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Abstract

Three Essays on Environmental and Development Economics

by

Howard G Chong

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Maximillian Auffhammer, Chair

This dissertation emcompasses three empirical studies in environmental and development
economics. In Chapter 1, I study whether electricity use in newer or older residential build-
ings rises more in response to high temperature in a region of Southern California. Peak
electricity demand occurs at the highest temperatures which are predicted to increase due
to climate change. Understanding how newer buildings differ from older buildings improves
forecasts of how peak electricity use will grow over time. Newer buildings are subject to
stricter building energy codes, but are larger and more likely to have air conditioning; hence,
the cumulative effect is ambiguous. This paper combines four large datasets of building
and household characteristics, weather data, and utility data to estimate the electricity-
temperature response of different building vintages. Estimation results show that new build-
ings (1970-2000) have a statistically significantly higher temperature response (i.e., use more
electricity) than old buildings (pre-1970). Auxiliary regressions with controls for number of
bedrooms, income, square footage, central air conditioning, ownership, and type of residen-
tial structure partially decompose the effect. Though California has had extensive energy
efficiency building standards that by themselves would lower temperature response for new
buildings, the cumulative effect of new buildings is an increase in temperature response. As
new buildings are added, aggregate temperature response is predicted to increase.

In Chapter 2, my co-authors and I investigate the effect of cap-and-trade regulation of
CO2 on firm profits by performing an event study of a CO2 price crash in the EU market.
We examine returns for 90 stocks from carbon intensive industries and 600 stocks in the
broad EUROSTOXX index. Firms in carbon intensive, or electricity intensive industries,
but not involved in international trade were most hurt by the event. This implies investors
were focused on product price impacts, rather than compliance costs. We find evidence that
firms’ net allowance positions also strongly influenced the share price response to the decline
in allowance prices.

In Chapter 3, my co-authors and I measure and examine data error in health, educa-
tion and income statistics used to construct the Human Development Index. We identify
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three sources of data error which are due to (i) data updating, (ii) formula revisions and
(iii) thresholds to classify a country’s development status. We propose a simple statistical
framework to calculate country specific measures of data uncertainty and investigate how
data error biases rank assignments. We find that up to 34% of countries are misclassified
and, by replicating prior studies, we show that key estimated parameters vary by up to 100%
due to data error.



i

To my parents and sister

Ten Chong, Lily Chong, and Sylvia Chong



ii

Contents

1 Building Vintage and Electricity Use: Old Homes Use Less Electricity In
Hot Weather 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Temperature Response and Building Vintage in Field Evidence and
Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 The Rosenfeld Curve and Energy Efficiency . . . . . . . . . . . . . . 4
1.3 Description of the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Econometric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 Main Results: Degree Day Parameterization With County Assessor’s
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.2 Robustness checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Policy Significance and Potential Mechanisms . . . . . . . . . . . . . . . . . 14

1.6.1 Policy Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6.2 Potential Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.8 Figures and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Profiting from Regulation: An Event Study of the European Carbon Mar-
ket 50
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2 Emissions Regulations and Firm Profits . . . . . . . . . . . . . . . . . . . . . 52
2.3 The EU Emissions Trading System . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.1 ETS Market Performance . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.2 Equity Market Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4 Testing Determinants of Profitability . . . . . . . . . . . . . . . . . . . . . . 59
2.4.1 Asset Value of Permit Holdings . . . . . . . . . . . . . . . . . . . . . 59
2.4.2 Tests of Revenue Effects . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



iii

2.6 Figures and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Classification, Detection and Consequences of Data Error: Evidence from
the Human Development Index 81
3.1 Introduction and Related Literature . . . . . . . . . . . . . . . . . . . . . . . 81
3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.1 Original versus Revised Data . . . . . . . . . . . . . . . . . . . . . . 85
3.2.2 The HDI Formulas and Computation of Counterfactuals . . . . . . . 85
3.2.3 The Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3 Sources of Data Error and Methodology to Measure Data Uncertainty . . . 86
3.3.1 First Source of Data Error: Measurement error . . . . . . . . . . . . 86
3.3.2 Second Source: Changes in HDI Formula . . . . . . . . . . . . . . . . 88
3.3.3 Third Source of Misclassification: Arbitrary Cutoff Values . . . . . . 89
3.3.4 Overall Error Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.5 Simulation 1: The expected number of misclassified countries . . . . . 90
3.3.6 Simulation 2: The expected number of deviation in HDI ranks . . . . 90

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4.1 Results with Respect to the Cardinal Errors of Data Updating and

Formula Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4.2 Overall Cardinal Error and Rank Simulations . . . . . . . . . . . . . 92
3.4.3 Results with Respect to the Cutoff Value Problem . . . . . . . . . . . 92
3.4.4 Measurement Error with Respect to the Underlying Variables of the

HDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.5 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5.1 The HDI as a definitional measure . . . . . . . . . . . . . . . . . . . 94
3.5.2 The HDI and Foreign Development Aid: . . . . . . . . . . . . . . . . 94
3.5.3 Use of the HDI statistics in the academic literature . . . . . . . . . . 95
3.5.4 Implications of the results in statistical analysis . . . . . . . . . . . . 96

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.7 Tables, Figures, and Data Appendix . . . . . . . . . . . . . . . . . . . . . . 98
3.8 Description of formula changes and formula equations . . . . . . . . . . . . . 124

4 Appendices 126
4.1 Appendices to Chapter1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.1.1 Total electricity vs temperature response . . . . . . . . . . . . . . . . 126
4.1.2 Functional Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.1.3 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.1.4 Extended Data Discussion . . . . . . . . . . . . . . . . . . . . . . . . 130

5 References 131



iv

Acknowledgments

I am deeply humbled by the intellect and comraderie by which I am surrounded and to which
I will always aspire.

Max Auffhammer has given tremendous advice and has helped me understand not only
how to do good research, but also how to be a good academic. Not only have I learned
how to make sure my results are correct and not overstated, but also how to communicate
them effectively to the academic and general community. Max also advised me to apply for
and join the UC Energy Insitute as a research assistant, a critical step in my intellectual
development.

Severin Borenstein shepherded me to developing my interests and academic voice. Of the
many lessons I have learned, perhaps the most important is that rigor is not a substitute for
practical knowledge. Institutional details are important if you want to understand fully the
underlying incentives and motivations of firms and consumers. Otherwise, GIGO.

David Zilberman, one of my earliest advisors, has been a great role model. He has given
me and numerous other students sharp feedback on our research ideas, often citing his own
prodigious work. Leading by example, he has shown me that academic curiosity is the
cornerstone of a successful and fruitful academic career. For practical matters of how to
frame research questions and what the big picture is, his guidance has been critical.

For the last three years of my graduate career, the UC Energy Institute has been the home
where I’ve found an incredible microcosm of intellectual discourse around the lunchtable. I
sadly will only realize just how insanely great it is as I leave this happy nest.

If I were to comprehensively describe the contributions of all the people who have helped
me in my development, I would spend a long time writing this acknowledgement and it would
still be incomplete. Here I will simply list and thank some of these people:

Everyone at UC Energy Institute (now Energy Institute at Haas), including
Max Auffhammer, Carl Blumstein, Severin Borenstein, Lucas Davis, Amiee Gee,
Meredith Fowlie, Catie Hausman, Chris Knittel, Erica Meyers, Karen Notsund,
Carla Peterman, Jim Sallee, Catherine Wolfram, and especially Koichiro Ito;
my co-authors: Maximillian Auffhammer, James Bushnell, Erin Mansur, David
Sunding, and Hendrik Wolff; ARE’s excellent staff, professors, and graduate stu-
dents, in particular Peter Berck, Diana Lazo, Leslie Martin, Shanthi Nataraj,
Leo Simon, Gail Vawter, and Sofia Berto Villas-Boas; Matt Kahn and Edward
Arens; and finally the many friends whose companionship has supported me
through these endeavors, especially Lisa Bauer, Karen Bell, Shawn Chiao, Calico
Goodrich, Ying Lee, James McBryan, Roger Mong, Jane Simon, Biana Yelent,
and my broader dance community.

To you all, I give my heartfelt thanks. Namaste.



1

Chapter 1

Building Vintage and Electricity Use:
Old Homes Use Less Electricity In
Hot Weather

1.1 Introduction

Understanding the relationship between electricity usage and temperature, i.e. tempera-
ture response, is important for climate change policy and long-range electricity infrastructure
planning. Residential buildings are a substantial contributor to CO2 emissions. In the US,
residential buildings account for 21% of 2008 CO2 emissions (Environmental Protection
Agency 2010), with about 50% of residential energy going to space heating and air con-
ditioning (Energy Information Administration 2009). Furthermore, temperature increases
from CO2 emissions will affect electricity demand through increased cooling loads, i.e., air
conditioning use. Electric power plant construction and infrastructure decisions are strongly
driven by peak electricity demand which in California occurs during periods of highest tem-
perature.

If new buildings have higher temperature response1, then the average temperature re-
sponse will increase as new buildings are added. Peak demand per household will also
increase. Policies to reduce greenhouse gas emissions or reduce energy use often aim to
decrease peak and total electricity demand.

Temperature response is better than total electricity use as a measure of the performance
of buildings. As the component of electricity usage that varies with temperature, temperature
response isolates factors such as the thermal performance of the building, the size of the
building, and the thermostat preferences of occupants. In contrast, total electricity use

1In this paper, temperature response is defined as the percentage increase (relative to usage on a 65◦F
day) in electricity use due to a 1◦F increase in temperature. Higher temperature response means more
incremental electricity use.
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conflates these factors with appliance ownership (e.g., more televisions) and other factors
that don’t depend on the building.2

Whether newer or older residential buildings in California have higher temperature re-
sponse has not been studied using field data. California has had the most extensive energy
efficiency standards in the United States applied to new buildings. Engineering models (e.g.,
Marshall and Gorin (2007); Abrishami, Bender, Lewis, Movassagh, Puglia, Sharp, Sullivan,
Tian, Valencia and Videvar (2005)), predict strong reductions in energy use (both peak and
total use) due to these standards, ceteris paribus, but other factors can offset these increases.
The sign of the cumulative effect, measured as the difference between new and old buildings,
is ambiguous. I use field data to estimate the temperature response across houses of different
vintages.

This paper uses (household, monthly) field panel data on electricity use linked to build-
ing vintage and other building and household characteristics. Household electricity usage
(quantity) data in Riverside County, California, USA, is regressed on time series variation
in temperature to estimate temperature response. Cross sectional variation in building vin-
tage and other characteristics at the Zip9-level or census block group-level identifies the
temperature response by vintage.

The main finding is that each successive decade since 1970 has statistically significantly
increased temperature response compared to older buildings (built prior to 1970). Hence,
average peak load is expected to increase due to population growth and ensuing new con-
struction. This exacerbates the impact of climate change on electricity use. Auxiliary re-
gressions add controls for bedrooms, income, sqft, central air conditioning ownership, and
type of residential structure. These differ across vintage and partially explain the increase in
temperature response for newer buildings. With these controls, 1990s homes are estimated
to have a temperature response of 8% less to 6% more than pre1970s homes in the most
unrestrictive specification.

The organization of the paper is as follows. Section 2 presents existing related studies.
Section 3 presents a description of the data. Section 4 presents an econometric model.
Section 5 estimates the model. Section 6 discusses results and potential mechanisms. Section
7 concludes.

2Though I focus on temperature response, I also present comparisons of the total electricity use across
vintage in Appendix 4.1.1. Unsurprisingly, new homes use more electricity, principally because they are
larger.
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1.2 Related Work

1.2.1 Temperature Response and Building Vintage in Field Evi-
dence and Forecasting

Several papers have focused on temperature response of buildings using field evidence but
have ignored how buildings have changed across vintage. Aroonruengsawat and Auffhammer
(2009) examined the variation in the non-linear relationship between temperature and elec-
tricity use by sixteen climate zones in California, showing that the strongest relationships
are in hotter inland areas. Earlier work on temperature response with (annual, state)-level
data by Deschênes and Greenstone (2008) predicted that climate change scenarios generate a
33% increase in residential energy consumption nationwide with the current set of buildings.
New buildings, if they perform worse than older buildings, may exacerbate this predicted
increase.

By ignoring vintage effects, such studies would underestimate the impact of new buildings.
Baxter and Calandri (1992) use an engineering model to estimate the impact of a 1.9◦C
temperature increase, finding a 2-4% increase in electricity use, but the study holds the
building stock fixed. More recent work suggests that newer buildings are more temperature
responsive. Every two years, the California Energy Commission runs a detailed simulation
model to construct its demand forecast that includes a large mix of econometrically estimated
parameters and engineering estimates. In a recent revision, they find that air conditioning
saturation for newer buildings increased unexpectedly for both hotter (inland) and cooler
(coastal) areas (Marshall and Gorin 2007). 3

A limitation of engineering studies is uncertainty about whether engineering parameters
represent actual field performance. Joskow and Marron (1992) describe many factors that
contribute to overstatement of program effectiveness. In particular, a rebound effect may
exist where occupants demand more services by responding to a decrease in the price due to
efficiency (Greening, Greene and Difiglio 2000), interventions may imperfectly translate to
the field, or unexpected confounding effects could diminish or accentuate savings. Although
only a small portion of their broader critique, Joskow and Marron (1992) highlight the
difficulty of extrapolating from the laboratory to the field. In Joskow and Marron (1993),
they find that the ratio of measured to estimated savings are 0.31-0.42 for two 1980s retrofit
programs; that is, engineering predictions overstated savings by a factor of 2 to 3. As
more current evidence that field measurements and engineering estimates differ, Larsen and
Nesbakken (2004) compare an econometric decomposition approach to the predictions of
engineering models in Norway. They find that the two approaches decompose end uses quite
differently. Hirst (1990) surveys the broader question of program evaluation. Nadel and

3Their large simulation model does not directly report temperature response. Instead, they report a
related statistic, load factor, which is defined as average demand relative to peak demand. Load factor and
average temperature response are inversely related. They project that load factor will decrease suggesting
that newer homes should have higher temperature response.
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Keating (1991) summarize results of a large number of field evaluations and find generally
positive, but usually smaller, savings than what engineers predict. Use of field data, like
that done in this paper, can produce more realistic forecasts or provide ways to validate
engineering estimates. If engineering parameters overstate energy savings, then demand
forecasts will be biased downward.

Two very recent papers use field data to test the impact of building vintage, both using
monthly utility data. Jacobsen and Kotchen (2009) analyze one building standard code
change in Florida using a sharp regression discontinuity. They estimate a 4-6% reduction
is energy use. Costa and Kahn (2010) estimate the differences in total electricity use by
building vintage for buildings in a community in California using cross-sectional variation
and show that homes built after 1983 had lower total electricity use. My research looks
at the differences for homes over three decades and focuses on differences in temperature
response.

1.2.2 The Rosenfeld Curve and Energy Efficiency

Per capita total electricity sales for California have been relatively flat since the mid-
1970s, when landmark legislation for energy efficiency was passed. Comparatively, sales for
the rest of the United States have gone up by 50% (Figure 1.1). Explanations of this time
series phenomenon, commonly referred to as the Rosenfeld Curve, vary widely. One obvious
potential explanation points to California’s policies, especially the establishment of building
and appliance standards unique to California, which also began in the mid 1970s. However,
correlation is not causation. The visual remarkableness of this curve is tempered when
looking at comparable curves for nearby states. A look at analogous “Rosenfeld Curves”
of residential electricity per capita over time for eight Western States (Figure 1.2) presents
a quick visual contrast to California’s impressive performance relative to the United States
(Figure 1.1). Three other states (NV, OR, and WA) have had flat residential electricity per
capita profiles, though they had weaker building standards.4

Avoiding many of the problems of state-level analyses, my research uses rarely available
microdata at the household-level with covariates at the 5-10 household-level. State-level
analyses are problematic because they assume comparability across states. The identifying
assumption in such studies is that changes in per-capita electricity load across states would
have been the same in the absence of energy efficiency policies. This assumption is embed-
ded in several state-level analyses: Aroonruengsawat, Auffhammer and Sanstad (2009) and
Horowitz (2007) use state-level panel data; Sudarshan and Sweeney (2008) make a com-
parison between the US and California; and Loughran and Kulick (2004) and Auffhammer,

4Historical information for all states on building energy standards comes from the Building Codes Assis-
tance Project (n.d.). Nevada implemented a mandatory building energy code in 1978 but ”between 1983 and
1986, the state did not support or enforce this energy code”. Oregon implemented a building energy code
in 1978 that did not apply to residential buildings. A residential code was adopted in 2003. Washington
adopted a voluntary energy code in 1977, with a mandatory code established in 1986.
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Blumstein and Fowlie (2008) use utility-level panel data. These analyses typically find evi-
dence that energy efficiency programs reduce energy consumption. However, the underlying
assumption of comparability across states can be violated for many reasons. The evolution
of a state’s aggregate energy efficiency (as measured by residential electricity per capita)
may depend on changes in the composition of the type of housing (urban vs rural, single
family vs multifamily/mobile homes), differential growth in the size of housing, changes in
geographic/climatic composition (e.g. coastal vs. inland), and differences in the adoption of
air conditioning.

This analysis makes an important contribution to studies of policies aimed at reducing
residential energy. In the context of ”energy intensity” measures, such as electricity per
capita or per GDP, my research identifies the new and counterintuitive empirical fact that
households in new buildings use more electricity per household, both in total use and in
response to temperature. It runs counter to what one might expect from looking at the
Rosenfeld Curve, where per capita electricity has been flat, but the Rosenfeld Curve is an
aggregate-level result that may conflate other factors.5 Explaining what causes this empirical
fact is important for understanding the effectiveness of building energy use policy in the
context of many simultaneous changes.

1.3 Description of the Data

Three investor-owned utilities (Pacific Gas and Electric, Southern California Edison,
and San Diego Gas and Electric) gave researchers at the University of California Energy
Institute the complete billing history for all residential household bills in these electricity
service territories. Time coverage for utilities varies, but the longest period of data are from
1998 to part of 2009 for Southern California Edison (SCE). Information includes billing start
date, billing end date, total electricity used (kWh), total bill, an anonymized account id,
an anonymized physical location id, and the zip code (usually at the nine digit level). This
paper currently focuses on one county, Riverside County, where there are over 20 million
observations for SCE customers.

Riverside County was chosen because it is an inland area with a wide range of tem-
peratures, there is considerable variation in the building vintage, Aroonruengsawat and
Auffhammer (2009) found this region to have substantial average temperature response, and
detailed county assessor’s property information is available. It is important to restrict to
one county or area because housing design, climate, and building standards differ strongly
across the state. For cleaning, bills with 25 days or less or 35 days or more were dropped
(about 5%). Bills with less than 2kWh/day or more than 80kWh/day are outliers were also

5Given that households in new buildings use more electricity than those in older buildings, if older
buildings have not changed, it follows logically that the average household use would go up. Since this
contradicts the flat average electricity use (Rosenfeld Curve), the inference is that households in old buildings
use significantly less electricity, to the point that the average use is flat.
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dropped (about 4%).6

The billing data lacks housing and household information; two data sets of different
spatial resolution are used to provide this information. County assessor’s data (County of
Riverside Assessor’s Office 2010) was obtained for single family homes identifiable to the
address. Because SCE billing includes both bills for single family and multifamily (e.g.,
apartments), I condition on census block groups where more than 95% of households are
in single family homes. Bills are next matched to assessor data via the zip9. Zip9s are
very small, with an average of 4.8 assessor records per zip9. For each zip9, the proportion
constructed in each vintage category, the median of square footage, and the proportion of
houses with central air conditioning for each zip9 is associated with all the bills in that zip9.

The second source of housing information is the US Census. The 2000 US Census’s
Summary File 37 (United States Census Bureau 2009) has at the census block group-level
proportions of the vintage of housing, proportions of type of structure (single family vs mul-
tifamily vs mobile home), the number of rooms, and the income distribution. A census block
group has a size on the order of 500 housing units. Figure 1.3 has a map of part of River-
side County by census tract.8. The shading corresponds to the proportion of housing in a
tract that was built after 1980, with darker meaning more new construction. Hence, within
this county, there is substantial spatial variation in the age of housing which is needed for
estimating vintage differentiated temperature response; i.e. temperature response is com-
pared between dark and light areas of the map. Because of the large number of observations
and computing limitations, a 1-in-5 subsample was used to reduce the sample to 5.3 million
observations when using census data.

Daily maximum (Tmax) and minimum (Tmin) temperature at a 4km x 4km grid are
generated according to the algorithm used by Schlenker and Roberts (2009) which has been
used for estimating the relationship between crop yields and temperature. The reader is
directed there for a more full description of the algorithm as well as diagnostics that show the
methodology is reliable. Billing data are then matched via Zip9 to the gridded temperature
data and to the census block group. The average of Tmax and Tmin is then taken as the
daily temperature. These are then translated into cooling degree days (CDD) and heating
degree days (HDD) with a reference temperature of 65◦F. In a more flexible approach which
follows Aroonruengsawat and Auffhammer (2009), the daily temperature is binned into 10
bins with approximately equal number of observations. Temperature bin ranges are listed
in Table 1.1.

To give a better sense of the data, Figure 1.4 gives plots of average daily electricity
use versus time from the monthly billing data for one household. Peaks for electricity use
correspond to summer months. This data is then replotted as average daily electricity use
versus average cooling degree days in Figure 1.5. As temperature increases, the electricity

6The main analysis was rerun with a cutoff of 200kWh/day rather than 80kWh/day. Results did not
markedly change.

7This is also known as the Census Long Form.
8On average, a census tract is 3 census block groups.
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use for this household increases.
Summary statistics of the data (using assessor’s data which is restricted to single family

homes at the zip9 level) are in Table 1.2. Most homes (88%) have central air conditioning;
the newest homes almost always have central air conditioning, but less than half of older
homes have central air conditioning.

Summary statistics of the data (using census block groups) are in Table 1.3. The top
section reports information from the billing data. The average household use per day is
25.5kWh, or 9307kWh per year. This is slightly lower than the national average of 11,500
kWh per year (Energy Information Administration 2009). The second section of the sum-
mary statistics corresponds to building and household characteristics from the Census data
at the level of the census block group. 20% of observations were built in 1970-1979, 36% in
1980-1989, and 21% in 1990-2000, and 23% before and including 1969. The min and max of
these variables are close to zero and one, which means there is substantial variation across
census block groups in building vintage. The vintage variables differ from the previous table
because this data set includes non-single family homes. The average number of bedrooms
and rooms are 2.57 and 5.23, and the average household income is $48,200.

An extended data discussion with additional detail on data cleaning and matching is in
Appendix 4.1.4.

1.4 Econometric Model

The average temperature response for subareas of California has been estimated by
Aroonruengsawat and Auffhammer (2009) and nationally by Deschênes and Greenstone
(2008). A similar estimating equation is given by Equation 1.1. This flexibly estimates
the average temperature response in log terms within the sample area after controlling for
a household fixed effect.9 Temperature is binned. Dpit is a scalar [0, 1] that denotes the
fraction of days where a household is exposed to the pth temperature bin.

ln(kWh useperdayit) =
∑BINS

p=1 ρp ∗Dpit (1.1)

+αi + εit

An alternative specification is to parameterize the temperature response in terms of
cooling degree days and heating degree days10. Following Reiss and White (2008), I include
linear and squared terms for CDD and HDD which results in Equation 1.2.

9Studies relating energy use and temperature have varied in the functional forms used. I discuss this
in Appendix 4.1.2. In the robustness checks and the auxiliary regressions, I include alternative functional
forms.

10Degree days are referenced to 65◦F. For a given day, CDD = max(Tmean − 65, 0) and HDD =
max(65− Tmean, 0)
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ln(kWh useperdayit) = f(CDD,HDD) + αi + εit

= β1CDDit + β2CDD
2
it + β3HDDit + β4HDD

2
it

+αi + εit (1.2)

I have estimated both temperature parameterizations. The degree day parameterization
is the main specification presented. A limited number of binned results are also presented.

I next estimate the heterogeneity of temperature response by vintage. The vintage of
each household is not known, but the proportion of buildings of each vintage in an area is
known, either at the Zip9- or census block group-level. The temperature response of each
vintage is estimated via the cross sectional variation in vintage across areas. Equation 1.3
uses the degree day parameterization, while Equation 1.4 estimates the average response by
vintage using binning.

ln(kWh useperdayijt) =
V INTAGES∑

v=1

Vjv ∗ (β1vCDDit + β2vCDD
2
it + β3vHDDit

+β4vHDD
2
it) + αi + εit (1.3)

ln(kWh useperdayijt) =
V INTAGES∑

v=1

( BINS∑
p=1

[βpvVjv]
)
∗Dpit + αi + εit (1.4)

where

• i, j, t index households, Zip9 or census block groups, and time (monthly billing period),
respectively

• BINS represents the number of temperature bins, p indexes them.

