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ABSTRACT

Simplevdynamical‘systéms dispiayiﬁg complica;ed behavior atre .
found in fiélds aé diverse as biology;-fluid dynamics; and.space
physics. In plasma physics a number of problemé exﬁibit stochastic
motion whicﬁ ié attributed to the oveflap of resoﬁanceé; These‘p;oblgms
inclﬁde sqperadiabatiqityvin mifror‘machines, destrucfion ofvmgghétic

surfaces in toroidal systems, and lower hybrid heating.

_A particularly:simplé problemlexhibiting stoghasticity.is the
motion of a chérged particle in‘é‘uﬁifér@;magnétié fiéia and -a éiﬁélé
’ wave; Oﬁr detailed studies of this'wave—particle‘in£eracti§n sﬁow‘the'
'following features. An élecﬁréétatic wave propagating‘Oblidugly toAthe

magnetic field causes stochaStic motion if the wave amplitude exceeds a




ceftain threshold. ‘The oyerlap of cyglotxbp réSonances then.destroys'a
constant of the motion, allowipg stfong»pafticle acceleratioﬁ.' A wave
of lérge enough ampiitude Qould thus éuffef.sevére damping and lead to
rapid hegting of a particle distribution. The stochastic motion

resembles a diffusion process even though the wave spectrum contains

only a single wave.

Thé motion of ions inba nonuniforﬁ magnetic figld and a single
electrostatic wave is treated inlbur stud;‘bf a'possible,saturation
mechanism of the dissipative trapped»ion insﬁability in>a tokamak., A
theory involving the overlap of Béunce resonances prédicts the main
features fouﬁd in our numerical intégration of the equations of motion.
Ions in a layer near the trapped—cifculafiné béundéry move stochas-
tically. This motion leads to nonlinear stabilization mechanisms which

are described qualitatively.

Work performed under the auspices of the U. S..
Energy Research and Development Administration.
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1. Introduction

A. Overlappihg resonénceé; destruction of constants of the motion,

divergence of neighboring trajectories, stochastic motion

Problems in which only one resonance occurs are well known in
physics, An example ih plasma physics is the bnemdimensional motion of
an eiectron in a Langmuir‘wave, in which the resonance condition is
w = kv. Here,'aé elsewhére in this thesis,qabpafficle is in resonance
if it maintains ité phase relation in the wave. .Exaét solutions for the
motion of such systems can be found ih;generéi. 0‘Neil (1) wréte down
the equations describing the métion of an éleCtron in a Langmuir wave of
giveh amplitude and frequency and used thdse equétions to study the
Landau damping of the wave. More recent work[2] has attempted to
incorporate the amplitude and frequency shifts of the wave and calculate
tﬁe evolution of the wave and the motion of the eléctroné éelf~ B
consistently. We ignore the p;oblem of self~consistency (the problem
actually does not occur in the situations mentioned in Section 24); we
study instead the extremely complicated motion:which occurs when

multiple.resonances overlap.

Tﬁe preseﬁce of multiple reSoﬁances whicﬁ‘do 223 overlap does
not leadbto fﬁndaméntal complications., Near each resonance the motion
is similar to the motion found in a problem with ohly one resdnance.
The "far away" resonaﬁceé produce high-fréquency oscillations invthe

motion, which are unimportant in the problems we treat.

When two or more resonances overlap (the criterion for overlap



will be discussed in Section 2F), the motion changes qualitatively and
becomes incredibly cdmplicated. Numerical solutions of the motiqn'of
sﬁch systems show a complexity which clearly cannot be described |
~analytically; we cannot write, for example, an‘equation deséribing the B i
evolution of a diséribution of particles when two resonances overlap.

One characteristic of systems with overlapping resonances is the
destrucﬁion of constanﬁs of'the motion. As resonances grow wider and
overlap, constants which restrict the motion to’a certain épace
disappear, allowing motion in a space of higher dimension. ‘For example,
particles restricted to move on a two~dimensional surface in phase épace
might move on é three~dimensional surface when resonancesxoveriap. ‘ihe:
entropy and energy of a set of particles may then change in time_
irreversibly, as we will demonstrate in Section 2J. In this ﬁork we use
extensively thg characﬁeristic of destruction of constants of the

motion.

Another characterigtic of systems with overlapping resonances»is
the divergence of neighboring trajectories. Roughly speaking,
trajectories initially close togethér in phase spéce are fdﬁnd[B] to
separate -in time linearly if‘resonances‘do not overlap but e#ponentially
if they do overlap. Zaslavskii and Chirikov[4] (page 558) point out
that this local instability is neithef a necessary por.a sufficient - ‘, ' o _'ff,f
condition for the destruction Qf constants of the motion. Wé héve made

little use of the divergence of neighboring trajectories.

The term which has come into use to describe motion in the

presence of overlapping resonances is "stochastic." This term generally



means "random" or "almost random.”" For the systems we will treat, the

motion is more precisely described as "pseudorandom", since differential
equations without randomnéss determine the ﬁdtion, but a very‘slight
change in‘initial'conditidns ieads Eo a iargebchange in the conditions
(referred to as "final") at a latér timé. When almost all initiai
conditions are unstable in tHis way, tﬁe motion tends to be mixing, [4]
and correlations between initial and finai chdiéions décay rapidly.
Initial conditions, which are neverAknown preciéely in reality, cannot
predict final conditions, and the motion is therefore random in

practice.



B. Synopsis of thesis

In this thesis we describe several problems iﬁvblving stochastic
motion, and we treat in detail two such problems which are of interést
in plasma phyéics. In Section lc; we discuss (in Subsectiqns 1 throﬁgh
5) problems involving stochasticity which are of direct interest to the
magnetic fusion energy program. In Subsection 1C6 we describe some of
the problems which have inﬁerested researchers in stochasticity tﬁeory
since the important work by the aétronomers Hénon and Heiles in 1964,

In Subsection 1C7 we write the Hamiltonian of avvefy general oscillator
system and show how it relates to our specific problems. Section 1C
‘ends with a discussion of the possible implications of stochasticity for
the foundations of statistical mechanics. Section 1D méntidns_the
striking behavior observed in some dissipative systems thch arise‘in

fields far removed from plasma physics,

Chapters 2 and 3 of the thesis treat the first'of our specific
problems, the overlap of cyclotron resonances. Sections 2A, 2B, and
2C introduce the problem and the variables we use. In Section D we
find some results whicﬁ are valid when resonances do not overlap. In
Section 2E we find the behavior, in certain limits, of quantities which
we later study numerically; the behavior is the. same whether resonances
overlap or ﬁot. In.Section 2F we apply a simple analytical criterion
for fhe onset of stochésticity. To pfepare for the description of our
numerical results we discuss the method of numerical integration (in
Section 2G), some related Hamiltonian systems (Section 2H), and the

surface of section method (Section 2I). Section 2J discusses our



nume;ical resulﬁs, aqd in,SectithZK,wévfurthé;;iliuminategébmé'6fithééé“
fésults by studying a mapping; {Séction 2L,diééuéses‘some eleétrqstagié’
wavés Whiéh.coqld éause strong iop.accelerétion due to the oVerlap of
resonahces.v Section'ZM_caléulates the diétdytion'of the tail bf a
Maxwéllian distribution in the presencé éf éuch éLane, InFChaptef~3 we
discués some'thedretiéal ideas bearing upon an-analytic‘descriptidnvéf
the'diffusion process observed ip Chapter 2; ‘Section 3D éonféins thév 

conclusions of our. study of the overlap of cyclotron reéonanceé.'

‘:Chépfer 4 treats théisécbnd of éufﬂspecific proBlems,‘the méfidn
of an ioﬁ in the presence of a trapped-ion mode iﬁ a tokamgk._ Seétionsﬂ‘
4A and 4B introduce the problem and the Variables we use; InvSection
4wae obtain a'simplified model fér ign motibn in a tokamak'in the
abseﬁce of the mode. Sectibnv4D contains the full Hamiltonian_whichvwe
stﬁdy, and Section 4E mentidns several other problems.déécribed by the‘
same Haﬁiltonian. In Section 4F we again apbly the.simble stochasticity
criterion.. SectionvéG discusses the resuits.of our nuﬁéricél
integrations of this pfoblem. Iﬁ Section 4H we relate éﬁr work to that
of some other authofs. .The implications of stochaétiéﬁmotibﬁ fo? thé
satufation of the_trappedmion inétability are treated in Section 41.

Section 4J contains the conclusions of Chapter b

'The supplementary material includes appendices,»feferences,‘a:

list of first authors referenced, tables, figures, and their captions.



thé on the numbering of sections and equationé; Sections‘of

" ‘this thesis are referred to by giving the numbér'dfvthe chapter followed
by the section nﬁmber. For example, Section 2F refers to section F af
Chapter 2. For suﬁsections we append’ the number of the sﬁbéection

(e. go) SuBsectioﬁ 1C7). Equation numbers appear in parentheses. The
number of the equation is preceded by a period and the ﬁumber of thé
chapter in which it appears. The chapter number is omitted if thé
equation and the referencé to.it appear in the same chapter. For

exampie, a reference to equation (2.7) appears as (7) within Chapter 2.



C. Probléms involving .stochastic motion

Stochastic motion, caused by overlapping of resonances, OCcurs

in many physical problems. Some of these problems occur in.plaSma

. physics, where stochastic effects have importance for the fusion program

(and possibly also for space physics). In this section we mention some
of the problems involving overlap.of resonances, to indicate areas of

possible application of the ideas discussed later.

1. Particle in a magnetic field perturbed by an obliquely'prépagating,

wave

A very basic concept in plasma theory is the interaction between

a wave and a charged particle, A strong interaction occurs if the

.particle is in resonance with the wave. In an unmagnetized plasma, in

which a single sinusoidal wave is propagating, the resonance condition
is w = k*'v , where w - is the wave frequency, k is the wave vector,
and v is the'particle's velodity. We write the condition for

resonance as

wed by v d, : | B

~ where the three frequencies ¢i are kivi; A qualitétive change in the

resonance condition occurs when a magnetic field is applied to the

plasma.  Now the resonance condition is

W= by o+ Lpdy + Rgby . . - _ h (2)

where Ri denotes any integer and the frequencies ¢i  have more

complicated forms than before. From (1) and (2) we see that the



magnetic field allows resonance to occur for values of Zi other than
'21 5‘22 = 23 = 1 . The existence of these multigle'resonances'is

crucial for the stochastic effects discussed in this work.

a. Overlap of cyclotron resonances

The simplest magnetic field in which we can study overlap of
resonances is a unifOrm, magnetostatic field B = Bo 2. 1In this case,

the resonance condition (2) becomes
w=kv -1 , _ ‘ (3)

where § = eBd/mc is tﬁe cyclotron (or gyro-~) frequency of the partiéie
of charge e' and masé m, and .2 is any integer. The resonances (3)
are responsible for cyclotron-harmonic([5] (or gyro~resonant) damping and
growth of waves in a.uniformly magnetizéd plasma, _Cyclotron»harmonic
waves, which are called Bernstein[6] waves in the limit kz -+ 0 ,_oﬁe
theirbexistence to the resonances (3). Chapter 2 is devoted to a
detailed treatment of the motioﬁ of a particle in the presence of

overlapping cyclotron resonances,

b. Overlap of bounce resonances

In .a magnetic field with nonuniformity“along a field line new
“effects arise because a pérticle can bounce between magnetic mirrors.,
Sometimes the frequepcy wy of bouncing is comparable to the nge
frequency w but both are much less‘than the gyrofrequency § . Then

resonance condition (2) reduces to



W=nw ,n0-= i, 2,v3, e . : : L »:_.  o 1  - (4)
These resonances ére important in the theorybqf t;apped»pafti¢léiﬁ_>'
instabilitie$[7] in tokamaké. Chapter 4 contéins a étudy of thé motibh
of a particle in the preseﬂce of overlapping bounce réSonénces. Many

other problems of current interest, which we-discuss ‘in Section 4E,

involve the overlap of bounce resonances.

n

>2. Magnetic moment jumps, superadiabaticity, and Arnold diffusion

An approach to thermonuclear fusion, initiated in the early
years of the program, is to confine plasma in é magﬁetic mifror maéhine.
A minimum requirement for this approach‘to’be useful is that individual»
ions be confined long enough to have an opportunity to undergo a fusion
reaction. In modern mirror machines the escapé'of an ion represents a
loss of plasma density and energy content which must be replaced.by
injectioﬁ of an energetic atom.» If ions are lost too quickly, a given
iqjection capability will be able to maintain too low aldensity and
temperaturé, or for a given thermonuclear putput‘too large an injéction

facility (and therefore an uneconomic value of - Q = thermonuclear output

power / injected power) will be required.

Mirror machines are in the cléss of.opeﬁ magnetichOnfinement
systems in Which the plasma (or at least sbme of it in a fieldwréversed
mirror) is on magnetic field lines which lead directly to the walls of
the machine. The regions of large magnetic-figld (the mirrors) pfeyent‘

ions from moving along the field lines as long as the magnetic moment W
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is conserved. The magnetic moment, defined in terms of the magnitude:
B of thebfield §_ and the velocity YLV.perpendicular.té E_‘by

u = %-mvi?/B » can change for several reasons. Changes caused by
Coulomb collisions are reduced as the temperature is raised.‘ Changes
caused by fluctuating electric fields can be reduced by éuppressing the
i , S

instabilities which lead to the fluctuating fields. Even if these

changes are reduced to a negligible level, the magnetic moment still

suffers changes because it is not-an exact constant of the motion in a

nonuniform magnetic field.

The changes suffered by the magnetic moment take the form of
sudden jumps which occur in.some, but not all, field configﬁrations at
ithe points of minimum magnetic field. As shown in Fig. 1, ‘a plot of
U vs. time also shows rapid oscillations which are largest when the
partiéle is near a point where a jump occurs, Fig. 1 is st;ikinglyv
similar to behavior seen in our Fig. 21 for the piobiém of overlap of
cyclotron resonances. In Section 2J we ascribe the jumps to

\ -, .
constructive interference of terms in the equations of motion. Fig. 1
ié strong evidence that constructive interference occurs for a particle
moving in a.nonuniform magnetic field. The uﬁility of our constructive

interference picture and its relation to other pictures of the jumps in

1 can be decided only by further research,

Kruskal(8] showed that the magnetic moment can be redefiﬁed 80

that it is conserved to all orders in a small parameter € , which

measures, roughly speaking, the particle’s energy and the nonuniformity

of the field, Changes of U proportional to exp(-C/e) , where C ‘is



i1

a constant, are not ruled out by theory and have been observed in

numerical calculations[9,10] of particle'trajectOries-performéd‘oVer a .

‘period of élmost twenty years.. The magnitude of the jumps in the

magnetic moment can now be calculated analytiéallY[lQ] Very aCCufately.f

Jumps in u- sufficienfly large to cause loss of a deeply
trapped ion are of course serious, but moderate changes of U do not,

by themselves, imply serious loss of particles from a mirror machine.

Successive changes might be correlated so that the magnetic'moment’would>

remain near its initial value for all. time, " Such- etérnal confinement of

a particle in an exactly axisymmetric machine was proved rigorously by

Arnold[11] for sufficiently small values of €. . Arnold’s theérem'does-'

not say how small € must be, but Chirikov[lZ] used the driterion'of -
overléppipg resonances to find an»expression for € béIOW'which'eternél
confinementbcould be expected, _He found fair qgreement betweenbhis
expression and both a cpmputer[9] and.a_laboratory[lB]'experiment, -
Coulomb collisions, ignored in Réf;,ll,.prevent'strictly eterﬁal
confinement in a mirror machine, but in a thermonuclear plasma

collisional diffusion may be negligibly slow.

The word "superadiabaticity" refers to the eternal confinement
discussed above. The correlations necessary for superadiabaticity can
be destroyed by nonuniformity. of the magnetic field (too large an € )

or by fluctuating électric_fields resulting from instabilities. “Using a

very simple model, Rosénhluth[14],foundvthe amplitude of ‘fluctuating

fields necessary to prevent_superadiabaticity and guessed that a mirror

reactor might be in;thé supéradiabatic regime, For fluctuating fields
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of much ﬁigher amplitude, Aamodt and Byers[15] observed a transition
back to superadiabaticity by numeriéaily calculating particle
trajectories, Timofeev[16] reviewed the work on the effect of
fluctuating fields on particle motion and concluded that stochastic
motion occurs for moderate fluctuation levels but not for low or high
levels.  To our knowledge, nobcomparison has appeared in the literature
of the superadiabaticity conditions determined by nonuniformity pf the

magnetic‘field and by fluctuating electric fields.

Jaeger, Lichtenberg, and Lieberman[l7] and Lieberman and
Lichtenberg[18] studied the heating of electrons in a mirror machine by
application of an electromagnetic field resonant with the electron
gyrofrequency. They found the motion of electrons to be sﬁochastic,
leading to higher and higher energies until an adiabatic barrier
(analogous to fhe superadiabaticity conditions mentioned above) was
reached which prevented further energy increase., Related work on
radio~frequenéy plugging of a mirror machine was done by Lichfenberg and

Berk.[19]

If collisional diffusion is‘negligible and superadiabaticity
conditions are satisfied, good confinement in an axisymmetrié mirror
machiné can be expected. An‘asxgmetric machine has worse confinement
because Arnold diffusion can occur, Chirikov[ZO] has studied this
littlehknown process in considerable detail aﬁd predicts a'sharp
increase in diffusion rates as € 1is increased. His estimates do not
contradict the results of an experiment[21] showing én aBrupt dec%ease

in the confinement time of electrons as € 1is increased. Since
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asymmetry is required in mirror machines to prevent MHD instabilities,

‘research on the unavoidable process of Arnold diffusion seems desirable.

3. Destruction of magnetic surfaces in toroidal systems

The major approaéhes to thermonuclear'fusion byvmeans of
magnetic confinement include both open and cloéed sy§tems} In closed
systems magnetic field Lines in the région qccﬁpied by. the plasma
hopefully rémain always within the plasma; Unavoidable errors iﬁ coil
construction, whicﬁ aLIOvaield’lines‘to.reach the walls of the vacuum
chamber, arevhopefully small enough that the maéroscopic behaﬁior 6f the
plasma is not seriously degraded. The errors éllow particies, which
move along.field iines easily; to strike the wails of the chambér,
thereby bging lost to the piasma and also releasing”impuritiéévfrom the

walls into. the plasma,

Toroidal systems, of which the tokamak is the most important

~example, are usually treated theoretically under the assumption that the

errors in coil construction are negligible. The field lines then.

generate a set of nested toroidal magnetic surfaces, except where.a

field line happens to connect up on itself.

- Destruction of these surfaces (also known as magnetic braiding]
or stochasticity of field lines) by coil construction errors is due. to

the'overlap of resonances. ThiS'phénomenon’has been studied for

stellarators with[22] an Ohmic heéting current aﬁd'withqut[23»25] such.a

current and for a levitron[26-28] (also known as a sphefétor). Very
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small errors can often cause largerscale.destruction of magnetic
surfaces. In Ref. 26, for example, a tilt of the levitated ring byf0,1°

was found to be a serious error.

In Ref} 28 on the FM~1 spherator, spatial variations in.the'
plasma density were shown to resuit from>cons£:ﬁéfioﬁ errors in the
levitéted ring. The cgrrent‘inlthe ring was not centeredvat exactly the
same point in the riﬁg's'cross>sectioh forvdifferent'azimuthal angles;
the Centgr bf the cﬁrrent»distributioﬁ deviated by . at most 30 mils (less
than bﬁe millimeter), but these errors led to densit& variations up Fo
30%. The density vafiations were attributeéd to the presence of wide
| mégnetic islaﬁdé, which.allowed rapid radial transport of-particleé and
héat along field lines. Fach chain of magnetic islands resﬁitsffrdm a
single resonance., - If different chains of isian&S»(multiple'resqnapcé35
oveflap, destruction of magnetic surfacésﬁresults. In Ref.'28

destruction of surfaces was not thought to be a prevalent effect.

In the absence of coil construction errors destruction of

magnetic surfaces can still occur because of current perturbations in

the plasma.. The current perturbations grow to -large amplitudes because -

‘of.instabiiiﬁies of certain plasma mddes. Theée modes includée internal
kink modes (described either by ideal MHD[29] or. by resistive[30j
éQUatioﬁs) apd tearingvmodes (whicﬁ éléo occur iﬁ:sgveral
collisionality[3l] regimes) .,

In Fig. 2 we‘have sketchéd tbkamak magﬂeticfsurfacés in a
'poloidél cross section (i. e., at é partiéulaf»torqidal anglef. In

Fig. 2a we show the magnetic surfaces in the absence of current
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pertqrbatiqns. The nested toroidal surfaces are represented by
concentric circles, each labeled by thé value of the safety factor ¢

on the surfaée. (On the surfaces for which q is rationai [for
example, q=2], a field line connects up. on itéelf [after two circuits
arqund'the‘tofus the long way and éne.the short Qayj, énd, striqtly‘
spéaking, the line does not generate a surface;) In Fig.‘2b_we sHow the
magnetic surfaces when current pertﬁrbations are present near the minor
radii Qhere vq=2 and 3. Note the formation of chains of islands near

those radii.

Finn[32] has studied the hypothesis that the very serious
disruptive instability observed in tokamak experiments[33] is caqsed by
destruction of magnetic surfaces.- Hé.computed the trajectdries of'field
lines in a tokamak (modeled as a cylinder) in the presence of certainA

perturbations: two current perturbations with different poloidal mode

numbers or one current perturbation interacting with the poloidal

variation of the.tofoidal field, 1In the former case, the inteﬁsity of
the tﬁo currentvpefturbations necessary for destruction éf-surfaces‘was
found to be comparable to intensities thought to be ﬁresent just'prior
to the disruptive instabi;ity. Stix[34,35] has expressed'ideas vefy

similar to those of Finn.[32] Recently, Finn[36] has pointed out the

Adifficuity of satisfying the‘instability conditions for two tearing

modes‘with different poloidal mode numbers in a given discharge;-bThé
tearing iﬁstaBility is thus unlikely to produée two island chains which.
can overlap, but Finn[36] has studied an otherwiSe'stable'tearing'mode’
with poloidal mode number m=3 which is.driven‘to.large amplitudes by

coupling to an unstable m=2 - mode.
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Réchester and Stik[37] studied the destrﬁcfion'of magnetic
surfaces when tearing modes with m=2 and 3, for example, héve
amplitudes too low to cause overlap of their magnetié islands. In this
case, the destroyed surfaces are the ones represented in Fig. 2b by the
moon~shaped outer contours of the islands near q=2. These surfaces are
destréyed by the overlap of bounce resonances, in‘complete analogy with
the problem studied in Chapter 4. Rechester and Stix[37] found, for
appropriate tokamak parameters, that the area of the islands near gq=2
effectively shrinks by 30% as a result of destruction of the outer

contours of the islands.

The destruction of magnetic surfaces allows rapid radial
transport in the parts of the plasma cross section where resonances
overlap. Besides causing expansion of the plasma column énd fl#ttening
of the temperature profile, this transporﬁ tends to eliminate the
current perturbations which caused the destruction of surfaces in the
first place. Thus stochastiqity of field lines in a plasma tends to be
self-limiting, as pointed out by Stix.[34] We can thus expect current
perturbations to hover near the intensities necessary for the onset of
stochasticity. At these intensities the trajectories of field lines are
more difficult to treat analytically than either of the cases of very

weak or very strong stochasticity.

Theoretical calculations of the trajectories of field lines

‘begin with the equations giving the directions of a field line:

' (5a)

dr/d; RBr/BQ

d6/dg RBe/ch . 4 A -(§b)



1

Here, r meagures)phe digténqe ffém the.maéﬁefiqzaxisiof a»lafge*;>
aépectﬁfétié tokamak{ Q is thé boloidai and  g the‘tordidal-angle._
R is the distancé frdmbthe axis of symmetry to‘tﬂe point ‘(r,e,t);=‘=
The right sides of (5)‘aré functions of .r,6,§ ~and are periodic irve
and ;" Equations‘(S) thus‘héveithe forﬁ o

(6a)

m),:n an (r)expi(mb -ng) +c.c.

=
i

De
1

in?n‘ Gmn(r) expi(mg -ng)+c.c. , - - IR (6b)

where the dot déﬁotes differentiation with.féépect to. C'; The'toroidglv
aﬁgle § ﬁtékes the placéqu the usual time variéble; tv is the
independent vériéble in the éet (6) of‘tﬁo éouplédfbydiﬁary.aifferentiél_
equétions for the dependent variables r andi.e . _équétioﬁs>(6) héve '
the same form as the Hamiltonian equations which we study in detail in‘
this thesis, buﬁ (6)Vare not‘derivable, inbgeneral, frém a H;miltonién.

Hamiltonians describing trajectories of field lines were used for an .

- axisymmetric field[27] and‘fof-a special, helically symmetric-quel for

a stellarator field.[24l It seehs“impossible, however,. to describe an
arbitrary magnetic field in terms of a single scalar function (the

Hamiltonian).

 1In the absence of current perturbations, all,éoefficients Fmﬁ
and. G are zefo ékcept G = 1/2q, so (6) reduces to
mn v : 00 A , o
r=0,0=1/q(x).
0f all the terms représenting the perturbations, thé resonant terms in.
(6) are those that vary slowly with g , that is, those for which
md -n m/q(r) -n =0 .

Determining([27,32] the width (inb'r) of the resonances and.their
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separation, one derives a criterion for overlap of the magnetic islands
due to current perturbations. Overlap of the islands implies

destruction of magnetic surfaces near the chosen r.

The status of work on the disruptive instability at present
seems to ﬁe the following.' It is well established by the theoretical
work of Finn[32] and the experimental work of Karger, et al.[38] (in
which the disruption was induced by currents in external helical coils),
thét overlap of magnetic islands is involved in the disruptive
instability. It is not yet clear, however, what phyéical processes iead_
to the obsérved islands or how to predict the maximum size of the

islands theoretically.

4, Lower hybrid heating

A charged particle may move stochastically in an obliquely
propagating (kz # 0) wave, as mentioned in Subsection 1Bl and shown by
detéiled studies in Chapters 2 and 4. Stochastic motion may also occur
for a wave which propagates perpendicularly (kz = () to a uniforﬁ
magnet?c field. We give in Appendix A the equations describing the
transition befween'oblique and perpendicular propagation. Here we
review the work which has studied the possibility of stochastic effects

in lower hybrid heating of a tokamak.

Karney and Bers[39] have numerically integrated the equations of
motion for an ion in a perpendicularly propagating wave of frequency .

A rapid increase in the ion”s energy occurs if the perpendicular
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'velocity_vu_érw/k. Ref, 39 interpretsWthis increase as due to trapping

by‘tﬁe'wave>during a time short compared to a;gyroperiod. For larger
perpendiculér velocities a transition‘to stochastic motipnbis_observédi
as the wave amplitudé ig increased. When s;ochasticity occurs, ions in
the tail of ﬁhe perpendicular distfibution can belaccéleratéd té high

energies by the wave.

Fukuyamé, et ai.[40] have studied, botﬁ aﬁalytically and
numerically,‘thé motion 6f an ion in é wave with fréquency w close to
a harmonic 'LQ of the.gyrbffequency. In a.wave of small émplitﬁde the
perpendicular velocity of an ion is confined between values;at which.
kv,/Q is a zero of the Bessel function JL.[41]Y'Ref.’4O shgﬁs, as was

speculated in Ref. 16, that this confinement is spoiled when the wave

amplitude becomes large. Ion motion becomes stochastic because of the

overlap of certain resonances, and ions are accelerated to high
perpendicular velocities. The analytical methods used in Ref. 40 are

very similar to those used by us in Chapter 4.

5. Applicability of quasilinear and resonance broadening theo:y'.

In plasma physics one'oftén useé qﬁaSilinear ﬁheory 6r'it§
"renormalized" version, resonance broadening theory, to describe the
interaction between parficles and a spectrum of waves. A check 6f the
most fundamental requirement for validity of these theories is rarely

done, however. This requirement is that a set of resonances overlap.

Quasilinear and resonance broadening theory both describe



20

evolution of'a distribution funCtion‘using_a diffusion'equation. This 
description is always‘Valid if the spectrum is coqtinﬁous. Iﬂ‘reélity,
however, there are aiways boundary conditions which make the spectrum
discrete; the separation between resonances is ndnnzero; If the energy
in the wave spéctrum is great enough, the resonances ﬁay be wide endugh
to overlap each other., Then a diffusion equation is likely to be a good
describtion. On the dther hand, if the wave spectrum contains
insufficient enéfgy to cause overlap of‘resonanceé; a cbﬁstant of fhe
motion will exist which prevents diffusion. In‘thisvcasg, completely
erroneous results would be obtained by using quasilinear or resonance

broadening theory. This point has been made also by Tetreault.[&Z]

Since the onset of stochastigity marks a radical change in the
behavior of a system, it seems likely to us that systems will be fogﬁd
tO‘hover‘in thevvicinity of the‘stochastic threshold. For example, the
energy iﬁ a wave épectrum would be sufficient to make resonances overlap
marginally. Thé dynamics'of the system is ingredibly complicated in
such a‘situation; as illustfatéd, for instance; by our Fig. 18, 1In the
presenée'of such complexity a deécription.using a simplé diffusion_
equation cannot claim rigorous validity but méy_be‘accurate énéugh to

answer practical, qualitative questions.

