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Mechanisms Regulating Selective Gene Activation  

During the Innate Immune Response 

 

by 

 

Ann-Jay Tong 

Doctor of Philosophy in Molecular Biology 

University of California, Los Angeles, 2015 
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The cells of the innate immune system are responsible for the first line of defense against 

foreign dangers. Recognition of pathogens results in the transcriptional upregulation of a 

stimulus-specific inflammatory gene program to counteract infection and initiate adaptive 

immune responses. An appropriate response is necessary to resolve infection, but excessive 

inflammation can damage host tissues and lead to inflammatory diseases. Therefore, it is critical 

to understand how inflammatory responses are selectively achieved in response to diverse 

stimuli. The dissertation describes two studies that attempt to better understand the regulatory 

mechanisms underlying selective gene activation in response to inflammatory stimuli. The first 

study explores how signaling pathways, transcription factors, and chromatin act in concert to 

shape the inflammatory gene program. Using genome-wide techniques to interrogate 

chromatin-associated RNA, insight was gained into the lipid A-induced transcriptional cascade 

in macrophages. A quantitative analysis of transcription factor binding combined with kinetic and 

expression data derived from loss-of-function mutant mouse strains have allowed us to identify 

co-regulated genes, particularly those regulated by NF-κB, interferon response factor-3, and 
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serum response factor. Furthermore, subsets of co-regulated secondary response genes were 

found to play distinct roles in immunity, underscoring the diverse mechanisms underlying 

selective gene activation. This has revealed insight into the unique regulatory logic for each 

inflammatory gene, and serves as a framework for understanding selective gene activation in 

various physiological settings. The second study utilizes the findings from the first study to 

investigate the mechanisms of LPS tolerance. A global interrogation of the effects of LPS 

tolerance in macrophages revealed a broad downregulation of gene expression in the tolerant 

state. In addition, a large subset of inducible genes exhibited prolonged transcription even after 

the tolerizing dose of LPS was removed but before the second LPS treatment, which could be 

partially explained by the presence of other cytokines mediating their activation in the tolerant 

state. Furthermore, previously described negative regulators of LPS signal transduction were 

expressed at higher levels in tolerant macrophages, including those inhibiting signals proximal 

to the TLR4 receptor. Together, the framework for understanding the regulatory logic of 

selective gene activation that can be utilized to unravel the mechanisms underlying diverse 

inflammatory settings. 
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Introduction 
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A. Pathogen Recognition and Response in the Innate Immune System 

The immune response is central to the well-being and survival of all living organisms. A 

major task of the immune system is to distinguish self from non-self and generate a suitable 

response. Appropriate detection of foreign dangers such as pathogens is critical to protect 

against diseases and maintain host survival. In jawed vertebrates, the immune system is 

composed of two major strategies, the innate and adaptive immune systems. Because it is 

utilized by both vertebrates and invertebrates, the innate immune response is considered the 

more primitive form of immunity and is the first line of defense against foreign and 

environmental insults such as invading microorganisms and tissue injury1–5. Recognition of 

external threats occurs in a relatively non-specific and generic manner, and immunity is short-

lived. Upon recognition of foreign insults, cells of the innate immune system such as 

macrophages and dendritic cells recruit and direct other cells to the site of infection or injury by 

cytokine and chemokine secretion, release of antimicrobial factors that can directly combat 

infection, and initiate tissue repair and recovery1,3. In vertebrates, the innate immune response 

also serves as the key trigger of the adaptive immune response. In addition to antigen 

presentation to cells of the adaptive immune system, innate immune cells must provide the 

context of the infection by inducing proper signals such as specific cytokine release and co-

stimulatory molecule expression that instruct adaptive immune cells to mount the appropriate 

response5–7. The adaptive immune system, conserved in all jawed vertebrates, is composed of 

B and T lymphocytes that can be activated in a pathogen-specific manner by antigen-presenting 

cells (APCs) such as macrophages and dendritic cells, resulting in the elimination of the specific 

pathogen. Although activation of the adaptive immune system is delayed because it relies on 

signals from the innate immune response, adaptive immunity is long lasting and protective 

against subsequent infection by the same pathogen. Antigens from pathogens are processed 

into unique peptides and coupled to major histocompatibility complex (MHC) receptors on the 
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cell surface of APCs. In order to be able to recognize the diverse array of peptides, each 

lymphocyte bears a unique antigen-specific receptor established through V(D)J recombination. 

High affinity interactions between the antigen-MHC complex on APCs and antigen receptor on 

lymphocytes result in clonal expansion of the antigen-specific lymphocyte, removal of the 

specific pathogen and pathogen-infected cells, and development of long term memory to 

prevent subsequent infection by the pathogen.  

The immune response to foreign pathogens critically relies on the innate immune 

system. The initial innate immune response, although relatively non-specific, occurs rapidly 

upon detection to establish a pro-inflammatory and antimicrobial state in the host. Innate 

immune cells then recruit and activate adaptive immune cells through antigen presentation, 

resulting in a long term pathogen-specific response and protection. Thus, the innate immune 

response plays a vital role in mediating both early and long-term immunity against infection. 

A1. Pathogen Receptors 

The innate immune system is critical to immediate detection of pathogen or tissue 

damage and initiating a specific response towards the detected threat. In order to induce the 

appropriate immune response to clear infection and maintain immunity, the innate immune 

system must have the ability to sense a diverse array of microorganisms that infect hosts both 

extracellularly and intracellularly. Although the innate immune response is antigen non-specific, 

sensing mechanisms exist to differentiate between a wide range of pathogens. Mammalian 

innate immune cells as well as other nonprofessional cells of the immune system express a 

family of pattern recognition receptors (PRRs) found in various cellular locations. Unlike antigen 

receptors generated by somatic DNA recombination to establish antigen specificity, PRRs are 

germline-encoded receptors that have evolved to sense evolutionarily conserved elements 

found on microorganisms. These pathogen-associated molecular patterns (PAMPs) are 
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molecular structures uniquely found on the microorganism, thus providing the innate immune 

system with a mechanism to differentiate between self and non-self. Several classes of PRRs 

have been identified and characterized, including the Toll-like receptors, NOD-like receptors, 

RIG-I-like receptors, and cytosolic DNA sensors6,8. Members within each family of PRRs detect 

a unique PAMP, and effective sensing rapidly activates the innate immune response, leading to 

induction of proinflammatory cytokines, release of antimicrobial factors, and eventual clearance 

of pathogen. 

The first identified and most widely studied PRRs are the Toll-like receptor (TLR) family. 

Although initially identified as a regulator of development in fruit fly embryos9, Toll was later 

shown to play a critical role in fruit fly resistance to infection9,10. This led to a series of key 

advances including the cloning of the first human TLR gene presently known as TLR411, 

demonstration that activation of this human Toll receptor preceded NF-κB transcription factor 

activation and cytokine production11, and subsequent identification of lipopolysaccharide (LPS), 

an outer membrane component distinctly found on Gram-negative bacteria, as the ligand for 

TLR412–15. LPS is composed of three parts: the O-antigen, the core oligosaccharide, and lipid A, 

the major component contributing to the immunostimulatory effects of LPS16. To date, 10 TLRs 

in humans and 12 TLRs in mice have been identified, each specializing in detection of a unique 

PAMP derived from microorganisms ranging from bacteria, virus and fungi. TLR1, 2, 4, 5, and 6 

are expressed on the cell surface to sense extracellular threats such as bacteria and fungi, 

while TLR3, 7, 8, and 9 are restricted to the endocytic compartments to detect viral and bacterial 

nucleic acid1. Although TLRs were the first discovered and most extensively studied family of 

pathogen receptors, other PRR families nevertheless play non-redundant roles in pathogen 

recognition and innate immune activation. RIG-I-like receptors (RLRs) are specialized to detect 

cytosolic RNA from cells infected with RNA viruses, while NOD-like receptors (NLRs) are 

equipped to detect a wide range of cytoplasmic PAMPs3. The PAMPs recognized by various 
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PRRs are summarized in Table 1-11. Together, the diverse collection of PRRs utilized by innate 

immune cells to counteract the wide range of microorganisms infecting host cells and tissue 

demonstrate the mechanisms by which the innate system distinguishes self from foreign 

danger. Crucial to establishing immunity against pathogen is the generation of a suitable 

immune response, as defense against an extracellular microorganism requires a response 

different from events elicited in response to viral infection. Therefore, insight into events 

downstream of PRR activation is critical to advance our understanding of how the innate 

immune system coordinates a specific response program that leads to clearance of pathogen 

and long lasting immunity.  

A2. TLR4 Signal Transduction 

An essential role of the innate immune system is not only to detect foreign insults but to 

effectively transmit instructive signals from the pathogen receptor involved to the nucleus of the 

responding cell in order to upregulate transcription of particular inflammatory genes encoding 

proteins directing an immune response specific for the PRR activated. This requires 

coordination of receptors with molecules capable of triggering signaling cascades, resulting in 

activation of transcription factors that induce expression of distinct inflammatory genes. 

Specificity of the innate immune response is partially achieved by the adaptor molecules 

recruited to the intracellular tails of PRRs such as TLRs. TLRs are membrane-spanning 

receptors characterized by their N-terminal leucine-rich repeats (LRRs) and cytoplasmic Toll/IL-

1R (TIR) homology domain17. The TIR domain is homologous to the cytoplasmic domain of the 

IL-1R and is capable of eliciting an immune response through homotypic interactions with other 

TIR domain-containing signaling adaptors. There are currently six signaling adaptors that 

contain TIR domains and theoretically able to interact with TLRs: MyD88, TIRAP, TIR domain-

containing adaptor inducing IFN-β (TRIF or TICAM-1), TRAM, SARM, and BCAP2,18. MyD88 
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associates with all TLRs except TLR3, and TIRAP is required to bridge both TLR4 and TLR2 to 

MyD88. On the other hand, TRIF is recruited to the TIR domain of TLR3 and TLR4, with TLR4 

additionally requiring TRAM for TRIF-mediated signaling18. Thus, TLR4 is the only TLR member 

known to activate both MyD88-dependent and TRIF-dependent signaling cascades. SARM and 

BCAP adaptor molecules are more recently discovered and less well understood. Although 

human SARM molecules have an inhibitory role in TRIF-signaling, SARM expression is limited 

to the brain and not essential for macrophage function in mice1,18,19. Less is known about BCAP, 

but recent studies have hypothesized an immunosuppressive role of BCAP by linking TLRs to 

PI3K activation20. Still, it remains unclear which TLRs associate with SARM and BCAP. 

Nevertheless, the classical TIR domain-containing adaptors are central to the TLR response, 

and specific signals emanating from the activated TLR are dictated in part by the adaptors 

recruited.  

TLR4, the prototypic TLR, is unique in its ability to sequentially activate the distinct 

MyD88-dependent and TRIF-dependent signaling cascades to trigger a specific immune 

response (Figure 1-1). Importantly, while initiation of the MyD88-dependent signaling pathway 

occurs at the plasma membrane and culminates in the transcription of pro-inflammatory type 

genes, activation of the TRIF-dependent signaling pathway takes place from endosomes and 

leads to expression and synthesis of type I interferons (IFNs), critical regulators of the antiviral 

response21–23. Because TLR4 is unable to bind to LPS alone, LPS recognition occurs with the 

aid of accessory proteins and receptors such as LPS binding protein (LBP), CD14, and MD-218. 

As a result of LPS detection, TLR4 oligomerizes and rapidly undergoes conformational changes 

to recruit bridging adaptor TIRAP to the receptor at the plasma membrane. This in turn recruits 

MyD88 to the signaling apparatus. Death domains (DD) on MyD88 allow for homotypic 

interactions with other DD-containing signaling molecules such as IL-1R-associated-kinases-4 

(IRAK-4), one of four members of the IRAK family of kinases that play roles in early signal 
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transduction events in response to pathogen recognition2. IRAK4 subsequently interacts with 

TNFR-associated factor 6 (TRAF6), an E3 protein ubiquitin ligase that auto-ubiquitinates as well 

as ubiquitinates TGF-β-activated kinase 1 (TAK-1). TAK-1 then phosphorylates IkB kinase-β 

(IKK-β) and mitogen-activated kinase kinase 6 (MAPKK6), ultimately activating the NF-κB and 

MAPK signaling cascades, respectively. Soon after LPS triggering of TLR4 and MyD88-

dependent signaling events take place, TLR4 is endocytosed in a dynamin GTPase-mediated 

event that requires CD14 as well as the TRAM adaptor21,22. TRAM is responsible for shuttling of 

TLR4 from the plasma membrane to the early endosomes, allowing TRIF-dependent signaling 

events to occur. Activated TRIF associates with both TRAF6 and receptor-interacting protein 1 

(RIP1), resulting in late-phase activation of the NF-κB signaling pathway18. Importantly, 

activated TRIF also interacts with TRAF3, which in turn associates with TANK binding kinase 

(TBK1) and IKKi, two critical kinases mediating activation of the interferon regulatory factor 3 

(IRF3) transcription factor to regulate IFN-β gene expression1,19. Therefore, while TLR4 utilizes 

both MyD88-dependent and TRIF-dependent signaling cascades, the requirement of receptor 

endocytosis for TRIF-dependent signal transduction explains the delayed activity of TRIF-

mediated signals. MyD88 signals from the plasma membrane and results in activation of NF-κB 

and MAPK signaling cascades, while TRIF signals from the endosome to initiate the late-phase 

of the NF-κB and MAPK signaling cascades and uniquely activates IRF3, resulting in IFN-β 

gene expression and antiviral activity. The signaling events downstream of TLRs as well as the 

transcription factors that they activate are depicted in Figure 1-19. Thus, differential utilization of 

adaptor molecules downstream of pathogen recognition contributes to the specificity of the 

innate immune response. 
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A3. Transcriptional Regulation of the TLR4 Response 

 Precise control of gene expression by transcription factors activated in response to a 

microbe or other foreign danger is essential to maintain homeostasis and immunity. As 

discussed in the previous section, pathogen receptor detection of foreign dangers such as 

PAMPs initiates numerous signal transduction pathways, leading to the activation of 

transcription factors and other molecules that orchestrate gene expression to coordinate a 

response that is specific to the stimulus detected. Induction of the inflammatory and antiviral 

programs during the innate immune response is due to the transcriptional induction of genes 

encoding for cytokines such as TNF-α, IL-1β, and IFN-β.  Controlled expression of these genes 

are essential for effective defense against pathogens or host insults, as well as for prevention of 

unnecessary immune responses that can damage host tissues. Therefore, efforts have been 

made to understand the role of these transcription factors in effective immune function. Because 

TLR4 is considered the prototypical Toll-like receptor and critically relies on both MyD88 and 

TRIF signaling events for an effective immune response, signaling cascades emanating from 

this receptor will be discussed with greater emphasis. 

A3.1 NF-κB 

 Discovered over 25 years ago in B cells24, perhaps the most crucial and well-studied 

transcription factor involved in the regulation of the immune response is NF-κB, and its capacity 

to be activated by both MyD88-dependent and TRIF-dependent signaling pathways bolsters its 

importance for the immune response25. Moreover, NF-κB is central in the response to numerous 

other stimuli such as TNF-α and IL-126,27, in response to T and B cell activation24,28,29, and 

additionally influences expression of genes outside of the immune system in other cell types30–

32. The breadth of this transcription factor family suggests a complexity underlying its 

mechanisms of activation to result in a specific transcriptional output.  
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Classically, the initiation of the NF-κB signaling cascade begins with phosphorylation of 

the IκB kinase (IKK) complex, composed of IKKα, IKKβ, and NEMO, by upstream kinases such 

as TAK-133,34. Phosphorylation and activation of the IKK complex result in IκB protein 

phosphorylation, ubiquitination, and ultimately degradation. IκBs such as IκBα, IκBβ, and IκBε 

are inhibitory proteins that sequester NF-κB dimers in the cytoplasm, rendering them inactive35. 

Degradation of the IκBs, predominantly IκBα during the TLR response, allows translocation of 

NF-κB dimers into the nucleus and subsequent binding to κB sites at regulatory elements of 

genes. NF-κB comprises five family members: p65 (RelA), RelB, c-Rel, p50 (p105), and p52 

(p100)36. All members of this family are characterized by their N-terminal Rel homology domain 

(RHD) that is responsible for interaction with IκBs, DNA binding, and dimerization. Because of 

their ability to form both homo- and heterodimers, NF-κB can dimerize in 15 possible 

combinations. The transcriptional activation domain (TAD) that confers the ability to induce gene 

expression is present only on the C-terminal regions of p65, RelB, and c-Rel. Therefore, unless 

p50 or p52 heterodimerize with a TAD-containing NF-κB member, they are transcriptionally 

inactive but retain the ability to bind DNA and may function as transcriptional repressors. 

Additional modes of NF-κB regulation occur post-translationally and through DNA 

binding preferences. Phosphorylation of p65 at Ser276 is mediated by protein kinase A (PKA) to 

promote interaction with coactivators CREB binding protein (CBP) and p30037. The two 

cofactors subsequently mediate the acetylation of p65 at Lys310 to enhance transcription of NF-

κB target genes38. Notably, loss of phosphorylation of p65 at Ser276 only impaired subsets of 

NF-κB-responsive genes, suggesting differences in the requirements of these genes for 

activation33. Other kinases such as mitogen- and stress- activated protein kinases (MSK1 and 

MSK2) also phosphorylate p65 at Ser27639. Notably, MSK1 and MSK2 are activated by MAPK 

signaling pathways p38 and ERK, suggesting crosstalk between NF-κB and MAPK33. 
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Furthermore, recent studies have elucidated differences in dimer-DNA specific binding 

preferences and uncovered nonconsensus κB motifs40. Thus, selective gene activation by NF-

κB is not only limited to cell type specificity or dimer composition, but is contributed to by post-

translational modifications, coactivators involved, as well as dimer binding preferences to the 

regulatory sequences of target genes. The layer of mechanisms by which NF-κB can regulate 

gene expression emphasizes the complexity of mechanisms underlying specificity of the 

immune response. 

A3.2 IRF3 

 Another major signaling pathway initiated due to LPS sensing by TLR4 is one that 

results in the activation and translocation of the IRF3 transcription factor. In addition to their role 

in hematopoietic cell development and promoting adaptive immune responses, members of the 

IRF family of transcription factors such as IRF3 play an important role in response to pathogen 

sensing and are involved in diverse immune functions. IRFs are indispensable for the induction 

of genes encoding the type I interferons (IFNs) and are central to establish antiviral immunity41. 

TLR4 is only one of two TLRs capable of activating the IRF3 signaling pathway, thus 

underscoring the unique and selective regulatory role of IRF3 in response to TLR4 signaling. 

 The transcription factor family of interferon regulatory factors (IRFs) comprises nine 

members, IRF1-941,42. They are characterized by a conserved N-terminal 120 amino acid DNA 

binding domain and, with the exception of IRF1 and IRF2, a conserved C-terminal domain that 

is homologous to the C-terminal domain of the SMAD family of transcription factors. Although 

less is known about the precise functions of the C-terminal domain, it is thought to mediate 

protein interaction. Nevertheless, the DNA binding domain of IRF family members form a helix-

turn-helix domain that is capable of recognizing a common DNA motif known as the interferon-

stimulated response element (ISRE). ISREs are found in the regulatory regions of genes 
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encoding for type I IFNs as well as in the regulatory regions of numerous other genes involved 

in maintaining immunity43. 

