . 55
V.A Notations . 55
V.B The Proposed Division Algorithm 56

V.B.1 Basic PST Division . 56
V.B.2 Correctness Proof of the Basic PST Algorithm 59
V.B.3 Advanced PST Algorithm 61
V.B.4 Correctness Proof of the Advanced PST Algorithm 64

V.C Parallel PST Division . 65
V.C.1 Method 1 . 65
V.C.2 Method 2 . 66

V.D Evaluations and Implementations 69
V.D.1 Numerical Analysis . 69
V.D.2 ASIC Implementations . 71
V.D.3 FPGA Implementations . 74

V.E Summary . 77

VI Conclusions . 78

Bibliography . 80

v

LIST OF FIGURES

I.1 VLSI Design Flow . 2
I.2 Layout of Pentium Microprocessor 3
I.3 Moore’s Law . 4
I.4 Scaling Effect on Power Consumption 5
I.5 Scaling Effect on Gate and Wire Delay 6

II.1 (a)Full Adder (b) Ripple-Carry Adder 9
II.2 Carry-Skip Adder . 9
II.3 Carry-Select Adder . 10
II.4 Directed Acyclic Graphs of Prefix Structures 12
II.5 The Construction of PC(n) . 13
II.6 Kogge-Stone and Brent-Kung Prefix Adders 13
II.7 Tradeoff between Kogge-Stone and Brent-Kung Adders 14
II.8 Transform to Ripple-Carry Adder 15
II.9 Peephole Transformation . 16
II.10 Fishburn’s Result . 16
II.11 (a)Carry-Select (b)Multi-Level Carry-Select and (c) Sklansky 17
II.12 Greedy Expansion . 17

III.1 Compact Placement of the 8-bit Brent-Kung Adder 21
III.2 Structure and Logical Effort of Inverting CMOS GP Adder 21
III.3 Wire Length Estimation . 27
III.4 Logical View and Physical View with Buffers 32
III.5 Optimum Timing-Power Curves in the Design Space 36
III.6 Sklansky Adder . 37
III.7 Kogge-Stone Adder . 37
III.8 Minimal Power Adder . 37
III.9 Fastest Adder (Depth:2) . 37
III.10Fastest Adder (Depth:3) . 37
III.11Fastest Adder (Depth:4) . 37
III.12Increasing Input Arrival Time . 39
III.13Decreasing Input Arrival Time . 39
III.14Convex Input Arrival Time . 39
III.1564-bit Hierarchy Prefix Adder . 40
III.16Hierarchical ILP (level 1) . 41
III.17Hierarchical ILP (level 2) . 41

IV.1 Quotient Digit Selection of Restoring Division 45
IV.2 Quotient Digit Selection of Restoring Division 46
IV.3 Quotient Digit Selection of SRT Radix-2 Division 48
IV.4 Quotient Digit Selection of SRT Radix-4 Division 49
IV.5 Solution Space of Division Algorithms 54

vi

V.1 (A) PST Algorithm Architecture (B) An 8-bit example 58
V.2 Data Dependency in PST Division 65
V.3 Parallelize the Operations: Method 1 66
V.4 Parallelize the Operations: Method 2 68
V.5 Parallel PST Division Algorithm . 69
V.6 Delay-Area Tradeoff (64bit) . 72
V.7 Delay-Power Tradeoff (64bit) . 72
V.8 Delay-Area Tradeoff (128bit) . 73
V.9 Delay-Power Tradeoff (128bit) . 73
V.10 IP core . 75
V.11 PST with DSP blocks . 75
V.12 PST without DSP block . 75
V.13 PSTp with DSP blocks . 75
V.14 PSTp without DSP block . 75

vii

LIST OF TABLES

III.1 Optimum Prefix adders . 35
III.2 Non-uniform Arrival/Required Time Cases 38
III.3 64-bit Prefix Adders . 41

IV.1 Comparison on Computation Efforts 53

V.1 Estimate of Delays and Areas of Basic Modules [tFA, AFA] 71
V.2 ASIC Implementations . 74
V.3 FPGA Implementations . 76

viii

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Professor Chung-Kuan

Cheng for his support and for his confidence in me and my work. I would also like

to thank Professor John Lillis of University of Illinois at Chicago, Professor David

Harris of Harvey Mudd College, Professor Borivoje Nikolic of Berkeley and Mr.

Mike Hutton of Altera. Their advices on my research work are also very important

to me.

I wish to thank my dissertation committee members, Professor Russell

Impagliazzo, Professor Fan Chung Graham, Professor Paul Chau and Professor

Tajana Rosing for technical discussions and their advices and reviews of this dis-

sertation.

I am grateful to all the graduate students in the UCSD VLSI CAD group

for making the group a friendly and fun place to work. Among them, special

thanks to Shuo Zhou, Rui Shi, He Peng, Haikun Zhu, Yi Zhu, Ling Zhang and

many others.

Finally my special thanks go to my parents and my girl friend, Sai Ma,

for their support during my education and for their understanding and tolerance

during the last couple of years.

Chapter V has been submitted for publication of the material as it ap-

pears in ACM/SIGDA 14th International Symposium on Field Programmable Gate

Arrays 2006, Liu, Jianhua; Zhu, Haikun; Cheng, Chung-Kuan. The dissertation

author was the primary investigator and single author of this paper.

ix

VITA

1999 B.E. in Computer Science and Technology
Tsinghua University, Beijing, P.R. China

2001 M.S. in Computer Science and Technology
Tsinghua University, Beijing, P.R. China

2006 Ph.D. in Computer Science
University of California, San Diego

PUBLICATIONS

Jianhua Liu, Haikun Zhu, C.K. Cheng, An Iterative Division Algorithm for FP-
GAs, ACM/SIGDA 14th International Symposium on Field Programmable Gate
Arrays 2006

Jianhua Liu, Michael Cheng, C.K. Cheng, John MacDonald, N.C. Chou, Peter
Suaris, Fast Adders in Modern FPGAs, poster session of ACM/SIGDA 12th In-
ternational Symposium on Field Programmable Gate Arrays 2004

Jianhua Liu, Shuo Zhou, Haikun Zhu, C.K. Cheng, An Algorithmic Approach
for Generic Parallel Adders, IEEE/ACM International Conference on Computer
Aided Design 2003

Jianhua Liu, Shuo Zhou, Haikun Zhu, K.T. Tseng, C.K. Cheng, Optimal Parallel-
Prefix Adders using a Dynamic Programming Algorithm, International Workshop
on Logic and Synthesis 2003

FIELDS OF STUDY

Major Field: Computer Science
Studies in VLSI CAD
Professor Chung-Kuan Cheng

x

ABSTRACT OF THE DISSERTATION

Contemporary Data Path Design Optimization

by

Jianhua Liu

Doctor of Philosophy in Computer Science

University of California, San Diego, 2006

Professor Chung-Kuan Cheng, Chair

As the core of most digital computing systems, data-path design is es-

sential to determine the whole system performance. In the past decades many ad-

vanced methodologies and technologies have been proposed to optimize data-path

designs. Nowadays new design requirements are emerging with the technology

development:

• Low power design. Power consumption becomes more critical issue than

performance in modern data-path designs, especially for mobile device ap-

plications.

• Extremely high performance design for micro processors. With the shrink of

feature size and the increase of clock frequency, extremely high performance

data-path components operated on multiple giga-hertz clock are required in

micro processor designs.

• High performance low cost design for ASIC. Application-specific design con-

straints, such as area/power budget and non-uniform signal required times,

must be satisfied.

Inspired by these requirements, we propose two optimization techniques

to efficiently minimize power consumption and achieve timing/area/power tradeoff

for specific applications.

xi

1) Binary addition is the most widely used fundamental operations. Var-

ious applications require different adder designs for high speed, small area or low

power consumption. Since parallel prefix adders provide great flexibility to satisfy

a specific application, we propose an integer linear programming method to build

optimal prefix adders, which counts gate and wire capacitances in the timing and

power models. Furthermore the proposed method can handle nonuniform arrival

time and required time on each bit position. Therefore, a realistic minimal-power

prefix adder can be found with arbitrary timing and area constraints.

2) Division is a fundamental but expensive arithmetic operation. We

analyze the computation efforts from memory, arithmetic functions and iterations

in division operation and propose a hybrid algorithm which employs Prescaling,

Series expansion and Taylor expansion (PST) algorithms together. The proposed

algorithm boosts very-high radix division by efficiently estimating the reciprocal

of divisor, and achieves outstanding performance-cost tradeoff. Optimizations of

the basic PST algorithm are also developed to improve the performance further.

The proposed algorithm is suitable for both ASIC and FPGA applications with

high-performance division units.

These research works optimize data-path designs in different levels from

algorithm to logical/physical synthesis. Unlike the previous works, both approaches

proposed in the dissertation explore the design space in terms of timing, area and

power consumption.

xii

I

Introduction

I.A Introduction

Computer hardware has experienced the most dramatic improvement in

capabilities and costs in its short 50-years. Nowadays computing devices are part

of everyday applications. They are not only the microprocessors in computers

but also digital signal processors (DSP) and other application-specific integrated

circuits (ASIC). With the increasing demand from various applications and the

rapid advances in integration technologies, large-scale computing system (VLSI)

design becomes to a very promising but challenging topic.

Fig. I.1 shows the typical VLSI design flow. It starts from a behavior

description. The behavior description is then transformed to a structure descrip-

tion which includes functional modules, such as registers and arithmetic logic units

(ALU), and their interconnections. The geometrical layout on the chip is deter-

mined afterwards. Individual functional modules are implemented as leaf cells.

Physical design including detail placement and routing is performed next. Al-

though the design flow has been described in linear fashion for simplicity, in reality

there are many iterations back and forth, especially between any two neighboring

steps. Both top-down and bottom-up approaches have to be combined. It is very

important to feed forward low-level information to higher levels (bottom up) as

1

2

Figure I.1 VLSI Design Flow

early as possible.

Each computing system can be functionally partitioned to data-path and

accessorial control logic. Data-path contains data storage components and data

processing components. In most computing systems, data-path dominates the

whole system performance and cost. For example, Fig. I.2 demonstrate the layout

of Intel Pentium microprocessor. Around 80% area is occupied by data-path com-

ponents. Therefore data-path design, especially the arithmetic logic unit design is

extremely important.

I.B Computing Arithmetic

Computing algorithms are various for different applications. Some algo-

rithms are complicated such as Discrete Cosine Transformation (DCT) or COor-

dinate Rotation DIgital Computer (CORDIC). However almost all the algorithms

are composed by four fundamental arithmetic operations: addition, subtraction,

3

Figure I.2 Layout of Pentium Microprocessor

multiplication and division. IEEE standard 754 [1] defines formats for representing

numbers with the four arithmetic operations that operate on these values, and is

followed by many microprocessor implementations.

Binary addition is the most fundamental operation. It is widely used in

more complex operations like multiplication and division. Also it is the base of sub-

traction, increamentation and magnitude comparison. Therefore the performance

of binary adder is very critical. However the binary addition problem involves

an slow carry-propagation step, the evaluation time of which is dependent on the

operand word length. The efficient implementation of the addition operation in an

integrated circuit is a key problem in VLSI design.

Multiplication can be considered as multiple-operands addition. It can

take advantage of the efficient carry-save addition instead of carry-propagation.

Modern multiplier architectures use Wallace trees [2] to add the partial products

together in a single cycle. The performance of the Wallace tree implementation is

sometimes improved by Booth encoding [3] [4] one of the two multiplicands, which

reduces the number of partial products that must be summed.

Division is the inverse of multiplication. Compared with the three other

fundamental operations, division is much more expensive in terms of both timing

4

and area. It is due to the interleaving dependency between partial quotients and

partial remainder. Existing division algorithms fall into two main categories: high-

radix division and very-high-radix division. Today high-radix division becomes the

performance bottleneck of modern microprocessors. Therefore, how to implement

very-high-radix division and reduce the hardware overhead turns to an important

research problem.

I.C Challenges on Data-path Design

The technology development of VLSI is mainly driven by the steady de-

crease of feature size. The scaling effect makes the transistor density increasing

exponentially. It validates the Moore’s law, number of transistors per integrated

circuit doubles every two years, as shown in Fig. I.3. However the scaling effect

also bring several challenges on data-path design.

Figure I.3 Moore’s Law

1. Power Consumption. With the increasing transistor density and clock fre-

quency, power consumption is also enlarged exponentially. Fig. I.4 shows

the power consumption change with feature size shrinking on Intel micro-

processors. Nowadays power consumption, instead of performance, becomes

the most critical concern in many data-path designs, especially for mobile

device applications. Accordingly power optimizations are required on every

5

design step. For data-path design, algorithm level and logic synthesis level

optimization algorithms need to be revised or developed to minimize power.

Figure I.4 Scaling Effect on Power Consumption

2. Physical Synthesis. Gate delay is used to dominate the system performance.

However with the decrease of feature size, interconnect delay becomes more

and more significant. When feature size is smaller than 0.25um, intercon-

nect delay is comparable, and in some cases much greater than gate delay,

as shown in Fig. I.5. This shift enlarges the gap between logical design and

physical design. To compensate the gap, physical information must be con-

sidered in logic synthesis step. Therefore, physical synthesis is necessary, to

merge logic synthesis with physical design.

3. Advanced CAD tools. High transistor density enables ultra large scale in-

tegrated circuits. It makes the design complexity extremely huge. On the

other hand, the demand of ASIC designs is rising fast. Manual design is not

capable to produce high quality designs in short period. The burden on effi-

cient CAD tools to support the high-performance and large scale data-path

design is bigger than ever.

We will addressed on these challenges in the dissertation.

6

Figure I.5 Scaling Effect on Gate and Wire Delay

I.D Dissertation Overview

Inspired by the challenges appearing on data-path, we propose a power

efficient algorithm for the high performance division and a power-oriented physical

synthesis approach on binary addition.

Chapter II introduces the basic addition principles and structures. The

existing binary adder structures including ripple-carry, carry-skip, carry-select

adders and parallel prefix adder. Among these adders, parallel prefix addition

provides the maximal flexibility. Several classical regular and irregular prefix struc-

tures are also discussed in this chapter.