L7
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6. Other Hamiltonian systems

, e : . -
-a,  Henon~Heiles and Barbanis systems

The pioneering work of Hénon aﬁd_Heiles,[&B] in which impdrtant
numericai methods were introduced for ﬁhe study of.stochastié motion,
waé motivated by astronomical considerations,. The stars in a galaXy:
producé a gravifational pdtential in which those stars move. The total
energy (kinetic plus poténtial) of a given star isvcohserved‘in the
absence of close encounters. 1In an aiisymmetric galaxy the angular
momentum is also conserved. The existence ofba'third conserved’quantity
(the third integral) cduld neither.be proved nor disproved despite many -

attempts, and observations of the distribution of stellar velocities

near the sun suggested existence of the third integral,' The ‘dispersion

of velocities in the direction of fhe_galaétic‘centef.and,ih tﬁe
airection perpendicular to the galactiglplané héve a ratio of réughly
two to one; such anisotropy implies.existence of a third conserQed
quantity. Hénon and Heiles convinciﬁgly showed, using numerical
experiments, that the third inteéral may or may not exist depending on

the strength of a perturbation.

The motion of a star in an axisymmetric- galaxy may be reduced to

a Hamiltonian system with two degrees of freedom. ‘As a-model problem,

¢

not directly related to any astronomical system, Henon and Heiles[43]

-studied the Hamiltonian

H_(x,Y’P);’py) = T(px’Py) + U_(_X,y) ' A | R t(7a)
T=5 (7 +'pyA) ' (7b)
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U=%(x2+y2) + x2%y _'%_y3., » _ o , (7¢) .
Eqé. (7)vrepfeéen£ ghe @otion of a'particle in a non;axisymmetricA
fﬁo»dimensioﬁal potential.weil._ Equipotential iines (U = éoqsfant) of
this well are shown in Fig. Bé, Near fhe bottom of the wéll the _ | : -
equipotential lines are almost circular, but the degree of aéymmefry |
increases as Uv increases, until at U = %-.the equipotential line is
an equilateral triangle. A particle with a low total energy E (= the
" constant numerical value of the Hamiltonian function (7a)) iS.confined
to the nearly symmetric part of the well. A particle with a high E

can reach parts of the well where the triangular asymmetry is stfong.

In writing (7) a certain choice of units has been made so that
all quantities are dimensionless. Before making this choice of units we

can write (7) as
1 ' R B
= 2 2 2, 2 2y o= y3
H= (pg +py)/2m+2k(X+y»)+€(xvy T Y) .

We see that the quantities in (7) are to be measured in a system of

units in which

unit of maés =m
unit of length = k/e
. : . 3
unit of time = (m/k)
unit of energy = k3/¢2 . g , B _ o .

A particle of given dimensional (i. e., physical) energy C, movihg‘in a
well with given k, has a large value of the dimensionless energy
E = Ce2/k3 if € is large., " A large value of E is thus seen. to iﬁply

importance of the triangular asymmetry of the potential well (the term
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proportional to €), a-result»deduced'ébove by examining the

equipotentials of U . , T o R TR

Lunsford and Ford[44]'showed.thaﬁ>fhe Hénon~Héiies Hamiltonian -
describes a three~mass system which could model the dynamics of a small
molecule or, in a cruder approximation, a éolid.'”They éonsidered,three

equal masses, each having just one degree of freedom, linked:in a chain

obeying periodic boundary conditions. Possible chains of this type are

sketched in Fig. 4., The potential energy of the springs, assumed to be

identical, was taken to be
12 _1,3
= — - = XVv,
V) =5 x - g X
Ref;v44,gave a canonical transformation whichjcasts this;;hfee»mass

system into the form (7).

ry * . . 4 . e . ) .
It is instructive to express the Henon-Heiles system in terms of
other canonical variables. 1In a polar coordinate system the

coordinates, r and O, and the canonical momenta, P -and pe » are

T
related to the Cartésién variableé by | » _
r? = x2 + y2, tan 0 = f/x- fsa)
- o -~ (8b)
Py (XPX * YP)/x .
Pg = XPy, ~YPy , ' - R )
or, inversely, by
X=1rcos®, y=rsinb (92)
X : | (9b)
Py = (xp,. - ypy/T)/T |
Py = P+ xp/T)/T - | - (90
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That (8) or (9) defines a canonicall[45) transformation can be verified
by checking the appropriate Poisson bracket relations. Alternatively,
one can derive the transformation given by (8) or (9) from a generating .

function, [45] which guarantees that the transformation is canonical.

Possible generating functions are
2, y2ys 1
F2(x,7,p,,pg) = p.(x* + y2)* + py tan™! (v/x)
or

Fs(r,e,Px,Py) = -r(p, cos 6 + Py sin 8) .

In terms of the polar variables Hamiltonian (7) becomes

H(r,8,p_,pg) = T(r,p,pg) + U(r,0) (10a)
1 ‘ (10b)

T =5 [p? + (pg/1)?

u=21:241:35in30 : ' ' (10¢)
2 3 : .

The triangular asymmetry of the potential U shows clearly in (10c)..
We also see that the Hamiltonian is independent of © in the limit
r + 0, which suggests using Pg " as the first approximation to a

constant of the motion, if such a constant is known to exist.

Often, it is best for analytic purposes to express a Hamiltonian

in action-angle variables. These variables are related to the Cartesiaﬁ_

¥

variables by

J (11a)

| P 2
i =7+ %)

¢

-1/ . )
tan (xi/pi? , (11b)



‘_‘where, i=1 refers to x and i=2 to yf;_;The ihVérse=relationships.

are
= (21 VF s o T T : (iZa)"
X; = (29,07 sin ¢, I j B ST
- L . : o : _
p; (2Ji) cQS ¢, - SRR S - (12b>v

The generating function
,F(x.¢.)=ﬂlx2 cot ¢,
LR R 1 271" i

" produces the cénohical transformation (11) or.(IZ)}_

In terms bf the action-angle variables: Hamiltonian (7) appears

Hy=Jy +Jy | : S s
= 2 .0 1 . : S
v "'Z(ZJZ)Z'S}n $,(Jy sin?¢; - 392 5132¢2); o . (13c)

(23,07 {5 3, [5in(26, - 9,) - sin(2, +9,) + 2 sing]
+ %ilesin 3¢, - 35in4@]} _', ' '~: ’ ‘ f13d)

Note that HO ‘is ‘the Hamiltonian of two hafmonic oscillators with equal

.frequency:
b, = OH /33 = ¢, = BH /3], =1 .

In contrast to.the Hamiltonian systems treated in detail in this thesis,

in the Hénon~Heiles system the resonance condition '

A4, #1259, =.0.

is independent of - J1 and J2, since &i and &2 are constant. In
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éddition the resonant term sj.n‘(cj)1 - ¢é) is absent from the pertufﬁatioﬁ
V . These characteristics prevent us from applying the first-ordér
'berturbation theory which is applicable to most problems, including the
ones treated in detail in this thesis. The Hénon-Heiles system is thus
.a special'(not generic) type of ﬁamiltonian syétem‘and is;ﬁore difficﬁlt

to treate.

A Hamiltonian system very similar to the Hénon~Heiles system was
chosen for numerical studies by Barbanis[46] after theoretical work had
been carried out by Contopoﬁlos and Moutsoulas.[47]) The Barbanis system

is given by (7a)~(7b) and

(x2 + y2) - xy2 . - | ' (14)

=
1
. N

“In terms of the polar variables (8a),-(14) becomes

U= %—rz + %—-r?’ (cos 30 - cos6) . - - : (15)

The equipotential lines of the well given by (14) or (15) are shown in
Fig. 3b. In terms of the action-angle variables (11), the Barbanis

system is given by Hamiltonian (13a) and (13b) but with
_1 N2 res ; _ 28 16
V=3 J2(2J1) [51n(¢1 - 2¢2) + sxn(¢1 + 2¢2) 251n(b1]f (16)

Since (16) has fewer terms than (13d), the Barbanis system would
probably be less tedious to treat analytically than the Hénon-Heiles

system,

Other Hamiltonians similar to. those of HénonQHeiles'and



27

bBarbanis,heve been etud?ed[4$],exeensiyely€ In: partlcular,‘the term
.yé in (14)’was nultiplied by e cbnstant (e. g.,f —7A GJ

irhereby maklng unequal the frequenc1es of the osc1llators descrlbed by
Hé.‘ Contopoulos[49] and Gustavson[SO] have given procedures for
celculating terms in_a,forma;'series_approximeting a constant. of the
notion (the»hhird integpel). ContnnoulosISI] has ‘compared his'methods
to thnse of von Zeipel,»Whittaker?’Cherry, and Birkhoff. The formal '
series obtained by these methods generally have very complicated terms
which must be found by tedious highherder perturbation methods. A
:simpie’endvelegent method for'calcnlating e’formal:series‘waS’given by
Dunnett,, Laing, and Taylnr;[52]'who ignnfed ﬁhekdeeire of‘eaflierv. |
authors to have each term in the series be a polynnmlal 1n: xi:vend

Pj. Th1s method is appllcable to the problems of prlnary 1nterest to us
'énd will be dlscnssed in Section 2D. The method is p0831b1y not

applicable to the problems of this subsection, because the resonance

condition is independent of J, and J,.

"Hénon and Heiles[43] showed;that, in the potenhial Well‘Of Fig..
3a,Amotion)ehanges gualitativelx as the total_energykof the particle is;
increasen. They repfesented ehe motion in two dimensione using a |
techniqne invented hy Poincaré[53] in the.nineteenth century.v This
'technique,_whieh is celled‘the snrface ofeeection_method, willAbe'
discussed in Section 2I. Briefly, theusurface of section method alloﬁs-
us to represent a four~dimensional particle trajectory as a set of.
pbintsvon a plane while retaining fnfermetidn desefibing theilongntime

behavior of the trajectory.
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In Fig. 5, based on fiéures in Ref. 43, we show the changes in
~motion which occur as the particle’s enefgy is increased. For low
eqergies, like E =~%§, the points representing a given trajegtory are
found always to lie on a curve, Fdr high energies, like"E = %-, almost
all trajectories have points filling an area rather than lying on a
curve, For intermediate energies, like E = %—, the nature of a

trajectory depends on the values of the positions and velocities at

t=0.

The three plots in Fig. 5 allow ﬁs to observé.the disappearance
of a constant of the motion as thé energy is raised. For low energies
E,vfhis constant restricts the motion of the particle to one-dimensional
curves in the plane. For high‘énergies E, this constant has
disappeared, allowing the particle to visit poings in a two¥dimensional

region of the plane.

Further discussion on the nature and importance of the

disappearance of constants of the motion is contained in Section 2F,

Mo[54] gave a method based on projection~operator techniques
which allowed her to calculate analytically the energy E at which
widespread stochasticity should occur. . The analytical values of ' E

were found to agree very accurately with the values determined by

numerical experiments.

Finally, we note that the Hénon~Heiles and Barbanis systems were

studied using the methods of gquantum mechanics by Nordholm and Rice,[55]

Their desire was to determine if a small quantum mechanical system, like
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.an.isoléted molecule, Shoﬁs:effects analogous~to thbse.séénjin Fié, 5,  4.>
for thch classical mechanics'was qsed. The qﬁantum prpbiéﬁ was thnd;.

' fo.be moré'difficult, bOth conce§tuall§ and computatibnélly.: Nordholm L
'énd Rice ccmquedﬂenergy levelé and the céfreéponding eigenstateé for
several Hamiltonians, includiﬁg those of Hénonhﬁeilés and Barbanis.
For some systems, but not fbr'others, they found_a'tendency‘for
low-energy eigenstétes to be localized; which isvanaiogoué‘to existence
of a Eonstént of the motion, and for high»energy eigenstates to be
global, aﬁalogbus to nonexistence of the cpnsﬁant.bvlt~séems po.ﬁs that
Ref. 55 does not give a definitive,answér regarding the existeﬁce of 

stochastic effects in quantum mechanics.,

b, Restricted problem of three bodies

A famous problem in the history of physics is the’motion.of
three masses interactihg by their mutual gravitation., FExtensive
numerical studies by Hénon[56~58] of a restricted thrée»body'problem

v sUggestvthét the generai three~body problem is analytically insoluble.

_ Hénon stﬁdied.the most restricﬁed form of-thg’thrée»body
‘brbblem. The mass of the third body, whose ﬁotion‘is.studiéd, is
infinitesimal‘compared to'the,mass of thé othéfvtwo‘boaies,.so the
motioﬁ of the first tW6 bodiesvis giveany the Qell»known.soiutipﬁ of
Kepler. The first two bodieé'fevolve about‘tﬁe ééﬁférldf ﬁaés in
ciréular (not elliptiéal).orbits.b The”initial position aﬁd_?éloéigyvof
the third bpdy lie in the plane of motion of the first’tﬁo bodiesg_the

motion of all three bodies is thus restricted to this (fixed) plane.
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The total mass of the system is taken as the unit éf mass, the diStance
between the first two bodies as the unit of length, and the angular
frequency of rotation of those bodies as the unit of frequéncy. One
uses a synodical coordinate system, whichvrotates wi;h the first two
bodiés and whicﬁ has the origin ét the center of masé of those bodies.

The motion is described by the Hamiltonian
1 :
H{x, y, pxs Py) = '2‘(Px2"'Py2) - (XPY“YPX) - (I'U)/rl ‘U/rz ’
where u 1s the mass of the. second body and
- 2 212 — 2 ».2;5
rl’Z[(X"‘U) +Y] :rzzl(x'1+U) +Y] .

The numerical value of the Hamiltonian (times =~2). is called the Jacobi

constant and is given by

C=x2+y2+2(1 —u)/r1+2u/r2-5c2->"2

Hénon found the restricted three~body problem to be
qualitatively similar to the Hénon-Heiles system; surface of section
plots show regions whgre a constant of tﬁe_motion (in addition to the
Jacobi constant) exists and other regions where it dbes not exist. As
the numerical value of the Jacobi constant is decreased, the regions of
existence of the.édditional coﬁstant are found to shrink. This behavior
is shown in Fig. 6, which is taken from Ref. 56, whichvtreated the case
u==%- (equal masses of the first two bodies). In later work Hénon‘found

similar béhavior in the limiting(57] case u->0 and for intermediate[58]

values of n .,
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c St¢ﬁmer‘pr6b1em

The motion .of a chargéd paftiéie in‘é magnétic dipole fiéld;'thé

simplest appfoximatidn'tq the earth’s field, is inféresting-becauseipf'.

possiﬁle applicétidné.fd radiation belt phéﬁomeﬁa. VThis'pfoblem;Inamed_

in honOr:of'St¢rmer, has been discussed in an excéllent article by-Dfagt»
and Finn.[59] Here we review briefly the results found in Ref. 59 and
give our interpfetapion of thém.

“The Hamiltonian describing:motion_in a dipole field can be
reduced’to-twd degreés of freedom énd written, in a certain system of

units, as

1 o ,
H = ..2_. (pzz +p02) * V(z,p)‘.
V= 3lol- (o/r9)12
rz (224097 |

Here 2z and p are 6rdinary'cylindrical coordinates: p  1is tﬁe"
dis;ance of the barticle from the axis of the dipole 'field and'_é- ié
iﬁs distance ffoﬁvthe equatorial plane.,. The potential energy Vtz,b)
cbntains a well iﬁ‘wﬁich particles with appropriafe-inifial conditions'
cénvbe traﬁped, The corresponding partiéles in the earth’s magnetic:

field are the ones observed in the radiation belts. 1In the potential

- well the motion consists of coupled oscillations representing gyration’

about abfield line and bouncing.along it.:

The analyéis'bfjthis.problem by Dfagt and Finn begins With7a_ x
clear descriptidn of what is meant by a homoclinic point. They show

that a time—independent Hamiltonian system with two degrees of freedom
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~which has a homoclinic point cannot'have‘an analytic éOnStant'df the
motion other than the Hamiltonian. Numerical evidence is then_presented
which stfongly sﬁggests the éxistencé of avhomoclinic point for the‘
Stgrmer probiem;‘ This implies that there exis;s no analytic eXﬁreésion,
valid throughout phase space, for a particle’s magnetic ﬁomgnt in the

presence of a dipole field.

The nonexistence of an additional constant of tHe’moti§n has
been observed by us in the problems treated.in detail in this thesis,
In Chapter 4 we study the disappeéfance of a constant in the vicinity of
a separatrix, where a constant of the motion éan be‘destroyed by an
arbitrarily smali perturbation., This behavior near a separatrix
prevents existence of a constant of the motion vélid thrdﬁghout,phase

space.

In appiications to physical problems it is important to
determine the extent of the region near the séparat;ix in which é
constant is destroyed. (In Chapter 4 this extent is referred tb as.;he
width of thé stochastic layer.) 1If fhis region is extremely small, it
cannot be importantiin applications. Unfortunately, ﬁhe extent of this
region cannot be found by any mathématically rigoroué'technique. The
extent of thé complementary region, in’which_an additional constant of
the motion does exisf,vhas been shown .by Braun,[60] using methods
developed by Moser, to have at least a certain extremely small, but
nonzero, size. vNumericél studies‘of dynamical systemé seéem to indicate
a much larger size for_thié complementary region. ‘HoweVer, in numgrical

- integrations it is not possible to reach the long confinement times



- observed for radiation belt particles, and numerical'Sthdiegvghdswcannotf

show definitively whether a constant of the motion exists or not.

Nevertheless;_we speculate that theﬁgdod éonfinemént of-:
radiation belt particles‘reéults froﬁ fhe éx{étence qf'é cqﬁstéﬁﬁ éf{the
motion in a largéAregiqﬁ of ?hasg sbacg, the’regions:of ggggxisténcé
éiﬁher beiﬁg vef& éhéli oribeingvlocated in.regioﬁs of phase spaqé not

occupied by radiation belt particles.

d. Elastic pendulum

Considerable attention[6ls631 has beenzdiregtedgrecent;y'td the

motion of a mass attached to a spring which can swing in.a fixed,

vertical plane. With a certain[6l] choice of units this system is. .

described by the Hamiltohian

. 1 . B .1‘. .‘ ‘» : . R ] B ‘: . . . ..
H(x, 2, p0P) = 5 (B0 +p) - g2+ 5 (r -2, oan

where T = (x2+22)° "Interest has centered on the case g =3 for

which the two natural frequencies (stretching\and“swing;ng).occur in-a

ratio of two to one.
Hitz1[61) investigated the_periddic'orbits, sdme of them rather
complicated, which occur for this system, and also he found an’

increasing fraction of ‘aperiodic (i. e., Stéchééti6)7ofbitsf35'he-

increased the ‘total energy. "Hitzl”s results are thus qualitatively

similar to those:of Hénon and Héiléé;[ﬁ3i‘wﬁi¢h we'diséuésed ébdvé;'
Expanding (17) about - the equilibrium point (x=0, w=%0,_olssqn[63r'wrote..

down a dynamical system which happens to be identicai to one studiéd[4Qj
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by Cohtopoulos.

7. General oscillator system

In this subsection we will show that the'Hahiltonian systems
vstudied in deteii in this thesis are of e form which:is found under very
general.conditions and therefore invmaﬁy other conservative systems;

The results of our Vork should therefore be applicable,-with only minor

modifications, to many other problems.

: Phy31cal systems often take the form of coupled ooendlmens1onal
oscillators each descrlbed by a t1me~1ndependent Hamiltonian li( 1) (x
E pi). The coupling occurs through an 1nteraet10n energy €V (xl, pl, x2,
Pos +ves t). The equations of motion for a partlcular osc1llator (1—1) |
1nvo]ve the dynamical variables of the other osc111atorsvonly through
V which 'is often small compared to 11(1) A valid approx1mat10n is
then obtained by replacing xz,vpz,... by the explieit.funotions of time
‘derived fromﬁthe Hamiltoniaos lﬂfz) ,...'.‘ The Hamiltooiao describing

oscillator 1 takes the form
CH(G P, t) =H (P +eVix,p,t) . as

As noted by'Chirikov,[?O] this reductioo to the study of one~dimensional - o
oscillators eliminates the possibility of Arnold diffusion, which can
only be important if the stronger effects due to overlapping resonances

are absent,

FreQuently, we study the motion of a perticle in a force field
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" dependent bniy‘on x “and te Iheprﬁentiél énergy u, whigh;produ¢es

the force field, can sometimes>be'Fourier-analyzed in x and t:

U, ) = Iy Uy cos (x-wtmy,). o e A9 L
If boundary cqnditiqgs_fqrcg tﬁe values of k. and Am‘_toﬂbg multiples'.

of a fundamental wavenumber ko ~and_ frequency wo,_then (19) takes the g

form

U(x,f) =1

gung ¢9§f(nkox'i2wot*innl)" : ' 1 i - (20)

where n and % are integers. The'correspOQQing.Hamiltonian,'
H(x,p, t) = p?/2m + U(x, 1) , D ¢ VA

is ‘a particularly simple example'of thergenéré1 fdrmv(is) and has™
exactly the form of (2.45) if thé"céeffigiehts VUnQ afeIZéro'fbf.flfl.

In Section 2H we note that Hamiltonian (2;45):displayé’the_ﬁéin‘featuré

(stochastic motion due to résonaﬁée'ovérlap)-diébléYed'By,théf
Hamiltoniah ((2.3);(2.4),‘ahd'(2.9)) of é‘paftiéléiin'a unifdtmimagnétic

field and an oblique electrostatic wave,

If the Fourier coefficients 'Unﬁ differ in size, or their
relative importance differs because the particle is nearer the resonant

velocities Rwo/nko of some terms in (20) than of others; it may be

- possible to study motion in the presence of oniy:a\féw.tefms‘frbm (20)..

_lh'the présence of only one term, the‘motion_would‘bé descfibed by;the

Hamiltonian

Ho(xop, ©) = P2/2m + U, o cos(ngkgx -0 t+ny p ). (2D
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»After a change of reference frame and a choice of conveniént units,'(22)

takes the form
H (x,p) = lp‘z-- COS X,
0 2 : ’

which is the Hamiltonian for the well-known problem of a (nonlinear)
pendulum. The exact -solutions of this problem.are'givén in Section
4C. . In the presence of tWO'termS'froﬁ 20), the pérticlé moves

according to
H(x, p, t) = H_(x,p) -€cos (Ax - o) ,. | (23)

where appropriate defiﬁitions of '€, A, and £ are to Be used.,

‘N!b—‘

Chapter 4 includes a study of (23) for ;hebpafticular choice A =

For theoretical work, it is most convenient to express (18) in
.terms of vafiébles fprvwhidp_thé unperturbed Hamiltonian Ho, depends
only on the canonical momentum and .not on thelcoordinaté,,,Sugh variable
t;ansformétions have been performed in éections 2B and 4B, In tefms of

the new variables, which we denote by' ¢: and J, (18) has the form
H($,J, t) = H (J)+eV(e,J, . @2

If ¢ - is an angle variable, V must be periodic in ¢, ‘If"V- is élso

periodic in t, then

VG = vnz(aﬁ)_cos' (¢ - fwt +n o) .. 5 _V

We note here the close Analogy between (ZI)Iand'(ZO),on one_ﬁgnd.and ;
(24) and (25) on the other. A term in (25) is slowly varyiﬁg in time"
(i. e., resonant) if

né z:@bu) ~ L,
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BHO/BJt The resonant valuesFOf;'J‘hare determined by the

integers n oand X, and,-in~general form a set whose,members are

~distributed along the real number 11ne as the rat10na1 numbers are

distributed. We treat the s1mpler cases in wh1ch e1ther n is always
unity, lead1ng to a resonance condltlon of the form (3), or '2 is

always unlty,_leading to (4). Ref, 20 contains a ‘treatment (PP. 55-62)

. of the more diffieult,'general case,

For the purpose of studying the overlap of resonanees, a
t1me~dependent system of one degree of freedom and a t1me~1ndependent
system,of two degrees of freedom are equivalent, The latter type of

system in fact includes the former.type, since_.H(x,p,t) ucan‘be

transformed to -

K(x,p,8,1) = H(x,p,8/w) + Iu (e
using the generating function
F,(x,p',I,t) = xp'+ Iwt .

Most of Chapter 2 deals w1th a time~1ndependent system, but we feel that

a t1me—dependent system exhibits the overlap of resonances more cleanly

than .a time»independent one. A t1me~dependent system contalns no

" variable analogous to I in (26) and 1s thus free of the effects of

'ehanges in I, Whlch are not d1rectly relevant to stochast1c1ty.
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8. Possible implications for statistical mechanics

Many~quyvpr§blem§ in physics are usually;deséfibed_adequately'
using the methods of stétis;ical mechanics. The fundamental postulate
of statistical mechanics, ubon which all bf its results are baséd, is
that an iéolated syéfem be féund with equal proBability in_anx of its

_acéessible states, that ié, in any pért of the energy (hypér)surfaég.
The feW*body problemé traditionally studiedfin cléssical meéhanics |
courses generally have constants of the motion in addition to the enetgy
which restrict the motion to a subspace of the energy sutface.' Mbrei
typical behavior is seen in numerical studies, like ours, of dynamical
systems with quite simple Hamiltonians but with very complex motion;
These studies show that additional constants of the motion can be
destroyed by a sufficiently large perturbation. The perFurbation
strengths required for destruction of the additional coﬁsfanﬁs.are
generally quite high in the two-degree-~of~freedom problems which have
been most extensively.studied. Possiply, the required perturbation
strengths decrease as the number of degrees of freedom increases.
Evidence for this behavior has been given b§ Froeschlé and

Scheidecker. [64]

The-pdssibilities of_discovéring the.;easoﬁé for the empifical
success of stgtistical mechanics or qf prdying tﬁe fundamentai postulate
have naturally led to much work by both mathematicians andlphysicists.

A number of excellent review articles have appeared., Thé most
comprehensive (book-~length) treatment, written from a physiéist's

viewpoint, is by Chirikov.[20] Written in a similar, dense style and
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containing many of the;same resu1tsfis'the articlebe~Za$lévskii-and~
Chirikov.[4] .Farquhar[65] gives a véry réadable ihtrbduction_to fheb

concepts of modern ergodic theory. Other reviews of note are by

”Lébowifz,[66] Lebowitz and Penfdsé;[67] Galgaﬁi aﬁ&JS¢6tti,f681.Foid,

[69~71] and Walker and Ford.[72]
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D, Complicated behavior in simple dissipative dynamical systems -

The dynamical systems mentioned in. the prévious section were all

conservative systems, derivable from a Hamiltohian. Simple dissipative

systems cankalso exhibit incredibly complicated behavior, as we will
show in this section by giving several examplés. We do not believe that
overlap of resonances is responsible for.every_(Or even any) aspect of
the behavibr Qf dissipative systems. We include these examples because
the behavior is sometimes strikingly similar to that observed iﬁ

conservative systems,

1. Population levels in biology

The number of individuals in a species, that is, the population,
obeys a complicated set of equations,‘in.general. In a few situations,
however, an adequate approximation may be given by the so~called

logistic equation
dN/dt = rN(1 -N/K) .

Here N is the population level, K the carrying capacity, and r 'is
the growth rate of the species., If the generations of the species are
non~overlapping, as in the 13~year periodical cicada, then one uses a

nonlinear difference equation

Neyp = N explr(1-N /K] . en

t+l

for the population at time t+! in terms of the pépulation at time - t.
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The dlfference equatlon (27) has radlcally dlfferent behav1or
depend1ng on the value of r, as shown in F1g. 7 whlch comes from Ref
73. Plot (a), »»r' r=1. 8, shows the populat1on N levellng off at’ the '

carrylng capac1ty K after initial tran51ents have d1ed out. Plot (b),

"~ for r=2.3, shows a stable two~p01nt cycle in whlch the populat1on

oscillates between a low and a high level'each.generation. Plot (c¢),
for r=2.6, shows a stable four-point cycle; Plots (dl and (e) have the
same value of T, 3.3, but dlfferent 1n1t1al populatlon levels._ In td)
the motion appears to have lost any regularity, but in}(e)lthe motion

appears qua51per10d1c with period three, In plot (f), or r=5, the

motion 1s characterlzed by large 1solated spikes in the populatlon

» level.

- Ref. 74 can be consulted for,recent WOrk‘on-a dynamical’system
similar to (27) May[75] notes that 81m11ar types of equat1ons occur
also in economics and soc1ology and the same type of dynam1cs mlght

occur in those f1elds as- well

2." Rikitake dynamo

- The earth’s magnetic field is known»to haVe changedlits polarity

at. seemingly random intervals during_the.past ten million-years. The

observatlons of the polar1ty intervals are. shown in. Flg..8, Which isi_'
taken from Cox. [76] One might think that the apparent randomness is'due :

to the complexity of the earth’s core. However, there exist ery s1mple_

models which lead to apparently random changes in the polarlty of the'
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magnetic field.

Such a model([77] is known as the Rikitake two~disk dynamo. In
Fig. 9 is shown a schematic picture of this dynamo. The equations which

describe the system are

LIl + RIl = MQIIZ
Li, + RI, = M2,I; (28)
CRy =CRy = G-MIyI, .