Traditionally, IRFs have been studied in the context of viral infection. Even before the 

discovery of PRRs, it was observed that viral infections such as Newcastle disease virus (NDV; 

an ssRNA virus) and encephalomyocarditis virus (EMCV; an ssRNA virus) resulted in type I IFN 

expression44,45. This observation could be seen across all cell types, occurring through what we 

now know as the cytosolic PRRs discussed in the previous section. The first IRF discovered to 

function in type I IFN production was IRF1 through detection of viral RNAs by the cytosolic 

PRRs46. However, subsequent gene deletion studies determined that IRF1 is not essential for 

type I IFN production. This ultimately led to the discovery that IRF3 and IRF7 are largely 

responsible for type I IFN expression45,47. Although IRF3 and IRF7 are highly homologous, IRF3 

remains constitutively expressed in macrophages. Inactive IRF3 resides in the cytoplasm, and is 

activated upon phosphorylation to allow either homo- or hetero- dimerization with IRF3 or IRF7, 

respectively, and translocation into the nucleus48–50. On the other hand, IRF7 is minimally 

expressed in macrophages during steady state and its transcription is induced by type I IFN 

signaling51,52. Furthermore, biochemical studies have identified dimer-specific binding 

preferences to DNA43. Thus, although IRF3 and IRF7 both play critical roles during the innate 

immune response and offer a degree of redundancy, differences in their regulation suggest the 

selective roles they play in immunity.  

In the context of TLR4, activation of IRF3 is mediated through the TRIF-dependent 

module of the TLR4 signaling network53, as discussed above. Upon activation and endocytosis 

of TLR4, the TRIF signaling adapter is activated through the bridging adapter TRAM21,23. This 

ultimately results in TANK binding kinase (TBK1) and IKKi -mediated phosphorylation of IRF3 at 

carboxy-terminal serine residues 385 and 386, and between residues 396 and 405 at a serine 

and threonine cluster48,50. Phosphorylated IRF3 homodimerizes or heterodimerizes with IRF7 



12 
!

and translocates into the nucleus where IRF3 dimers can associate with co-activators such as 

CBP or p300 to bind target genes and initiate transcription48,50,54,55. TLR4 is one of only two TLR 

family members, the other being TLR3, capable of activating IRF3 to regulate transcription of 

IFN-β53.Thus, the IRF3 signaling pathway represents a unique and specialized mechanism 

utilized by innate immune cells to mount a specific immune response. 

A3.3 MAPK 

 The mitogen-activated protein kinases (MAPK) are a family of signal transducing 

enzymes that are involved in the cellular response to a diverse range of stimuli including 

oxidative stress, heat shock, inflammatory stimuli, and pathogens. The numerous members 

within this family of kinases, as well as the diversity of roles it plays in cellular regulation such as 

cell proliferation, survival, and programmed death indicate that MAPK signaling cascades are 

essential to cell integrity and function. The following section focuses on the role of MAPKs in 

transcriptional regulation and its contribution to the innate immune response. 

 The first MAP kinase discovered was extracellular signal regulated protein kinase 1 

(ERK1) followed by a closely related family member ERK256,57. The two kinases were found to 

play critical roles in growth factor signaling cascades, hence the term mitogen-activated. Of the 

14 MAPKs that have been described, ERK1, ERK2, p38α, Jun N-terminal kinase 1 (JNK1), and 

JNK2 have been implicated to be involved in mediating innate immune responses58. Each of 

these three MAPK groups, ERK, p38, and JNK, play a critical role in transducing signals in their 

respective signaling cascades. Generally, MAPK signaling cascades occur with a series of at 

least three kinases: a MAPK kinase kinase (MAP3K) that phosphorylates and activates a MAPK 

kinase (MAP2K), which in turn phosphorylates and activates a MAPK. The activated MAPKs 

then have the capability to either directly activate transcription factors or activate downstream 

kinases that regulate transcription factor activity. MAPK substrates contain a consensus motif 
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for phosphorylation, [Ser/Thr]-Pro56. Each MAPK has specific MAP2Ks that regulate their 

activities:  MEK1/2 for ERK1/2, MKK3/6 for p38, and MKK 4/7 for JNK1/259. On the other hand, 

the MAP3Ks involved in activation of the MAP2Ks are more complex and diverse. For example, 

although the MAP3K RAF is critical for activation of MEK1/2 following growth factor and antigen 

receptor stimulation60, the tumor progression locus 2 (TPL2) MAP3K has been shown to be 

critical in MEK1/2 activation for the ERK1/2 signaling pathway during innate immune 

responses61,62. Additionally, at least a dozen MAP3Ks, including MEKK1-4, TAO1/2, and 

MLK2/3, have been shown to have the capacity to activate both the p38 and JNK signaling 

pathways59, and specificity is partially dependent on the stimulus and cell type. Specificity of the 

MAP3Ks and MAP2Ks involved has also been attributed to scaffolding proteins that link different 

members of the cascade together63,64. Thus, although MAPKs can be activated by an array of 

upstream regulators, the diverse range of processes regulated by MAPK signaling pathways 

suggests mechanisms are in place to achieve specificity of the response.  

In the context of TLR signaling, TAK-1 is activated by TRAF6 during proximal TLR 

signaling events, as discussed above. TAK-1 acts as a MAP3K for both the p38 and JNK 

signaling pathways65–67. Additionally, TAK-1 indirectly activates MAP3K TPL2 to initiate the ERK 

signaling pathway68,69. In resting macrophages, TPL2 is held inactive in a complex with NF-κB 

member p105. Once TAK-1 is activated, it phosphorylates IκB kinase 2 (IKK2) to initiate 

proteolysis of p105, resulting in the release of TPL2 and subsequent activation of the ERK 

signaling pathway. Therefore, TAK-1 plays an indispensible role in MAPK activation and 

initiating innate immune responses.  

Once activated by immune stimuli, MAPKs can both directly and indirectly affect the 

transcription of genes. Activated JNKs enter the nucleus to phosphorylate and increase the 

activity of transcription factors c-Jun and ATF270. Additionally, the MAPK ERK1/2 
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phosphorylates and activates the Ets family of transcription factors such as ELK1 to form 

ternary complex factors (TCFs) with the constitutively bound and expressed serum response 

factor (SRF) in the regulatory region of genes such as Fos71. Fos, a transcriptional regulator, 

then dimerizes with active c-Jun members to form the AP-1 transcription factor complex. 

ERK1/2 and p38 can phosphorylate effector protein kinases such as MK2/3, MSK1/2, and RSKs 

that play diverse roles in regulating cellular processes59. In particular, MSK1 and MSK2 are 

nuclear kinases that phosphorylate and activate the transcription factor CREB1 to regulate its 

target genes72. Thus, the MAPK signal transduction pathways activate numerous transcription 

factors and effector kinases to play both direct and indirect roles in the innate immune response. 

Taken together, the precise transcriptional output in response to an external signal is 

determined by the activation of specific combinations of transcription factors. These 

transcription factors must be able to associate with DNA at regulatory elements in a sequence-

specific manner and recruit components of the transcription machinery, all in the context of 

chromatin. The following section will discuss chromatin biology and the constituents of the 

general transcription machinery, and their influence on the innate immune response.  

B. Chromatin Influence and Transcriptional Regulation at the Promoter 

 Although it is well established that signaling pathways and the transcription factors they 

activate play an indispensable role during the innate immune response, chromatin architecture 

represents an additional barrier of selective regulation contributing to gene expression because 

the basal transcription machinery is unable to associate with nucleosomal DNA. Furthermore, 

the promoters of genes are dense with sequence-specific binding sites and other conserved 

elements that recruit transcription factors and the general transcription machinery. Together, 

these components provide an additional complex layer of regulation in the activation of genes 

during the innate immune response. 
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B1. Chromatin Biology 

 Chromatin is a molecular complex composed of DNA wrapped around histones to form 

nucleosomes. Each nucleosome core is composed of 147 base pairs of DNA wrapped around a 

histone octamer containing two copies of each histone protein: H2A, H2B, H3, and H4. Linker 

histones such as H1 and H5 and histone variants such as H2A.Z, H2A.X, and H3.3 contribute to 

the integrity of chromatin structures73. The tightly wrapped nature of DNA around a nucleosome 

therefore prevents access to these genomic regions by most trans-acting elements. For 

example, nucleosomes occluding regulatory regions such as promoters prevent binding of 

sequence-specific transcription factors that do not have the capability to bind inaccessible 

nucleosomal DNA. However, core histone tails protruding away from the nucleosome can be 

post-translationally modified to relax nucleosome structures, provide docking sites for other 

recruited proteins, or enforce higher order chromatin structures. Furthermore, chromatin 

remodeling enzymes can displace nucleosomes from its genomic position in an ATP-dependent 

manner to alter accessibility to DNA. Therefore, this macromolecular complex not only allows for 

the compaction of DNA, but modulation of nucleosome structures provides an additional layer of 

regulation to ensure appropriate gene expression73. 

Initial DNase I hypersensitivity studies to examine nucleosome occupancy at cis-

regulatory regions of inflammatory genes revealed stimulus-dependent alterations in promoter 

accessibility, providing a link between changes in chromatin structure and inducible transcription 

of pro-inflammatory genes74–76. However, the initial studies did not uncover whether chromatin 

structure acts as a general barrier of transcriptional activation or contributes to selective 

induction of inflammatory genes. Thus, subsequent efforts made to clarify the role of chromatin 

in selective gene activation during the innate immune response will be discussed. 
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B2. Chromatin Remodeling Factors 

 There are two general classes of chromatin remodeling factors that play roles in 

transcriptional changes. The first are ATP-dependent nucleosome remodeling complexes such 

as SWI/SNF, ISWI, and Mi-2β77. These are multi-protein complexes that, through their catalytic 

subunits, use energy gained from ATP hydrolysis to loosen the interaction between DNA and 

histones. Binding does not occur in a sequence specific manner, but is recruited to gene 

promoters through protein interaction. The second class of chromatin modifiers implicated in 

transcriptional activation contains intrinsic acetyltransferase activity, including CREB binding 

protein (CBP), p300, and GCN5/PCAF73. Members of this class associate at promoters through 

interaction with DNA binding proteins such as transcription factors, and binding of these proteins 

result in histone acetylation and subsequent loosening of chromatin. Both classes of chromatin 

modifiers promote loosening of DNA from nucleosomes to allow the general transcription 

machinery to bind and increase gene expression, and the role of the ATP-dependent 

nucleosome remodeling complexes in the innate immune response will be further examined. 

One of the first studies of chromatin contributions in inducible gene activation during an 

immune response connected ATP-dependent nucleosome remodeling complex SWI/SNF 

recruitment to chromatin decondensation during T cell activation78. The SWI/SNF chromatin 

remodeling complex, through its catalytic subunit Brg1 or Brm, uses energy gained from ATP 

hydrolysis to loosen the interaction between DNA and histones79. The weakened contact 

between DNA and histones results in either sliding or eviction of nucleosomes. This exposes 

regulatory regions of DNA, allowing transcription factors or components of the general 

transcription machinery to interact with DNA and drive expression of target genes. 

Subsequent studies focused on nucleosome remodeling in the context of selective gene 

activation77,80. Loss-of-function studies on Brg1 and Brm of the SWI/SNF complex demonstrated 
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that some but not all genes require nucleosome remodeling by SWI/SNF for activation upon 

stimulation of macrophages with lipopolysaccharide (LPS). Importantly, genes induced with 

rapid kinetics tend to be SWI/SNF-independent while the SWI/SNF-dependent genes are 

activated with late kinetics in response to LPS. The rapidly activated SWI/SNF-independent 

genes exhibit an open and accessible chromatin structure in their promoters during both resting 

and activated states while the promoters of SWI/SNF-dependent genes are only accessible 

after LPS stimulation, indicating that LPS induces nucleosome remodeling of selective genes by 

the SWI/SNF complex. For example, these studies demonstrate that IRF3-dependent gene 

promoters are assembled into stable nucleosomes prior to activation80. Activation of these 

genes requires IRF3-facilitated SWI/SNF nucleosome remodeling, as LPS-induced promoter 

accessibility was blocked in IRF3-deficient macrophages. This suggests that IRF3 mediates 

inducible chromatin remodeling for a subset of SWI/SNF-dependent genes in response to LPS. 

Thus, upon TLR4 activation by LPS, select genes are activated with delayed kinetics 

due to their requirement on the SWI/SNF complex to displace nucleosomes that prevent 

accessibility to the promoter. Once remodeled, sequence-specific transcription factors, RNA 

polymerase II, and other components of the transcription machinery are recruited to the 

regulatory region of these genes to initiate transcription. Therefore, in addition to the variable 

requirement of genes for signaling pathways downstream of TLR4 or sequence-specific 

transcription factors, the availability of cis-elements for some genes and not others provides an 

additional regulatory layer that shapes selectivity of the innate immune response. 

B3. CpG Islands 

Loss-of-function studies on Brg1 and Brm subunits of the SWI/SNF nucleosome 

remodeling complex identified a select subset of rapidly induced genes that do not require 

chromatin restructuring for activation, as discussed above77,80. Promoter accessibility studies 
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demonstrated that these genes are not occluded by nucleosomes either before or after 

stimulation with LPS, indicating that their regulatory regions may have unique properties that 

contribute to their rapid kinetics of activation80. This would therefore provide another regulatory 

mechanism by which the innate immune system selectively upregulates transcription of specific 

subsets of genes. 

Importantly, an additional finding from these studies was the observation that many 

SWI/SNF-independent genes contain CpG islands (CGIs) in their promoters80. CGIs are long 

stretches of DNA found in vertebrate genomes with a high number of CpG dinucleotides, rich in 

G and C nucleotide composition, and are typically hypomethylated despite the more common 

occurrence of methylated CpG dinucleotides dotted throughout the genome81. Although 70% of 

transcribed genes are associated with CGIs in their promoters and therefore are closely linked 

to transcription, the functional significance of their presence is still being refined. These 

promoter-CGI-containing genes do not assemble into stable nucleosomes compared to 

promoters with low CpG content80. This supports the knowledge that properly spaced A and T 

nucleotides, which CGIs are not equipped with, provide the necessary structure for DNA to wrap 

around nucleosomes73. Furthermore, the SWI/SNF-independent genes that contain CGIs in 

their promoters had high basal levels of H3K4 trimethylation and acetylation, covalent histone 

modifications that mark actively transcribed genes80. Therefore, the finding that the majority of 

SWI/SNF-independent genes contain promoter CGIs supports the observation that they also do 

not form stable nucleosome structures, and indicate that these genes made be transcribed 

during the basal state.  

During the innate immune response, it is likely that SWI/SNF-independent genes are 

activated with rapid kinetics relative to the SWI/SNF-dependent genes due to their open 

chromatin formation in the resting state (Figure 1-2)82. Support for this comes from the finding 

that the promoters of these genes contain CpG islands. The presence of CGIs prevents 
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formation of stable nucleosomes, thereby circumventing the need for the SWI/SNF nucleosome 

remodeling complex to restructure chromatin prior to activation. The open chromatin formation 

may additionally allow transcription factors and the general transcription machinery to assemble 

at the promoter prior to activation, as evidenced by active histone marks in the basal state. 

Therefore, the chromatin status in gene promoters prior to its activation contributes to its 

activation kinetics, and represents an additional layer of regulation underlying selective 

activation of the innate immune response. 

B4. Promoters and the General Transcription Machinery 

Chromatin architecture plays an integral role in regulation of gene expression, as 

described above. Nucleosomal DNA prevents transcription factor binding and erroneous 

transcription by occlusion of cis-regulatory regions such as promoters and enhancers. The 

binding of transcriptional activators and co-activators initiates histone modification, chromatin 

reorganization and ultimately leads to transcription initiation through the general transcription 

machinery. Because enhancers can be found kilobases and megabases upstream or 

downstream from the transcription start site (TSS)73,83, it can be challenging to connect an 

enhancer to its target gene. On the other hand, promoters are well defined because they lie 

immediately proximal to the TSS and contain the elements necessary for the general 

transcription machinery to assemble73. Although both promoters and enhancers have been 

shown to be critical in facilitating transcriptional activation83–85, the function of promoters and its 

associated factors have been well documented due to its close proximity to the TSS and will be 

discussed in further detail. 

Promoters are cis-regulatory regions of DNA immediately upstream (5’) from the 

transcriptional start site (TSS), and can be divided into several elements: the core, proximal, 

and distal promoter73. The core promoter is defined as the region between +35 and -35 relative 
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to the TSS, and contains all of the elements necessary for the general transcription machinery 

to bind and initiate transcription86. The proximal promoter generally lies 250 base pairs 

upstream from the core promoter and contains most of the binding sites for transcription factors, 

while the distal promoter lies further upstream from the proximal and generally contains fewer 

transcription factor binding sites. 

The core promoter comprises several elements that facilitate binding of the general 

transcription machinery and pre-initiation complex (PIC) formation. These elements include, but 

are not limited to, the TATA box, initiator element (Inr), downstream promoter element (DPE), 

and B recognition element (BRE)73,86. Importantly, it is not necessary for core promoters to 

contain all of these elements, and some elements may only be found in some subsets of genes. 

For example, genes with CpG-island promoters tend to be depleted of TATA boxes and can 

initiate transcription from multiple sites81,86. In contrast, genes containing TATA boxes tend to 

have a rigid TSS 25 base pairs downstream from the TATA box86. The major role of the core 

promoter is to provide binding sites for the general transcription machinery to initiate 

transcription. This includes RNA Polymerase II (PolII) and the general transcription factors 

(GTFs): TFIID, TFIIA, TFIIB, TFIIF, TFIIE, and TFIIH. Notably, TATA binding protein (TBP) is a 

subunit of the TFIID complex along with the numerous TATA binding protein-associated factors 

(TAFs) that binds to the TATA box, while TFIIB can bind to the BRE86. 

Initiation of transcription begins with formation of the pre-initiation complex (PIC)73. At 

core promoters containing TATA boxes, binding of the TBP subunit of TFIID recruits subsequent 

binding of TFIIA and TFIIB to stabilize the complex. This recruits PolII and the remaining GTFs 

to the PIC. TFIIH, one of the last GTFs to associate with the pre-initiation complex, plays a 

critical role by facilitating promoter melting through energy gained from ATP hydrolysis. 

Importantly, this stage of transcription can be defined by phosphorylation of Ser-5 in the 

carboxy-terminal domain (CTD) of PolII. Phosphorylation at this site facilitates clearance away 
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from the promoter and binding of RNA capping enzymes that stabilize newly synthesized 

transcripts.  As PolII escapes from the promoter, it releases from the transcription machinery. 

Just downstream of the TSS, PolII stalls in a paused state due to negative elongation factors 

DSIF and NELF. Relief from the paused and into a productive elongation state is dependent on 

the positive transcription elongation factor P-Tefb. This protein is responsible for 

phosphorylating DSIF and NELF, causing them to disassociate from PolII. Additionally, P-Tefb 

phosphorylates Ser- 2 of the CTD to serve as the final transition from paused polymerase to full 

elongation of the transcript. 