Chapter III first presents the comprehensive timing/area/power model

used in the proposed method, which involves gate capacitance as well as wire

capacitance based on physical layout. An Integer Linear Programming (ILP) ap-

proach is then proposed to optimize power consumption for prefix adders and

provide good design flexibility.

Chapter IV introduces the previous division algorithms including non-

restoring division, SRT division, Prescaling division in high-radix division category,

and Taylor expansion division, series expansion division in very-high-radix division

7

category. Furthermore, we will propose the concepts of iteration effort, memory

effort and arithmetic effort, and use them in the analysis of previous algorithms.

In Chapter V, we present an hybrid division algorithm which combines

Prescaling, Series expansion and Taylor expansion algorithm together. It is so

called PST division. The proposed algorithm efficiently utilizes the strength of

iteration effort, memory effort and arithmetic effort to achieve high performance

and low power. It can be applied on both ASIC and FPGA applications. Especially

for FPGA, it can fully take advantage of built-in memory and multiplier blocks.

The final chapter concludes with a brief summary of the contributions

made in this dissertation.

II

Binary Addition Background

This chapter introduces the definition of binary addition and popular

binary adders. Especially we will address on prefix adders following the concept

of prefix addition. Several classical prefix structure will be reviewed.

II.A Binary Addition Basic

Binary addition is the simplest arithmetic operation. The binary addition

problem is defined as follows: given an n-bit augend A, an n-bit addend B, and

a 1-bit carry-in c0, generate the n-bit sum S and the 1-bit carry-out cn. Suppose

A = an−1 . . . a1a0 and B = bn−1 . . . b1b0, we define si and ci as:

si = ai ⊕ bi ⊕ ci (II.1)

ci+1 = aibi + aici + bici (II.2)

Following the definition of binary addition, ripple-carry adder composes

a combinational circuit using n full-adders connected in series. Each full adder

performs single-bit addition according to the previous equations. Fig.II.1 shows

the structures of full-adder and ripple-carry adder.

The critical path of ripple carry adder is from the first bit through the

carry propagate chain to the last bit. Therefore, the timing complexity of ripple-

carry adder is n. The shortage of ripple-carry adder is its poor performance. The

8

9

Figure II.1 (a)Full Adder (b) Ripple-Carry Adder

Manchester carry chain [5] is a circuit-optimized implementation of a ripple-carry

adder. By using serially connected high-speed pass transistor, a Manchester carry

chain reduces the carry propagation delay to n transistors.

To reduce the logic depth further, the carry-skip and carry-select adders

were developed as two group-based binary adders accelerating the carry propa-

gation across each group. The carry-skip adder [6] computes a group propagate

signal. The carry-out of a group can be directly calculated from the product of

the carry-in and the group propagate signal, as shown in Fig.II.2. Hence, the logic

depth of an optimal carry-skip adder [7] decreases to O(
√

n).

Figure II.2 Carry-Skip Adder

Different from carry-skip adders, the concept behind carry-select adders

[8] is that two parallel additions on a group are performed for the carry-in equal

to 0 and 1. When the true carry-in is obtained, the correct result is selected, as

shown in Fig.II.3. The conditional-sum addition [9] introduces a binary selection

tree to determine the complete sum. The tree topology helps to reduce the logic

depth to O(log n).

10

Figure II.3 Carry-Select Adder

II.B Parallel Prefix Addition

The carry lookahead adder [10]is probably the best-known adder imple-

mentation. It was proposed in 1956, and formulated as parallel prefix compu-

tation [11] in 1980. The formula provides a simple expression as well as great

flexibility.

II.B.1 Prefix Computation

Ladner and Fischer defined the prefix problem as: Let • be an associative

operation on n inputs x1, . . . , xn, to compute each of products x1 •x2 • . . .•xk, 1 ≤
k ≤ n. In the application of binary addition, the input of prefix computation is a

group of binary vectors with two domains gi (generate) and pi(propagate):

gi =





c0, if i=0

aibi, otherwise

(II.3)

pi =





0, if i=0

ai ⊕ bi, otherwise

(II.4)

(Pre-processing)

If gi equals 1, a carry is generated at bit i; otherwise if pi equals 1, a carry is

propagated through bit i. By prefix computation, the concept of generate and

11

propagate can be extended to multiple bits. We define G[i : k] and P [i : k] (i ≥ k)

as:

G[i:k] =





gi, if i=k

G[i:k] + P[i:j]G[j−1:k], otherwise

(II.5)

P[i:k] =





pi, if i=k

P[i:j]P[j−1:k], otherwise

(II.6)

(Prefix computation)

To simplify the representation, we continue to use the same operator to denote the

prefix computation on (G,P):

(G,P)[i:k] = (G,P)[i:j] • (G,P)[j−1:k] (II.7)

The width of the (G,P) term is calculated by i− k + 1. For final outputs, si and

ci can be generated from G and P :

ci = G[i:0] (II.8)

si = pi ⊕ ci−1 (II.9)

(Post-processing)

Since pre-processing and post-processing have constant delay, prefix com-

putation becomes the core of prefix adders and dominates the performance. A

visual representation of prefix computation structures is to use directed acyclic

graphs. Fig.II.4 shows some basic structures in [11].

For (G,P) computation in binary addition problem, it has two important

properties:

• Property 1: (G,P) computation is associative. That is

(G,P)[i:k] = (G,P)[i:j] • (G,P)[j−1:k]

= (G,P)[i:l] • (G, P)[l−1:k], i ≥ l, j > k (II.10)

12

 1 2 3 4 1 2 3 4 5 1 2 3 4 5

Pk(4) P0(5) Pk(5)

Figure II.4 Directed Acyclic Graphs of Prefix Structures

• Property 2: (G,P) computation is idempotent. That is

(G,P)[i:k] = (G,P)[i:j] • (G,P)[j−1:k]

= (G,P)[i:j] • (G,P)[l:k], i ≥ l > j − 1 ≥ k (II.11)

These two properties limit the design space of parallel prefix adders. That is the

solution space of (G, P) computation covers every tree-like structures defined under

bit width n.

II.B.2 Regular Prefix Adders

Ladner and Fischer proposed an algorithm to construct a prefix adder

after the definition of the prefix problem. Given the bit width n and depth re-

quirement T ≥ dlog ne = M , the algorithm constructs a prefix structure recur-

sively. Assuming C = T −M , which is referred as extra depth, Fig.II.5 presents

the recurrence:

Ladner and Fischer’s method not only provides a possible way to achieve

minimal depth, but also establishes a depth-area tradeoff for the first time. The

upper bound of area is:

APC(n) < 2(1 +
1

2C
)n− 2, n ≥ 1 (II.12)

Their ideas of recursively divide-and-conquer, half-half bipartition and odd-even

bipartition are very inspiring. Many following works applied similar ideas.

13

absent if n even

PC-1(n/2)

n inputs

P0(n/2) P1(n/2)

n/2 n/2
(a) C=0, half-half bipartition (b) C>0, odd-even bipartition

Figure II.5 The Construction of PC(n)

The Kogge-Stone adder [12] is another classic prefix structure that reaches

minimal depth of log n. However, it utilizes a different idea instead of half-half

bipartition. In each level l, The Kogge-Stone adder constructs all (G,P)s as wide

as possible. Therefore, any (G,P) with width equal to or smaller than 2l will be

achieved. After log n levels, the prefix structure generates all needed outputs. A

8-bit Kogge-Stone structure is shown in Fig.II.6(a). One shortage of the Kogge-

stone adder is a large area overhead, which is n ∗ log n − n + 1. It comes from

the extremely greedy algorithm. The algorithm can be understood as calculating

(G,P)s for every bit position separately, and no share between them. However, a

positive effect is that the fanout of each node is limited to 2. In contrast, the max

fanout increases exponentially in half-half bipartition algorithms.

 1 2 3 4 5 6 7 8

1 2:1 3:1 4:1 6:1 7:1 8:1 5:1

1 2 3 4 5 6 7 8

1 2:1 3:1 4:1 6:1 7:1 8:1 5:1

(a) Kogge-Stone prefix adder (b) Brent-Kung prefix adder

Figure II.6 Kogge-Stone and Brent-Kung Prefix Adders

14

The Brent-Kung adder [13] is an area-effective adder proposed in 1982.

It builds a complete binary tree for the most significant bit first, and then adds

at most one (G,P) addition for each unvalued bits. Thus the area is reduced to

2n − log n − 2, and the depth is kept within the same order, which is 2 ∗ log n.

Fig.II.6(b) shows the diagram representations of an 8-bit Brent-Kung adder. If

looking at the structure carefully, we can find that the Brent-Kung adder is a

special case of Ladner-Fischer structures when the extra depth C equals log n. In

other words, Brent-Kung structures are built from the pure odd-even bipartition

algorithm.

Very similar to the tradeoff in Ladner-Fischer structures, a depth-area [14]

tradeoff exists between the Kogge-Stone and Brent-Kung adders. It is a combi-

nation of odd-even bipartition and greedy algorithms. The odd-even bipartition

algorithm takes advantage of the extra depth to reduce the problem to 2M

2C , and the

greedy algorithm builds the core with minimal depth of M − C. Fig.II.7 shows a

16 bits prefix structure with depth 6. It spends two more levels compared with the

minimal depth Kogge-Stone adder, but reduces the area from 49 to 27. In general,

the area is bounded by 2M−C ∗ (2C+1 +M −C − 3)+2C −C. And the max fanout

is limited by the extra depth C.

 9 10 11 12 13 14 15 16

9:1 10:1

1 2 3 4 5 6 7 8

1 2:1 3:1 4:1 6:1 7:1 8:1 5:1 11:1 12:1 13:1 14:1 15:1 16:1

Kogge-Stone

Structure

Brent-Kung

Structure

Brent-Kung

Structure

Figure II.7 Tradeoff between Kogge-Stone and Brent-Kung Adders

All algorithms introduced so far have depth of O(log n) with various area

15

and fanout overheads. These constructive methods are very effective when the

signal arrival profile is uniform. However, their shortage is that they are not

flexible enough to explore the whole solution space and find an optimized solution

for a specific application.

II.B.3 Irregular Prefix Adders

John Fishburn [15] demonstrated a process to convert a ripple-carry adder

into a carry-lookahead adder, which gives a first view of the solution space of

prefix computation structure. The original ripple prefix structure has n depth. It

corresponds to a ripple-carry adder in topology, as shown in fig.II.8.

an bn b2 a2 b1 a1

c0 c1 cn-1 cn
FA FA FA

(a)

1 C0 2 n

(b)

Figure II.8 Transform to Ripple-Carry Adder

A simple local operation is performed iteratively to reduce the logic depth.

The operation called peephole transformation is shown in Fig.??. The overall

algorithm is in a greedy fashion: peephole transformation is iteratively performed

on the current critical path, until depth requirement is satisfied. The final structure

is very close to a Ladner-Fischer adder. Fig.?? illustrates a resulting structure with

depth of 2 log n.

Fishburn’s work shows an optimize procedure to decrease depth according

to the current situation. More importantly, a powerful tool, peephole transforma-

tion, is introduced to explore the solution space. However, its greedy heuristic

algorithm limits the scope of solution searching and cannot guarantee to find the

optimal solution. Furthermore, although Fishburn showed that ripple-carry adder

can be covered by prefix structure topologically, he didn’t explicitly indicate the

16

positions of other conventional adders in the solution space.

(a) (b)

Figure II.9 Peephole Transformation

 9 10 11 12 13 14 15 16

9:10:

1 2 3 4 5 6 7 8

1 2:3:4:6:7:8: 5:11:12:13:14:15:16:

25 26 27 28 29 30 31 32

26:

17 18 19 20 21 22 23 24

27:28:29:30:31:32: 19:20:21:22:23:24:25: 17:18:

Figure II.10 Fishburn’s Result

Reto Zimmermann [16] completed Fishburn’s work on 1996. Zimmer-

mann presented the solution space of prefix structure covers all the tree structure

including some conventional adders: ripple-carry adders, carry-select adders, and

conditional sum adders (also known as Sklansky adders). Fig.II.11 shows the prefix

structures corresponding to a carry-select adder, a multi-level carry-select adder

and a conditional sum adder.

Zimmermann furthermore extended the manipulating operation by adding

the inverse of peephole optimization. These two operation plus a non-heuristic al-

gorithm can fully probe all feasible tree structure as well as potential area-time

tradeoffs. The algorithm compresses a prefix graph to obtain a faster implemen-

tation, and then expands the prefix graph to reduce area. This approach benefits

from the high flexibility, and get good results for many specific environments, such

17

 1 C0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 20 23 22 25 24 27 26 29 28 31 30 1 C0 3 2 5 4

(a) (b)

1 C0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 20 23 22 25 24 27 26 29 28 31 30

(c)

Figure II.11 (a)Carry-Select (b)Multi-Level Carry-Select and (c) Sklansky

as non-uniform signal arrival profile and non-uniform output requirement profile.

The only weakness is that the algorithm doesn’t guarantee the resulting structure

can achieve minimal delay under non-uniform signal arrival profile. The expansion

procedure to reduce area is a kind of greedy algorithm, which converts most signif-

icant bits into ripple structure, as shown in Fig.II.12. The algorithm is effective,

but may not reach the minimal area. The minimal area for arbitrary bit width

and required logic depth is still unknown.

 1 C0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 20 23 22 25 24 27 26 29 28 31 30

Figure II.12 Greedy Expansion

18

II.C Binary Addition Summary

Among existing binary adders, parallel prefix adder provide the maxi-

mal flexibility to fit various design requirements, from high performance to low

cost. Parallel prefix adder can cover ripple-carry adder, carry-skip adder and

carry-select adder in term of topology. Prefix adders can be classified into two cat-

egories: regular structure and irregular structure. In regular structure category,

the Kogge-Stone adder and the Brent-Kung adder have the lower bound of logic

depth and the lower bound of area respectively. In practice, Kogge-Stone adder is

considered as the fastest regular prefix adder. However, regular structure cannot

handle non-uniform input arrival times or output required times. In this case,

irregular structure can be produced by manipulating a prefix structure with local

operations. The method proposed by Fishburn and Zimmermann is very effective

in practical ASIC designs.