In (28) I, and I, are the currents in the twolloops of wire, ;L. and
R are the inductance and resistance of each loop, M is the mutual
inductance between one loop and the opposite disk, §; and Q, are the
angular velocities of the two disks, C islthe moment'of.ihertia of

each disk, and G 1is the (common) couple which drives each disk.

In Fig. 10 isvshown a typical time evolution of the current
I, » as calculatedkby Cook and Roberts.[78] Note the variable interval.
between reversals of the sign of I,; sometimes there are many of the
rapid oscillationé before I, changeé sign, sometimes 11 changes sign
only very briefly. This behavior is similar to the observational data
shown in Fig. 8. We stress the fact that tﬁe complicatgd motion seen in
Fig. 10 results from a simplg set. of three nonlinear differential

equations.
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3. Fluid motion between cylinders -

.In this subsection and'the next we discuss'two classical~‘

problems in flu1d mechanlcs wh1ch have been the subJect of renewed

~interest 1n‘recent years. The flrst problem is the motion of a fluld.

between two coax1al cyllnders, the inner one of whlch 1s rotatlng ‘with

respect to the other. The name "Couette flow descrlbes the motion of
the fluid when the rotatlonal velocity is very small This system is

thought to be descrlbed accurately by the Navier-Stokes equatlon

ou _1 2
| sgt (W Vu ",EVP-* \’V u

and the incompressibility condition Ve u = 0,

The -theoretical picture of turhulence‘developedjby;Landeu[79l
many years ago‘states that the level of turbulence gradually increeses -
as the rotational velocity.of thevinner cylinder increases.. More

recently, a new theoretlcal p1cture of turbulence was proposed by Ruelle

and lakens [80] who state that the onset of turbulence is sudden.

hExperimental results are available which support the picture'ofg>
Ruelle and Takens. In Fig.vll are shown the results of an.

experiment[8l] on fluid motion between cylinders., _On’the-left side of

the figure we see the variation with time of a certain compdnent of the

fluid velocity. That data has been Fourier analyzed on the tight to

yield a power spectrums - The rotational velocity of_thevinner"cylinder

is parametriZed'by the reduced Reynolds number R¥* which increeses'frOm

- top to bottom in the figure: At a low rotational velocity,'the"motion

is periodic at a frequency f;. As the rotational velocity.is .
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increased, new freqdencies £2 and.  fj appear.’ At a certaianelocity
the spectrum changes abruptly from discrete to continuous, indicating a
sudden onset of ﬁufbﬁience. This suddeﬁ qﬁaiitative change in ;he
spectrum remindéiué"of.the cﬁange in the motion of a Hamiitonian system
when the_initial coﬁdition is displaced froﬁ an ofdered région of phase
space into a stochastic region. 1In an érdered region the motion is
quasiperiédic.(has a diécrete spectrum) , while in a stochastic ngion

the motion is aperiodic (has a continuous spectrum).

4. Rayleigh»Bénard heat convection proﬁlem and the Lorenz model

Another classical problem in fluid mechanics is the
Réyleigh~Bénérd probiem of heatxconvection thrqugh é la&er of fluid
heétedifrom below, A‘theoreticél approach[82] to this problem starts by
writing thevfluid’equations describing the system. Tﬁe equafioﬁs are
Fourier énalyzed-and all.but'a few modés are discarded; A very crude
model[83]qretains §niy.three mdde;, denoéed by X, y; and z, which obey

the system of equations

J°c='o(y-x)
Y = IX <y -Xz | . R 2°))
z = |

-bz +xy .

The parameters O and b+ are unimportant for the present discussion,
but we think of r as a measure of the stress on the system due to the
temperature gradient. . For-small. r, (29) has solutions corresponding to

heat conduction . For intermediate 'r, the solutions correspond to
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1aminar‘¢onvegtiou,-aqd'for iafgé r itbltuﬁbdieﬁt convectioh;"FQti
large r tﬁe.motion in theAthreemdimenéionalAxyz~spécéuhasba very
intriguing nature. For any initiél Con&itién Whafevei Qf fhe.&yﬁamicai
system 29), ﬁhe motion is'foﬁﬁd td éonverge répi&ly tova- |
Eygrdiménsional surface emBedded in fhé three~dimensional spaée. This

two~dimensional surface, which is called a strange attractor , has a

very complicated structure, which is difficult to represent on paper.
There exist systems of lower dimensionality, however, for which the
strange attractor can easily be shown. Such a system is the subject of

the next subsection.

Before_léaving the Lorenz model (29) wé mention thfee‘ﬁotéWOrthy'
comﬁeﬁts of Lérenz.[831 He argued for largé r that all solutioﬁs'of'
(29) ére'apefiddic, except for é set of periodic soihtions of meashre
zefo. He observed all solutiéns to be unstable to»sméll modifiqafions,v
or in othei wordg, slightly differing initial conditions led to greatly
differing final conditions. These two characteriStics of the
dissipative system stgdied by Lorenz are identical to characteristi¢s of
conservative systems with overlapping,resohances studied by us and by

many others.

Lorenz’ third comment is that the inevitable inexactness ofi'
meteorological observations (initial conditions) makes long-range

weather prediction (knowledge of finél conditions) impossible.



46

5. Mapping with a strange attractor

. A two*dimensional mapping with a strange attractor was
disco?ered recently by Hénon. [84] The méﬁping is defined by specifying
the coordinates of a point on the xy-plane at time i+l in terms of the

“xy=~coordinates ét'an earlie; time - i:

. = - ax2 o ' ' -
Xje1 T Y3 v 1 - ax{ | (30)

yi+1 bxi .

'For many initial points (xé,yo) » the points defined by the mapping
répidly converge to the attractor, which is the ¢urve shown in the upper
left part of Fig. 12, The structure of this attractor is indeed very

~ strange, ;s‘we see by blowing up the small square in the upper left
picture to produce the picture at the upper right. The fouf lines which
were visible under low resolution can now be seen to consist 6f at least
seven lines., Continuing clockwise around Fig. 12, we Séé'successive
blowups in which more and more lines can be resolved. It seems that the
étructure of the attractor will appear complicated at whatever
resoiution we choose to use.' Conservative systems also show
compli;ations at.all resolutions, a phenomenon we have oﬁserved to a
limited extent by numerically calculating partiqle trajegtories in

certain electromagnetic fields.
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2. Overlap Q£'Cyglotron'Resongnées

A. Chqice of model

Stochastic instability is possible if a set of resonances exists

and the resonances can overlap. 1In plasma physics such alset of

- resonances occurs when a uniform magnetic field is present. A particle

is in (exact) resonance with a sinusoidal wavefpf_frequency w if the

deplgr~shifted.wave frequency is. a multiple of the-gyrbfrequedcyj'
Q= :
eBo/mc
-k v, =-R, 220, 21,82, .. L Sy
Ffomv(l) we find the set of fesonant paréllél velocities .
Vz = (w+2,§2)/k.z.; . : L Lo - - . (2)

these velocities are finite if. ké # 0. The resonances have -a non-zero

width when the wave amplitude'is not infinitesimal and thé gyroradius is

finite ( klp>»0). Overlap of the resohances iévthus,possib}e if the

wave propagates at an Oblique'angle.to the mégnetié field: kz,ﬂkJ_#fO}

Published acédﬁnts of 6urfearly work on the dveriap df cyclotrbn'

‘resonances éppéarvfh Refs. 85 and 86.

Our work assumes the wave spectrum is so narrow that a:single

_wave is a good representation of the spectrum.  This situation is

easiest to treat analytically and leads[to the most striking results.:
Having studied the single-wave situation, we will be able to understand

the nature of stochastic motion in many-wave ptroblems motre clearly.,
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We usualiy assume that the wave‘is électrostatic ( EJLQ )e An
electromagnetié wave can also cause»stochastic aCCelerétion since ;he
same résonahces occur 4ds in ;he electrostatic case. The widths of the
resonances,afe different and, as is shown.in Appendii’B, a wave
aMplitude large”enough>to cause overlap gf the‘resonaﬁces is,more

difficult to achieve in the electromagnetic case.

Appendix C mentions the analytical COmplications'which'would

arise if we relaxed our assumption that the wave is sinusoidal.

Finally} we assume that the amplitude @6 of the eleqtrospatic
wave is consfant in time. An antenna which laqﬁches a -wave in a
éﬁeady&state plasma will produce a constant wéve amplitude. .If,
instead, the waQe is due tovan instability; then aﬁ equilibrium_will be»
reached in which the linear growth rate Yg balaﬁces thé nohlineaf
agmping rate YS(QO) caused.by stochas;ic acqelgrapion:of thg.particles.

The amplitude Qo is then given by
Y = vy -Y (@) =0 .

(We assume here that stochastic acceleration'saturateslthe instaﬁility
before any othér nonlinéar effect is importapt; this assgmption musﬁ'be
investigated separately for each bhysical sifuation.) We:will fihdAthat 
stochastic acceleration is a very rapid‘prqcesé (characteristic rates
comparable to the‘gyfofoQUenéy S?)::vThérefore,'éVen’a variétion in”thé.
wave amplitude at a'qUite'rapid (n0.1)8R) rate‘Will.not>altef our

results qualitatively.
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B. Choice of variables
To describe the motion of a particle in a uniform magnetic field o

and a wave, we could use the Cartesian variables (x, y, z,_vx

| -
Our work is éimplified and the'geﬁeralizatiqn to a.ﬁOnunifdrm.ﬁagnétic .
field made clearer by choosing other variables;' We use.é Hémiltonian
formulétion so we can utilize many results of Hamiltonian‘theory.. The
simplest Hamiltonian formulation is‘found by choosing generaiized
coordiﬁates g and momenta p . such that the motiOn in the magnetic

field with no wéve is described by a Hamiltonian depending on the

momenta only: Ho = HO(EJ

We derive the uniform magnetic field Bé 2-from‘the vector

potential

The dnperturbed (i. e., @6 = 0) Hémiltonian,is
HosPysPap,) = 5mv? = (pimQyR)2/2m .

We see that we need to transfqrm the perpendicular variables (%, ¥s
px, py') to a new set of variables which describe, it turns out, .the
position of the guiding center and the gyration about it. We use the

variables

_‘l‘= (z, ¢, Y)
D= (pz’ P¢, mQX) ,

where ¢ is the gyrophase, ’p¢ the canbniéal angular'@omentum of fv
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gyration, and X and Y. .the components of the guiding centér;' These
variables are'definéd in terms of the Cartesian Variables by
"¢ = tan-! [(p, + m2y)/p ]
. : o y
= -+mQ' 2 4p 21/2m
Py = Lpy *+mily) Py 1/
Y = fo/mQ
X Ex+p./mQ .
pY

The requirements for these variables to be canonical are easily verified

by computing the Poisson brackets

[¢,_p¢] = [Y, mxX] = 1

16, Y1 = [, X] = [py, Y] = [p,, XI= 0 .
| | ¢ ¢
Alternatively, we can‘transform
(X5 ¥, Pys Py > (8, Y, Dy, MX) |
- using the generating function[45]
Fy(X,y5 ¢, Y) = mRl5 (v -V)2 cot 6 -x¥] .

The gyroradius p, the perpendicular velocity Vv , and the magnetic

moment u- are defined in terms of p¢ by

| | Py ~_%m902>5 mv2/2Q = (mc/e)u .

We write
¢ =-sin‘1(—vx/vl)-= “cos'1 ('Vy/Vl)
Y =_y+'p sin ¢
X-p cos ¢

>
o
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to show’that‘we have named ¢, p, X, and-Y acédtdingétd their .
_conventioﬁal meaniﬁgs. We illustrate in Fig. 13 the*définiti@n?of the
gyrophase. ¢ . which wéihave.adbpted.
~ The unperturbed Hamiltonian is now written
H,(p,, P¢) pZ/mepq)Q . B S ®
In terms of the chosen variables the unperturbed motion is extremely

simple:

(The dot denotes. time differentiation.)

C. Hamiltonian
The Hamiltonian for a particle in a uniform magnetic field and
an electrostatic wave is

"H=H +V . S 3 | 4)

where.‘Ho is thé.unperturbed:éaft discﬁéséd above énd -V“'iSjthe--
perturbation due to thé wave. We use caﬁoﬁical variables whiCh measﬁfe o
;the position ?! :IiQ-(Q/kzj t and the pafallél mémgnﬁdm pz'~=‘pz-;n;d/kzv
in the wavé‘frame. >This refefeﬁéé frame‘mo&es'Witﬁjvelbéity. (Q/kz) 2 R

with respect to the center of mass of the‘plasma. The canonical
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transfdrmation, given in Appendix A, to the wave frame variables is a

mathematical, not a physical (Galilean) transformation, and there is no

reduirément, as noted by Palmadesso,[87] that w/kz < ¢4 Nevertheless,
we-gpply the transformation only to wavesbfor which Q/kz<<:§, because
~these sloﬁ waves seem to lead to the étroﬁgest.stochastic éffects. For
simplicity‘of notation we henceforth droﬁ tﬁe'primes on the wave frame

variables.

In the wave frame the perturbation due to the sinusoidal

electrostatic wave . is

v=_e<1>o§in k+x) . S '_(S)
We chodse.the direction of the.x~ax;s so that

k=k &+ K, k>0 .
Then, in- terms of the variablés discussed aboye

V= et sin (k,z + kY - kyp sing) .

We redefine the origin of 2z by performing a canonical transformation

to the new variables

. . |

YU =Y, X'=X-kp/kma .

Since Y! and X' do not appear in the transformed Hamiltonian, they
are each constants of the motion. Y' is constant because there is no
Ex to cause an ExB drift of tHe_guiding center in the y~direction.

X' 1is constant because the electric field components Ey and Ez’

v



which are related by sz = kLEz,‘causeg feépeétively; anﬂgj(g_d;ift

_ y
in the x~direction and an acceleration invthe‘deirection;v The'
constancy of X' and Y' has been shown earlier[88] using»leSS
powerful methods. We drop the primes on the new variables and write the_

perturbation in the final form
V(Z,‘(b,qu) = e(I>o sin (kzz-kJ_p sin¢) . - g ' ,(6)

The Hamiltonian given by (3),(4), and (6) does not depend.on. time;

therefore

'_ H(z,¢,APZ,-P¢) = vaZ/ZIm+p¢Q + e@o sin (kéz + le --kyp s‘i'n ¢)_ (7)

= E = const,

the particle’s enefgy in the wave frame is constant. In the plasma

frame (7) becomes

1 2 2 5 < ket o
—z—m[(vz—w/kz) +v_,_]_+ e<I>0 sin (k+x - wt) const.

"This result has been noted previously by several authOrs.[87,89]

D. Particle motion in a small-amplitude wave

Stochastic acceleration occurs when the wave amplitude is large.

~ (The Chirikov criterion tells us how large; this criterion will be

discussed and applied to fhe‘preSEnt problem in Section 2F.) "We prepare

. for our discussion of stochastic acceleration by studying here the case

of a small-amplitude wave.
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We use the Bessel-function identity

= 00

exp (iasing) = J Jo (a) exp (i%4) - R (8).

to write the perturbation (6) as
V. = e¢° 22 Jz (k;p) sin (kzz -L9) . ‘ v .(9)

Most of the terms in this sum over £ vary rapidly in time and are not
‘expected, on physical grounds, to have a significant effect on the
particle.motion. We identify the rapidly varying terms by substituting °

into (9) the‘expressions
= + =- = : )
2=Vt vz b= fited, 0=0, (10)

derived from the unperturbed Hamiitonian Ho; (In (10) the subscript»
naught denotes the value of a quantity at t=0.) Ve find that (9)

contains the oscillating functions

. : - . + -
sin [(kzvZo 1Mt kzzo 2¢°] .
The particle is in exact resonance with the &th component of the anej

if

Z 20 ) . ’ ' v

This condition is the same as (1) but is expressed in terms of the-

parallel velocity in the wave frame instead of the plasma frame.

if V.o is far from satisfying (11) for any & , then all the

terms in (9) vary rapidly and the unperturbed motion, (10) together with

Y
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is a reasonable approximation to the exact motion.,

If: v,, is close to satisfying (11) for a particular £ =1
but far from satisfying it for all other &, then thé.mqtion‘iS'

approximately that given by the Hamiltonian

H = Ho + g@o J

L sin}(kzz..L¢) ;,.

L

Two cbnstants.of the motion exist in this approkimatiOnh Since HL ‘iS'
independent of.ﬁime, one constant is HL itself.  The coordinates z
and ¢ appear only iﬁbthe combination kzzj?L¢, s0 Wé.cén triﬁialiy .

-aerive ;he sécond éénstant.by transfdrming to_new'variableé’using-the

”generating function_
Fp(z, 0, By 1) = (Kpy +ml/k) 2+ (I -1pye -

In terms of .the old variables, the new ones are

b= 3Fp/0p = K,z - Lo, ¢ OF,/3T, = ¢

Byt G, ma/k) kT

Po*tPy - 2

The Hamiltonian is

+

.HL(VH Py IL) = ﬂd(pw, I) eQO‘JL sinlp ,

which is independent of ¢', showing that-,IL isfa'constaﬁt of the. -
motion. Other constants, combinations of the two constants HL and
have been derived previously[87,90] using other methods.

IL s

'We now derive a measure of the width of the resonance: L,
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i, e., how close V__ - must be to LQ/k_ for the ‘Lth term in (9) to
Z0 z ‘ »

be slowly varying in time. We write the approximate Hamiltonian HL as

HL(IJ),pw) = pw2k22/zm + ed J'L siny -, (13)
where Qe have suppréssed the dependence on IL and dropped constant
terms. Equatién (13) gives the Hamiltonian found in"several other
familiar problems, e. g., the one»dimensionél motion ofba pa;ticle in a
Langmuir wave and the motion of a (nonlinear) pendulum. A separatrix
divides the ¢pw-plane into regions in which ;he motion is qualitatively
different. Inside the separatrix the particle is "trapped":
repeatedly takes on Valués in a subset of the interval V(O, 27) ddring.
the motion. Outside the separatrix the particle is "untrapped": ¥

increases (or decreases) monotonically in time. The separatrix has

HL é e?o JL .

On the separatrix the maximum deviation of pw from zero is

: L
pr = 2 |me<1>0~ JL|2/1<Z .

5 which we refer to as the

© Using (12), we derive 2sz = 2Apz/m 5 W

trapping width:
ik : L o
W, = 4 led 3, (kyp)/m|* . | | (14)

Near the stable equilibrium point (Y = *34m, if e@o JL §(D the particle

has a bounce frequency

- | o1
w o=k, ,leq>o JL(kJ_p)./m| =gk

) o ' (15)

Bn.
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VIn the above devélopment we havé.eliminafed tefﬁsifrdﬁ the’
complete Hamiltohiaﬁ by using our physicé1 iﬁtuifioﬁ.that(rgpidly ‘
varying terms do nét'éignificantly affect tﬁe particle‘mot10n. :This
eliminationvcan‘bé.done rigorbusly using‘any of éevéral averaging

methods, as discussed by Nayfeh.[91] Higher=order effects-of the

" rapidly varying terms can be computed using these methbds.-

We end our discussidn of particle motion in_a small-amplitude.
wave by presenting a method, given by Taylor‘and Léing,[92] for

computing an asymptotic expansion for a constant of the motion. The

method is based on the fact that a function I of the canonical »

VariablesAsatisfies the Poisson bracket equation

) :ﬂ.ﬂ_?_{..'?ﬂ
“’H]"_B& p  9p  9q

(1]
¥

A function I which is constant dﬁring the motion satisfies

0 [T, H] . ' Co(16)
H and. I are each expandéd in a series using a small parameter ' '€:

= HO + _EH]I » (178.)

T
!

=Ig+€l) +e2I, +. .. _ (vl7b) :

=t
!

Equations (17) are substituted into (16) and terms containing the same:
powers of € are collected. The coefficients of each power of € must

vanish identically:

0 = [Ig; Hy) - as)

SHRY

=
o

Knowing the Hamiltonian H, we can, in principle,‘solVe the partial
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differential equations for ;he .In in succession and find as many tefmsv
in I as we desire. The series obtained will genérally’be

asymptotic: the series is divergent but, if.fruncated, the series can
.approximate.the value of 1 as closely as desiréd'by making € small
enough, Nevertheless, the series obﬁained"may be singular; near certain
points in phase space, I; may become infinite faster than Ij .
Dunnett, Laing, and Taylor[52] developed a method for ensuring that I,
is no more singular than Iy , that is, fpr ﬁaking the first two ferms

of the asymptotic series uniformly valid.[91]

‘ Applying. this method to our problem, Taylor and Laing[QZj'choose

units of mass, length, and time such that
m=k =Q=1’. . (20)

and write our Hamiltonian as .

j=o
1]

1 o |
5p22 +_ ,p(b + € ZR,JQ, sin (z - 2¢) o (21a)

m

2 2 : , §
€ .kz e¢o/mQ . _ (21b)
For brevity in the equations below, we drop the subscript on- p, - ‘

Equation (18) is then

31, 9,
R A PR T

the solution of which is an arbitrary function of p, p¢ , and z-p¢ .

A sufficiently general solution is an arbitrary function Io(p) of p

alone; for details, see Ref. 52. Equation (19) for n=0 is then

o1 oI, . dI, 9H dI ’
P -1 + 1 - 0 1 = 0 T
9z ad dp 9z dp "% "%

cos (z-—2¢) »
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which has the solution

dI, -sin”(z;;g¢)
Il_f 7ﬁ;~22 Jy 5T

In general, I, is singular at
p=2, [2]=0,1,2, . .. .

The singularities. can be removed by choosing,'°
I = .
o = €OS TP | o
The first two terms of the uniformly valid asymptotic serieS'fpf I are
thus
' NN sin (z - 29) SRR
= cOS Tp - in e : : .
I cos Mp-€TS 1“’22 I P-% . (22)
Knowing the two constants of the motiqﬁ H and I, we can
illustrate the particle motion by drawing in the .zpz~plane contours of-
constant I for given H.' We choose ‘a value of ¢ (= ﬂ;“here) and
eliminate Py between "'H(z,pz, p¢) and 'I(z,pz, p¢) to obtain
'i(z,pZQ-H) . (Note that p¢ appears in the argument. kip of the
Bessel functions.) The actual computational algoérithm exploits the -
simplification of (2la) for ¢=m:
N .
.H 5 P, p¢+esmbz .

This is solved for , which is used to calculaté the argUmentfoff

Py
Jz in (22). Values of I are computed at all points on the .ngmplané
which satisfy p¢>»0, and a plotting program draws the contours. The =

contour plots thus obtained show some of the features revealed by

"surface of section” plots, discussed in Section 21; which are cdmputed
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by time~consuming integration of the equations of motion.> Some  features
of the particle motion are not revealed by contour plots of T, most

importantly ‘whether a constant of the motion I actually exists or not!

Shown ianig. 14 is a.sample contour»piot of I, We see that
near each resonance the contours of I are topologically different from
those Between reSOnanées: the contours are closed.curves instead.of
open ones, These topological differences lead to ﬁhe singﬁlarities in
‘the eipansion‘(l7) for I, Taylor and Laing[92]'haVé shown how to

remove the singularities while retaining the topological differences,

E. "Diffusion" and correlations in a linear theory

In 1ater sections we will present numerical caléulations showing
“diffusion aund decay of corfelations when resonances overlap. Here we
define fhe diffusion coefficient and cérrelatioﬁ function which we
study, and show that, for short times, "diffusion" and "decay of
correlations”" can occur regardless of whether resonances overlap or not.
True diffusibn and decay of correlations, for long timeé, are possible
only when oveflapping resonances cause loss of memory of initial‘
conditions, The results of this section allow us to properly interpret

the numerical calculations to be presented later,

We choose to study the autocorrelation function of the.parallel

acceleration:

i

Clr, € 2 &, (' + DV, (') | @

-
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The brackets denote an-avefage over'the'phases'-kzzo' and '¢d;

d(k, 2m
<A> f —-—éﬂ—zij ,-Z%‘ZA', : - (24)

-0 0

with the subscript naught indicating the value of a variable at- £=0..
This average mimics the situation often found in therlaboratory; the
initial phases cannot be chosen by the experimenter and are uniformly.

distributed over the physically distinct values.

To calculate (235 we use; in this seetion, the unperturbed
(¢o==0) orbits (10).: These are the orbitsvusea in linear'theery e
(e. go, to find a eispersionvrelation),.and it is clearly imposSible ﬁo_
describe nonlineaf effects, like resonance overlap,'using them. The

~paralle1 acceleration is found from (9):

vV k., ed ol ’ .
= zm ° 2 J, (a) cos (k z-2,¢), @)

|

*
v, = -

where a = kJPo . Insertlng (10) into (25) and calculatlng (23), we. find

c(t)

]

"C(O) Zy 22(‘*.) CO_S[(kzvzo - m)r]- : (26a) '

C(0) cos (.k_zvon) J, (2asin3Qr) . - -~ (26b)

where C(d) = lﬁ(k ed /m)z. Note that (26) is independent of “t‘
Formula (8 531, 3) of Ref. 93 has been used to rewrite (26a) in the form

’ (26b)

Many of our numerical calculatidns»use a=5, so?we"study_the'

shape of (26) for sﬁort-times in the limit a>> 1. For

T § 2m/Q, | - : - ' ) @n
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(26b) yields

C(r) & €(0) cos (kv T) 3, (afn) . - (28)

For initial-cqnditions such that
kzvz() << aQ = k_LViLO > - | ) o . (29)

(28) further simplifies, for T § (kzvzo)"l, to

C(1) = C(0) J (a01) . | (30)

From (30) we see that the correlation function falls to zero in the

short time

T 2.4/aQ =~ 0.5/9

and then oscillates with a period
T, = Zﬂ/aQ x1.3/9Q .

In Fig. 15 we compare the correlation function C(t) found analytically
from (26), the approximation (30), and C(T,t'=0) found from numeriéal
'integfation (see Section 2G) of the equations of motion. The behavior .
predicted by the apprbximate expression (30) is indeed observed for |
sﬁfficiently shqrt times. Plots like Eig. 15 for other values of "V, g
verify another prédiction of (30): C(T) is independent of Voo when

(29) holds.

In addition to the Correlation'function,vwe»Study the diffusion

<IAVZ)2> in parallel velocity, where

"ty



63

t -
= [dt v (&)

sz(t)“s v (8 -V,
‘ - 0
and the brackets are again defined by (24),f From the defiﬁition (
have |
) ot t-t' .
Lav)®> = fde' [ dt c(r, t)
0 -ttt .
’ t t-1 ’
=2 f[dt [ dat' c(r, tY)
0 0 .

t -
= 2de (t-1) C(1) .

In (32b) we first used the symmetry property C(T t! ) = C( T, t'+

and then 1nterchanged the order of the 1ntegrat10ns.

To predict the time-dependence of . ((AVZ)?>' for short ot
again specialize'te (29) and use (30). For yery short times,

t £ To = (a) -1, (30) is nearly constant aﬁd (32c) yields
((Av )2> c(0)t? .
For

T <t < 2n/Q,,

23) we

(32a)
(32b)

(32¢)

T)

we

(33)

REDR

the main contribution to (32c) comes from 0 < T < Té, since C(T) is

small and rapidly oscillating fer larger. T . Thus
.
<(Ayz) > =2C0) T.t,
and the predicted "diffusion" coefficient is

D= <1sz)2>/2t

'z, C0)t, = (kze_@o/m)z/zaﬂ 20,1 (kzeéolmv)z/ﬂ .

L(35)

. (36a)

: (36b)
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In Fig.flébwe compare <IAVZ)2> calculated analytically frdm (26) and

(32)'and from numerical integration of the equations of motion.

Tetreault[42] reached the same conclusion that "diffusion" can

occur for short. times even though motion is not stochastic. He pointed
out the role in this "diffusion" of the nonresonant terms in (25). Each

term causes constant acceleratidn of the particle, which would lead to

the quadratic behavior seen in (33), but the number of nonresonant terms

decreases as 1/t, resulting in the linear behavior in (35).

For kzvzo x aQ, (28) predicts a different shape for C(T) than
(30) predicted in the limit (29). 1In the time interval (34) we use tﬁe

large~argument ‘formula

3

Jo(a+°°) + (2/ma)* cos (a - %w)

to find (after dropping a rapidly varying term)

C(1) = C(0) (2maQT) 2 cos [(kzvzo -a)T+4m] .
_ There is now a significant contribution to (32¢) from T > Ty and
((sz)2> increases more rapidly than t in the interval (34).

Evidence for this behavior has been observed in our numerical

integrations,
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F. Chirikov criterion for, stochasticity

In Section 2D we treated particle motion in a wave of amplitude
small enough that at most one term in the perturbation (9) was slowly
'varylng in time. Two terms can be slowly varylng if a partlcle lies

within a trapplng ha1f~w1dth of each of "two adJacent resonances (11):

lvz-gn/kzl ‘< w,

for both %=L and L+l. The constants of the motion HL. and IL’
found when only the term £ =L was retained, ‘are not expected to remain
constant when two terms are slowly varying. Numefical integrations of
the equations of motion verify'(see Section 2J)»that; in large regions
of phase space, no constant exists except the Hamiltonian, if the wave
amplitudevis large. The patticle is thus ftee_tobmove aimost anywhere
on the energy (hyper)surface. This freedom can result in important
physical consequences, in the presence.of a<31ng1e, obliquely
propagatiné wave, particles can be acceleratedhto high veiocltles

(i. e.y, a distribution can be heated to high temperatures) .