In the context of the innate immune response, recent studies have implicated an 

additional layer of regulation at the level of promoter pausing and unpausing that is signal-

dependent, resulting in inflammatory genes activated with diverse kinetics87. Therefore, it is 

clear that selectivity of gene activation during the innate immune response is not simply 

governed by the transcription factors that are activated in a stimulus-specific manner. Recent 

efforts have demonstrated the essential role that chromatin and the basal transcription 

machinery plays in achieving specificity of gene activation in response to an innate immune 

stimulus80,87. For example, if a stimulus does not induce the IRF3 transcription factor, the 

SWI/SNF complex will be unable to remodel chromatin at the promoters of the IRF3-dependent 

genes. This prevents the IRF3-dependent genes from being transcribed since they are 

assembled into stable nucleosomes, while the genes that do not require nucleosome 

remodeling and remain in an open chromatin formation may be activated. Taken together, it is 

essential to uncover regulatory mechanisms at the signaling, transcription factor, and chromatin 

levels to understand the wiring of regulatory networks that confer gene selective responses. 
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C. Coordinated Control of Gene Expression: Interferon-β  

Transcriptional regulation of gene expression during infection is essential to establish an 

effective innate immune response to a pathogen. This response is a double-edged sword: on 

one hand, upregulation of antimicrobial genes is necessary for defense against and resolution of 

infection; on the other hand, prolonged or excessive inflammation leads to development of host 

tissue damage, chronic inflammatory disorders, and pro-tumor microenvironments. Expression 

of innate immune responsive genes must therefore be tightly regulated. To achieve this, 

coordinated control between specific combinations of transcription factors and the sites at which 

they are recruited is necessary, in order to direct the basal transcriptional machinery to the 

promoter. One classic example of a gene under tight regulation is the gene encoding for 

Interferon-β (IFN-β), IFNB1.  

The mechanisms of gene activation at the human IFNB1 gene  is perhaps the best 

characterized of all inducible inflammatory genes, due to its central role in antiviral immunity. 

Additionally, the multilayered contribution from numerous transcription factors and other 

regulatory proteins serves as a good model gene to study regulation by integrated signals. 

Termed the ‘enhanceosome’, this regulatory region of IFNB1 is nearly 100% conserved across 

all mammalian genomes88, suggesting a clear selective advantage throughout evolution for 

maintaining precise organization of the transcription factors involved. The enhanceosome spans 

a 55 base pair nucleosome-free region in the promoter, from -102 to -47 base pairs upstream of 

the transcription start site (TSS)88,89. Additionally, tightly clustered sequence-specific binding 

sites for ATF/c-Jun, interferon response factors IRF-3 and IRF-7, and NF-κB within the 55 base 

pair enhanceosome form a single composite binding element88, suggesting that there is a high 

level of cooperative and combinatorial binding to achieve a response.   
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The IFNB1 enhanceosome is divided into four positive regulatory domains (PRDs)89,90, 

each containing a sequence-specific binding motif for one of the factors described above 

(Figure 1-3). Beginning at the 5’ of the enhanceosome, ATF/c-Jun heterodimers bind to 

PRDIV91. ATF and c-Jun are members of the basic region leucine zipper (bZIP) transcription 

factor family that heterodimerize and bind to cyclic AMP recognition elements (CRE) 5’-

TGAGCTCA-3’92. Notably, the CRE found in the IFNB1 enhanceosome is uniquely 

asymmetrical due to the noncanonical 3’ half-site, 5’-TGACATAG-3’92. Structural studies 

demonstrate that the asymmetry of the site is critical for the binding orientation of ATF/c-Jun, as 

well as for cooperativity between the ATF/c-Jun dimers and IRF dimers at PRDIII88,91. IRF3 and 

IRF7 homo- and heterodimers bind to PRDIII and PRDI91,93,94, and are characterized by their 

amino-terminal DNA binding domains that recognize the IRF binding element/interferon 

stimulated response element (ISRE) 5’-AANNGAAA-3’. NF-κB, specifically the p50:RelA 

heterodimer, binds to PRDII at the 3’ end of the enhanceosome88,95. The NF-κB family of 

transcription factors are characterized by their highly conserved Rel Homology Region (RHR), 

and the canonical heterodimer p50:RelA recognizes the κB motif 5’-GGGAATTTCC-3’40. 

Although the enhanceosome itself is nucleosome free, two nucleosomes flank each end, with 

the 3’ nucleosome lying over the TATA box to limit basal transcription96. 

Upon signal-dependent activation of these transcription factors, HMGA1a, an 

architectural protein that associates with the minor groove of DNA, is recruited to the enhancer 

to promote a favorable DNA conformation for enhanceosome assembly97. The 8 transcription 

factors, p50:RelA, two IRF dimers, and an ATF/c-Jun dimer, then cooperatively bind to the 

enhanceosome88. Strikingly, crystal structures of these transcription factors bound to the 

enhanceosome indicate that there are minimal protein-protein interactions between them88,91. 

This is unconventional because the majority of cooperative binding studies demonstrate that 

cooperativity is driven by protein-protein interactions98. This suggests that cooperativity is 
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largely dictated by the DNA sequence and architecture itself. Indeed, structural studies show 

that the asymmetry of the CRE allows IRF dimers to bind at the adjacent overlapping motif91. 

Together, these factors bind to the DNA to form a unique composite surface that first recruits 

GCN5/PCAF, followed by recruitment of co-activator CBP/p300 with high affinity to all 

transcription factors96. CBP/p300 binding considerably increases the potency of IFNB1 

activation by recruiting RNA polymerase II (PolII), components of the basal transcription 

machinery, and the ATP-dependent nucleosome remodeling complex SWI/SNF99–101. SWI/SNF 

remodels the nucleosome positioned over the TATA box, allowing TBP association and 

formation of the pre-initiation complex102. Biochemical studies have demonstrated that binding of 

single components to the enhanceosome is unable to promote robust transcription, and a 

functional response only occurs when all of the transcription factors are present103. Indeed, 

TLR3 and TLR4 are the only TLRs able to induce IFNB1 because of their ability to signal 

through TRIF to activate IRF353. Therefore, the combination of specific transcription factors, 

coactivators, as well as the highly conserved 55 base pair region all play indispensable roles in 

ensuring regulated expression of IFNB1.  

The IFNB1 enhanceosome is a classic example of combinatorial control by numerous 

transcription factors to promote gene expression. Due to the highly specialized role of this 

cytokine in initiating the antiviral response, expression needs to be tightly regulated. The precise 

positioning of sequence specific motifs and nucleosomes ensure that expression of this gene is 

tightly regulated to prevent unnecessary synthesis of IFN-β.  

 In summary, innate immunity is critical for rapid protection against invading pathogens 

and initiating adaptive immunity. Additionally, the innate immune system must be able to 

distinguish different pathogen types. Detection of a pathogen results in upregulation of a 

transcriptional program that is stimulus and cell type specific. This selectivity is presumably due 
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to an integration of signals from multiple signal transduction cascades, and combinatorial 

activity from different subsets of transcription factors that are engaged. A challenge in the field 

has been gaining a deeper and more precise understanding of the events that underlie 

specificity of the response. Although work has been done to address this, one drawback of 

these studies are the small numbers of genes that may be interrogated due to a limitation in 

quantitative methods. With the molecular biology field being revolutionized by highly quantitative 

high-throughput methods, we now have an opportunity to understand transcriptional networks at 

a genome-wide level. In chapter 2, I will describe genome-wide approaches to uncover how 

expression dynamics, promoter properties, and control by specific transcription factors converge 

to shape the regulatory framework for the TLR4-induced transcriptome. Chapter 3 of the 

dissertation will apply and interrogate the principles of TLR4-mediated gene activation described 

in chapter 2 in a physiological context. The findings in chapter 3 demonstrate that the framework 

can be applied to diverse settings to reveal what signaling pathways are relevant in various 

disease settings. 
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Figure Legends 

Figure 1-1: The TLR Signaling Pathways 

TLR signaling is initiated after engagement of the receptor by its ligand. In the case of TLR4, 

this initiates both the MyD88 and TRIF signaling cascades, ultimately leading to activation of 

transcription factors such as NF-κB, AP-1, and IRF3 and transcription of pro-inflammatory and 

antimicrobial genes. 

 

Figure 1-2: Regulation of CpG-Island and Low CpG-Island Promoters at Inducible Genes 

CpG-island and low CpG-island promoters exhibit distinct chromatin characteristics that 

contribute to selective induction of genes. CpG-island promoters have an open chromatin 

structure that allows for rapid activation and are promiscuously induced. Low CpG-island 

promoters are often assembled into nucleosomes that preclude basal transcription, and 

nucleosome remodeling by the SWI/SNF complex is required for their activation. 

 

Figure 1-3: The IFN-β  Enhanceosome 

Type I interferon IFN-β is under tight regulation. The regulatory region of this gene lies between 

-102 and -47 base pairs relative to the transcription start site (TSS) and has been termed the 

‘enhanceosome’. Binding sites for ATF:c-Jun, IRF, and NF-κB are tightly packed into this 

region, and binding of all factors is necessary for cooperative activation of IFN-β. 
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Table 1-1: Pattern Recognition Receptors and their Ligands 

Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like receptors (NLRs), and C-type-

lectin receptors (CLRs) are broad classes of pattern recognition receptors (PRRs). RLRs and 

NLRs are found in the cytoplasm while CLRs are found on the plasma membrane. TLRs can be 

found either on the plasma membrane or endolysosomes. The ligands for PRRs are diverse, 

and are of bacterial, viral, fungal, or protozoan origin. 
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Figure 1-1: The TLR Signaling Pathways 

 

(O’Neill et al., 2013) 
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Figure 1-2: Regulation of CpG-Island and Low CpG-Island Promoters at Inducible Genes 

 

(Smale et al., 2014) 
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Figure 1-3: The IFN-β  Enhanceosome 

 

 

(Maniatis et al., 1998) 
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Table 1-1: Pattern Recognition Receptors and their Ligands 

 

(Takeuchi and Akira, 2010) 

 

 

 

 

 

 

 



32 
!

Works Cited 

1. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–

20 (2010). 

2. Kawai, T. & Akira, S. TLR signaling. Cell Death Differ. 13, 816–25 (2006). 

3. Kumar, H., Kawai, T. & Akira, S. Pathogen recognition by the innate immune system. Int. 

Rev. Immunol. 30, 16–34 (2011). 

4. Rakoff-Nahoum, S. & Medzhitov, R. Toll-like receptors and cancer. Nat. Rev. Cancer 9, 

57–63 (2009). 

5. Palm, N. W. & Medzhitov, R. Pattern recognition receptors and control of adaptive 

immunity. Immunol. Rev. 227, 221–33 (2009). 

6. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in 

infection and immunity. Immunity 34, 637–50 (2011). 

7. Janeway, C. A. Approaching the Asymptote? Evolution and Revolution in Immunology. 

Cold Spring Harb. Symp. Quant. Biol. 1–3 (1989). at 

<http://symposium.cshlp.org/content/54/1.full.pdf> 

8. Negishi, H. et al. Cross-interference of RLR and TLR signaling pathways modulates 

antibacterial T cell responses. Nat. Immunol. 13, 659–66 (2012). 

9. O’Neill, L. A. J., Golenbock, D. & Bowie, A. G. The history of Toll-like receptors - 

redefining innate immunity. Nat. Rev. Immunol. 13, 453–60 (2013). 



33 
!

10. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.-M. & Hoffmann, J. A. The 

Dorsoventral Regulatory Gene Cassette spätzle/Toll/cactus Controls the Potent 

Antifungal Response in Drosophila Adults. Cell 973–983 (1996). doi:80172-5 

11. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. . A human homologue of the 

Drosophila Toll protein signals activation of adaptive immunity. 388, 394–397 (1997). 

12. Gerard, C. Bacterial infection. For whom the bell tolls. Nature 395, 217, 219 (1998). 

13. Poltorak, A. Defective LPS Signaling in C3H/HeJ and C57BL/10ScCr Mice: Mutations in 

Tlr4 Gene. Science (80-. ). 282, 2085–2088 (1998). 

14. Qureshi, S. T. et al. Endotoxin-tolerant Mice Have Mutations in Toll-like Receptor 4 (Tlr4). 

J. Exp. Med. 189, 615–625 (1999). 

15. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are 

hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. 

Immunol. 162, 3749–52 (1999). 

16. Park, B. S. et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 

complex. Nature 458, 1191–5 (2009). 

17. Gay, N. J. & Gangloff, M. Structure and function of Toll receptors and their ligands. Annu. 

Rev. Biochem. 76, 141–65 (2007). 

18. Lu, Y.-C., Yeh, W.-C. & Ohashi, P. S. LPS/TLR4 signal transduction pathway. Cytokine 

42, 145–51 (2008). 



34 
!

19. Troutman, T. D., Bazan, J. F. & Pasare, C. Toll-like receptors, signaling adapters and 

regulation of the pro-inflammatory response by PI3K. Cell Cycle 11, 3559–67 (2012). 

20. Troutman, T. D. et al. Role for B-cell adapter for PI3K (BCAP) as a signaling adapter 

linking Toll-like receptors (TLRs) to serine/threonine kinases PI3K/Akt. Proc. Natl. Acad. 

Sci. U. S. A. 109, 273–8 (2012). 

21. Kagan, J. C. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of 

interferon-beta. Nat. Immunol. 9, 361–8 (2008). 

22. Zanoni, I. et al. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 

147, 868–80 (2011). 

23. Fitzgerald, K. A. et al. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll 

adapters TRAM and TRIF. J. Exp. Med. 198, 1043–55 (2003). 

24. Sen, R. & Baltimore, D. Multiple nuclear factors interact with the immunoglobulin 

enhancer sequences. Cell 46, 705–716 (1986). 

25. Werner, S. L., Barken, D. & Hoffmann, A. Stimulus specificity of gene expression 

programs determined by temporal control of IKK activity. Science 309, 1857–61 (2005). 

26. Liou, H.-C. & Baltimore, D. Regulation of the NF-ηB/rel transcription factor and IηB 

inhibitor system. Curr. Opin. Cell Biol. 5, 477–487 (1993). 

27. Wang, D. & Baldwin, A. S. Activation of Nuclear Factor- B-dependent Transcription by 

Tumor Necrosis Factor-  Is Mediated through Phosphorylation of RelA/p65 on Serine 529. 

J. Biol. Chem. 273, 29411–29416 (1998). 



35 
!

28. Kahn-Perles, B., Lipcey, C., Lecine, P., Olive, D. & Imbert, J. Temporal and Subunit-

specific Modulations of the Rel/NF- B Transcription Factors Through CD28 Costimulation. 

J. Biol. Chem. 272, 21774–21783 (1997). 

29. Pimentel-Muinos, F., Mazana, J. & Fresno, M. Regulation of interleukin-2 receptor alpha 

chain expression and nuclear factor.kappa B activation by protein kinase C in T 

lymphocytes. Autocrine role of tumor necrosis factor alpha. J. Biol. Chem. 269, 24424–

24429 (1994). 

30. Kaltschmidt, C., Kaltschmidt, B., Neumann, H., Wekerle, H. & Baeuerle, P. A. Constitutive 

NF-kappa B activity in neurons. Mol. Cell. Biol. 14, 3981–3992 (1994). 

31. Barkett, M. & Gilmore, T. D. Control of apoptosis by Rel/NF-kappaB transcription factors. 

Oncogene 18, 6910–24 (1999). 

32. Krishnamoorthy, R. R. et al. Photo-oxidative Stress Down-modulates the Activity of 

Nuclear Factor- B via Involvement of Caspase-1, Leading to Apoptosis of Photoreceptor 

Cells. J. Biol. Chem. 274, 3734–3743 (1999). 

33. Hayden, M. S. & Ghosh, S. Shared principles in NF-kappaB signaling. Cell 132, 344–62 

(2008). 

34. Hayden, M. S., West, A. P. & Ghosh, S. NF-kappaB and the immune response. 

Oncogene 25, 6758–80 (2006). 

35. Rao, P. et al. IkappaBbeta acts to inhibit and activate gene expression during the 

inflammatory response. Nature 466, 1115–9 (2010). 

36. Hayden, M. S. & Ghosh, S. Signaling to NF-kappaB. Genes Dev. 18, 2195–224 (2004). 



36 
!

37. Zhong, H., Voll, R. E. & Ghosh, S. Phosphorylation of NF-κB p65 by PKA Stimulates 

Transcriptional Activity by Promoting a Novel Bivalent Interaction with the Coactivator 

CBP/p300. Mol. Cell 1, 661–671 (1998). 

38. Chen, L. -f. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-

kappaB. EMBO J. 21, 6539–6548 (2002). 

39. Vermeulen, L., De Wilde, G., Van Damme, P., Vanden Berghe, W. & Haegeman, G. 

Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated 

protein kinase-1 (MSK1). EMBO J. 22, 1313–24 (2003). 

40. Siggers, T. et al. Principles of dimer-specific gene regulation revealed by a 

comprehensive characterization of NF-κB family DNA binding. Nat. Immunol. 13, 95–102 

(2012). 

41. Taniguchi, T., Ogasawara, K., Takaoka, A. & Tanaka, N. IRF family of transcription 

factors as regulators of host defense. Annu. Rev. Immunol. 19, 623–55 (2001). 

42. Honda, K. & Taniguchi, T. IRFs: master regulators of signalling by Toll-like receptors and 

cytosolic pattern-recognition receptors. Nat. Rev. Immunol. 6, 644–58 (2006). 

43. Levy, D. E., Kessler, D. S., Pine, R., Reich, N. & Darnell, J. E. Interferon-induced nuclear 

factors that bind a shared promoter element correlate with positive and negative 

transcriptional control. Genes Dev. 2, 383–393 (1988). 

44. Matsuyama, T. et al. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN 

gene induction and aberrant lymphocyte development. Cell 75, 83–97 (1993). 



37 
!

45. Sato, M. et al. Distinct and Essential Roles of Transcription Factors IRF-3 and IRF-7 in 

Response to Viruses for IFN-α/β Gene Induction. Immunity 13, 539–548 (2000). 

46. Miyamoto, M. et al. Regulated expression of a gene encoding a nuclear factor, IRF-1, that 

specifically binds to IFN-β gene regulatory elements. Cell 54, 903–913 (1988). 

47. Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune 

responses. Nature 434, 772–7 (2005). 

48. Lin, R., Heylbroeck, C., Pitha, P. M. & Hiscott, J. Virus-Dependent Phosphorylation of the 

IRF-3 Transcription Factor Regulates Nuclear Translocation, Transactivation Potential, 

and Proteasome-Mediated Degradation. Mol. Cell. Biol. 18, 2986–2996 (1998). 

49. Sato, M., Tanaka, N., Hata, N., Oda, E. & Taniguchi, T. Involvement of the IRF family 

transcription factor IRF-3 in virus-induced activation of the IFN-β gene. FEBS Lett. 425, 

112–116 (1998). 

50. Yoneyama, M. et al. Direct triggering of the type I interferon system by virus infection: 

Activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J. 17, 

1087–1095 (1998). 

51. Sato, M. et al. Positive feedback regulation of type I IFN genes by the IFN-inducible 

transcription factor IRF-7. FEBS Lett. 441, 106–110 (1998). 

52. Marié, I., Durbin, J. E. & Levy, D. E. Differential viral induction of distinct interferon-alpha 

genes by positive feedback through interferon regulatory factor-7. EMBO J. 17, 6660–

6669 (1998). 



38 
!

53. Doyle, S. E. et al. IRF3 Mediates a TLR3/TLR4-Specific Antiviral Gene Program. 

Immunity 17, 251–263 (2002). 

54. Parekh, B. S. & Maniatis, T. Virus Infection Leads to Localized Hyperacetylation of 

Histones H3 and H4 at the IFN-β Promoter. Mol. Cell 3, 125–129 (1999). 