Although the design space of prefix adder seems to have been well-studied,

the common timing/area model in these previous works is still idealistic. The con-

cept of logic levels is used to estimate timing and even input arrival time. However,

the real delay is not proportional to the number of logic levels. It highly depends

on gate size and total load capacitance including both gate capacitance and wire

capacitance. With technology development, wire load capacitance becomes more

and more significant, and makes more impact on the idealistic model. For area,

using the total number of elements as the estimation of area does not considered

the bit-slice placement for data-path. The width of a prefix adder is decided by

the operand bit-width and the depth is actually limited by the maximal number

of elements in each bit-slice. Furthermore, power consumption becomes an impor-

tant design issue which is not studied in previous works. These changes demand a

comprehensive timing/area/power model and a new methodology for prefix adder

synthesis, to reduce the gap between high-level synthesis and back-end design.

Therefore, the new model should incorporate physical placement to accurately es-

19

timate area and wire capacitance, count both gate and wire capacitance in timing

and power estimation, and consider static power and dynamic power with activity

probability. On the other hand, a methodology based on the new model should

have the capabilities to handle non-uniform input arrival times and output required

times and even perform gate sizing and buffer insertion.

III

ILP on Prefix Addition

In this chapter, we will propose an Integer Linear Programming method

to construct minimal power prefix adder with comprehensive area/timing/power

model. The ILP method is also extended to support gate sizing, buffer insertion

and hierarchical design.

III.A Area/Timing/Power Model

In the new area model, we will consider physical placement instead of

using logical structure as physical layout. Based on the physical placement, both

gate capacitance and wire capacitance can be well estimated. It enables the ac-

curate linear timing model as well as the accurate power model including both

dynamic and static power consumption.

III.A.1 Area Model

As a datapath component, prefix adder will keep the bit-slice structure

in the placement, which is consistent with the logical structure. However, with

each column each GP adder can take advantage of any empty space in the same

bit-slice. When all the empty bubbles are below the GP adders in one bit-slice, it’s

called “compact placement”. Fig.III.1 shows the compact placement of the 8-bit

Brent-Kung adder.

20

21

Figure III.1 Compact Placement of the 8-bit Brent-Kung Adder

It can be observed that the physical depth required to hold a prefix adder

can be smaller than the logical depth. The lower bound of physical depth is the

max number of GP adders in one bit-slice. Known the physical depth, denoted as

m, the physical area is formulated to n×m.

Area = n×m (III.1)

III.A.2 Timing Model

We adopt a linear timing model following the concept of logical effort.

Fig.III.2 shows the structure and logical effort of an inverting CMOS GP adder

in [17].

Figure III.2 Structure and Logical Effort of Inverting CMOS GP Adder

22

Assuming the G path is always slower than the P path, the previous

model can be simplified to a two-inputs one-output format. The logical effort

formulation is written as:

LEl = 10.5/3 = 1.5 (III.2)

LEr = 6/3 = 2 (III.3)

PD = 7.5/3 = 2.5 (III.4)

Given the logical effort and the parasitic delay, the gate delay depends

on the ratio of output load and input capacitance. When gate size is uniform,

the gate delay can be calculated from load capacitance. The result unit is 1
5

FO4

delay, denoted as 1
5
DFO4. Accordingly, the timing model of an GP adder is shown

as follows:

Delayl = 1.5 · Cload + 2.5 (III.5)

Delayr = 2 · Cload + 2.5 (III.6)

In terms of load capacitance, it is composed of gate capacitance and wire

capacitance. Gate capacitance can be derived directly from the number of fanouts,

when every GP adder has unit input capacitance. Wire capacitance is linear to

the wire length, which depends on the physical placement. For given physical

placement, the total wire length driven by a GP adder is estimated by the number

of columns and rows occupied by the bounding box around all the fanouts. It

matches with the daisy-chain interconnect structure. Hence the wire capacitance

can be calculated as the total wire length scaled by a scaling factor. We pick 0.5

as the scaling factor for current technology. Note that all the parameters can be

various for different technology .

23

III.A.3 Power Model

Power consumption of CMOS circuit includes two parts: (a) dynamic

power consumption (b) static power consumption. The dynamic power consump-

tion is mainly due to the charge and discharge of capacitance. Hence the activity

probability of each GP adder is an essential factor in dynamic power estimation.

Vanichayobon [18] analyzes the activity of prefix adder and proposes a power con-

sumption model, shown as follows, where d is the logical depth of the prefix network

and wi is the number GP adders in level i.

d∑
i=1

i · wi (III.7)

The equation demonstrates the switching probability of each node in level

i. To incorporate the other key factor, load capacitance, the equation (III.7) is

revised to equation (III.8), where Ci is the total load capacitance in level i.

d∑
i=1

i · Ci (III.8)

Nowadays static power consumption grows fast with the technology de-

velopment. It is independent from switching activities but proportional to the

number of GP adders when gate size is uniform. To make the static power con-

sumption comparable with dynamic power, we use 3 times the total number of GP

adders as the estimate. The result unit is 1
4

FO4 switching power consumption,

denoted as 1
4
PFO4. Thus the total power consumption is calculated by:

Power =
d∑

i=1

i · Ci + 3.0 ·
d∑

i=1

wi (III.9)

III.B Basic ILP Formulation

In this section we present the ILP formulations to describe the prefix

adder problem according to the area/timing/power models proposed in the pre-

24

vious section. The first subsection demonstrates the representations of a prefix

adder and its physical placement, followed by GP property constraints described

in subsection 2. Subsection 3 characterizes the calculation of load capacitance for

each GP adder. Based on the load capacitance, timing constraints and power

optimization objective are displayed in the following subsections.

III.B.1 Structural Constraints and Physical Placement

The ILP representation of a prefix adder is quite straightforward to match

with the logic view of a prefix adder. It describes GP adders and interconnections

in the n × d array, where n is the operand bit-width and d is the logical depth.

The bit-slice structure is kept for each column: the left fanin of each GP adder is

always from some one above in the same column, and the right fanin is connected

from the top-right quadrant. Also, at least one input is from the previous logical

level. This bit-slice property is referred as Bit-slice rule in the ILP constraints.

To guarantee the described structure is a feasible prefix network, the

GP property and GP operation rules must be satisfied. That is, each GP adder

should cover a certain segment which is determined by the left and right inputs.

In additional, the two inputs must cover two adjacent segments. The primary

output at column i should cover the certain segment [i,1]. This GP rule will be

formulated in the ILP constraints.

So far the aforementioned ILP formulation has defined all the feasible

prefix networks for the given bit-width n and logical depth d. The next step is to

place a prefix network in a physical n ×m array, where m is the physical depth.

As mentioned in the area model, all GP adders in one logical column are placed

in the same physical column. The only constraint is that no two GP adders are

placed on the same physical position. (Overlap rule)

According to the previous discussion, we define the following variables:

• x(i,j) ∈ {0, 1}: 1 if and only if an GP adder is in the ith bit and jth level 1,

1We call this column i and row j, or simply position (i,j) later on

25

for every (i, j) in the n× d array.

• wL
(i,j,h) ∈ {0, 1}: 1 if and only if there is a left fanin wire to position (i,j)

from position (i,h), and h < j.

• wR
(i,j,k,l) ∈ {0, 1}: 1 if and only if there is a right fanin wire to position (i,j)

from position (k,l), and k < i, l < j.

• wZ
(i,j) ∈ {0, 1}: 1 if and only if the output of the GP adder (i,j) connects to

the primary output in column i.

• yL
(i,j), y

R
(i,j) ∈ [1, n]: the left and right segment bounds of GP adder (i,j).

That means the GP adder in position (i,j) covers the segment [yL
(i,j):y

R
(i,j)].

• p(i,j) ∈ [0,m]: the physical level of GP adder (i,j). Then its physical position

will be (i,p(i,j)).

The following constraints correspond with the Bit-slice rule, GP rule

and Overlap rule:

Bit-slice rule:

∑

h

wL
(i,j,h) = x(i,j) ∀(i, j) i > h (III.10)

∑

(k,l)

wR
(i,j,k,l) = x(i,j) ∀(i, j) i > k&j > l (III.11)

wL
(i,j,j−1) +

∑

k

wR
(i,j,k,j−1) ≥ x(i,j) ∀(i, j) (III.12)

∑
j

wZ
(i,j) = 1 ∀i (III.13)

GP rule:

yL
(i,j) = yL

(i,h) if wL
(i,j,h) = 1 (III.14)

yR
(i,j) = yR

(k,l) if wR
(i,j,k,l) = 1 (III.15)

yR
(i,h) = yL

(k,l) + 1 if wL
(i,j,h) = 1 and wR

(i,j,k,l) = 1 (III.16)

yL
(i,j) = i if wZ

(i,j) = 1 (III.17)

yR
(i,j) = 1 if wZ

(i,j) = 1 (III.18)

26

Overlap rule:

p(i,j) 6= p(i,h) ∀i j 6= h (III.19)

A problem in the GP rule is that these constraints are conditional con-

straints, which cannot be handled by ILP solver directly. They have to be trans-

formed to strict linear constraints. Equation (III.20) and (III.21) shows the linear

format of equation (III.14).

yL
(i,j) ≥ yL

(i,h) − n · (1− wL
(i,j,h)) (III.20)

yL
(i,j) ≤ yL

(i,h) + n · (1− wL
(i,j,h)) (III.21)

It can be observed that when wL
(i,j,h) = 1, yL

(i,j) is restricted to yL
(i,h), otherwise

these constraints are cancelled by the product term. It is important to notice

that these constraints may not be effective until variable wL is integerized. We

call them ”pseudo-linear” constraints. Pseudo-linear constraint is harmful to the

performance of ILP solver, because it will reduce the chance to cut off infeasible

solutions before every integer variable has been exactly determined.

III.B.2 Capacitance Constraints

Load capacitance is the essential parameter for both timing and power

estimation. It includes gate load capacitance and wire load capacitance. Gate

load capacitance depends on all the logical connections from a GP adder. Assume

each GP adder has a unit input capacitance, the gate load capacitance can be

calculated by the number of fanouts from a GP adder. (Gate rule)

The wire capacitance highly depends on the physical positions of each GP

adders. As mentioned in timing model, we use the half perimeter of the bounding

box covering all fanouts as the measure of wire length, as shown in Fig.III.3.

The height/width of the bounding box is the max vertical/horizontal

distance of each fanout. Based on the known wire length, wire capacitance is the

product of a scaling factor and the wire length. We pick 0.5 as the scaling factor to

27

Figure III.3 Wire Length Estimation

represent the ratio of unit-length wire capacitance to unit gate capacitance. (Wire

rule)

Following variables are defined for capacitance calculation:

• cG
(i,j) ∈ [0, Cmax]: The gate load capacitance on GP adder (i,j). And Cmax

is a large constant representing the max load capacitance value.

• cWV
(i,j) ∈ [0, Cmax]: The wire load capacitance from the vertical height of the

fanout bounding box.

• cWH
(i,j) ∈ [0, Cmax]: The wire load capacitance from the horizontal width of

the fanout bounding box.

• c(i,j) ∈ [0, Cmax]: The total load capacitance on GP adder (i,j).

The Gate rule and Wire rule in ILP formulation list as follows:

Gate rule:

cG
(i,j) =

∑

h

wL
(i,j,h) +

∑

(k,l)

wR
(i,j,k,l) + wZ

(i,j) ∀(i, j) (III.22)

Wire rule:

cWV
(i,j) ≥ 0.5(p(i,h) − p(i,j)) if wL

(i,j,h) = 1 (III.23)

cWV
(i,j) ≥ 0.5(p(k,l) − p(i,j)) if wR

(i,j,k,l) = 1 (III.24)

cWH
(i,j) ≥ 0.5(k − i) if wR

(i,j,k,l) = 1 (III.25)

Total load capacitance:

c(i,j) = cG
(i,j) + cWV

(i,j) + cWH
(i,j) ∀(i, j) (III.26)

28

Note that the constraint of gate rule is linear, while the constraints in

wire rule are all pseudo-linear. Hence the capacitance calculation is partial linear

to the structure variables.

III.B.3 Timing Constraints

The timing analysis on the prefix structure is performed from top to

bottom. The start points are the primary inputs with input arrival times, while

the end points are the primary outputs, whose output times should be smaller

than output required times. The output time of each GP adder is the max path

delay from input, which depends on the left and right input arrival times and the

gate delay described in the previous section. (Output rule) Input arrival times

are obtained from the output times of two fanins. (Input rule)

We define following variables for input arrival times and output times:

• tL(i,j), t
R
(i,j) ∈ [0, Tmax]: the left and right input arrival times of GP adder

(i,j).

• t(i,j) ∈ [0, Tmax]: The output time of GP adder (i,j). Tmax is a large

constant.

• tZi ∈ [0, Tmax]: The primary output arrival time at each bit-slice.

The Input rule and Output rule are formulated as:

Input rule:

tL(i,j) = t(i,h) if wL
(i,j,h) = 1 (III.27)

tR(i,j) = t(k,l) if wR
(i,j,k,l) = 1 (III.28)

tZi = t(i,j) if wZ
(i,j) = 1 (III.29)

Output rule:

t(i,j) ≥ tL(i,j) + 1.5 · c(i,j) + 2.5 (III.30)

t(i,j) ≥ tR(i,j) + 2.0 · c(i,j) + 2.5 (III.31)

tZi ≤ OutputRequiredT ime(i) (III.32)

29

Among these timing constraints, the input arrival time constraints are

pseudo-linear, and they are critical to the entire timing analysis. Conceptually the

timing analysis cannot be finished until all structural variables are integerized.

III.B.4 Power Consumption Objective

Following equation (III.9), the total power consumption objective can be

easily described as follow:

Minimize
∑

(i,j)

j · c(i,j) + 3.0 ·
∑

(i,j)

x(i,j) (III.33)

The first term represents the dynamic power consumption and the second term

corresponds to the static power consumption. Note that the static power is linear

to the total number of GP adders, but the dynamic power is not entirely linear to all

the structural variables. The wire load capacitance is pseudo-linear to connection

variables. However, the gate load capacitance is linear to the structural variables.