• V INTAGES represents the number of building vintage categories. v indexes them.

• Vjv is in [0,1] and represents the proportion of buildings in j for vintage v

• Dpit is in [0,1] and is the measure of the proportion of days for household i in the billing
cycle t where the average temperature is in the pth bin

In both regressions, the mean temperature-invariant consumption is captured by the
household fixed effect, αi. Importantly, this will flexibly capture temperature invariant fac-
tors such as variation in appliance ownership and usage patterns.11 In Equation 1.4, the

11A more common specification would also include time dummies. This specification has been run with
both month(Jan-Dec) and year dummies. The pattern of results is the same for the CDD and HDD param-
eterization.
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parameters of interest are the βpv that represent the temperature response for the pth tem-
perature bin for the vth vintage.12 The set of βpv plotted against the p temperature bins
yields the temperature response. Electricity use should increase with increasing tempera-
ture, represented by βp∗v > βp′v when p∗ is hotter than p′ in the air conditioning range of
temperatures for a given v.13 If new buildings have higher temperature response than older
buildings, then βpv∗ > βpv′ when v∗ is newer than v′ for any p in the air conditioning range
of temperatures. In Equation 1.3 with the degree day parametrization, the β1v and β2v de-
termine the temperature response to hotter temperatures. Temperature response is higher
when these coefficients are larger. In the degree day parameterization, the comparison of
interest is the analogous differences in predicted temperature response across vintages.

Estimation of Equations 1.3 and 1.4 determines the average temperature response by
vintage but does not identify the causal effect of building standards. Over time, buildings
have changed in numerous ways, such as building standards on insulation and glazing, effi-
ciency standards on appliances, the likelihood to have air conditioning, the square footage,
and building design. The standard practice of using ln(kWh useperday) as the dependent
variable is one way to controls for square footage and size as discussed in Appendix 4.1.2, but
the other factors are captured by the vintage effect. Building standards do vary by vintage
and are predicted via engineering estimates to have an impact on temperature response.
However, building standards cannot be isolated from the other changes.14 Hence, I interpret
the estimate to Equations 1.3 and 1.4 as the cumulative impact of multiple changes.

In order to aid interpretation of the cumulative effect, available covariates can be added
which can isolate some factors of the cumulative impact of vintage, but the remaining factors
cannot be isolated. County assessor’s data provide additional covariates for central air
conditioning ownership and square footage at the zip9-level but only for areas almost entirely
composed of single family homes. Using this data, the following auxiliary specifications can
be estimated, the first with the degree day parameterization and the second with temperature
bins. Importantly, building standards are not controlled for and would still be part of the
vintage effect.

12One of the temperature bins, 62.7◦F−66.4◦F is left out wlog as the reference temperature bin, otherwise
the rank condition is violated.

13The heating range of temperatures is estimated but not discussed in this paper. Heating fuel varies
across vintage, with newer homes more likely to have natural gas as their primary heating fuel. In contrast,
electricity is almost universally the energy source for cooling.

14There are two potential methods of estimating the causal impact of building standards. First, a regression
discontinuity (RD) design may be possible if the treatment is discontinuous. However, building standards
implementation could be slow and gradual, which would not be picked up by an RD design. Jacobsen and
Kotchen (2009) apply an RD approach which assumes a sharp change in standards implementation. Second,
cross state comparisons can be made, but the limitations of cross-state analyses has been discussed.
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ln(kWh useperdayizt) =
V INTAGES∑

v=1

Vzv ∗ (β1vCDDit + β2vCDD
2
it

+β3vHDDit + β4vHDD
2
it)

+CentralACz ∗ (ϕ1CDDit + ϕ2CDD
2
it

+ϕ3HDDit + ϕ4HDD
2
it)

+SquareFootagez ∗ (θ1CDDit + θ2CDD
2
it

+θ3HDDit + θ4HDD
2
it)

+αi + εit (1.5)

ln(kWh useperdayizt) =
∑BINS

p=1

( V INTAGES∑
v=1

[βpvVzv] + (1.6)

ϕpCentralACz +

θpSquareFootagez

)
∗Dpit +

αi + εit

where

• i, z, t index households, zip9, and time (monthly billing period), respectively,

• Vzv is in [0,1] and represents the proportion of buildings in z for vintage v

• CentralACz is the proportion of buildings with central air conditioning in z, and

• SquareFootagez is the median square footage for buildings in z.

With the census data, three variables are interacted with temperature response that
vary at the census block group-level: (1) average ln(income), (2) average number of bed-
rooms (a proxy for size), and (3) the type of structure, i.e. Single Family or Multifamily
or Mobile/Other. Equation 1.7 presents this auxiliary specification with the degree day
parameterization.
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ln(kWh useperdayijt) =
V INTAGES∑

v=1

Vjv ∗ (β1vCDDit + β2vCDD
2
it

+β3vHDDit + β4vHDD
2
it)

+
STRUCTURES∑

s=1

STRjs ∗ (ρ1sCDDit + ρ2sCDD
2
it

+ρ3sHDDit + ρ4sHDD
2
it)

+AvlnIncomej ∗ (γ1CDDit + γ2CDD
2
it

+γ3HDDit + γ4HDD
2
it)

+AvBedroomsj ∗ (δ1CDDit + δ2CDD
2
it

+δ3HDDit + δ4HDD
2
it)

+αi + εit (1.7)

STRjs is in [0,1] and represents the proportion of buildings in j for the type of structure, s.
AvlnIncomej is the average of ln(income) per household in j. AvBedroomsj is the average
bedrooms per household in j. j indexes census block groups areas. Importantly, building
standards and measures of air conditioning ownership are not available as covariates when
using census data.

An important property of these estimates of temperature response is that they are im-
mune to many types of omitted variable bias. In order for omitted variable bias to bias
temperature response results, two conditions must be met. First, the omitted variable must
vary across vintage. Second, the omitted variable must be correlated with temperature. A
variable, such as price, that does not vary within this region nor by temperature, would not
bias results, except if price elasticities for cooling varied across vintages.15 Aroonruengsawat
and Auffhammer (2009) included price as a regressor in estimating regional temperature
response and found that it did not affect results.

1.5 Results

1.5.1 Main Results: Degree Day Parameterization With County
Assessor’s Data

Results presented in this subsection use the degree day parameterization and county asses-

15This is a future piece of planned work. It is not straightforward to include prices because they are
nonlinear, increasing block rate tariffs.
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sor’s data. Alternative specifications follow this subsection.
I first estimate the average temperature response across all households given earlier by

Equation 1.2. Column A1 of Table 1.4 and Figure 1.6 present the results of the estimation
using fixed effects panel regression with standard errors clustered at the zip9 level. This
shows the strong increase in electricity in response to temperature for higher temperatures,
relative to 65◦F.16

Next, I estimate temperature response by vintage as given earlier by Equation 1.3. Col-
umn A2 of Table 1.4 and Figures 1.7 to 1.10 present the results of the estimation. The
omitted vintage variable is pre1970s, so the coefficients on the remaining variables are dif-
ferences from the temperature response of pre1970s buildings. Figure 1.7 is the temperature
response for pre1970s buildings. Figures 1.8 to 1.10 are for each other vintage relative to
pre1970s buildings. Each figure has a horizontal line at zero to indicate what would result
if there were no difference between vintages. To interpret these results, the 1970s, 1980s,
and 1990s vintage of buildings have statistically significantly higher temperature response
than pre1970s buildings. The highest temperature response is for 1990s buildings, followed
by 1980s buildings, 1970s, and then pre1970s buildings.

Lastly, I estimate temperature response by vintage with some controls interacted with
temperature response, as given by Equation 1.5. These controls capture variation in temper-
ature response that is correlated with central air conditioning and square footage. Results
are in Column A3 of Table 1.4 and Figure 1.11 which combines the graphs. Central air con-
ditioning strongly positively increases temperature response and is more prevalent in newer
buildings. Square feet negatively impacts CDD; this means that the percentage increase in
electricity on a hot day is systematically less for larger buildings. This makes sense from an
engineering perspective because a doubling of sqft typically would mean a less-than-doubling
of surface area. As discussed in the Appendix 4.1.2, the main econometric specification as-
sumes comparability across households of different size by comparing percent changes. In
the figure, all of the temperature response curves shift downward because new buildings
more often have air conditioning. 1970s buildings are not statistically significantly differ-
ent from pre1970s buildings after adding controls. 1980s and 1990s buildings are still more
temperature responsive after adding controls.

1.5.2 Robustness checks

To partially guard against the possibility that some of these results are driven by parametric
assumptions on size, I re-estimate the previous regression and restrict square footage to 1300
to 1600 square feet which reduced the observations by about two-thirds. Estimation results

16The heating curves or temperatures below 65◦Fare not included because electricity is not the dominant
heating fuel. Hence estimated differences across vintages will be partly driven by differences in heating
fuel. Reliable statistics of heating fuel across area are not available. Natural gas is more common in newer
buildings and in some areas. Heating is still included to improve model fit and reduce standard errors.
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are presented in Column A4 of Table 1.4 and Figure 1.12. The signs of the Square Foot ×
CDD and Square Foot × CDD2 variables change, but it is also less statistically significant.
Even with this change, cumulative responses by vintage with controls are similar to the main
results.

The degree day parameterization may be overly restrictive. I run analogous regressions
but with temperature binning instead of the degree day parameterization. Equation 1.4
presents the regression without controls. Results are given in Figure 1.13. Equation 1.6
presents the regression with controls. Results are given in Figure 1.8.17 Results are similar
to the main results. Without controls, all vintages have statistically higher temperature
response for bins higher than 65◦F. With controls, 1970s buildings are not statistically
significantly different from pre1970s buildings for all bins, and 1980s and 1990s buildings are
more temperature responsive.18

In each of these cases, the ln(kWhperday) specification compares households in terms of
the percent change in electricity use relative to each house’s fixed effect, i.e. their tem-
perature invariant mean usage. An alternative approach is to compare each household’s
temperature response in levels (as opposed to percentages) and control explicitly for size.
This alternative is discussed and estimated in Appendix 4.1.2. Referring to Figure 1.15, this
parameterization shows that the predicted temperature response for all vintages of buildings
are not statistically significantly different from the reference group of pre-1970s buildings.
Standard errors are larger due to the reduction in observations.

An alternative data source is census data which offers some advantages. Census data is
not restricted to single family homes and includes income and other socioeconomic infor-
mation. The disadvantage is that census block groups are larger geographically, so there
is less spatial variation and more potential for bias from aggregation, as discussed in Ap-
pendix 4.1.3. Regressions are run with census block data. Figure 1.16 shows the temperature
response by vintage after estimating Equation 1.3. 1980s and 1990s homes have a higher
temperature response that is not statistically significantly different from pre1970s homes,
but 1970s homes have a lower temperature response. Standard errors are much larger due to
the decrease in number of areas. There are 372 census block group areas compared to 9316
Zip9’s areas. Figure 1.17 shows the the results of estimating temperature response by vintage
with controls for income, size, and type of structure, as described in Equation 1.7. Note that
air conditioning is not available at this spatial resolution and is not used as a control. With
controls, results change dramatically. 1970s buildings have a higher temperature response
that is not statistically significant. 1980s and 1990s buildings have a higher temperature
response that is statistically significant. The reason for the upward shift is that 1970s and
1980s buildings had a higher proportion of multifamily and mobile home units which have
lower temperature response. After controlling for this, both curves shift upward. For the

17Regression tables available upon request.
18Note that caution should be used when looking at the lowest and highest temperature bins. These bins

contain outliers and the intra-bin temperature distribution across vintages is quite large. Newer buildings
have more data points in the highest temperature bin.
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1990s buildings, income has a negative effect on temperature response and households in
newer building have higher income. After controlling for this, the the 1990s curve shifts
upward.

Total usage is another way to compare electricity use across households. This research
focuses on temperature response under the argument that temperature response isolates
elements of the building and household preferences only for cooling and heating services. In
contrast, total usage captures many other differences across vintages, such as the number and
type of appliance. Appendix 4.1.1 discusses this in more depth. The results, as presented
in Table 1.5, show that new homes use statistically significantly more electricity than older
homes in total electricity use (Column T1). This is expected since new homes are larger.

After adding controls for square footage and central air conditioning (Column T2), new
houses use statistically significantly less electricity. Further adding controls for temperature
across vintages (Column T3), new homes still use less electricity, and the coefficient on cen-
tral air conditioning without temperature interactions becomes statistically insignificantly
different from zero. This empirical result can be justified without invoking increased effi-
ciency; a home with twice the square footage may not have twice the amount of people or
appliance usage. Hence, the lower electricity per sqft is consistent with fewer services per
square foot.

1.6 Policy Significance and Potential Mechanisms

1.6.1 Policy Significance

The results show that, in Riverside County, the cumulative temperature response for
buildings has been stronger for newer buildings (1980s and 1990s) than for older buildings
(1970s and pre1970s). This has two main policy impacts, one for load forecasting and one for
the impacts of climate change given that the composition of the building stock is changing
to something more temperature responsive.

First, in conducting load forecasts, these results suggest that new construction will in-
crease the average temperature response and increase peak load on the hottest days. As a
calibration, the population forecasts of RAND (RAND California 2010) predict an average
annual population increases of 2.6% for Riverside County. Applying this growth to Riverside
County and assuming that new construction has the same temperature response as 1990s
buildings, Figure 1.18 predicts the increase in average temperature response on a 75◦F day
to go from 48.8% to 52.3% from today to 2020. Peak demand will increase proportionately
as well. This is comparable to the estimated 3.7% increase in peak demand due to a 1.9◦C
increase in temperature as estimated by Baxter and Calandri (1992).

Looking at the issue of air conditioning statewide potentially could have an even greater
effect. This is because coastal areas have historically had a lower amount of air conditioning,
but the CEC revised forecast commented that there was an unexpected increased air condi-
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tioner saturation in cooler areas. Table 1.6 presents air conditioning saturation for old versus
new housing by forecast climate zones from KEMA-XENERGY (2004) data. Figure 1.19
gives a map of the zones. Coastal areas that have very low ownership of air conditioners
for older buildings have dramatically increased air conditioner ownership for newly built
buildings.

Second, climate change impacts will be exacerbated with the increased temperature re-
sponse from newer houses. Using the same calculation as given in Figure 1.18 above, I can
predict the difference in climate change impacts adjusting for the estimate that new build-
ings are more temperature responsive. In 2050, Riverside’s population is predicted to more
than double. For a 5◦F increase due to climate change, temperature response will be about
2-3% higher with the addition of new buildings compared to the current building stock.

1.6.2 Potential Mechanisms

As previously discussed, it is not possible to separate out the mechanism of the vintage-
differentiated temperature response. The heterogeneity by vintage was first estimated, and
then controls for observables were included, which captured some of the heterogeneity. The
remaining temperature response is from the other factors.19 One of the remaining factors
that are part of the vintage temperature response coefficients were policy developments. This
would include building standards implemented in 1975, 1979, 1984, and 1992 and appliance
standards implemented in 1978 and 1987.

After controlling for differences in air conditioning, the remaining differences across house-
holds of different vintages is smaller and depends on the specification used. In the main log
specification with controls for central air conditioning ownership, new buildings had statis-
tically significantly higher temperature response by a small amount (Figure 1.11). Using a
level specification and restricting the sample to houses of similar size, new homes performed
slightly better, but not statistically significantly so (See Appendix 4.1.2, Figure 1.15).

Engineering estimates provide a prediction of the impact of buildings standards absent
any other changes. Building standards have also varied by vintage and are predicted to
reduce temperature response significantly by 34-56% for new versus old buildings. The CEC
identifies four significant changes in building standards and estimates the savings from those
standards with engineering models (Marshall and Gorin (2007) and Abrishami et al. (2005)).
I summarize and report the savings from in Table 1.8. Total load reduction is about 6%
from engineering estimates. However, to make this result comparable to my estimates,
two adjustments must be considered. First, building standards only affect new construction
and major renovation; these are represented in the fourth column which has the population
increase since the standard went into effect as a proportion of the current population. Also,
building standards only affect the temperature response component of electricity use. I

19This relies on the assumption that the other factors are uncorrelated. Otherwise, the included controls
would pick up other factors through correlation with omitted variable.
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calculate the implied reduction in temperature response, -34% to -56% from each building
standard in the last column.

The juxtaposition of similar temperature response across vintages and a large predicted
decrease in temperature response due to building standards suggests that other factors have
had a large positive effect for new houses. There are multiple potential mechanisms, none of
which the data can separate out. Behavioral responses, such as those driven by the rebound
effect (Greening et al. 2000) can increase temperature response. This would mean that part
of the increase is due to an increase in comfort from using more cooling services. New
buildings may differ in their thermal design in that they may have taller ceilings, fewer trees,
less passive shading, more structural complexity, or a higher window-to-wall ratio; all of
which may increase the electricity needed to cool a building. It is also possible that there is
sorting, where people who favor more cooling services are more likely to live in new buildings.
Another possibility is that standards may not have been as effective as they have claimed,
following the logic of Joskow and Marron (1992). These are factors that would need to be
carefully considered when designing and evaluating of building standards.

Some auxiliary information suggests that sorting plays a limited role in explaining the
results of higher temperature response in new buildings. Using data from KEMA-XENERGY
(2004) for homes in this region, Table 1.9 shows the self-reported proportion of homes who
turn on their air conditioning by vintage and time of day, and Table 1.10 the self-reported
average thermostat set point conditional on having central air conditioning on by vintage and
time of day. The newer buildings tend to turn on their air conditioner slightly more often,
but the set point of the thermostat is not very different across vintages. This data cannot be
used in the regression framework because it is available only for large areas whereas assessor
and census data were available for small areas.

1.6.3 Future Work

Billing data are available for a large portion (about 80%) of California and future work
will estimate this specification across the entire state. Though the average temperature
response in coastal areas is low, according to Aroonruengsawat and Auffhammer (2009), the
CEC reports suggest that new construction in lower temperature areas on the coast has
had higher than anticipated air conditioning ownership. In fact, Table 1.6 shows that air
conditioning ownership has increased strongly in both coastal and inland areas. Estimation
of the entire state would enable me to aggregate county-level estimates to a statewide average
cumulative temperature response.

This research also presents a puzzle about the causes of the Rosenfeld Curve, shown in
Figure 1.1. Since the mid 1970s, per capita electricity consumption for California has been
flat while it has increased 50% for the United States. The breakpoint in the 1970s coincided
with the establishment of aggressive energy efficiency policies. The Rosenfeld Curve coupled
with engineering estimates suggest that California’s policies have been very effective, but
this research suggests that, in terms of temperature response, the net effect has been that
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newer buildings increase temperature electricity use more than older ones in response to high
temperatures in Riverside County, one of California’s hottest counties. Several other drivers
(most notably, population growth biased toward hotter areas which have higher electricity
use) would also increase aggregate per capita electricity consumption. The resulting puzzle
is why California has had a flat per capita electricity profile despite these drivers that would
strongly push electricity use upwards. To try to understand the aggregate effect, I will look
at patterns of population growth, housing size (square footage), and changes in heating fuel
in addition to the heretofore studied differences between new and old residential buildings
in temperature response.

1.7 Conclusion

The contribution of this paper is to focus on the relationship between building vintage
and temperature response in residential buildings in California. The main finding is that
temperature response for buildings varies by vintage: new buildings (1970-2000) have a sta-
tistically significantly higher temperature response (i.e. use more electricity in response to
higher temperature) than old buildings (pre-1970). This is robust to many specifications.
The cumulative positive effect for temperature response in new buildings means that in-
creased air conditioning ownership and other factors have outweighed other energy-saving
impacts, such as building standards applied to new residential buildings.

This result has two main implications, one for electricity demand forecasting and one
for climate change impacts. First, since new residential buildings have higher temperature
response, this means that the average temperature response is expected to go up as new
buildings are added. Peak electricity load will also increase, even with climate held constant.
Second, if temperatures increase due to climate change, the new residential buildings will
exacerbate the increase in peak load.
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1.8 Figures and Tables
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Figure 1.1: The “Rosenfeld” Curve. Per capita electricity sales for California and the United
States, annually from 1960-2006. Source: California Energy Commission (2007).
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Figure 1.2: Per capita residential electricity sales for eight western states, 1963-2004 . Source:
Energy Information Administration (2007).
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Figure 1.3: Variation in building vintage in Riverside County, California, USA. Shading
represents proportion of buildings built since 1980. Darker means higher proportion of new
buildings.
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Table 1.1: Temperature bins.

Bin Number Temperature Range

bin0 0-51.96◦F
bin1 51.96-55.89◦F
bin2 55.89-59.25◦F
bin3 59.25-62.70◦F
bin4 62.70-66.39◦F
bin5 66.39-70.54◦F
bin6 70.54-74.37◦F
bin7 74.37-78.30◦F
bin8 78.30-84.02◦F
bin9 84.02-130◦F
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Figure 1.4: Electricity Use (KWH) vs time for one sample household. Source: Author’s
data.
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Figure 1.5: Electricity Use (KWH) vs cooling degree days for one sample household. Source:
Author’s data.

Note: Days with heating degree days were omitted.
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Table 1.2: Summary Statistics.

Variable Mean Std. Dev. Min Max

BILLING DATA
useperday (in kWh) 24.73 14.20 2.03 79.97
days 30.43 1.50 26 34

ASSESSOR’S DATA
Building Age
proportion built prior to 1970 0.15 0.36 0 1
proportion built in 1970s 0.16 0.36 0 1
proportion built in 1980s 0.54 0.50 0 1
proportion built in 1990s 0.15 0.36 0 1
Other Characteristics
Square Feet 1750 480 360 7138
Has Central Air Conditioning? 0.88 0.28 0 1

for pre1970s 0.407
for 1970s 0.847
for 1980s 0.986
for 1990s 0.995

Observations (no subsampling) 5,106,398
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Table 1.3: Summary Statistics.