55. Lin, R., Genin, P., Mamane, Y. & Hiscott, J. Selective DNA Binding and Association with 

the CREB Binding Protein Coactivator Contribute to Differential Activation of Alpha/Beta 

Interferon Genes by Interferon Regulatory Factors 3 and 7. Mol. Cell. Biol. 20, 6342–

6353 (2000). 

56. Pearson, G. et al. Mitogen-activated protein (MAP) kinase pathways: regulation and 

physiological functions. Endocr. Rev. 22, 153–83 (2001). 

57. Boulton, T. G. et al. ERKs: A family of protein-serine/threonine kinases that are activated 

and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663–675 (1991). 

58. Dong, C., Davis, R. J. & Flavell, R. A. MAP kinases in the immune response. Annu. Rev. 

Immunol. 20, 55–72 (2002). 

59. Arthur, J. S. C. & Ley, S. C. Mitogen-activated protein kinases in innate immunity. Nat. 

Rev. Immunol. 13, 679–92 (2013). 

60. Gupta, S., Weiss, A., Kumar, G., Wang, S. & Nel, A. The T-cell antigen receptor utilizes 

Lck, Raf-1, and MEK-1 for activating mitogen-activated protein kinase. Evidence for the 

existence of a second protein kinase C-dependent pathway in an Lck-negative Jurkat cell 

mutant. J. Biol. Chem. 269, 17349–17357 (1994). 



39 
!

61. Risco, A. et al. p38γ and p38δ kinases regulate the Toll-like receptor 4 (TLR4)-induced 

cytokine production by controlling ERK1/2 protein kinase pathway activation. Proc. Natl. 

Acad. Sci. U. S. A. 109, 11200–5 (2012). 

62. Yang, H.-T. et al. Coordinate regulation of TPL-2 and NF-κB signaling in macrophages by 

NF-κB1 p105. Mol. Cell. Biol. 32, 3438–51 (2012). 

63. Zou, H. et al. Differential requirement of MKK4 and MKK7 in JNK activation by distinct 

scaffold proteins. FEBS Lett. 581, 196–202 (2007). 

64. L, B. Mechanisms of MAPK signalling specificity. (2006). at 

<http://www.biochemsoctrans.org/bst/034/0837/bst0340837.htm> 

65. Ajibade, A. A. et al. TAK1 negatively regulates NF-κB and p38 MAP kinase activation in 

Gr-1+CD11b+ neutrophils. Immunity 36, 43–54 (2012). 

66. Sato, S. et al. Essential function for the kinase TAK1 in innate and adaptive immune 

responses. Nat. Immunol. 6, 1087–95 (2005). 

67. Shim, J.-H. et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple 

signaling pathways in vivo. Genes Dev. 19, 2668–81 (2005). 

68. Robinson, M. J., Beinke, S., Kouroumalis, A., Tsichlis, P. N. & Ley, S. C. Phosphorylation 

of TPL-2 on serine 400 is essential for lipopolysaccharide activation of extracellular 

signal-regulated kinase in macrophages. Mol. Cell. Biol. 27, 7355–64 (2007). 

69. Beinke, S., Robinson, M. J., Hugunin, M. & Ley, S. C. Lipopolysaccharide activation of 

the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase 



40 
!

cascade is regulated by IkappaB kinase-induced proteolysis of NF-kappaB1 p105. Mol. 

Cell. Biol. 24, 9658–67 (2004). 

70. Mendelson, K. G., Contois, L.-R., Tevosian, S. G., Davis, R. J. & Paulson, K. E. 

Independent regulation of JNK/p38 mitogen-activated protein kinases by metabolic 

oxidative stress in the liver. Proc. Natl. Acad. Sci. 93, 12908–12913 (1996). 

71. Marais, R., Wynne, J. & Treisman, R. The SRF accessory protein Elk-1 contains a growth 

factor-regulated transcriptional activation domain. Cell 73, 381–393 (1993). 

72. Ananieva, O. et al. The kinases MSK1 and MSK2 act as negative regulators of Toll-like 

receptor signaling. Nat. Immunol. 9, 1028–36 (2008). 

73. Carey, M., Petersen, C. & Smale, S. T. Transcriptional Regulation in Eukaryotes: 

Concepts, Strategies, and Techniques. (CSH Laboratory Press, 2008). 

74. Ward, S. B. et al. Chromatin remodeling of the interleukin-2 gene: Distinct alterations in 

the proximal versus distal enhancer regions. Nucleic Acids Res. 26, 2923–2934 (1998). 

75. Siebenlist, U. et al. Promoter region of interleukin-2 gene undergoes chromatin structure 

changes and confers inducibility on chloramphenicol acetyltransferase gene during 

activation of T cells. Mol. Cell. Biol. 6, 3042–3049 (1986). 

76. Agarwal, S. & Rao, A. Modulation of Chromatin Structure Regulates Cytokine Gene 

Expression during T Cell Differentiation. Immunity 9, 765–775 (1998). 

77. Ramirez-Carrozzi, V. R. et al. Selective and antagonistic functions of SWI/SNF and Mi-

2beta nucleosome remodeling complexes during an inflammatory response. Genes Dev. 

20, 282–96 (2006). 



41 
!

78. Zhao, K. et al. Rapid and Phosphoinositol-Dependent Binding of the SWI/SNF-like BAF 

Complex to Chromatin after T Lymphocyte Receptor Signaling. Cell 95, 625–636 (1998). 

79. Peterson, C. L. & Workman, J. L. Promoter targeting and chromatin remodeling by the 

SWI/SNF complex. Curr. Opin. Genet. Dev. 10, 187–192 (2000). 

80. Ramirez-Carrozzi, V. R. et al. A unifying model for the selective regulation of inducible 

transcription by CpG islands and nucleosome remodeling. Cell 138, 114–28 (2009). 

81. Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes Dev. 25, 

1010–22 (2011). 

82. Smale, S. T., Tarakhovsky, A. & Natoli, G. Chromatin contributions to the regulation of 

innate immunity. Annu. Rev. Immunol. 32, 489–511 (2014). 

83. Ghisletti, S. et al. Identification and characterization of enhancers controlling the 

inflammatory gene expression program in macrophages. Immunity 32, 317–28 (2010). 

84. De Santa, F. et al. A Large Fraction of Extragenic RNA Pol II Transcription Sites Overlap 

Enhancers. PLoS Biol. 8, e1000384 (2010). 

85. Sullivan, A. L. et al. Serum response factor utilizes distinct promoter- and enhancer-

based mechanisms to regulate cytoskeletal gene expression in macrophages. Mol. Cell. 

Biol. 31, 861–75 (2011). 

86. Butler, J. E. F. & Kadonaga, J. T. The RNA polymerase II core promoter: a key 

component in the regulation of gene expression. Genes Dev. 16, 2583–92 (2002). 



42 
!

87. Foster, S. L. & Medzhitov, R. Gene-specific control of the TLR-induced inflammatory 

response. Clin. Immunol. 130, 7–15 (2009). 

88. Panne, D., Maniatis, T. & Harrison, S. C. An atomic model of the interferon-beta 

enhanceosome. Cell 129, 1111–23 (2007). 

89. Thanos, D. & Maniatis, T. Virus induction of human IFNβ gene expression requires the 

assembly of an enhanceosome. Cell 83, 1091–1100 (1995). 

90. Maniatis, T. et al. Structure and Function of the Interferon- Enhanceosome. Cold Spring 

Harb. Symp. Quant. Biol. 63, 609–620 (1998). 

91. Panne, D., Maniatis, T. & Harrison, S. C. Crystal structure of ATF-2/c-Jun and IRF-3 

bound to the interferon-beta enhancer. EMBO J. 23, 4384–93 (2004). 

92. Falvo, J. V., Parekh, B. S., Lin, C. H., Fraenkel, E. & Maniatis, T. Assembly of a 

Functional Beta Interferon Enhanceosome Is Dependent on ATF-2-c-jun Heterodimer 

Orientation. Mol. Cell. Biol. 20, 4814–4825 (2000). 

93. Chen, W. et al. Insights into interferon regulatory factor activation from the crystal 

structure of dimeric IRF5. Nat. Struct. Mol. Biol. 15, 1213–20 (2008). 

94. Escalante, C. R., Nistal-Villán, E., Shen, L., García-Sastre, A. & Aggarwal, A. K. Structure 

of IRF-3 bound to the PRDIII-I regulatory element of the human interferon-beta enhancer. 

Mol. Cell 26, 703–16 (2007). 

95. Berkowitz, B., Huang, D.-B., Chen-Park, F. E., Sigler, P. B. & Ghosh, G. The x-ray crystal 

structure of the NF-kappa B p50.p65 heterodimer bound to the interferon beta -kappa B 

site. J. Biol. Chem. 277, 24694–700 (2002). 



43 
!

96. Agalioti, T. et al. Ordered Recruitment of Chromatin Modifying and General Transcription 

Factors to the IFN-β Promoter. Cell 103, 667–678 (2000). 

97. Thanos, D., Du, W. & Maniatis, T. The High Mobility Group Protein HMG I(Y) Is an 

Essential Structural Component of a Virus-inducible Enhancer Complex. Cold Spring 

Harb. Symp. Quant. Biol. 58, 73–81 (1993). 

98. Merika, M. & Thanos, D. Enhanceosomes. Curr. Opin. Genet. Dev. 11, 205–208 (2001). 

99. Merika, M., Williams, A. J., Chen, G., Collins, T. & Thanos, D. Recruitment of CBP/p300 

by the IFNβ Enhanceosome Is Required for Synergistic Activation of Transcription. Mol. 

Cell 1, 277–287 (1998). 

100. Kim, T. K., Kim, T. H. & Maniatis, T. Efficient recruitment of TFIIB and CBP-RNA 

polymerase II holoenzyme by an interferon-beta enhanceosome in vitro. Proc. Natl. Acad. 

Sci. U. S. A. 95, 12191–6 (1998). 

101. Yie, J., Senger, K. & Thanos, D. Mechanism by which the IFN-beta enhanceosome 

activates transcription. Proc. Natl. Acad. Sci. 96, 13108–13113 (1999). 

102. Lomvardas, S. & Thanos, D. Nucleosome Sliding via TBP DNA Binding In Vivo. Cell 106, 

685–696 (2001). 

103. Wathelet, M. Virus Infection Induces the Assembly of Coordinately Activated 

Transcription Factors on the IFN-? Enhancer In Vivo. Mol. Cell 1, 507–518 (1998).  

 



 44 

 

 

CHAPTER 2 

 

 

Quantitative Dissection of a Stimulus-Induced Transcriptional Cascade  

Reveals Common and Gene-Specific Regulatory Strategies 

 

 
 
 
 
 
 

 



 45 

Abstract  

Much has been learned about the regulation of stimulus-induced transcriptional cascades from 

large-scale systems analyses of hundreds or thousands of genes that exceed a minimal 

induction threshold and are grouped into large co-expression cluster. For this study, we 

hypothesized that new insights into the regulatory logic would emerge from an approach that 

separates strongly and weakly induced genes and relies heavily of quantitative aspects of high-

throughput data sets. To this end, we examined 226 genes whose primary transcripts are 

induced by a relatively large magnitude in mouse macrophages stimulated with lipid A. Our data 

suggest that these genes are regulated by mechanisms that generally differ from those used to 

regulate weakly induced genes. By combining quantitative consideration of induction 

magnitudes and kinetics with similarly quantitative analysis of loss-of-function, ChIP-seq, and 

binding motif data sets, we obtained insights into the relationships between NF−κB binding 

motifs and in vivo NF−κB binding and function. The results further suggest that the transcription 

factors IRF3 and SRF are dedicated to the regulation of surprisingly small numbers of strongly 

induced genes, with considerable gene-specific variation that reveals the extent to which each 

inducible gene is uniquely regulated. Together, our results reveal the value of focused analyses 

of limited numbers of genes for a mechanistic understanding of regulatory cascades.  

 

Introduction 

The molecular biology revolution of the mid-1970s was followed by a period of approximately 20 

years during which gene regulation was studied at the level of individual model genes. The 

emergence of DNA microarrays in the late 1990s combined with the availability of whole-

genome sequences opened new avenues toward the study of gene regulation at a global scale 

during development, in response to environmental stimuli, and in the context of disease. DNA 
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microarrays made it possible to identify groups of genes that characterize a cell type, 

developmental stage, environmental response, or disease state. This central method also made 

it possible to uncover transcriptional networks and examine the mechanisms by which these 

networks regulate physiological states and events. 

Despite the great value of microarrays, a limitation is that they often compress the 

magnitude with which mRNA levels are modulated, and the degree of compression can vary 

from gene to gene1. Because of the limited dynamic range and quantitative value of microarray 

data sets, a low threshold – often 1.5- to 2-fold – has generally been used to define a group of 

modulated genes of interest, and these genes are then considered equally in studies of the 

regulatory mechanisms. One benefit of this approach is that hundreds or thousands of 

modulated genes can be grouped together, providing considerable statistical power for the 

subsequent analysis. With this approach, microarray-based studied resulted in numerous major 

discoveries and they continue to be of great value. However, the quantitative limitations have 

presented a barrier for many efforts to dissect regulatory mechanisms. 

More recently, high-throughput sequencing technologies have led to the development of 

methods, including RNA sequencing (RNA-seq), that allow transcript levels to be evaluated at a 

global scale more accurately and quantitatively2. Although RNA-seq methods remain imperfect, 

their accuracy and larger dynamic range have opened new opportunities for meaningful 

mechanistic analyses of transcriptional cascades and networks.  

One physiological event that has been studied extensively at a global scale is the 

response of cells within the mouse innate immune system to inflammatory stimuli, with most 

studies focusing on the stimulation of macrophages or dendritic cells to lipopolysaccharide 

(LPS) or lipid A (the active component of LPS). LPS and lipid A are recognized by Toll-like 

receptor 4 (TLR4), which activates several signaling pathways to induce a robust transcriptional 
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cascade. Early studies used DNA microarrays to evaluate the kinetics with which genes 

modulated in response to the stimulus are activated and inactivated3–6. The promoters of co-

regulated genes exhibited enrichment for the binding sites of key transcription factors implicated 

in the inflammatory cascade, thereby providing a starting point toward a global understanding of 

the regulatory logic underlying the cascade. These early studies have been followed by large-

scale studies in which gene expression profiles obtained using microarrays or RNA-seq were 

combined with ChIP-seq data sets and siRNA knockdowns to evaluate the roles of specific 

signaling pathways, transcription factors, and chromatin-related events in the cascade7,8. RNA-

seq methods that monitor nascent transcripts rather than mRNA have also been employed to 

separate transcriptional regulation from the regulation of mRNA stability9–12.  

The results of these studies, performed by our laboratory and others, have provided 

considerable insight into mechanisms regulating the transcriptional cascade. However, a 

limitation of all of these genomics-based studies is that the results demonstrate trends and 

relatively loose relationships, while lacking precision and confidence in the direct or indirect 

roles of specific signaling pathways, transcription factors, and chromatin proteins in the 

regulation of individual genes within the cascade. One fundamental reason for the relatively low 

confidence of the results is that the functional relevance of transcription factor ChIP-seq peaks 

is difficult to evaluate, due to substantial evidence that some and perhaps most transcription 

factors bind opportunistically to many sites in addition to their functionally important 

interactions13–18. Even when ChIP-seq data sets are evaluated in the context of microarray and 

RNA-seq data sets, it is difficult to identify with confidence those genes that represent direct 

targets of a factor8,18–20.  

It could be argued that the next frontier is the development of experimental and 

bioinformatic strategies that allow the field to move from trends and loose relationships to 
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precise assignments of signaling molecules, transcription factors, and chromatin events to their 

direct targets.  

Here, we describe an effort to dissect the lipid A-induced transcriptional cascade by 

incorporating the quantitative value of nascent RNA-seq data sets, as well as ChIP-seq and 

transcription factor binding motif data sets. A fundamental aspect of this approach was the 

separation of genes induced by a large magnitude from those induced by smaller magnitudes, 

which are far more prevalent. The emphasis on potently induced genes created barriers 

because of the reduced statistical power of the subsequent analysis, thereby requiring careful 

consideration of strategies that may provide meaningful advances. The results presented 

provide critical insights into the logic through which the cascade is regulated and a framework 

on which a complete understanding of the cascade can be built. 

 

Results   

Basic Properties of the Lipid A-Induced Transcriptional Cascade 

To uncover principles regulating the lipid A-induced transcriptional cascade, we began by 

performing RNA-seq with RNA from mouse C57BL/6 bone marrow-derived macrophages 

(BMDMs) treated with lipid A for 0, 15, 30, 60, and 120 minutes. To separate transcriptional 

kinetics and the magnitudes of transcriptional activation and inactivation from influences of 

mRNA stability, the analysis was performed with nascent transcripts isolated from the chromatin 

of BMDMs. Although our long-term goal is to understand how both transcriptional and post-

transcriptional modes of regulation contribute to the gene expression cascade, a preferred 

approach is to evaluate the contributions of each regulatory mode in isolation, with the resulting 

insights then combined.  
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An initial analysis of three biological replicates of the nascent transcript RNA-seq 

experiment indicated that 3,863 (14.1%) of the 27,384 annotated Refseq genes (NCBI37/mm9, 

prior to removal of duplicate isoforms) reached an expression level of at least 3 RPKM in at 

least one of the time points. We focused on genes that reached a relatively high expression 

level of 3 RPKM because our subsequent analysis emphasized induction magnitude, which can 

be evaluated only if both the basal and induced transcript levels can be measured with 

confidence.  

Of the 3,863 genes expressed at 3 RPKM or greater, 1,340 (34.7%) were induced by at 

least 2-fold (p<0.01) (Figure 2-1A). Importantly, however, 57.8% of these genes were induced 

by less than 5-fold and 79.5% were induced by less than 10-fold, with only 14.7% induced by 

10-50-fold and 5.8% induced by greater than 50-fold (Figure 2-1A). If all genes induced by 2-

fold or greater were evaluated together, the analysis would be dominated by genes induced by 

less than 10-fold, which would likely mask key events involved in the regulation of the strongly 

induced genes. Notably, most induced genes encoding key cytokines, chemokines, effector 

molecules, and transcription factors known to play critical roles in immune regulation were 

induced by greater than 10-fold. For this reason, we chose to focus our analysis on the potently 

induced genes, with the resulting insights then examined in the context of the weakly induced 

genes (see below). It is noteworthy that the basal transcript levels of the weakly induced genes 

were generally higher than those of the strongly induced genes (Figure 2-1B).  

With the above considerations in mind, we focused our analysis on 226 inducible genes.  

215 of these genes were significantly (p<0.01) induced by at least 10-fold during the 2-hr 

induction period. The remaining 11 genes were transiently induced by 5-10-fold at the 15-min 

time point; these genes were added to capture a larger number of genes that are rapidly 

downregulated after their early induction. Notably, although the analysis focuses on only 226 

potently induced genes, their basal and peak transcript levels, as well as their fold-induction 
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values, were distributed over more than two orders of magnitude (Figure 2-1C); these broad 

distributions suggest that, despite the focus on a limited number of genes, the genes analyzed 

are likely to be regulated by diverse mechanisms. It is also noteworthy that all 226 genes are 

protein-coding genes. Detection of short RNAs were would require a different RNA-seq method; 

long non-coding RNAs were captured by this approach, yet no non-coding RNAs were induced 

by 10-fold while reaching the 3 RPKM expression threshold. 