The criterion‘that resonances overlap has been studied
extensivel& by'Chirikou[ZOJ and found to pfedict the disaopearance of
constants of the motion (i. e., the onset of stochastic1ty) with
accuracy sufficlent for phy31cal appllcatlons. The crlterlon is simply

that the sum of the half-widths of adjacent resonances exceed the

separation 8 between them:

7 ) > 6. L | (37)
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The separation_(in parallel velocity) follows from the resonance

condition (11):
6 = S'Z/kZ . : | (38)

The Chirikov criterion for s;oéhastic particle motion in an oblique,

electrostétic wave is thus
2led /m|® [|3 Gy [* + 3, G10)[*] > /K. » (39)

If the Bessel functions have comparable amplitudes, then (39) can be

replaced by the simpler formula
, 2
16|e<1>o JL(klp)/ml > (Q/kz) . | (40)

We interpret (40) as follows.  Particles with parallel velocity (in the

wave frame) such that Ikzvz/Q-Ll <-% will tend to move stochastically
if (40) is satisfied but nonstochasticélly if it is not. We compare

(39) to the findings of our numerical experiments in Section 2J.

Criterion (40) gives the wave amplitﬁde necessary for
stochasqicity to occur for most (roughly speaking, the majority) of
particles with the specified velocity. For wave amplitudes much less
than (40), stochaéticity occurs only in thin layers surrounding the
separatrices associated with the resonances (11). These'stochéstic
layers can be understood as arising from the overlap of a different set
of resonances, which we call bounce resonances and study in detail in
Chapter 4. One might think that these bounce resoﬁances are of more
fundamental importancé than the cyclotron resonances we are emphasizing‘

in Chapters 2 and 3, and that a more accurate stochasticity criterion
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could be derived by considering bounce resonances. The numerical-

results of Chapter 4 show however that, for sbmetchqitesiof parameters, .

- the border of stochasticity‘is,determined_by'the ovetlap of yet another .

set of resonances. We ¢lear1y'cannot;c6ntinue'to7a3cend”thé infinite

hierarchy of resonances forever, and it is probably best to apply the

- Chirikov criterion to the lowest set of resonances for which a sensible

answer can be obtained.

G. Numerical integration of the equations of motion

To test various aspects of the theory‘ofjstoéhasticity_as

~applied to particle motion in an oblique, electrostatic wave, we perform‘

numerical integrations of the equations of motion. The equations are

derived from HamiltOnian (7):

z = 9H/oP_, § = aW/op, | -’
. . ; : A '(-41)
b, = -/, g = OB |
We choose units such that (20) holds and write (41) eXpliCitiy as

_ Py (42a)

b=1- ek; p~! sin¢ cos X o ; | R ”-.(42b)f
p, = -€cosX - B R | - (420)
| (42d)

p¢ = eklpcos_'q) cos X,
‘where € is defined in (Zlb);

X Ez-kpsing,
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‘and p = (2P¢) | We avoid taking a square root by replacing (42d) by
P =€ Kkj cos ¢ cos X. | e

The,fdur équations of motion (42a,b;c,é) érevintegrated on-au'
CDC 7600 combuier. The iﬁtégration scﬁéme'uéed (Ge&r—Hindma;sh) is
described by Risk[94] and utilizes étandérd predictpr~corrector.methods.
The order of the methbd and the size'of the integration step are
aajusted automatically to optimize the efficiency of the infegration.zb
The maximum order available is twelve. In our integrations, a tYpical

order was eight and a typical integration step was At W‘0.0SQ'l.

Several checks of the 1ntegrat10n accuracy were made.k Since the
'Hamlltonlan is 1ndependent of the time, 1ts numerlcal value should be
nearly conserved during the integration.- Thevpercentage change in the‘
value of fhe Hamiltonian was 0.0005% in a typicai integration tiﬁe‘of
50 Q-1 « A different integration scheme was Qsed in tﬁe eariy stages of
this work, During the changeover f;om the old to the néw,scheme we
chécked ﬁhatlthe'particle trajectories found bybthe two schemes were
very close to each other.  Also, the equationé of motion could be
integrated forward and fhen backward in time to see if the.initiél'
cdnditions werevrecovered. For stochastic tfajectorieé, the most
difficult ones té integrate, we could intégrate fdrwéra for a time

V109!  and still recover the initial conditions fairly well.

All calculations were done in single&precision, which is about
14 decimal‘digits on the 7600. There was no'point'in féducing round-off

errors by calculating in double~precision, because truncation errors in



69

the integration scheme were always much 1arger»than round~off errors.

We could adjust the amount of tfuncation‘erfor per integration
step which was tolerated by ;he integration-subfoutine. For
nonstochastic trajectories it was easy to'see'ﬁhen a sufficiently small
" tolerance had been_éhosen, since points on ourvsﬁrféce of éection plots
then fell on.émobth curﬁes. If téq lafge a toléfance had been chosén;
the points would tend to spiral in or out_from‘é central éoint, behavior
knowﬁ not to occur in.conservative systems 1iké-ours. For stochastic
trajectories it was génerally found necessarylﬁo-choose a smaller
tolerance than for nonstochastic ones; - We cbuld.check that a small
enough tolerance had.been chosen for a stéchéstic‘orbit only by

integrating for two values of the tolerance and comparing the resulting

orbits.

It is easy to understand why smallef foierances are required for
stochastic trajectories. A trﬁncation error causes a displacement in
phase space between the calcqlated trajectdry;and the "true" one defined
by the equations of motibn. Along a stochastic orbit this displacement
tends to increase exponentially with time while the increase tends to be
linear along a nonstochastic one. A smaller tolerance helps to kéep the
accumulafed error of a stochastic orbit comparable to the error of a

nonstochastic one.

The presence of numerical‘integration_errors in our trajectories
is thought to have little, if any, significance for the physics of the
problem we are studying. A real particle does not obey (42) exactly

because there will inevitably be small; perturbing terms in the
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equations of motion, arising from physical effects not included in ouf
model. The truncation errors mimic, to someiextent, the effects we have
ignored. These errors are small enough that a nonstéchastic trajectory
‘appears tp be stochastic only in 4 relatively thin layer separating the
stochastic and nonstochastic regibns; outside this layer the stochastic
or nonstochastic nature of a trajectory is unaffected by small
integration errors. These empirical results can probably be understood
using the mathematical ideas[4]) of KAM stability for nonstochastic

orbits and of structural stability for stochastic orbits.

H. Related Hamiltonian systems

Several Hamiltonians, closely related to (7) which we have
studied in most detail, have also been found by us to exhibit stochastic

motion.

Our nﬁmerical results with (7) sometimes show only smalll
yariation of tﬁe gyroradius from its initial value po' and only small
| deviation of the gyropﬁase ¢ from the unperturbed trajectory given in
klO). A dynamical‘system with these properties built in is described by

"the Hamiltonian

=Ll 2 : B '
H(z,-pz, t) = 7P, *+€ sin X (43a)
X E z2-Kk|py sin ¢ | - ~ (43b) |
- (43c)
LERTE N

The computer programs developed for studying (7) could easily be adapted
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to study (43) instead; the,onlysnecéssary change:was thé_replécement‘of_'
order € terms on the right-hand-sides of'(42b)vand (423)'by Zeros.
We observed qualitatively ‘similar behavior with (7) and with (43) but

did not attempt detailed comparisons.
Another Hamiltonian studied by us is

1 . _
H(z, ¢, pZ’ p¢) = ‘2pr2 + p¢+ £ zzm -C,Q, sin (z - R,q)) ’ . :(44) .

where the C, are constants. The closest relationship to (7) is

%
achieved by taking

Cp = Jpk1Py)

with m and M large enough that the coeffiéients .JZ(KLPO) of the
terms omitted from the sum in (44) are vefy sméll. The same time
variation (43c) of the gyrophase is foupd from (44) as from (43a). An
undgéirablg.featurg of (44) is the behavior of bp¢(t)‘ which is found
using it: b¢"can become negative if P, ,ipgreases (in the presence
of overlapping resonances) to a&large value. 'Hamiltonian (7) does not
alloﬁ this possibility because a decrease in p¢ redugés the values.of _

. the coefficieh;s JZ(KLp), preventing an excessive increase in P,

A Hamiltonian with the good behavior_of (43) but with thé' ‘

flexibility of:(44) is

H(z,p,, t) = -z—pz’-fezgmcz sin (z - £9) , - 45y
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with the time appearing again thrqugh (43¢).. If only two terms of. the
sum in (45) are retained, we obtain a dynamical system equivalent in all

important respects to the one studied in Chapter 4 (compare (4.28))..
If we specialize (45) by taking M=~m=c and Cz 1, we find
1 .
H(z,p,,t) = 7p2+eTsinz L 8(t-nT+¢), S (46)

using T = 2m and the identity

) 2 o ) 8(t-2mn). (47)
= .

~00 = .00

We choose the particular value ¢0 = 0, drop the subséript on P, and

write the equations of motion resulting from (46):

Ne

=P
(48)

.
!

= ~e T cos z % - - :
: p S(t-nT+07) .
The evolution of the system is seen to reduce to the discrete mapping

P

. =p.-€Tco .
1+] p1 SZl

(49)

Zi+1 T 217 Pieg T.

This mapping is similar to mappings studied by Chirikov,[20] Froeschlé,

'[95] and others.

I. Surface of section method

A particle_trajectory resulting from integration.of (42) lies on
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~a three~dimensional energy surface which is contained in the

four*dimensionéi phase space. 'Atfempting to’représent’a tfajectory by a
curve in a three~dimensiona1‘spacevwoﬁld,be.needlessly difficult and
confusing. To-answer:the imboffahf physical question of whether motion
is stochastic or nof,_we need.trajectory informatidn only at certain,
Wellfseparated instants.of time; InAthis section we describe the
teéhnique, known as .the surface of sectiqn méthod, for selecting these
instants,of time and for consﬁfucting a plot'using the retained

trajectory information; we also discuss the utiiity of the method.

Poincaré’s[53] surface of section metﬁéd»¢onsiders the
intersection of a trajectory with a cross=section of the phase spaée.
The chosen cross~section must be crossed repeétedly by'the trajectory; a
convenient choice in our work'is_defined'by the gyrophase ¢ = . The
choice of any:other constant‘instead of W is quite possible, but the
choice of T  was seeﬁ in Secfion 2D to lead tolé desirable
simplification in applying the Taylor~Laing ﬁethod.‘ The intersection of
the tréjectdrvaith o= yields a set of-pointé in a three~dimensional
space with‘axes z,pzb and p¢. We thenvignorg Fhe jp¢—coordinates of
fhe pointé apd'plot the points.in the zpzéplane»(i. e., we project them

onto the'plaﬁé),-

As we integrate the equations of motion forward in time,

successive points on the surface.of section plot are generated roughly

once each gyroperiod. The points are iterates of an area-preserving

- mapping of the zpznplane‘onto itself. Calculating the iterates using

the Hamiltonian equations of motion is computationally time=-consuming,
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and past workérs[20,43,95~97] have often: replaced a Hamiltonian system
by a discrete mapping thought to mimic more pf less élosely the actual
physical systems of interest. These mappings display .transitions from
nonstochastic to stochastic behavior as a parameter is varied, just as
Hamiltonian‘systems do;r We use the mapping’(49)vin Section 2K to aid us
in understanding our numerical results-fbr thé correlation funétion
C(t). Generally we.prefer, however, to use the Hémiltonian equati;ns of
motion and fhereby eliminate uncertainty abbut~the-re1ation between the

given physical system and a chosen mapping,

By looking at a surface of-sectidﬁ plot .we éan.tell immediately'
whether a particular trajectory shows stocﬁastic motion (nonexistence of
a constant of the motion) or not. By examining plots for séverél values
of the stochasticity parameter (our‘ €) -and forrvainUS initial.
conditions we can quickly gain a compreﬁensive>understanding of the

dynamical system being studied.

.Thé utility‘of a surface of section piot arises from its.méthod
of construction. If‘a constant of:the métion I éxists fb; é |
particular orbit, that orbit &ill be confined to a two;diméﬁsibnal
surféce, the intersection 6f the energy hypefsﬁrface with the
hypersurface 1I=const. The intersection of this two-diménsional surface
with the éufface of section ¢ = 1m 'is avcurve'in““zpiﬁ¢-spaCé, and
projection onto the zpznplane yields a curve on which the set of
trajectory points ' must lie. If EQ_COhstant- I exists, an orbit will

'visit a three-dimensional region of the energy hy?érsurface._ That

region intersects ¢ = W in a two-dimensional surface, which, after
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projection, appears as an area of the zpz~plané; Thus, a-constant of

the motion exists if trajectory points lie on a curve, while a constant

does not exist if the_points fiil gg,area.~”Note that the surface of

section method does not tell us the analytic form of the constant, if

one exists,

Surface of section plots are very useful in determining the
important resonances of a dynamical system, as ‘shown by an example to be

presented in the next section.

J. Discussion of numerical results’

To validate the analytic work, we integrate (42) numerically,
presenting many of the results as surface of section plots.

+

We first illustrate, in Fig. 17, three of the resonaﬁces (i)
for a wave amplitude ¢° small enough that the resonances do not
overlap. The widths of the resonances (wL for L=~1, 0, and 1) are

indicated. The dashed lines are the limits on the motion of a particle

with a given energy which follow from the positivity of the gyroradius.

Nexﬁ, in Fig. 18, we plot trajectories when the wave amplitude
is large enoggh’for resonances to overlap. Poinﬁs répresenting
nonstochastic trajectories have been connected by'smooth curves, This
plot illustrates the "divided phase space'" which occurs at intermediate
values of the wave amplitude: regions in which a constant of the motion

(in addition to the energy) exists are interspersed with regions in
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which it does not exist. 'Referring fq Fig.»lé we see that the Sﬁaées'of
. some of the smooth curvés in Fig. 18 were predicted accurately usiﬁg the.'
metﬁod of Taylor ana'Laing. Other curvgs,'repfesenting resopancés'other
than (11), appear in Fig. 18 but were not predicted earlier, Near each
of the three "primary" resonances (11) we see a set of five smooth
curves; each set represents a single tfajectéry and is referred to as a
chain of islands. Each chain shows the existence of a "secondary" or

bounce resonance, which we study'in detail in Chapter 4.

To demonstrate the posSibility;of heating a distribution of
particles by applying a single, obliquely propégating wave, we usé the
plbts in Fig. 19. The plots are.consﬁrucféd by the surface of section
metﬁod,bbut in contrast to Figs. 17 and 18, -the trajegtory pbiﬁts are
projec£ed onto the Ylvzhplané inétead of the ZPprlane. Fig; 19 shows-
the motion in velbcity space (i. e., the aéceleration) of a group of
pafticles which is specified precisely in the figure caption; the group
is chosen to represeﬁt particles with certain values of the
perpendicular and paréllel velocities at t=0; _We consider a wave of
frequency w ; 3.682 and choose a value ﬁz = —w/kZ for the parallel
velocity (as measured in the wave frame). The cﬁosen par;icles thus

have zero parallel velocity (as measured in the plasma frame) at t=0.,

Fig. 19 contrasts the.particle accéleration in a wave of
relatively small (€ =0;25) or large (€ =0.75) amplitude. In the small
aﬁplitudé case no particles in the chosen group move stochastigally, and
the particle velocities remain near their iniﬁial values., In the 1atge

amplitude case all of the particles move stbchastically, appearing to
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diffuse'tﬁroughout‘muqh of tﬁe semicircular -annulus bounded by the
dashed curves. The dashed curveé giye‘the.limits on. the particle motion
~which follow from cbnservatiqn,of‘enérgy (as measured in ‘the wave
frame): the wave can éhange the“kinetic enefgy of avparticle by 2e<I>o
at ﬁést, giving curves aﬁ speeds (v2 + 4e¢o/m)%,ewhere v 'is the
initial speed. The time»avefaged-value of a particle's kinetic energy,
as measured in ‘the plasma frame, increasesvsubstantially‘in the large
amplitude case. The verticai axis at the far left of Fig. 19 helps us

see the extent of the increase in parallel kinetic energy.

invSecfion 2L we give examples of eléctféstatic waveé thch
éoﬁld caﬁse heafing of a.pérticle distribution; In Section M ﬁe
consider ﬁhe hééting of é M;xwellian distfibution aﬁd fiﬁd‘that the tail
particies ére acceleréted moét strongl&. In Appéndix D.Qe.mention some
experimental\requirementé wﬁich mﬁst be satisfied in orde£ to observe

stochastic acceleration.

Our numerical results indicate a transition to stochastic motion
at €= 0.50 when the propagation.angle aﬁd initial particle velocity
have the valueé used in Fig. 19. To compare this numerical result to
the theé;étical formula (39)'we insert the véiues-.]_3=»0.17  and
J_u=0.051 for Besselvfﬁnétions of argument kLp;2}24 énd finaxthe

condition for stochastic motion to be
€ > 0.61 .

The agreement>is as good as can be expected cbnsidering the crudeness of

both the numerical measurement and the theory.
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In Fig. 19 the numbers 0, 1, 2, 5, 6, 7 show the posi;ions of
a particle (with a certain zo) after the indicated number of
gyroperiods. The apparént diffusion process noted éarlier seems quite
rapid, and we now investigate this process more carefully. We
numerically calculate the trajectories of 50 to 200 particles whi;h have
unique initial values of v and v, but initial values of kzz and
¢ arranged in a regular array (see Fig. 20), In Fig. 21 we plot, for a
subset of the trajectories, the parallel velocity v, vs., time. We
first note the diffusion of 'Vz away from ité initial value; below we
study this diffusion quantitatively. Interesting featureé of some
trajectories in Fig. 21 are periods of répid change in v, (large
parailel acceleration) separated By periods of rela;ively constant vz.
These feétures éan be understood by referring to the related Hamiltonian
systems (45) and (46). If the gyroradius has an appropriate value,
several of the Bessel function éogfficients in (9) may have comparable
magnitudes, causing the motion to resemble that of (46), at least

temporarily; The periods of large parallel>acceleration are thus

attributed to constructive interference of the terms in (25).

To study the diffusion process quantitatively, we use the
numerically calculated trajectories to compute <xsz)2>, a quantity
introduced in Section.ZE. -The time variation df this quantity typically
has the form shown in Fig. 22, Quadfatic and theﬁ linear dependences on
time, as predicted by (33) and (35), are observed during the first
gyroperiod or so., Thereafter, a deviation from the linear beﬁavior,
in&icating either a larger or a smaller diffusion rate, generally

occurs. An interpretation of this deviation which is consistent with

r e
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our numerical results is the following. The rate of diffusion of'a
group of particles is primarily determined byvtheir.present velbcitiés
»réthef than by the past history of the groﬁp (iv e., a Markovian‘
assumption has some validity). bAs a group of particles diffuéési é&ﬁe
particles reach velocities fqr which the diffusion ratg is, say, larger
than it was at the initial Qelocify. The diffusion fagg éfrphehwholg
groub then aﬁpeafs ﬁo ihcreaée. Thié.interp;étatiqn is ipdigated on
Fig. 22. For iong times the diffusion process ce;sés becgqse the group
has Sbfeéd oﬁf‘to fill the entifé stéchastic region of velécity space

(see Fig. 19).

Using the numerically calculatedvtrajectqries, we alsb’éompute
the correlation functioﬁ (23). Fig. 23 shows a typical shape for
C(t,t' = 0). In Section 2E we explained the observed shape for short T
using a linear theory (see Fig. 15). Fig. 23 extends to longer T than
Fig. 15 and reveals persistent oscillations in the cdrreIation”funCtibn.
We propose two explanations for these oscillations. First; the'
Qscillétions may be an artifact of the émall number of trajectorieg
used; this pOssibiiity is dembnstrated for tﬁé mapéing (49) in thé‘ngxt
section. Fig. 24 shows, however, that fdr parametéré of iﬁteres£ in
wave~heating, there is only avweak dépeﬁdéncé of tﬁe ﬁeasured
corfelation function on the nuﬁbér‘éf trajectories: Theksecond
explanation is that our moderate values (€ X 1) of the stochasticity
parameter allow long-~time correlations for a significanp“ﬁraction of the
pérticle trajectories used to compute C(T); Tﬁis effeét is
demonstrated in the next section foruthe-mapping'(49). In addition,

Fig. 25 suggests that this effect is present for the Hamiltonian' (7)#
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Aincreasing € by a factor of four appears to decrease the rms level of
the oscillations. The larger of the vaiués'of € used in Fig. 25
- corresponds to a wave of such large amplitude (see Section 2L) that we

"begin to doubt our assumption that the wave is sinusoidal.

Measurements of quanﬁities like the correlation function thus
seem somewhatiproblematical. One is coﬁcerned that. an insufficieht
number of tréjectories has been chosen. Elimination of'the pefsistent
oscillafibns requires an émplitude violatiﬁg thé sinusoidal assumption.
On the other hénd, if one wants to study these oscillatiéns, which are a
real.physical effect, no_theory is availéble with which the hpmericél
‘results can ﬁe compared. In the face of these pféblems we héve limited

our study of the correlation function.

K.  Correlation function_of.a discrete mapping

In this section welmeasure the dependence of a éorrelétion
functioﬁ of the mapping (49) on phe nuﬁbe; of trajectories and on the
size of the stochasticity paraﬁeter. We feel the results.pfesented
| below sﬁppoft the explanations propﬁsed in the preceding section for the

behaﬁior of the correlation function (23).
The correlation function which_we'measurebis

¢, = 2 . - o (50
A {cos 24 coszo>,‘ ‘ | (50)
where the bracket denotes the average over Zo. This quantity for the

mappiﬁg (49)_is analogous to (23) for the Hamiltonian (7). We iterate
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(49) up to step 1=24 for N=100 or 400 initial values of z:
ZO = ZTrn/N 9 n=0, l’ 2’ L) N"']. .

The numerically calculated iterates are then used to compute (50). In
Fig. 26 we show Ci for N=100 and a relatively large vglue of

€ =0.20. After an initial decay Ci shows persistent oscillatioﬁs,.

just as C{1) does in Fig. 23. Note, however, that we calculate. Ci

over 24 steps, each of which corresponds to one gyrﬁperiod, while Fig.
23 extends to only about 2.4 gyroperiéds. In Fig. 27 we show that an

increase of the number of trajectories, N, to 400 gfeatly reduces the

oscillations. For a quantitative measure of the reduction we compute

the rms level of Ci from i=12 to ?4. With N=100, (Ci)rms=0.107;

and with N=400, (Ci)rms=0.0535. The empirical relation

1
-

(C.) ~ N

i‘rms ™
is strong evidence that the persistent oscillations in Figs. 26 and 27

are caused by the finite values of N,

Next we investigate the dependence of Ci on €, keepiné N
constant (=400). The results are seen by comparing Fig. 27, for which
€=0.,20, and Fig. 28, for which €=0.06. The set of trajectories used
for Fig. 28 contains some Eggﬁtochastic trajectories, which cause, we

believe, the persistent oscillations seen in Fig. 28.
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L. Oblique electrostatic waves for acceleration of ions

In Section 2J we use, as an example, an electrostatic wave with

frequency w = 3.68, propagation angle 6 ='45°, and various amplitudes

Hi

measured by € kf e@d/mﬂz, We identify here a particular wave with
thesé properties and show that the amplitudes used are not unreasénably

large.

We concentrate on waves appropriate for heating ions, but we
note that often there exists, for each ion wave, an electron wave with

analogous parameters which is appropriate for heating electrons.

A plasma in a uniform magnetic fieid can support an obliquely
pfopagating, electrostatic wave thch we cali aﬁ ion-acoustic wéve.
This wave is iﬁdicated in Fig. 29. The name "interﬁediate~ffequency
acoustic wave'" is used in the old, but still useful review by
Stringer;[98] Our terminology is based 6n the similarity to the
ion~acoustic wave which exists in an unﬁagnetized plasma. In deriving
the linear dispersion relation.of the ion=acoustic wéve in a magnetizgd
plasma, one finds an ion respoﬁse similar to the respoﬁse in an |
uqmagnetized.plasma since the Qave frequency is greater than the ion
gyrofrequency. - The electfons are strongly magnetized and move oniy
along}.not across, field lines.. The electrons ¢an; nevertheless, act to
shiel& the'potential‘produced:by the ions as long as O is not too
close to 900. The frequency w is thus given approximately by the

unmagnetized formula .

w = kc ,
. s7
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" where k2 = k£-+ k{2, and_the_éound speed is,giV¢n by

cg = (Tei-3Ti)/mi; Giﬁen £he wave paraﬁeters w‘= 3.6Qi ;nd 6= 45°
-and the temperature ratio Te/Ti’ we calculate the damping rate of the
wéve using the‘formula (4;68) in Ichimaru[99] éppropriate for Maxwellian
distributidns of electrons and ions. Just as in an unmagnetized plasma,

-we find a weakening of the damping as Te/Ti increases., The damping

reaches a féirly small value when Te/Ti is increased to 16:

Y = -0.04w .

Such a large temperature ratio would not be required in an unmagnetized
‘plasma to reach this damping rate. With the temperature ratio 16

. . 1
chosen we can calculate the ion thermal speed, vTi = (Ti/mi)é, to be
VTiQZO.SSQi/kZ. , : . . (51)

This speed is indicated on Fig. 19 by the hatched semicircle. The group
of ions studied in Fig. 19 would thus have an initial perpendicular

"velocity 3.8 times the thermal speed.

We now express the wave amplitude given by €=0.5 in more
familiar terms, Ffom the fluid equations describing an ion=acoustic
wave, one easily derives a relation between the potential amplitude ¢o
and the density amplitude on/n:

én _ €% : , ,
T 2" ’ (52)

n m.c
i's

: Using the formulas for the‘dielectric function D and the Debye length

AD’ we also find the expression
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for the wave energy density W. Use of (51) and Te/Ti=16 allows us to

~write €=0.5 .as

e@o &3 Ti ® 11 Te . | . (54)

Substitution of (54) into (52) and (53) yields

L

dn/n =~ i3

, W nTi/lS . (55)

The moderate numerical values in (55) appear to justify our use of the
linear dispersion relation for thevwave. " Also, (55) gives the.important
.result that stoéhasticify can occur at smallef amplitudes than nonlinear
effects requiring :6n/nﬂ:1. For other wave parameters; howe&er, |
stbchastiéity might not occur fér any physically reaéonable wave

amplitude.
The low=-frequency ion=acoustic wave
w=xkc <Q.
. Z's i

‘might also bé used to heat ions. A large temperature ratio is again
required to reduce the linear damping rate. This wave seems to lead to
less dramafic heating of an ion distribution thanvthe ién»acoustic wave
with w> Qi which we considered above. The differencé between
parailel velocities in the plasma frame and in the wave frame decreases
as w decreases (see Fig. 19). For small ® the constant energy
curveé in the two frames are close together, implying less possibility

of dramatic changes in the distribution of parallel kinetic energy (as
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measured in the plasma frame).

We have conéidered other waves of a plésma inbaruniform maghgtic
field ﬁut have found no wave withvmore‘favorable ﬁarameters thaﬁ those
given»abdve. Lécking a definite optimizationbcriterion, we haye not
performed a systematic.yariationbof Iw énd 0.  Values of 0 _close to
90° are of particularvinterest since many waves propagate nearly
perpendicular.to the magnetic field; the lower hybrid wave;~important in
rf heatiﬁg studies for tokaﬁaks, is one example. For parameters typical
of lower=-hybrid~heating experiments tﬁe condition (40) for overlap of
cyclotron resonances cannot be satisfied. Ion motion may be stochastic,
nevertheless, because of the overlap of other resonances, as mentioned -

in Subsection 1Cé4.

M. Heating of a distribution function

In Seétion ZJ we showed that a group pf particles.witﬁngiven
parallel and éerpendicular velocities at t=0 may be heated by a
single, oblique wave. Here we consider a Maxwellian distribution of
velocities at t=0 and find the distortion of that distribution caused

by the wave.

We use the following qualitati?e picture suggested by'Fig; 19.
An ion whose velocity'sdtisfies (40) moves sfochastically, ranging over
that portion of the constant-ehefgy semicircle defined by k4b).’ An ion
whose velbcity does ﬂof satisfy (40) reﬁains ﬁeérly fixed in velocity

space, In the presence of a Single, oblique Wave of large amplitude the
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steady-state ion distribution must therefore be constant along the
stochastic portions of the constanthenergy semicircles and nearly

Maxwellian in the nonstochastic regions of velocity space. ‘ .,

This piéture is implemented by a computer program which modifies -
an initially_Maxwellian distribution to obtain the steady-state
distribution. The modification is aécomplished by sucqessively’
considering semicircular annuli.in 'Ylvz~space, each of which'represents-
particles with a small raﬁge of speeds, For each annulus thé_Maxwellian
is integrated over the stochastic portion of the annulﬁs to find the
total number of stochastic ions in the annulus. This number is then
spread over the stochastic portion of the annulus to form a distribution
with é certain weighting aloﬁg the constant-energy semicircle. We
choose a weighting proportional to the perpendicular velocity vy to
make the distribution uniform over the three~dimensional (vx\srvz)
kinetic energy surface. The form of the chosen weighting determines

quantitative, but not qualitative, features of the resulting

distribution.