Overall, the linear components still dominate the total power consumption. With

this property, ILP solver can efficiently search the solution space and find the

optimal solutions quickly.

III.C Extended ILP Formulations

While the basic ILP formulation already supports the comprehensive area,

timing and power model, there are two important logical optimization method

missing in the formulation. This section will present two extended ILP formulations

supporting gate sizing and buffer insertion.

III.C.1 Supporting Gate Sizing

Gate sizing is a popular logical optimization technique to improve per-

formance. To support gate sizing in the ILP formulation, the influence on each

parameters should be studied first. For a given prefix structure, gate sizing has

30

no effect on interconnect relations or GP property. So the structural constraints

and GP property constraints keep unchanged. However it changes the input load

capacitance and the driving strength of a GP adder. For example, if the size of an

GP adder is enlarged x times, the input load capacitance will increase by x times

too. (Sizing-cap rule) At the same time, the logical effort delay will decrease

x times while the parasitic delay keeps the same. (Sizing-delay rule) Beside

the effect on capacitance and timing analysis, gate sizing also increases the static

power consumption linearly.

We define two sets of variables to represent the sizes of GP adders:

• s2
(i,j) ∈ [0, 1]: 1 if and only if the size of GP adder (i,j) is 2.

• s3
(i,j) ∈ [0, 1]: 1 if and only if the size of GP adder (i,j) is 3.

• sCL
(i,j,h) ∈ [0, Cmax]: Incremental gate capacitance on each left fanin connec-

tion.

• sCR
(i,j,k,l) ∈ [0, Cmax]: Incremental gate capacitance on each right fanin con-

nection.

• sDL
(i,j) ∈ [0, Tmax]: Delay improvement from the left fanin to the output for

GP adder (i,j).

• sDR
(i,j) ∈ [0, Tmax]: Delay improvement from the right fanin to the output for

GP adder (i,j).

These variables can be considered to describe the incremental size of a GP adder.

The actual size of GP adder (i,j) is x(i,j) + s2
(i,j) +2 · s3

(i,j). The maximum gate size

is 3.

The Sizing-cap rule and Sizing-delay rule list as follows:

31

Sizing-cap rule:

sCL
(i,j,h) = s2

(i,j) + 2 · s3
(i,j) if wL

(i,j,h) = 1 (III.34)

sCR
(i,j,k,l) = s2

(i,j) + 2 · s3
(i,j) if wR

(i,j,k,l) = 1 (III.35)

c̃(i,j) = c(i,j) +
∑

h

sCL
(i,j,h) +

∑

(k,l)

sCR
(i,j,k,l) ∀(i, j) (III.36)

Sizing-delay rule:

sDL
(i,j) ≤ 0.75c̃(i,j) if s2

(i,j) = 1 (III.37)

sDL
(i,j) ≤ 1.0c̃(i,j) if s3

(i,j) = 1 (III.38)

sDR
(i,j) ≤ 1.0c̃(i,j) if s2

(i,j) = 1 (III.39)

sDR
(i,j) ≤ 1.3c̃(i,j) if s3

(i,j) = 1 (III.40)

t̃(i,j) ≥ tL(i,j) + 1.5 · c̃(i,j) + 2.5− sDL
(i,j) ∀(i, j) (III.41)

t̃(i,j) ≥ tR(i,j) + 2.0 · c̃(i,j) + 2.5− sDR
(i,j) ∀(i, j) (III.42)

Finally the revised power objective with gate sizing becomes to:

Minimize
∑

(i,j)

j · c̃(i,j) + 3.0 ·
∑

(i,j)

(x(i,j) + s2
(i,j) + 2 · s3

(i,j)) (III.43)

III.C.2 Supporting Buffer Insertion

The extension to support another powerful synthesis technique, buffer

insertion, is more complicated than handling gate sizing. Because the buffer in-

sertion will compromise the consistency between logical and physical connections,

and consequently change the constraints on load capacitance, timing analysis and

power estimation. In this case, it is not enough to present the logical structure

only by structural variables. A complete explicit physical view of each solution

is necessary. On the other hand, logical structure is essential to provide linear

constraints on the objective function. So the extension supporting buffer insertion

will operate on both logical and physical structural variables.

A prefix structure is completely represented in both logical view and

physical view, as shown in Fig.III.4. There is no buffer in the logical view. It

32

Figure III.4 Logical View and Physical View with Buffers

keeps the pure prefix network with logical interconnections. The logical network

is placed in the physical view, and each logical interconnection can be physically

implemented through one or multiple buffers. The physical view must be consistent

with the logical view.

There are mainly two steps to maintain the consistency between the log-

ical and physical views. The matching information must be recorded. That is,

where each GP adder in logical view is placed in physical view, and for each GP

adder or buffer in physical view, which GP adder in logical view it represents for.

(Matching rule) Note that due to the appearance of buffer, a GP adder in logical

view may be represented by one GP adder and multiple buffers in physical view.

Known the matching information, every physical interconnect can be checked if it

represents a valid logical interconnect. (Interconnect rule)

To express the physical view and keep the matching information, we define

the following variables:

• x′(i′,j′) ∈ {0, 1}: 1 if and only if an GP adder is placed in the i′th bit and j′th

level in physical view, for every (i′, j′) in the n×m array.

• b′(i′,j′) ∈ {0, 1}: 1 if and only if a buffer is placed in the i′th bit and j′th level

in physical view, for every (i′, j′) in the n×m array.

33

• w′L
(i′,j′,h′) ∈ {0, 1}: 1 if and only if there is a physical connection from position

(i′,h′) to the left fanin of position (i′,j′).

• w′R
(i′,j′,k′,l′) ∈ {0, 1}: 1 if and only if there is a physical connection from position

(k′,l′) to the right fanin of position (i′,j′).

• w′B
(i′,j′,k′,l′) ∈ {0, 1}: 1 if and only if there is a physical connection from position

(k′,l′) to the buffer fanin of position (i′,j′).

• w′Z
(i′,j′) ∈ {0, 1}: 1 if and only if the output of the GP adder (i′,j′) in the

physical view connects to the primary output in column i′.

• p(i,j,i′,j′) ∈ {0, 1}: 1 if and only if the GP adder (i, j) in logical view is placed

on the position (i′, j′) in physical view.

• q(i′,j′) ∈ ([1, n], [0,m]): the logical coordinate of the GP adder represented

by the component at physical position (i′, j′). For example, if p(i,j,i′,j′) = 1,

then q(i′,j′) = (i, j).

The Matching rule and Interconnect rule are formulated based on

the variables:

Matching rule:

∑

(i′,j′)

p(i,j,i′,j′) = x(i,j) ∀(i, j) (III.44)

x′(i′,j′) =
∑

(i,j)

p(i,j,i′,j′) ∀(i′, j′) (III.45)

q(i′,j′) = (i, j) if p(i,j,i′,j′) = 1 (III.46)

q(i′,j′) = q(k′,l′) if w′B
(i′,j′,k′,l′) = 1 (III.47)

Interconnect rule:

(wL
(i,j,h) = 1)&(q(i′,j′) = (i, j))&(q(i′,h′) = (i, h)) if w′L

(i′,j′,h′) = 1 (III.48)

(wR
(i,j,k,l) = 1)&(q(i′,j′) = (i, j))&(q(k′,l′) = (k, l)) if w′R

(i′,j′,k′,l′) = 1(III.49)

(wZ
(i,j) = 1)&(q(i′,j′) = (i, j)) if w′Z

(i′,j′) = 1 (III.50)

34

The previous variables and constraints provide two consistent logical and

physical views. The GP property constraints can be applied on the logical view

only. The capacitance and timing calculation can be performed on the physical

view. Only two more timing constraints are added for buffer:

tB(i′,j′) = t(k′,l′) if w′B
(i′,j′,k′,l′) = 1 (III.51)

t(i′,j′) = tB(i′,j′) + c(i′,j′) + 1 if b′(i′,j′) = 1 (III.52)

III.D Experimental Results

We implement the ILP formulation of the optimum prefix adders and

solve the problem by CPLEX 9.1 with various timing and area configurations.

For uniform signal arrival/required time profile, the entire 8-bit prefix adder de-

sign space is explored. We then apply this method to non-uniform signal arrival

time applications. Also, for high-bit-width applications, the ILP method can be

employed in a hierarchical design methodology.

III.D.1 Uniform Input Arrival Time

To fully demonstrate the tradeoff between timing, power and area for 8-bit

prefix adder design, we test every timing point with different area settings. The

first starting point is the slowest but smallest structure: ripple carry structure.

Then the timing requirement gradually becomes smaller, which implies tighter

timing constraint, until no more feasible solution can be found. At each time

point different physical depths are applied as area constraints. However, if they

produce the same result, we only record the result associated with the smallest area

constraint. In addition, all of the basic ILP, the extension supporting gate sizing

and the extension supporting buffer insertion are tried. Again, if they produce the

same solution, it is counted as no gate sizing. The timing and power results are

normalized to FO4 delay (DFO4) and FO4 switching power (PFO4).

35

Table III.1 Optimum Prefix adders
Method Timing Depth Power CPU Time

(DFO4) (PFO4) (s)
ILP 10.0 1 20.1 0.31
ILP 10.0 2 17.5 124
ILP (sizing) 9.0 1 25.6 2.83
ILP 9.0 2 17.5 83.4
ILP (sizing) 8.6 1 27.6 1.28
ILP 8.6 2 17.5 93.2
Brent-Kung 7.8 3 19.9 -
ILP 7.6 2 18.0 112
ILP 7.0 2 18.6 99.6
Sklansky 6.8 3 20.8 -
Kogge-Stone 6.2 3 29.0 -
ILP 6.0 2 20.9 259
ILP 5.6 2 22.9 45.7
ILP (sizing) 5.6 2 21.6 756
ILP 5.6 3 21.9 1237
ILP (sizing) 5.0 2 23.6 1208
ILP 5.0 3 25.6 4563
ILP 4.6 3 26.1 7439
ILP (sizing) 4.2 3 27.9 9654
ILP (sizing) 4.0 4 36.4 20211

Note that the number of logical levels is not a parameter any more. In-

stead, it is adjusted by the ILP algorithm automatically. Table.III.1 shows the

ILP results and three classic regular prefix adders, and Fig.III.5 demonstrates the

optimum prefix adders in the design space corresponding to the data in the table.

All the data in the table are based on the area/timing/power model in Section A.

According to the data, there are several observations:

• The ripple carry adder with the minimal area can be faster by gate sizing,

but the power overhead is huge. On the other hand, physical depth 2 and 3

provide great flexibility for 8-bit prefix adders. Fig.III.8 shows the minimal

power prefix adder, and it is 14% faster than ripple carry adder. When timing

requirement is loose, gate sizing is not necessary. With the increase of timing

36

 15.0

 17.5

 20.0

 22.5

 25.0

 27.5

 30.0

 32.5

 35.0

 37.5

 3 4 5 6 7 8 9 10 11

T
o

ta
l
P

o
w

e
r

Delay

Depth = 1
Depth = 2
Depth = 3

Depth (Sizing) = 1
Depth (Sizing) = 2
Depth (Sizing) = 3
Depth (Sizing) = 4

Brent-Kung
Sklansky

Kogge-Stone

Figure III.5 Optimum Timing-Power Curves in the Design Space

requirement, either gate sizing or larger area will help to meet the timing

constraint and reduce power. For extremely high performance adders, both

gate sizing and large area are needed, while the power consumption increases

sharply.

• None of the three classic prefix adders is optimal in terms of either area

or power consumption for the given timing constraints. The Sklansky and

Kogge-stone adders shown in Fig.III.6 and Fig.III.7, are usually considered

as the fastest adders, but they still have more than 35% gap to the fastest

one. Fig.III.9 to Fig.III.13 presents three fastest prefix adders with physical

depth 2, 3 and 4 respectively. They all have 4 logical levels.

• Big gate size is not very helpful for 8-bit prefix adder. Although the max gate

size allowed by the program is 3, only size 2 has appeared in the solutions.

Also there is no buffer insertion in all 8-bit optimal prefix adders with uniform

input arrival and output required time. One possible reason is that for 8-

bit prefix addition, load capacitance is not big enough to take advantage of

buffer insertion.

37

Figure III.6 Sklansky Adder Figure III.7 Kogge-Stone Adder

Figure III.8 Minimal Power Adder Figure III.9 Fastest Adder (Depth:2)

Figure III.10 Fastest Adder (Depth:3) Figure III.11 Fastest Adder (Depth:4)

38

• The CPU time of the ILP solver is the main drawback of the proposed

method. It raises quickly with the increasing timing requirement. The timing

analysis is defined by pseudo-linear constraints. Therefore when timing con-

straint is too tight, ILP solver cannot efficiently verify the feasibility of each

variable assignments. So the proposed method is more suitable for power

optimization problem with moderate timing requirement.

III.D.2 Non-uniform Arrival and Required Times

Besides uniform signal arrival profile, some applications need non-uniform

signal arrival/required times. Binary Multiplier is an example. A binary adder is

used as final adder to sum up two partial product reduced from partial products

reduction tree. The middle bits arrive later than most and least significant bits.

Table III.2 Non-uniform Arrival/Required Time Cases
Case Power Depth
Increasing arrival time 20.8 3
Decreasing arrival time 25.1 3
Convex arrival time 21.6 2

Here we demonstrate the optimum prefix adders for three representative

arrival time profiles: increasing, decreasing and convex. Fig.III.12 to Fig.III.14

illustrate the three test cases solved by the ILP method. The numbers attached

in the square brackets at the inputs and outputs depict the input arrival times

and actual output arrival times. Table III.2 lists the physical depth and power

consumption of each case. These three cases have various structures, which shows

the flexibility of the proposed method. Note that there is still no buffer insertion

in the optimal solutions, although we did see buffers in some intermediate results.