Variable Mean Std. Dev. Min Max

BILLING DATA
useperday 21.61 14.56 2.03 79.97
days 30.43 1.52 26 34

CENSUS DATA
Building Age
proportion built prior to 1970 0.23 0.24 0 1
proportion built in 1970s 0.20 0.16 0 1
proportion built in 1980s 0.36 0.22 0 0.94
proportion built in 1990s 0.21 0.21 0 0.98
Type of Structure
proportion SingleFamily 0.64 0.30 0 1
proportion MultiFamily 0.28 0.28 0 1.00
proportion MotorOther 0.073 0.15 0 0.84
Other Characteristics
Average Bedrooms 2.57 0.62 0.89 4.36
Average Rooms 5.23 1.01 2.31 8.00
Average Income $48,200 $16,600 $13,000 $108,900
Observations (1-in-5 subsample) 5303019
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Table 1.4: Estimation results, temperature response with CDD and HDD parameterization,
assessor’s data.
Dependent variable is ln(KWH perday)

VARIABLES (A1) (A2) (A3) (A4)

CDD
0.0553*** 0.0460*** 0.0355*** 0.0476***
[0.000330] [0.000930] [0.00149] [0.00321]

HDD
0.0274*** 0.0293*** 0.0231*** 0.0326***
[0.000268] [0.000905] [0.00132] [0.00286]

CDD2 -0.000283*** -0.000185*** 0.000234*** -0.000270*
[1.61e-05] [4.44e-05] [8.27e-05] [0.000164]

HDD2 -0.000590*** -0.000743*** -0.000260*** -0.000802***
[1.87e-05] [6.64e-05] [8.93e-05] [0.000191]

Built in 1990×CDD
0.0149*** 0.0108*** 0.00871***
[0.00121] [0.00160] [0.00300]

Built in 1980×CDD
0.0117*** 0.00482*** 0.00827***
[0.00103] [0.00141] [0.00246]

Built in 1970×CDD
0.00393* 0.000171 0.000292
[0.00201] [0.00210] [0.00371]

Built in 1990×HDD
-0.00049 -0.00306** -0.00364
[0.00109] [0.00139] [0.00248]

Built in 1980×HDD
-0.00195** -0.00502*** -0.00359*
[0.000976] [0.00125] [0.00208]

Built in 1970×HDD
-0.00800*** -0.00980*** -0.00984***

[0.00161] [0.00169] [0.00295]

Built in 1990× CDD2 -0.000242*** -0.000151** -3.00E-05
[5.61e-05] [6.81e-05] [0.000116]

Built in 1980× CDD2 -0.000130*** 7.86E-05 -2.47E-05
[5.00e-05] [5.98e-05] [9.66e-05]

Built in 1970× CDD2 7.56E-05 0.000147 0.000384**
[0.000114] [0.000113] [0.000195]

Built in 1990× HDD2 0.000128* 0.000114 0.000201
[7.71e-05] [9.32e-05] [0.000154]

Built in 1980× HDD2 0.000156** 0.000263*** 0.000261*
[7.02e-05] [8.61e-05] [0.000133]

Built in 1970× HDD2 0.000674*** 0.000737*** 0.000598***
[0.000106] [0.000109] [0.000186]

regression results continued
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continuation of regression results
VARIABLES (A1) (A2) (A3) (A4)

Central Air Conditioning×CDD
0.0160*** 0.00803**
[0.00186] [0.00318]

Central Air Conditioning×HDD
0.00822*** 0.000798

[0.00164] [0.00275]

Central Air Conditioning× CDD2 -0.000554*** -0.000287*
[8.98e-05] [0.000151]

Central Air Conditioning× HDD2 -0.000534*** -0.00014
[0.000110] [0.000181]

Square Feet×CDD
-0.00516*** 0.00621**

[0.000482] [0.00295]

Square Feet×HDD
-0.00239*** 0.00540**

[0.000360] [0.00257]

Square Feet× CDD2 0.000241*** -0.000235*
[2.66e-05] [0.000134]

Square Feet× HDD2 0.000243*** -4.91E-05
[2.16e-05] [0.000164]

Constant
2.704*** 2.705*** 2.710*** 2.597***
[0.00122] [0.00138] [0.00151] [0.00244]

Observations 5,625,517 5,625,517 5,625,517 1,652,525
R-squared 0.363 0.366 0.367 0.414

Number of households 118,252 118,252 118,252 37,984

Includes household-level fixed effects. *,**,*** represent 10%, 5%, and 1% statistical
significance, respectively. Robust standard errors clustered at the Zip9-level. † notes that
the square feet variable has been demeaned (1750 square feet) and rescaled by the
population standard deviation (480 square feet).
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Figure 1.6: Estimation results, temperature response with CDD and HDD parameterization,
assessor’s data, average across all vintages
Dependent variable is ln(KWH perday)

The range represents the 95% confidence interval.
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Figure 1.7: Estimation results, temperature response with CDD and HDD parameterization,
assessor’s data, by vintage. pre1970s reference curve.
Dependent variable is ln(KWH perday)

The range represents the 95% confidence interval with robust standard errors.
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Figure 1.8: Estimation results, temperature response with CDD and HDD parameterization,
assessor’s data, by vintage. 1970s relative to pre1970s curve.
Dependent variable is ln(KWH perday)

The range represents the 95% confidence interval with robust standard errors.
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Figure 1.9: Estimation results, temperature response with CDD and HDD parameterization,
assessor’s data, by vintage. 1980s relative to pre1970s curve.
Dependent variable is ln(KWH perday)

The range represents the 95% confidence interval with robust standard errors.
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Figure 1.10: Estimation results, temperature response with CDD and HDD parameteriza-
tion, assessor’s data, by vintage. 1990s relative to pre1970s curve.
Dependent variable is ln(KWH perday)

The range represents the 95% confidence interval with robust standard errors.
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Figure 1.11: Estimation results, temperature response with CDD and HDD parameteriza-
tion, assessor’s data, by vintage, with controls.
Dependent variable is ln(KWH perday)

The range represents the 95% confidence interval with robust standard errors. Top left
graph is the reference curve for pre1970s buildings. The remaining curves are the relative
temperature responses of the other vintages.
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Figure 1.12: Estimation results, temperature response with CDD and HDD parameteriza-
tion, assessor’s data, by vintage, with controls. Home size restricted to 1300-1600sqft.
Dependent variable is ln(KWH perday)

The range represents the 95% confidence interval with robust standard errors. Top left
graph is the reference curve for pre1970s buildings. The remaining curves are the relative
temperature responses of the other vintages.
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Figure 1.13: Estimation results, temperature response with binning, assessor’s data, by
vintage, no controls.
Dependent variable is ln(KWH perday)

The range represents the 95% confidence interval with robust standard errors. Top left
graph is the reference curve for pre1970s buildings. The remaining curves are the relative
temperature responses of the other vintages.
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Figure 1.14: Estimation results, temperature response with binning, assessor’s data, by
vintage, with controls.
Dependent variable is ln(KWH perday)

The range represents the 95% confidence interval with robust standard errors. Top left
graph is the reference curve for pre1970s buildings. The next three curves are the relative
temperature responses of the other vintages. The bottom curves plot the impact of central
air conditioning and square footage.
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Figure 1.15: Estimation results, temperature response with CDD and HDD parameteriza-
tion, assessor’s data, by vintage, with controls. Home size restricted to 1300-1600sqft.
Dependent variable is KWH perday

The range represents the 95% confidence interval with robust standard errors. Top left
graph is the reference curve for pre1970s buildings. The remaining curves are the relative
temperature responses of the other vintages.
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Figure 1.16: Estimation results, temperature response with CDD and HDD parameteriza-
tion, census data, by vintage, no controls.
Dependent variable is ln(KWH perday)

The range represents the 95% confidence interval with robust standard errors. Top left
graph is the reference curve for pre1970s buildings. The next three curves are the relative
temperature responses of the other vintages.
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Figure 1.17: Estimation results, temperature response with CDD and HDD parameteriza-
tion, census data, by vintage, with controls for type of structure, bedrooms, and income.
Dependent variable is ln(KWH perday)

The range represents the 95% confidence interval with robust standard errors. Top left
graph is the reference curve for pre1970s buildings. The next three curves are the relative
temperature responses of the other vintages. Variation in temperature response by the
three controls (structure, bedrooms, and income) are omitted.
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Table 1.5: Estimation results, Differences across vintage for total usage, assessor’s data
Dependent variable is ln(KWH perday)

VARIABLES (T1) (T2) (T3)
Built in1990s 0.145*** -0.156*** -0.196***

[0.0124] [0.0137] [0.0149]
Built in1980s 0.0459*** -0.126*** -0.133***

[0.00959] [0.0120] [0.0130]
Built in1970s 0.177*** 0.0118 0.0445***

[0.0139] [0.0133] [0.0146]
Square Feet† 0.158*** 0.189***

[0.00341] [0.00381]
Central Air Conditioning 0.0980*** -0.00343

[0.0147] [0.0157]
Constant 2.833*** 2.928*** 2.681***

[0.00858] [0.00963] [0.0108]
random effects yes yes yes

controls for Temperature Response no no yes
Observations 5,625,517 5,625,517 5,625,517

Number of aididlong 118,252 118,252 118,252
Robust standard errors in brackets

*** p¡0.01, ** p¡0.05, * p¡0.1

*,**,*** represent 10%, 5%, and 1% statistical significance, respectively. Robust standard
errors clustered at the Zip9-level. Temperature response controls include square feet,
central air conditioning, and vintage dummies interacted with the quadratic degree day
parameterization. †The square feet variable has been demeaned and rescaled by the
population standard deviation.
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Figure 1.18: Simulation of Riverside average temperature response in 2020, with and without
new building stock. Source: Author’s calculations.

—–
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Table 1.6: Comparison of Air Conditioning Saturation by Climate Zone for Old and New
Homes. SOURCE: RASS 2004

Central Air Central or Room Air
Zone Geography 1990s pre1970s 1990s pre1970s

1 Inland 56% 23% 63% 37%
2 Inland 96% 55% 97% 78%
3 Inland 93% 61% 95% 79%
4 Coastal 69% 30% 72% 41%
5 Coastal 27% 4% 29% 8%
7 Inland 93% 59% 93% 73%
8 Coastal 77% 21% 80% 32%
9 Inland 84% 39% 85% 59%

10* Inland 94% 53% 96% 76%
11 Coastal 60% 12% 68% 25%
12 Coastal 75% 51% 82% 81%
13 Coastal 68% 22% 69% 32%

Note: Zone refers to Forecast Climate Zones as determined by the California Energy
Commission. Zone 10 includes Riverside County. A map of the zones is given below in
Figure 1.19.
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Figure 1.19: California Energy Commission Forecast Climate Zones. Source: California
Energy Commission (2007), page 24.
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Table 1.7: Comparison of Air Conditioning Saturation by Vintage in Forecast Climate Zone
10. SOURCE: RASS 2004

Vintage Central Air Room Air Central or Room
pre1970s 53% 22% 76%

1970 80% 9% 88%
1980 89% 2% 91%
1990 94% 1% 96%

Note: Forecast Climate Zone 10 includes Riverside County.
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Table 1.8: Savings from Building Standards in 2005 and the Implied Reduction In Temper-
ature Response. SOURCE: California Energy Commission reports, author’s calculations

Standard
Estimated
Savings
(GWH)

Percent of To-
tal Load

Population
Increase Since
Standard

Implied
Impact on
Temperature
Response
(Cumulative
Standards)

Building Standard1992 310.7 0.4% 15% -34 to -56%
Building Standard1984 1074.8 1.3% 29% -31 to -53%
Building Standard1979 878.7 1.1% 36% -25 to -45%
Building Standard1975 3166.9 3.8% 41% -20 to -38%

Notes: These values include only the top 5 utilities: PG&E, SDG&E, SCE, LADWP, and
SMUD. These utilities supply electricity to a wide majority of the state’s population. Total
residential load is 83600 GWH for these utilities. To interpret columns 4 and 5 in the
second to last row, 36% = (change in population from 1979 to 2005)/(population in 2005)
and -25 to -45% is the implied percent reduction from all standards prior to and including
the 1979 standards. The calculation range is given by a low and high assumption, 0.1 and
0.25, of the proportion of load that is temperature response. An adjustment factor of 50%
was also used to crudely account for the fact that growth has been faster in hotter inland
areas and that new homes are larger. These numbers should be treated as speculative
because the details of how the estimated savings were calculated are not fully known
beyond that which is described in the two CEC reports referenced in the text of my paper.
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Table 1.9: Proportion of homes with central air conditioning on by vintage and time of day.

Morning Day Evening Night
pre1970s 0.49 0.71 0.73 0.46

1970 0.54 0.69 0.76 0.5
1980 0.51 0.66 0.76 0.47
1990 0.52 0.72 0.82 0.52

N is about 300. Sampling error is about 0.03 for each cell

Table 1.10: Average thermostat set points (in ◦F) conditional on central air conditioning on
by vintage and time of day.

Morning Day Evening Night
pre1970s 0.49 0.71 0.73 0.46

1970 0.54 0.69 0.76 0.5
1980 0.51 0.66 0.76 0.47
1990 0.52 0.72 0.82 0.52

Standard deviation is about 3degF for each cell
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Figure 1.20: Estimation results, difference in temperature response with CDD and HDD
parameterization, assessor’s data, by vintage.
Dependent variable is KWH perday

This uses the assumption that f(size) = sqft.
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Figure 1.21: Estimation results, difference in temperature response with CDD and HDD
parameterization, assessor’s data, by vintage, restricted to sqft in [1300,1600].
Dependent variable is KWH perday

This uses the assumption that f(size) = sqft, but for a narrow range of sqft.
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Chapter 2

Profiting from Regulation: An Event
Study of the European Carbon
Market

Co-authored with Erin Mansur and James Bushnell.

2.1 Introduction

There is a long-standing perception of a fundamental conflict between the interests of
business and environmental regulators. In many cases regulators apply policies that increase
production costs, restrict production, or otherwise constrain the actions of firms. There is
a rich literature chronicling the impacts that regulations such as the Clean Air Act have
had on industrial activity.1 With greenhouse gas regulation on the horizon in the US and
already under way in the European Union, the question of the impacts of these regulations on
industry has taken center stage. As countries and regions around the world develop policies
for limiting greenhouse gas (GHG) emissions, there is an understandably great interest in
how these policies will impact the competitiveness, productivity, and profitability of the
industries to which they are applied.

Measuring the economic impacts of GHG regulations obviously has direct relevance to
setting the levels and timings of the regulations. Even setting aside the specific goals for GHG
reductions, information about the overall magnitude and distribution of economic impacts
has importance for the policy-making process. This is most starkly true in the case of cap-
and-trade mechanisms, which create valuable new property rights in the form of emissions
allowances or permits. These permits constitute the “currency” of cap and trade markets.
They also provide an important tool to policy makers for distributing the revenues collected

1Gray (1987), Becker and Henderson (2000), Gray and Shadbegian (1998), List, Millimet and McHone
(2004)
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by the carbon regulation. The process of allocating emissions allowaances, while inevitably
containing a strong element of political maneuvering, is usually grounded in a desire to
offset some of the cost impacts of the introduction of carbon regulation. Industries that
claim to bear the brunt of the abatement costs usually stake the largest claim to allocations
of allowances.

However, for most industrial enterprises, changes in direct abatement costs are only
one piece of a complicated profitability puzzle. The introduction of a price of CO2 into
an economy can have indirect impacts on firms that are not large CO2 emitters. In most
industries, increases in CO2 costs will be reflected in output prices, and therefore revenues,
as well as in costs. A more complete picture of these net impacts is necessary in any attempt
to align allocations to the true economic impacts of CO2 regulation on firms.

Indeed, the impact of regulations on profitability is ambiguous, even when those reg-
ulations have a substantial impact of costs. There are several mechanisms, ranging from
restricting entry (e.g. Ryan (2005)) to raising rivals’ costs (e.g. Puller (2006)) through
which revenue increases can outstrip cost increases, enhancing profitability.2 With cap-and-
trade regulations, the free allocation of emissions allowances adds an additional source of
revenue. In the case of GHG markets, these assets can total hundreds of billions of dollars.

Despite the politically motivated tendency to award emissions allowances proportionally
to emissions, several papers have concluded that this likely amounts to overcompensation
of the affected industries. These papers use various simulation methodologies to forecast
potential impacts of carbon taxes or caps. Bovenberg and Goulder (2002) and Goulder,
Hafstead and Dworsky (2010) utilize general equilibrium models to assess the likely impacts
of a carbon tax and various cap-and trade policies on a wide set of industries. Burtraw and
Palmer (2008) simulate the US electricity sector under potential cap-and-trade scenarios.
Smale, Hartley, Hepburn, Ward and Grubb (2006) simulate several industries under a carbon
cap in Europe using an assumption of Cournot competition. All these studies find that
for many industries, compensation of less than 20 percent of emissions would offset the
profitability impacts of regulation.

In this paper we study impacts on firms of the largest, in monetary terms, cap-and-trade
market in the world - the European Union’s Emissions Trading System (ETS) for CO2. This
is, to date, the most significant effort by far at regulating CO2 emissions in the world. As
a role model for carbon cap-and-trade, the ETS has been closely scrutinized both within
and outside the European Union. From the outset, the relative impact of the ETS on EU
industries has been a controversial topic, one that has strongly influenced policies for the
allocation of emissions allowances. During its first phase of operation from 2005 through
2007, the prices of emissions allowances in the EU market were quite volatile. While this
volatility has sparked criticism about the design and implementation of this phase of the

2For example, Ryan (2007) demonstrates how the Clean Air Act significantly increased the sunk cost
of entry in the Portland cement industry. Puller (2006) demonstrates how firms can profit from increased
regulation by raising rival’s costs, leading them to promote the adoption of those regulations.
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market, we take advantage of it in order to examine the impact of CO2 prices on firms.
Rather than attempting to directly untangle the many competing effects of the ETS

on firms, we focus on the stock market valuations of public-traded firms subject to CO2

regulation. Specifically, we examine the impact of a sharp devaluation in CO2 prices in late
April 2006 as an event study on the share prices of affected firms. Such an exercise can be
interpreted in several ways. Under an assumption of fundamental market valuation these
prices should reflect the market’s expected discounted future profits of the firms. Even if
one does not adhere to an assumption that the market fully reflects expectations of future
profitability, the event provides a useful window into the beliefs of the market about the
impacts of movements in CO2 prices.

Our results imply that rather than being hurt by the imposition of CO2 regulation, several
industrial sectors benefited from the ETS. Indeed the sharpest declines in equity prices occur
within industries that are the most carbon intensive, or electricity intensive. Such a response
indicates that CO2 prices play a significant role in determining product prices and revenues
in many of these industries. We also examine the responses in relation to a measure of
international trade exposure, and find weak evidence that the benefits of higher CO2 prices
were concentrated amongst sectors with little exposure to international trade.

In section 2.2, we develop a simple model of the impacts of CO2 costs on firm profitability
in order to illustrate the potential impacts. In section 2.3, we briefly review the EU CO2

market and its pricing from 2005-07 and examine the impact of the crash in permit prices in
late April 2006. In section 2.4, we examine the underlying elements of firm characteristics
that influenced the response to the change in CO2 prices. We conclude in section 2.5.

2.2 Emissions Regulations and Firm Profits

In this section we develop a theoretical model considering the potential impacts of envi-
ronmental regulation, or more specifically emissions costs, on firm profitability and perfor-
mance. The model provides a useful framework for decomposing and illustrating the various
potential impacts, both positive and negative, of emissions costs on firms. Consider a firm
producing products for a market represented by the demand curve, P (Q), where Q represents
total industry production in this market. The firm is subject to cap-and-trade regulation of
its emissions, which are in turn a function of its emissions rate, r, and its total production,
q. We assume that the production technology determines the emissions rate, r(q) and that
this rate cannot be changed over the time horizon we are considering. The per-unit price of
emissions allowances is τ , resulting in direct compliance costs of τr(q)q. However, the firm
may posses allowances A equal to its initial allocation less net sales. Considering both input
and environmental costs, the profits of this firm, i, can be represented as:

πi = P (Q)qi − Ci(qi, ω) + τAi − τri(qi)qi
where the function Ci(qi, ω) represents the total cost of producing q with a vector of input
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costs, w. The impact on profits of a change in the allowance price, τ , can be expressed as

dπi
dτ

= P
dqi
dτ

+ P ′
dQ

dτ
qi −

∂C

∂qi

dqi
dτ
− ∂C

∂ω

dω

dτ
+ A− rqi − (r′qi + r)

dqi
dτ
τ. (2.1)

For firms with market power in their product market, we can also consider the effect on
product prices to be a combination of changes in their own output and the output of other
firms. For firm i

P ′
dQ

dτ
= P ′ ∗

(
dq 6=i
dτ

+
dqi
dτ

)
where q 6=i is the output of all other firms, q 6=i = Q− qi.

Assume firms maximize profits with respect to q. Define π∗i = πi(q
∗
i , q6=i). For shocks that

have marginal influence on qi, the envelope theorem implies,

∂π∗i
∂qi

= P + P ′q∗i −
∂C

∂q
− (r′q∗i + r) τ = 0. (2.2)

In other words, the change in profitability though own output would be negligible. How-
ever, there are still effects relating to direct costs, the value of allowance holdings, and
changes in market prices due to the responses of other firms in the industry. Combining
equation (2.2) and equation (2.1),

dπ∗i
dτ

= P ′
dq 6=i
dτ

q∗i +−∂C
∂ω

dω

dτ
+ A− rq∗i . (2.3)

The individual terms in equation (2.3) illustrate the competing potential effects of a
change in the allowance price. First, revenues may increase due to the fact that other firms
in the industry have collectively responded by reducing output. This is similar to a “raising
rivals’ costs” effect.3 Under the assumption that firms would reduce output in the face of
an increase in allowance costs, this term would be positive. Second, the middle term on the
right hand side of (2.3) captures the impact of changes in input costs due to a change in
the allowance price. To the extent that these inputs (e.g. electricity) come from industries
that are themselves subject to the environmental regulation, this term would presumably be
negative. The last term, A − rq reflects the change in direct compliance costs of a change
in allowance prices. If a firm is “short” in allowances, then A < rq and this term would be
negative.

The model is intended to be general, encompassing both perfectly competitive industries
and those in which individual firms have market power. However, it is important to also
acknowledge aspects of oligopoly competition that are not explicitly represented within this
framework. In oligopoly settings, cost shocks such as environmental regulations can increase
profitability by increasing the severity of market power in an industry. In a dynamic setting,

3Salop and Scheffman (1983)
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the environmental regulation could serve as a barrier to entry or even as a collusive focal
point. Even in a static setting, the imposition of an environmental tax can increase margins
under certain demand structures (Seade 1985).

In the following sections, we will examine each of these potential effects empirically. The
relative magnitudes of these effects will largely depend upon three key factors, the elasticity
of demand for the firm’s product, the firm’s endowment of permits, and the relationship
between a firm’s marginal cost and its average cost with respect to emissions and other
input prices. Figure 2.1 helps to illustrate these factors. We assume here that a firm faces
a residual demand curve D, and has a marginal cost function cτ1 before the imposition, or
increase, in allowance prices. In this figure, we also assume that the residual demand curve
D for this firm is unaffected by a change in allowance prices, one condition for which is that
all of the firm’s competitors operate outside of the capped region.

The classic analysis of the incidence of taxation on such a firm would imply a vertical
shift of the marginal cost curve to cτ2. In the context of environmental regulation, this is
equivalent to assuming that emissions rates are constant for all production quantities. If
true the producer surplus is clearly reduced from the sum of areas B and C to the area A
in Figure 2.1a. The allocation of revenues collected, or of permits, would then be critical in
determining the net effect of the regulation. If the firm received a free allocation equivalent
to 100% of its ex-post emissions, this would be a transfer equivalent to the areas C and D,
which totally offsets the increased regulatory cost. As long as the demand for product is
sufficiently inelastic, the firm’s net profit improves because its revenue increases without any
increase in environmental costs. Indeed as Bovenberg and Goulder (2002) demonstrate, only
a relatively small allocation of emissions allowances is necessary to fully compensate many
industries for changes in profits due to CO2 costs.

However, even without an allocation of allowances, the impact on firm profits can be
ambiguous. This is due to the fact that there are both heterogeneous firms and production
technologies within most industries. Consider a case where emissions rates are increasing
with production quantities, as illustrated in Figure 2.1b. The increase in allowance costs
now raises marginal costs, and therefore prices in this perfectly competitive circumstance.
The increase in average costs is well below the increase in marginal costs, however. Now
the new producer surplus, area A, could be larger than the previous surplus of B and C.
A similar, even larger, effect could arise if an individual firm happens to have a “cleaner”
technology than its rivals. Such a circumstance would have the effect of decreasing the
residual elasticity of demand for the clean firm. Again product prices could rise much faster
than average production costs.

Of course, such an effect strongly depends upon the fact that much of the incidence of
increased emissions costs are being passed on to consumers. If the firm in question were
instead faced with very elastic demand for its product, even a substantial convexity in the
marginal cost curve could not compensate for the fact that the producer is absorbing the
bulk of the emissions cost increase (Figure 2.1c).

This discussion is meant to illustrate the varied potential effects and emphasize the impor-
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tance of several key industry characteristics in determining the net effects of environmental
regulations. In the following section, we develop several proxy variables meant to reflect
these characteristics in order to examine the market return of individual firms and industries
in response to a substantial decline in emissions costs.

2.3 The EU Emissions Trading System

The EU Emissions Trading System (ETS) was developed as one of the central mech-
anisms for which the European Union member states could achieve compliance with the
commitments under the Kyoto treaty and is in many ways a remarkable accomplishment.
The world’s first significant cap-and-trade system for CO2, the ETS covers over a dozen in-
dustries and 27 countries, including several that took on no Kyoto obligations. The ETS has
been rolled out in phases. The first phase, running from 2005 through 2007, was intended
as much to develop institutions and gain regulatory experience as to achieve substantial
CO2 reductions. The overall cap for the market was an aggregation of caps developed by
each participating country through their “national allocation plans,” previously analyzed by
Betz, Eichhammer and Schleich (2004). The EU established guidelines for the development
of these plans, but member states were left with significant latitude. Efforts at setting an
appropriate cap were complicated by the fact that, prior to 2005, the monitoring of CO2

emissions of many facilities and countries was unreliable at best. Caps were supposed to be
set in a manner that would place emissions reductions on a trajectory consistent with meet-
ing the Kyoto targets. However, the effective stringency of the Kyoto targets varies greatly
amongst EU member states, and the implementation plans themselves reflected large differ-
ences in these goals, as well as in the relative weight countries chose to give to the capped
sectors covered by the ETS as opposed to those sectors counted under Kyoto but not under
the ETS.