 

Separation of Primary and Secondary Response Genes 

Among the many parameters that can be used to dissect the lipid A-induced transcriptional 

cascade, we chose to first separate primary and secondary response genes. Toward this goal, 

we performed RNA-seq with nascent transcripts from BMDMs stimulated with lipid A for 0, 30, 

60, and 120 min in the presence or absence of cycloheximide (CHX), an inhibitor of protein 

synthesis. (Please note that at least two complete biological replicates were performed for all 

RNA-seq experiments, with average RPKM and fold-induction values used for the bioinformatic 

analyses.) Analysis of maximum RPKM values for the 226 induced genes revealed 83 genes 

that were expressed at a level in CHX-treated cells that was <33% of the expression level in 

untreated cells (Figure 2-1D). These 83 genes were tentatively included in the secondary 

response group.  

IFN-β expression is induced by lipid A and is known to activate a Type I IFN gene 

program21,22. RNA-seq analysis of nascent transcripts from Type I IFN receptor (IFNAR)-

deficient (Ifnar-/-) BMDMs stimulated with lipid A revealed that 62 of the 226 inducible genes 

were expressed at less than 30% of wild-type (WT) (Figure 2-1D). Interestingly, 11 of these 62 

IFNAR-dependent genes were classified as primary response genes in the CHX analysis 

because they exhibited expression levels in the presence of CHX that placed them just above 
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the threshold used for classification as secondary response genes. Nevertheless, an analysis of 

their induction kinetics revealed greater similarity to the other IFNAR-dependent secondary 

response genes than to the primary response genes (data not shown; see Figure 2-3). Because 

of their strong IFNAR-dependence and their kinetic profiles, and because CHX may not 

completely inhibit protein synthesis and may have indirect effects on gene expression, these 11 

genes were added to the secondary response category (Figure 2-1D). Thus, 132 and 94 genes, 

respectively, were defined as primary and secondary response genes for the current analysis.  

It is important to emphasize that the thresholds and criteria used to separate genes into 

primary and secondary response groups are subject to debate. Furthermore, some genes 

appear to possess both primary and secondary response components (data not shown). Thus, 

the classification assignments will need to be re-evaluated frequently as our knowledge of the 

regulatory cascade increases.   

 

Separation of IFNAR-Dependent and -Independent Secondary Response Genes 

As described above, a central feature of the secondary response to lipid A stimulation is the 

activation of Type I IFN signaling via IFNAR. Therefore, as the next broad step toward 

characterizing the lipid A cascade, we separated secondary response genes into IFNAR-

dependent and IFNAR-independent groups. The assignment of genes was dictated primarily by 

the magnitude by which the expression of each secondary response gene was decreased in 

Ifnar-/- BMDMs in comparison to WT BMDMs. Strikingly, 42 of the 94 secondary response 

genes were expressed <10% of WT in Ifnar-/- BMDMs, with an additional 22 expressed 

between 10 and 33% (Figure 2-2A,B). Kinetic analysis revealed that 41 of the 42 genes that 

were expressed <10% of WT failed to reach an expression level in WT cells corresponding to 

10% of the maximum level until the 120-min time point (Figure 2-2C), indicating that a robust 
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transcription response to IFNAR signaling begins between 60 and 120 min post-stimulation. In 

contrast, 22 of the 23 secondary response genes that were largely unaltered in the Ifnar-/- cells 

(expression level >50% of WT) reached an expression level in WT cells corresponding to 10% 

of their maximum within 60 min of stimulation (Figure 2-2C). This finding suggests that the CHX-

sensitive events needed for activation of the IFNAR-independent secondary response genes 

generally occur much more rapidly than the autocrine/paracrine loop needed to activate the 

IFNAR-dependent genes.  

To separate IFNAR-dependent and -independent genes more carefully, we further 

examined the RNA-seq data sets from lipid A-stimulated Ifnar-/- macrophages, as well as 

additional RNA-seq data sets we generated from WT macrophages stimulated for 0, 15, 30, 60, 

and 120 min with Pam3CSK4 (PAM), a TLR2 ligand that does not induce strong IFNAR 

signaling22. Twenty-nine secondary response genes were identified that remained inducible in 

the absence of IFNAR signaling (Figure 2-2D, top). 

Interestingly, although these 29 IFNAR-independent secondary response genes were 

induced in PAM-stimulated WT BMDMs or in lipid A-stimulated Ifnar-/- BMDMs, a subset, 

including the critical T cell polarizing cytokines Il12b, Il6, Lif, and Il27, were induced much less 

potently by PAM than by lipid A (Figure 2-2D, bottom). This finding suggests that the TRIF 

pathway that is activated by lipid A but not by PAM may be important for the activation of these 

genes, but not due to its role in activating IFNAR signaling. Consistent with this possibility, a 

direct comparison of WT BMDMs to Trif-/- BMDMs revealed strong TRIF-dependence of these 

genes (Figure 2-2D, bottom). In fact, Il12b, Il6, Lif, and Il27 exhibited greater TRIF-dependence 

than any other primary or secondary response gene (Figure 2-2E). Together, the data suggest 

that lipid A induces the expression of key T-cell polarizing cytokines (Il12b, Il6, Lif, and Il27) 

much more potently than does PAM because the TRIF pathway strongly promotes the 

expression of these genes in an IFNAR-independent manner.  
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To better understand the significance of the regulatory strategies described above, we 

performed gene ontology analysis with our 132 primary response genes, the 65 IFNAR-

dependent secondary response genes, and the 29 IFNAR-independent secondary response 

genes (Figure 2-2F). The primary response gene analysis suggested broad roles in regulating 

inflammation and the quantities and functions of leukocytes and blood cells. As expected, the 

IFNAR-dependent secondary response genes were implicated in anti-viral responses. Most 

interestingly, the small group of IFNAR-independent secondary response class exhibited highly 

significant enrichment for genes that help regulate T cell proliferation, differentiation, and 

activation. Notably, the gene ontology program suggested that 14 of the 29 IFNAR-independent 

secondary response genes may be involved in the regulation of T cell responses. Eleven of 

these 14 genes are among the 13 IFNAR-independent secondary response genes that are most 

potently induced by lipid A (average induction of 376-fold for these 11 genes). Thus, these 

results reveal common regulatory features of a prominent group of genes that help bridge the 

innate and adaptive immune systems. Nevertheless, a careful examination reveals that the 

induction kinetics for each of these genes is unique (Figure 2-3), suggesting that gene-specific 

regulatory events are superimposed on top of their common characteristics of potent and rapid 

CHX-sensitive yet IFNAR-independent induction.  

 

Initial Analysis of Primary Response Genes 

Shifting our attention to the 132 primary response genes, we first examined their expression 

kinetics in greater detail by nascent transcript RNA-seq with lipid A-stimulated BMDMs collected 

every five min during the first hour of activation, with an additional 120-min time point. We also 

performed nascent transcript RNA-seq with BMDMs from mutant mice lacking signaling 

molecules or transcription factors known to play central roles in the lipid A response. 
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Specifically, WT BMDMs were compared to BMDMs from Myd88-/-, Trif-/-, Myd88-/-Trif-/-, and 

Irf3-/- mice, with samples collected 0, 30, 60, and 120 min after stimulation. We also performed 

RNA-seq with WT BMDMs stimulated with lipid A for 0, 15, 30, 60, and 120 min in the presence 

of ERK and p38 MAPK inhibitors; the two inhibitors were analyzed together in this analysis 

because little effect was observed in pilot experiments with each inhibitor alone. Two biological 

replicates were performed for each experiment, and each experiment analyzed nascent 

transcripts. The results consider the maximum induced RPKM observed in WT cells for each 

gene to be 100% and the basal RPKM observed in unstimulated WT cells to be 0%; the 

maximum induced RPKM observed in each mutant strain for each gene is then displayed as a 

percentage of the maximum WT RPKM.  

Figure 2-4A shows that each perturbation resulted in a continuum of effects on the 132 

primary response genes. For the purposes of this study, genes expressed <33% of WT were 

considered to be dependent on the factor that was eliminated or inhibited, but with the 

recognition that this solution is imperfect and will require continual refinement as our knowledge 

of the transcriptional cascade advances. By combining the data sets indicating the 

dependencies of each of the 132 genes with k-means cluster analysis of expression kinetics, an 

initial classification of the 132 primary response genes emerged (Figure 2-4D; see Figure 2-5 for 

gene names). Cluster 1 includes nine genes that exhibited reduced expression (<33% of WT) in 

both Trif-/- and Irf3-/- macrophages. Clusters 2-5 included 28 genes that exhibited reduced 

expression (<33% of WT) in Trif-/- macrophages but not in Irf3-/- macrophages (Figure 2-4B,D); 

these genes were subdivided by k-means analysis on the basis of their expression kinetics. 

Clusters 6-9 include 38 genes that exhibited reduced expression (<33%) in WT macrophages 

treated with both p38 and ERK MAPK inhibitors, but without strongly reduced expression in the 

Trif-/- macrophages; as above, the genes were subdivided by k-means analysis of expression 

kinetics (Figure 2-4D). Finally, Clusters 10-16 include the remaining 57 genes that did not 
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exhibit reduced expression in the presence of MAPK inhibitors or in the Trif-/- or Irf3-/- cells; 

these genes were divided into seven kinetic clusters by k-means analysis. It is noteworthy that 

only five of the 132 primary response genes exhibited reduced expression (<33%) in Myd88-/- 

cells (Figure 2-4C,D), in contrast to the eight of 29 IFNAR-independent secondary response 

genes. This finding is consistent with our previous analysis that implicated MyD88 more strongly 

in the regulation of secondary response genes than primary response genes in LPS-stimulated 

macrophages23. Importantly, no genes were induced in Myd88-/-Trif-/- mutant cells (data not 

shown).   

In addition to the degree of dependence of each primary response gene on MyD88, 

TRIF, IRF3, and MAPKs, Figure 2-4D indicates the basal transcript and fold-induction values for 

each gene, reflecting the broad ranges documented in Figure 2-1C. Furthermore, Figure 2-4D 

indicates which genes contain CpG-island promoters or low CpG (LCG) promoters. Consistent 

with our previous studies (Bhatt et al. 2012), all early transiently induced genes (e.g. Clusters 6 

and 10) contain CpG-island promoters and a high percentage of the most potently induced 

genes contain LCG promoters (e.g. Clusters 1 and 14), whereas the two promoter types are 

distributed among the other clusters according to rules that remain to be elucidated.  

 

Initial Transcription Factor Binding Motif and ChIP-Seq Analyses 

The above studies provide a framework for mechanistic dissection of the primary response to 

lipid A stimulation by 1. focusing attention on genes that are reduced relatively strongly, 2. 

separating primary response and secondary response genes, 3. using loss-of-function and 

inhibitor studies to identify genes that exhibit requirements for key signaling pathways and 

factors known to participate in the primary response, 4. clustering the genes on the basis of their 
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induction kinetics, and 5. displaying induction magnitudes and basal transcript levels along with  

promoter type (CpG-island vs. LCG).  

To extend this foundation toward a meaningful mechanistic understanding of the 

transcriptional cascade, we first evaluated the over-representation of transcription factor binding 

motifs within the promoters of genes within each of the 16 clusters in Figure 2-4D. The motif 

analysis results (Figure 2-6) provided initial insight into transcription factors that may regulate 

genes within each cluster. However, toward the goal of understanding the molecular logic 

through which the transcriptional cascade is regulated, the statistical enrichments revealed by 

this analysis were largely unsatisfying. For example, although NF-κB motifs are statistically 

enriched in the promoters of genes in several clusters, a closer analysis revealed considerable 

heterogeneity within each of these clusters, with only a subset of promoters in a cluster 

generally containing a strong NF-κB motif (data not shown). Statistical but imprecise 

enrichments were also apparent when examining published ChIP-seq data sets for NF-κB and 

other transcription factors known to participate in the response (data not shown). Additional 

strategies are therefore needed to move beyond statistical enrichments toward more precise 

and meaningful insights into the logical control of a stimulus-induced transcriptional cascade. 

 

Quantitative Analysis of NF-κB’s Contribution to the Transcriptional Cascade 

Because of its common role in regulating inducible transcription in response to inflammatory 

stimuli, we first focused on NF-κB. In an effort to address the uncertainties associated with the 

interpretation of both ChIP-seq and binding motif data sets, we envisioned that quantitative and 

simultaneous consideration of both types of data may be of value. As a first step, NF-κB ChIP-

seq peak scores and binding motif scores were plotted for the promoters (-500 to +150 relative 

to the transcription start site [TSS]) of each of the 132 primary response genes (Figure 2-7A). 
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For NF-κB motifs, we took advantage of recent protein binding microarray (PBM) analyses in 

which relative binding of different NF-κB dimeric species to a broad range of DNA sequence 

motifs was examined experimentally24. ChIP-seq experiments were then performed with 

antibodies targeting RelA, a subunit of the most abundant NF-κB dimer (RelA:p50) thought to 

be involved in transcriptional activation in response to TLR4 signaling. ChIP-seq experiments 

were performed with BMDBs stimulated with lipid A for 0, 15, 30, 60, and 120 min, followed by 

stringent peak-calling and a focus on peaks observed in multiple biological replicates (see 

Experimental Procedures). Analysis of the RelA ChIP-seq data sets revealed 8,458 total peaks, 

with 942 promoter peaks among 21,168 annotated Refseq genes.  

When focusing on the promoters of the 132 strongly induced primary response genes, 

an interesting relationship between ChIP-seq peak scores and binding motif Z scores emerged. 

Specifically, a motif Z score threshold emerged that resulted in a high probability of a strong 

ChIP-seq peak; 37 of 44 promoters (84%) containing an NF−κB motif exceeding a Z score of 

6.4 supported strong RelA binding (ChIP-seq peak >19), whereas only 20 of 88 promoters 

(23%) whose strongest NF-κB motif was below this same threshold supported similarly strong 

binding (Figure 2-7A, left, 4B, left).  On the basis of this initial observation, promoters were 

separated into six distinct classes for further analysis, including three ChIP-seq categories (no 

binding, peak strength <19, and peak strength >19) and two motif categories (Z score <6.4 and 

>6.4).  

To evaluate the significance of these classifications, we examined promoters for all other 

annotated genes. A visual examination of the graph in Figure 2-7A (right) revealed that the vast 

majority of RelA ChIP-seq promoter peaks in genes that do not represent strongly induced 

primary response genes were associated with promoters with relatively weak motifs (<6.4, 

Figure 2-7A, right). For a closer examination, annotated genes were separated into five groups: 
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the 132 strongly induced primary response genes, the 94 strongly induced secondary response 

genes, 732 genes induced between 2 and 10 fold, 1732 genes that were expressed at a 

nascent transcript level >3 RPKM but without induction, and the remaining 18,487 annotated 

genes expressed at a transcript level <3 RPKM.   

An examination of the ChIP-seq/motif categories for genes in each of these five classes 

revealed extensive enrichment of genes whose promoters combined strong ChIP-seq peaks 

and strong NF-κB motifs among the strongly induced primary response gene class. Specifically, 

whereas 28% (37/132) of the strongly induced primary response genes combined strong ChIP-

seq peaks and motifs, only 1.6% (27/1723) of expressed but uninduced genes combined strong 

peaks and motifs. In contrast, little or no enrichment of strongly induced primary response 

genes was observed in four of the other ChIP-seq/motif categories (weak peak/strong motif, 

weak peak/weak motif, no peak/strong motif, no peak/weak motif). Substantial enrichment in the 

primary response gene class was observed for only one other ChIP-seq/motif category: those 

that combined a strong ChIP-seq peak with a weak motif (15.2% of strongly induced primary 

response genes versus 3.8% of expressed uninduced genes).  

The strong enrichment of promoters that combine strong ChIP-seq peaks and motifs in 

the group of 132 strongly induced primary response genes suggests that most or all of the 37 

primary response genes possessing these properties are directly activated by RelA-containing 

dimers via direct promoter binding. The ability to define a motif threshold (Z score=6.4) above 

which 84% of promoters supported strong NF-κB binding is interesting to consider in light of 

previous models suggesting that NF-κB may usually interact functionally with weak motifs25,26. 

Instead, the data suggest that a strong NF-κB motif as defined by PBM analysis is usually 

sufficient to support strong NF-κB binding to an inducible promoter. 
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The significant but lesser enrichment of promoters with strong NF-κB peaks and weak 

binding motifs among the strongly induced primary response genes is also of interest. In these 

promoters, NF-κB may bind directly to weak motifs, perhaps via cooperative binding with other 

transcription factors. Alternatively, NF-κB may be recruited to these promoters by other 

transcription factors, or the NF-κB ChIP-seq signal could be due to looping of an NF-κB-bound 

enhancer to the promoter. Importantly, fewer primary response genes were found in this strong 

ChIP-seq peak/weak motif category than in the strong ChIP-seq/strong motif category, 

suggesting that NF-κB usually associates with promoters via direct binding to strong motifs. 

An examination of the 732 genes induced by 2-10-fold provides additional insights. A 

higher percentage of genes in this weakly induced class (5.9%) contain strong NF-κB peaks 

and motifs than in the class of genes that is expressed but not induced (1.6%). This enrichment 

suggests that a subset of weakly induced genes is regulated by NF-κB binding to strong motifs. 

However, a much smaller percentage of genes in this 2-10-fold induced class (5.9%) combine 

strong NF-κB peaks and motifs than in the strongly induced primary response gene class 

(28%), suggesting that a much smaller fraction of the weakly induced genes is regulated by 

direct binding of NF-κB to strong promoter motifs.  

 

Examination of NF-κB regulated genes 

A major goal of this study is to elucidate the logic through which the lipid A-induced 

transcriptional cascade is regulated. This issue not only concerns the question of how a diverse 

array of factors and pathways contribute to the cascade, but also the question of whether 

specific factors arbitrarily regulate individual genes or whether an underlying logic exists. An 

examination of the identities of the 37 strongly induced primary response genes that combine 
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strong ChIP-seq peaks and strong motifs provides compelling evidence of an underlying logic. 

Specifically, over a third of these genes (13 of 37, see Figure 2-7C) encode NF-κB or IκB family 

members or key regulators of NF-κB activation, including three NF-κB family members (Nfkb1, 

Nfkb2, and RelB), five IκB family members (Nfkbia, Nfkbib, Nfkbid, Nfkbie, and Nfikbiz), two NF-

κB-inducing receptors (Tlr2 and Cd40), and three regulators of NF-κB activation (Tnfaip3, 

Tnip3, and Traf1). Strikingly, these 13 genes represent the only NF-κB/IκB family members or 

direct regulators of NF-κB signaling in the entire group of 132 primary response genes. It is 

noteworthy that the promoters of genes encoding the two NF-κB family members (Rela and Rel) 

and one IκB family member (Bcl3) missing from this list also combine a strong RelA ChIP-seq 

peak with a strong NF-κB motif (Figure 2-7F); these three genes were not among the 132 

strongly induced primary response genes because their magnitudes of induction did not reach 

the 10-fold threshold. 

Figure 2-7C shows the complete list of genes that combine strong ChIP-seq peaks and 

motifs, along with the strongest NF-κB binding motif found in each promoter on the basis of the 

PBM data. The strong binding observed at the 37 primary response genes in this category can 

be accounted for by only 21 different motifs, as some motifs are found in two or more of the 

promoters. An examination of these motifs shows that each adheres to one of two motif 

definitions: (G/T)GG(G/A)(N)(A/T)(T/G)(T/C)CC (17 motifs) or (G/A)GGGG(G/A)(T/A)TT(T/C) (4 

motifs).  