39

Figure III.12 Increasing Input Arrival Time

Figure III.13 Decreasing Input Arrival Time

Figure III.14 Convex Input Arrival Time

40

III.D.3 Hierarchical Design

The previous experiments have shown the advantage of ILP method on

8-bit prefix addition applications. For high-bit-width applications, the ILP method

can be applied in a hierarchical design methodology. There are two reasons to use

hierarchical design methodology instead of pure ILP method. The first reason is

that data-path design favors global regular structures. Global irregular structure

increases the difficulty on detail routing and compromises the circuit reliability.

The second reason is that ILP method is not scalable. The computation load of

ILP solver increase exponentially with the operand bit-width.

ILP is applied to design a 64-bit two level hierarchical prefix adder. Sparse

tree structure [19] is selected as global structure, and each 8-bit prefix block is

generated by ILP method. Fig.III.15 demonstrates the hierarchy structure.

Figure III.15 64-bit Hierarchy Prefix Adder

In both hierarchy levels, each prefix block is 8-bit. The boundary timing

requirement can be negotiated between the two levels. We build 64-bit hierarchical

prefix adder for various timing requirement and compare them with 64-bit Kogge-

Stone, Brent-Kung and Sklansky adders. Table.III.3 shows the results in terms of

delay and power.

The Hierarchical ILP method not only achieves at least 20% power saving

compared with 64-bit Brent-Kung and Sklansky adders, but also reach the same

41

Table III.3 64-bit Prefix Adders
Timing Power

ILP Hierarchy 28 369
Brent-Kung 27 473
ILP Hierarchy 26 370
ILP Hierarchy 24 373
ILP Hierarchy 22 375
ILP Hierarchy 20 379
ILP Hierarchy 18 386
Sklansky 17 492
ILP Hierarchy 16 402
ILP Hierarchy 15 416
Kogge-Stone 15 3032
ILP Hierarchy 14 473

performance as 64-bit Kogge-Stone adder. Fig. III.16 and III.17 demonstrate the

two level physical structures in the fastest 64-bit ILP adder. The level-1 structure

has fast paths from inputs to the MSB output (critical path), but save power for

other bits (non-critical path). The level-2 network utilizes gate-sizing to improve

the drive strength for large fanouts. They all show the flexibility of the ILP method.

Figure III.16 Hierarchical ILP (level 1) Figure III.17 Hierarchical ILP (level 2)

42

III.E Summary

In this chapter, we propose an ILP method to solve minimal power prefix

adders on a comprehensive area/timing/power model. Based on physical placement

information, both gate and wire load capacitances are involved in timing/power

model. Furthermore, the power model counts both static power consumption and

dynamic power consumption with activity probability. This method can handle

non-uniform input arrival times and output required times for each application.

The extension of the method can even support gate sizing and buffer insertion. The

experiments demonstrate the complete 8-bit prefix adder solution space. It also

shows the optimum area, timing and power tradeoff curves which outperform pre-

vious classic structures. For high-bit-width applications, hierarchical ILP method

can generate high-performance prefix adder with low power consumption.

IV

Division Background

This chapter briefly introduces the definition of division and existing divi-

sion algorithms. We also propose the concept of iteration effort, memory effort and

arithmetic effort to analysis the performance and the cost of existing algorithms.

IV.A Division Basic

In mathematics, division is an arithmetic operation which is the inverse

of multiplication, and sometimes it can be interpreted as repeated subtraction.

Specifically, if Q times B equals A, written:

Q×B = A (IV.1)

where B is not zero, then A divided by B equals Q, written:

A

B
= Q (IV.2)

In the above expression, A is called the dividend (numerator), B the divisor (de-

nominator) and Q the quotient.

IV.A.1 Binary Division Definition

In binary number system, the accuracy of every number is limited by

its bit width. In most cases, the quotient cannot be guaranteed to be exactly

43

44

expressed by a limited-width binary number, unless a remainder, an amount “left

over”, is also acknowledged. We define the N -bit binary division as follow. Assume

N is the data width of two operands:

A = 0.a1a2 . . . aN (IV.3)

B = 0.b1b2 . . . bN (
1

2
≤ B < 1)and(0 ≤ A < B) (IV.4)

The quotient and remainder are two N -bit numbers defined as follow:

Q = 0.q1q2 . . . qN (IV.5)

R = 2−N × 0.r1r2 . . . rN (IV.6)

A = Q×B + R (R < 2−N ×B) (IV.7)

In few applications, only the remainder part is useful, it is called modulo

operation. In most normal division applications, the value of remainder is not

important. The remainder is optional for IEEE floating point standard. However,

the nullity of the remainder is required by the rounding step. The IEEE standard

requires the use of 3 extra bits of less significance than the mantissa bits implied in

the representation. These extra bits are guard bit, round bit and sticky bit. The

guard and round bits are just 2 extra bits of precision that are used in calculations.

The sticky bit is an indication of what could be in less significant bits that are not

kept. In binary division, the sticky bit is decided by the nullity of the remainder.

Based on the guard, round and sticky bits, four rounding methods are supported

in the IEEE standard.

In this dissertation, we focus on the calculation of the quotient and keep

the nullity property of the remainder.

IV.A.2 Fundamental Division Algorithm

The fundamental division algorithm involves three simple operations,

comparison, subtraction and shifting. One quotient bit is generated in each it-

eration. If the remainder is greater than divisor B, the quotient bit is set to 1 and

45

subtracted B from the remainder. Otherwise, the remainder is simply shifted to

the left.

qi =





1 if 2×Ri−1 ≥ B

0 if 2×Ri−1 < B

(IV.8)

Ri = 2×Ri−1 − qi ×B (IV.9)

The following figure IV.1 shows how to decide what to set for the quotient bit and

what is the next value of the remainder. This process repeats N times to get the

N -bit final quotient.

Figure IV.1 Quotient Digit Selection of Restoring Division

The fundamental algorithm can be directly implemented as restoring di-

vision algorithm. The comparison is completed by subtracting B from 2×Ri−1. If

the result is positive, it is the value of Ri. Otherwise, the previous remainder Ri−1

need to be restored and shifted left as Ri. Advantage of restoring algorithm is that

we never have to due with negative numbers. The disadvantage is that we have to

subtract at every step and on average we have to restore half of the operations.

An alternate scheme for the fundamental algorithm is the non-restoring

division. To avoid the restoring step, the quotient bit is either 1 or -1. Therefore,

negative remainder is allowed and the restoring step is unnecessary. When the

remainder is negative, it will be compensated in the next iteration of division by

adding to the remainder instead of subtracting from it. Equations (IV.10) and

46

(IV.11) and Fig.IV.2 shows the non-restoring algorithm.

qi =





1 if 2×Ri−1 ≥ 0

−1 if 2×Ri−1 < 0

(IV.10)

Ri = 2×Ri−1 − qi ×B (IV.11)

Figure IV.2 Quotient Digit Selection of Restoring Division

Advantage of non-restoring algorithm is that we do not have to restore.

However, There are negative quotient bits and remainders and may need to do

correction at the last step if the remainder is negative. And either a subtraction

or addition still has to be done in each iteration.

IV.A.3 Iteration Effort

From the previous subsection, we can see that a division unit can be very

compact. One addition/subtraction unit is enough. However, it takes N iterations

to finish one division. Between these iterations, partial remainders are calculated

to connect adjacent iterations. We call the computation load on these partial

remainders as “Iteration Effort”. The computation load is measured by the number

of partial product bits (PPB). In each iteration, one N -bit number, the product

of one quotient bit with the N -bit divisor, is added/subtracted. Therefore, the

total iteration effort is N2 PPBs. With the pure iteration effort, the fundamental

division algorithms need N iteration cycles to finish one division operation.

47

The advantage of iteration effort is that hardware can be reused in every

iteration. Obviously, the drawback is the long delay to complete the N iterations.

For high performance division units, the N iterations are not practical. Other

computing effort is needed to calculate multiple quotient bits each time and reduce

the total number of iterations.

IV.B High-Radix Division Algorithms

High-radix division algorithms are also known as digit recurrence divisions

(or slow divisions). Different from the fundamental division, high-radix division

algorithms obtain multiple quotient bits in each iteration. The most popular high-

radix division algorithms are the SRT (Sweeny, Robertson and Tocher) division

[20] [21] and prescaling division [22] [23].

IV.B.1 SRT Division

SRT division is similar to Non-Restoring division, but it uses a lookup

table based on the dividend and the divisor to determine each quotient digit (may

include multiple quotient bits). The Intel Pentium processor’s infamous divider

bug was caused by an incorrectly coded lookup table [24].

The most basic SRT algorithm is SRT radix-2 division. It is an improve-

ment over non-restoring division by allowing 0 to be a quotient digit for which no

add/subtract operation is needed, as shown in equation (IV.12) and (IV.13) and

Fig.IV.3.

qi =





1 if 2×Ri−1 ≥ 1

0 if − 1 ≤ 2×Ri−1 < 1

−1 if 2×Ri−1 < −1

(IV.12)

Ri = 2×Ri−1 − qi ×B (IV.13)

Advantage of the SRT algorithm is that the remainder is compared with

1 instead of the divisor B. Comparison with 1 is just a 1-bit comparison. The

48

Figure IV.3 Quotient Digit Selection of SRT Radix-2 Division

improvement is very important to higher radix SRT divisions. Because It implies

that the quotient digit can be decided by the most significant digits of divisor B

and partial remainder Ri.

To get multiple quotient bits in one iteration, the most direct way is to use

look-up table with precalculated quotient bits in it. SRT radix-4 division fetches 2-

bit quotient digit from a look-up table based on the first 5 bits of divisor (including

the fixed 1 on the most significant bit) and the first 7 bits of partial remainder

(including the sign bit). The quotient digit ranges from −2 to 2, as shown in

Fig.IV.4. After the quotient digit is known, the next remainder is calculated by

equation (IV.14).

Ri = 4×Ri−1 −Qi ×B (IV.14)

Note that each quotient digit constants two bits, and can guarantee that

the next remainder is two-order smaller than the current remainder in magnitude.

Therefore, SRT radix-4 division only needs N/2 iterations to complete one division

operation. Higher radix SRT divisions are also achievable, but they need larger

look-up table.

IV.B.2 Prescaling Division

Another popular division algorithm is prescaling method, also known as

Svoboda-Tung division. The basic idea is that when the divisor closes to 1, the

remainder will close to the quotient. Instead of looking for the partial quotient

49

Figure IV.4 Quotient Digit Selection of SRT Radix-4 Division

directly, prescaling acquires the estimated reciprocal of the divisor E ≈ 1/B from

memory. The estimation E scales the original operand A and B to A′ and B′, and

keeps the same quotient. The partial quotient is derived directly from the scaled

partial remainder. The prescaling step is described as follow.

E ≈ 1

B
(IV.15)

A

B
=

A× E

B × E
=

A′

B′ (IV.16)

Qi ≈ R′
i−1 (IV.17)

When the scaling factor E has two bits, the partial remainder calculation can be

expressed by equation (IV.18).

R′
i = 4×R′

i−1 −Qi ×B′ (IV.18)

The main difference between SRT division and prescaling division is that

the look-up table for SRT division stores quotient digits directly while the prescal-

ing look-up table only contains the reciprocal of divisor. Hence the prescaling

division needs less memory for the look-up table than SRT division. The overhead

is the two multiplications in prescaling step. Another important fact is that re-

50

mainders are also scaled by prescaling. Therefore the original remainder is hard

to be recovered. Fortunately, it doesn’t change the nullity property of remainder.

IV.B.3 Memory Effort

In the SRT and Prescaling divisions, memory plays an important role to

calculate partial quotient in each iteration. We call this computation effort from

look-up table as “memory effort”, and measure it by the bits number in the table.

In general, to get M bits partial quotient in one iteration, SRT division needs

22M × M memory bits while prescaling division requires 2M × M memory bits.

Although prescaling division has less memory requirement, it introduces two extra

multiplications in the prescaling step. The extra computation effort will be explain

in the next section.

Memory effort reduces the number of iterations by M times by increasing

the bit-width of partial quotient to M . And the operation speed on memory is

relatively fast when memory size is small. It can achieve remarkable performance

improvement on division operation. However, the exponential increasing cost limits

the speedup factor M . When memory size is too large, both the delay and area

are unaffordable.

Note that the iteration effort on the remainder calculation keeps to be

N2 PPBs.

IV.C Very-High-Radix Division Algorithms

Very-high-radix division algorithms are also known as functional iteration

divisions (or fast divisions). Very-high-radix division algorithms can produce more

quotient bits than high-radix division algorithms can afford in each iteration. It

is achieved by using arithmetic functions in calculation of partial quotients. The

existing very-high-radix division algorithms are the Taylor expansion division al-

gorithm [25] [26] and series expansion division algorithm [27] [28].

51

IV.C.1 Taylor Expansion Division

Taylor expansion is a powerful tool to get an estimation of a function

and the error can be controlled by the number of expansion terms. Then Taylor

expansion can be applied to division function. The accuracy of partial quotient,

also the bit-width of partial quotient, is decided by the initial estimation and the

order of Taylor expansion. Taylor expansion algorithm is formulated as follow:

B = Bh + Bl (IV.19)

E =
1

Bh

−Bl × (
1

Bh

)2 + B2
l × (

1

Bh

)3... (IV.20)

Qi = Ri−1 × E (IV.21)

In the equations, Bh denotes the first M bits of B and Bl denotes the rest lower

significant part. E is an estimation of 1/B based on Taylor expansion.

It can be proved that for 1st-order Taylor expansion, the required preci-

sion of E is 2M bits to get 2M bits partial quotient in each iteration. Therefore

the first order term in equation (IV.20) involves an M by M multiplication, and

equation (IV.21) is a 2M by 2M multiplication. In practice, (1
Bh

)k is derived from

memory. For instance, 1st-order Taylor expansion needs one 2M × 2M bits table

for 1
Bh

and a 2M ×M bits table for (1
Bh

)2.

With the multiple look-up tables and multiplications, Taylor expansion

division can speedup division by a large factor and achieve high performance divi-

sion. It has been applied to AMD K7 microprocessor [29].