A second source of diversity amongst participating nations was their relative approach
to assigning permits to the covered sectors. As chronicled in Ellerman and Buchner (2007),
Kettner, Koppl, Schleicher and Thenius (2008), and Ellerman, Joskow and on Global Cli-
mate Change (2008), countries such as Spain, Italy, and the UK appear to have imposed more
stringent caps and as a consequence the affected industries in these countries, particularly in
the power sector, were allocated few permits than their observed emissions. These firms were
therefore net buyers of permits within the EU. Industries in other countries, particularly in
Eastern Europe, were observed to emit far less than their allocations.

Another important contrast lay in the allocation of permits across the various industrial
sectors. Although there were differences in countries’ approaches to the allocation of permits
to their industries, some common themes emerge. In general, many regulated firms in the
manufacturing sectors received more permits than they subsequently needed to cover their
observed emissions. Those providing power and heat, most notably electricity firms, were
generally “short” of permits, but still received allocations equivalent to a substantial majority



56

of their emissions.
Overall, by the end of phase I, available permits exceeded measured emissions by about

2.8%. Although the eventual surplus in permits led to a perception of intentionally lax
regulation through “over-allocation,” the picture is more nuanced. An ex-post realization of
a surplus does not necessarily imply over-allocation, since a surplus of allowances can arise
from either over-allocation or over-abatement. Since emissions prices were quite high for some
of this period, it is natural to expect some abatement to have occurred, at least while emission
prices were high. Studies by Ellerman and Buchner (2007) as well as Delarue, Voorspools and
Dhaeseleer (2008) indicate that at least some abatement did take place. In addition, macro-
economic and weather shocks may have played a role in lower than expected emissions, and
specific directed regulations such as aggressive subsidies for renewable electricity production
may have been sufficient to tip the market into surplus.4 Importantly, none of this was known
for much of the first phase, and it was only after the phase was more than 2/3 complete that
the surplus conditions pushed emissions prices to near zero.

2.3.1 ETS Market Performance

The most notorious aspect of the ETS during phase I was the volatility of the permit
prices, which was greatly exacerbated by the fact that permits could not be “banked” for
use beyond 2007. The ETS market was characterized by an early period in which prices
were higher than anticipated and a later period in which the price eventually reached zero in
the face of a surplus of permits that held no value beyond 2007. From the onset of trading
in January through March 2006, prices rose steadily to over 30 Euro/ton. While this price
rise appears somewhat surprising in hindsight, given the eventual surplus of permits, it was
not necessarily considered anomalous at the time. Many attribute the relatively high prices
during this phase to the fact that prices for natural gas, which largely defines the marginal
costs of reducing CO2 emissions in the power sector through its substitution for coal, were
steadily rising during this period.5 In addition, while firms from countries “short” on permits
were apparently relatively active in trading from the beginning, those from many “long”
eastern European countries were not due to delays in integrating the regulatory platforms
with that of the EU. This may have contributed to masking what later emerged to be a
surplus of available permits.

The lack of reliable information about aggregate emissions was also a critical contributor
to the uncertainty about price levels. This changed on April 25, 2006 when the first reports of
country level emissions began to leak into the permit market. As can be seen in Figure 2.2,
the reaction was dramatic. Over the next few days, the permit price as reported on the
European Climate Exchange fell from 28 Euros/ton on April 25 to 14 Euros/ton on April
28. The price drop hit both phase I permit prices as well as permits covering phase II, which

4See Convery, Ellerman and De Perthuis (2008)
5Ellerman et al. (2008)
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had begun trading in 2006. In fact, the surpluses reported during those periods were not
reflective of the more modest surplus left at the end of phase I, and even these initial reports
were revised shortly after they were made public. By May 15, when the final emissions totals
were officially released, phase I prices had rebounded and then fallen slightly again to settle
around 16 Euros/ton.

During this one month period, the general movements of prices for both the phase I and
phase II permits had been generally consistent with each other, although the magnitudes
were more muted in the case of the longer-term phase II permits. Later in 2006 the two
prices series diverged for good, with the phase I prices starting a steady decline toward zero
and the phase II series settling into a range around 20 Euros/ton.

2.3.2 Equity Market Effects

We now turn to the question of how the sharp devaluation in permit prices in April 2006
impacted expectations about firm profitability. A few papers have empirically looked at
different segments of the EU market. Sijm, Neuhoff and Chen (2006) examine the implica-
tions specifically for electricity prices in the Netherlands and Germany and find substantial
pass-through of carbon cost. Convery et al. (2008) note that net incomes of several large
electricity producers increased throughout phase I of the ETS. Two similar papers, Veith,
Werner and Zimmermann (2009) and Oberndorfer (2009) examine stock market returns of
electricity companies using a panel regression of share prices on CO2 prices throughout the
phase I period. Both find that share prices of large electricity producers who were regulated
under the ETS were positively linked with prices for CO2. However, Veith et al. (2009)
find that share prices of “clean” electricity producers not covered under the ETS had no
significant response to CO2 prices.

In this paper we also utilize equity prices of publicly traded firms. It is important to note
that many firms directly subject to the CO2 cap, as well as those in impacted industries,
are privately held or government owned. A large number of publicly traded firms were also
effected, however, and we focus our attention on these firms. We employ a standard event-
study approach.6 We examine firms contained in the Dow Jones STOXX 600 index, which
is similar to the S&P 500 but covers European firms.7 We focus on the three days after the
initial leak of permit market information, the daily returns for April 26-28. Several papers
have utilized an event study approach to assess the impact of environmental regulation on
firm profits, including Kahn and Knittel (2003), Linn (2010), and Linn (2006). Because this
approach has usually utilized a political or legal decision as the “event,” a common concern
has been that information may have leaked into the market before the examined event date.

6Fama, Fisher, Jensen and Roll (1969); more recent surveys include Brown and Warner (1985) and
MacKinlay (1997)

7We chose this index because of its breadth of firms and of geography. Other commonly cited European
Indices such as the FTSE 100 and the DAX are more limited in coverage of European countries and industries.
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Here we can be confident here that there was little leakage of information as this information
would have impacted the CO2 price, which was steadily rising up until our event date.

We utilize the following specification for investigating the potential for extraordinary
returns during this event window.

ln(Si,t/Si,t−1) = αi + βi ln(Mt/Mt−1) + γiEV ENTt + εi,t (2.4)

where Si,t is the share price of firm i and Mt is the price of the market index at time t, and
EV ENTt is a dummy variable that is scaled according to the length of the event window.
For our base specification, where the event window is 3 days, EV ENTt will be scaled by 1/3
so that gammai represents the cumulative excess return during the event window.

We run regression (2.4) for each stock in the index individually, and aggregate individual
γi to summarize results by industry categories. We perform this aggregation through the
following regression.

γ̂i = θj + εi ∀i ∈ j. (2.5)

Industrial categories j are based upon NAICS 2 digit classifications.8 Intuitively, the coeffi-
cient value θj therefore represents the average effect of all firm specific impacts within each
industry sector.

Table 2.1 summarizes the event effects by industrial classification. Many of the largest
significant declines were registered in industries that feature prominently in the EU ETS,
including Mining and Oil & Gas Extraction and Utilities. However, there are also notable
declines in such industries as Real Estate, Accommodation & Food Services, and Construc-
tion. As we describe below, each of these industries are relatively large users of electricity
and sell to relatively local markets. The largest increase was in Wholesale Trade.

These results are merely meant to summarize general effects. The groupings in Table 2.1
are somewhat problematic, as classifications can be imperfect and there can be considerable
heterogeneity of firms within a classification. This latter fact is highlighted by Table 2.2,
which summarizes the effects for firms contained in the Electricity sector, using auxiliary data
on electricity generation units from the Carbon Monitoring for Action project (carma.org)
published by the Center for Global Development, Washington DC.

The second column of Table 2.2 presents the event coefficient for each firm, while columns
3-5 summarize some key characteristics of the firms. When one bores down into the detailed
characteristics of a firm, as is more easily done within the electricity sector, some suggestive
patterns begin to emerge. In general, the biggest declines were concentrated within firms
who produce electricity with relatively low CO2 emissions, such as the hydro or nuclear
intensive firms Fortum, British Energy, and Electricite de France. Some coal intensive firms

8These data are provided by Compustat. Thompsons Datastream provides a classification called INDM
which provides similar results as the 2-digit NAICS, but NAICS was chosen because it is more widely used
in the literature and because it is more easily linked to other industrial characteristics discussed below.
However, Weiner (2005) evaluates several industrial classification schemes and finds drawbacks in each.
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such as Drax and RWE registered declines, but they were more modest than those of the
“clean” producers. Last network operators such as National Grid and Red Electrica, with
no position in the production or sale of electricity, registered almost no impact.

These results are consistent with an explanation of the effects that emphasizes the im-
portance of revenue impacts in the product markets. All the firms in Table 2.2 who sell bulk
electricity experienced declines in revenues, and only some experienced significant declines
in production costs. Many of these firms were also substantial holders of emissions permits
at the time of the crash in permit prices. In the following section we develop several more
general indices meant to capture the relative sector level and firm specific characteristics that
could influence the permit price effects and test their relevance on market returns during
this event period.

2.4 Testing Determinants of Profitability

In this section, we examine which industry and firm characteristics determine the prof-
itability of some firms in the face of CO2 price changes. First we test the importance of
firms’ allocation of permits, net of emissions, in determining abnormal returns. Then we
test whether the share price changes described in the previous section are consistent with a
“revenue effect.”

2.4.1 Asset Value of Permit Holdings

We first examine the effect of permit allocation, and emissions on the performance of
share prices during the event. For this task we utilize the emissions data contained in
the EU’s Community Independent Transaction Log (CITL). This dataset contains facility
level information on the allocation and emissions of over 12,000 facilities throughout the EU.
Unfortunately, firm ownership of facilities is reported inconsistently within the CITL, making
necessary a manual matching of facilities to firms, and then to individual stock listings.

We were able to match 90 publicly-traded firms in the largest sectors regulated by the
ETS. For each of these firms, we take total 2005 emissions and permit allocations aggregated
over all covered facilities owned by the firms.

We examine whether these firms’ permit allocations and emissions explain abnormal
returns. Given a drop in permit prices, those firms with positive net permit positions will
lose more profits than others with a negative net position, all else equal. In theory this will
be reflected in the stock price. We test this by estimating the following equation:

γ̂ij = θj + µ(Ai − Ei)/Mi + ηij, (2.6)

where Ai be the historic 2005 allocation, Ei be historic 2005 emissions (as measured in
the spring of 2006), and Mi is the firm’s historic market cap in Euros (e.g., on April 25,
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2006). In order to control for industry average differences, we examine including industry
fixed effects.

Note that, although the CITL registers all transactions, only the allocations and emissions
data are currently publicly available. Therefore we do not know the actual holdings of a given
firm on any day, only their initial allocations. Our values for (A− E) should be considered
only proxies for the “true” net position of firms at the time of the event. Importantly, the
broader market also did not know these “true” net position, and was relying upon the same
data, which were finalized on May 15, that we utilize here.

The net permit position (Ai − Ei) is normalized by market capitalization. This is done
because larger firms could have greater variation of net permits. Furthermore, this normal-
ization implies a µ coefficient of the change in market capitalization given a change in net
permits.

If profit impacts were driven completely by net emissions costs, we hypothesize that the
coefficient µ would equal roughly the drop in permit price times three, or about -42. A firm
with, say, 1 million tonnes of excess permits in 2005 may be expected to have extra permits
in 2006 and 2007. The value of these unused permits fell by the drop in the permit price,
which was around 15 Euros per tonne. Hence, this hypothetical firm would have lost, 1
million tons/year * 3 years * -14 Euro, or 42 million Euros.

Table 2.3 reports the results. We find that the coefficient on net position is statistically
significantly different from -42. In fact, we do not even find a statistically significant coeffi-
cient. In Panel A, we exclude fixed effects and find a coefficient of -6.9 that is insignificant.
Even after controlling for industry fixed effects, in Panels B and C, we find a very similar
result (negative and insignificant).

Given the lack of market information about permit trading, investors were unlikely to
know the exact net position of firms, and may have had difficulty even estimating the sign
of net position. Figure 3, which plots the 90 firms’ permit allocation and emissions during
2005, demonstrates this point. Many firms had been allocated permits that were very highly
correlated with their 2005 emissions levels. We find that initial allocation explains over 95
percent of the variation in 2005 emissions.

In Table 2.3, we next examine whether the abnormal returns were correlated with a firm’s
level of emissions, or allocations. We find no evidence of this in Panel A. However, the picture
becomes more clear once we control for industry fixed effects. As described above, many
industry classifications were “long” in permits during this period. The important exception
is the power industry which was on net short of permits. We therefore estimate the power
industry, as the one segment known to be short, separately in Panel B. In Panel C, we
estimate the influence firm-level emissions and allocations on all other industries, controlling
for industry fixed effects.

With industry fixed effects a clear distinction between the power sector and other indus-
tries emerges. Within the power sector, firms with high levels of emissions outperformed
the “cleaner” firms when the allowances prices fell. There is a strong relationship between
emissions and changes in market capitalization, with each ton of emissions improving market
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cap by 6.25 Euros. Firms with higher allocations also had better returns, but recall that
emissions and allocations are almost completely co-linear, so this is likely also an emissions
effect. Firms in the other industrial sectors, which were net long on permits, experienced the
opposite effect. Firms with higher allocations suffered the largest declines when the permit
price fell, with each added ton of allocation implying a reduction of 31.5 Euros in market
capitalization. As with the power sector, both emissions and allowances produce nearly
identical coefficients, reflecting the strong correlation of these two variables.

This firm-level analysis of permit holdings and emissions implies that, within industries
that were net long on permits, dirtier firms suffered the largest declines. This is consistent
with a market expectation that these firms had suffered the largest decrease in aggregate
permit asset value, as these firms were the largest holders of permits within their industries,
and their asset values in permits exceeded their emissions liabilities. For the power sector,
it is the cleanest firms that suffer the most. This is consistent with a market focus on
the impact of permit values on electricity prices, combined with a view that dirtier firms
experienced a net decline in their abatement costs to somewhat offset the decline in product
prices. These dirty firms in the power sector still experienced abnormal negative returns,
but they were more modest declines than those of the cleaner firms.

2.4.2 Tests of Revenue Effects

Recall from Section 2.2 that the revenue effect depends on how a cost shock in an industry
affects the output prices, ∂p/∂τ . This in turn will depend upon the elasticity of demand for
the product, the convexity of a firm’s costs with respect to emissions costs, and the relative
emissions of other firms in the industry. For example, industries that have little international
trade exposure, use many dirty inputs, and produce substantial carbon emissions are more
likely to have a strong revenue effect. In order to test the importance of these factors, we
examine the abnormal returns during the event window as estimated in equation 2.4, γ̂i.

γ̂ij = δ0 + δ11(DOj > 0) + δ2DOj + δ31(DIj > 0) (2.7)

+δ4DIj + δ51(TEj > 0) + δ6TEj + νij,

where DOj is a measure of how dirty (carbon intensive) is an industry’s output, DIj is a
measure of how dirty are an industry’s inputs, and TEj measures the trade exposure of the
industry. We describe each of these variables in more detail below.

Sectors were characterized by the “dirty output,” “dirty input,” and “trade exposure”
variables at the NAICS 3-digit level. Dirty output (DO) comes from combining CITL emis-
sions data with Thomson’s Datastream financial data. For all sectors j where at least one
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firm was matched in the CITL, DO is given by the following formula.

DOj =

∑
i∈(j∩CITL)Emiti∑
firm∈(j∩CITL) Si

(2.8)

where Emiti is the sum of facility level emissions in the CITL over all facilities owned
by firm i and Si is the 2005 revenue of firm i. The subscript j indexes NAICS3 sectors,
and CITL indexes firms contained in the CITL emissions data set. The emissions factor
calculated above is then normalized to the 0-1 range. Emissions intensity for any firm in a
given NAICS sector will therefore be based upon the measured emissions of firms matched
with CITL data in that NAICS sector. There were 90 firms for whom we have been able
to match with the facility level emissions data, and 202 firms contained in the STOXX 600
index drawn from the sectors for which we have matched emissions data.

Dirty input comes from input-output tables of industrial activity. DIj is the direct plus
indirect input use of the electricity sector in producing one dollar of output in sector N . We
are not aware of sources of input output tables for the EU with NAICS nomenclature, so
the index here is calculated using US figures from the Bureau of Economic Analysis (BEA).
As with DO, we normalize the value of DI to range between 0 and 1.

Trade Exposure (TE) is a measure of how much a given commodity is internationally
traded. We use a measure of Trade Exposure that the European Union has proposed to
be used in determining which sectors get free allocation due to industrial competitiveness
concerns.9

TEj =
(EXPORTj + IMPORTSj)

(OUTPUTj + IMPORTSj)

EXPORTS and IMPORTS are with respect to the EU region, so intra-EU trade (which
is uniformly under the ETS) is not counted. US trade (from COMTRADE) and production
(from BEA) data was used to construct these measures. Though European data is preferable,
US data should be equivalent if US and European input-output tables and trade profiles are
similar. US data were used because they were already coded to NAICS, whereas European
data are categorized by NACE codes, which require further (imperfect) translation to NAICS
via correspondence tables.

Table 2.4 provides the summary statistics for twenty sectors (based on two-digit NAICS
codes). For each sector, the table reports average abnormal returns during the event win-
dow. In addition, the sectors’ industry characteristics (DOj, DIj, and TEj) as well as the
market capitalization are summarized. The mining, oil and natural gas extraction sector is
that which is most electricity intensive: it had the largest average abnormal stock drop of
approximately 2.7 percent. Utilities have the highest carbon emissions intensity: its average
stocks had an abnormal decline of about 1.8 percent.

9Convery, et al., 2008
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Note that for each of these variables there are many sectors with no value. For DO this
is because many industries are not covered under the cap and trade system. In the sample
of 600 firms, roughly 40% are in industries covered by the ETS and therefore have non-zero
values for DO. In the case of DI, there are some (roughly five percent) firms with NAICS
codes not contained in the BEA input-output tables. In the case of trade exposure, this
is an artifact of our reliance on trade and production data. These data are focused on the
manufacturing sectors, and therefore several industries, particularly service oriented ones,
are not considered to be involved in international trade. About 60% of the 600 firms have
no value for trade exposure. It is because of these issues that we include dummy variables
that are applied to all firms with non-zero values for DO, DI, and TE respectively in the
specification described above.

Table 2.5 reports the results of different variations of regression 2.7. The first two columns
report the results controlling only for dirty output, or dirty input respectively. The third
column controls only for trade exposure. The fourth and fifth columns interact DI and DO
with trade exposure, under the intuition that trade exposure should matter less in relatively
“clean” industries that are unaffected by CO2 prices. Column seven combines all these
variables by interacting both DO and DI with trade exposure.

From Table 2.5, it is clear there is a relationship between carbon intensity and perfor-
mance during the event window. Firms from industries with high emissions (large DO) or
relatively dirty inputs (e.g., high electricity usage) saw their share prices decline. This is
suggestive of a revenue effect, as firms in these industries will have experienced a decline in
their competitor’s, as well as their own, marginal costs. When DI is interacted with trade
exposure, the coefficient on DI roughly doubles, suggesting that it was firms with no trade
exposure who are largely driving the negative value on DI. The interaction term on DI and
TE is positive, but very imprecisely estimated. When all terms are considered simultane-
ously, higher values of both DO and DI significantly impact a decline in share prices during
the event.

It might at first seem counter-intuitive that the firms most directly impacted by CO2

regulations would be the greatest losers from a decline in CO2 prices. Keep in mind that these
values are measuring the relative carbon intensities of industries, not the individual firms
within industries. Thus we interpret these results as being consistent with the hypothesis
that product prices, and therefore revenues, were negatively impacted by the CO2 price
shock. Although costs were also reduced, either through the direct or indirect exposure to
CO2 regulation, it appears that the revenue effects were stronger. For regulated industries,
this is almost certainly a consequence of the fact that allocations were closely linked to
emissions, as illustrated above. For these firms, the revenue effects would naturally be the
strongest as the reductions in costs are largely offset by a concurrent reduction in the value
of permit holdings.

We examine the robustness of these results in several ways. One question is the appro-
priate time window for the event. This is particularly true as the volatility in permit prices
continued beyond the 3 day window examined above. To address this question we also exam
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a 30 day event window we call BIGEV ENT , consisting of 5 days prior and 25 days after
April 25, 2006. We generate new γ̂i estimates using the BIGEV ENT window and per-
form the same analysis on the influences on share price performance. Table 2.6 describes
the results for these regressions. As before, both DI and DO produce negative, although
insignificant, coefficients when considered on their own. When all factors are included (col-
umn 7), the coefficients for dirty inputs and dirty outputs are negative and significant at the
10% level. Interestingly, the impacts of trade exposure are much stronger than during the
shorter event window. While firms with trade exposure in general saw a decline in shares,
the interaction terms for both DO and DI are positive and at least weakly significant. This
indicates that although dirty firms saw a decline in shares overall, the dirtiest firms that
were most exposed to international trade benefitted from the CO2 price decline.

In Table 2.7, we add a measure of the firm’s debt-to-equity ratio. Note that the net
present value of all future profits equal the sum of equity and debt. By including the debt-
equity ratio, we test the robustness of our results that the findings are representative of
changes in profits, not just equity. Although debt-to-equity is a significant factor, it does
not change the underlying picture with regards to dirty inputs and outputs during the short
event window. In Table 2.8, we test the importance of the CAPM framework to the results
by testing the event on the unadjusted returns (e.g. no β term) of the shares. The results
are very similar to those of table 5.

In Table 2.9, we test for the presence of possible spillovers to a neighboring market by
performing a similar analysis for the stocks in the US Standard and Poors 500 index. When
all factors are considered, the only variable with a significant impact on returns is the DO
index variable, which is positive, indicating that dirty firms experienced an increase during
this period. One possible interpretation is that the event in the EU lowered expectations
about the probability or the cost of future regulation in the US. In Table 2.10, we analyze a
similar time frame from the year 2004, a date before the EU CO2 market came into existence,
as a form of falsification test. Although certain characteristics were significant in determining
the abnormal returns of shares during this 2004 period, the results are quite different from
the results from the 2006 CO2 price crash.

2.5 Conclusions

The development and application of any significant new environmental regulation will
involve some level of debate over its economic impacts. This is particularly true in the case
of regulations to combat climate change because the stakes are so high. The annual value
of permits consumed in the European ETS market we study reached nearly $60 Billion. A
market in the United States would be 2 to 3 times the size of the European market. These
values are an order of magnitude larger than any other previous emissions trading markets.
These sums have generated intense interest in the potential incidence of these costs, and
many industries are making the case for some form of free permit allocation to offset these
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costs.
However, the cost impact is only one part of the story from the perspective of firms and

industries. The impact of emissions costs on revenues is another critical consideration. It a
desire to examine this full portfolio of impacts that has drawn us to examine the European
ETS market. We have used an event-study approach to analyze the response of the stock
market to the devaluation of CO2 permit prices in late April 2006. This provides one of
the first opportunities to empirically test the impacts of CO2 regulation on major industries
and firms. By looking at the impact of a sharp decline in CO2 prices on the equity prices of
impacted firms, we can get a strong sense of what the market believes to be the net impacts
of CO2 regulations.

The story that emerges from an examination of this event is that the equity markets
were strongly focused on revenue effects. Our results demonstrate, fairly robustly, that
the share prices of firms from the “dirtiest” industries experienced the largest abnormal
declines during this period. For firms that are directly regulated under the ETS program,
consideration of permit holdings almost certainly influenced investor response. Although our
data on allocations appear insufficient to explicitly identify a “net holdings” effect, we do
find evidence that allocations played a role in the market’s response to the CO2 price crash.

Within the power sector, which was as a whole “short” of permits, the share prices of firms
with the highest emissions rates, perform better than the “cleaner” firms within this sector.
The share prices of many of these high emissions firms did experience abnormal declines,
but these declines were less severe than those of their low carbon intensity competitors.
The fact that very low-carbon emissions firms declined the most gives strong indication of
the market’s focus on how declining CO2 prices would reduce the revenues of these firms
through lower electricity prices. The fact that the high emissions firms still experienced
declines highlights the fact that the market also understood that these firms were holding
large portfolios of allowances and experienced a loss in that portfolio that largely offset their
cost savings from lower CO2 prices. Within other industries that were in aggregate allocated
more allowances than were consumed, those firms with the largest allowances experienced
the largest abnormal declines.