The steady~state distribution in YLVz~spaée is integrated over
v, to obtain the perpendicular distribution and over v, to obtain the
-parallel distribution. 1In Fig. 30 we plot these distributions on a

logarithmic scale. The horizontal (velocity) axes use a quadratic scale

XS

so that a Maxwellian'(indicated by €=0) appears as a straight line.
Results for two different values of the wave amplitude are indicated by
€=0.25 and 0,.75. The same wave frequency and propagation angle and

the same ion thermal speed are used as in the example of Section 2L.
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The wave is seen.to distort only the tails of the perpendicular
and parallel distributions, not the bodies. Thé perpendicular
distribution is distorted for Yl"z SVTi in the case. £€=0.75. The

diétortidn’of the parallel distribﬁtion is highiy asymmetric because

ions tend to be accelerated to the parallel Veldcity of the wave frame,

whicﬁ isvpoéitive and mucﬁhlarger thah‘the thermal speed.“Alﬁhoﬁgh the

distéffibns shown'ih Fig.MBO involveib;ly a tiny fraction of‘thé'ions in

the complete distfibution;{the changés in Ehé poéuléiions bf tail ions

arébquité dfaﬁatic. B “ | | |
‘Theytiny fraction of ions which,i§ st§¢hasticaily qécelerated by

the wave,éaﬁ gain a subsfantial amount of -energy as a resu1t of the

large veiocity changes produced during stochastic acceleration. As a

ﬁumericél example we ééﬁsidef tﬁe éﬁailer ampiitudé:;éée £=0.25 for

which 0:03% of the iéns mévé Stoch;sticaiiy. These ioné incréase

their kiﬁetic energy by an‘émount rbugﬁly edgél ko half of thg ehergy in ' N

thezﬁave. We‘thﬁs expe&f.the:bfopagation éh;factefigéiés of the:Qave_to

be altered significantly when stochastic acceleration occurs,
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3. Analytic Description of the Dif fusion Process

.In Chapter:2 we introduced a simple prbblém'iliugtrating-thé
'overlap of cyclotron.résonanéés, derived and verified a stochasticity
critérion, and discussed the impiications‘of'stschastic motion (wave
energykis cbnverﬁed to‘plasma'kinetic energy]. Also, we presented
results of our numerical infégratiéﬁs»and éave explanatiéns of ﬁany_of
those fesults. Thié éhapter is devoted to aﬁ extremely'important
practical question not addressed in Chapter 2: wﬁaf eqdagions describe

the rate of change of a particle distribution' in the presence of a

perturbation (e. g., a wave) large enough to. cause stochastic motion?

We assume here, in agreeﬁént-witﬁ othér autho:s;[20;24] tﬂgt the
diffusidn process is Markovian, and we search for an app;opriaté
diffusionZCOefficiént. Stééhéégiéity fends to erase thevmehory of a
particle’s history, thus justifying, to somevextént,_thé.M;rkqviéﬁ
assumption.‘.For our ﬁo&efate ;alues of the stoﬁhasticity parameﬁéf, €,

a considerable memory remains and a non-Markovian description may be

neéessary. Such a deéscription was presented in Ref., 100.

A. Linear and quasilinear theories

In Section 2E we presented a linear thebry which agreed well,
for short times, with the results of our numerical integrations. In
particular, the time~dependences of the correlation function C(T) -and

the diffusion <(AVZ)2) of the parallel velocity were predicted dsing
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the linear theory. Fof long times thié theory cannot, hoWeVér, give .an
adequaté description if resonénces:overlap; éinée the theory does not
allow for any (true) decay éf correlations, whiéh is an important
feature of stochastic motion.‘ The failure of linear thepry'svprediction
for the correlation function is clear from (2.26) in. the cases of

integral values of kzvéo/ﬂzt C(T) is péribdic With'frequency Q.

To derive a diffusion coefficient, one must assume that there
exists a decay of correlations which is not present in linear théory.
When the correlation tiﬁe is'shortjcompared‘to a particle diffusion |
time, the:limité of thev T-iﬁtégrais ih (2.§2) can be éxtehded to

, ] :

infinity. If C(T?t') is independent of 't , a diffusion coefficient

p=[ dt CCO . ()

can be found.

In quésilineér'theory, one iﬁéertsiiﬁ (i) the (nénQdeéaying)
correlation functipn C(1) found from linear fﬁeory. Thié'pfocedure
gives a seﬁsibie formula for D bif tﬁe wave épeétrum is continuous..
In oﬁr prdblem,.howéver, the spéctruﬁtis discrete, and integration of
the cosines in (2,26a) yieids the'unbroadenéd.( thunétion)'resonances

in the mathematically nonsensical result

D =C(0) I, JZ (a) kv, - W) . _ "(2.) |

MechaniSms for the decay of correlations give, effectively,‘avfinite
upper limit on the integral (1), leading to broadened resonances, When

the spectrum is discrete, it is essential to take these mechanisms into
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account,

B. Mechanisms for the decay of correlations

In this section we mention three mechanisms for the decay of
correlations'(and thus the broadening of resonances), one of which does

not occur in our work and two of which do occur.

A resonance can appear broadened if the energy in the wave
spectrum is increasing or,decreasiﬁg at a rate Y. A particle then
feels wave energy in a frequency bénd of half-width <Y. Since we use a
constént wave amplitude (i. e., é stationary wave energy spectrum) in
our numerical integrations, this broadening mechanism is not‘present in

our work.,

Another resonance brdadenipg méchanism occﬁrs, physically,
-becauée a particle which rémains near a certain resonance for.only‘a
~finite time cannot determine the frquency of thaf‘resonance exactly.
Work on this mechanism was begun many years agoflOl]'and hag continuéd
untii relatively recently.[102] The standard method for treating this
diffusion process gives, as we show'belpw, insuffiqient broadening‘of
the resonances and therefore cannot adequately“expléin our numerical

results,

The standard method begins with the substitution of (2.25) into
(2.23) to obtain an exact expression for C(T,t'): Apbroximations-are

made which reduce the double Bessel function sum to é.single sum of the
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form
C(v) = C(0) Re Iy Jp2 (ko )[exp 1Ck,v,, - IMTWexp(ik, 22>, (3
where

6z(t) £ z(1) - 2y = Vot -

More approximations allow one to derive an equation fot thé»diffusion

coefficient:

- 2" S
D =0C(0) 5, J2 (ko) Ry (v, .0) - (4)

The resonance functions- RQ depend on D through

[=+]

Ry _£ dt cos [(kv, - ;Lsz)r]exp(--S-kZ2 DT3) . - -‘(5)

ihe failure of the standard treatment of resonance broadening is
iilustrated by a numericalvexample. From plots.like Fig. 22 we measure
diffusion rates of roughiy 0.0593/RZ% The resonance functions (5)
then have full-widthsv(in frequenéy) of £ 0.5Q, significantly.narrower
than the sepération Q ‘between resonances. As a result, ouf attempts
Fo calculate iterativély values vD(vzo) fof»the diffusion coefficient
either failed to converge or gave sharp peaks near the resonances
(2.11). Tﬁe complete ébsénce of such peaks in the numerically measured
D(Vzo) forces us tobreject (4) and (5) as‘a description of the

diffusion process.,

Evidently, some of the numerous approximations leading to

(3)~(5)'are poor. A serious defect of the standard treatment is the
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obscuring or, possibly, the complete omission of an important_mechanism
for the decay of correlations (and thus the broadening of resonances).
This mechanism is_célled mixing in Ref. 4., While only the slow (actién)
variables enfer into the physical description of correlation decéy by
diffusion, for mixing the fast (angle) variables play'an essential role.
The mixing process is often the primary objéct for study in
stochasticity theory (see, for example, the important Refs, 3 and 20).
Mixing is rarely mentioned in the plasma physics liferature;vand it is
customary[4] in stochasticity theory to attempt to eliminate the
diffusion process. Consequently, the relation between decay of
correlationé by diffusion and by mixing remains obscure. Here we limit
‘our treatment of mixing to setting up the (almost trivial) calculation
of the local rate of separation of neighboring trajectories, This local
rate gives information about the stochasticity only of very épecial
sysfems. For more general systems a lengthy theoretical treatment of
mixing is given by Chirikov,[20] but a treatment.for Hamiltonian systems
like ours seems not to be available. Our.limited treatment may givé the
flavor of the mixing process but yields no information which we can

compare with numerical results,

To calculate the rate of separation of‘two neighboring
trajéctories we consider the vector AY = (Az, A, Ap, Ap) giving the
separgtion Between two nearby points in phase‘space (we supéress the
.subscript on pz). This vectof changes its orientation and its length
as the two phase points move according to the equations'of motion
(2.42), 1If the vector has infinitesiﬁal components, the equétion df

motion for the vector is easily derived. We write equations (2.42) for
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two different phase points Xi-= (zi, ¢i5~pi,.pi), i=1,2, subtract the
corresponding pairs of equations from each other, and expand the
‘right-hand sides in Taylor series. The result is a vector, equation of

the form

AY =R, (1) + AY, L | (6)

- :
where Ak is a 4x4 matrix whose elements are functions of position Y

in phase space.

Since particles move on constant-energy surfaces in phaSe space,
we are most interested in the rate of separation of trajectories lying
on the same energy surface. A vector AXﬁ'lying on an energy surface

has components related by

0=AH=pAp+pAp+g¥Az‘+g—¥_A¢+%‘é;Ap, 7
ﬁhere we use the units (2.20) and
V £ € sin (z - kLp sin‘¢) . - (8)

Using (7) we can eliminate Ap from the right-hand sides of (6) and
derive an equation of motion for AX = (Az,. Ap, Ap), the separation of

two trajectories near position X = (z, ¢, p) on the energy surface:
. <> c A :
AX = A3 (X) - AX . | (9)

Using the abbreviations

V|

€ cos (z - k) p sin $)

c cos ¢, s = sin ¢



94

“>
we can write the 3x3 matrix A3(§) as:

-V'/p kjpecV'/p kysV'/p - o/p .
r e 2 2 o2 . 2 |
A, = - k;sV/p kifesV - klcV'/p ks V/p + k_LsV'/p. . (10)
k cV - k? pc2V - k sV 4k_l_2 csV

In (10), p 1is to be expressed in terms of X wusing (2.7).

We see £hat (9) has the form of three coupled, ordinary,
first~order differential equations with variable coefficients. We
restrict our attention to very short times for which a particle’s X
has changed very little., The cdefficients can then be treated as

constants and a general solution written:

BX(t) =
j

i e RV

vit ‘ .
C. A, e']", ,
The C; are constants determined by the initial separation AX(t=0).

The eigenvalues Y. and eigenvectors éﬁ are found by solving

J
> <
[A; () -vll-A=0. | (12)

The fact that XS 'is a real matrix allows us to derive the following
reality conditions for the Yj (and also for the éj): one eigenvalue
is always real, while the other two are either both real or form a
complex conjugate pair. From the reality conditions we can.show that a
real value for AX(t=0) leads to real values for AX(t>0), in spite

of the complexness of the Cj’ Yj, and éﬁ in (11).
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If the initial éeparation; AX  lies exactlybalong a real
eigenvector, say A,, then the separation will grow (or shfink) at the
rate Y;. However, the eigenvalues and eigenvectors depend .on ‘the
position X on the energy surface fgr which (12) is solved. The change
in X during the motion may_thué lead go.chéﬁgéé in:the magnitudes.and
signs of thg,eigenvalues and in the directions of the eigenvectors.
These seriousrcomplications make direct use of the local rate of

separation impossible.

C. Semi-empirical model for the diffusion coefficient

In the previous section we mentioned some of the known
theofetical ideas for treating decay of correlations and resonance
broadening in stochastic dynamical systems. . Since these theoretical
ideas have not léd'té useful coﬁbérisons‘with our numéricél results, we
introduce here a éeﬁi»empirical‘mo&el.which is‘foﬁﬁd fé'aéree with those

results in some respects.

Our idea is simple and physically reasonable but not derivable
. from any known theory. We retain the form (4) but replace:-the resonance

_ function (5) with a broader. function, a Lorentzian ofvhalf»width VR:

Rzl(w) = ({»dr cos wt exp(-v, 1) = \)‘Q(w'2 + \)2'2)'1 . (13)

. We chdose v, to reproducé.the trapping half*Width calculated in

L

Section 2D:
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4 | o |
v kW - b

2272

Chirikov[103] suggests. instead
-l 4/3 101/3 : - S N
vy = Gkw R/, : | S a®

which is supported by the theory in Section 2.1l of Ref. 20. Standard
resbnance'broadening theory also leads to a half=~width v% ‘proporEional
to (15),balth6ugh the theories appear quite different. This result

follows from (5), which gives
v, = (l-k 2 p) /3
L 37z ’
- and the estimate
D =~ wC(0) J2/Q

following from (4). in the limit of strongly overlapping resonances. The

constant factors suggested by standard resonance bfoadening theory yield .

a much smaller value for the half-width than (15). Our semi~empirical
model for the diffusion coefficient is insensitive to the shape used in

(13) and to the value of Vv, as long as the resonance functions Rl

L
are broad enough to overlap. Consequently, our numerical comparisons,

described beiow, do not.-allow us to choose between different resonance

functions,

In Fig. 31 we use (4), (13), and (14) to plot the diffusion
coefficient D as a function of the initial parallel velocity Vzo'

Curve (a) uses a relatively large value of €, curve (b) a somewhat

smaller one.

»
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We now compare ;he curves in. Fig. 31’to_values.af the diffusion
coefficient measured from plots like Fig. 22, The observed points and
.error bars in Fig. 31 are derived from the slqpes of <(Ayz)2) VS.
time at short times. The-logic_behind this comﬁéfison is, strictly
speaking, not corfeét.‘.Our semi-empirical model is supbéseé;to descfibe
a honiineaf system.with stochastic motioh,‘while the éhort~timé éloées
are not deferminedvby stochasticity but by fhé linéar effects discussed
in Section 2F. The measured slopes give, however, a fair indication of
the diffusion rate at later times when the linear theory undeniably must
be replaced by a nonlinear one. Fig. 31 shows that our semi-embirical
- model predigts the level of and, roughly, the variation witﬁ vzo“Of

the diffusion coefficient.,

D. Conclusions of Chapters 2 and 3

In Chapters 2 and 3 we have studied the motion of_aichargéd
partigle in a siﬁgle Waﬁe, which is propagating obliquely to a uniform
magnetic field. As the wavevamplitude is increased, a constant of the
motion disappears, allowing the motion»to'become stochastic. .  The
Chirikov criterion of overlapping resonances gives a prediction for the
onset of stochasticity in good agreement with the results of numerical

integration of the equations of motion.

We have numerically computed a correlation function and found
evidence for its decay with time when motion is stochastic. Our results.

show, however, that the study of correlation functions of Hamiltonian
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systems requires more careful, and costly, numerical experiments than

ours.

The resemblance of stochaétic motion to a diffusion process has
been observed numerically. We have found no previous theory which
adequately explains our observations but have introduced a semi-

empirical model which gives a good description of the diffusion process.

J

The Hamiltonian system studied by us closely resembles many
other dynamical systems. The results found by us thué.may aid
investigations of problems seemingly'remote from particle motion in a

single wave.

We have considered the possibility of using the overlap of
cyclotron resonances as a mechanism for heating a particle distribution.
Choice of an electrostatic wave, the ion&acoustic wa§e,’allows
parameters satisfying the requirements of our analysis. The analysis
predicts raﬁid transfer of wave energy to ions in the tails ofbthe
perpendicular and parallel distfibuti&ns. Heating of ions by this
‘mechanism does not appear important in fusion plasmas but might be used
in a small-scale laboratory experiment to observe stochastic

acceleration by a single wave,
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4, Overlap of Bounce Resonances Caused by
the Trapped-Ion Mode

We saw in Chapters 2 and 3 how the overlap of cyclotron
resonances. could lead to stochaétic motion in a uniform magnetic field.
‘In a nonuniform field we would expect the results found above to be
modified somewhat. Instead of studying these modifications we have
chosen to investigate an entirely new phenomenon which arises when the
magnetic field is nonuniform along a field line, as sketched in Fig.
32, In such a field, particles with a paréllel yelocity small compared
to the perpendicular velocity :.can be trapped between magnetic mirrors
and bounce along the field line about the point of minimum field

magnitudef If the bounce frequency wb is. comparable to the frequency

"of a wave in the plasma, the resonances

w=nwb, n=1,2,3, ...

can be important. This chapter studies a situation in which the overlap

of bounce resonances is important.

Bounce resonances occur in many different problems; in Section
4E we discuss problems which seem to us to be of interest to the fusion
program. The occurrence of bounce resonances in many physical
situations is expected from the discussion in Subsection 1C7: the

dynamical systems studied are of a generic, rather than a spécial, type.
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A. Choice of model aﬁd parameters

Of the many problems of interest to the fusion program we_havé-
chosen to study the motion of an ion in a large;aspecﬁmratio tokamak in
the presence of a dissipétive trapped~ion mode. That this system is
described_by the dynamical equations we study:was not widely recognized
when we began this work. A brief report of our work has already been
published.{104] We were able to choose appropriéte parameters by
consulting the'well*develoﬁed linear theory'of the dissipative
trapped-particle instabilities. For readers who are unfamiliar with

f

these instabilities we include in Appendix E a discussion of the physics

of the dissipative trapped-ion instability.

The parameters of the trapped=~ion mode which will be important
to us are its amplitude, paréllel wavenumber, and frequency. We assume

the amplitude ¢° to be given by
e = 0.95 (AB/BO) T, , (1)

where e 1s the ion charge, 'I'i is the ion temperature,. BO is the
fieid at the magnetic axis, and AB is the modulation amplitude of the
field. Note that a typical value of AB/Bo is one»fqu#th. The
numerical factor 0.05 was chosen so V¢o would be comparable to the
mode amplifudes at which other{105] nonlinear processes become impdrtant

and also at which trapped-particle modes have been observed[106] in

experiments,

The parallel wavenumber k" is given in terms of the poloidal-

and toroidal mode numbers m and & , respectively, by
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- 1 o ‘
k"qRO = m-—R,q = 5 ’ (2)

wherg Ro is the major radius of the tokamak, and q 1is the safety
factor on a‘magnetic surface near which the ion motion occurs (a precise
specificatioﬁ of this magnetic surface will be given later). The value
%— takes into account two properties of the trapped-ion mode. First,
the modes with different values of m are coupled together strongly
because trapped particles are present. For a given £ , several modes
with adjacent values of m have appreciable amplitudes, The mode with
the largest amplitude has the m which makes Im-zq[ as small as
possible., Second, the radial structure[107] of a mode of given %
shows maximum amplitudes between ﬁhe magnetic surfaces where . q is
.rational (i. e., equal to én integer divided by 2). Thus, we study the
motioh of an ion near a surface on which ¢q = (mi:%J/Q . We believe
qualitatively similar ion motion would be found for any value of m-fq
not too close to zero; tﬁis belief was verified by a few calculations

1

with m-2%q = 7"

The mode frequency . must satisfy several fequiréments (see
Appendix E) before the mode can be unstable and grow to large
amplitudes., The grbwth rate of the ﬁode (due to electron céliisions) is
proportional to w2 . If the plasma parameters are such that ion Landau .
damping (proportional to wh ) is unimportant, then the mode with the
larggst possible w ‘will grow fastest. The mode frequency is limited
by the very épproximape relation uy<u$i , where the bounce frequency of

a deeply trapped, thermal ion is given by
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. L
wbi = (TiAB/BOM) z/qRo > ) - (3)

where M is the ion mass. 1In accordance with the approximate limit

w<w . , we choose

bi
. » ’ (4)

Our numerical calculations of ion trajectories use only the
) 1
ratios e® /uUAB and w/wb.(uB /T.)é, where U 1is the magnetic moment.
0 1Yo i
The calculations thus apply to values of the amplitude and frequency

other than (1) and (4), as long as those ratios are unchanged.

The electrostatic potential due to a spectrum of trapped=-ion

modes can be written as
20,7, a,t) = £, 9)(0,0) cos MO - L -wyt+ny)) , (5)

where © and T are the poloidal and toroidal angles, respectively,

and o 1is the toroidal flux (divided by 27) enclosed within a magnetic
surface (i. e., 0O gives the minor radius r of a surface of circular
cross section according to the approximate relation o = JLBorz ). The

2

mode with toroidal mode number & has a frequency w (assumed real in

2
the saturated gtate) and phase ”2 . As mentioned above, m 1is chosen
so that |m-s2q| is as small as possible. The sum over % consists of

modes with, in general, different linear growth rates. Fér simplicity

in our numerical and analytical work we select from this sum the éingle
term representing the mode with the largest linear growth raté. The

a~dependence of QZ(G,a) leads to finite~banana-width corrections,

which we neglect, to radial E x B drifts. The o~dependence also leads
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to poloidal and toroidal E x B drifts, which are negligibly small
compared to diamagnetic drift or thermal velocities. We thus.havé

replaced (5) by
® = -9 g(0)cos mO-4T-wt+n) , | o (®

where subscripts on ®w and 1 have been dropped and we have introduced

the polbidal structure factor g using

The simplest poloidal structure, and the one used for most of our work,

is g=l. For a few calculations we have used
1.
g©) = 5(1 + cos 0) , o (7N

which models the ballooning of the mode on the outer side (0 = 0) of the

torus,

B. Transformation to action-angle variables

In studies of tokamak.problems we believe significanﬁ advanfages‘
are gained by utilizing the appropriate set of éction;angle vafiaﬁles.
Once the‘méaning of the variables is understood, one can easily see
analogies between problems in thé relatively complicated tokamak
configuration and in simpler configurations (e. g.; a uniform or zero
magnetic field). The appropriate variables for a tokamak have been used
by many workers, with the most systematic formulation giveﬁ by

Kaufman, [108] During the course of this work a slight refinement of the
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results of Ref. 108 was developed.

For the sake of completenéss and to introduce the notation uséd
here we review the ideas of Kaufman[108) in this section. We begin with
Kaufmaﬁ’é Eq. (11) for the Hamilfonian aéscribing guiding»center motion
in quasisfétic electric and magnetic fields., We assume that no
quasistatic electric fiéld is present and suppress ény indication that
the magnetic field might be varying slowly in time. We alsé take the
usual large=aspect=~ratio limit and find the guiding-center Hamiltbnian

to be
H (0, a, B3 W) = [p, *e¥(0)/c)?/2MR2(0,0) +UB(0,0) . (8)

The magnetic moment W appears here as a parameter which is constant iﬁ
time, A more complete theory would treat (Mc/e)u> as a canonical
moﬁentum as was done in Chapter 2. In this chapter we will’deél with
guiding~center motion only and are thus able to reduce the number of
canonical variables to four. The toroidal angle ¢ does hot appéar in
(8), since we are assuming the tokamak to be axisymmetric.. The momentum

pc canonically cohjugate to C 1is thus a constant of the unperturbed

motion:
pc = -QHO/BC = Q .

The variables O and d give thé locétion of the guiding center in a
plane perpendicular to £ ; These variables are ghosen to Be a set of
- 'Euler potentials,[109] variables in which the magnetié field is
described simply and naturally; -Each of the neéted magnetic surfaces is 

labeled by o , which, physically, is'the.toroidaljflux (divided by 2m)
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instead of the toroidal component of the vector potential A
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enclosed by the SUFfaC?{. Ihe variable ©. gives ;he-péloidai poéitioh
of the guiding center on‘the magnetiq surface o f‘ The toroidal»field
is giveﬁ by | o : |

3;2' = VXA, 5;)=a§7@ .
Thé'calibration of O is such that, along a fiéla.liﬂé,

do/dg = 1/q(a) »

with the safétyﬁfactor q é'function of the ﬁagﬁetic 5urfaée labeled by

"o . That these conditions can all be satisfied simultaneously was shown

by Hamada[110] and discussed by Greéne and Johnson[11l] and Solov’ev and
Shafranov.[llZicuThe poloidal, flux function ¥ is conventionally used
r which

determines the poloidal component of the magnetic field:

I R

Y 1is a function of a with derivative
dW/da = l/q(a) .

The spatial variables © and a are a pair of conjugate
variabies in Hamiltonian (8). ‘To be precise, the momentum canonically

conjugate to 0 is
p = eafc . .

(For a uniform magnetic field, in Chapter 2, we found the analogdus-

result_that mS)X is the momentum‘canonically conjugate to Y.) From
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Hamiltonian (8) we derive the equations of motion

s co I c 9B M R B
O e "qte¥m e "t : o2)
. oH 3B . Mc s, OR -

=.t2o0_ _ &, 98  MC rop O : . (9b
¢=-23 - “e¥W'e "R )

where we have used

.=8H. = 2 . : .
z /3P, _(pgj-ev(c)/MR | - aoe

In (9) the terms proportional to &2 are the curvature drift and the

terms proportional to U are the gradientAdrift.

We now introduce a more convenient set of variables which we
denote by (@', 0", C',Apé)v. For this purpose we use the function

aé(pc)‘; defiﬁed by
pc+e‘l'(uo)/c =0.

From (10) we see that, for a trapped particle, ‘@ is the value of

o at the particle’s turning point (Z = 0). We‘also note that
b= - 10 -1 = -
‘daO/de .(c/e)(dW/dao) : cq(qo)/e .
The generating function
F2(0,%,a',p) = Gela' +a (p})1/c+ Lpy
- yields

Q"‘:‘AO > ‘C"

:Cf'Q(Gb)Q | DL (11

& .Q
1

- 1 ' A '
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‘Since O and P
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.

henceforth drop the primes on those variables.

.are unchanged by this canonical transformation, we

Hamiltonian (8) can‘be_exptessed in terms of the two cénonical
momenta .E = (ea'/c, pc) and the one coorainate O . To obtain the
simplest equationé‘of motion and to bring out the analogies between
motion in a uniform énd in a nonuniform magne;ic field, we express the

Hamiltonian in terms of two momenta and no coordinates., The variables

‘® and «' , are replaced by action-angle variables J and ¢ .

The acﬁion variable J 1is given by
; = ' ' . 3
213 (,p,) = (e/c) nge at(0,H, p) (12)

To carry out the integral in (12) explicitly, one needs to solve (8) for
o' . The integral sign é is interpreted differenfly for trapped and
circulating particlés. For a trapped particle, the variable ©
oscillates in the rangé ;OTP <0 5-GTP < 1 , where the subscript TP
denotes the turﬁing point, as the particle follows the well~known banana
orbit, The integral in (12) is to be evaluated during one execution of
the banana orbit. .For a circulating (also known as passing, transit, or
untrapped) particle, the variable O increases or decreases
monotonically as the particle moves (in the lowest approximation) dlong
a field line. During this motion the particle encounters successively
the miniﬁa and maxima ofvthe magnetic fieid. The integral in (12) is to
be evaluated over two periods of this oscillatory motion (e; Bes from . -

one minimum of the field, past a maximum, a minimum, another maximum,

and ending at a minimum). This definition of J 1is continuous across
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the boundary between trapped and circulating particles.

The action J is closely related to the well—known.longitudinal
invariant & i ds . In the large-aspect~ratio approximation, which we
have adopted,

v, /R =T ~ [¥(a) - ‘P(ao)]e/McRoz ~ a'e/Mchozl
and

ds =~ Rodz; =~ qRo do ,
so from (12)

2mI =M § Yy ds .

Using (12) to eliminate Ho in favor of " J, we write the

generating function
— - 0 - : ;~‘ :
F2(0,8',J,p,) = ¢'p, + (e/c) [ do'a' (0',J,7,)
4 c o : (S

where the bar on ﬁi indicates that F, depends on the new
(canonically transformed) momentum, The new momentum Ei is in fact
equal to the old momentum pc , s0 we henceforth omit the bar. The new

angle variable conjugate to J 1is

©
it

o |
dF2/3J = (e/c)[ dO' 3a'/3J
o]

o | - |
ulb£d9'/9=v(t-to)wb , . ay

where 0(t0)=0, and the bounce (or transit) frequency is given by
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wb(J: PC) = BHO/?)J o

For a t#apped Particle, Qb is the frequency of bouncing between
maghetic mirrors. For a‘circulating pafticle, W, 'is:hélg the
‘frequency of transiting from one minimum of the magnetig field to the
nekt.. The new coordinate conjugate to ’pc is

o - 0 ‘ L
T = 9F,/9p, = L'+ (e/c) [ dO' da'/dp .
c 5 4

Physically, ¢ gives the value of ' averaged over a period of the
© -motion. - For a trapped particle, T is the (constant) drift of the

banana in the toroidal direction. -In Fig. 33 we illustrate the

relationship between © and ¢ .

We show the analogies between gyromotion'(Chapfer‘Z)_and bounce
motion (Chapter 4) in Table I; The canonical variébles we haﬁe used for
a uniform and for a tokamak magnetic field are compared. Constant
factoré ﬁave been omitted in Table I to keeptthe‘entries simple.‘ The
intermediéte variablés x' and y' were not given‘explicitly in
Chapter 2 but are shown here for comparison with C'. and‘ o' . The
analogy between gyromotion and boﬁnce motion is the kéy fo understanding

the relationship between classical and neoclassical transport

theory.[llBj

C. Guiding=~center motion in absence of a wave

In Section 4F we will estimate (using the Chirikov criterion)

the mode amplitude ¢o necessary for overlap of bounce resonances.
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Here we gain a better understanding of the unperturbed (@o = 0) motion

and derive,fqrmulas we will need in Section 4F,

To make the problem analytically tractable ﬁe introduée séme
‘simplifying assumptions. We believe these assumptions do not
fundamentaily alter the physical mechanism (overlap of bounce
resonances) which we are étudying. Referring to Hamiltonian (8),>we

first neglect the O~ and o ~dependence of R:
R(O,0) - R0 .