IV.C.2 Series Expansion Division

Series expansion is a special case of Taylor expansion. Instead of Bh,

series expansion expands 1/B at 1. The series expansion division algorithm is

52

described as follow:

B = 1−X (IV.22)

E = 1 + X + X2 + X3...

= (1 + X)(1 + X2)(1 + X4)... (IV.23)

Qi = Ri−1 × E (IV.24)

According the previous equations, the series expansion does not need any

look-up table. It can be a memory-free algorithm. However, the partial quotient

precision is quite dependent on the magnitude of X. Assume X < 2−M , then the

1st-order series expansion can produce 2M -bit partial quotient and introduce a

2M by M multiplication. High order series expansion division algorithm can also

achieve high performance division as Taylor expansion divisions. This algorithm

has been used in IBM RISC System/6000 microprocessor [30].

IV.C.3 Arithmetic Effort

Recall the prescaling division algorithm in the previous section and the

very-high radix division algorithms in this section, we found that these extra poly-

nomial functions can reduce the memory requirement or increase the precision of

partial quotient or both. The total extra multiplication load on every partial quo-

tient computation is called “arithmetic effort”. It is also measured by the number

of partial product bits. The arithmetic efforts of prescaling, 1st − order Taylor

expansion and 1st − order series expansion divisions are 2MN , 2MN + M2 and

MN respectively. Note that equations (IV.20) and (IV.23) only perform once for

a given divisor.

In general, arithmetic effort can boost the bit-width of partial quotient by

multiple times, while the computation load is polynomial. This property enables

the high performance division units in modern microprocessors.

53

IV.D Division Algorithms Summary

Existing division algorithms can be revised from the view of iteration

effort, memory effort and arithmetic effort. Iteration effort limits the lower bound

of computation effort involved in one division. However it takes long time, N

iterations, to finish one operation, as fundamental division algorithms. To speedup

the operation, memory effort and arithmetic effort can help to increase the precision

of each partial quotient and reduce the number of iterations. Memory effort is

efficient to extend the partial quotient bit-width by a certain number, but the

exponentially increasing load limits the speedup factor. Memory effort can only

achieve high-radix divisions like SRT division and prescaling division. Arithmetic

effort is the most sophisticated effort among the three kinds of computation effort.

It can multiple the partial quotient bit-width with polynomial overhead.

The following table compares the previous division algorithms in terms of

iteration effort, memory effort, arithmetic 3 effort and the number of iterations in

one division. The iteration effort and arithmetic effort are measured by the number

of PPBs, while the memory effort is gauged by the memory size. For the 1st-order

Table IV.1 Comparison on Computation Efforts
Algorithm Iteration Memory Arithmetic #Iterations

Effort
(PPBs)

Effort
(Bits)

Effort
(PPBs)

Pencil-paper N2 - - N
SRT N2 22M ×M - N/M
Prescaing N2 2M ×M 2MN N/M
0-order Taylor Exp. N2 2M ×M MN N/M
1st-order Taylor Exp. N2 3×2M×M 2MN+M2 N/2M
1st-order Series Exp. N2 - MN N/2M

series expansion in the table, it is assumed that B = 1−X and X < 2−M .

Based on the previous discussion, the whole solution space of division

algorithms can be considered as a triangle with the three computation efforts as

vertexes. Fig.IV.5 demonstrates the solution space and positions of the previous

54

algorithms. The iteration effort corner presents the minimal cost, while the edge

between memory effort and arithmetic effort leads to high performance algorithms.

A smaller triangle near memory effort corner is forbidden by the memory wall. The

exponential cost is unaffordable in this region.

Figure IV.5 Solution Space of Division Algorithms

The empty space near the top-right corner in the gray area shows the

absence of a powerful division algorithm which can fully utilize both memory effort

and arithmetic effort to achieve high-performance divisions.

V

PST Division Algorithm

In this chapter, we will propose a new division algorithm which combines

prescaling, series expansion and 0-order Taylor expansion together to fully utilize

the advantage of memory effort, arithmetic effort and iteration effort.

V.A Notations

Some common notations used in this chapter are defined as follow:

• A: The original N -bit dividend.

• B: The original N -bit divisor.

• E0: The estimation of 1/B.

• Ai: The scaled dividend after the ith scaling step.

• Bi: The scaled divisor after the ith scaling step.

• Ei: The estimation of 1/Bi.

• Q̃j: The partial quotient in the jth iteration.

• Qj: The accumulated quotient after the jth iteration.

• Rj: The remainder after the jth iteration.

55

56

• Q: The N -bit final quotient.

• R: The scaled final remainder.

V.B The Proposed Division Algorithm

The computation efforts analysis shows that series expansion algorithm is

quite efficient if the divisor B is close to 1. This feature can be enabled by another

algorithm, prescaling, powered by memory effort. Therefore the basic idea of the

proposed algorithm is to combine prescaling and series expansion to boost the

accuracy of each partial quotient, and finish one division in few iterations.

V.B.1 Basic PST Division

The basic PST algorithm is described as follow:

1. The initial scaling factor E0 is obtained from a look-up table. The value is

the reciprocal of the up-rounded divisor B and then truncated at the M + 1

bit. Because E0 is an estimation of 1/B, the product of E0 and B is close to

1, i.e. it has M bits guaranteed leading 1′s.

B[M+2] = 0.b1b2 . . . bM+2111 . . . (V.1)

E0 = trunc(1/B[M+2])M+1 = 1.e0
1e

0
2 . . . e0

M+1 (V.2)

Considering the normalized divisor B ≥ 1/2, b1 is always ’1’. Therefore the

size of the look-up table is 2M+1 words and M + 1 bits per word.

2. The dividend A and the divisor B are scaled by the scaling factor E0 simul-

taneously.





A1 = A× E0 = 0.a1
1a

1
2 . . . a1

N+M+1

B1 = B × E0 = 0.11 . . . 1b1
M+1b

1
M+2 . . . b1

N+M+1

(V.3)

57

3. The estimation E1 of 1/B1 is the reverse of B1 truncated at the 2M bit.

E1 = trunc(B̄1)2M

= 1.00 . . . 0b̄1
M+1b̄1

M+2 . . . b̄1
2M (V.4)

4. The partial quotient Q̃j is calculated from the product of the truncated pre-

vious remainder Rj−1 and E1, and then is truncated at the 2M bit. Initially

R0 = A1.

Q̃j = trunc(trunc(Rj−1)2M × E1)2M

= 0.q̃j
1q̃

j
2 . . . q̃j

2M (V.5)

5. The partial quotient is added to the previous quotient Qj to approach the

final result. The product of Q̃j and B1 is subtracted from Rj−1. The new

remainder Rj has 2M − 2 guaranteed leading 0′s to be shifted out. We will

prove this claim in the next section. If (2M−2)×j < N , repeat the previews

step. Assume J is the total number of the iterations, then J = d N
2M−2

e.




Qj = Qj−1 + 2−(2M−2)×(j−1) × Q̃j

Rj = 22M−2 × (Rj−1 −B1 × Q̃j)

(V.6)

6. To get the final quotient Q, the corresponding remainder R needs to be

recovered. The extra tail of QJ beyond N bits , denoted as Qt, is removed.

Correspondingly, R is calculated by adding the product of Qt and B1 to

RJ . If R is greater than or equal to B1, Q should increase one at the least

significant bit.




Q = trunc(QJ)N

Qt = 0.00 . . . 0qJ
N+1q

J
N+2 . . .

(V.7)

R = RJ + Qt×B1 (V.8)



Q = Q + 2−N

R = R−B1

if R ≥ B1 (V.9)

58

Figure V.1 (A) PST Algorithm Architecture (B) An 8-bit example

Step 6) can be considered as a computation overhead from generating

extra quotient bits more than N . This computation load is mainly on the multi-

plication of Qt and B1. This operation is avoidable. Qt can be directly removed

from the last partial quotient Q̃J . Therefore the correction step is simply adding

one at the least significant bit of Q if necessary.

Q̃J = trunc(Q̃J)2M+N−(2M−2)×J (V.10)



Q = QJ = QJ−1 + 2−(2M−2)×(J−1) × Q̃J

R = RJ = 22M−2 × (RJ−1 −B1 × Q̃J)

(V.11)





Q = Q + 2−N

R = R−B1

if R ≥ B1 (V.12)

Fig. V.1(B) demonstrates an 8-bit example. Dividend A and divisor B

are two 8-bit numbers. According to the higher 6 bits of B, we lookup a 5-bit

scaling factor E0. After prescaling, the scaled divisor B1 has 4 bits guaranteed

leading 1s. Step(3) calculates an accurate estimation of B1 inverse, E1, by simply

inverting the higher 9 bits of B1, including the 0 before the radix point and four

59

fixed 1s after the radix point. Based on E1, the first 8-bit partial quotient Q̃1

and partial remainder R1 are obtained. There are six guaranteed leading 0s in the

partial remainder, so it can be shifted left by 6 bits. In the second iteration, partial

quotient Q̃2 is truncated to 2 bits, because the lower part exceeds the precision

requirement. The final quotient Q is the summation of Q̃1 and Q̃2, and the final

remainder R equals R2. Because R < B1, correction step is unnecessary in this

case.

V.B.2 Correctness Proof of the Basic PST Algorithm

The correctness proof essentially is an analysis of errors introduced in

each steps. Each partial quotient is limited within an error range. Therefore,

every intermediate remainders have a fixed number of guaranteed leading zeros,

which implies that the quotient is converging to the correct result.

The proof contains three parts. The first part is the error analysis for

prescaling. The second part is for the error introduced in series expansion. The

last part is the leading zeros in each intermediate remainder.

1. For the prescaling factor look-up table in step 1), if both the data and address

bit-widthes are m, then B1 has m− 1 guaranteed leading 1′s. That is to say

(1−B1) < 2−m+1.

Proof : There are two parts of error in the estimation of 1/B, E0. The first

part of error δ1 comes from using B[m+1] instead of B, and the second part

δ2 is introduced from the finite precision.

E0 =
1

B
− δ1 − δ2 (V.13)

1−B1 = 1−B × E0 = 1−B × (
1

B
− δ1 − δ2)

= B × (δ1 + δ2) (V.14)

Note that both δ1 and δ2 are positive. Their error analysis is the same the

60

analysis of the basic method in [26]. It has been proved that:

0 < δ1 <
1.1

2m+1 ×B2
m+1

(V.15)

0 < δ2 <
1

2m
(V.16)

Applying these inequations to (V.14), we have:

(V.14) =
1.1×B

2m+1 ×B2
[m+1]

+
B

2m

<
1.1

2m+1 ×B
+

B

2m
(V.17)

The maximum value of (V.17) happens when B = 1/2.

(V.17) ≤ 1.1

2m
+

0.5

2m
<

1

2m−1
(V.18)

Therefore B1 has m− 1 guaranteed leading 1′s. ¥
In the basic PST algorithm, m is set to M + 1. So B1 has M leading 1′s.

2. If Bi has m leading 1′s, then the product of Bi and Ei has 2m−1 leading 1′s.

Although this value may not be really calculated in the algorithm, it shows

the accuracy of Ei as an estimation of 1/Bi.

Proof : Assume Bi = 1 − X and the error introduced by the truncate

operation is δ1.

Bi × Ei = (1−X)× (1 + X − δ1)

= 1−X2 − δ1 + δ1 ×X (V.19)

Applying 0 < δ1 ≤ 2−2m and X = 1− Bi < 2−m known from that Bi has m

leading 1′s, we have:

(V.19) > 1− 2−2m − 2−2m = 1− 2−(2m−1) (V.20)

So 1 > Bi × Ei > 1− 2−(2m−1). ¥
Apply to the basic PST algorithm, the product of B1 and E1 has 2M − 1

leading 1′s.

61

3. Assume the product of BI and EI has m leading 1′s. If both Rj−1 and Q̃j

are truncated at m + 1 bits, then the intermediate remainder Rj has m− 1

leading 0′s.

Proof : Assume δ1 and δ2 are the errors introduced by truncations on Rj−1

and Q̃j. 0 < δ1, δ2 < 2−m−1.

Rj = Rj−1 −BI × Q̃j

= Rj−1 −BI × ((Rj−1 − δ1)× EI − δ2)

= Rj−1 −BI ×Rj−1 × EI + BI × δ1 × EI + BI × δ2

= Rj−1 × (1−BI × EI) + BI × EI × δ1 + BI × δ2

(V.21)

Known from the assumption, (1−BI × EI) < 2−m.

(V.21) < Rj−1 × 2−m + BI × EI × δ1 + BI × δ2

< 2−m + δ1 + δ2

< 2−m + 2−m−1 + 2−m−1 = 2−m+1 (V.22)

It indicates that Rj has m− 1 leading 0′s. ¥
For the basic PST algorithm, Rj has 2M − 2 leading 0′s.

From the previous analysis, it’s clear that the estimation errors are well

controlled and the correctness of the PST algorithm is guaranteed.

V.B.3 Advanced PST Algorithm

We now describe a faster PST algorithm with multiple series expansion

iterations. Instead of using 1-order series expansion in the basic PST algorithm,

we apply high order series expansion in the advanced PST algorithm to boost the

precision further. Assume Bi = 1−X, then the 1-order series expansions of 1/Bi

62

can be expressed as follow:





Bi = 1−X

Ei = 1 + X ≈ 1
Bi

(V.23)

If Ei is multiplied back to Bi, we get Bi+1 and then Ei+1:





Bi+1 = Bi × Ei = 1−X2

Ei+1 = 2−Bi+1 = 1 + X2

(V.24)

The product of Ei and Ei+1 has the following formula, which is the 3-order series

expansion of 1/Bi.

Ei × Ei+1 = (1 + X)(1 + X2) = 1 + X + X2 + X3 (V.25)

Equation(V.25) demonstrates that two 1-order series expansion iterations

have equivalent precision as one 3-order series expansion. 1-order series expansion

can be iterated by I times. The number of precise bits of Bi inverse is doubled in

each iteration. The algorithm detail is listed as follow:

1. The initial scaling factor E0 is obtained from a look-up table. The value is

the reciprocal of the up-rounded divisor B and then truncated at the M + 1

bit. Because E0 is an estimation of 1/B, the product of E0 and B is close to

1, i.e. it has M bits guaranteed leading 1′s.