It is important to recognize the many caveats that must be applied to interpreting these
results. The ETS was a very new market, which was one of the causes of the volatility we
utilize here. It would be heroic to assume that the stock market completely and accurately
processed the information that emerged in late April 2006. In addition, while the crash
affected both near-term and long-term CO2 prices, the impact on the near-term Phase I
prices was much more pronounced. The events of 2006 may also have impacted expectations
about future allocations of emissions permits, as well as expectations about prices. Because
our event study uses the same time window for all stocks, any contemporaneous events could
also be causing the abnormal returns. We looked for sector-specific announcements in this
period. Specifically, oil prices did not change dramatically.

Nonetheless, these results are largely consistent with what simulation studies had pre-
dicted could be the case for many of these industries. These studies forecast an increase in
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revenues that would largely offset the increase in regulatory costs. In fact, our results imply
that for clean firms in dirty industries, these revenue effects are larger than cost increases.
These are important facts to bear in mind when setting policies regarding allocations to
impacted industries. In many cases, those directly or even indirectly impacted by CO2 costs
may need little compensation. Instead it is their customers who will be most affected.
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2.6 Figures and Tables
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Figure 2.1: Theoretical Change in Producer Surplus under Environmental Regulation. Under
a tax, or auctioned permits, firms gain area A but lose areas B and C. However, if firms are
allocated permits equal to their equilibrium emissions, they gain A and D and lose only B.
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Figure 2.2: EU Carbon Prices, Stock Index, and Oil Prices
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Figure 2.3: Most firms allowances are similar to emissions (Current subsample of 90 firms
with emissions linked to stock market data)
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Table 2.2: Stock Market Cumulative Abnormal Returns for Firms in the Electricity Sector

Panel A: Firm Level Cumulative Abnormal Returns
Stock Name Event Carbon

per MWh
Carbon
per Equity

MWh per
Equity

Fortum -0.088 0.214 0.265 1.236
Verbundgesellschaft -0.086 0.252 0.941 3.729
British Energy Group -0.071 0.108 1.117 10.365
EDF -0.05 0.104 0.466 4.496
RWE (XET) -0.045 0.909 3.049 3.355
A2A -0.024 0.287 0.36 1.255
Atel Holding ’R’ -0.022 0.213
DRAX Group -0.019 1.046 3.854 3.684
United Utilities Group -0.018
EDP Energias de Portugal -0.015 0.712 1.809 2.541
International Power -0.012 0.611 2.084 3.414
Red Electrica de Espana -0.005
Scot.& Southern Energy -0.004 0.819 1.92 2.344
ENEL -0.003 0.501 1.466 2.926
National Grid -0.001
Terna -0.001
Union Fenosa 0.004 0.972 1.265 1.301
Schneider Electric 0.011
Iberdrola 0.015 0.349 0.451 1.291
Public Power 0.052 0.982 8 8.146

Panel B. Correlations
Event Carbon per MWh Carbon per Equity

Carbon per MWh 0.593 1
Carbon per Equity 0.58 0.689 1

MWh per Equity -0.035 -0.091 0.476

Notes: NAICS 2211
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Table 2.3: Tests of Net Permits at Firm Level

Panel A: All Industries (with NAICS3 Fixed Effects)
1 2 3 4

Net Permits -6.9
7.18

Allocation 4.17 0.26
3.57 14.15

Emissions 4.1 3.85
3.22 10.9

Constant F.E. F.E. F.E. F.E.

Panel B: Industries Net Short in Permits (Power Industry)
1 2 3 4

Net Permits -1.51
11.44

Allocation 6.65 *** 16.35
1.32 11.28

Emissions 6.25 *** -9.45
1.5 11.14

Constant -0.022 ** -0.031 *** -0.031 *** -0.03 ***
0.008 0.007 0.008 0.008

Panel C: Industries Net Long in Permits (with NAICS3 Fixed Effects)
1 2 3 4

Net Permits -17.11
29.18

Allocation -31.53 *** -6.73
6.81 20.24

Emissions -34.56 *** -27.64
6.79 17.58

Constant F.E. F.E. F.E. F.E.

Notes: Significance is noted at the 10% (*), 5% (**) and 1% (***) levels. Standard errors
are robust. There are 90 observations in Panel A, 21 in Panel B, and 69 in Panel C. Firms
in the power industry had an average net short position of 2.15 million while firms in other
industries were on average net long by 282 thousand.
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Chapter 3

Classification, Detection and
Consequences of Data Error:
Evidence from the Human
Development Index

Co-authored with Max Auffhammer and Hendrik Wolff. 1

Perhaps the greatest step forward that can be taken, even at short notice, is
to insist that economic statistics be only published together with an estimate of
their error. – Oskar Morgenstern, 1970

3.1 Introduction and Related Literature

This paper studies the Human Development Index (HDI), which has become one of the
most widely used measures to communicate a country’s development status. Compared
to the Gross Domestic Product (GDP), the HDI is a broader measure of development,
since it captures not only the level of income, but also incorporates measures of health and
education (Srinivasan, 1994; Streeten, 1994; Anand and Sen, 2000). The United Nations
Development Programme, which releases the HDI statistics, classifies each country into one
of three categories: ‘low human development’ for HDI scores between 0.0 and 0.5, ‘medium
human development’ for scores between 0.5 and 0.8 and ‘high human development’ for scores
between 0.8 and 1.0.

Although these development categories were not originally designed to determine inter-
national relations, development aid or should imply any other legal consequences, today

1Published in 2011 in The Economic Journal. I thank the publisher, John Wiley and Sons, for permission
to include this work in my Dissertation.
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these three mutually exclusive categories are used in politics, academia, and the corporate
world. In business relations, the categories have been used for international pricing purposes
(Bate and Boateng, 2007). Since 2001 the pharmaceutical company Merck sells drugs at
different prices with up to 90% discounts for countries that are classified as ‘low’, and 75%
reductions for ‘medium’ countries (Petersen and Rother, 2001). Second, the HDI has been
widely used in debates among development researchers and policy makers (Sen, 2000) and
is actively invoked to structure discussions in development-political debates of both govern-
mental and non-governmental organizations (NGOs) (Jahan, 2000; HDR, 1990 to 2006). For
allocation of development aid, it is known that the government of Ireland puts a particular
focus on countries categorized as ‘low human development’ (O’Neill, 2005). International
climate accord designs following the expiring Kyoto Agreement have included a proposal for
linking countries’ abatement responsibilities according to their HDI (Hu, 2009). Thirdly,
in economics, an extensive literature has studied the relationships between HDI rankings,
economic growth, institutions, and other economic and social measures (Anand and Raval-
lion, 1993; Easterlin, 2000; Dasgupta, 2001). The conceptual underpinnings of the HDI can
be found in the work by Amartya Sen (i.e. 1977, 1984, 1985, 1987). For a recent mathe-
matical ethical rationalization of the HDI see Moreno-Ternero and Romer (2006). Oswald
(1997), Blanchflower and Oswald (2005) and Leigh and Wolfers (2006) explore links between
a happiness index and the HDI.2

Despite extensive use of the HDI statistics, the drastic changes in the distribution of
HDI scores for developing countries, as displayed in Figure 3.1, have gone unnoticed in
the academic and policy literature. When the HDI was first published in 1990, the cross
country-distribution appeared to be approximately uniformly distributed between zero (least
developed) and one (most developed). Today, however, the distribution is twin-peaked with
two sharp spikes around the values of 0.5 and 0.8, which are the cut-off values for categorizing
countries of ‘low’, ‘medium’ and ‘high’ human development.

In this paper, we investigate the role of data error on the published HDI and the con-
sequences for its use in statistical analysis. We address these questions by exploiting (1)
the originally published HDI time series, (2) the subindicator variables used to construct
the HDI, (3) changes to the HDI formula, and (4) documented data revisions. We identify
three sources of data error: measurement error due to data revisions, data error due to for-
mula updating and misclassification due to inconsistent cut-off values. After isolating data
revision error from error due to formula updates, we estimate country specific variances of
the HDI scores. For example, the variance due to data revision for Bolivia represents the
distribution of possible HDI values for Bolivia in a given year, which is solely created by
updates to the data series. We show that the HDI contains data error standard deviations
ranging from 0.03 (United States) to 0.11 (Niger), which is significant given the 0 to 1 scale.

2Other studies that specifically used the triple-bin classification include Kelley (1991), McGillivray (1991),
Noorbakhsh (1998), Baliamoune (2004) in development economics, Mazumdar (2002), Noorbakhsh (2006)
in macroeconomics, Hargittai (1998), Keiser et al. (2004) in communications and Guindon and Boisclair
(2003) to analyze health outcomes across countries.
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We find that the magnitude of the error variances is greater the lower the HDI rank, which
is consistent with the quality of the statistical agencies improving with higher development.
Likewise, country specific variances due to formula revisions are calculated. Mapping these
cardinal noise measures onto the ordinal dimension, we find that 11%, 21% and 34% of all
countries can be interpreted as currently misclassified in the development bins due to the
three sources of data error, respectively.

We also investigate the ordinal rank error. Each year when the new HDI statistics are
published, much public attention focuses on the relative rank of a country to its rank in
prior years and to the rank position of competing countries. For example, when Canada
lost the top HDI number 1 position in 2001, The National Post (3rd of July, 2001) wrote:
‘We’re not No. 1! Canada drops in UN rankings. . . Prime Minister Jean Chretien often
refers to the report in public statements and speeches. . . ’. Or, in 1998, when Pakistan (rank
138) bypassed India (rank 139), The Tribune (September 14th, 1998) noted: ‘Pak beat India,
both lose! ’.3 To investigate the reliability of such statements, we calculate each country’s
likelihood of deviation from its original published HDI rank. We find that on average the
expected absolute deviation is nine rank positions. Furthermore, the average 95% confidence
interval of our simulated HDI rank deviations ranges from -21 ranks to +20 ranks for the 2.5%
percentile and the 97.5% percentile respectively. These calculations show that statements
based on ordinal comparisons are to be interpreted with great care.

Our results have direct implications for the academic literature. First, there is a vast
economic literature that uses the same country level data that are included in the construc-
tion of the HDI, namely purchasing power parity adjusted income (i.e. Rogoff, 1996), life
expectancy (i.e. Acemoglu and Johnson, 2007) and the educational measures of literacy rate
and school enrollment statistics (i.e. Krueger and Lindahl, 2001). We investigate the inher-
ent noise characteristics for each of these variables separately by estimating country specific
variances for the underlying variables—GDP per capita, school enrollment, literacy rate and
life expectancy. We find that the variables of health and education exhibit particular large
error variances in developing countries; in comparison income has a smaller error variance
but among the three sub-indicators it reveals the largest updating bias. Second, the HDI has
been used to analyze the evolution of the world’s distribution of well being, to explore issues
of inequality, polarization, foreign direct investment, development aid and to econometrically
test various convergence hypotheses in macroeconomics. By replicating some of these studies
and carrying out sensitivity analyses, we find that key parameters, such as estimated Gini
coefficients and speed of convergence parameters, vary by up to 100% in their values solely
due to the measurement error.

Our paper is related to the literature that discusses the challenges in accurately estimat-
ing national accounts and other aggregate statistics. Deaton and Heston (2008) provide an
in depth analysis of the various factors that affect PPP. In their case, in order to eliminate

3Pakistan ranked 119 and 138 and India ranked 118 and 139 in 1997 and 1998 respectively. For an
extended discussion about these and similar rank statements see Morse (2003).
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differences in national price levels, GDP is combined with data by the International Com-
parison Program (ICP) but the ICP’s methodologies are subject to various changes, (i.e.
modifications of baskets, Laspeyres versus Paasche index, product quality adjustments). In
discussing previous revisions of the methodologies, Deaton and Heston (2008) conclude that
PPP data are ‘not always suitable for the purposes to which they are put ’. Krueger and Lin-
dahl (2001) study the relationship between economic growth and country level educational
variables and discuss the direction of bias one might expect by using different variables.
Other papers that characterize the noise in aggregate statistical data include Barro and Lee
(2001) and de la Fuente and Domnech (2006) for educational measures, Dowrick and Quiggin
(1997) and Neary (2004) for income based measures and Anderson (1999) for life expectancy.
We add to this literature by systematically isolating the different sources of error into data
based errors, formula based errors and cut-off value based errors. To our knowledge, this is
the first paper to calculate country specific variance measures of the HDI, income, life ex-
pectancy, literacy rate, school enrollment, as well as to calculate indicators and probabilities
of a country’s misclassification.

The remainder of the paper is structured as follows. Section 3.2 describes the data.
Section 3.3 outlines the framework and methods of measuring variances and misclassifications
due to data revisions, formula changes and the threshold problem. Section 3.4 presents our
results. Section 3.5 provides examples of how the HDI is used in various contexts and how
errors can affects prior academic analysis. We conclude with policy recommendations in
Section 3.6.

3.2 Data

The HDI is a composite indicator measuring a country’s level of development along three
dimensions: health, education and income. These dimensions are expressed as unit free
and double bounded subindicators y1, y2, y3, each taking values between zero and one. The
subindicators themselves are functions of data x on primary and secondary school enrollment
statistics, literacy rate, life expectancy and GDP per capita adjusted by purchasing power
parity (PPP). Finally, the HDI is calculated as a simple average of the three (k = 1, 2, 3)
subindicators, HDI = 1/3Σkyk(x ), which is then used for ordinal and cardinal comparisons.
The HDI is published annually in the Human Development Reports (HDR) by the United
Nations Development Program (UNDP), which are available for the years 1990 to 2006
(HDR, 1990 to 2006).4

4The UNDP mainly draws the GDP data from the World Bank, the educational statistics are provided
by UNESCO and life expectancy comes from the Population Division of the UN Department of Economic
and Social Affairs. Since countries do not consistently provide data using the same methodologies, these
data sets are complemented by data from the Penn World Tables as well as by UNDP’s own estimates to
impute missing values. See the technical appendices of the HDR (1990-2006) for details.
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3.2.1 Original versus Revised Data

In our analysis we exploit the fact that the original historical data matrix x t used by the
UNDP in year t differs from the revised matrix xR

t
s which includes updates between t and

s>t. The original x t is available for the years t =1999 to 2006, whereas the revised data
xR

t
s are available (i) for all years of the analyses, t = 1990 to 2006 and s = 2006 and (ii) for

the HDI in t = 1975, the revised HDIR1975
s is available for s = 1999, 2000,. . . , 2006. In this

paper, xR
t refers to the variables for year t kindly provided to the authors as of fall of 2006

by the UNDP office, except stated otherwise. x t refers to the data that we hand-copied5

from the t th year Human Development Report (HDR, 1990 to 2006).

3.2.2 The HDI Formulas and Computation of Counterfactuals

Since 1990, the UNDP has made three major updates to the formula used to construct
the HDI. For each year t and country i the HDI formula is given by

HDIit = hf( x it).

The formula hchanged thrice as indexed by f ∈{A, B, C}, which corresponds to the time
periods 1990, 1995-1998 and 1999-2006, respectively. The three formulas are explained in the
HDR technical appendices (1990 to 1999) of Jahan (2000) and in the appendix of this web
based version.6 We construct three ‘counterfactuals’ denoted by hA( xRit), hB( xRit), and
hC( xRit). Hence, for the entire time series we recalculate what the HDI would have been if
the alternate formulas had been in place, using the most recent available historical data on
the subindicators. In the analysis we exploit exactly these differences between the ‘original’
HDI generated by the formula that was active at time t compared to the HDI generated by
the other two formulas that were not active in that particular year t.

3.2.3 The Sample

We construct a balanced panel from 1990 to 2006. A country is included in our panel
if it meets the following two conditions: (a) the country exists continuously between 1990
and 2006 (e.g., Croatia is dropped); (b) between the three revised subindicators and the
countries’ HDI as provided by the UNDP, the total sum of missing data points is less or
equal to five. Furthermore, in some of our analysis we distinguish between industrialized
and non-industrialized countries whereby the industrialized countries are defined as in Table
1.1 of HDR (1991). We impute any missing data points by linear interpolation. In this way
we obtain a balanced panel 99 countries of which 76 are non-industrialized countries and 23
are industrialized countries.

5The data were hand-copied separately by two of the authors. Only after verifying that the two hand-
copied data sets are 100% identical, we proceeded with the analysis.

6The web version is available at
http://faculty.washington.edu/hgwolff/EJOnlineWebVersionofHDI Wolffetal2010.pdf.
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3.3 Sources of Data Error and Methodology to Mea-

sure Data Uncertainty

This section provides a detailed discussion of the three sources of data error: measurement
error due to data revisions (D), data noise due to formula updating (F) and misclassification
due to inconsistent cut-off values (C), which we abbreviate by D, F and C. We propose a
simple statistical framework to analyze these sources of error, which allows us to calculate
country specific variances and confidence intervals and to simulate country specific proba-
bilities of misclassification.

Before discussing the details of each source of error below, it is useful to illustrate when
the different types of errors (D, F and C) enter into the construction of the HDI. The columns
of Table 3.1 show the overall structure of the data and the rows display when each error
category contributes to the data uncertainty, depending on the level of data analyzed. The
first column shows that with respect to the primary data variables x , the only source of
error is due to data updating (D). For the subindicator functions y , two sources of errors are
identified. First, with respect to D, y is vulnerable because the data error of x is directly
translated into y through the function y(x ). Additionally, the nonlinear functions y(x ) are
subject to formula changes (F) over time. Similarly, the aggregate HDI measure is subject
to D and F through HDI = 1/3Σkyk(x ). The HDI development categories are subject to
error type C. Finally, the three types of error can be calculated for any function of HDI,
θ(HDI), e.g. Gini coefficients or regression parameters.

As we will make clear below, we calculate the three types of error independent of each
other. Hence it is not the case that error measure F will implicitly include some data error
D or vice versa. Only in Section 3.3.4 and 3.4.2 we show how the different type of errors add
up and discuss the correlation structures among them.

What are the distinctions between these sources of errors? While the first error D is well
known to econometricans as ‘measurement error’, the changes to the data by F and C are due
to subjective decisions by the data provider (here the UNDP). This subjective component
changed over time and impacted the construction and relative importance of sub-variables of
the HDI as well as the judgment on how to classify countries. Another distinction between
D, F and C is that our first two types of errors, D and F, are cardinal in nature. This is
in contrast to our third type of error, C, which is purely ordinal in nature in the sense that
countries are either misclassified or not within the UN triple-bin classification system.

3.3.1 First Source of Data Error: Measurement error

To obtain the first measure of the randomness of the HDI data, we exploit the following
exogenous changes to the data over time: The data x t (as used by the UNDP for the HDR
at year t) are in general not the same data as the UNDP publishes in year s for the same
data year t. As revised statistics become available, the UNDP updates the original data
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matrix x t at year s, s≥t, which we then denote xR
t
s.

There are literally hundreds of reasons for data updates each year. The HDI draws their
datasets from a multitude of domestic and international agencies (e.g. UNESCO, World
Bank, Penn Tables). Often an agency may have data only for some subset of countries
and some subset of years. The remaining data points are then filled by datasets from other
agencies, and occasionally are interpolated by neighboring years or countries. The dozens of
footnotes in the yearly HDR reports point to the institutions that changed data year by year.
The complexity of the problem may be best illustrated with a specific example: since 1999,
the UNDP publishes historic HDI scores going back until the year 1975, HDI1975. Figure 3.2
displays HDI1975 scores as they are reported in each of the HDR reports from 1999 to 2006.
In every year, between 1999 and 2006, substantial data revisions took place for the same
1975 HDI score. For example, while in 2000 Portugal was reported to have a historic HDI1975
of 0.73 (that was below the HDI1975of Venezuela), by 2006 Portugal’s HDI1975 increased to
0.79 and is now substantially above the 2006 reported HDI1975 of Venezuela. On average
across all countries the HDI updating bias for the year 1975 can be calculated as 0.003 with
a standard deviation of the updating error of σ1975 = 0.012. Given that the data updates
took place after a quarter of a century, we consider 0.012 to be large. Instead, in a world
of good data quality σ1975 should be close to zero. This implies that whenever an analyst
uses UNDP data, the same analysis run at a later date will result in different estimates due
to a changed data matrix. Hence, when the HDI is released in year t, the value must be
understood as an inexact value subject to future data revisions. This problem is what we
refer to as measurement error from data updating.

To parameterize this measurement error, assume that the relationship between the ob-
served HDI score of country i and the true (but unknown) subindicators, denoted by y∗itk,
can be expressed as

HDIit = 1/3Σk(y
∗
itk + εitk)

where εitk is orthogonal to y∗itk and is distributed with mean mitk and country specific
variance s2

itk. The relationship between the observed HDI score of country i and the true
HDI∗ consequently is HDIit = HDIit

∗ + eit with eit being the composite error term distributed
with mean 1/3Σkmitk and country specific variance σ2

i that is determined by the covariance
structure of the measurement error of the subindicators in country i, covi(εtk).

Exploiting the original x t and revised xR
t, we now are in the position to calculate country

specific variances of the measurement error due to data updating (D) given by

σ2
D,i = Σt(ht(xit)− ht(xRit))2/(T − 1) ∀t ∈ T (3.1)

with ht denoting the formula which was active at time t and T = A∪B∪C\2006 is the
union of the three time periods A, B, C, except for the last year of 2006. T denotes the
number of elements in set T . The variance of the data-updating measurement error is based
on the difference between the original HDI as published in the HDR at year t, ht(xit), and the
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reconstructed counterfactual HDI for year t using revised data x it
R available to us today.

To obtain a consistent estimate of the variance, we assume that ht(x it
R) represents our

currently best available estimate of HDIit
∗ and discuss in our result the implications of this

assumption.
Importantly note that we calculate σ2

D,i independently from error type F. Specifically,
we disentangle D from F by constructing each pair of data {ht(xit), ht(xit

R)}t ∀ t ∈ T to be
conditional on the same HDI formula, namely the formula that was active at time t. (Instead,
if one were using the pairs of data {ht(xit), HDIR} as reported in the yearly UNDP reports,
one would have erroneously incorporated error-type F into error type D).

3.3.2 Second Source: Changes in HDI Formula

Since its release in 1990, the HDI was often criticized with respect to its analytical
framework and methodology (Desai, 1991; Kelley, 1991; McGillivray, 1991; Aturupane et al.,
1994; Noorbakhsh, 1998). The UNDP responded to this challenge by working with Nobel
laureate Amartya Sen, Sudhir Anand, Paul Streeten and others to intellectually lead an effort
to update the methodology and value judgments. As a result UNDP has made three major
updates to the formula used to construct the HDI which are further discussed in Anand and
Sen (1994, 1997, 2000), Jahan (2000), the technical appendices of the HDRs (1990 to 2006)
and summarized in the appendix of the web based version paper. These three changes are
clearly visible in the empirical distribution of the HDI displayed in Figure 3.3. In particular,
different distributional characteristics occur for the sub-periods A (1990), B (1995-1998) and
C (1999-2006) that correspond to the three formula regimes hA(x it), hB(x it), and hC(x it),
respectively.

We exploit this variation of the HDI scores across the counterfactual formulas to calculate
country specific variances due to the formula (F) updates that is

σ2
F,i= ΣtΣg(hg(x it

R)–hC(x it
R))2/(2T –1) ∀ t ∈ T (3.2)

where g is the index to sum over the formula indices A, and B. The variance σ2
F,i is based

on the country specific differences of the HDI generated by the most recent and improved
formula hC compared to the HDI counterfactuals generated by the other two formulas hB
and hA. We do acknowledge that the formula revisions were undertaken to improve the HDI
statistics and hence one interpretation of σ2

F,iis to understand it as a measure of historic
noise due to the formula updates. Alternatively, the country specific measures σ2

F,i can be
interpreted as a present measure of noise, if the UNDP will similarly continue to change the
formula in the future and the scores today would have to be understood as subject to those
future formula revisions.

Note that we again isolate the error type F from the former error type D. Hence it is not
the case that error-type F incorporates error-type D, and/or vice versa.7

7We achieve the independence because the function σF is defined conditional on the revised data xR.
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3.3.3 Third Source of Misclassification: Arbitrary Cutoff Values

In comparison to the cardinal measures of noise due to D and F, our third measure of
error, C, is entirely ordinal. It is an error of misclassification due to the arbitrariness of the
two cut-off values used to categorize countries into ‘low’, ‘medium’ and ‘high’ development
countries. Despite the fact that changes made to the HDI formula did have considerable
impacts on the empirical HDI distributions as displayed in Figure 3.3, the UNDP has decided
to use the same cut-off values (0.5 and 0.8) since 1990. Since the original cutoff-values are
supposed to distinguish three qualities of human development, with each formula change the
UNDP could instead have adjusted the cut-off values in such a way that the new adjusted
thresholds again reflect these same value judgments for the levels of quality. One possible
procedure8 to obtain revised threshold values—that are consistent with the initial 1990 value
judgment of classifying quality and consistent with the entire history of formula changes—is
as follows. In 1990, Morocco and Egypt were the two countries closest around the original
cut off value of 0.5 (with HDI scores of 0.49 and 0.50, respectively). On the counterfactual
distribution of formula hC applied to 1990, these two countries take on the values 0.54 and
0.56. Taking the mean (0.55) provides the revised threshold for separating between the low
and medium human development groups. Similarly we proceed with the cut off value 0.8
and obtain the revised value 0.70.