We thus lose curVature drifts, as seen from (9). We will_be most
interested in pafticles with parallel velocity small compared to
perpendicular velocity, for whicﬁ curvature drifﬁs are negligibleA"
compared to VB~drifts (at leaét in a low~fB tokamak). Second, we

neglect the oa=-dependence of B:
B(0,a) =+ B(0) .

This approximation eliminates the  VB~drift term in (9a), which is
easily shown to be negligible compared to the reﬁaining terﬁ on the
right'hand side of (9a) for particles with.gyroradius much less than thé
tokamak minor radius. Finally, we igﬁorevfhé éhear of the ﬁégnetic

field by eliminating the.unwritten terms in the expansion
= ' = ' . e .
Y(a) = Y(a'+ oco) | \P(ao) +0 d‘l’/daof . \
With these approximations we write Hamiltonian (8) as

H(0,0") - (éa'/chO)2/zM+uB(O) .
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With the approximations we have .used, a trapped particle executés a
non-drifting banana orbit of negligible width. Hamiltonian 'Ho also
describes the guiding-center motion of a particle near the axis of a

mirror machine.

We now assume the flux surfaces have circular cross eections;
This assumption, with‘the largemaspect-ratiq approximation, guarantees
that © is the usual poloidalvangle (it gives the radian heesure of a
point on the flux surface, with the outer edge of'the torus designated

as é =r0). We thus Have
B(O) = _Bo -ABcos©® -,

‘where Bo is the field at the magnetic axis and AB 1is the modulation
amplitude of. the field (we use thé value of AB on the surface labeled

by ao ). The Hamiltonian can now be written
H = (ea'/cho)Z./ZM -WABcos© . - : (14). -

The consfant term pBo‘ has been dropped;'the relation between ho and

the particles’s energy E is, from here on,

Hy=E-uB . - ' - sy

The shape of the magnetic field we have adoptedvand the symbols used to
describe it are shown in Fig. 32, along with the effective potential

energy levels of trapped and circulating particles,
Equation (12) for the action J can now be written as

2 J(H,) = qR §dO [2M(H, + uAB cos )17 .



112

The explicit expressions for J involve Kk, defined by
22 = (1+H /utB) ' - (16)

and K(k) and E(x) , the éomplete elliptic integrals of thé“first and

second kind with modulus K:

1, g (B - (1-kHKEK), k<1
J = qRo(MuAB)”Z = (17)
- kE(k™1) , k>1 |
Note that a trapped particle has E < uBM, where BM = BO4JAB>,:and thus

K < 1, while a circulating particle has Kk > 1. The angle variable ¢ ,
which is canonically conjugate to J, is given, for - -m f_@ <7 and

a'>0, by

’wb F(E,K) ..’K<1“
(18)

k™1 F(%@,K'l) ,, K31,

where Ksin& = sin %—O » and F(§,k) is the incomplet‘é eli_iptié
integral of the first kind with amplitude £ and modulus K . For
othér rénges of é and o' (which is proporfional to é:) we use tbe
definitions of ¢ indicated in Fig. 33. These definitioﬁs prevent the
addition to ¢ of unwanted multiples of T when a particié-crosses fhe
separatrix. The frequenqy of bouncing (k < 1) or.transitingv(K > 1) is

given by

1
N R

{1/»K0<.) s k<1

19
k/K(k-1), k> 1 , (19) .

where the bounce frequency of a deeply trapped particle (x = 0) is
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w, (0) = (uAB/M)‘/z/qRO Co | | 0

The boundafy in veldéity spacé betweén éhe.tfapéea and the
circulating statés isvgivén by E.= uBM or K = 1. This boundary is
reférred to as the separatrix; it separates orbits of dissimilar
topology in theb Oa‘~§lane. The most important.fact’about the
sepafq;rix is the form of W, near it. Fig. 34 shows'béth J ‘and w,
as. a func;ionbof Ho, which is related to «k by,(l6);qug. 34 uses the
units given in (21). The decrease of wb to zero at the separatrlx

allows multlple, closely spaced resonances to appear near the separatrlx

when the mode amplitude @o # 0.

D. Hamiltonian

We can now write down the Hamiltonian which describes the
guiding~center motion of an ion in a tokamak in the presence of a

trapped~ion mode, With the approximations adopted above, (9a) has

reducgd to Z mqd which implies
T ra@-0) -

The electrostatic potential (6) due tovtﬁe mode inyolves
mO-2¢~ (Mm-2q)0 + const .

We absorb the constant term into n and write the Hamiltonian as

CH@,a',t) = H_(0,0') + e2(0,t) »
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with Hbi givenvby (14) and
% = ;<I>o g(@),cos-'[.(m-lq)G—wt+n] - .
We choose the units of méss, length, anabtime sﬁch.éhat
M=qI.{0=uAB;.1.‘ - I GV

The unit of frequency isvseen from (20) to be .mb(OJ. Using p = eaf/c, _

we write the Hamiltonian in the dimensionless form

H(O,p,t) = —;-pz -cos 0 - ed  g(0) cos [(m-2q)0 - wt + nl . (22)

In terms of the action~angle variables the.Hamiltoniah is
H($,J,t) = H (3) +e®(9,,t) | @3

where HO(J) is the func;ion obtained by inverting J(Ho),‘which is
possible numerically but not analyticaily.  The perturbation has: the |
form
® = -9 ) U, ) cos (ncb wt + n) R . o | (24)
Oz oo ' . A
where the Fourier coefficients Uﬁ(J)A are given by

= ZL f d¢ g(0) cos [(m-2q)0 -n¢] , | (25)

~with

o (sinY (6w (0)/w . kl} . k<1
e(¢,J)=2{' e snlow, (0 /wy, 1}, k< 1 .

lam k9w, (0)/0, €11 ,k>1
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found by inverting (18), and J(K) given by (17). The notation sn
refers to one of the Jacobian ellipﬁic fuﬁctioné and am  is the
amplitude function, the inverse of the incomplete elliptic. integral . TF.

It is ‘easiest to:derive (24) and (25) by writing
g(0) exp [i (kO +§8)] = LU exp [i(ng+8)]
and noting that

™
u = %,{ch g(0) exp [1 (k0 - ng)]

is reai because‘ﬁg(é) = g(—é) ‘ana 0(¢) =.—9('¢5 .

- The Uh -can be expressed in terms of

. T : : , ,
S 1 L o L
= o - 2
vn,k_ T .fﬂ d$ cos (kO - n¢) . . o (27)
For the poloidal structure given by (7) and k = m- 2q = %
Uy = l-(2V + V +V )
n 4 n,%_ n,zi n,-.%_ )

E. Other problems described by the same Hamiltounian

Using .the abbreviations .€ =_e¢o and k = m-2q , setting the
constant N , which is unimportant for the present discussion, to zero,

we write Hamiltonian (22) in the simplest case (g=l) as

H(O,p,t) =

N

pz‘-v_cose-e»cos(k@-;wt) e REER , (28)

As shown in Subéécfion 107; (28) can Be'hfitten iﬁ‘the time~independent

form
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H(O;p,¢,T) = 7p2+Tw-cos@-£cos (kO -0) . o9

The Haﬁiltonian (28) which we are studyihg in this chapter océurs quite
generally as an approximate Hamiltonian in dynémical sfstems_of fwo'or
more degrees‘of'freedom, as aiscussed in Subsection ic7. 1In this

section'we menﬁion a few problems in plasma physics described, at ieast

approximately, by Hamiltonian (28).

In Chapter 2 we obtained in (2.13) é Haﬁiit;nian 'HL déscribing
the motion of a particle ﬁith pérallel Qelocity v% (in ﬁhg wéve f;ame)
near LQ/kZ . io derive -HL we aésuméd tﬁat, fdr:éuéh a particle; only
one term in the complete Hamiltopian, the one varying slowest in time,
was important. To determine‘the effect of one‘pf the previously omitted

terms (the one with £ = L+l); we choose units such that

m=%kx =edpJ =1
o

z L

and study the Hamiltonian

'W@&W¢J0 =%%3+Hp+§nw+eﬁnw-¢},' - Qo

where € = J /JL . If the dependence of € on -pr‘(through the

L+1 IL
Bessel function argument k;p ) is“sufficiently‘weak; then we can

approximate (30) by (29) with - k=1,

Zaslavskii and Filonenko{11l4] and Kaw and Kruer[liS] studied the
one-dimensional motion of . a pérticle in two electrostatic waves, one of
amplitude ¢o and wavenumber 4k° » the other of amplitude & < ¢o cand

wavenumber k. Choosing units such that
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- and a reference;frameumoving‘withﬁthe large~amplitude wave, ‘We-can write
the Hamiltonian.for‘this;system‘exactly as in (28);3where"e = ¢/¢O .

The motivation for. the ‘study in Ref.”114dwas thefdesire:to'uhderstahd
the‘conditions-for.vaiidity'of“the quasilinear approkimatioh. ‘Ref. 115i
studied the motion of deeply trapped particles‘analYtieally and 'of both
deeply and barely trapped partieles numerieally; the numerical
observattohs were apparehtiy simdiar to ours; 9t1x[116] studled exaetly
the same system w1th the hope of tindrhg a plasma heatlng scheme 1n

which energy transfered from an external source Lo plasma particles can

be randomized even when collisions are absent,

Dobrowolny, et al.[117] considered the motion of a particlebin a
sinusoidally modulated magnetic field same model of a tokamak as in
Section 4C) and an electrostatic wave propagating Earallelvto the
magnetie field.. Hamiltonian'(28) describes;thisﬂproblem;also.'.The
values of thedparameters € and W used by the.authors of.Ref. 117
were simiiar to our Values;fbut the vaiues éf Pk.(=20 and IOO) were muche
larger. 'They fouhd that under certalh condltlons a partleie trapped at
t=0 between magnetlc‘mlrrors'could be detrapped and forced to move at

the wave’s phase veloclty.

Rechester and Stix[37] used equations derivable'from a
Hamlltonlan of the form (28) to study the trajettorles of magnetlc field

lines in the presenee of two tearlng modes in-a tokamak The Ewo

tearlng modes are peaked near rational surfaces with minor radii ro

and ¥, , and Ref. 37 studies the trajectories of field lines near r0 .

I

The perturbation parameter €& is the ratio of the tearing mode
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amplitudes, measured at ro . Ref. 37 took the dimenéionless parameter
w >> 1, which is apparently the appropriate limit for that problem}_‘For-'
our problem (particle motion in é tokamak in the‘presencé of a

trapped~ion mode), the limit ® < 1 is more appropfiate, aS-we.will

discuss .in Section 4G,

We mention one more pfoblem, closely relatéd to thét of
Rechester and Stix;t37] bﬁt not considered expli;itl&vin the»literature,
to our knowledge. The ripple of the tokamakvmagnétic field, caused by
the discreteness of the toroidal field coils, should cause destruction
of the outer contours of magnetic islands resulting from a tearing or

kink mode.

F. Chirikov criterion for overlap of bounce resonances

The locations (in phase spaée) of the bounce resonances and the
widths of the resonances follow triviélly from the Hamiltonian (23)
expressed in éctiénhangie &ariables. Ffom the separ;tion betﬁeen
resonances and tﬁe resonance widths, we use thé Chirikov criterion’to

derive, in this section, the condition for overlap of bounce resonances.

A particle is near the nth bounce resonance when the . nth
term in (24) is slowly varying in time., Since we are treating ed as a

smail perturbation of the unperturbed Hamiltonian Ho ’

.

¢ = 9H/3J = 8H /3] = w, (J) .

The values of the action J for which bounce (or transit) resonance
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occurs are thus given by | . T B
W@ =wm . ~ e (31)

We denote these resonant Values of J by Jn and see that, since
wb(J) + 0 as K -+ 1, there are two values of Jﬁiﬂfor each positive

integer n. The separation, Jn';Jn+i" between resonances n and
n+l. is most conveniently expressed in terms of the resonant values of

the bounce frequency:

% "mb(Jn)—wb(Jﬁﬂ)':w/n(x?+1) R  (32)_

From (32) we see that the separation between resonances decreases

rapidly as n - increases.

For éhé width of resonance n we ignore all ofher resonances
and:céléulate from (23) the width of‘thé "secéndéty" éébara;fix. This
separatrix divides the ¢J~plane into regionsﬁin‘ﬁﬁich the phase
né - wt is‘eithér béqﬁded or gnbounded in time. The separatrix width is
calculated ffom.(23).as fol;§ws. We introduce the new canonical =
variables w' aﬁd I' by;means of the generating funétioﬁ"

F,(6,1,t) = (nd-wt)I+ 43

¥ = nd - wt
I = (J-Jn)/n
H,I) = H (D) -wI-ed U (I)cosy . By

We then exﬁand Ho"and Un about I=0 (that is, about . J= Jn) to .

obtain o e b
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~1 2 2 2.. = » '.
HY,T) ~ 5(3%2H /312)I2 -ed U (I=0)cosy - | (34)

The motion occurs on the secondary separatrix if H =.Ie¢oun,.’ with a

maximum value of I given by
' 1
= 2 2y |72
AX 2|e¢° u_/(3%H /31 )] .

Doubling this value to obtain the full-width of resonance n and
expressing the result in terms of functions of J (evaluated at ”Jn)’ we

obtain

)

‘ 1
= - 2 2v17%
(A7) = 2nAI = 4|e<x>o U (J3,)/(3%H /37 )] I

Converting the width in action to the width in frequeﬁcyvby use of the_

~ function wb(J) = BHOIBJ ,'we find the resonance width to be
= . 5
A, 4led U (3) dw /37 | - L (35)

To put (35) in a useful form we need'tovknow the Fourier
coefficients Un(J)-; Here we take the poloidal structure factor g¥l,
so that U =V ’; where we suppress the subscript k on V' . . 1In

n  n n,k
(27) we need exp (ik®), which, for k =m-2q = %q; can be putlin the
Vrelatively simple form
dnu + iksnu, Kk < 1
exp (ikO) = -
cnu+isnu ,k>1 s
where u = ¢2K/m and elliptic integrals and Jacobian elliptic functions
have modulus K for Kk < 1 and modulus k~! for K > i . Foufier

series expansions of the Jacobian elliptic functions are tabulated in

many references, including Abramowitz and Stegun.[118] From these
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expansions we can read off the . Vh(J)‘r

) {(1-—qn)‘1, n odd } o
- , K<l
/2 |

- Cr (1+q")'1, n even _
o) =g a o | (36)
~ 2/k(1 -q*™, n odd
, ,K>1
0 . -, TN even '

where the nome q (not to be confused with the safety factor) is given

by

q = exb (- 7K' /X)

and

K' = K{x"), k!

{(I-KZ)2 , k<1

1 .
(1-xk2)% k>1 .

The expressioﬁé in (36) are valid for fr>0,ﬁwhich éréSthe values of n

of immediate interest to us. For n<( we note that

| Vial k<l
- o A , n odd
\" = -qlnIVIHI, Kk >1 ‘

n (37)
Vlnl , b even ,
while for n=0 we have
o {m/2K , k< 1
Vb': . , :

A‘uséfui‘approkimétibh‘fokﬁfhelébéffidiénté Vn(J) is easily



122

found in the 1imi£ K << ], as is clear from Ref. 119. 'In’thisslimit,:

(26) reduces to

O = Oppsing - e T - (39)
with
Orp << 1 2K- _ | S - . (40)

Substitution of (39) into (27) and use qf:(2.8)'yields:

which is further simplified by using (40). The Bessel funétioh on the
right;hand side of (41) should not Be'confuéedfwith the:éction variable
J. Wote that (41) is valid for all k, while (36), which carries no

: - 1
restriction on K, is valid only for k= e

The Chirikov criterion for overlap of bounce resonances n and

n+l is given in terms of the widths. An and séparatidns an by

E{An4'An+1) > Gn * R ' o (42)

If the widths of resonances n and n+l are ¢om§arable; the simpler

formula ' _ ' N ' o ' »
A > - R CORNEE

may be used, When equatibn'(AZ)'of.(43) is written du; ékpliéitly using

‘the formulas given above, a complicated combination of elliptic

integrals appears. To derive simple results which are easy .to interpret

we next find approximations to several of the above formulas which are
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~valid near the separatrix.

As 'K_+'1 (either from above or below) the bounce frequéncy (19)

becoﬁes
w /w, (0) + 7/2 In /'y . | | | - (48)

We differentiate (19) or. (44) with respect to K to obtain

0,/23 = (3&/8H0)(3H0/3J)3wb/3K‘
- 1 01 [w 3 . :
> M(qRo)2 327 Eub(o)] eXPH[Twa(O)/wb] R (45)

the miﬁus-sign applying to k<1, the plus to k > 1. The nome
.q > exp [-Trwb/wb(O)] . : , T (46)

We evaluate the needed expressions, (36) and (45), at J= Jn
using wb‘= wb(Jn) = w/n . For (36) we choose the limitvappropriate.for

the present pfoblem, w << wb(o), to derive
n
q > 1- 'rr.w/wb(O)

and thus

2/t , n odd
Vn(Jn)v+ w/mb(o)n, K <1

,. . even .
0 K >1

To obtain the simplest possible formulas we use- Vn(Jn) = Z/ﬁn and

(43). Then the condition for overlap of resonances n and n+l 1is

B2 1 fae1\2 o0 g : ' '
(G_n—) " (n) BB w (0) °*P [, (0)n/w] > 1. - D
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In (47) a very strong dependence on n occurs in the eiponential

‘ factor, indicating. overlap of all resonanceé with n greater:than a :
criﬁical’ n depehding‘dn @; Vand w . ’A faﬁge of particlés, Qith_
~values of J roughly»centered about the primary separatrix (K = 1), is
expected ﬁo move stochasticaliy. This range of J' is‘réfer}ed;to”és
the stochastic layér. To find the width of the layer we note the
relation, which follows from (44),‘betweéhAéhe_exponential factor:in

(47) and the distance in energy of a.particlé from the separatrix:
exp[ﬂwb(O)/wb'(Jn)] = 32/|E-uBM| .

We choose n=1" in (47), anticipating our choice of ¢0 and ® , for
which the n=1 and 2 resonaﬁces overlap. Our thedretical-formulé for

the width of the stochastic layer is thus
|E - uBy, | < (128/1%)ed  w/w, (0) _ e (48)

Wé willlfind in the next section‘tﬁét (48),agreés rathef weil
with our numerical measurements of the width of the stocﬁastic layer.
The magnitﬁde of the right hand side of (48) will be confirmed but not
necessarily the scalinngith w . If some of the appréximaﬁioné used -
above were removed, a‘more credible analytic result would replace (43).
Wevexpectbthe more accurateﬁscalinggwitb w"woﬁid'sfii;;show.ﬁhé m;in
feature révealed in (48): the width of the stochastic iayer decreases.

with decreasing w .
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G. Discussion ofvnumerical results

In the'anqupic work presented aﬁove, fhe.magnetié ﬁomehtj'u;v '
played the role of a fixed parémetera which was usually ﬁot indicatéd
eXplicitly in the fqrmulas. In applying the:ana;yéic results_aﬁd_in
choosing parameters for numerical studies apﬁropriate_to the trapped-ion

mode, the dependences on WU are very important.’

We wish to study‘the motion of a representgtive sample of ions
distributed throughout velocity space. Since'&e.are consideringi
guiding~center motion, the gyrophase is irfelevant.and the iocation‘of
an ion in vélocity space 1is giveh'by two variables. For the first of
these variables we will always take the magnetic momént u.. for'givén
U the second variable specifies the depth‘of trapping in tﬁe effective
potential eﬁefgy»well (the last'term in (14)) produced By the‘m6dulated
mégﬁefic field, Of the possible choices for the second variable We ha?e
M .“Other.variables,used in

already used J, K, Ho/uAB , and E-uB
the literature are E, O, = cos-1 (1-2K2), and A E'u/E_= (Bm'+2K2AB)'1,

™ ~

where Bm = Bo'—AB..

We have used the values of Y given in the first cdlumn of
Table II, For each W we calculate trajectories of ions with several
different values of J(t=0). The equations of motion which we integrate

numerically are derived from (22):

. , (49a)

O=p -

B = -sin0-ed [g(0) (m-2q) sinx - g'(®) cos x], (49b)
where_ X = (m-2q)0-wt+n . The numerical integration scheme is very

similar to the one described in Section 2G. The trajectory information,
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‘G(t) aﬁd p(t),'found'by,integrating (49) is converted -to ¢(t) and
J(t) ~using the formulas (14), (16)~(19). To disﬁlay'the trajectories
in two dimensions we use ‘the surface of section method described in
Section 2I, For the present:problem.we'use the information ¢(t) and
J(t) to plot a point in the ¢J~pléﬁe Whénever wt is a multiple of

2m.

~ The relative size of the term in (22) répresenfing the
vt;gpped~ion mode  is given by eQO/pAB_, the ratio 6f the potential
energy due to the mode to;the effective popential'ene;gy due to the
modulatéd magnetic field., This ratio.is shown in the second column of
Table II for a mode amplitude given by (1). The ratio inéreases as M
decreases, indicating a stronger pertufbation of the tféjéétories Qf.
léw-eﬁergy ions than of high»eﬁérgy ones. In éﬁr n@merical calculations
we choose units such that (21) holds, so the dimeﬁsidnless value of the
modg frequency w is w/waO) , which We.show in the third cdlumh of

Table I1 for the choice of frequency given by (4).'

We show in Figs, 35 and 36 the incréasingly pertufbed
trajectories as u decreases. The parameter values afe those given in
the last three lines of Table II. The moderate mode:amplitude (1) is
seen to lead to trajectories unlike the unperturbed trajectories, which
would be straight,_horizontal lines. The prominent islands represeht
the fundamental (n=1l) resonance wb = » 3 the islands below the
separatrix (J = 8/m) show the bounce resonance of trapped particles,

and the islands above the separatrix the transit resonance of

circulating particles. In each of the figures we show one stochastic
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trajectory;. it is represented by the scattered.points which do not lie

on any smooth curve.,

Motion becomes stochastic when an invariant ceases to exist
(more precisely, the invariant éhangeé character from isolating[120] to
non-isolating). Surface of section plots allow us to map out the

regions of phase space in which the invariant exists.

As seen in Figs. 35 and 36,-tﬁe analytic fdfm of~tﬁe invariant,
when it exists, is not simply J. In sdme‘regions-of pbaée space
(ee 8oy, T < é, in Fig; 355) therinvariant is'abpgoximafély Jy but near
the .ﬁ=1 resdnaﬁces thé invériant cﬁrves are'top§logicaily different
from éﬁraight; ﬁorizonfal‘liﬁes,lindicating a“differént énalytic form
for the invariant. The ﬁethod of Taflor and Laing (Section 2D) could be
used to find one of the many possible analytic forms; Note that an
invariant can still exist in the presence of a single .resonant
perturbation, but multiple resonances which overlap-preveht existence of

an invariant. The bounce resonances discussed in Section 4F cause

disappearance of the invariant. in the vicinity of the separatrix.

We obtain from the surface of section plots avmeésure of the
velocity space region in which stochastic effects are strong as follows.
Near the separatrix most trajectories (excluding thdsebwithin the
islands) are stochastié, ﬁhiie aWay from"the separafrix‘most‘are not
stochastic, We find a rough boundary between theystdchaStic and
nonstochéstic regions by searghing for the nqnstochaéticvtfajectorigs
"ciosesﬁ" to the separafrik. Wiﬁﬁ anplahimetet we me;suré thg éréa

bounded by the horizontal line (J =8/m) representing the separatrix and
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the "closest" trajectory below it and by the'verticai.lines at ¢ =10 and
Zﬂ; This area gives a meesure of the width (in action)vof theApartbbf
the stochéstic layer inside the sepatatrix. A eimilat measurement
involving the "clesest"_trajectory above the seharattix yields the width
of the stechastic layef oﬁtsidevthe eeharatrix. We repeat the
measurements for the five values of U glven in the f1rst column of
Table II and. plot the w1dths on Flg. 37, interpolating between our ten

measurements with‘two heavy curves,

In Fig. 37 we also show by dashed 11nes the locations of the
ions S&tleYlng w = wb = w (J, u) and thus the locatlons of the
prominent islands in'Fige. 35 and 36. The nonstochastlc regions Within

~these islands have not been indicated in Fig. 37.

The contour lines in Fig; 37 show the distfibution'bf iohs ih;z
velocity space. A Maxwellian distribution“is-used,Aand the apptopriateA
- Jacobian factor is included so the number of fons in a unit area of

Fig. 37 is proportional to the value (designated below by N) shown by
- the contour lines. bThe explicit!fofmula'used~to*caleulate the contour
lines is | | |

'N’é.f—x——)%exp {—tla-(AB/Bd)x]y+ i};".' B : (50)

X + 1

where the velocity spdce variables are denoted'hy
% H /ulB, y = uBO/Ti e

The exponentlal factor in (50) is seen from (15) to be exp( E/T + 1)

The prehexponentlal factor is derived from the factor j in

d3v = T dvy d(VJ_) dedy,
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where V) and V) are measured at @ = 0. Suppressing unimportant
constant factorshwé have
ViR = 2B/M-v,2 = Z(H +uAB)/M < (x+ 1)y

and

. (9 ;
3= (ﬁ‘%‘)y“(y )"

For Fig. 37 we chose 'Bo/Ak =40

‘,Wezhave compgred the measurements of theuwidths of the
stochastic layer inside and.outside\;he.sepératrixbto thertheoreticél
prédiction (48).; Agreement (+40%) is found when the layer is relatively
narréw;\for parameters‘giyigg very wide layers, as in Fig. 36, (48)

becomes inaccurate due to the assumption K 2> 1 used to derive it.

‘The'aéreement between the measurements and (48) is eqﬁally good
for bbth the insideband outside part§ of tﬁé étochéstié'layér. This |
result'is surprising, at first, becduse’ the Fourier coeffi&iénts (36),
which appear “in the resonance widths (35), héVe.diffefent fé;ﬁé iﬁside
(k <1 thaﬁ outside (K >°1) the’éepéréffik;ziitJis therefore possible
to derive different widths fdflﬁhé“{nSide énavoutside pggts.‘ In théi
limit w >> wb(d), Reéhester and Stixf37] ﬁdfed'ghatvtﬁé résénanéés
outside are twige aszﬁgrﬁapartt(ginge.resbnances.with.evgn  n are
effectivély‘abqept)‘gs“ghe rg§on§nggs,insi4e, and tbe;widths.outsidevarg
2%. times greater thp igs}gg:tzihgse_fap#s:lgag.tpﬂthe conclusion, that -

the part.of the layep‘guqéiQewthe‘separaprixishould,bg:onlyvhalf as wide
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as the inside part."This conclusion‘does not follow iﬁ tﬁe_liﬁit

w << wb(O) which is more apptopriéte to our problem,involving‘thé
trapped=ion mode. In:our limit, doubts arise about the applicability‘df
the theoretical apprbach'used to‘calcglate the widths of thg parts bf
the layer, as discusséd below. Wevare thus unable to explain .‘
theoretically,thé relation between the'iﬁside and outside widths which .

we observe numerically.

The perturbation levels ééoluAB which we use in the numerical
calculations are lérge enough to raise doUbts about the validity of the
pefﬁurbation schgme used theoretically. In particular, the~widtﬁs An
can easily become extremely large'due to the factor awb/aJn_.in (35);
causing the overlap criterion (42) to losé its sense. Also, wheh (42)
is extremely well satisfied for n=1, the width 6f-thé étochastic layer
cannot be found frﬁm (42), becau;e the width is determined by resonances
other than (31). A new theoretical problem,‘invwhiéh the unperturbed
motion is determined not by'the modulated_magnétic field butvby the n=1
resonance, would have to be conSideréd. The close agreement‘between theb
crude theoretical caiculatiqn in Section 4F and_the nﬁmeriéal results
shown in Fig. 37 is thus somewhat surprising. Either tﬁe,agreementlis
fortuifousé which we ﬁhink unlikely, or the theory has a_broadef,range

of validity than one woﬁld expeét at first.

We saw in Figs, 35 and'36‘that an initial gondition iying withiﬁ .
the stochastic layer leads to a trajectory which visits most pérts of
the layer. To find the rate with which a typical ion moves from oﬁé

side of the layer to the other, we calculate an ensemble of trajectories
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and plot the action, J vs..time in Fig. 38. Each ensemble consists of

100 trajectoriés with values of o(t = 0)_ and -n(tl;O) “(see (24))

distributed over the interval [0,2%) in a regular 10x10 array; each

trajectory has the samé initiél value of the variable -J and the saﬁe
value of the parameter H. The chosen set of initiaivphases represents
an ensemble of ions distributed uniformly'in toroidal ahgie (through n)
and in bouﬁce phase ¢ (position along a bananavo;bit), A éubset'of
the trajectories in two such enseﬁbles_is shown in Fig; 38. One
ensémble has j(t;O)M% 1; whichvliés‘oﬁtside thé.stochésfic layer; these
trajectories show no teﬁdenéy t§ depart far:from fheir inifial vaiue of
J, and, in faét, havé-a gfdss periodicity ﬁitb f;edueﬁcj. Qb(ﬁ)-—@ .