B[M+2] = 0.b1b2 . . . bM+2111 . . . (V.26)

E0 = trunc(1/B[M+2])M+1 = 1.e0
1e

0
2 . . . e0

M+1 (V.27)

This step is the same as the first step in basic PST algorithm.

2. Assume A0 = A and B0 = B. The current dividend Ai and the divisor Bi

are calculated by scaling the previous dividend and divisor by Ei−1 simulta-

63

neously. 



Ai = Ai−1 × Ei−1

= 0.ai
1a

i
2 . . . ai

N+(2i−1)M+ 3i−i2

2

Bi = Bi−1 × Ei−1

= 0.11 . . . 1bi
2i−1M+2−i . . . b

i

N+(2i−1)M+ 3i−i2

2

(V.28)

3. The estimation of 1/Bi, Ei, is the reverse of Bi truncated at the 2iM +2−2i

bit. If i < I, repeat the previous step.

Ei = trunc(B̄i)2iM+2−2i

= 1.00 . . . 0b̄i
2i−1M+2−i . . . b̄i

2iM+2−2i (V.29)

4. The partial quotient Q̃j is calculated from the product of the truncated

previous remainder Rj−1 and EI , and then is truncated at the 2IM + 2− 2I

bit. Initially R0 = AI .

Q̃j = trunc(trunc(Rj−1)2IM+2−2I × EI)2IM+2−2I

= 0.q̃j
1q̃

j
2 . . . q̃j

2IM+2−2I (V.30)

5. The partial quotient is added to the previous quotient Qj to approach the

final result. The product of Q̃j and BI is subtracted from Rj−1. The new

remainder Rj has 2IM − 2I guaranteed leading 0′s to be shifted out. We

will prove this claim in the next section. If (2IM − 2I) × j < N , repeat

the previous step. Assume J is the total number of the iterations, then

J = d N
2IM−2I

e. 



Qj = Qj−1 + 2−(2IM−2I)×(j−1) × Q̃j

Rj = 22IM−2I × (Rj−1 −BI × Q̃j)

(V.31)

6. The algorithm finishes when j is equal to J . The final correction step is the

same as the corresponding step in the basic PST algorithm.

64

Compared with the basic PST algorithm, advanced PST algorithm am-

plifies the arithmetic effort of series expansion and increase the precision of partial

quotient quadratically. It makes the advanced PST algorithm applicable to ex-

tremely high performance applications.

V.B.4 Correctness Proof of the Advanced PST Algorithm

The correctness of the advanced PST algorithm is based on the following

three theories:

1. For the prescaling factor look-up table in step 1), if both the data and address

bit-widthes are m, then B1 has m− 1 guaranteed leading 1′s.

This claim has been proved in B.2.1. So B1 has M leading 1′s in the advanced

PST algorithm.

2. For every 1 ≤ i ≤ I, Bi has 2i−1(M − 1) + 1 guaranteed leading 1′s.

Proof : According to the previous claim, B1 has M leading 1′s, which satisfies

the theory. Assume Bi−1 has 2(i − 2)(M − 1) + 1 leading 1′s. According to

B.2.2, the number of leading 1′s in Bi = Bi−1 × Ei−1 is

2× (2i−2(M − 1) + 1)− 1 = 2i−1(M − 1) + 1

Therefore this claim holds for every 1 ≤ i ≤ I. ¥
When i = I, BI has 2I−1(M − 1) + 1 leading 1′s.

3. The intermediate remainder Rj has 2I(M − 1) leading 0′s.

Proof : The previous claim shows that BI has 2I−1(M − 1) + 1 leading 1′s.

According to B.2.3, the number of leading 0′s in Rj is

2× (2I−1(M − 1) + 1)− 2 = 2I(M − 1)¥ (V.32)

Compared with the basic PST algorithm, the advanced PST algorithm can dra-

matically reduce the number of iterations.

65

V.C Parallel PST Division

While the two multiplications in the series expansion step can be par-

allelized easily, it is difficult to parallelize the three sequential operations in the

0-order Taylor expansion step by a traditional way. The partial quotient is cal-

culated first, and then multiplies with the divisor BI . The product is subtracted

from the previous remainder finally. Fig. V.2 shows the data dependency in the

basic PST algorithm. Each operation requires the previous result.

Figure V.2 Data Dependency in PST Division

We propose two methods based on the properties of data to parallelize

the operations. To simplify the representation, we discuss the basic PST algorithm

here. The parallelization on the advanced PST algorithm is similar.

V.C.1 Method 1

The first method is based on the property of E1. E1 = 1 + X, and

X < 2−M . The calculation for the partial quotient Q̃j = trunc(Rj−1)2M × (1 + X)

has this formula:

trunc(Rj−1)2M : 0.rj−1
0 . . . rj−1

M rj−1
M+1 . . . rj−1

2M

trunc(Rj−1)2M ×X : 0.0 . . . 0zM+1 . . . z2M . . . (V.33)

66

From this formula, the computation for partial quotient can be rewritten as

[Rj−1]Mh = trunc(Rj−1)M

= 0.rj−1
0 rj−1

1 . . . rj−1
M (V.34)

[Rj−1]Ml = trunc(Rj−1)2M − [Rj−1]Mh

= 0.00 . . . 0rj−1
M+1r

j−1
M+2 . . . rj−1

2M (V.35)

[Q̃j]h = [Rj−1]Mh (V.36)

[Q̃j]l = trunc([Rj−1]Ml + trunc(Rj−1)2M ×X)2M (V.37)

Q̃j = [Q̃j]h + [Q̃j]l (V.38)

The bit width of the first term [Q̃j]h is M . The second term [Q̃j]l has the bit width

of M + 1, and the magnitude is smaller than 2−(M−2). Hence the product of Q̃j

and B1 can be divided to two terms with slight computation overhead.

αh = B1 × [Q̃j]h (V.39)

αl = B1 × [Q̃j]l (V.40)

Ri = Ri−1 − αh − αl (V.41)

Following this formula, the first term αh is calculated directly from [Rj−1]Mh

independent from the calculation of the second term αl, as Fig. V.3 presented.

Figure V.3 Parallelize the Operations: Method 1

V.C.2 Method 2

The second method parallelizes operations between iterations. In the

loop shown in Fig. V.2, B1 cannot be truncated to minimize computation load,

67

because a small error of a intermediate remainder Rj in an early iteration will

stay there and become to a crucial problem in some later iterations. However, the

computation of partial quotient Q̃j does not need the accurate value of the previous

remainder Rj−1. From the analysis of the third claim in Section II.C, we know that

an error smaller than 2−2M on Rj−1 is acceptable for partial quotient computation.

Therefore an optimization idea is to calculate an acceptable value of a remainder

based on a truncated B1, and a correction term is computed simultaneously to

compensate the error in the remainder later. Therefore, the next partial quotient

computation can start earlier before the exact remainder is derived.

B1 is separated into two parts, [B1]h and [B1]l as following:

[B1]h = (1− 0.00 . . . 0b1
M+1b1

M+2 . . . b1
4M) (V.42)

[B1]l = 0.00 . . . 0b1
4M+1b1

4M+2 . . . b1
N+M+1 + ls11 (V.43)

It’s not hard to verify B1 = [B1]h−[B1]l. The computation of the current remainder

is correspondingly changed to:

Rj = Rj−1 − [B1]h × Q̃j + [B1]l × Q̃j (V.44)

The last term is put to the correction term C. We define an estimation of Rj as

R′. Hence the real remainder Rj equals the estimation R′ plus the correction term

C.

R′ = Rj−1 − [B1]h × Q̃j (V.45)

C = [B1]l × Q̃j < 2−4M (V.46)

Rj = R′ + C (V.47)

R′ is used to replace Ri for the partial quotient computation in the next iteration,

and Rj must be ready before the next R′ calculation. Fig. V.4 displays two

unrolled iterations and data dependency relation of this optimization.

The correctness of the method 2 is proved as follow. After substitute Rj

with R′ in the partial quotient computation, the equation V.21 can be rewritten

68

Figure V.4 Parallelize the Operations: Method 2

as:

Rj+1 = Rj −B1 × Q̃j+1

= Rj −B1 × ((R′ − δ1)× E1 − δ2)

= Rj −B1 × ((Rj − C × 2−(2M−2) − δ1)× E1 − δ2)

(V.48)

Note that the introduction of the error term C does not really introduce any error

on the computation of each intermediate remainder Rj, because C is added back

before Rj+1 is calculated in the following iteration. It only affects the computation

of Q̃i. Therefore according to the proof of claim 3), the algorithm is correct as

long as the total error on Rj is bounded by 2−2M . Known from the equation V.46,

C < 2−4M . If the truncate error δ1 reduces to 2−(2M+1), the total error on Rj is

still less than 2−2M . Hence the correctness is proved.¥
The two methods split partial quotient Q̃j and scaled divisor B1 respec-

tively. They can be applied to the PST algorithm simultaneously. Fig. V.5

demonstrates the optimized computing architecture. Compared with the original

structure in Fig. V.2, the optimized architecture divides the product B1× Q̃j into

69

Figure V.5 Parallel PST Division Algorithm

four terms, and keeps only one term [B1]h × [Q̃j]l in the critical path. Therefore

the 2M by 2M multiplication delay is reduced to an M by M multiplication delay.

V.D Evaluations and Implementations

To test the soundness of the proposed PST algorithm, we compare the

PST algorithm with other existing algorithms by numerical analysis in terms of

delay, area and power consumption. Furthermore, we also implement the PST

algorithm on both ASIC and FPGA devices and demonstrate the benefit on real

design.

V.D.1 Numerical Analysis

The analysis on the computation effort and the number of iterations gives

a general idea on the tradeoff between performance and cost. However, to fully

understand the relation among operation delay, quantitative analysis is necessary.

First of all, timing, area and power model should be set up. In the existing

division algorithms, there are only three operations: table look-up, multiplication

and binary addition. Therefore we need only three modules for them: Read-Only

70

Memory (ROM), Partial Product Reduction Array (PPRA), and Carry-Propagate

Adder (CPA). Note that a multiplier is composed by a partial product reduction

array and a carry-propagate adder.

We use Parameterized technology independent models for these modules,

as used in [31]. These models only depends on the bit-width of each operands

but are independent from the technology and detail design. This method can

characterize the performance and cost of an algorithm before the algorithm is

implemented in detail. The models for ROM, PPRA and CPA list as following:

• ROM: The timing and area of a memory block is determined by its address

bit-width and word bit-width. For n-bit address and m-bit word, the total

bits number in the memory is 2n ×m. And the delay is proportional to the

address bit-width n.

• PPRA: Partial product reduction array also has two parameters, the bit-

with of multiplicand n and the bit-width of multiplier m. Because it is

a matrix multiplication, the total area is proportional to n × M . Taking

advantage of carry-save addition, the delay only depends on the number of

bits in one bit slice. And carry-save addition can be preformed in a tree

structure, then the delay of a PPRA is O(lg(m)).

• CPA: Carry-propagate addition has only one parameter, the bit-width of

two operands n. Usually ripple-carry adder is too slow to satisfy timing

requirement. Therefore we assume prefix adders is applied for all carry-

propagate additions here. Due to the tree structure of prefix adder, both the

delay and the area are proportional to lg(n).

Table V.1 shows the delay and area models of ROM, PPRA and CPA.

All the numbers in the table are normalized to the unit of full adder (FA).

Now the power model of each module is still missing. A rough estimation

of power consumption to assume that the power consumption is linear the to area.

However, this estimation does not consider dynamic power. For example, in one

71

Table V.1 Estimate of Delays and Areas of Basic Modules [tFA, AFA]
Module Delay [tFA] Area [AFA]
2n by m Table n− 2 1.3× (2n−4 +1)× m

n

n by m PPRA 1.5× lg(m)− 1.5 1.15×n×m+0.7×n
n-bit CPA 0.5× lg(n) + 1.5 0.3× (lg(n)+2)×n

PST division, the look-up table and prescaling multiplications are only performed

once, but the multiplications and additions in Taylor expansion iterations will run

multiple times. Therefore, we revised the power model as the product of area and

operating frequency on a module.

Based on the timing/area/power model, Fig.V.6 and Fig.V.7 demonstrate

the delay-area and delay-power tradeoffs achieved by various division algorithms

for 64-bit divisions. In general, larger look-up table leads to higher performance

and larger area. When the table size reaches the limit, larger table size won’t help

to improve the performance further. At this time, arithmetic effort is effective

to boost the performance further. An interesting observation is that the power

consumption is not monotonous to the decreasing delay. It is because we considered

dynamic power consumption in the power model. Low area leads to low precision

on partial quotient, and then leads to more iterations.

Fig.V.8 and Fig.V.9 show the delay-area and delay-power tradeoffs for

128-bit divisions. In both 64-bit and 128-bit cases, PST algorithms have the best

delay-area and delay-power tradeoffs. PST division can achieve very high perfor-

mance division with relatively low power consumption.

V.D.2 ASIC Implementations

To confirm the estimates, we implement algorithms of 0-order Taylor

expansion, 1st-order Taylor expansion, prescaling, and PST division for 128-bit

division. It follows a typical ASIC design flow. Each algorithm is described as a

behavior description in Verilog code. The behavior description is then synthesized

by Synopsys Design Compiler [32] on the target library TSMC tcbn90ghp. Based

72

50 55 60 65 70 75 80 85 90 95 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Delay

A
re

a

0−order Taylor Exp.
1−order Taylor Exp.
Prescaling
PST k=1
PST k=3
PST k=2

Figure V.6 Delay-Area Tradeoff (64bit)

50 55 60 65 70 75 80 85 90 95 100
0.5

1

1.5

2

2.5
x 10

4

Delay

P
ow

er

0−order Taylor Exp.
1−order Taylor Exp.
Prescaling
PST k=1
PST k=3
PST k=2

Figure V.7 Delay-Power Tradeoff (64bit)

73

50 100 150 200
0

0.5

1

1.5

2

2.5

3
x 10

4

Delay

A
re

a

0−order Taylor Exp.
1−order Taylor Exp.
Prescaling
PST k=1
PST k=3
PST k=2

Figure V.8 Delay-Area Tradeoff (128bit)

50 100 150 200
2

2.5

3

3.5

4

4.5

5
x 10

4

Delay

P
ow

er

0−order Taylor Exp.
1−order Taylor Exp.
Prescaling
PST k=1
PST k=3
PST k=2

Figure V.9 Delay-Power Tradeoff (128bit)

74

on the synthesized net-list, Synopsys Power Compiler [33] analyzes and report

then delay, area and power of the divider unit. The total execution time and

power consumption for one division are calculated by multiplying delay and power

to the number of iterations, which is also the number of stall cycles of the divider

unit.