3.3.4 Overall Error Variance

So far, we have treated the two sources of errors D and F independently of each other.
The user of the HDI statistics may, however, be also interested in having a sense of the
“overall” error within the HDI database.9 To this end, we calculate the country-specific
overall cardinal error variance statistics as

σ2(overall)i = σ2
Di+σ

2
F i + 2cov(eDi,eFi)

which takes into account the covariance structure of the individual error contributions,

cov(eDi,eFi) = Σt(eDit–mDi)(eFit–mFi)/T

whereby eDit = HDIit–HDIRit and eFit = Σf (hf (x it
R)–hC(x it

R))/2. We can thus analyze
how much each source of error (1) and (2) contributes to the overall level of error in the HDI
database.

Hence all terms on the right hand side of σF are ‘counterfactual’ measures, what the HDI would have been
if the revised data xR had been already known in prior years under the different formula assumptions.

8Our procedure to choose the revised bin cutoffs is based upon the objective to maintain constant the
initial (1990) value judgment by the UNDP, in the sense that the thresholds separate low from medium and
medium from high developed countries. One referee suggested selecting those cutoff values which maximize
the objective function to maintain the development category of as many countries as possible. This would
lead to the revised thresholds values of 0.62 and 0.76.

9We thank the editor for providing the idea to aggregate errors.
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3.3.5 Simulation 1: The expected number of misclassified coun-
tries

For the cardinal sources of data error, for each country we can calculate the probability
of being misclassified. Given the parameterization of the measurement error as HDIi2006

∗

= HDIi2006- ei2006 and assuming ei2006 ˜ N (0,σ2
.,i), normally distributed with mean zero

and variance σ2
.,i(as calculatedby σ2

F,i, σ
2
D,i, and σ2(overall),i) we analytically calculate

for each country the probability of being misclassified as

∫ 1.0

0.5
p(ĤDIi)dĤDIi ∀is.t.HDI ∈ [0.0, 0.5) (3.3)∫ 0.5

0.0
p(ĤDIi)dĤDIi +

∫ 1.0

0.8
p(ĤDIi)dĤDIi ∀is.t.HDI ∈ [0.5, 0.8)∫ 0.8

0.0
p(ĤDIi)dĤDIi ∀is.t.HDI ∈ [0.8, 1.0]

where p() is the probability density function of the estimated HDIi* distributions. Hence, for
countries reported to be ‘low development’, we calculate the probability of being classified
as a medium or a high development country; similarly, we proceed for the ‘medium’ and
‘high’ development countries. Finally, adding these integrals over all countries provides the
expected number of misclassified countries.

3.3.6 Simulation 2: The expected number of deviation in HDI
ranks

In addition to sorting countries into the three broad HDI categories of ‘low’, ‘medium’ and
‘high’, the UNDP statistics are used to produce league rankings of countries. We calculate
the expected number of absolute deviations in rank by simulating (n = 1,. . . , 10,000) the
2006 HDI ranking. The simulated rankings are produced by calculating for every country
i the simulated HDI as SimHDIi,2006 = HDIi,2006+ ηi with ηi distributed as mean zero
and variance σ2(overall)i. Finally, after each nth simulation country i’s simulated rank is
recorded relative to its actual observed rank in 2006.

3.4 Results

3.4.1 Results with Respect to the Cardinal Errors of Data Updat-
ing and Formula Changes

If one followed Oskar Morgenstern’s (1970) advice given in the introduction, an alterna-
tive way for UNDP to report HDI scores would be to report country specific noise measures.
To do so, we display country specific standard errors in Table 3.2. With respect to the stan-
dard errors due to the measurement error of data updating (column 8), we find that σD,i
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ranges between a minimum value of 0.004 (United States) and a maximum value of 0.069
(Syria), with an average value across all countries of 0.026. Given that the HDI is an average
over three subindicators, whereby positive and negative deviations in the subindicators can-
cel out,10 and given that the HDI is scaled from of 0 to 1, these standard deviations are large
and significant.Figure 3.4 displays the relationship between the country specific measurement
error due to the data revisions, σD,i and the countries’ HDI score (as of 2006). We note that
more developed countries have smaller updating variances. Similarly column (3) displays
the country specific data measurement errors due to formula updates σF,i, whose ranges on
average are even higher compared to σD,i. We find the estimated σF,i range between a mini-
mum value of 0.034 and a maximum value of 0.127 with a world average standard deviation
of 0.072.

Since the HDI is primarily used as an ordinal measure, we now turn to the impact
of these cardinal measures on the ordinal dimension. Figure 3.5 displays the case of the
“average” non-industrial country with HDI = 0.65 using the average standard deviation
over all non-industrialized countries due to data revisions, σD=0.03 and due to formula
updates σF=0.08. Figure 3.5 shows that substantial probability mass is spread over all
three development categories. In Table 3.2, the category specific probabilities are displayed
for all countries in columns 4-6, and 9-11 for the formula based error and data upgrading
errors respectively. For example, as of 2006, South Africa, Mongolia, Syria, India, Honduras,
Bolivia have non-zero probabilities of belonging to all three categories simultaneously. Even
a high human development country, such as Costa Rica with HDI of 0.84, can still be a
‘low’ with 0.3% probability and yet be ‘medium’ to 37%. Finally, columns 7 and 12 display
the total probability of a particular country being misclassified by using formula 3.3. The
sum over these column probabilities show that currently, in expectation, 10.4 countries are
misclassified due to data updating measurement error and 20.7 countries are misclassified
due to formula updates; these numbers translate into, 11% and 21% of all countries being
misclassified.

We interpret the misclassification of 11% due to data updating as conservative because
σ2

D,i is just based on “short term” differences between x t and xR
t, based on the years from

1990 to 2006. There also exists “long term” data updating error, which taking into account,
that may increase σ2

D as |HDIt HDIRt
s| increases with s. While we cannot capture this

long-term effect by formula 3.1 (due to the lack of published original data prior to the HDR
of 1990), we illustrated the magnitude of such “long term” drift in Figure 3.2.

10The correlation between the three subindicator error terms εitk, k ∈ {1, 2, 3} is close to zero and can be
viewed as distributed approximately independently. Hence the average standard deviation of the subindicator
errors s2k must be larger in magnitude, compared to the standard deviation of the HDI, σD,i. Section 3.4.4
confirms this by analyzing the compound error term.
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3.4.2 Overall Cardinal Error and Rank Simulations

The typical user of the HDI statistics may not be concerned about the individual error
statistics σ2

D and σ2
F if they are calculated independently of each other, but the researcher

may be more interested in obtaining a sense of the overall error in the data. For this purpose
we calculate country specific overall cardinal error statistics σ2(overall)i and find that the
world average of these measures σ2(overall) = Σiσ

2(overall)i/N equals to 0.007, compared to
σ2

D = 0.001 and σ2
F = 0.006. Furthermore we find that all country specific covariance terms

cov(eDi,eFi) are relatively small (all correlation coefficients are smaller than 0.06 in absolute
value) which implies that the updating error is not linearly correlated with the formula error.
This implies that 86% of the total HDI variance is contributed by the formula error and 14%
by the measurement error due to data updating.11 By using the same methodology as in
Section 3.3.5, we calculate the “overall” expected number of countries misclassified as 22.9.
The country specific overall variance statistics are given in column 3 of Table 3.3.

Moreover, column 1 of Table 3.3 displays the country specific expected absolute value of
rank displacements based upon the rank of the country’s HDI in 2006. Worldwide, the aver-
age country is displaced by about nine ranks. This average absolute displacement obscures
the direction of rank displacement and the uncertainty over rank displacements. To this
end, Figure 3.6 displays the average rank displacement over 10,000 simulations as a function
of the countries’ 2006 HDI score along with the 95% confidence intervals. The confidence
intervals are large, leading to an average deviation of -21 ranks and +20 ranks for the 2.5%
percentile and the 97.5% percentile respectively. Figure 3.6 also shows that countries with a
low initial 2006 rank (low HDI score) do on average better in the simulated rank statistics
and countries with an initial high HDI in 2006 are more likely to lose ranks in the simulations.

3.4.3 Results with Respect to the Cutoff Value Problem

Our third measure of misclassification is due to the non-adjustment problem of the cut-
off values 0.5 and 0.8 that the UN uses to classify countries as low, medium and high
human developed countries. If the UNDP had adjusted the cut-off values in a manner
consistent with the 1990 classification, since 1999 (the year of the last formula update),
the thresholds should be at the values 0.55 and 0.70, as opposed to 0.5 and 0.8. This
lack of adjustment of the cutoff values results in 34% of the countries being misclassified
today.12 Among all developing countries the percentage of misclassification is even higher:
45%. With such a high percentage statements such as ‘over the last decade x% of African
countries successfully moved from the ‘low’ to the ‘medium’ human development category ’—

11We calculate the % contribution of the jth cardinal source of error to the overall error as
σ2
i

σ2
overall,i

. This

calculation is hence net of the covariance of the two error sources. The covariance terms can essentially be
neglected due to the fact these are small in magnitude.

12The percentage of countries misclassified is calculated as the number of countries that have HDI scores
in the ranges [0.5, 0.55) and [0.70, 0.8) divided by the total number of countries in our sample (99).
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as expressed in numerous policy papers and news reports (United Nations 1996, People’s
Daily 2001, Daily Times 2005)—become useless at best, if not blatantly misleading. The
listing of the misclassified countries due to this source of error is provided in Table 3.4.

3.4.4 Measurement Error with Respect to the Underlying Vari-
ables of the HDI

Thus far, we analyzed the data error of the HDI. Since the same variables used to con-
struct the HDI serve as key data in many academic studies as well as inputs to many other
international comparative statistics, it is worthwhile analyzing the subindicators y pertaining
to health, education and income in more detail.

The first four columns of Table 3.5 display summary statistics of the overall HDI up-
dating error, e, and the vector of subindicator updating errors, ε, for our sample of 76
non-industrialized countries. In general, the standard deviations of the health and education
indexes are larger than the standard deviations of the income statistics. It is interesting to
note, however, that the main driver for the HDI upward bias stems from the change to the
income index (mincome=0.01).13 Instead, the errors on the health and the education indices
show distributions that are centered around zero. Note, that the min/max columns in Table
3.5 reveal some enormous changes; the income index changed by 15% (Sudan and Chad)
and the education index even by 25% (Mongolia) on the total scale from 0 to 1.

One may ask whether the three subindicator updating errors are correlated. An anal-
ysis of the year-by-year correlation matrices of the errors does not show any systematic
co-movement, as the correlation coefficients are close to zero in all years. This suggests that
the statistical adjustments on the three dimensions are independent of each other and in-
dicates that the respective national statistical offices responsible for health, education, and
income statistics have no systematic contemporaneous responses. Furthermore, statistical
independence of the three subindicator error variables εk implies that their errors must be
on average larger than the variance of the HDI error e, which is confirmed by Table 3.5.
Hence, while the three subindicator errors offset each other with respect to the HDI,14 when
working with the variables of education, income and health, one faces even larger data error.

To analyze the drivers of the HDI data error in more detail, we calculate country specific
noise measures due to data revisions with respect to the underlying variables, x . Table 3.6
reports country specific standard errors calculated as the country specific standard deviation
σ(xn)i (computed analogously to (2) by exploiting the 2006 data revision of xnit for t = 1999
to 2005). In order to obtain a sense of the relative magnitude of the errors in each variable,
we divide the standard deviations by the level corresponding variable in the year 2006, xni2006

13Statistically, this upward bias with a standard deviation of 0.02 is not significantly different from zero.
14Under the assumption of independence, the standard deviation for the composite HDI error, e, is given

by std(e)=SQRT[(Σks
2
k/9)], which, after replacing sk, equals to std(e)= 0.014. The estimated standard

deviation of the HDI measurement error by formula (3.1) applied to period C is 0.015, hence very close to
std(e), confirming this theoretical result of independence.
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and display the resulting relative standard errors in Figure 3.7. Adult literacy rate, GDP
and the gross enrollment ratio contribute most to the updating error of the HDI. In contrast,
life expectancy is revised much less. As is clearly recognizable in Figure 3.7, we find that the
more highly developed the country the smaller its measurement error due to data updating.

3.5 Discussion of the results

Given that the HDI is subject to a considerable amount of measurement error, the use of
the HDI and its triple bin classification system can lead to serious interpretability problems.
We now investigate the consequences of these three sources of errors by replicating prior
studies and uses of the HDI, with each of the analysis being uniquely linked to our three
sources of errors.

3.5.1 The HDI as a definitional measure

While there does not exist a standardized definition of the term “developing country”, the
definition is often linked to the HDI, as being a country with low to moderate development
status. In fact, often scientific studies have been explicitly using the HDI system to identify
a set of developing countries (i.e. Noorbakhsh, 2006; Varenne, 2007; Lauber and Roessler,
2007; Alvan, 2009). Leading online dictionaries do refer to the HDI in order to define the
term “developing country” (Wikipedia, 2008; Babylon, 2009; SearchWiki, 2009). Here it is
common to differentiate development status by using three different colors. In Figure 3.8,
we recreate such a map by displaying the HDI scores for 2006. To demonstrate the impact
of misclassification in our sample, we reclassify the countries using the updated thresholds
of 0.55 and 0.70 as discussed in Section 3.3.3. The visual impact of this reclassification is
striking, especially in South America, Southeast Asia and Africa. This misclassification is
particularly problematic, if organizations/institutions use these categories to design partic-
ular policies or rules.

3.5.2 The HDI and Foreign Development Aid:

Although, to our knowledge, the HDI is not formally used by any development agency
as the sole index used to determine the distribution of development funds, there are clear
indications that the HDI plays a significant role in governmental institutions’ and NGOs’
decisions for foreign aid allocation.15 In 2000, the Deputy Director of the UNDP exemplified
this debate by stating:

15For a related discussion see Alesina and Dollar (2000), Alesina and Weder (2002), Arcelus et al. (2005),
Bandyopadhyay and Wall (2006), Easterly et al. (2004).
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‘At the global level, issues are now being explored as to whether bilateral aid can be allocated
on the basis of HDI, or the core funds of multilateral agencies can be based on the index
[. . . ]’ (p. 10, Jahan, 2000).
In fact, ‘charity scorecards’ are increasingly used as a tool for helping individuals decide
which countries to donate money to. Here the HDI can be used to construct such a score.
For example, on the homepage of http://www.charityscorecard.org/ a world map of HDI
scores is displayed. The use of the HDI in this context may explicitly and implicitly steer
users to “misclassified countries”. Further, the triple bin classification is often used for
report writing purposes to describe donor activities by governmental organizations (United
Nations, 1996; HDR, 2001 to 2007) and non-governmental organizations. For example,
Geneva Global (2007), which holds investments of 60 million client dollars in development
projects, structures its funds according to the three HDI categories. For each year, the
United Nations (HDR 2001 to 2006) analyzes the newest data on development aid as a
function of the three human development categories. Drawing on these HDR statistics, Table
3.7 summarizes that across all years countries in the ‘low’ category obtained 3.4 times the
official development assistance (ODA) per capita as compared to the medium development
countries, which we do not claim is a causal effect but rather an interesting correlation.

3.5.3 Use of the HDI statistics in the academic literature

The HDI has been increasingly employed in the academic literature to describe the evolu-
tion of the world’s “welfare” distribution in terms of various measures of inequality, such as
the Gini coefficient, and to discuss the path of polarization, e.g. Pillarisetti (1997), Ogwang
(2000), Mazumdar (2002), Noorbakhsh (2006), Prados de la Escosura (2007). The results
published in these studies can differ greatly depending on which year the researcher collected
the data in. To illustrate, Figure 3.9 displays HDI Gini coefficients using the formulas hA,
hB and hC for data covering 1975 to 2005 in five years intervals. The values produced by
formula hA are 25% to 50% higher and the time trend steeper compared to the time series
generated by formula hC . This substantial difference would lead to different conclusions or
policy recommendations by the analyst. For a recent discussion on the relevance of levels and
gradients of Gini estimates see for example Sala-i-Martin (2006) and Prados de la Escosura
(2007).

We find that a number of recent studies are sensitive to random selection of countries that
is due to the “arbitrariness” of the cut-off values: For example in the macroeconomic litera-
ture, Mazumdar (2002) and Noorbakhsh (2006) use the triple bins to analyze the existence of
convergence clubs (Quah 1996) by testing the beta and the sigma conditional convergence hy-
pothesis, originally discussed in Barro and Sala-i-Martin (1992). In particular, Noorbakhsh
(2006) runs beta-convergence regressions of the form

ln(hdiit+T/hdiit)/T = α + βln(hdiit) +εit (3.4)
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conditional on the country belonging to the ‘low’ development bin. The dependent variable
is the annualized growth of the HDI variable for country i over the period t to t+T and
hdiit is the ratio of HDI in the i th country to the average for the sample.16 The regression
is then repeated for the bins ‘medium’ and ‘high’ and the comparison of the β estimates is
used to analyze the existence of convergence clubs.

To illustrate the consequences of the random selection, we first rerun the convergence
regression 3.4 conditional on the HDI being in the interval A0 = [0.5, 0.8) as specified in
Noorbakhsh (2006, p. 10, table 3). Then we perform the same regression with the adjusted
cut-off values in the set A1 = [0.55, 0.70). The results are displayed in Table 3.8. Comparing
the main parameter of interest, β, the estimate of the second regression is about 100% off
the first regression implying a much faster speed of convergence.17 This demonstrates that
results based on the reported HDI can be very sensitive to changes of the HDI triple bin
classification system.

3.5.4 Implications of the results in statistical analysis

Econometrically speaking, the average error measures σ2
D and σ2

F calculated in Section
3.4.1 imply that there is a 3% and 14% downward attenuation bias in a ordinary least squares
(OLS) regression, y = β1+ β2HDI* + ε, if the observed HDI—instead of the “true” (but
unknown) HDI*—is used as the regressor (for any variable y of interest). The bias of the
OLS estimate b2 is given by18

plim bD2 = [1-σ2
D/(σ2

D+σ2
HDI∗)]β2 ≈ 0.97β2

and

plim bF 2 = [1-σ2
F/(σ2

F+σ2
HDI∗)]β2 ≈ 0.86β2.

This is important since in many econometric cross-country studies the HDI is used as a re-
gressor, i.e. Globerman and Shapiro (2002), Mazumdar (2002), Sanyal and Samanta (2004),
Neumayer (2003), Noorbakhsh (2006), Leigh and Wolfers (2006). This is even more crucial
when working with the individual subindicator variables, since (as shown in Section 3.4.4)
their average standard deviation of the measurement error is larger than the error of the
HDI.

16A value of β in the range of (-1, 0) would imply β-convergence of the countries in the sample. A β
of zero means no convergence and a positive value for β indicates divergence, with the speed of conver-
gence/divergence the higher the absolute value of β.

17Note that the two β estimates are statistically significant with t values of -6.74 and -.4.59 for the sample
of countries in A0 and in A1, respectively. We reject at the 1% significance level the hypothesis of uniform
convergence in A0 and in A1 based on the Wald test examining whether β1 is different from β0, based on
the pooled sample with appropriate interaction terms, with standard errors clustered by country.

18σ2
HDI∗ is approximated by the empirical analogue of the 2006 HDI scores, σ̂2

HDI∗= 0.036.
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3.6 Conclusions

This paper identifies three sources of HDI data error and we make the following empirical
contributions. First, we calculate country specific noise measures due to measurement error,
formula choice and inconsistencies in the cut-off values. We find that the HDI statistics
contain a substantial amount of noise on the order of 0.01 to 0.11 standard deviations. In
analyzing the sources of the updating error we calculate country specific variances of GDP
per capita, literacy rate, educational enrollment and life expectancy and we calculate the
interdependence between these measures. We find that in general the higher the develop-
ment status of a country, the more precise are the reported data. Second, we calculate the
misclassification measures with respect to these three sources of data error by simulating
the probabilities of being misclassified and sensitivity analysis of the cut-off values. We find
that up to 45% of the developing countries are misclassified due to the failure to update
the cutoff values. The discrete classification system is vulnerable when many countries are
close to the thresholds, as is the case in the most recent years. Third, we discuss various
empirical examples from the prior macroeconomic/development literature where the HDI
has been employed and find that its use is problematic. Key parameters vary by up to 100%
in their values. Although there may be certain benefits for the UN and charities for using
a triple-bin classification system—bins are likely to improve publicity for the HDI and may
hence help with more efficient internal organization of aid institutions—our results raise se-
rious concerns about the system. We suggest that the United Nations should discontinue the
practice of classifying countries into these triple bins because in our view the two cut-off val-
ues are arbitrary, can provide incentives for strategic behavior in reporting official statistics,
and have the potential to misguide politicians, investors, charity donators and the public at
large.