The evidence that a high level of similarity to the optimal NF-κB consensus may be 

needed for consistent NF-κB binding in the RelA ChIP-seq experiments was initially surprising, 

given the formal possibility that NF-κB might often bind to weak motifs via cooperative binding 

with other factors. However, additional support for the significance of this finding is provided by 

an examination of binding motif enrichment at the 132 primary response genes in comparison to 



 61 

the 1,723 expressed but uninduced, without any consideration of ChIP-seq peaks. Specifically, 

motifs with Z scores above 8.0 were strongly enriched among in the promoters of the 132 

primary response genes. Motifs with Z scores between 6.0 and 7.9 were weakly enriched, but 

no enrichment was observed with motifs with Z scores below 6.0 (Figure 2-7G).  

One remaining question is the reason seven promoters with motifs exceeding the 

threshold of 6.4 did not support detectable RelA binding in the ChIP-seq experiments. Three of 

these motifs possess high Z scores (8.4-8.6) and their sequences clearly conform to the 

consensus that would be expected to support strong NF-κB binding (Figure 2-7D). It is 

noteworthy, however, that two of these three motifs are at a distance upstream of their 

corresponding TSS (-310 and -395) that exceeds the distance of all but five of the 37 promoters 

that support NF-κB binding (Figure 2-7D). We hypothesize that these two motifs do not support 

binding in vivo because they are occluded by nucleosomes flanking the promoter. Similarly, the 

third strong motif is located farther downstream from the TSS (+137) than the motifs found in 

the 37 promoters that support strong NF-κB binding, suggesting that this motif may also be 

masked by a nucleosome. The four remaining motifs that fail to support binding possess Z 

scores between 6.7 and 7.4. On the basis of an examination of these motifs, we speculate that 

their Z scores may be defined inaccurately due to limitations of the PBM method. It is 

noteworthy that one of these motifs is found in two different primary response promoters, and 

none of these motifs match the 21 motifs in Figure 2-7C that coincided with RelA ChIP-seq 

peaks. We tentatively conclude that the Z score threshold of 6.4, although a fairly consistent 

indicator of capacity for NF-κB binding, is imperfect, perhaps due to imperfections in the PBM 

values or because other subtle features of the promoter environment can influence NF-κB 

binding to motifs in the borderline Z score range. 
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To summarize, we found evidence that considerable insight can be provided by 

classification of promoters on the basis of quantitative and simultaneous consideration of ChIP-

seq peak scores and PBM Z scores. Notably, a parallel analysis using Transfac position weight 

matrix (PWM) scores rather than PBM Z scores was also of value, but with slightly less 

predictive accuracy (data not shown), presumably because PBM scores, unlike Transfac 

scores, are based on a direct experimental evaluation of protein binding to each motif 

sequence. We found that promoters combining strong ChIP-seq peaks and binding motifs are 

greatly enriched in a quantitatively defined group of strongly induced primary response genes. 

This combination of properties does not appear to have evolved randomly, as all NF-κB and IκB 

family members and regulators of NF-κB signaling within the group of primary response genes 

fall into this category. The results strongly suggest that a single strong motif in a nucleosome-

depleted promoter region is sufficient for strong NF-κB binding, with evidence that a protein-

DNA interaction affinity threshold usually must be exceeded to support binding. Our data also 

suggest that only a small percentage of weakly induced genes (2-10-fold) are regulated by 

direct binding of NF-κB to a strong promoter motif. A major question that remains to be 

answered is the significance of NF-κB ChIP-seq peaks at a limited number of promoters that 

lack strong motifs, given that the vast majority of promoters containing similarly weak motifs do 

not support binding.  

 

Kinetic and Functional Analysis of Putative NF-κB Targets 

The above results suggest that the 37 strongly induced primary response genes combining 

strong ChIP-seq peaks and motifs are strong candidates for genes that are directly regulated by 

canonical RelA:p50 NF-κB dimers. To test this prediction, we examined the activation kinetics 

for these genes, as well as their dependence on RelA. An examination of the activation kinetics 
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revealed that most of these genes are first upregulated between 10 and 20 minutes after lipid A 

stimulation. This is evident from the third graph in Figure 2-9A, in which the fold-increase in 

RPKM relative to the preceding time point is highlighted. It is noteworthy that, although most of 

these genes are initially upregulated at approximately the same time, their expression kinetics 

are quite diverse, implicating other factors in their regulation. It is noteworthy that putative NF-

κB target genes that are also dependent on MAPK signaling were, on average, induced slightly 

earlier than the other putative target genes (Figure 2-9C).   

We also examined RelA dependence by comparing WT and Rela-/- fetal liver-derived 

macrophages. A wide range of dependencies was observed (Figure 2-9A, right), possibly due to 

redundancy with c-Rel. However, most of the genes with strong NF-κB ChIP-seq peaks and 

binding motifs in their promoters exhibited considerable RelA dependence. It is noteworthy that 

3 of these 37 genes did not exhibit significant RelA dependence; at these genes, NF-κB 

promoter binding may not regulate induction or greater redundancy may exist between different 

NF-κB family members. 

Since most genes containing strong NF-κB ChIP-seq peaks and binding motifs in their 

promoters are induced with similar activation kinetics and contain considerable RelA 

dependence, we asked whether these functional properties are restricted to genes whose 

promoters contain strong ChIP-seq peaks and motifs. Interestingly, several other primary 

response genes exhibited similar activation kinetics and/or degrees of RelA-dependence (Figure 

2-9B,D). A subset of these genes contains RelA ChIP-seq peaks in their promoters (Figure 2-

9B, right), but most do not. The significance of this finding is difficult to determine from these 

data, but we speculate that NF-κB directly regulates these genes by binding to distant 

enhancers. Consistent with this possibility, RelA ChIP-seq peaks are found at variable distances 
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from many primary response genes (Figure 2-8), although it is difficult to determine the 

significance of these peaks and the specific genes these binding events might regulate. 

  

Gene-Specific Regulation of IRF3-Dependent Genes 

Although most studies of transcriptional cascades and networks focus on large clusters of co-

regulated genes, our quantitative analysis of a limited number of potently induced genes 

provides a glimpse of the fact that many genes are subject to unique modes of regulation, 

whereas others fall into very small groups of co-regulated genes. This concept is exemplified by 

an examination of primary response genes that exhibit strong dependence on the transcription 

factor, IRF3. As shown in Figure 2-4, only 9 of the 132 strongly reduced primary response 

genes exhibited expression levels in both Irf3-/- and Trif-/- macrophages that fail to reach 33% 

of the expression level observed in WT macrophages. As shown in Figure 2-9, five of these 

genes are contained within the group of 37 primary response genes containing strong NF-κB 

ChIP-seq peaks and motifs; the other four lack RelA binding and NF-κB motifs. The kinetic 

profiles of these 9 genes are shown in Figure 2-11A. One notable difference between the five 

genes that appear to be regulated by both NF-κB and IRF3 versus the four genes regulated by 

IRF3 alone is that the induction magnitude of the former group is much higher than that of the 

latter group, with average induction magnitudes of 643-fold and 40-fold, respectively (Figure 2-

11A,B).  

A careful examination of the five genes that appear to be regulated by both NF-κB and 

IRF3 is especially revealing with respect to the extent to which genes have evolved unique 

regulatory strategies. Among this group, the expression kinetics of Ccl5 and Ifnb1 are unique, 

whereas Cxcl10, Gbp5, and Irg1 exhibit greater similarity to each other (Figure 2-11A). These 

latter three genes are initially induced 10-15 min. post-stimulation, the time at which most NF-
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κB-dependent genes are induced. Consistent with the hypothesis that NF-κB contributes to this 

early induction, RelA ChIP-seq peaks were observed at these genes by 15 min after lipid A 

stimulation (Figure 2-11A, right). Furthermore, their early induction is unaltered in Irf3-/- 

macrophages (data not shown). The IRF3-dependence of these genes is observed only at later 

time points, when IRF3 is activated and appears to synergize with NF-κB to support potent 

induction.  

Interestingly, Ccl5 is unique in comparison to these three genes and all other primary 

response genes. Ccl5 transcriptional induction was not observed until the 25 min time point 

(Figure 2-11A). Furthermore, RelA binding was not observed at this gene until the 30 min time 

point (Figure 2-11A, right). We previously used a restriction enzyme accessibility assay to 

document inducible nucleosome remodeling at the Ccl5 promoter and we showed that this 

nucleosome remodeling event was not observed in Irf3-/- macrophages27. Thus, Ccl5 appears 

to employ a unique mode of regulation in which transcriptional activation requires an IRF3-

dependent nucleosome remodeling event to provide NF-κB with access to its promoter binding 

site, with NF-κB and IRF3 then presumably synergizing to support the potent 1,700-fold 

induction of this gene. Notably, Ccl5 was the only primary response gene bound by RelA that 

lacked a called RelA ChIP-seq peak at the 15-min time point (Figure 2-9A, right; Figure 2-11A, 

right).  

Ifnb1 is one of the best-studied inducible genes, yet its regulatory mechanisms also 

appear to be unique. Transcriptional induction of this gene was not observed until the 35-min 

time point. However, in contrast to the properties of Ccl5, RelA binding to the Ifnb1 promoter 

was observed at all induced time points examined (Figure 2-11A, right). This early binding is 

consistent with extensive prior evidence that the promoter region containing the NF-κB and 

IRF3 binding sites lacks a nucleosome in unstimulated cells28. Nevertheless, despite the 
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observed binding of NF-κB upon its early activation, transcriptional induction of Ifnb1 was not 

observed until 35 min post-stimulation, consistent with prior evidence that activation is strongly 

dependent on synergy between NF-κB, IRF3, and ATF-2/c-Jun complex29.  

Although high-quality ChIP-seq data with IRF3 antibodies in mouse cells have not been 

obtained, an examination of NF-κB and IRF3 binding motifs revealed that consensus IRF3 

motifs accompany the strong NF-κB motifs in all five of these promoters (Figure 2-11C). The 

distances between the IRF3 and NF-κB motifs range from 2-bp in the Ifnb1 promoter to 55 bp in 

the Ccl5 promoter (Figure 2-11D). Interestingly, of the four IRF3-dependent genes that do not 

contain strong NF-κB motifs, only one gene (Isg15) contained an IRF3 motif of similar strength 

to those found in the genes containing strong NF-κB motifs (Figure 2-11C,D). Thus, IRF3 may 

regulate the other three genes by binding a more distant site or via an indirect mechanism.  

Together, these results begin to reveal the extent to which a quantitative, gene-centric 

analysis can begin to move toward an understanding of the unique molecular mechanisms used 

to regulate key genes in the transcriptional cascade. Although previous studies raised the 

hypothesis that IRF3 and NF-κB cooperatively activate hundreds or thousands of genes30, the 

results presented here demonstrate that only five primary response genes induced by greater 

than 10-fold combine strong NF-κB binding, strong IRF3-dependence, and a strong IRF3 motif. 

We cannot rule out the possibility that these two factors collaborate at distant enhancers, but if 

such collaboration occurs at the enhancers of strongly induced primary response genes, it does 

not appear to result in strong IRF3-dependence. Thus, functionally significant collaboration 

between these two key factors may occur at a much smaller number of inducible genes than 

expected.  
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Regulation of Transiently Transcribed Genes by Serum Response Factor (SRF)  

From a direct visualization of the initial cluster analysis in Figure 2-4, the most distinctive cluster 

is arguably Cluster 6. Genes in this MAPK-dependent cluster exhibit rapid upregulation within 5 

min of lipid A stimulation, with downregulation of nascent transcripts by the 30 or 35 minute time 

points. This cluster contains only three genes, Egr1, Fos, and Nr4a1, yet the initial binding motif 

analysis suggests enrichment of binding sites for SRF in their promoters. Because SRF has 

been implicated in the induction of these genes in response to a broad range of stimuli, we 

examined SRF binding by ChIP-seq at a genome-wide scale in macrophages stimulated with 

lipid A for 0, 15, 30, 60, and 120 minutes. Because we did not observe kinetic changes in SRF 

binding, the analysis was followed by focusing on reproducible called peaks across all five time 

points. 

Interestingly, the SRF ChIP-seq data sets yielded the strongest ChIP-seq signals we 

have detected to date with any transcription factor we have examined, as well as the greatest 

specificity of binding, with only a small number of peaks. A simultaneous examination of SRF 

ChIP-seq peaks and Transfac Position Weight Matrix (PWM)-defined motifs at the promoters of 

the 132 strongly induced primary response genes revealed that only seven promoters contain 

strong ChIP-seq peaks (ChIP-seq score >10) and all seven promoters contain strong motifs 

(Transfac score >90) (Figure 2-11E). No strong ChIP-seq peaks were observed at this group of 

promoters in the absence of a strong motif and only two promoters contained a strong motif 

without a strong ChIP-seq peak; both of these motifs are quite far from their TSS (-306 and -

331), raising the possibility that they are occluded by nucleosomes. Thus, as with NF−κB, 

strong binding of SRF is closely correlated with peak strength, suggesting that weaker SRF 

motifs do not support binding via cooperative interactions with other factors. 
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Surprisingly, an examination of the remaining 21,036 annotated genes revealed only 39 

additional genes that reach the same peak and motif thresholds achieved by the 7 binding 

events observed within the small primary response group (Figure 2-11E,F). Instead, the vast 

majority of binding events observed in other gene classes combined either strong or weak ChIP-

seq peaks with a motif of a strength that supports SRF binding in only a small fraction of 

instances (Figure 2-11E,F). Thus, although only 7 of the 132 strongly induced primary response 

genes contain strong SRF ChIP-seq peaks and motifs, this represents a great enrichment 

relative to all other gene classes; notably, only 5 of 732 genes in the 2-10-fold class (Ralgapa1, 

Filip1l, Actg1, Lima1, Glipr1) contain strong SRF peaks and motifs in their promoters. 

A closer examination of the seven genes that contain strong SRF ChIP-seq peaks and 

motifs supports the hypothesis that six of these genes are functional targets of SRF. This group 

includes the three genes found within cluster 6 of Figure 2-4A (Egr1, Fos, and Nr4a1) along with 

four additional genes (Egr2, Dusp5, Zfp36, and Rnd3). In an analysis of the magnitude of 

induction at each time point relative to the previous time point ((Xn/Xn-1; Figure 2-11G, third 

panel), we found that all but Rnd3 are initially upregulated during the first 5 min of lipid A 

stimulation, and all but Rnd3 are dependent on MAPK signaling for their induction. The similar 

initial induction kinetics is apparent from an examination of the fold-change in signal at each 

time point relative to the previous time point (Figure 2-11G). MAPKs are known to be 

responsible for activation of the ternary complex factors (TCFs) that serve as critical co-

activators for SRF31–33. The fact that Rnd3 is activated with different kinetics and does not 

exhibit MAPK dependence suggests that the strong binding of SRF to an SRF consensus 

sequence in its promoter may not have functional consequences, or activation of this gene may 

require a second class of SRF co-activator proteins that are not activated by MAPK signaling34.  

Interestingly, an examination of the overall induction kinetics for this group of seven 

genes explains why only three were placed in the same kinetic cluster in Figure 2-4A: these 
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three genes exhibit relatively uniform kinetics of transcriptional induction and repression, 

whereas Egr2, Dusp5, and Zfp36, although initially induced at the same 5-min time point, are 

either further upregulated at later time points (Egr2 and Dusp5) or are upregulated less potently 

and downregulated more slowly (Zfp36). These results therefore illustrate the necessity for 

careful evaluation of multiple types of data and multiple parameters within a data set to gain 

insight into the direct functional targets of transcription factors. 

Lastly, an analysis of the 132 primary response genes led to the identification of only two 

additional genes that exhibit similarly rapid induction kinetics as the six genes discussed above: 

Btg2 and Ier2. These two genes lack promoter ChIP-seq peaks and motifs for SRF, but instead 

were among the group of genes containing strong NF-κB ChIP-seq peaks in their promoters. 

This finding raises the question of how these two genes achieve induction kinetics similar to 

those of the genes whose promoters are directly bound by SRF. Interestingly, both of these 

genes were found to contain strong SRF ChIP-seq peaks at upstream regions that coincide with 

CpG islands and are conserved through evolution (Figure 2-12B). The SRF peak at the Btg2 

locus is 10 kb upstream of the TSS, whereas the SRF peak at the Ier2 locus is 1 kb upstream of 

the TSS. Remarkably, only three other primary response genes contain strong SRF ChIP-seq 

peaks within 10 kb of their TSS (upstream of the promoter), indicating that this property is rare. 

These results support a hypothesis in which SRF contributes to the early transient induction of 

these genes by cooperating with NF-κB bound to the promoters. We further speculate that this 

arrangement allows these two genes to be induced most potently by stimuli that induce both 

NF−κB and SRF, whereas cooperation between these two factors may not occur at the other 

SRF targets. It is noteworthy, however, that neither gene exhibited dependence on RelA, 

suggesting that SRF is the dominant regulator of transcription in cells that induce both NF−κB 

and SRF, or that RelA acts redundantly with other NF−κB family members (e.g. c-Rel) to 

regulate these genes. 
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Discussion 

Through integration of quantitative information from chromatin RNA-seq, ChIP-seq, and 

transcription factor binding motif datasets, we have gained valuable insight into the regulatory 

mechanisms that govern transcriptional cascades in response to an inflammatory stimulus. 

Furthermore, the focused analysis on a limited number of potently induced genes provided us 

with insight into regulatory differences between the potently induced and the more prevalent 

weakly induced genes. 

By assessing gene expression in both CHX-treated and Ifnar-/- RNA-seq datasets, we 

classified 132 and 94 potently induced genes as primary and secondary response, respectively. 

Based on SRF ChIP-seq analysis in combination with SRF binding motif analysis and MAPK 

sensitivity in MAPK inhibitor-treated macrophages, we found that the SRF targets were among 

the most rapidly and transiently induced genes in response to lipid A (Figure 2-13A). Of the 

remaining primary response genes, two exhibited similar rapid and transient kinetics. 

Interestingly, not only did both genes have SRF binding in evolutionary conserved regions 

between 1-10 kb upstream from the TSS, but both also displayed strong promoter RelA binding, 

suggesting that NF-κB and SRF collaborate in the regulation of a subset of genes. 

Similarly, by taking into consideration the quantitative information from RelA ChIP-seq 

and p50:RelA binding motif datasets, along with RelA dependence and kinetic expression 

profiles, we identified 37 putative NF-κB target genes. The majority of these genes exhibited 

similar changes in expression at the 10-15 minute time point (Figure 2-13A, second panel). 

Although the majority of the NF-κB target genes exhibited a characteristic change in expression 

between 10 and 15 minutes, it is important to note that their activation dynamics were not 

entirely homogeneous. For example, the NF-κB targets were sub-classified into those that also 

require MAPK based on their expression in MAPK-deficient macrophages (NF-κB/MAPK). This 
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subset of genes was activated earlier than the NF-κB targets that also required IRF3 (NF-

κB/IRF3). The NF-κB/IRF3 targets, which were sub-classified based on their low expression in 

TRIF- and IRF3- deficient macrophages, were activated with delayed kinetics compared to other 

NF-κB target genes, suggesting that IRF3 contributed to their delayed expression. This supports 

the idea that the distinct expression kinetics within the NF-κB target genes was due to 

collaboration of NF-κB with other transcription factors or signaling pathways. 