Table V.2 ASIC Implementations
Delay(ns) Area Power(mW)

0-order Taylor Exp.
(2K Table) 253.23 55182 455.4
(10K Table) 196.52 66827 370.6
1-order Taylor Exp.
(3K Table) 176.67 97632 552.5
(15K Table) 145.00 122515 524.0
Prescaling
(2K Table) 260.36 101343 779.7
(10K Table) 185.64 121701 654.5
PST (I=1)
(2K Table) 105.71 133857 316.8
(10K Table) 94.23 161116 296.1

Table V.2 shows the implementation results on different division algo-

rithms. The comparison of the implementation results quite meets with the es-

timate prediction. The PST algorithm with 10K table achieves both minimal

execution time and minimal power consumption.

V.D.3 FPGA Implementations

Besides ASIC, we also implement the PST algorithm in an Altera StratixII

FPGA device [34], and compare the implementation with a division IP core in

terms of clock frequency, resource consumption, power consumption and through-

put. We choose Altera StratixII EP2S15F484C3 as the target FPGA device, which

contains 12480 ALUTs, 420KB memory and 96 DSP elements. Both the PST algo-

rithm and the division IP core generated by MegaWizard are described in verilog

format. A development environment, Altera quartusII 5.0 [35], performs the whole

75

design flow from logic synthesis, fitting, assembling to timing analysis and power

analysis. The function correctness is verified by Modelsim-Altera. One 32-bit divi-

sion is finished in 5 cycles, while the target frequency is set to 100MHz. All inputs

and outputs are registered. Positive remainder is not necessary.

Figure V.10 IP core Figure V.11 PST with DSP blocks

Figure V.12 PST without DSP block Figure V.13 PSTp with DSP blocks

Figure V.14 PSTp without DSP block

For the parameters of PST algorithm, M is set to 6. Therefore the table

size is 7 × 27, and for each Taylor expansion iteration 12 leading 0′s can be guar-

76

anteed in the intermediate remainder. Hence three Taylor expansion iterations are

needed to finish one operation. When two successive divisions feed to the divi-

sion unit, 2 stall cycles have to be inserted between them. To avoid the stall, we

unroll the PST algorithm and implement a fully pipelined version. It’s called the

PSTp division unit. Two synthesis configurations are applied for the each design.

One is using DSP blocks, and the other is to avoid DSP blocks. Thus we have

four versions of PST implementations: PST/PSTp division unit with DSP blocks,

which uses build-in multipliers in the FPGA device, and PST/PSTp division unit

without DSP block, which uses ALUTs to construct multipliers. The division IP

core is a non-DSP block version by nature. Fig. V.10 to Fig. V.14 demonstrate

the implementation results.

Table V.3 FPGA Implementations
Fmax
(Period)

ALUTs Memory DSP Power
(Dyn+Sta)

Throughput

IP core
(no DSP)

50.16MHz
(19.935ns)

1203 84 0 381mW
(52+329)

50.16M
div/s

PST
(DSP)

72.8MHz
(13.737ns)

213 768 28 350mW
(23+327)

24.3M
div/s

PST
(no DSP)

73.20MHz
(13.661ns)

1437 768 0 378mW
(50+328)

24.4M
div/s

PSTp
(DSP)

74.15MHz
(13.486ns)

261 768 40 344mW
(17+327)

74.15M
div/s

PSTp
(no DSP)

76.05MHz
(13.150ns)

1940 768 0 359mW
(31+328)

76.05M
div/s

Table V.3 summarizes the max clock frequency, resource consumption,

power consumption and throughput in terms of number of division operations per

second for each implementation. The comparison shows that the PST algorithm

achieves about 34% delay improvement. Because both the PST unit and the IP

core take 5 cycles to finish one division, the delay improvement not only increases

the clock frequency but also reduces the execution timing for each operation. While

the PST division unit produces one division result in every three clock cycles, the

77

fully pipelined PSTp division unit can avoid stall cycles. Therefore the PSTp

division has the largest throughput among the compared designs. An interesting

observation is that the introduction of DSP block does not help much to reduce

delay. One reason is that although build-in multipliers is faster, the locations

of DSP blocks limit the placement flexibility, which leads to larger wire delay.

The PST algorithm also shows the advantage on dynamic power consumption.

Without DSP blocks the PSTp division unit reduces the dynamic power by 38%

to the division IP core. With the help of DSP elements, the PSTp division unit

achieves 67% saving on power. The power estimation is based on the toggle rates

statistics. The initial toggle rates and static possibilities are obtained from timing

simulation, where the clock frequency is set to 50MHz.

V.E Summary

In this Chapter, we propose a novel division algorithm, PST division,

which applies prescaling and series expansion to finely combine memory effort,

arithmetic effort and iteration effort together. The PST algorithm is further

parallelized to improve performance without significant overhead. Based on the

numerical analysis and implementation results, the PST algorithm achieve best

timing-power tradeoffs among the existing division algorithms for ASIC design. In

FPGA applications, The PST algorithm also shows significant delay and power

reduction comparing with current division IP core on Altera StratixII FPGAs.

This chapter has been submitted for publication of the material as it

appears in ACM/SIGDA 14th International Symposium on Field Programmable

Gate Arrays 2006, Liu, Jianhua; Zhu, Haikun; Cheng, Chung-Kuan. The disser-

tation author was the primary investigator and single author of this paper.

VI

Conclusions

With the technology development and the increasing demand on VLSI,

data-path design is facing the challenges from high performance and low power

consumption. In this thesis two optimization methods on data design have been

proposed. The research items and results of this work can be summarized as

follows.

The first section of chapter III introduces a comprehensive area/power/timing

model. Compared with the idealistic model used in previous works, the new model

can capture the key characters of CMOS circuit, especially the effect of physical

design. Based on the model, chapter III also propose an Integer Linear Program-

ming method to build optimal prefix adder with minimal power consumption. By

keeping the linear relation from decision variables to power objective, the ILP

formulation can be solved efficiently. The ILP method not only can handle non-

uniform input arrival and output required time, but also support gate sizing and

buffer insertion. The experimental results show a great flexibility and significant

power saving comparing with several classical prefix adders.

In chapter IV, we propose a new method to analyze the computation effort

in division algorithm. Computation effort in division is partitioned to iteration

effort, memory effort and arithmetic effort. Iteration effort provides the lower

bound of computation effort of division and keeps constant for given bit-width.

78

79

Memory effort can increase the precision of partial quotient by current number of

bits. But memory effort is limited by memory wall due to its exponential cost.

Arithmetic effort can multiple the bit-width of partial quotient with polynomial

cost.

Chapter V presents a hybrid division algorithm which combines prescal-

ing, series expansion and 0-order Taylor expansion together. The proposed PST

algorithm fully utilize the advantages of memory effort, arithmetic effort and it-

eration effort, and achieves optimal timing-power tradeoff among existing division

algorithms. This algorithm is not only applicable to ASIC division unit design,

but also very suitable for modern FPGA devices. The implementation on Altera

StratixII demonstrates that the PST algorithm can take advantage of the built-in

multipliers and memory blocks in the device, and realize high-performance and

low power division unit.

Bibliography

[1] The IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754)

[2] C. Wallace, “A Suggestion for a Fast Multiplier.” IEEE Trans. on Electronic
Computers, vol. 13, pp. 14-17, 1964

[3] A.D. Booth, “A Signed Binary Multiplication Technique.” Quarterly J. Me-
chanical and Applied Math., vol. 4, pp. 236-240, 1951.

[4] O.L. MacSorley, “High Speed Arithmetic in Binary Computers.” Proc. IRE,
vol. 49, pp. 67-91, 1961.

[5] T. Kilburn, D. Edwards, D. Aspinall, “Parallel addition in digital computers:
A new fast carry circuit”, Proc of IEE, vol. 106, pt. B, pp. 464-466, 1959.

[6] M. Lehman, N. Burla, “Skip Techniques for high-speed carry-propagation in
binary arithmetic circuits”, IRE Trans. Electron. Comput., pp.691-698, Dec
1961.

[7] V. Oklobdzija, E. Barnes, “Some optimal schemes for ALU implementation in
VLSI technology”, Proceedings of 7th Symposium on Computer Arithmetic
(Cat. No. 85CH2146-9). IEEE Comput. Soc. Press., pp.2-8. Silver Spring, MD,
USA, 1985.

[8] O. Bedrij, “Carry select adder”, IRE Transactions on Electronic Computers,
vol. 11, pp. 340C346, 1962.

[9] J. Sklansky, “Conditional-sum addition logic”, IRE Transactions on Electronic
Computers, vol. 9, pp. 226C231, 1960.

[10] A. Weinberger, J. Smith, “A One-Microsecond Adder Using One Megacycle
Circuitry”, IRE Transactions on Electronic Computers, pp. 65-73, 1956.

[11] R. Ladner, M. Fischer, “Parallel prefix computation”, Journal of the Associ-
ation for Computing Machinery, vol.27, no.4, pp.831-8. Oct. 1980.

[12] P. Kogge, H. Stone, “A parallel algorithms for the efficient solution of a general
class of recurrence equations”, IEEE Transactions on Computers, vol.C22,
no.8, pp.786-93, Aug. 1973.

80

81

[13] R. Brent, H. Kung, “A regular layout for parallel adders”, IEEE Transactions
on Computers, vol.C-31, no.3, pp.260-4, March 1982.

[14] B. Sugla, D. Carlson, “Extreme area-time tradeoffs in VLSI”, IEEE Transac-
tions on Computers, vol.39, no.2, pp.251-7, Feb. 1990.

[15] J. Fishburn, “A depth-decreasing heuristic for combinational logic; or how
to convert a ripple-carry adder into a carry-lookahead adder or anything
in-between”, 27th ACM/IEEE Design Automation Conference Proceedings,
pp.361-4, 1990.

[16] R. Zimmermann R, “Non-Heuristic Optimization and Synthesis of Parallel-
Prefix Adders”, Proc. Int. Workshop on Logic and Architecture Synthesis
(IWLAS’96), pp. 123-132, Dec. 1996.

[17] I. Sutherland, B. Sproull, D. Harris, “Logical Effort: Designing Fast CMOS
Circuits”, Morgan Kaufmann Publishers, 1999.

[18] Vanichayobon S, Dhall S, Lakshmivarahan S, Antonio J, “Power-speed Trade-
off in Parallel Prefix Circuits”, Proceeding of SPIE Vol. 4863, pp.109 - 120,
2002.

[19] S. Mathew, M. Anders, R.K. Krishnamurthy, S. Borkar, “A 4-GHz 130-nm
Address Generation Unit With 32-bit Sparse-Tree Adder Core”, IEEE Journal
of Solid-State circuits, Vol38, No.5, May 2003.

[20] J. Robertson “A New Class of Digital Division Methods”, IRE Trans. on
Electronic Computers, vol. 7, pp. 218-222, 1958.

[21] T. Tocher, “Techniques of Multiplication and Division for Automatic Binary
Computers”, Quarterly J. Mech. App. Math., vol. 2, pt. 3, pp. 364-384, 1958

[22] A. Svoboda, “An Algorithm for Division”, Information Processing Machines,
vol. 9, pp. 183-190, 1963.

[23] C. Tung, “A Division Algorithm for Signed-Digit Arithmetic”, IEEE Trans.
on Computers, vol.17, pp. 887-889, 1968.

[24] T. Coe, P. Tang, “It takes six ones to reach a flaw [Pentium processor]”,
Computer Arithmetic, 1995., Proceedings of the 12th Symposium on 19-21,
pp. 140-146, July 1995.

[25] P. Hung, H. Fahmy, O. Mencer, M. Flynn, “Fast Division Algorithm with a
Small Lookup Table”, Conference Record of the 33rd Asilomar conference on
Signals, Systems, and Computers, IEEE. Part vol. 2, pp. 1465-1468, 1999.

[26] D. Wong, M. Flynn, “Fast Division Using Accurate Quotient Approximations
to Reduce the number of Iterations”, IEEE Trans. on Computers, vol. 41, NO.
8, pp. 981-995, 1992.

82

[27] S. Oberman, M. Flynn, “Division Algorithms and Implementations”, IEEE
Trans. on Computers, vol. 46, NO. 8, pp. 833-854, 1997.

[28] R. Goldschmidt, “Applications of Division by Convergence”, MS thesis, Dept.
of Electrical Eng., Massachusetts Inst. of Technology, Cambridge, Mass., June
1964.

[29] S. Oberman, “Floating Point Division and Square Root Algorithms and Im-
plementation in the AMD-K7 Microprocessor”, Proc. 14th IEEE Symp. Com-
puter Arithmetic, I. Koren and P. Kornerup, eds., pp. 106- 115, Apr. 1999.

[30] P. Markstein, “Computation of Elementary Functions on the IBM RISC Sys-
tem/6000 Processor”, IBM J. Research and Development, vol. 34, no. 1,
pp.111-119, Jan. 1990.

[31] P. Montuschi, T. Lang, “Boosting Very-High Radix Division with Prescaling
and selection by Rounding”, IEEE Trans. on Computers, vol 50, NO. 1, pp.
13-27, 2001.

[32] http://www.synopsys.com/products/logic/design compiler.html

[33] http://www.synopsys.com/products/solutions/galaxy/power/power.html

[34] http://www.altera.com/products/devices/stratix2/st2-index.jsp

[35] http://www.altera.com/products/software/products/quartus2/qts-
index.html