This paper did not investigate the drivers of why in the early years of the HDI—when its
political role was still uncertain—the distribution as displayed in Figure 3.1 looked so differ-
ent from today’s. However, we caution governments, private investors, donor organizations
and users of the charity scorecards not to take the triple bin system as a tool for international
negotiations (Hu, 2009), foreign direct investments (Arcelus et al., 2005), pricing (Bate and
Boateng, 2007), or the allocation of foreign aid (Jahan, 2000; Neumayer, 2003). Such polit-
ically sensitive uses of the HDI might potentially provide perverse incentives for a country
to manipulate the subindicator variables, if it has realized the comparative advantage of a
0.49 HDI score vs. a 0.51 score. In fact, announcements such as the statement by Jahan
(2000) (discussed in Section 3.5.2) might have just created these incentives. We quote Oskar
Morgenstern (1970):
‘Governments, too are not free from falsifying statistics. This occurs, for example, when they
are bargaining with other governments and wish to obtain strategic advantages or feel impelled
to bluff [...]. A special study of these falsified, suppressed, and misrepresented government
statistics is greatly needed and should be made.’
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3.7 Tables, Figures, and Data Appendix
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Table 3.1: Structure of the Type of Errors for Different Levels of Data Aggregation

Type of Error x y(x ) HDI (y) θ(HDI )
Data revisions D

√ √ √ √

Formula updates F
√ √ √

Cut-off value C
√ √

Note: For each column we indicate by the symbol
√

which type of data error can affect the
particular variable displayed in the column. x refers to the raw variables, y(x ) to the
subindicators which are functions of x , HDI is a function of the y and θ(HDI ) refers to
any parameter of interest (i.e. Gini coefficient) that is calculated as a function of one or
multiple HDI values.
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Table 3.2: Country i specific standard deviations and probabilities of belonging to develop-
ment category j

Measures based on
formula updates (F)

Measures based on
measurement error
due to data revisions
(D)

Country i and
2006 reported
human
development
status

2006
HDI
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Niger low 0.31 0.13 93.1 6.9 0.0 6.9 0.03 100.0 0.0 0.0 0.0

Mali low 0.34 0.12 91.9 8.1 0.0 8.1 0.03 100.0 0.0 0.0 0.0

Burkina
Faso

low 0.34 0.11 92.3 7.7 0.0 7.7 0.02 100.0 0.0 0.0 0.0

Chad low 0.37 0.11 89.3 10.7 0.0 10.7 0.04 100.0 0.0 0.0 0.0

Ethiopia low 0.37 0.11 88.3 11.7 0.0 11.7 0.03 100.0 0.0 0.0 0.0

Burundi low 0.38 0.11 85.4 14.6 0.0 14.6 0.02 100.0 0.0 0.0 0.0

Mozambique low 0.39 0.11 83.4 16.6 0.0 16.6 0.03 100.0 0.0 0.0 0.0

Malawi low 0.40 0.13 78.7 21.2 0.1 21.3 0.01 100.0 0.0 0.0 0.0

Zambia low 0.41 0.09 86.2 13.8 0.0 13.8 0.04 98.5 1.5 0.0 1.5

Cote
d’Ivoire

low 0.42 0.09 82.1 17.9 0.0 17.9 0.02 100.0 0.0 0.0 0.0

Benin low 0.43 0.10 76.8 23.2 0.0 23.2 0.03 99.0 1.0 0.0 1.0

Tanzania low 0.43 0.08 80.1 19.9 0.0 19.9 0.02 99.8 0.2 0.0 0.2

Nigeria low 0.45 0.10 69.0 31.0 0.0 31.0 0.05 87.5 12.5 0.0 12.5

Rwanda low 0.45 0.08 72.4 27.6 0.0 27.6 0.05 86.0 14.0 0.0 14.0

Senegal low 0.46 0.08 68.5 31.5 0.0 31.5 0.02 99.5 0.5 0.0 0.5

Mauritania low 0.49 0.08 56.6 43.4 0.0 43.4 0.03 66.5 33.5 0.0 33.5

Kenya low 0.49 0.08 54.7 45.3 0.0 45.3 0.02 64.3 35.7 0.0 35.7

Zimbabwe low 0.49 0.05 56.6 43.4 0.0 43.4 0.03 62.3 37.7 0.0 37.7

Lesotho low 0.49 0.06 53.7 46.3 0.0 46.3 0.03 59.5 40.5 0.0 40.5

Togo low 0.50 0.08 52.5 47.5 0.0 47.5 0.04 55.0 45.0 0.0 45.0

Uganda med 0.50 0.10 49.2 50.7 0.1 49.3 0.02 46.2 53.8 0.0 46.2

Cameroon med 0.51 0.07 46.6 53.4 0.0 46.6 0.04 44.6 55.4 0.0 44.6

Madagascar med 0.51 0.08 45.4 54.6 0.0 45.4 0.03 39.3 60.7 0.0 39.3

continued on next page
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Sudan med 0.52 0.07 41.1 58.9 0.0 41.1 0.03 32.2 67.8 0.0 32.2

Congo med 0.52 0.08 39.9 60.1 0.0 39.9 0.05 35.3 64.7 0.0 35.3

Papua New
Guinea

med 0.52 0.06 33.9 66.1 0.0 33.9 0.04 27.7 72.3 0.0 27.7

Nepal med 0.53 0.09 38.0 61.9 0.1 38.1 0.02 10.4 89.6 0.0 10.4

Bangladesh med 0.53 0.08 35.3 64.7 0.0 35.3 0.02 7.3 92.7 0.0 7.3

Ghana med 0.53 0.06 30.8 69.2 0.0 30.8 0.04 20.5 79.5 0.0 20.5

Pakistan med 0.54 0.07 27.5 72.5 0.0 27.5 0.03 10.7 89.3 0.0 10.7

Lao Peo-
ple’s Dem.
R.

med 0.55 0.08 25.2 74.7 0.1 25.3 0.06 18.7 81.3 0.0 18.7

Botswana med 0.57 0.05 8.3 91.7 0.0 8.3 0.04 3.4 96.6 0.0 3.4

India med 0.61 0.06 3.0 96.9 0.1 3.1 0.01 0.0 100.0 0.0 0.0

Morocco med 0.64 0.04 0.0 100.0 0.0 0.0 0.02 0.0 100.0 0.0 0.0

South
Africa

med 0.65 0.05 0.2 99.5 0.3 0.5 0.07 1.3 97.2 1.6 2.8

Guatemala med 0.67 0.04 0.0 99.9 0.1 0.1 0.02 0.0 100.0 0.0 0.0

Honduras med 0.68 0.06 0.1 97.9 2.0 2.1 0.02 0.0 100.0 0.0 0.0

Mongolia med 0.69 0.07 0.3 94.1 5.6 5.9 0.06 0.1 96.1 3.9 3.9

Bolivia med 0.69 0.06 0.0 97.1 2.8 2.9 0.02 0.0 100.0 0.0 0.0

Nicaragua med 0.70 0.05 0.0 98.6 1.4 1.4 0.04 0.0 99.2 0.8 0.8

Egypt med 0.70 0.04 0.0 99.5 0.5 0.5 0.04 0.0 99.7 0.3 0.3

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Viet Nam med 0.71 0.07 0.2 88.9 10.9 11.1 0.02 0.0 100.0 0.0 0.0

Indonesia med 0.71 0.06 0.0 93.9 6.0 6.1 0.03 0.0 99.9 0.1 0.1

Syrian Arab
Republic

med 0.72 0.06 0.0 92.0 7.9 8.0 0.07 0.1 88.6 11.3 11.4

Jamaica med 0.72 0.06 0.0 88.0 11.9 12.0 0.02 0.0 100.0 0.0 0.0

Algeria med 0.73 0.04 0.0 95.6 4.4 4.4 0.04 0.0 97.5 2.5 2.5

El Salvador med 0.73 0.05 0.0 90.3 9.7 9.7 0.05 0.0 91.1 8.9 8.9

Iran, Is-
lamic Rep.
of

med 0.75 0.05 0.0 84.6 15.4 15.4 0.03 0.0 98.1 1.9 1.9

Dominican
Republic

med 0.75 0.06 0.0 80.0 20.0 20.0 0.02 0.0 99.9 0.1 0.1

Sri Lanka med 0.76 0.08 0.0 72.3 27.7 27.7 0.02 0.0 96.6 3.4 3.4

Paraguay med 0.76 0.07 0.0 72.1 27.9 27.9 0.03 0.0 93.0 7.0 7.0

Turkey med 0.76 0.07 0.0 72.0 28.0 28.0 0.01 0.0 99.9 0.1 0.1

Jordan med 0.76 0.07 0.0 73.1 26.9 26.9 0.03 0.0 89.1 10.9 10.9

Tunisia med 0.76 0.06 0.0 76.2 23.8 23.8 0.02 0.0 96.2 3.8 3.8

continued on next page
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Philippines med 0.76 0.06 0.0 73.8 26.2 26.2 0.03 0.0 90.6 9.4 9.4

Peru med 0.77 0.05 0.0 74.1 25.9 25.9 0.02 0.0 96.9 3.1 3.1

China med 0.77 0.06 0.0 69.7 30.3 30.3 0.02 0.0 94.7 5.3 5.3

Lebanon med 0.77 0.06 0.0 68.1 31.9 31.9 0.04 0.0 74.9 25.1 25.1

Saudi Ara-
bia

med 0.78 0.07 0.0 63.1 36.9 36.9 0.02 0.0 86.9 13.1 13.1

Albania med 0.78 0.07 0.0 59.5 40.5 40.5 0.04 0.0 66.8 33.2 33.2

Thailand med 0.78 0.09 0.1 56.9 43.0 43.1 0.02 0.0 80.0 20.0 20.0

Venezuela med 0.78 0.09 0.1 57.1 42.9 42.9 0.02 0.0 79.8 20.2 20.2

Colombia med 0.79 0.09 0.1 54.4 45.6 45.6 0.02 0.0 72.1 27.9 27.9

Brazil med 0.79 0.08 0.0 53.9 46.1 46.1 0.02 0.0 62.6 37.4 37.4

Mauritius high 0.80 0.09 0.0 50.0 50.0 50.0 0.01 0.0 50.0 50.0 50.0

Malaysia high 0.81 0.10 0.1 47.9 52.1 47.9 0.01 0.0 24.4 75.6 24.4

Romania high 0.81 0.09 0.1 47.8 52.1 47.9 0.05 0.0 46.3 53.7 46.3

Panama high 0.81 0.08 0.0 45.7 54.3 45.7 0.04 0.0 39.9 60.1 39.9

Trinidad
and Tobago

high 0.81 0.11 0.2 46.5 53.4 46.6 0.01 0.0 26.4 73.6 26.4

Oman high 0.81 0.06 0.0 43.7 56.3 43.7 0.07 0.0 44.2 55.8 44.2

Bulgaria high 0.82 0.09 0.0 42.8 57.2 42.8 0.03 0.0 29.6 70.4 29.6

Mexico high 0.82 0.10 0.1 41.8 58.1 41.9 0.01 0.0 3.9 96.1 3.9

United
Arab Emi-
rates

high 0.84 0.05 0.0 21.1 78.9 21.1 0.02 0.0 3.4 96.6 3.4

Costa Rica high 0.84 0.12 0.3 36.5 63.2 36.8 0.01 0.0 0.1 99.9 0.1

Uruguay high 0.85 0.10 0.0 30.8 69.2 30.8 0.01 0.0 0.0 100.0 0.0

Chile high 0.86 0.11 0.0 29.1 70.9 29.1 0.01 0.0 0.0 100.0 0.0

Argentina high 0.86 0.08 0.0 21.5 78.5 21.5 0.01 0.0 0.0 100.0 0.0

Hungary high 0.87 0.08 0.0 19.7 80.3 19.7 0.02 0.0 0.0 100.0 0.0

Portugal high 0.90 0.07 0.0 6.7 93.3 6.7 0.03 0.0 0.1 99.9 0.1

Korea, Rep.
of

high 0.91 0.07 0.0 6.6 93.4 6.6 0.02 0.0 0.0 100.0 0.0

Greece high 0.92 0.08 0.0 6.3 93.7 6.3 0.02 0.0 0.0 100.0 0.0

Hong Kong,
China

high 0.93 0.05 0.0 0.9 99.1 0.9 0.02 0.0 0.0 100.0 0.0

Israel high 0.93 0.06 0.0 1.2 98.8 1.2 0.01 0.0 0.0 100.0 0.0

New
Zealand

high 0.94 0.06 0.0 1.1 98.9 1.1 0.01 0.0 0.0 100.0 0.0

continued on next page
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Spain high 0.94 0.06 0.0 1.0 99.0 1.0 0.01 0.0 0.0 100.0 0.0

United
Kingdom

high 0.94 0.05 0.0 0.1 99.9 0.1 0.01 0.0 0.0 100.0 0.0

Italy high 0.94 0.06 0.0 0.9 99.1 0.9 0.01 0.0 0.0 100.0 0.0

France high 0.94 0.05 0.0 0.3 99.7 0.3 0.01 0.0 0.0 100.0 0.0

Denmark high 0.94 0.04 0.0 0.0 100.0 0.0 0.01 0.0 0.0 100.0 0.0

Austria high 0.94 0.05 0.0 0.2 99.8 0.2 0.01 0.0 0.0 100.0 0.0

Belgium high 0.95 0.04 0.0 0.0 100.0 0.0 0.01 0.0 0.0 100.0 0.0

Switzerland high 0.95 0.05 0.0 0.1 99.9 0.1 0.01 0.0 0.0 100.0 0.0

Netherlands high 0.95 0.04 0.0 0.0 100.0 0.0 0.01 0.0 0.0 100.0 0.0

United
States

high 0.95 0.03 0.0 0.0 100.0 0.0 0.00 0.0 0.0 100.0 0.0

Japan high 0.95 0.05 0.0 0.1 99.9 0.1 0.01 0.0 0.0 100.0 0.0

Sweden high 0.95 0.05 0.0 0.0 100.0 0.0 0.01 0.0 0.0 100.0 0.0

Ireland high 0.96 0.05 0.0 0.2 99.8 0.2 0.01 0.0 0.0 100.0 0.0

Australia high 0.96 0.05 0.0 0.0 100.0 0.0 0.02 0.0 0.0 100.0 0.0

Norway high 0.97 0.04 0.0 0.0 100.0 0.0 0.01 0.0 0.0 100.0 0.0

Expected #
of countries
misclassified

20.7 10.4
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Table 3.3: Overall error statistics and simulated rank deviations

Measures based on
overall error
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(1) (2) (3) (4) (5) (6) (7)
Niger 3.7 0.31 0.13 92.7 7.3 0.0 7.3
Mali 4.3 0.34 0.12 91.0 8.9 0.0 9.0
Burkina Faso 4.8 0.34 0.11 91.9 8.1 0.0 8.1
Chad 5.3 0.37 0.11 87.9 12.1 0.0 12.1
Ethiopia 5.7 0.37 0.11 87.2 12.8 0.0 12.8
Burundi 6.2 0.38 0.11 84.9 15.1 0.0 15.1
Mozambique 6.5 0.39 0.12 82.4 17.6 0.0 17.6
Malawi 6.8 0.40 0.13 78.6 21.3 0.1 21.4
Zambia 6.9 0.41 0.10 83.5 16.5 0.0 16.5
Cote d’Ivoire 7.0 0.42 0.09 81.4 18.6 0.0 18.6
Benin 7.1 0.43 0.10 75.7 24.3 0.0 24.3
Tanzania 7.3 0.43 0.09 79.0 21.0 0.0 21.0
Nigeria 7.3 0.45 0.11 67.5 32.4 0.1 32.5
Rwanda 7.1 0.45 0.10 69.7 30.3 0.0 30.3
Senegal 7.1 0.46 0.08 68.2 31.8 0.0 31.8
Mauritania 7.1 0.49 0.09 56.1 43.8 0.0 43.9
Kenya 7.1 0.49 0.08 54.5 45.5 0.0 45.5
Zimbabwe 7.0 0.49 0.06 55.9 44.1 0.0 44.1
Lesotho 7.0 0.49 0.07 53.4 46.6 0.0 46.6
Togo 7.1 0.50 0.09 52.3 47.7 0.0 47.7
Uganda 7.2 0.50 0.10 49.2 50.7 0.1 49.3
Cameroon 7.3 0.51 0.08 47.1 52.8 0.0 47.2
Madagascar 7.4 0.51 0.09 45.8 54.2 0.0 45.8
continued on next page
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(1) (2) (3) (4) (5) (6) (7)
Sudan 7.7 0.52 0.08 42.0 58.0 0.0 42.0
Congo 7.9 0.52 0.09 41.6 58.2 0.2 41.8
Papua New Guinea 8.1 0.52 0.07 37.0 63.0 0.0 37.0
Nepal 8.5 0.53 0.09 38.3 61.6 0.1 38.4
Bangladesh 8.6 0.53 0.08 35.8 64.2 0.1 35.8
Ghana 9.2 0.53 0.07 33.4 66.5 0.0 33.5
Pakistan 9.5 0.54 0.07 29.6 70.3 0.0 29.7
Lao People’s Dem.
R.

9.8 0.55 0.10 29.7 69.7 0.6 30.3

Botswana 10.1 0.57 0.06 13.5 86.5 0.0 13.5
India 10.2 0.61 0.06 3.4 96.5 0.1 3.5
Morocco 10.3 0.64 0.04 0.0 99.9 0.0 0.1
South Africa 10.4 0.65 0.09 3.9 91.6 4.5 8.4
Guatemala 10.5 0.67 0.05 0.0 99.7 0.3 0.3
Honduras 10.8 0.68 0.06 0.1 97.1 2.8 2.9
Mongolia 10.7 0.69 0.09 2.0 85.9 12.1 14.1
Bolivia 10.6 0.69 0.06 0.1 96.0 3.9 4.0
Nicaragua 10.7 0.70 0.06 0.1 94.3 5.6 5.7
Egypt 10.6 0.70 0.05 0.0 96.9 3.1 3.1
Viet Nam 10.5 0.71 0.08 0.3 88.2 11.5 11.8

(1) (2) (3) (4) (5) (6) (7)
Indonesia 10.4 0.71 0.07 0.1 91.1 8.8 8.9
Syrian Arab Repub-
lic

10.5 0.72 0.09 1.0 80.7 18.3 19.3

Jamaica 10.4 0.72 0.07 0.1 86.5 13.4 13.5
Algeria 10.2 0.73 0.06 0.0 90.5 9.5 9.5
El Salvador 10.2 0.73 0.07 0.1 82.9 17.0 17.1
Iran, Islamic Rep. of 10.2 0.75 0.06 0.0 81.6 18.4 18.4
Dominican Republic 10.1 0.75 0.06 0.0 79.1 20.9 20.9
Sri Lanka 10.0 0.76 0.08 0.1 71.3 28.6 28.7
Paraguay 9.8 0.76 0.08 0.0 71.2 28.8 28.8
Turkey 9.8 0.76 0.08 0.0 71.6 28.4 28.4
Jordan 9.6 0.76 0.07 0.0 70.6 29.3 29.4
Tunisia 9.5 0.76 0.06 0.0 74.6 25.4 25.4
continued on next page
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(1) (2) (3) (4) (5) (6) (7)
Philippines 9.7 0.76 0.06 0.0 72.0 27.9 28.0
Peru 9.5 0.77 0.05 0.0 73.3 26.7 26.7
China 9.6 0.77 0.06 0.0 69.2 30.8 30.8
Lebanon 9.8 0.77 0.07 0.0 65.2 34.8 34.8
Saudi Arabia 9.8 0.78 0.07 0.0 62.6 37.4 37.4
Albania 9.9 0.78 0.08 0.0 58.3 41.7 41.7
Thailand 10.0 0.78 0.09 0.1 56.7 43.2 43.3
Venezuela 10.0 0.78 0.09 0.1 56.8 43.1 43.2
Colombia 10.3 0.79 0.09 0.1 54.2 45.7 45.8
Brazil 10.4 0.79 0.09 0.0 53.7 46.3 46.3
Mauritius 10.5 0.80 0.09 0.0 50.0 50.0 50.0
Malaysia 10.5 0.81 0.10 0.1 47.9 52.1 47.9
Romania 10.7 0.81 0.11 0.2 47.9 51.9 48.1
Panama 10.7 0.81 0.09 0.0 46.0 54.0 46.0
Trinidad and Tobago 10.7 0.81 0.11 0.2 46.5 53.3 46.7
Oman 10.8 0.81 0.09 0.0 45.6 54.3 45.7
Bulgaria 11.0 0.82 0.09 0.0 43.1 56.8 43.2
Mexico 11.0 0.82 0.10 0.1 41.9 58.0 42.0
United Arab Emi-
rates

10.9 0.84 0.05 0.0 23.1 76.9 23.1

Costa Rica 10.9 0.84 0.12 0.3 36.6 63.1 36.9
Uruguay 10.9 0.85 0.10 0.0 30.8 69.1 30.9
Chile 10.8 0.86 0.11 0.0 29.2 70.8 29.2
Argentina 10.6 0.86 0.08 0.0 21.8 78.2 21.8
Hungary 10.5 0.87 0.08 0.0 20.1 79.9 20.1
Portugal 10.2 0.90 0.08 0.0 8.7 91.3 8.7
Korea, Rep. of 9.9 0.91 0.08 0.0 7.0 93.0 7.0
Greece 9.6 0.92 0.08 0.0 6.6 93.4 6.6
Hong Kong, China 9.2 0.93 0.06 0.0 1.3 98.7 1.3
Israel 9.0 0.93 0.06 0.0 1.4 98.6 1.4
New Zealand 8.6 0.94 0.06 0.0 1.2 98.8 1.2
continued on next page
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(1) (2) (3) (4) (5) (6) (7)
Spain 8.3 0.94 0.06 0.0 1.2 98.8 1.2
United Kingdom 7.9 0.94 0.05 0.0 0.2 99.8 0.2
Italy 7.7 0.94 0.06 0.0 1.0 99.0 1.0
France 7.4 0.94 0.05 0.0 0.3 99.7 0.3
Denmark 7.2 0.94 0.04 0.0 0.0 100.0 0.0
Austria 7.2 0.94 0.05 0.0 0.2 99.8 0.2
Belgium 7.2 0.95 0.05 0.0 0.1 99.9 0.1
Switzerland 7.2 0.95 0.05 0.0 0.1 99.9 0.1
Netherlands 7.4 0.95 0.04 0.0 0.1 99.9 0.1
United States 7.8 0.95 0.03 0.0 0.0 100.0 0.0
Japan 8.3 0.95 0.05 0.0 0.1 99.9 0.1
Sweden 9.0 0.95 0.05 0.0 0.1 99.9 0.1
Ireland 9.7 0.96 0.05 0.0 0.2 99.8 0.2
Australia 11.3 0.96 0.05 0.0 0.1 99.9 0.1
Norway 14.0 0.97 0.04 0.0 0.0 100.0 0.0

Average world abso-
lute deviation in rank

9.0 Expected #
of countries
misclassified.

22.9
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Table 3.4: As of 2006, countries misclassified due to the arbitrary cut off points

Countries with HDI2006 ∈ [0.5
and 0.55)

Countries with HDI2006 ∈ [0.7
and 0.8)

Bangladesh Albania
Cameroon Brazil
Congo China
Ghana Colombia
Madagascar Dominican Republic
Nepal Algeria
Pakistan Egypt
Papua New Guinea Indonesia
Sudan Iran, Islamic Rep. of
Uganda Jamaica

Jordan
Lebanon
Sri Lanka
Peru
Philippines
Paraguay
Saudi Arabia
El Salvador
Syrian Arab Republic
Thailand
Tunisia
Turkey
Venezuela
Vietnam
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Table 3.5: Updating error summary statistics for the period 1999 to 2005

Indicators Non-
industrialized
Countries

Industrialized
Countries

Industrial vs.
Non-
industrialized
Countries

mean std.
dev.

min max mean std.
dev.

min max Difference
in means

Ratio
of
std.
dev

HDI 0.01 0.02 -0.06 0.08 0.01 0.01 -0.03 0.05 0.002∗ 0.55
Health 0.00 0.03 -0.14 0.11 0.00 0.01 -0.01 0.02 0.002† 0.20
Education 0.00 0.03 -0.11 0.25 0.00 0.01 -0.09 0.05 -0.004∗ 0.44
Income 0.01 0.02 -0.07 0.15 0.02 0.02 -0.02 0.09 0.009∗ 0.95

Symbol * states that estimate of ‘Differences in means’ is statically significant at 1% level,
tested by regressing the vector of updating errors on a constant and an indicator variable
that takes the value one if the country is industrialized and zero otherwise using robust
standard errors. Symbol † indicates that the estimate of the same regression is different
from zero only at the 15% significance level.
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Table 3.6: Upgrading error statistics of variables underlying the HDI

country

H
D

I
20

06 GDP
per
capita
2006
[PPP
US$]

σ
(G

D
P

) i Gross
enroll-
ment
ratio
(GER)
2006
[%]

σ
(G

E
R

) i Adult
liter-
acy
rate
(ALR)
2006
[%]

σ
(A

L
R

) i Life ex-
pectancy
(LE) at
birth
2006
[years]

σ
(L

E
) i

Niger 0.311 779.1 67.7 21.5 0.6 18.2 1.2 44.6 2.4
Mali 0.338 997.8 55.3 35.0 1.1 28.7 11.1 48.1 2.6
Burkina
Faso

0.342 1168.8 75.5 26.4 1.0 27.6 6.5 47.9 0.7

Chad 0.368 2090.1 73.5 34.8 1.5 49.1 10.2 43.7 1.0
Ethiopia 0.371 755.8 86.3 36.0 1.1 44.0 0.5 47.8 1.4
Burundi 0.384 677.3 49.2 36.2 5.1 52.8 2.7 44.0 1.4
Mozambique 0.390 1236.6 59.2 48.6 4.9 49.0 0.6 41.6 2.2
Malawi 0.400 646.2 59.6 64.3 1.7 63.5 0.6 39.8 1.0
Zambia 0.407 943.2 69.4 54.3 2.9 81.5 4.8 37.7 3.4
Cote
d’Ivoire

0.421 1551.0 90.3 39.6 1.2 52.7 1.2 45.9 2.5

Benin 0.428 1091.0 136.4 49.4 1.4 42.0 3.3 54.3 1.4
Tanzania 0.430 674.4 36.7 47.8 4.1 79.1 3.4 45.9 2.8
Nigeria 0.448 1154.2 56.1 55.0 5.7 69.5 0.5 43.4 2.9
Rwanda 0.450 1262.7 254.9 51.8 6.6 71.6 2.4 44.2 3.9
Senegal 0.460 1712.8 144.6 38.1 0.9 41.2 0.3 56.0 1.0
Mauritania 0.486 1940.5 277.3 45.6 1.6 42.2 3.5 53.1 1.5
Kenya 0.491 1139.6 73.8 60.1 2.6 86.0 4.4 47.5 1.8
Zimbabwe 0.491 2065.2 352.4 52.4 2.6 91.3 1.8 36.6 2.5
Lesotho 0.494 2618.9 247.9 65.5 2.9 85.3 1.6 35.2 3.7
Togo 0.495 1535.8 178.6 55.0 3.3 62.2 3.1 54.5 2.3
Uganda 0.502 1478.4 93.4 66.1 10.7 70.7 0.4 48.4 1.2
Cameroon 0.506 2173.6 194.5 62.3 2.7 75.8 0.3 45.7 2.3
Madagascar 0.509 857.0 57.2 56.5 2.2 69.7 6.5 55.6 2.7
Sudan 0.516 1948.7 400.5 36.7 0.9 62.1 0.9 56.5 0.3
Congo 0.520 978.2 279.0 51.7 11.4 84.9 0.4 52.3 1.5
continued on next page
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country

H
D

I
20

06 GDP
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capita
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[PPP
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σ
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Papua N.
G.