Strikingly, all of the key regulators of NF-κB signaling and regulation contained in the 

potently induced primary response were targets of NF-κB itself, indicating that there is an 

underlying logic that may explain the framework for inducible transcription. Examination of the 

remaining primary response genes identified a number of genes that exhibited similar activation 

kinetics and/or RelA-dependence despite the absence of strong κB motifs or RelA binding 

peaks. While most of these genes did not have significant RelA peaks in the promoter, many of 

them had RelA peaks within 10kb from the TSS. This suggests that the subset of genes that do 

not have strong RelA binding in the promoters but exhibit similar activation kinetics and/or RelA 

dependence could be regulated by NF-κB at enhancers. Taken together, we hypothesize that 

the promoter-binding RelA targets are inducible in diverse cell types, while the subset of 

proposed enhancer-regulated NF-κB target genes are activated in a cell type specific manner.  

In addition to a subset of NF-κB/IRF3 regulated genes, we identified a relatively small 

number of IRF3 (but not NF-κB) target genes based on their low expression in Trif-/- and Irf3-/- 

macrophages. Comparison of these two subsets of genes revealed that the IRF3/NF-κB targets 

were activated slightly earlier and with much higher potency than the IRF3 targets. We 

speculate that this is due to NF-κB translocation into the nucleus soon after lipid A treatment, 

followed by delayed activation of IRF3 to enhance transcription of the target genes. It is 

important to note that these are not generalizable rules governing activation of this subset of 
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genes. Although similar, the activation kinetics within the small subset of IRF3/NF-κB target 

genes was not homogeneous, indicating that each gene is likely to have unique mechanisms 

that regulate their activation. For example, previous studies have shown that Ccl5 requires 

promoter nucleosome remodeling in an IRF3-dependent manner for its activation. The finding 

that Ccl5 is the only IRF3/NF-κB target gene with delayed RelA binding at the promoter, and 

that this delay corresponds with delayed activation of Ccl5 (discussed in Figure 2-11A) suggests 

a model in which RelA binding at the Ccl5 promoter occurs only after an IRF3-mediated 

nucleosome remodeling event. 

The secondary response genes were categorized based on their dependence on IFNAR. 

Using RNA-seq datasets derived from PAM-stimulated wildtype macrophages and lipid A-

stimulated Ifnar-/- macrophages, 29 and 65 genes were classified as IFNAR-independent and 

IFNAR-dependent, respectively (Figure 2-13B). Examination of their activation profiles revealed 

distinct expression kinetics between the two subsets of genes, where the IFNAR-independent 

genes were activated with earlier kinetics relative to the IFNAR-dependent genes. Additionally, 

we identified key T cell polarizing cytokines such as Il12b, Il6, Il27, and Lif as IFNAR-

independent. Further gene ontology analysis revealed that all of the most potently induced 

IFNAR-independent genes played roles in communicating with and initiating the adaptive 

immune response, while the IFNAR-dependent genes were critical for antimicrobial responses. 

Interestingly, prior studies have demonstrated that IFNAR-independent genes such as Il12b, Il6, 

and Nos2 require nucleosome remodeling at the promoter for their activation. Together, this 

suggests that the IFNAR-independent genes likely have unique mechanisms regulating their 

activation. 

Lastly, there were small subsets of MAPK-dependent and TRIF-dependent genes 

(Figure 2-13A). There was also a smaller subset of genes that could not be classified based on 

the criteria examined in this study. Further investigation is needed to understand what 
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transcription factors regulate these subsets of genes. However, the mechanistic framework 

established by this quantitative analysis has provided important insight towards understanding 

the regulatory logic underlying selective transcription in response to external stimuli and in 

different cell types. 

 

Experimental Procedures 

Cell Culture and Reagents 

Bone marrow-derived macrophages were prepared from 6-week-old C57BL/6, Myd88-/-, Trif-/-, 

Irf3-/-, or Ifnar-/- male mice.  Fetal liver macrophages were prepared from D14.5 C57BL/6 or 

p65-/- embryos. Macrophages were activated on day 6 with lipid A (100 ng/ml) (Sigma) or 

Pam3CSK4 (100 ng/ml) (InvivoGen). When indicated, macrophages were preincubated for 15 

minutes with cycloheximide (10 mg/ml) or 1 hour with PD0325901 (10 mM) (Sigma) and 

BIRB0796 (1 mM) (AXON Medchem) prior to activation. 

 

RNA and RNA-seq Library Preparation 

Subcellular fractions of macrophages were prepared as described12. Chromatin purity was 

confirmed by immunoblot analysis of SNRP70, b-Tubulin (Sigma), and H3 (Abcam). Total RNA 

and chromatin RNA were isolated using TRI-reagent (MRC) followed by RNeasy columns 

(Qiagen). RNA was treated with RNase-free DNase I (Qiagen) prior to elution into RNase-free 

water. Chromatin RNA was depleted of ribosomal RNA using the Ribominus Eukaryote kit (Life 

Technologies). Strand-specific libraries were generated by using 60 ng chromatin RNA or 400 

ng total RNA according to manufacturers instruction from the TruSeq RNA Sample Preparation 

Kit v2 (Illumina), with the following modifications: second strand cDNA was synthesized in the 
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presence of deoxyuridine triphosphate (dUTP) according to the dUTP method35. cDNA libraries 

were single-end sequenced (50bp) on an Illumina HiSeq 2000.  

 

RNA-seq Read Mapping and Processing 

Reads were aligned to the mouse genome (NCBI37/mm9 build) with TopHat v1.3.3 and 

allowing reads to be aligned once with up to two mismatches per read permitted. RPKM values 

were calculated as described2. Since chromatin transcripts are largely unspliced, RPKM values 

were calculated by counting all mapped reads within the transcription unit and divided by the 

length of the whole locus. mRNA RPKM values were calculated by counting all reads mapped to 

exons and divided by the length of the spliced product. 

All RPKMs represent an average from two biological replicates. Genes were included in 

the analysis if they met all of the following requirements: The maximum RPKM value must reach 

3 at any of the lipid A-stimulated time points, the fold induction level relative to the basal RPKM 

reached 10-fold, and the induced expression level was significantly different from the basal 

expression level (P<0.01), as determined by the EdgeR package in R Bioconductor36. 

Additionally, a gene was also included for further analysis if the fold induction relative to the 

basal RPKM reached 5-fold at the 15-minute time point of lipid A treatment.  

Co-expressed gene classes were classified based on their dependence for the following 

factors, in the following order: IRF3, TRIF, MAPK, and unclassified. The genes in each class 

were then sub-clustered into k-means co-expression clusters using Cluster337 with log2 

normalized RPKM values.  

To determine the dependence of a gene for a factor, the percent expression relative to 

wildtype C57BL/6 expression was used. The basal RPKM value for each gene in wildtype 
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samples was set to 0% and the maximum RPKM value for that gene was scaled to 100%. The 

RPKMs in the knockout samples were converted to percent expression using this scale. For 

Myd88-/-, Trif-/-, Irf3-/-, Ifnar-/-, cycloheximide-treated, and MAPK inhibited samples, the 

maximum percent expression was used to represent the dependence of a gene for the 

perturbation. For Rela-/-, the percent expression in Rela-/- fetal liver macrophages at the 

earliest time point that wildtype samples were induced at least 3-fold was used to represent the 

dependence of a gene on RelA. 

 

Chromatin Immunoprecipitation and Library Preparation 

Chromatin immunoprecipitation of RelA was performed as previously described38. Briefly, bone 

marrow-derived macrophages were activated with 100 ng/ml of lipid A. Following stimulation, 

cells were fixed, nuclei were purified and lysed in buffer containing 1% SDS, 10 mM EDTA, 50 

mM Tris-HCl pH 8.0, supplemented with protease inhibitors. Chromatin was sheared with a 

Diagenode Bioruptor to fragments ranging between 200 – 1000 bps. Chromatin was 

immunoprecipitated with anti-RelA antibody (Abcam). ChIP-seq libraries were made using the 

Illumina TruSeq ChIP Sample Prep Kit according to manufacturer’s instruction.  

Chromatin immunoprecipitation of SRF was performed as previously described39, with 

modifications. After fixing activated bone marrow-derived macrophages, nuclei were purified 

and lysed in buffer containing 0.1% sodium deoxycholate, 0.5% N-lauroylsarcosine, 1 mM 

EDTA, 0.5 mM EGTA, 100 mM NaCl, 10 mM Tris-HCl pH 8.0, supplemented with protease 

inhibitors. Chromatin was sheared with a Misonix 3000 microtip. The fragmented chromatin was 

immunoprecipitated with anti-SRF antibody (Santa Cruz). ChIP-seq libraries were made using 

the LTP Library Preparation Kit (Kapa) according to manufacturer’s instruction. 
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ChIP-seq Read Mapping and Processing 

Reads were aligned to the mouse genome (NCBI37/mm9 build) with Bowtie2 restricting to 

uniquely mapped reads. Uniquely mapped reads were used for peak calling and annotation 

using HOMER, a software suite for next-generation sequencing analysis40. Peaks were called if 

they passed a false discovery rate of 0.01, and were enriched over input samples. Called peaks 

were considered for downstream analysis if peaks from at least 4 of 7 replicates were 

overlapping within 200 bp for RelA and 5 of 5 replicates were overlapping within 300 bp for SRF 

using the mergePeaks function. Peaks were annotated to Refseq genes based on the closest 

transcription start site (TSS). 

 

Motif Analysis 

The promoters of genes were used for motif analysis unless otherwise indicated. The promoter 

was defined as the region spanning -500 bp to +150 bp relative to the TSS. The strongest 

p50:RelA binding site within each promoter was identified against the consensus motif 

determined through a protein binding microarray (PBM) dataset of NF-κB dimers24. The strength 

of the motifs is represented as Z scores. Transfac position weight matrices (PWMs) were used 

to identify the best matching SRF and IRF3 binding sites in promoters using Pscan41. The 

strength of each motif is represented by a numerical value on a scale of 0-100, with 100 being a 

perfect match to the consensus motif. 

 

Accession Numbers 

The data discussed in this publication have been deposited in NCBI’s Gene Expression 

Omnibus and are accessible through GEO Series accession number GSE67357. 
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Figure Legends 

Figure 2-1. Properties of the Lipid A-Induced Transcriptional Cascade 

Chromatin-associated transcripts were isolated from 0, 15, 30, 60, and 120 minute lipid A 

activated BMDMs and analyzed by RNA-seq. (A) The distribution of maximum fold inductions 

relative to unstimulated over the 2-hour stimulation period for the 1,340 significantly induced (2-

fold, p < 0.01) and expressed (3 RPKM) genes is shown. The dashed gray lines represent 5-

fold, 10-fold, and 50-fold induction thresholds. (B) The 1,340 induced genes were grouped into 

the following fold induction bins: 2-5-fold, 5-10-fold, 10-50-fold, and >50-fold. The basal RPKM 

values are shown, and the horizontal red lines indicate median RPKM values within each bin. 

(C) The distribution of maximum fold inductions relative to unstimulated (left), the peak RPKM 

value (top right), and the basal RPKM value (bottom right) for each of the 226 10-fold induced 

genes is shown. (D) The 226 10-fold induced genes were separated into primary and secondary 

response based on their expression in cycloheximide-treated (CHX) and Ifnar-/- BMDMs 

stimulated with lipid A. Genes were classified as secondary response if they were expressed 

less than 33% in CHX or 30% in Ifnar-/- samples. Of the 83 genes expressed at less than 33% 

in CHX-treated macrophages relative to wildtype, 74 were differentially expressed between 

CHX-treated and wildtype samples (p<0.01). The venn diagram indicates the number of genes 

affected by CHX treatment, the absence of IFNAR, or both. 

 

Figure 2-2. Analysis of IFNAR-Independent and IFNAR-Dependent Secondary Response 

Genes 

(A) The activation kinetics of secondary response genes from BMDMs stimulated at 5-minute 

intervals from 0-1 hour, and 2 hours is shown. The shades of blue indicate percentile values. 

The lipid A-induced secondary response genes were sorted based on their maximum percent 
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expression in Ifnar-/- BMDMs relative to C57Bl/6 BMDMs (purple column). The maximum 

percent expressions in Myd88-/-, Trif-/-, and Irf3-/- are shown in the three columns to the right. 

(B) The distribution of genes in IFNAR-dependence bins based on their expression in Ifnar-/- 

BMDMs is shown. (C) The time point at which each of the secondary response genes in the 

IFN-dependence bins reach at least 10% of their maximum expression are indicated in the 

table. (D) The maximum fold induction of the IFNAR-independent genes in Pam3CSK4-

stimulated (black) and lipid A-stimulated Ifnar-/- (purple) BMDMs is shown on the top panel, and 

the percent expression of the IFNAR-independent genes in Pam3CSK4-stimulated (black), lipid 

A-stimulated Ifnar-/- (purple), and lipid A-stimulated Trif-/- (orange) BMDMs relative to wildtype 

BMDMs stimulated with lipid A is shown on the bottom panel. The IFNAR-independent genes 

were defined as those that are induced 10-fold and expressed greater than 3 RPKM in the 

absence of IFNAR signaling, or expressed at greater than 50% of wildtype in Ifnar-/- BMDMs 

stimulated with lipid A or wildtype BMDMs stimulated with Pam3CSK4. (E) A scatterplot 

comparing the maximum RPKM values in Pam3CSK4-stimulated BMDMs (y-axis) and the 

maximum RPKM values in lipid A-stimulated BMDMs (x-axis) for the primary response (blue) 

and the IFNAR-independent secondary response (red) genes are shown. (F) Ingenuity Pathway 

Analysis was performed to identify the top functional annotations for the primary response, 

IFNAR-dependent secondary response, and IFNAR-independent secondary response. (G) The 

IFNAR-independent genes that are involved in the proliferation, differentiation, and activation of 

T lymphocytes, are colored based on their fold induction in the absence of IFNAR signaling. 
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Figure 2-3. IFNAR-Independent and IFNAR-Dependent Secondary Response Genes 

An expanded version of Figure 2-2A is shown to include gene names for each 10-fold 

significantly induced secondary response gene. This expanded version also includes a column 

indicating the percent expression in cycloheximide-treated BMDMs. 

 

Figure 2-4. Properties of Primary Response Genes 

(A) The distribution of the maximum percent expressions in Myd88-/- (red), Trif-/- (orange), Irf3-

/- (green), and MAP kinase inhibitor-treated (light blue) BMDMs stimulated with lipid A relative to 

wildtype lipid A-stimulated BMDMs for the 135 primary response genes are shown. The 

horizontal dashed grey line indicates the 33% expression threshold used to call a gene as 

dependent or independent. The percent expression in (B) Trif-/- versus Irf3-/- or (C) Trif-/- 

versus Myd88-/- for the primary response genes are shown. TRIF lo (< 33% expression relative 

to wildtype) IRF3 hi (> 33% expression relative to wildtype) genes are shown in orange, and the 

TRIF lo (< 33% expression relative to wildtype) IRF3 lo (< 33% expression relative to wildtype) 

genes are shown in green. (D) The activation kinetics of the primary response genes from 

BMDMs stimulated at 5-minute intervals between 0-60 minutes, and 120 minutes are 

represented as log2 normalized and mean-centered RPKM values. The primary response 

genes were broadly classified based on their expression in Myd88-/- (red), Trif-/- (orange), Irf3-/- 

(green), and MAP kinase inhibitor-treated (light blue) BMDMs with the following order: IRF3-

dependent (cluster 1; < 33% in both Trif-/- and Irf3-/-), TRIF-dependent (cluster 2-5; < 33% in 

Trif-/- only), and MAPK-dependent (cluster 6-9; < 33% in MAPK inhibitor-treated samples). The 

remaining primary response genes were not dependent on any perturbation examined (cluster 

10-16; > 33% in all perturbed datasets). The genes in each broad class were subclustered (k-

means) based on their expression kinetics using Cluster3. To the right of the expression kinetic 
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heatmap shows the following properties for each gene: basal expression value (grey), fold 

induction magnitude (blue), promoter CpG-island (beige), and the maxiumum percent 

expression in Myd88-/- (red), Trif-/- (orange), Irf3-/- (green), and MAP kinase inhibitor-treated 

(light blue) BMDMs. 

 

Figure 2-5. Highly Induced Primary Response Genes Ordered by Their Dependence on 

Various Signaling Pathways  

An expanded version of Figure 2-4D is shown to include gene names for each 10-fold 

significantly induced primary response gene.  

 

Figure 2-6. Promoter Motif Analysis of Primary Response Gene Clusters 

Overrepresented transcription factor binding motifs are shown for each cluster, 1-16. The genes 

were clustered as described in Figure 2-4D. The transcription factor families are shown to the 

left, in alphabetical order. The color intensity is proportional to the negative log (p-value).  

 

Figure 2-7. Identification of Putative NF−κB Target Genes Through Transcription Factor 

Binding Motif and ChIP-seq Analysis 

(A) The protein binding microarray (PBM) z scores of p50:RelA (y-axis) and RelA ChIP-seq 

peak scores (x-axis) in the promoter (-500 to +150) for the primary response genes (right) and 

all remaining genes in the genome (left) were plotted. The genes were subcategorized into 2-10 

fold induced (blue), not induced (red), secondary response (green), and low expression (grey). 

The horizontal dashed grey line indicates the PBM z score threshold (6.4), and the vertical 
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dashed grey line indicates the ChIP-seq peak score threshold (19). (B) Tables indicating the 

distribution of genes as shown in (A), as number of genes (left) and percent of genes (right) 

within each gene class. (C-F) Tables indicating the best matching κB motif (column 1), gene 

name (column 2), PBM p50:RelA z score (column 3), location of the motif from the TSS (column 

4), RelA ChIP-seq peak score (column 5), and either the function or fold induction (column 6) for 

the primary response genes with strong κB motifs and strong RelA binding (C), strong kB motifs 

that do not support strong RelA binding (D), weak kB motifs at support strong RelA binding (E), 

and other NF-κB and IκB family members (F). (G) A line graph of the p50:RelA motif Z score 

enrichment for the primary response genes relative to the expressed but not induced genes. 