The other ensémble‘has J(t=b) lying within the stoéhastic layer; these
trajectofies are nof periodic ana gend_to épread out .to fill the layer.
The raté of Spfeéding is-Quite Fépid; a significéﬁ; gmdunt of spregaing
occurs in the first wave pefiod (up.to wb(o)t,% 41) and thevensemble
has essentialiy filled the layér in roughly foﬁf wave ﬁériods. The
implidafiohs for'thehtfapbed%ion mode”of this ;apid.ﬁotién within the

stochaSticnlayér will be discussed in Section 4I.

In Fig. 39 we contrast, in a different way, ﬁhe spreading.
tendency of an ensemble within the stochastic-layer to the lack of’
spreading. of an ensemble outside the layer., Here we plot, for the same
ensembles as in Fig. 38, the value of (AJ)2 averaged ovér the
ensemble, where AJ = J(t) - J(t=0). Plots like Fig. 39 allow us to
measure the rate of spreading of an gnsemble of‘stochastic trajectories,
Zaslavékii éﬁd Filoﬁeﬁko[ll&].;tfeA§£ed fo calculate tHiS'diffusion

rate, but their result is smaller by a factor of about ten than the rate
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suggested by Fig. 39. The cause of the large dip in <(AJ)2> -near
wb(O)t' = 40 1is not known at this time. A possible cause is the
presence in the ensemble of trajectories lying in or near nonstochastic

regions.

H. Other closely related work

In the preceding secgions we have shown that a single
trapped-ion modevcan cause stochastic ion motion, which results in
transiﬁibns bétween the ;rapped and circulating states and irrevgfsible‘
changes in an initial distribution function. Our noﬁlinear,
collisionlesé detrapping méchanism differs from mechanisms coﬁsidered by
'vearlier authors.[121,122] 1In this section we ciarify those differences.
Then we discuss work[119] which mentioned séme of the physical.ideas‘
which are important in our work. We briefly describe previous npmerical
calculations[123,124] in which stéchastic particle motion in a tokamakv
was observed. Finally, we call attention to the probosal[lZS] thatvtﬁe
enhanced electron heat transport invtokamaks could be explained using
the large radial excursions of some electrons in the pfesence of cerﬁain
trapped~particle modes. ‘We do not mention here several other nonlinear
processes which may be important for the_trappedhion mode; these
processeé are discussed in the comprehensive review articlé by

Tang.[105]

Jéblon[lZl] studied a nonlinear, collisionless mechanism for

mode damping which relies on the mode’s perpendicular electricvfield to
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cause detrapping of particles. Errors and. questionable éssumptions in
Ref, 121 led to incorrect conclusions. FEhst[122] corrected- some of. the

errors and concluded that Jablon’s mechanism could be neglected in

_comparison to his own nonlinear, collisional mechanism. A followup on

Fhst’s work is desirable to assess fully the importance of Jablon’s

mechanism.

Jablon’s mechanism can bé'explained physically‘as follows. The
mode’s electric field has a component lying within a magnetic surface
and perpendicular to a field liné. This component causes a radial
E x B drift, .DuringAhalf.of a mode period a prappedbparticlefs banana
center drifts inward, to radii r for which the effective potential
énergy well uB(O) is shallower. The value of uBM may deérease to
less than the particle’s energy €E, implying a ﬁransition to ﬁhe
circdlating state. An outward drift of a circulating'pérticle can
similarly cause a trapping transition. After a particle is detrapped,
it moves along a field line to a region where the mode’ s phase is
differen; (because k” 0, and there it is retrépped. Successivé
transitions between the trapped and circulating states lead to diffusion
of particles along a field line. This diffusion tends to élimiﬁate the
density perturbation caused by the mode and coul& cause saturation of
the.instability. Jablon augmented this single»ﬁode pictdré'of the
detrépping by assuming a spectrum of many modes was present;,&ithout

such turbulence Jablon’s mechanism is probably inoperative.

‘Jablon’s mechanism requires a nonzero k” in order that

diffusion along a field line be able to move particles from the crest of
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the mode to the:trough, ‘Jablon-did not consider the foréeé‘on'particles
due to the mode”s parallel electric field. Our work shows that the
parallel electric field can have a very strong effect on paftidle.

motione.

Ehst[122] considered a saturation mechanism involving pardllel
forces on the particles but requiring collisions. He noted that, in
linear theory, detrapping occurs because of collisional chaﬁgeé of phe
magnetic moment U, the energy. E remaining apbroximately constant.

He then showed that a finite~amplitude trapped-ion mode, acting'togethef
with collisions, could cause chénges in 'E, which could also leéaktaiv
detrapping. His quantitative study of this mecﬁanism.concluded that'if
could cause saturation only at an unreasonably large mode émplitude;
Ehst did not recognize that a single mode, without any collisions at

all, could cause detrapping.

Dobrbwolny, et al,[119] studied the quasiliﬁear diffusion in
pardllel kinetic energy. Ho of trapped particlgs. The wave spectrum
consisted of many waves, either sound waves or drift'waves. The authors
of Ref. 119 pointed out that a trapped_particle moving in an
electrostatig wave with k” # b ”feels fluctuating potentials at all
harmonics of its bounce frequency. <Quasilinear diffusion thus occurs.
whenever the\wave spectrum contaiﬁs energy at‘multipleé of the bounce;
frequency of typicai particleé. Ref, 119 considered drift waves with

parallel phase velocities between the ion and electron thermal speeds:

Vg € W/ky < Vpg .
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For these waves diffusion. of ions was. found not to occuf. We have shown
that stochastic ion motion (sometimes resembling diffusion) can occur -
for the trapped~ion mode, which has a much lower frequency. Also, we

have emphasized that stochastic motion can occur even for a single wave.

Coppi and_Tarqni[123,124j nume?icélly-ihtégrated equations of
motionvsimilar to-our (49) in avstudy‘of.paftic1e 6rbits in the presenée
of certain trappedvpafticle ﬁodés iﬂ tokamak, Différénces>in the
equations and pafameters used in Refs, 123Iand‘124vandbby us prevent a
stfaightfbrward comparison of the numericai'resultsbobtained in the two
studies. Nevertheless,vit is clear thét Coppi and Taroni observed‘
stochastic'paftiéle motionk(identifiablé,by successive ﬁetrapping and
trapping traqsi;ions) gaused by a single mode. Théy-éave only numerical
resulcs on stochastic motion; we have given a(theory,vBaSed on the -

overlap of bounce resonances, which allows us to predict the conditions

under which stochastic motion occurs.

Cdppivand'Pozzoli[IZS]‘used'the'resultsvof Ref..iZB which found
that "quasimbanané" orbits execute large radial radiai excursions,
Thesé ofbits show lafge osciliatiqns in J but no transi;ions.to tﬁe
circulating state; the orbits are therefore probably nbt'stochastic.

The large radial excursibns were prOposedlih'Ref._IZS és én exélanationb
for the enhanced electron heat transport observed in' tokamaks. A

pseudoclassical diffusion coefficient was derived.
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I. Effecté of stochastic motion on thé mode

One of the goals of this study is to assess the importance of
overlap of bounce resonances as-a mechanism for saturation of the
trapped-ion instability. In this section we describe our progress
towards this goal, giving the quaiitative results we have obtained.

Quantitative results require further numerical work.

' To understand the effects of stochastic motion on the mode we
must know how stochastic ions move in the action space of J and pc .
Our discussion of the physics of the trapped~ion mode in Appendix E
makeé clear the importance of changes in pc (i..e.,vradial excursions
of the banana center). In our treatment of ion Landau damping in.
Section 5 of the appendix we use (52), derived below under the
assumption that only one of the resonances ' & = nw, is important. Thié
" assumption is not valid when motion is stochastic, and we musé determine
the radial excursions by numerical integration of the equations of
motion. We add an equation for ﬁC tb the equations (49) which we
integrated in>Section AG. We use the variables (l1) to express the

potential (65 as /
¢ = -@dg(O)cos[(m -.lq)G - 22! - wt + ).
The Hamiltogian equation of motion for ﬁC is then
f)g = - 3H/AT' = - ed9/3L" .

We neglect the radial (pc) dependence of -Ho, which eliminates Jablon’s
mechanism and possibly‘other effects, We also assume that the radial
variation of ¢ 1is slow enough that the pcmdependence of & is

negligible., Then



137
it = 3}{/3? =0,
- ' C "
and we can set ‘C'=0. - The equationsvweAintegrate are thus (49) and
f’c =e® g(0®)L siny . S - (51)

-Since pc' does not appéar in (49), inclusion of (51) changes none of

the results reported in Section 4G.

If only the 'nth. term in the sum (24) is-impoftant and g=1, it
is easy to show using (22)=~(24) and (51) that a relation exists between

changes of IJ Aand pC:

P, = -(W/m)Jd. o (52)

'

To integrate (51) numerically we must choose values for L and
pc(tFO). From the results of Ref. 126 we take £=5, imagining that
m=10 and. qg=1.9 so (2) is satisfied. To defermine appropriate values
for pC we use q(0) = const to derive a relation betWéen ‘pc and the

position r. of the banana center:

e en 1 : . -
Py Tt oq =7 Mwa. | | ~(53)

The ion gyrofrequency is represented by . Using thekvalues
r/R = AB/Bo = %-and q=1.9 and our choice of units (21), we find

-pg = [0/, (0)]/220. ) - (54)
For typical tokamak pérameters[126]

T. = 3keV, B_ = 50 kG, R_ = 132 cm,
i ” o ) » .



138

we find the ion gyroradius Py = (Ti/M)/Z/SZ =~ 1,5mm and

=]

. B \L | '
2 _ e <o>2~ S o (55)
wbi = pi q N = 3300 . : |

For a thermal ion (uBo_= Ti) we thus find from (54) and'(55)’
-pcz 15 .

Equation (53) tells us the felatibn between changes in pc 'and

in r: .
Ar = -Apz; (q/MQr) .
Using the éame parameter values as in the preceding paragraph, we find

Ar/r = —ApC/SO .

With typicél values determined, we proceed to the ﬁumerical
integratiﬁn of (49) and (51). In Fig. 40 we show two trajectories in
Jpc~space. Thé motioﬁ repreéented in (a) is determined to be bot |
stochastic by a giance at the surface of section plot in  ¢J=~space.
The motioﬁ in (b) ig;stochastic, which is clear frpm’the three
traﬁsitions between the trapped and circulating stétes during tﬁe
integration time of five waveperiods. (Recéll that the sebaratriX~ét
J = 2,55 1is the boundary between trapped and circulatingAibns.) Both
trajectories in Fig. 40 lie roughly along the diagonal line determined

by (52) with n=1, Other trajectories which we have integrated also
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show-this characteristic, eVen though the trajectOries'differ‘markedly

in their fine details,

Our numerical results thus indicate ion motion along lines with

slopel
dp /dJ = -2, - o (56)

one of which is shown by the triple~headed arrow in Fig; 44.‘ The
irregular oscillatory motion along these lines has a rate which.is a
fair fraction of the wave frequency w. This rate can easily be much
greater than ﬁhe rate of collisional diffusion ih Jpghspace;” (Note
that collisional diffugion from J=0 to J = 2,55 occurs at the rateb

v ., which is much less than w.) Collisional diffusion, which

ef,1 . .
attempts to maintain a local Maxwellian diéfribution, canﬁot counteract
Ehe tendency of mode-induced diffusion to flatten the distributionvalong
the lines with élope (56)., In the presence of a finite*amplitude
trapped-ion mode webtherefore expéct distortioh of the distribufion
function »fo in. the manner sketched in Fig,. 41. For clarity the
distortion has been kept-relatively mild. The large excursions in J

which are evident in Fig. 40 would lead to a distribution distorted in a

much broader band about the separatrix.

Thé distortioh pf fo, implieé'nonlinear shifts in the frequency
and growth rate of the trapped-ion mode. As discuséed in Apﬁéndix E,
the mode’s frequency is determined by_E'X.E éon&ecﬁidg of trappéd ioﬁs
_ (apd alsb, strictly spéaking, barely>circulatiﬁg ions); In the.présehce

of a finite~amplitude mode, E X B convection of barely trapped and
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barely citCulatingvions'contributes little to the density perturbatioo
beceoée the slope ot .fo- in the relevant direction.is greatly reduced.
A nonlinear shift to a lower frequency results, analogous‘to the

reduetion‘of” w below w* because‘ofvthe.failure'of circuleting ioos

to E x.g convect.

The nonlinear reduction of w,'leads‘to a decrease of the
electron collisional growth rate :(proportional to ‘w?2) .and therefore has

a stabilizing influence on the mode.

A further stabilizing effect is an increase in the rate of
transitions between the trapped and circulating states, - In a

finite&amplitude mode ‘the usual collisional rate of pitch=-angle

diffusion is -enhanced by mode~induced diffusion. The enhancement is
greatest in the stochastic layer. The larger detrapping rate leads to a
more rapid exchange of energy between the mode and the ions according to

the mechanism described in Section 3 of Appendix E.

The nonlinear modifications to the Landau damping process are
probably ggetabilizing because of the reduction of the slope of fo.
(Note that a large enough temperature gradient leads to growth instead
of damping; the nonlinear modifications are then stabilizings) vWe
recall however that ions with different values of the megnetic moment
M contrlbute to Landao damolng (observe the dashed llnes in Fig. 37
which show the 1ocat10ns of.the resonant ions), Deeply trapped ions
give the largest conttibution[127] to Landau dampiﬁg by the bounce

.resonance W = wb but distortions of the distrlbutlon function f are

small near J= 0 where the deeply trapped ions are located. Our study
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therefore indicates that nonlinear modifications to Landau damping are
small. It is desirable, however, to extend the'present work with both

qualitative and quantitative studies.

J. Conclusions of Chapter 4

In Chaptér»4 we have studied a:possible satufatién mechanism for
the dissipétive trapped=ion instability.. Numerical integration of the
equations of motion in a single trapped=-ion mode shostthat iomns ﬁove
stochastically in a layeg surrounding the trapped»circuiafing'boundary.
The width of this stochastic layer increases with'thé mode amplitude ¢o
and wiﬁh the mode frequency w. For relevant parameter$~the width of

] v

the layer is quite large; for w = -Z—wbi

ions moves stochastically in a mode of amplitude given by e¢° = O.OSETi .

a substantial fraction of the

A theory, based on the overlap of bounce resonances, predicts a width

for the stochastic layer in agreement with the numerical results,

Our plots display the strikingly large excursions in
longitudinal action J and in radius r which can occur whether motion

is stochastic or not,

We have made abqualitative study of the effects of stochastic
motion oﬁ the nonlinear stabiliéation of the trapped~ion mode. 1In the
stochastic layer the motion resembles a diffusion’prdceés'with a high
rate compared to collisional diffusion. A'distortién of the
distribution. function in this layer leads to a nonlinear reduction of

the mode frequency and stabilizing modifications to the electron
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collisional growth rate and the ion collisional damping rate found in

linear theory.

Because of its .generic nature the dynamical system studied in
Chapter 4 occurs in a large number of other problems. Our methods and

results are therefore of interest to researchers outside of the tokamak

area,
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. Appendix A. Equations for transition between

oblique and perpendicular propagation.

In terms of the variables defined and discussed in Section 2B,

we write the Hamiltonian
'H(?, P, ¢, Py t) = H (p,, p¢) f’e¢° sin(k,z -k p smfb - wt) | (1)

to describe a particle in é uniform magnetic field aﬁd‘an'electrostatic
wave. propagating at an arbifrary angle to the field. Iﬁ (l) Wwe use |
variables 2z and vpz giving the position.énd the parallel momentum in
the reference frame in Whicﬁ‘the center of maés of the,plaéﬁa is at

restg the origin of z 1is chosen as in Section 2C.

For oblique propagation (kz # 0), we note that since z and t
appear in (1) only in the combination kzz-;wt, we can use the

generating function
FZ(Zs Pw, t) = (kzz'wt)pw

to transform to new variables Y and pw:
lp = kzZ—wt,_ Pq) = Pz/kz

H+3F,/0t

K(‘b» pw, ¢’ pq))

'kzz qu-/zm - Pyt p¢9+ ep, sin(y-kyp sind). (2)
We make the mathematical transformation generated by
Fa(¥,p,) = ¥(py *muw/k?)

to the wave frame momentum p& = pw-mw/k:==(pz-mw/kz)/kz,
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The transformed Hamiltonian is equivalent to (2.7).

For perpendidular.propagation (kz = 0), (1) is indeﬁendent of
z, and the parallel momentum pz" is a consfant of the motion. Dropping
the constant parallel kinetic energy from (1) and converting to a
time~independent system of two degrees of freedom»(see Subsection 1C7),
we find an expression for the Hamiltonian which is identical to (2) with
kZ set to zero. Hamiltonian‘(Z)bcah thus be uéed to investigate both

the cases of oblique and of perpendicﬁlar propagation,

We expand (2) in a series of Bessel functions. If the wave
amplitude is small eﬁough, all terms in this series, except possibly
one, can be considered rapidly varying in time. Retaining only the term
varying slowest;_we approximate (2) by

K, = kZZ p‘ﬁ/zm - wa+p¢9+e@oJ_L(k_Lp)sin(lP* L¢) .

We use

Fa(¥, 6, p» Py') = (¥ + 1), + &by

to transform to new variables n, ¢', pn, pq)':

n=y+Lo, ¢! = ¢

= ' = -

. ' = 2 2 - - i »
KL(n,pn, Py ) kz P, /2m P (w- L) +p¢'9+ e@oJ__L(k_Lp)51nn . (3)

The gyroradius is now given by

o = [20p) +1p )/ma]" .

- >
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"Note that pd is an invariant in (3). Our approximation has thus

reduced the motion to one degree of freedom,

Fixed points of the motion are found by -solving

0=n =

kzzpn . d |
- -(w—LQ)+e<I>os>1nn‘E};J_L(lg_p)- o (Qa)

0 = pn = -e'(bo J—L. (k_l_p) CQS n. (Ab)

Several families of fixed points may exist. Family 1l is important when

kz is large and the last term in (4a) is negligible:
n=thm, pnzm(w-m)/kzz.

Thésé fixed ﬁoints give the locations of the,éyclqtron resdnanqes
studied in Chapter 2. The resonant values of pn become very 1arge as
kz becomes sﬁall, and Qery few (if any).particles afe able to in;eract
strongly with the cyclotron resonances. Another set of resonances may
exist near the fixed points of Family 2; when the first term of>(4a) is

' negligible, these fixed points are given by
n=thn, p_from ed - J (k;p) = * (- LK)
bl n b odpn L _Lp - 3

When these fixed points exist, they can be shown to be stable;v.They
-have been considered by Aamodt and Bodner,[41] Timofeev,[16] and
Fukuyama, et al,[40] The same authors mention the corresponding

unstable fixed points, which are given by
n = sin"![(w- LY)/ed -—d——J (k pj]
| e dp, LT

pn f?'om JL(kap) = 0.
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Other families.of fixed points arise when two terms of the
Bessel function series are retained. These families have heen observed
by Fukuyama, et al,[40] and by Karney,{[128] who have begun the

theoretical study of these families.

The transition between Families 1 and 2 is determined by the
ratio of the first and last terms in (4a), which we denote by R:

kZ va V_L

- |2 + 1
el e, wp

0
The ratio R 1is large‘for the parameters used in Seqtidn 2L, jﬁstif&iﬁg
our neglect of the last term in (4a). For parameters appropriate to
studies of lower hybrid héating, R‘ ma& be small,.justifying-ﬁeglect of
the first term in (4a). Even if the fi¥st term is nqt negligible,
however, Karneyf129] notes that it may cause only small chaﬁgeé in the

locations of fixed points.
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Appendix B. Stochastic acceleration by an electromagnetic wave

Stochastic acceleration by an electrostatic wave is treated in

‘detail in this thesis. Here we discuss the possibility that an

electromagnetic wave could cause stochastic acceleration,

The motion of a charged particle in a uniform magnetic field
plus a perturbing electromagnetic wave can be described by Hamiltonian

(2,4) with the perturbation given by

1
V-;-Z—e(Q-

[l ot

v *A) .exp.[i»(kz-z + kly)']—+ c.c.. .

Here ¢ and A are the complex amplitudes of the wave’s scalar and
vector potentiais. As in Section 2C we use wave frame Variables.

Expressing the velocity v in terms of the canonical variables

introduced in Section 2B yiélds
_\L * A= pzAz/m - V_L.(Ax sin¢ + Ay cos ¢) ,
Y
where v, = (2p¢9/m) . We introduce

+ i
+ Ax—lAy

1]

A

and write

Ax sin ¢ + A-y cos ¢ = (A+e.i-¢ - A e”iq).)/Zi .

Use of (2.8)‘théh allows us to write

1 . o
V(z, ¢, Pz,p¢) =5el, ®, exp[i(k,z - 20)] + c.c.,

where the complex amplitude
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@z = (Q._ pzAz/mc)Jl +-(yl/c)(A+J2+l + A-Jz—l) | (1

plays the same role for an electromagnetic wave that ’QoJk played for
an electrostatic wave. An electromagnetic wave can thus trap a particle
with parallel velocity near any of the resonant velocities given by

(2.11). The trapping widths are found from (2.14) by replacing ¢0J2

‘with ¢2. If ¢, 6 1is large enough the wave can cause stochastic

L

acceleration,

As an example of a particular electromagnetic wave we consider a .
high»frequenéy Alfvén wave. By this néme-we refer to a wave on thé same
branch as the magnetoéonic (compressional Alfvén) and whistler waves but
with a frequency a few.times the ion gyrofrequency. The dispersion
diagram in Fig. 29 shows tﬁe location of the highéfrequency Alfvén wave.
When the propagation angle 6 = 0°(i. e., KL=O), this wave is

right-hand-circularly-polarized, and (1) reduces to
by = (/A g (o). (2)

When the wave propagation is oblique (kz, kL #0), (2) is still a good
approximation for certain combinations of wave frequency w and angle
6. When (2) is valid, the condition of overlapping cyclotron fesoﬁances
appears difficult to satisfy, Using thé same valués of klp and
kzvz/Q'(which determines 2)‘as in Fig. 19, we find the Bessgl'function.
J to be smaller than J, by a factof of about three. A

2-1 L

high~frequency Alfvén wave with amplitude given by

(vﬂ_c) [kz?- eA_/miQi'2.|= 1.5 | ' - (3)
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could thus be expected to cause ion heating similar to . that ‘caused by

the ion~acoustic wave of Section 2L which has
2 Q2 = 0.5 .
k, e@o/mi i =05

To check whether (3) is a reasonable wave amplitude we use kz = k,  and

L

calculate
SB,/B_ zkzlA_l./Bo =1.5Q/kv . | A (4)

For the linear cyclotron~harmonic damping of the wave to be weak we use

the crude condition that the ion thermal speed satisfy

Vp; £ 0.5 Qi/kz;_ : : . (5)

this condition means the distribution function "fits" between the
resonant parallel velocities QQi/kZ (compare (2.51)). Combining (4)
and (5), we find that ions with yl ==4vTi are stochastically

accelerated if
GBZ/BO‘% 0.75 . - | . | (6)

A high~frequency Alfvén wave with amplitude (6) would nbt’obey the
requirements of our analysis that the wave be sinusoidal and satisfy the
linear relations for the frequency and polarization. On the basis of
this example we conclude that an electromagnetic wave ofvreasonable
amplitude is less likely to cause stochastic acceleration by overlap of
cyclotron resonances than is an electrostatic wave, it is clear,
however, that many choices of parameters were made in arriving at (6),

and the possibility of strong stochastic effects due to an
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electromagnetic wave cannot be ruled out.’
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- Appendix C. Stochastic acceleration by a nonsinusoidal wave

The problems treated in detail in this thesis involve stochastic
motion caused by a sinusoidal wave. We note here that such motion can
occur as well for a nonsinueoidal wave., Stochasticity might appear at a

lower value of the wave amplitude in-the‘nonsinusoidal.case.

We consider a plane electrostatic wave for which the potential
is an arbitrary periodic function of the phase ke+*x - wt. As in
Sectioﬁ.ZC we eliminate the time dependence by using wave frame

variables and write the perturbation as
V==eZ ¢ sin(nk*x + 6 ),
nn - - n

which replaces (2,5). The operations performed in Section 2C allow us

to write the equation
V(z, ¢, p‘¢) =eL & sin(nkz - nkjpsing +6),
which replaces (2.6). Use of (2.8) now yields
V= eZn <I>n Zsz(nk_Lp) sin (nkzz - 2 + Gn) . o (D

Equation (1) has essentially the same form as (1.20). As noted in our

discussion of (1.25), (1) shows the existence of resonant velocities
v, = (}Z,/n)Q/kz

distributed along the real number 1line as the rational numbers are
distributed, The complications implied by this distribution have

deterred us from study of nonsinusoidal waves. One might expect,
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however, that a nounsinusoidal -wave would lead more eaéily to stochastic

motion than a'sinusoidal one because of the presence of the large number

%

n

of additional resonances of finite width (proportional to
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Appendix D. Experimental requirements

for observing stochastic acceleration .

StocﬁaSticiacCeleration of idﬁéjﬂy a éinéle'ibnﬁacoﬁs£ic wave
was seen in Sections 2L and 2M to lead to fﬁe'héatihg’Qf'é.Méxwellian'
disfribgtioﬁ.' We Believe a féirly‘simbie‘iébbféféry éxperimént could
observe these effectg.v When stochasticity occurs one should see a
change in pfopagation characteristics of a lauth¢d, obliquely-
propagating wave, and one‘mightﬂobéerve[a highﬁenergy;tailiinvthe
parallelldiétribution. .Some care must be taken experimenfally in
launching an ion=~acoustic wave in order to avoid effec£s mentioned in
Refs. 130 and 131. Assuming that ;hg_désired wave'can.be}launched, we
give,here tbe‘éxperimenta; requiremen;é suggested byiéur theoretical

work.,

To observe ion tail~heating by an ion-acoustic ﬁéve, tﬁé
following requirements must be met,

1. - The wavé frequency weekcs) should be a few fimeé tge ion
gyrofrequenCy Qi, but not too close té a mﬁltiple of Qi to
avoid cyclotron-~harmonic damping. | | | |

- 2, The propagation angle 6 with respect to the magnetostatic
field B should be in the vicinity of 45°,

3. The temperature ratio Te/Ti should be high enough that the.
wave damping is small, but there must be ions witﬁ gyroradii
comparable to the perpendicular wavelengthv (ELpiFQ 1).

4, The ion collision frequency vi must be less than about

O.IQi so0 the collisionless theory is applicable,
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The distance L - in the E.xlﬁwdiréctibn over which.:heAWave

amplitudé is uniform should satisfy k L 2> w/Q.. Otherwise,' 
o . Z X 1

ions‘_g x B —driftAouc of the wave befotévsignificant
acceleration occurs.

The density émplityde must be as large as -Gn/h ~ 0.1,

To observe electron tai1~heating by a'Laqgﬁuir wave,'the

analogous requirements are the following.

1.

T2

3.

4
5.

. 6.

w@zwpe) ‘a few times Qe, but not too close to a multiple of

Q.
e

6~ 45°,

The Debye length A -should be small enough '(kAD < 0.25) that

the- wave damping  is weak, but electrons-witﬁ gyroradii such

s ,
that Klpe 21 must exist.

v £0.18 .
e (]

kL, 2 w/ae .

'\' L ] L ]
Gne/neA_VO 1
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Appéndix.E. Physics. of the dissipativeaprapped—ion;instability»

In this appendix we give a physical discussion of Fhe'
dissipative trapped~ion instébility, which leads to the large amplitude
mode considered iﬁiChabtef 4. 'Our’diécﬁssigﬁ éhsﬁi&‘se£ve és‘avuseful
introduction to the instability fof readers unfamiliaf §itﬁ it. Also,‘a
depailed undetstanding of the physics of the inétabilify:aidS“us in
assessing the effects of the stochastic ion motion'oﬁ‘the_nonlinear
devélopmént of tﬁe instabiiity. dur diécussiqn &?gws ﬁea&iiy oﬁ'idéaé

ekprésSed by'Eﬁst.[122]

1. Introduction

The dissipative trapped-ion instability is expected to occur in
tokamaks which are hot enough that a typical trapped ion can bounce
between magnetic mirrors (execute a banana orbit) before Coulomb

collisions detrap it. This condition is expressed as

W .. >V . .
"vi 7 Vef,i *

where the typical b0unce‘frequency Wi is defined inf(4s3) and'\)ef i

is an effective collision frequency for ions.