0.523 2543.4 146.3 40.7 1.6 66.7 6.0 55.7 1.5

Nepal 0.527 1489.8 75.2 57.0 2.3 46.3 1.3 62.1 0.7
Bangladesh 0.530 1870.3 163.4 57.1 7.7 42.1 0.8 63.3 0.6
Ghana 0.532 2239.7 159.4 47.2 2.3 76.0 7.8 57.0 1.5
Pakistan 0.539 2225.4 118.1 38.4 3.2 46.6 2.2 63.4 2.2
Lao 0.553 1953.9 122.7 61.0 0.5 68.1 8.7 55.1 0.4
Botswana 0.570 9944.7 728.2 70.7 3.7 80.5 0.4 34.9 4.0
India 0.611 3139.4 258.1 62.0 1.3 60.3 1.2 63.6 0.4
Morocco 0.640 4309.4 134.1 57.8 1.7 52.6 0.4 70.0 0.4
South
Africa

0.653 11192.2 1017.3 76.6 6.6 86.7 1.5 47.0 1.6

Guatemala 0.673 4313.0 304.6 66.2 2.8 71.2 0.6 67.6 0.5
Honduras 0.683 2876.4 216.5 71.4 1.7 77.3 2.2 68.1 1.7
Mongolia 0.691 2055.6 131.8 77.3 2.0 98.6 13.6 64.5 1.9
Bolivia 0.692 2719.6 221.5 86.5 5.7 87.7 0.3 64.4 0.3
Nicaragua 0.698 3634.2 361.5 70.2 2.1 67.8 4.6 70.0 0.2
Egypt 0.702 4210.8 139.5 75.5 1.8 58.5 0.9 70.2 0.5
Viet Nam 0.709 2744.8 84.0 62.8 1.3 93.2 1.6 70.8 0.5
Indonesia 0.711 3608.5 175.0 68.4 2.0 89.0 0.2 67.2 0.2
Syria 0.716 3609.8 542.5 62.6 3.1 77.7 3.1 73.6 0.9
Jamaica 0.724 4163.1 166.0 76.9 5.0 88.3 0.1 70.7 1.6
Algeria 0.728 6603.1 449.3 73.2 1.8 71.0 1.3 71.4 0.5
El Sal-
vador

0.729 5040.8 688.1 69.7 1.5 80.6 0.2 71.1 0.2

Iran 0.746 7524.8 287.1 72.2 2.9 80.1 1.1 70.7 0.6
Dominican
R.

0.751 7449.3 461.8 74.1 1.7 85.1 1.1 67.5 2.0

Sri Lanka 0.755 4389.6 214.3 62.7 3.0 92.5 0.7 74.3 0.8
Paraguay 0.757 4812.9 552.4 69.7 3.7 94.2 1.1 71.2 0.1
Turkey 0.757 7752.6 209.6 69.1 2.5 87.0 0.6 68.9 0.6
continued on next page
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Jordan 0.760 4687.8 320.0 79.0 11.0 91.9 0.6 71.6 0.3
Tunisia 0.760 7767.6 227.5 75.4 0.8 75.2 0.1 73.5 1.2
Philippines 0.763 4614.1 217.9 81.5 1.1 95.8 1.6 70.7 0.1
Peru 0.767 5678.4 218.7 86.4 2.9 91.2 2.3 70.2 0.2
China 0.768 5896.1 127.2 70.4 2.5 87.6 2.4 71.9 0.3
Lebanon 0.774 5836.8 653.7 83.8 1.9 87.8 0.4 72.2 1.2
Saudi Ara-
bia

0.777 13825.2 1479.4 58.6 1.6 79.6 0.4 72.0 0.4

Albania 0.784 4977.8 426.7 68.0 0.8 87.2 5.9 73.9 0.1
Thailand 0.784 8089.8 303.7 73.7 4.7 96.2 1.7 70.3 0.6
Venezuela 0.784 6042.7 991.1 74.2 1.8 93.7 0.3 73.0 0.3
Colombia 0.790 7256.3 415.2 72.9 2.3 92.7 0.6 72.6 0.2
Brazil 0.792 8194.7 439.7 85.7 6.4 88.5 0.8 70.8 0.8
Mauritius 0.800 12027.3 506.4 74.5 1.5 86.0 0.6 72.4 0.4
Malaysia 0.805 10276.1 331.0 73.2 2.2 89.4 0.2 73.4 0.1
Romania 0.805 8479.5 756.9 75.3 2.1 98.5 0.5 71.5 0.4
Panama 0.809 7277.8 756.8 79.7 2.1 92.8 0.3 75.0 0.1
Trinidad &
T.

0.809 12181.9 339.7 66.9 1.9 98.7 2.4 69.8 1.4

Oman 0.810 15259.1 1451.6 68.3 2.1 77.1 0.6 74.3 0.8
Bulgaria 0.816 8077.9 646.3 80.9 2.5 98.7 0.2 72.4 0.5
Mexico 0.821 9803.2 406.7 75.3 0.7 92.3 0.8 75.3 0.6
Arab.
Emirat.

0.839 24055.9 1859.6 59.9 4.7 78.3 0.3 78.3 1.1

Costa Rica 0.841 9481.4 1016.6 72.4 1.2 96.1 0.1 78.3 0.6
Uruguay 0.851 9420.6 460.2 89.4 1.3 97.9 0.1 75.6 0.2
Chile 0.859 10873.6 1458.5 81.3 1.0 96.3 0.2 78.1 0.6
Argentina 0.863 13298.0 1038.5 89.3 4.8 97.2 0.1 74.6 0.2
Hungary 0.869 16814.4 1232.3 87.5 2.0 99.0 0.1 73.0 0.4
continued on next page
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Portugal 0.904 19628.9 970.5 89.3 2.5 99.0 0.7 77.5 0.3
Korea, R. 0.912 20499.3 1002.1 95.0 2.0 99.0 0.3 77.3 0.8
Greece 0.921 22204.7 908.5 93.4 1.8 99.0 2.3 78.3 0.2
Hong Kong 0.927 30822.1 967.0 76.7 4.5 94.3 0.3 81.8 0.5
Israel 0.927 24381.6 1066.0 89.7 2.6 95.8 0.8 80.0 0.2
New
Zealand

0.936 23413.0 1027.2 100.0 2.4 99.0 0.0 79.3 0.3

Spain 0.938 25046.8 1268.7 96.1 1.9 99.0 0.2 79.7 0.2
Italy 0.940 28180.2 1831.0 89.3 3.1 99.0 0.1 80.2 0.4
UK 0.940 30821.2 1427.8 93.1 7.5 99.0 0.0 78.5 0.0
France 0.942 29300.5 1421.8 92.6 1.2 99.0 0.0 79.6 0.2
Denmark 0.943 31913.8 2203.3 100.0 2.3 99.0 0.0 77.3 0.1
Austria 0.944 32276.4 1840.6 91.1 1.7 99.0 0.0 79.2 0.2
Belgium 0.945 31095.8 1158.4 94.7 4.4 99.0 0.0 79.1 0.3
Netherlands 0.947 31789.4 2108.1 98.2 2.1 99.0 0.0 78.5 0.0
Switzerland 0.947 33039.6 1606.2 85.7 2.8 99.0 0.0 80.7 0.4
United
States

0.948 39676.1 1870.0 93.3 1.3 99.0 0.0 77.5 0.2

Japan 0.949 29251.4 1534.0 85.5 1.9 99.0 0.0 82.2 0.2
Sweden 0.951 29540.7 1269.6 96.5 6.5 99.0 0.0 80.3 0.3
Ireland 0.956 38827.0 1826.0 99.0 1.8 99.0 0.0 77.9 0.3
Australia 0.957 30331.1 3492.0 100.0 5.7 99.0 0.0 80.5 0.3
Norway 0.965 38453.5 4225.7 100.0 0.9 99.0 0.0 79.6 0.1
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Table 3.7: Official development assistance (ODA) received in US dollar per capita by year
and human development category

2006 2005 2004 2003 2002 2001
‘medium’ 7.2 6.5 6.5 5.7 5.9 6.6
‘low’ 30.1 27.9 24.2 18.4 14.9 14.5

Data are from the Human Development Reports 2001 to 2006.

Table 3.8: Convergence club regression results for medium development category

Sample conditional
on

HDI2006∈ [0.5,0.8) HDI2006∈ [0.55,0.70)

constant α -.02556 (-56.69) -.02847 (-35.36)
slope β -.01380 (- 6.74) -.02667 (-4.59)
adjusted R2 .53 .74

t statistics in parentheses.
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Figure 3.1: Historical HDI scores for Non-industrialized Countries in 1990/91 and 2005/06

Notes: On the horizontal axis we display the HDI, which ranges from 0 to 1. 1990/91 are
the first and 2005/06 are last two years for which the HDI scores originally have been made
available (HDR, 1990, 1991, 2005, 2006). To make the HDI-distributions comparable across
years we use the balanced panel of 99 developing countries that have been evaluated by the
UNDP for all years. Countries that existed for a subset of years only (e.g. Croatia) are not
considered. All densities are estimated by the Epanechnikov kernel method with
bandwidth 0.01.
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Figure 3.2: HDI of 1975 of Portugal and Venezuela as reported in the years 1999 to 2006
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Figure 3.3: Density of HDI as published in the Human Development Reports (HDR)
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Figure 3.4: Relationship between countries’ development status and the standard deviations
due to measurement error generated by data updates

Linear trendline based on sample of 99 countries, R2 = 0.184.

Figure 3.5: Representation of data error of a country with HDI = 0.65
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Figure 3.6: Simulated HDI ranks compared to rank of country in 2006

Average, 2.5% and 97.5% percentiles of simulated rank distributions, displaying the
deviation in rank for a country compared to its rank in 2006. Ranks based on the sample
of 99 countries for which the overall cardinal error can be calculated consistently.
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Figure 3.7: Relationship between Countries’ Development Status and the relative standard
Errors due to Measurement Error generated by Data Updates of the underlying Variables of
the HDI

Quadratic trendline y = -2.2904x3 + 4.9837x2 - 3.5914x + 0.8739 is based on least squares
estimation of sample of 99 countries, R2 = 0.375.

Linear trendline is based on least squares estimation of sample of 99 countries, R2 = 0.073.
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Linear trendline is based on least squares estimation of sample of 99 countries, R2 = 0.456.

Linear trendline is based on least squares estimation of sample of 99 countries, R2 = 0.118.
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Figure 3.8: World map of the Human Development Index

Note: Panel (a) displays the classification using the actually reported HDI Index for the
year 2006 for all reported countries (industrialized and non-industrialized). Countries in
white have no reported data. Panel (b) displays the classification based on the revised
thresholds that we calculate in Section 4.3. if the UNDP had consistently updated the
cutoff values for classification.
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Figure 3.9: Gini Coefficients computed by the HDI Formulas A, B and C
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3.8 Description of formula changes and formula equa-

tions

Formula Changes
The most important changes are described in the following subsections, and the reader is
referred to Anand and Sen (1994, 1997, 1998), the technical appendices of the HDRs (1990
to 2006) and to Jahan (2000) for details.
Income. At first, in 1990 GDP per capita (in PPP) was logged in the income index. Between
1991 and 1998, however income above a certain cut-off point got substantially adjusted with
a regressive version of the “Atkinson Function”. The cut-off point was taken as the average
world income on the assumption that every person should have at least this level of income
for building basic capabilities (Jahan 2000). Since this formulation however was argued to
particularly punish middle income countries, the original formulation of logging GDP per
capita was again introduced in 1999 with formula hC (Anand and Sen, 1998).
Education. Following the suggestion by Kelley (1991), compared to 1990, in 1991 mean
years of schooling was added as a second component to adult literacy to form a more general
index of education. Adult literacy was given two-thirds weight and mean years of schooling
one-third weight according to an argument that adult literacy is a more representative stock
variable for educational attainment. However, the variable “mean years of schooling” was
constructed in a complicated way and for some of the countries it was criticized to not reflect
their educational infrastructure properly (Jahan 2000). In an effort to further improve the
measure, from 1995 onward, mean year of schooling was replaced by the combined gross
enrolment of schooling at the primary, secondary and tertiary level of education.
Maxima and mimina. Until 1994, in order to normalize the variables x into the double
bounded indices y , observed maxima and minima were used as goalposts. This created
however the problem that it got difficult to distinguish whether changes in the HDI of a
country was because of its improved performance or because of changes to the maxima and
minima of the sample of countries considered. In order to make HDI trends over time more
meaningful, since 1994 fixed maxima and minima were introduced based on the trends of
the variables of what that their values was estimated to be in the following 25 years (HDR,
1994).
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HDI formulas hf used by the UNDP in the three subperiods f ∈ {A, B, C}
Formula hC
y1i = healthi = (life expectancyi– 25 ) / (85– 25)
y2i = educationi = 2/3 adult literacy indexi+ 1/3 combined gross enrollment indexi
y3i = incomei = min(1, (log(GDP per capitai)– log(100)) / (log(40000)– log(100)))
adult literacy indexi= (adult literacy ratei– 0) / (100– 0)
gross enrollment indexi =min(1, (Combined gross enrolment ratio for primary, secondary
and tertiary level schoolsi/ 100)19

Formula hB
income is calculated by a version of the ”Atkinson Function”. Given a cutoff value c
W(y*) = y* for y* < c
W(y*) = c + 2(y*– c)ˆ(1/2) for y* in [c, 2c]
W(y*) = c + 2(c)ˆ(1/2) + 3(y*– c)ˆ(1/3) for y* in [2c, 3c]
for [3c, 4c], [4c, 5c] etc.
whereby c is defined as ‘world average income’.20 With this function defined,
y3i = incomei = W(y*i) = (W(GDP per capitai)– W(100)) / W(40000)
y1i and y2i are defined as in formula hC
Formula hA
y1i = healthi = (life expectancyi – low1) / (high1– low1)
y2i = educationi = adult literacy ratei – low2) / (high2– low2)
y3i = incomei = log(GDP per capitai) – log(low3)) / (log(high3)– log(low3))
The ”goalposts” of lowk and highk for each subindicator k ∈ {1,2,3} are the values of the
minimum and the maximum of the kth subindicator index of all considered countries. In
1990, the implicit goalposts were 42 and 78 for life expectancy, 12.3 and 100 for literacy rate,
and 10ˆ2.34 and 10ˆ3.68 for GDP per capita.

19The combined gross enrolment ratio is calculated for the number of students enrolled in primary, sec-
ondary and tertiary levels of education, regardless of age, as percentage of the population of official school
age for the three levels. The gross enrolment ratio can be greater than 100% as a result of grade repetition
and entry at ages younger or older than the typical age at that grade level. For this reason the education
index takes the minimum of one and the ratio.

20This function is described on page 111 in the Technical Notes of the HDR of 1995.
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Chapter 4

Appendices

4.1 Appendices to Chapter1

4.1.1 Total electricity vs temperature response

This appendix provides estimates that compare the differences in the total electricity use
across households of different vintages. Note that because the variation in age of housing
does not vary over time, this precludes the use of household fixed effects. Vintage effects will
include differences across households that are not related to the building, such as increases
in the amount of appliances or televisions.

Regression results are shown below using a random effects specification with clustering at
the ZIP9 level in Table 1.5. The first column shows that newer buildings have larger utility
bills, with no clear pattern across decades. The second column two adds a control variable
for square footage. Size increases total electricity use, as expected, but the estimates have
1990s and 1980s buildings using less energy after controlling for size, whereas 1970s buildings
use slightly more than pre1970s buildings. The third column adds controls for temperature
interacted with all variables; the signs of the vintage coefficients are unchanged.

Though interesting empirical regularities, the coefficients on the vintage variables are
hard to interpret. They can be rationalized both by increasing efficiency of appliances in
new buildings or fewer appliances in new buildings of comparable size.

It is important to note that newer buildings have a larger temperature invariant compo-
nent (Column T1), which means that the same percentage increase in new buildings and old
buildings (due to temperature difference) also means a higher change in kWh for the new
buildings.

4.1.2 Functional Form

The function form used in electricity regressions varies across studies, with the literature
split between have ln(kWhuseperday) (dubbed ”ln”) or kWhuseperday (dubbed ”levels”) as
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the LHS variable. In many cases, the choice is ad hoc, justified on the grounds that the
ln specification compares percent changes across observations which roughly controls for
size. In KEMA-XENERGY (2004), a conditional demand analysis framework is used that is
motivated by the concept of summing up the loads of each appliance separately, in which case
levels are the appropriate regressand and temperature response is scaled by some measure
of the size of a house.

First, I present a mathematical justification for the ln specification. Second, I present
some results using levels as the regressand after making appropriate adjustments. The results
across vintage are similar.

kwhperdayit = basei + heatit + coolit (4.1)

kwhperdayit = basei + f(weather)× f(size)× f(other) (4.2)

kwhperdayit = basei + Z (4.3)

ln(kwhperdayit) = ln(basei) +
1

basei
∗ Z (4.4)

via Taylor approximation around Z=0

ln(kwhperdayit) = ln(basei) +
1

basei
∗ f(weather)× f(size)× f(other) (4.5)

assuming
f(sizei)

basei
= Q, a constant

ln(kwhperdayit) = ln(basei) +Q ∗ f(weather)× f(other) (4.6)

The derivation above begins with a partition of energy use into a base usage that is
temperature and time invariant followed by heating and cooling loads that vary by time
through weather’s variation over time. The next step takes the natural log and then expands
via a Taylor expansion. Under the maintained hypothesis that a function of size enters
multiplicatively and that the ratio of base usage to the function of size is constant, size
can then be omitted. Intuitively, this specification assumes that percent changes of bills are
the comparable metric across buildings of different size. The f(other) term would include
vintages, housing characteristics, and household characteristics. 1

Alternatively, one could directly estimate Equation 4.2 by choosing a functional form for
f(weather)× f(size)× f(other) when such data is available at a fine spatial resolution. My
data at the Zip9-level, which on average has 5-10 households, is spatially more disaggregated
than most other data. Weather was parameterized as a function of CDD and HDD and its
squares.

A natural assumption to make is that cooling and heating loads scale by size, so that
f(size) = sqft. This turns out to not be a good assumption, as shown below. I first estimate

1A reasonable alternative approach would be to use Box-Cox transformations to estimate nonlinearly the
impact of size and choosing the model with the best fit.
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the cumulative temperature response across vintages without other controls as described in
Equation 4.7.

kWh useperdayijt =
V INTAGES∑

v=1

Vjv ∗ (β1vSQFT × CDDit + β2vSQFT × CDD2
it +

+β3vSQFT ×HDDit + β4vSQFT ×HDD2
it)

+αi + εit (4.7)

The results in Figure 1.20 show that new buildings are much less temperature responsive,
contrary to other specifications. I then re-estimate this constrained to areas where the sqft
variable is between 1300 and 1600 sqft which is a range of sqft with substantial overlap for all
vintages. The results in Figure 1.21 show that new buildings perform worse, as is expected
because they have much more air conditioning. The reason the two results differ is because
the median of the sqft variable is larger for new houses and cooling and heating loads scale
less than proportionately to sqft. Hence, the assumption that f(size) = sqft overcorrects
for size.2

While still using levels, I estimate a less functionally constrained version of f(weather)×
f(size) × f(other) in Equation 4.2. Size is restricted to sqft between 1300 and 1600.
f(size) = (α0 + α1 ∗ sqft) which is a first order approximation applied to this narrow
range of sqft. A similar first order approximation is used for air conditioning, and vintage is
given by an indicator variable, similar to the main specification. The final specification has
64 parameter estimates.

kwhperdayit = basei + f(weather)× f(size)× f(other)

where

f(weather) = γ1CDD + γ2CDD
2 + γ3HDD + γ4HDD

2

f(size) = α0 + α1 ∗ sqft

f(other) =
V INTAGES∑

v=1

δv ∗ V intageDummyv ∗ (δ0 + δCAC ∗ CentralAirConditioning)

(4.8)

Figure 1.15 shows the results of the regression by predicting the value of electricity
consumption kwhperdayit, for a reference 1500sqft house with central air conditioning for
each vintage. Because of the large number of covariates, the regression results are omitted.

2KEMA-XENERGY (2004) models cooling load as scaling by external surface area. If a building doubles
in size, the external surface area will less than double. For example, a cube on the ground has 5 external
faces (one exposed to the ground), but two cubes side by side only have 8 external faces.
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The results show that the 1990s and 1970s buildings may have lower temperature response
after controlling for air conditioning and size, but that the difference is not statistically
significant. Focusing just on the 1990s buildings, the range of the difference at 75◦F is -2 to
+1.5 kwhperday. This translates into an -8% to +6% difference in temperature response
which is lower than the range given by the main specification.

4.1.3 Aggregation

The aggregation issue can be described by referring to the discussion of Blundell and
Stoker (2005) which focuses on aggregation issues in demand systems and other scenarios.
Aggregation presents biases when the underlying data generating process has cross-terms
and there are non-zero covariances. For example, the following data generating process has
no cross terms and could be estimated by data aggregated spatially across j.

yij = β0 + β1 ∗ xij + β2 ∗ zij + εij (4.9)

Ej[yij] = β0 + β1 ∗ Ej[xij] + β2 ∗ Ej[zij] + Ej[εij] (4.10)

yj = β0 + β1 ∗ xj + β2 ∗ zj + εj (4.11)

In the presence of a cross term, the aggregation presents bias if there are covariances.
In the example below, the relationship between the individual level coefficient, β3, and the
aggregate regression parameter, γ3, is β3 = γ3 × Ej [xij ]∗E[zij ]

Ej [xij∗zij ] . The two equal if an only if the

covariance, Cov(xij, yij), is zero.

yij = β0 + β3 ∗ xij ∗ zij + εij (4.12)

Ej[yij] = β0 + β3 ∗ Ej[xij ∗ zij] + Ej[εij] (4.13)

Ej[yij] = β0 + β3 ∗ (Ej[xij] ∗ E[zij] + Cov(xij, yij)) + Ej[εij] (4.14)

yj = β0 + γ3 ∗ xj ∗ zj + εj (4.15)

Aggregation problems are less likely with county assessor’s data than with census block
group data. County assessor’s data is matched at the Zip9-level, which is about 5-10 house-
holds. Hence, it is hoped that covariates in a Zip9-level are relatively homogeneous in terms
of house size, vintage of year built, and ownership of air conditioning. Census block groups,
at 300-700 households each are much more likely to have these issues.

I have not done aggregation of bill to the census block or zip code level. Aggregation of
all bills within a census block group can be done only if the panel is balanced; otherwise some
bills exist in some years but not in others. A large proportion of properties have occupant
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turnover. If occupant turnover were random, dropping unbalanced observations would not
present bias, but it is plausible that certain homes are more likely to have occupant turnover.

4.1.4 Extended Data Discussion

There are two datasets depending on the building characteristic information used. The
first dataset uses ZIP9-level data from county assessor’s information. The second dataset
uses census block group-level data from the 2000 Census.

The billing data was cleaned. Bills with 25 days or less or 35 days or more were dropped
(about 5%). Bills with less than 2kWh/day or more than 80kWh/day are outliers were also
dropped (about 4%).

For the ZIP9 data, assessor’s data primarily includes complete records of square footage,
year built, and air conditioning ownership for single family homes. Records were dropped if
there was more than 10 bedrooms, square footage less than 200 or greater than 10000, missing
ZIP code, or the structure was built before 1850 or after 2000. Many of these were obvious
data errors because they contained internally inconsistent values, such as many bedrooms but
very little square footage. Census block group information was used to identify areas where
more than 95% of the households were in single family structures and decreases the sample
those areas that satisfy these criteria. Next, at the ZIP9-level, the proportion of houses with
central air conditioning, the median structure size, and the proportion of buildings built in
each vintage category were attributed to each bill in that associated ZIP9.

For the census block group data, a 1-in-5 subsample of observations was used to enable the
estimation to be run on a Linux server with 8GB of RAM and an Intel Quadcore processor,
running Stata 10.0 MP.

The spatial matching of weather, census block groups, and ZIP9s merits some description.
Weather data is available on a 4km x 4km grid. Census block groups are given as polygons.
ZIP9s are given as points, but the ZIP9 are ranges of street addresses. Typically opposite
sides of the street will have different ZIP9s. To describe the matching from the perspective
of the bill, the bill’s ZIP9 is matched to the census block group and 4km by 4km grid square
that contains the Zip9 point.
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