Several other conditions are generally assumed: in:the simplest
derivations of the dissipative trapped=-ion instability. The mode
frequency ®w must lie between the effective collision ffequencies for

ions and electrons:

' <w< .
vef,i w vef,e (1)
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A typical trapped ion must bounce in less than a wave period:

W<, o » | - ()

A typical circulating ion must travel farther than a parallél wavelength

during a wave period:

w<kIIVTi’ - S S (3

. P C : oy . _ . ‘
where k" is defined in (4.2) and Vs = (Ti/mi)/2 is the ion thermal

speed, One chooses k" to.reflect the tendency of the mode to minimize

variations of the perturbed potential along a field line,

When these conditions are satisfied, the simplest theories lead
to the dispefsion relation

= .1_ 1/2 ko4 1 2> - 1(v - ) .
W= etk + i(Re w) /Véf,é .1(\)ef’i + .\)LD) E | )]

In (4) € 1is the inverse aspect ratio of the magnetic surface to which
the radially local théory refers, Also appearing in (4) are the ion

Landau damping rat
andau damping rate v o

[N

. 1‘ C 1 n
* = - e___ —
W _k_L 8 T

s

o

expressed here in terms of the derivative of the density n with

respect. to minor radius r.
In the sections below we discuss the physics of the instability
and gain some understanding of the conditions assumed in deriving

dispersion relation (4).

and the so=~called diamagnetic.drift frequency, .
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2, E x B convection of trapped particles

‘For ‘certain fdrift"*wéves the main effect of theidensiﬁy
gradient is to allow Ex g.drifts iﬁ the wave’s eleétfic»field to change
the density of'somé'particle‘spééiés.b;Ih'a'hdt‘ﬁokamak.thié type of
drift wave is called a dissipatiye tféppedhion mode and the épecies”
undergoing this E x B convection aré the tfapped:particies, both

electrons and ions.

Thé simplest pictures[132] showing density chénges éaused by
E x B convection are comblicated sémewhat in the tokaﬁakggeometry, Ih
Fig. 42 we draw an "ﬁnrqlled" magnetic Surface with T, the toroidal
angle, on the horizontal axis, and with O, the poloidal apgle, on .the
vertical axis. At/the léft we indicate the Variation of thg magnetic
field with ©. With the short~dash line we show a field line on the
magnetic surface; the safety factor is assumed to be =v%; The line
with an arrow at each end represents the banana orbit of é.deeply‘
trapped particle. At the right we show that the density gfédient.is out

of the page.

We assume an electrostatic wave is present with the solid lines
in Fig., 42 showing the crests (electric potential a maximum) and the

long~dash lines showing the troughs (potential a minimum). The

" direction of the wave’s electric field and the direction of the ExB

coavection are shown. The density gradient together with E x B

convection causes the density of both ions and electrons'td be

increasing or decreasing as shown.,
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The.defeat.of.g X B convection for,ahy species has a'profound

‘effect on the mode. The failure of circulating particles to Ex B

convect, as discussed below in Section 4, causes the mode frequency to
drop below the usual drift wave frequency w*, IfLE X B convection of

trapped electrons were not defeated by collisions, as discussed in

Section 3, the perturbations in the charge density due to electrons and
ions would cancel and the mode would not exist. If kj were not as

small as possible, some trapped ions would cross crests and troughs of

the 'wave during their bounce motion. This would tend to ‘average the
E-x B drifts of these ions which would then contribute little to the
charge density perturbation. A lower mode frequency would result which

would lead in turn to a lower growth rate (see (4)).

Copdition (2) on the mode frequency siﬁplifies the theoretical
work but is not necessary fp; existence of an instgbility. With (2),§ne
can often ignore the details of the ion banana orbits and tfeat the
motion of banana centers, the bounce-averaged locations of the guiding
centers. Where (2) is not satisfied (i. e., fbr large kl) the
trapped-ion instability is replaced by the dissipative trappedFelectron

instability.

3. Collisions of trapped partiéles

We next consider the effects of collisions., First, we show that

collisions allow the existence of the mode. Second, we describe the

mechanism for instability (due to electron collisions) and the ghalogoué-

process of ion collisional damping.
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Study of Fig. 42 reveals an important fact about E x B
convection: it produces a density perturbation in phase with the

potential perturbation. In Fig. 43 we illustrate the potential

~

perturbation ® and, with solid lines, the density perturbations ﬁts

.of»trapped particles.(s=i,e) in the absénce of collisions (vef s=0).
. . ]

The density perturbations‘fits

~ are modified by collisions which
change trapped particles to circulatihg ones and vice yeréé. After a
detrapping collision a partiéle moves along a field’iihe; changing its
relation'to‘the wave phase., A detrapping collision followed by a
trappiﬁg collision thus hasvthe effect of pfo&ucing é random.change’in
the wave phase 6f a trapbed particle. Thevrate of ggprépéing coilisions
is greatest where the density of trapped particleé is gréatest (ﬁts >

‘0)‘ ”The rate of traEEihg ;ollisions is proportional toAthévdensity of

» if the

circulating particles, which is relatively insensitive toﬁ'ﬁts

number of circulating partiéles exceeds the number Of'trappéd ones
(1arge~aspect~ratio approximation). The net rate of‘increase of trapped

particles due to collisions is thus a maximum where: ﬁts :is a minimum,

as shown by the arrows in Fig. 43.

Competition between E x B convection and collisions leads to the

density perturbations N, shown by dashed lines in Fig. 43. For the

ts
ions, vef i < w so collisions are weak compared to E x B .convection,
s . ==
and ﬁti .is only slightly altered by collisions. var the electrons,
\Y >w, s0 collisions are strong compared to E x B convection, and

ef,e

ﬁte is greatly reduced by collisions. The charge density perturbation

p, = e - ﬁte), shown at the bottom of Fig. 43, is thus positive

n, .
t t1
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where ﬁti is positive, and causes the potential pertUrbation assumed

at the outset,

Since ﬁts changes due to two processes with different phases
relative to 5, ﬁté suffers a phase shift Gs due to collisions, as
‘shown in Fig. 43. These phase shifts are often cited as the cause of

collisional damping and growth, but we give a more direct explanation

- below.

Collisions cause a net exchange of energy between thg wave and a
pafticle species. To show this, we consider the effects of_pitch»aﬁgle
collisioﬁs, wﬁich caﬁ detrap or trap a particle but do not change its
(total)_énergy. The net effect of detrapping and trapping collisions is
to allow merment of pa;tiéleslgggm_regions of Qqéitive potential, where
‘ﬁts .is1enﬁanqed by Ex B convedtioﬁ, to regions of average ( ESEQ )

potential. Ions move down a potential energy gradient, gaining kinetic

energy and causing the mode to damp due to ion collisions. Electrons

move up a potential energy gradient, losing kinetic energy and causing

the mode to grow due to electron collisions.

4. - Shielding by circulating pérticles

Condition (3), which ié necessary to prevent exceséive ion
Landau &amping (see Section 5), also defeats the E x B convectionvn
process for circulating éarticles. -A typical circulating pérticie sees
suéh a‘rapid vafiation in»the directiqn_of the mode'é electric field |

that its radial drifts are insignificant. Consequently, the main effect
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of the circulating particles ‘is to5proviAe Débye sHieldiﬁg of‘the charge
density pfoducéabby_the_trapped parficles. Condition (3) guarantees
that circulating pérticles can move fast enough to keep uf;with’the
changing potential of thé mode.i Debye‘shielding causes a reduction ofv
the trabped-particle charge density 5£, and thus éf_the'mode frequency,
D is an appropriately aVéraged Debye |

length for the. circulating ions and electrons.

by a-factor k?k§(<< 1)., where A

5. 7Ion Landau damping

Iéns which are’ﬁell into the circulating region.of velocity
spacé_ évnyz!vL)' are.affected little by the modulafions df the magnetic
field, and the analysis of Landau damping by these'ioﬁs fdilows the
analysis for a uniform magnetic field. To prevent strqﬁg»damping‘of the
trapped~ion mode the'parallel distribution function must have é small.'
slope at w/k". Condition (3) is thus an approximaté‘fequirement for

the. damping to be weak.

A mode with a given m and &£ cannot satisfy condition (3)
near the rational surface q = m/% because k;*0 (see (4.2)). vIﬁ a
naiﬁe theory of fhe radial structure of the mode, we might therefore
expéct to find é.depressed mbde amplitude near ratioqalISuffaces. These
expectétions Bdid up to some extent in a mdre éompleté'theory, as shdwn

by Gladd and Ross.[107]

The reader may wish to postpone study of the foliowing

paragraphs until he has redched Section 4I..
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- Ions with moderate parallel velocities tv” ~'e%vl) afe'best'
treated using the action-angle variables introduced in Section 4B.
These variables allow us, in Section 4F, to write the Hamilfonian (4;34,
describing motioh'near a resonance @ = nwb‘ in exactly the same form as
the Hamiltonian describing motion near the resonance w=kv in an
unmagnetized plasma. The physical description of ion Landau damping of
thé trapped~ion mode by bounce and transit resonances is then analogous
to the description of the simple unmagnetized case given by‘Chen.[l32]
Before giving the description analogous to Chen’s, we show how the
radial ( E x B-) excursions, which are not present in the simple
unmagnetized proﬁlem, ﬁave an important effect on the trapped»ion mode

problem,

A trapped-ion mode affects ion motion in a tokamak by
simultaneously changing the iongitudinal action J (through the parallel
electric’ field) and the radial posiﬁion T (thrOugh the perpendiculaf
electric field). If the ion motion is dominated by a singlé'ohe of the
resonances W = nwb, the motion occurs on a straight line (see (4.52))
in the action space shown in Fig. 44. One such straight line (with_’
arrowheads) is illustrated in the figure. It is easy to show that the
Landgu damping raté is proportional to the slope of thé distribution

function fO along this straight line. In Fig. 44 we have sketched

contours of a locally Maxwellian distribution. Since the straight line
is neither horizontal nor vertical, the damping rate depends on both
3f0/8J and afo/ar, in general. In the large-aspect-ratio limit,

afo/ar gives the dominant contribution to the damping rate.
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Ihe triple-headed arrow in Fig. 44 shows the excursion in action

space of an ion in the presence of a trapped-ion mode of small

amplitude, During'theAexcursion‘the,ionfs,energy,changes ‘(through
changes of the action ‘J). Ions moving towards B are gaining energy,
those moving towards A are losing energy. - Damping of_the mode occurs

because more ions are gaining energy than are losing it.

Textbook treatments of Landau damping génefaily cbnsider the
damping of a Qavé pfesent in £He piésma aﬁ t=0. To show the.releVance
of Laundau damping to tokamak plaémas~we must-goﬂbeydﬁdfsuéh treatments
and conSidéf the éffect of Coulomb céliiéions. CoiiisionSjééuse
diffusion in‘veiociﬁy sbace.' In the aétion”épéée of Fig;:44, including

collisions would cause ion trajectories to diffuse in both J and

(veloéityhspace'diffdéioh changes the positions r .of the banana

centers 6f ouf guidiné-center ions jﬁst as coliiéioﬁé éah:éﬁéﬁgé the
guiding centers of gyrating ions). Collisions cause a;rival of ions
into the fegion of the reébnénce w‘= nwb(J) at a cértain.rate. After
arrival at A an ion begins to mové towards B, gaining enefgy and
contributiﬁgbto dampiﬁgzdf the mode: Tons which arri?e‘af'B and begin
moving towards A contribute to wa?e growth, but the greétér numBer of

ions at A than at B causes the net effect to be damping.:
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TABLE I. Analogies between gyromotion and bounce motion.
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TABLE II. Parameter values used for numerical studies;

uB et T, - T,

‘ i w 1 ik
- —= = 0.05 —— = = (=)
Ti NAS UBO wb(O) 2 'y o
4.0 0.0125 . 0.25
2.0 0.025 B | 0.353
1.0 | 0.05 0.5
0.5 0.1 » 0.707

0.25 0.2 1.0
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FIGURE CAPTIONS

- 1. The magnetic moment M vs. time, showing jumps and rapid

oscillations. The arrows indicate the times of passage through
the points of minimum magnétic»field. Courtesy of R. H. Cohen,

Lawrence Livermore Laboratory.

(a) Magnetic surfaces in a tokamak shown in a poloidal cross

section when'no current perturbations are present (the
axisymmetric, Ohmic heating current is the only‘cufrent present),
The surfaces are labele& by the value of the safety factor q.
The axis of symmetry of the tokamak, if shown, woﬁld be a vertical
line some distance to thevleft of the largest circle. (b) The
samé surfaces wﬁen current perturbations are present. The.
perturbations are near the minor radii where gq=2 (mode numbers
m=2 and n=l) and where ¢q=3 (m=3 and n=1).

(a) EQuipotential lines of the Hénon-Heiles potential, (l.7c).
(b) Equipotential lines of the Barbanis potentiél, (1.14). -

Two arraﬂgemenﬁs of masses and springs; whose motion is described
by the Hénon-Heiles Hamiltonian (1.7) if the springs have a
cubicly anharmonic potential energy.

Surface of séction plots (from Ref. 43).for the Hénon~Heiles

system, (1.7), showing disappearance of a constant of the motion

~as the energy E is raised,

Surface of section plots (from Ref. 58) for the equal-mass
restricted three~body problem.showing disappearance of a constant

of the motion as the Jacobi constant . C is lowered,
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Behavior of the logistic difference equation (1.27) for-vafious
values of the growth rate r (from Réf{ 73).

Observatiéns of geomagnetic polarity intervals (from Ref. 76).
Hatched periodé are those in which the polarity was the same as at
preseng.

Schematic picture (from Ref. 78)vof the Rikitake two-disk dynamo.
Typical time evolution of the current Il,‘which is'proportional
to X, , for the Rikitake dynamo (from Ref, 78).

Results of. an experiment on fluid motion between cylihders (from

Ref. 81).

Structure of the strange attractor of thebmapping (1.30) (from

"Ref. 84). The resolution increases clockwise, starting at the

upper left,

Specification of the particle position (x, y) in terms of the

“canonical variables used in the text.

’ 1
Contour plot of (2.22) for the parameters kj Py = kL(ZE/m)é/Q==

1.48, €=0.1, and 6 = tan"!(k)/k)) = 45°. The definition of €

is given in (2.21b).

The correlation function C(T), normaliéed to unity at. T=0,
computed anaiytically from (2.26) (solid cur?e) and ffom (2.30)
(dashed curve) and from nume?ically calculated trajectories
(dotted curve). The wave amplitude is given by €=Q.75vénd the
propagation angle by 0 = 45°. The initial speed is V = Sﬁ/kz,
and the initial parallel velogity is vz =0. |

The diffusion «sz)2>_ in parallel velocity, computed

analytically from (2.26) and (2.32) (solid curve) and from'.
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18.
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numerically'éalculated,trajectories (dotted curve). 'fhe
parameters are the same as in Fig. 15.

Surface of section pth illustrating -three non¥overlapping
resonances. The initial copditions; indicated by X's,'were chosen
to yieid trajeétories véry:glose to the three separatrices. The
points represénting Fhe;trajectories-haveAbeen connected with
hand-drgwn cur&es._ The wave amplitude is given‘by>:€=0.025, the
othef parameters aré the‘same as in Fig. .l4.

Surface of section plqt showing a divided phase space. _The
parameters are the saﬁe as in Fig. 14,

Surféce of section plots contrasting the motion in velocity space
in the presence of a small- or of a lafge—amplitude Waye. The
wave has fredﬁency w = 3.6Q and propagation angle »6 = 45°,
Trajectories of a group of ten particiesrare represented, At t=0
this gfoup has values. of kzz = Nw/5, N=0, 1, 2, ..., 9, but has
uniqﬁe values”of ¢ (=m), v, and v,. ‘The cﬁosen valﬁe of the
perpéndicular velocity is given by kzvl/Q = klp=2.24 1and Qf the
parallel velocity by kzvz/Q =~3.6. The hatched semicircle shows
the extent of the thermal ions considered ‘in the'wéve»heafing

example of Sections 2L and 2M,

Array of 100 initial values of kzz and ¢ wused to approximate

-numerically the average defined by (2.24).

Particle trajectories, represented by plotting the pafallel
velocity vs. time. The same parameters are used here as in Fig.
15. The initial speed and parallel velocity are the same for all

trajectories, but the initial phases kzz ~and ¢ differ.
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The mean square deviation in parallel velocity vs. time. The

parameters are the same as in Fig. l&4.

‘The correlation function (2,23) for t'=0, normalized to unity at

T=0, illustrating persistent oscillations. The parameters are the
same as in Fig. 15. The array of 200 initial values is similar to

< ’ ' . :
Fig. 20, except that 20 values of kzz and 10 values of ¢ are

used, The range T £ ¢ < 27 used here gives identical results to

" those obtained using a set of 20 initial values of ¢ in the‘

range 0 < ¢ < 27 because of a symmetry which éxisté for‘vz=6.
For comparison with other figures the number'of‘initial values ié
thus; effectively, 406. |

The.normalized cbrrelation function (2.23) for t'=0, comparing
measu;eménts obtained ﬁsing 400‘(effectiVely) and 100 initial
values of  kzz: and ¢. The solid curve is the one already shown
in Fig. 23. . The dashed curve was obtained using the array of 100
initial values shown in Fig. 20. |

The normalized éorrelation funétion (2.23) for t'=0, comparing
measurements for two values of the stochasticity pafaméter :8.,
The solid curve here is the same as the dashed curve in Fig. 24,
The value €=3 is used for thé dashed curve,

Correlation function (2.50) for the mapping (2.49), illustrating
persistent oscillatipns. The parameters used are ‘p°=0,- e=0.20;

and - N=1000

" Correlation function (2.50), illustrating reduction of the

oscillations when N ‘is increased to 400, other parameters

remaining the same as in Fig. 26.
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Correlation functidn (2.50), illustfating osciliétions attributed
to nonstochastic tfajectories. Parameters are identical to Fig.

27 except €=0.06. o

Dispersion diagram (d);vs. k) for a plasma in a uniform magnetic

field, showing the high~frequency Alfvén wave (Appendix B) and the

- ion-acoustic wave (Sections 2L and 2M). Adapted from a figure in

Ref. 98.

1

the presence of a»finitg&émplitude, obliquely propagating,

The perpendicular (f) and parallel (f”) distribution functions in

electrostatic wave, The distortions to Maxwellian ‘distributions
(e=0) are shown fbr,twé wave amplitudes, €=0.25 ‘and 0.75.

Agreement between our semi~empirical model for the diffusion

. coefficient D(v%) .and values of D measured from plots like

Fig. 22. As v, is varied, the gyroradius is also varied to keep
the speéd v constant. The propagation angle 6‘= 450.

(a) k,v/Q=5, €=1. (b) k v/Q=6, €=0.75.

The variation of the magnetic field B with distaﬁce s along a
field line or with poloidél angle ©. : A sinusoidal modulation of
amplitude AB is added tovan average field Bo. The horizontgl
lines .show the energy levels of trapped and circuiating particles
in the effective potential energy well uB(0). The physical

interpretation of Ho is indicated.at right.

-Relationship between the variables © and ¢, showing continuity

of the definition across the separatrix, which separates. the
closed curves (trapped particles) from the open curves

(circulating particles). The action J increases outwards from
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the - O~points ( 0= 0, ©=0 and 27 ).

The aétion J and the bounce (or transit) frequency wb as a
function of Ho. |
Surface of section plots showihg ion ;rajecﬁories in the
¢J-~plane. The parameter values are given in the lines of Table
I1: (a) line 3, (b) line 4. Ali figures take the poloidal

structure factor - g=1. Comparison of (a) and (b) illustrates the

stronger effect of a mode with given amplitude on a lower-energy

. ion. Note, especially, the larger stochastic region in (b) than

~din-(a).

Surface of section plot continuing the sequence of Fig. BSaQB.I
The parameter values are given in line 5 of.Table 11, .

The extent in velocity space of the stochastic region (between the
héavy curves) for a trapped~ion mode with parameters (4.1,2,4).
The dashed lines show the locations Qf the resonang ( w==wb) ions.
The contours shbw thé density per unit area (on the figure) of
ions in a Maxwellién distribution,

Trajectories of ions.chosen»from two ensembles with different

initial values of the action J. The lower set of trajectories

lies outside the étochastic layer, the upper set lies within it.

The values of the mode amplitude Qo and the frequency w are

given in line 3 of Table II,

The diffusion ((AJ)2> of the action . J vs. time, calculated
from the ensembles of trajectories used in Fig. 38.
Trajectories of ions in the action space introduced in'Appendix

E (see Fig. 44). The initial conditions are shown by the X’s
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marked 0. The numbered pluses indicate the locations at

‘intervals of the wave period. The parameters-are taken from line

4 of Table II. The initial angles are O=Ojéand n=0, The
initial values of H_ are (a) 0.44, and (b) 0.92 .

Distoition of the unperturbed distribution function. fo! in the
presen@e of a finite-amplitude trapped-ion mode.

An "unpélled" magnetic surface, illustrating density changes due
to Ex B convec&ion in a trapped=ion mdde. E

Perturbations in potential (@), in densities of trapped ions
( ﬁti)‘énd trapped electrons ( ﬁte)’ a?d-in éharge denéity ( b;)
caused by,a trapped-ion modey'vThé'dﬁsﬁedicurVes-showvthe
mohifications to the density perturbationétiﬁ the presence of
collisions. » |

The action spacé used for a tokamak to represent guiding~center

motion and distribution functions. The longitudinal action  J

" appears on the vertical axis. The horizontal axis is (minus) the

canonical angular momentum pc, which determines the average
radial position r of the guiding center (i. e., for a trapped
particle, r is the banana center). The dashed line is the

separatrix. Contour lines are shown for a local Maxwellian

distribution f0 with density decreasing with increasing r but

with a constant temperature, The triple~headed arrow éhows both

the direction of guiding-center motion in the presence of a

" trapped~ion mode and the line along which the slope of fo is

measured (in a calculation of the Landau damping rate).



192

35

34+

XBL773-612

Fig. 1



193

XBL775-3413



194

XBL775-3412

Fig. 3



I/72 m

m = m 1/2n1

XBL773-609

Fig. 4

195



—

|
NS DI o €
-0.3 O 0.3 06 y

XBL773-614

Fig. 5

196



197

XBL775-3410

Fig. 6



xiZ

' ’ H)r-50 :

1ok |

o\

3 | - {e)r=33 B

2} ' -

) . | | |

g A(d)nB.’BA B

2

1

(o} S8,

, (c)r2 2.6 -

2 R

L~ MNWWWWWWA
0 (b)r=2.3 .

2

0/\/\/\' (a)r=1.8

! —~—

0 5 0 30

time, t

XBL 7727803 '

Fig. 7



Age
(my.)

2t

34
44
5+
o+
T4
B+
94

04

Polority from
K-Ar doling &
sediment cores

7

b

rrezy - -.. 2

Fig. 8

Polarity from

sea floor
spreading
77
vod
w
mY__ VA
91-__ '“9
. LlA—0
0, a1
W | 12
12" —
13 (24— 13
YA
14" —
o Zt——15
ey S
16 —EST
N 4/ S
L iy == 8
18" — ‘
t //I‘—Ig
|9| 4 ._.....20
20, —
21 m/ — 2l
%—zz
7
22 -
' L. ——"23
24 -+ ZZA—— 24
d--— 25
XBL 772-7806

199



200

| -\ L i
. L.
‘/
. J
y

XBL 772-7804

Fig. 9 .



6

201

60 /| 80 [loo 100 110
wa N 30 40 \a)
t |
ﬁ/ 1 { (] 1 1 i 290 2!0 2|20
130 140 150 170} 180 190

Fig.

10

XBL 772-7805



Vv, (cm/sec) V. (em/sec) v, (em/sec) V, {cm/sec)

Vv, (cm/sec)

202

T (sec)

j Mr)'ﬁﬂ'\h“ i

[ “,:.;, o Increasing

‘WWVW o rotational

T e 2 WWN" WM/‘ velocity

+-0(.2’)82 "] 3y, 2 )

:‘WVVV\/V\ q,m §Io" 1, 3 f a f

! —— '°"V"f\wv\'\ A \l’ M,U\M | : 3_
. N

! et No '

i WWW\/\ :\ﬂ\\v“\& L discrete

1 poo—i 7 WW WM‘J;J’W frequency

XBL773-615

Fig. 11



203

y . T T _'. 1]

0.1894 :

B . L " .,
0.1893} Y R
'.'
0.1892} o RN
" LN -
™~ . ~.
0.i691} R
“y, N .‘.“
e, S,
|. . ,..

0.1890F T 1 c.esp : N 1

0.1889

L—1.... 1 L L .
070435 35370 678378 5,830 0.185 5,635 0630 0.6% 9670

XBL 7727807



204

| XY o

P Jb

», (X;y)  }‘

XBL773-613

Fig., 13



205

Kz Z
m

XBL775-3411

Fig. 14



05

£
o |

0.5

206

]QT

XBL 7 77-1379

. Fig, 15



0.8

0.6

N
K
S 04
v
—
N, a
0.2
~—

207

Fig.

16

27T

XBL777-1378



208

V2. . T o Vz
(wave frame) : (plasma frame)

smadian IR I R e

Qlkt W e T
1 kZ

OL\N*‘”\\**‘! - ;‘(*A(//,rja*”’””’ ..w - ,f: Z a)/kz

| %Q-/kz e nr.::,’//f LS WJ ® -0

| . e = M A e e e e e v —— — r—

XBL772-29(

Fig., 17



P

— — a—
. —
PR o

209

—
- N

0t S0 0400 4 S CERG SN S PV BV O &
o't ¥, , #*% .o

. . . - 'g'».:‘.'.

Fig.

18

XBL772-290




Plasma frame
r——Wove frome

kZ Z

L ) \ ‘ '
] ] ! lopt Klf’

) #

) /f

Fig. 19

210

XBL751-220!



2T

211

e

XBLT77-1377

Fig. 20



|27

£t



213

Trajectories begin
to reach limits

v, | =

Diffusion rate increases !
because D(v,#0) >
D (VZ =0 )

Initial diffusion rate is constant

| 1 | l |- |

a7 8T 12T

€1t

XBL 763-2577

Fig. 22




=05

214

o . 15

XBL777-1384

Fig, 23



215

-
“~ .
— — .
—
“~
N _D>
- -
o :
L=
. Y
anbgme =
"' K
',..\ "
]
,\
b
P
L
- s P c—.
,‘...‘U
'"
““‘ = Lo~
| Y —
— ey ey,
L ey
““\
L ad .
."'.' -
| <>
S S -
—
B——

.0

0.5 F

15

QT

XBL777-1385

Fig. 24




216

XBL 777-1383

Fig. 25



217

1.5 L — 7 » ]..'-:.

05— L . 1 ' L L

XBL777-1380

Fig. 26



05—

218

1.5

mw pwlsi | 20
Step

XBL777-1382

Fig. 27



0.0

0.5

219

XBL 777-138|



220

(L)/k=C//’
/’/w/ k=c
H.F Alfven -
__ | ‘«\JuJ/,kf?()s S ]

- Ton Acoustic

I I 1

—
0102 103 104
keg /80y |

XBL779-1844

Fig. 29



5422 456 1 8
kv, /Q |

 Fig. 30 |  XBL779-1845

122



222

“olel | e a

Vz /v XBL 764-2717

Fig. "31



223

. 2bsI-eLL1EX

| z¢ wmﬂm
- <«—Oyb/s=-@
| o)

d3ddVyL
ATd3I30

Y

av(av /%1 +1)

JIddVHL A7IHVE

ONILY TNOH1O

|

-—




224

€¢ *81a

2b2-12218X




225

oY | :, L1 o I
2l 0.1 2 3 4 5 6 7
Trapped | Circulating  H,

XBL771-243

Fig. 34




226

O’_'C}’J, 2T

XBL771-245

Fig, 35




227

2T

XBL771-244

Fig. 36



228

Trapped ICircuIating [3+0
A

XBL772-292

Fig. 37



Stochastic

layer

- 229

Separatrix

10 20 30

Fig. 38

40 50 60

XBL 772-288



230 -

0.15
0.1:0":“
(A% Ho/uAB = 0.96
-0.05
riojlﬁLZS;Es =0
0T~ . |
0 10 20 30 40 50 60
wb(O)t

XBL 772-289 .

Fig. 39 _



231

1.8 — - —
. o ‘
2/'\ |
1.3 < -
302
| 4 ~.
0.8 ] L - b
’ 18 9 20 2]
l { | I,_ | _
2.8 (b) - —
| ) 4
-

XBL779-1846

Fig. 40



232

buijpinaiin | paddo.ij

DR

fo=0.4

-p « r?

8/7r'

XBL779-184l

41

Fig.



233

119-¢2.2.789X ¢y 314

uoijpbodoad
 9ADM




9

234

Ea E

”ti*

%m /-

Za &\

—>Wave propagation

Max rate of increase due to collisions

= |
=0/ \\ +V'

”ef,e/\\l . /Zﬁf -
= T NS L e TN~

-

2 NS

A
. [
Max rate of.incJe’ase due to collisions

XBLT773-610

Fig. 43



235

- Circulating

3 )

< .

Trapped

- Fig. 44

. XBL779-1843






This report was done with support from the Department of Energy.
Any conclusions or opinions expressed in this report represent solely
those of the author(s) and not necessarily those of The Regents of the
University of California, the Lawrence Berkeley Laboratory or the
Department of Energy.




TECHNICAL, INFORMA([ION DEPARTMENT
- LAWRENCE BERKELEY LABORATORY | . T |
' UNIVERSITY OF CALIFORNIA | | ‘ |
BERKELEY, CALIFORNIA 94720 "