 

Figure 2-8. The Position of RelA Peaks Relative to the Transcriptional Start Sites of All 

Genes 

(A) For each annotated gene in each gene category (primary, secondary, 2-10 fold induced, not 

induced but expressed, and unexpressed), RelA binding peaks were identified at the following 

distance ranges relative to the transcription start site (TSS): promoter, 10 kb, 20 kb, 100 kb, and 

> 100 kb. The promoter was designated as the region spanning -500 to +150 relative to the 

TSS. Peaks included those identified either upstream or downstream from the TSS. The 

annotated RelA peaks were then grouped based on their ChIP-seq peak score (> 19 or < 19). If 

a gene did not have a peak in the indicated region, a score of 0 was given to that gene. The top 

table represents the number of genes in each group, and the bottom table indicates the percent 

of genes in each group relative to the gene class. (B) The distribution of RelA peaks as shown 

in the bottom table of (A) is shown as a bar graph. Strong binding indicates a RelA peak score > 

19, and weak binding indicates a RelA peak score < 19. 
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Figure 2-9.  Kinetic and Functional Analysis of Putative NF−κB Target Genes 

(A) The 37 putative NF−κB target genes were grouped based on their role in mediating NF-κB 

signaling, MAPK dependence, or IRF3 dependence. The normalized expression values from 0-

25 minutes (left panel) and 0-120 minutes (middle panel), and the fold change relative to the 

previous time point (right panel) are shown. To the right of the heatmaps, the basal expression, 

fold induction magnitude, promoter-CpG content, expression in Rela-/-, Trif-/-, Irf3-/-, and 

MAPK-inhibited BMDMs are shown from left to right. The presence of a p50:RelA motif based 

on PBM datasets and the RelA ChIP-seq binding peak scores at 0, 15, 30, 60, and 120 minutes 

of lipid A stimulation are indicated in the far right panels. (B) The primary response genes that 

exhibited similar activation kinetics and/or RelA dependence to the 37 putative NF−κB target 

genes are shown in the same layout as in (A). (C) The average activation kinetics of the NF-κB 

subgroups is shown as log2 fold inductions relative to basal during the 120-minute lipid A 

treatment period. (D) The average activation kinetics of the two additional clusters from Figure 

2-9B (Cluster 5 and 6) are shown as log2 fold inductions relative to basal during the 120-minute 

lipid A treatment period. 

 

Figure 2-10. Putative NF−κB Target Genes and the Genes That Exhibit Similar Kinetics 

and/or RelA-Dependence 

An expanded version of Figure 2-9A and Figure 2-9B is shown to include gene names for each 

putative NF−κB target and other genes that may be enhancer regulated NF−κB target genes. 
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Figure 2-11. Analysis of IRF3 and SRF Target Genes 

(A) The primary response genes exhibiting dependence on IRF3 (< 33% expression in both Irf3-

/- and Trif-/- macrophages) were separated based on their additional requirement for NF-κB for 

their activation. The colors indicate the percentile of the relative expression. To the right of the 

heatmap are columns indicating the basal RPKM level, fold induction magnitude relative to 

unstimulated, and promoter-CpG content for each gene. The rightmost heatmap indicates the 

RelA ChIP-seq binding peak scores for the indicated lipid A treatment time points. (B) The fold 

induction for each IRF3-dependent gene is shown over the 2 hour stimulation time period, 

grouped based on their additional requirement for NF-κB. (C) For each primary response gene, 

the higher maximum percent expression from either Trif-/- or Irf3-/- BMDMs (y-axis) was 

assessed against the best scoring IRF3 motif (x-axis) within the promoter based on the IRF 

Transfac position weight matrix (PWM). The five IRF3/NF-κB genes are highlighted in blue, and 

the four IRF3 genes are highlighted in green. The horizontal dashed grey line indicates the 33% 

expression threshold, and the vertical dashed grey line indicates the 90% Transfac score 

threshold. (D) For each IRF3-dependent gene, we identified the IRF3 and p50:RelA binding 

sites (for the IRF3/NF-κB groups of genes) as well as the position of each motif relative to the 

transcriptional start site. The spacing between the NF-κB and IRF3 motifs is indicated in the 

right column. (E) Scatterplot comparing the Transfac PWM scores of SRF binding motifs (y-axis) 

versus the SRF ChIP-seq peak scores (x-axis) in the promoter (-500 to +150) for the primary 

response genes (right) and all remaining genes in the genome (left) is shown. These genes in 

the right hand graph were subcategorized into 2-10 fold induced (blue), not induced (red), 

secondary response (green), and low expression (grey). The horizontal dashed grey line 

indicates the SRF motif threshold (90%), and the vertical dashed grey line indicates the SRF 

ChIP-seq peak score threshold (10). (F) Tables of the distribution of all annotated genes, shown 

as number of genes (left) and percent of genes (right) within each class. (G) The log2 
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normalized expression values from 0-25 minutes (first panel), 0-120 minutes (second panel), 

and the fold induction relative to the expression level at the previous time point (third panel) for 

the seven putative SRF target genes are shown. To the right of the heatmaps are columns 

indicating the basal expression level, fold induction magnitude, promoter-CpG content, and 

MAPK dependence for each gene. (H) Genes that exhibited similar activation kinetics as the 

putative SRF target genes are shown, with the same layout as in Figure 2-11G. 

 

Figure 2-12. Regulation of Transiently Transcribed Genes by SRF 

(A) The activation kinetics of the seven putative SRF target genes is shown. The values 

represent fold induction magnitudes relative to unstimulated. (B) The two genes that exhibited 

similar activation kinetics as the seven putative SRF targets were examined on UCSC Genome 

Browser to identify distal SRF binding peaks. RelA binding peaks were also examined for these 

two genes. The transcription start sites of the genes are indicated as red arrows, and the green 

rectangles indicate CpG-islands. (C) The log2 fold induction relative to unstimulated samples in 

control (black) and MAPK inhibitor-treated (blue) BMDMs for the seven putative SRF targets are 

shown. (D) For each annotated gene in each gene category (primary, secondary, 2-10 fold 

induced, not induced but expressed, and unexpressed), SRF binding peaks were identified at 

the following distance ranges relative to the transcription start site (TSS): promoter, 10 kb, 20 

kb, 100 kb, and > 100 kb. The promoter was designated as the region spanning -500 to +150 

relative to the TSS. Peaks included those identified upstream and downstream from the TSS. 

The SRF peaks were then grouped based on their ChIP-seq peak score (>10 or < 10). If a gene 

did not have a peak in the indicated region, a score of 0 was assigned to that gene for that 

region. The top table represents the number of genes in each group, and the bottom table 

indicates the percent of genes in each group relative to the gene class. 
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Figure 2-13. Classification of Lipid A-Induced Genes  

(A) The 132 primary response genes were grouped based on their regulation by SRF or RelA, 

dependence on MAPK, TRIF, or IRF3. The left heatmap represents log2 normalized expression 

values, and the right heatmap represents the log2 fold change relative to the previous time 

point. To the right of the heatmaps are columns indicating the following, from left to right: the 

presence of a strong SRF motif, a strong SRF binding peak, expression in MAPK-inhibited 

BMDMs, a strong RelA motif, a strong RelA binding peak, expression in Rela-/- FLMs, Trif-/-, 

and Irf3-/- BMDMs. (B) The 94 secondary response genes were grouped based on their 

dependence on IFNAR.  The left heatmap represents log2 normalized expression values, and 

the right heatmap represents the log2 fold change relative to the previous time point. To the 

right of the heatmaps are columns indicating the following, from left to right: expression in Ifnar-

/- BMDMs, and expression in Pam3CSK4-stimulated WT BMDMs.  

 

Figure 2-14. Final Classification of the Primary Response Genes 

An expanded version of Figure 2-13A is shown to include gene names within each class of 

primary response genes. 

 

Figure 2-15. Final Classification of the Secondary Response Genes 

An expanded version of Figure 2-13B is shown to include gene names within each class of 

secondary response genes. 
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Figure 2-1. Properties of the Lipid A-Induced Transcriptional Cascade 
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Figure 2-2. Analysis of IFNAR-Independent and IFNAR-Dependent Secondary Response 

Genes 
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Figure 2-3. IFNAR-Independent and IFNAR-Dependent Secondary Response Genes 
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Figure 2-4. Properties of Primary Response Genes 
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Figure 2-5. Highly Induced Primary Response Genes Ordered by Their Dependence on 

Various Signaling Pathways 
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Figure 2-6. Promoter Motif Analysis of Primary Response Gene Clusters 
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Figure 2-7. Identification of Putative NF−κB Target Genes Through Transcription Factor 

Binding Motif and ChIP-seq Analysis 
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Figure 2-8. The Position of RelA Peaks Relative to the Transcriptional Start Sites of All 

Genes 
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Figure 2-9.  Kinetic and Functional Analysis of Putative NF−κB Target Genes 
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Figure 2-10. Putative NF−κB Target Genes and the Genes That Exhibit Similar Kinetics 

and/or RelA-Dependence 

 

 

 

 

30
!

0!0! 15
!

30
!

60
!

12
0!

5! 10
!

20
!

25
!

35
!

40
!

45
!

50
!

55
!

Fo
ld

 In
d.
!

C
pG

!
R
el
A-

/-!

Tr
if-

/-!

Irf
3-

/-!

M
AP

K !

Ba
sa

l !

0! 15
!

30
!

60
!

12
0!

5! 10
!

20
!

25
!

35
!

40
!

45
!

50
!

55
!

60
!

15
!

12
0!

RelA !
ChIP-seq!Log2 Normalized RPKM! Fold Change Per Time Point!

Nfkbid 
Nfkbia 

Tlr2 
Nfkbib 
Nfkbie 

Relb 
Nfkb2 

Tnfaip3 
Tnip3 
Traf1 
Cd40 
Nfkb1 
Nfkbiz 

Btg2 
Ier3 

Cd83 
Gpr84 
Sdc4 

Kdm6b 
Rapgef2 

Cxcl2 
Cxcl1 
Ptgs2 

Irf1 
Ebi3 

Bcl2l11 
Ccrl2 

Icam1 
Csf1 

Stx11 
Casp4 

Fchsd2 
Ccl5 

Cxcl10 
Irg1 

Gbp5 
Ifnb1 

0! 15
!

5! 10
!

20
!

25
!

Clec4e 
Pde4b 

Sod2 
Socs3 

Srgn 
Gem 

Marcksl1 
Tnf 

Ehd1 
Serpine1 

Csrnp1 
Dusp2 

Il1b 
Tnfsf9 
Nlrp3 
Plek 

Zc3h12c 
Egr2 
Maff 

Mapkapk2 
Jag1 
Errfi1 

Dusp5 
Rasgef1b 

Sqstm1 

CpG
LCG

Expression!
Relative to WT!

0%!

100%!

Pe
ak

 S
co

re
!100!

0!

Pe
rc

en
til

e!

100!

R
PK

M
!

Fo
ld
!

3! 100!

0! 10!0.3!

Lo
g 2

 F
ol

d !

-4!

4!



 96 

Figure 2-11. Analysis of IRF3 and SRF Target Genes 
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Figure 2-12. Regulation of Transiently Transcribed Genes by SRF 
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Figure 2-13. Classification of Lipid A-Induced Genes  
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Figure 2-14. Final Classification of the Primary Response Genes 
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Figure 2-15. Final Classification of the Secondary Response Genes 
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Abstract 

Recognition of pathogen-associated molecular patterns such as lipopolysaccharide (LPS) 

through Toll-like receptor 4 (TLR4) results in an immense transcriptional response that includes 

the upregulation of genes encoding for proinflammatory cytokines. While necessary to 

counteract environmental dangers, excessive responses can be devastating to host tissues and 

organs. LPS tolerance is a well-studied phenomenon in which cells or organisms become 

refractory to repeated exposures of endotoxin to avoid hyperinflammation and host damage. 

Although long appreciated as a mechanism of immunosuppression, there is still no consensus 

as to the mechanisms underlying this phenomenon. In this study, we took a global approach to 

analyze the transcriptome of LPS tolerance. The use of transcripts isolated from chromatin 

represented a novel approach to study LPS tolerance. The analysis of gene induction in the 

tolerant state in the context of co-regulated gene classes from the TLR4 transcriptional 

activation network analysis provided us with insight into the mechanisms underlying LPS 

tolerance. Additionally, we have uncovered differences in the prolonged expression of subsets 

of genes, which complicated efforts to determine whether specific subsets of genes are 

susceptible or resistant to tolerance. Numerous Interferon-stimulated genes (ISGs) remained 

highly expressed after removal of the tolerizing LPS, which may be due to the persistence of 

IFN-β production. Furthermore, the overall hyporesponsiveness of the majority of inducible 

genes appeared to diminish over time. Together, the data suggest a broad downregulation in 

expression of genes upon repeated exposure to LPS, but that the immunosuppression may be 

transient. The findings should help to uncover the multiple mechanisms that contribute to 

establishment of the hyporesponsive state in cells after prolonged exposure to endotoxin. 

 

Introduction 

The recognition of microbial dangers by the cells of the innate immune system is critical to 

initiate responses that counteract infection. However, innate immune responses to pathogens 
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are a double-edged sword: Failure to respond to such dangers can be fatal to host organisms, 

yet prolonged or hyperactive responses can lead to chronic or oftentimes fatal inflammation. A 

tightly regulated response that allows for successful antimicrobial responses while 

simultaneously limiting excessive inflammation is therefore necessary for effective immunity. 

Because of these reasons, a better understanding of the underlying mechanisms that balance 

innate immune responses is required. 

One well-studied mechanism of preventing excessive inflammation is endotoxin or LPS 

tolerance, defined as an overall hyporesponsiveness of organisms to repeated exposure of 

LPS. The initial observation took place in 1947 by Paul Beeson1,2, where he observed that 

rabbits given repeated intravenous doses of pyrogenic substances derived from bacterium 

progressively diminished in their reaction over time. Since this initial observation, numerous 

studies to understand the mechanisms underlying LPS tolerance both in vivo and in vitro have 

been performed. One of the most well characterized effects of LPS tolerance is the decrease in 

cytokine production and release after stimulation. Upon repeated exposures to LPS, studies 

have found severe reduction in TNF-α production. At the transcriptional level, genes encoding 

proinflammatory cytokines such as Il12b, Il6, and Il1b are drastically reduced in expression after 

LPS tolerance has been established compared to naïve cells encountering LPS for the first time. 

Despite the large amount of research to understand LPS tolerance, there is still no 

consensus with respect to the underlying mechanisms. The proposed mechanisms that 

establish LPS tolerance can be broadly classified into several groups based on the cellular 

compartment of hyporesponsiveness. First, it has been proposed that tolerance occurs at the 

level of the receptor. One study recently demonstrated that surface expression of the 

TLR4/MD2 complex begins diminishing shortly after the first exposure to LPS, causing the cells 

to become refractory to subsequent doses of LPS3.  

Other groups suggest that cells become tolerant to repeated LPS stimulations due to 

alterations in key signaling molecules that mediate the TLR4 response. In tolerized cells, IRAK1, 
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a key mediator of the MyD88 arm of the TLR4 signaling pathway, has been shown to be 

downregulated3, and the association between IRAK1 and MyD88 is impaired4. Additionally, 

IRAK-M, a negative regulator of TLR4 proximal signaling, is upregulated after activation of 

TLR45–8. Studies of tolerance further downstream from the proximal signaling machinery have 

demonstrated defects in both NF-κB and MAPK signaling. For example, IκB-α degradation does 

not occur when cells are exposed to repeated doses of LPS9–11, while studies have 

demonstrated that activating NF-κB dimers, such as p50:RelA, are suppressed and inhibitory 

NF-κB dimers,  such as p50 homodimers, are increased12–14. Further, activation of ERK1/2 and 

JNK members of the MAPK signaling pathways is impaired following the initial LPS 

exposure5,11,15. 

The third broad class of mechanisms of tolerance implicates suppressive autocrine 

mediators secreted out of cells after initial exposure to LPS. Studies have demonstrated a role 

for IL-1016,17, a potent anti-inflammatory cytokine that suppresses activity of cytokines, such as 

IL-12 and IL-1β, as well as roles for other secreted factors, such as TGF-β18, soluble TNF 

receptor19 and prostaglandin E2 (PGE2)20 in establishing a tolerant state. 

Most recently, chromatin has been implicated to play a role in LPS tolerance. In one 

particular study, the genes induced by LPS could be categorized into two broad classes: 

antimicrobial genes that remain inducible (not tolerizable), and inflammatory genes that are not 

inducible (tolerizable) when challenged with a second dose of LPS21. Importantly, both classes 

of genes acquire histone methylation marks after treatment with the first dose of LPS. Upon 

stimulation of cells with a second dose of LPS, however, only the antimicrobial genes acquire 

histone acetylation marks, RNA polymerase II recruitment, and transcription. Moreover, the 

inflammatory genes that require nucleosome remodeling for activation return to an inaccessible 

state after stimulation and nucleosome remodeling is not observed during the second 

stimulation; in contrast, antimicrobial genes return to a closed chromatin conformation, but 
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nucleosome remodeling occurs upon re-stimulation with LPS. The findings from this study imply 

that chromatin is an essential mechanism that establishes tolerance of selective subsets of 

genes: Antimicrobial genes retain their inducibility due to their critical roles in maintaining 

immunity against infection, while inflammatory genes become silent following the first exposure 

to LPS in order to prevent hyperinflammation and tissue damage. 

Taken together, the great interest in understanding the etiology of endotoxin tolerance is 

an indication of its importance in human disease settings, such as sepsis and surgery. Patients 

who have previously encountered pathogen are at risk of developing secondary infections due 

to their refractory state towards pathogens22. Additionally, the lack of consensus of the 

mechanisms underlying LPS tolerance supports the complexity of the phenomenon, and 

demonstrates that unanswered questions remain. Importantly, a global analysis of gene 

expression changes during LPS tolerance is necessary to provide insight into the functional 

consequences of prolonged hyporesponsiveness. Previous studies have focused on readouts 

from model genes such as Il6 and Tnf, but whether the findings apply to all LPS-inducible genes 

remain unclear. 

RNA-sequencing technologies have emerged as a quantitative and highly accurate 

method to measure gene expression23. In this study, we took a global approach to identify 

genes that may or may not be inducible after the tolerization period. Initial studies revealed that 

global analysis of tolerance using mRNA did not provide an accurate measurement of tolerance 

at the transcriptional level, and that global analysis of primary transcripts was necessary to 

circumvent these challenges. We also examined the duration of the hyporesponsive state to 

determine whether tolerance diminishes over time. Using these findings in conjunction with our 

understanding of the TLR4 transcriptional activation network (Chapter 2) has revealed insight 

into the extent of LPS responsiveness after tolerance, as well as the activation dynamics of co-

regulated genes. These observations should help to clarify the global extent of LPS tolerance, 
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understand what signaling pathways might be involved in the hyporesponsive state, and may 

provide useful tools in the future to help understand immunosuppressive pathologies. 

 

Results 

Primary and Mature Transcripts Exhibit Distinct Gene Expression Patterns  

In initial studies to study the impact of LPS tolerance on gene expression, bone marrow-derived 

macrophages (BMDMs) were either not tolerized or tolerized with lipid A (the active component 

of LPS) for 24 hours (henceforth called “tolerizing LPS”; Figure 3-1A). After 24 hours, lipid A-

containing media was replaced with lipid A-free media and rested for 0.25, 4, 8, or 24 hours to 

determine how long the effects of LPS tolerance last. After the rest period, cells were stimulated 

for 2 hours with a low (10 ng/ml) or high (100 ng/ml) dose of lipid A (“stimulating LPS”). 

Additionally, the cells that did not receive the tolerizing LPS dose were treated with the 

stimulating LPS dose to measure the transcriptional activation potential in non-tolerized 

macrophages. We assessed the effect of tolerance by monitoring gene expression for genes 

reported to be “not tolerizable” (inducible in tolerized cells given the stimulating LPS dose) such 

as Ccl5 and Saa3, and “tolerizable” (not inducible in tolerized cells given the stimulating LPS 

dose) such as Il12b and Il621.  

Consistent with previous findings, analysis of Ccl5 and Saa3 mRNA revealed that these 

genes were expressed at a high level after the 24-hr initial lipid A treatment and rest period, with 

only a modest decline in mRNA levels as the rest period increased from 0.25 hr to 24 hrs. 

Moreover, the Ccl5 and Saa3 mRNA levels did not increase when the rested cells were re-

stimulated with lipid A. The absence of induction during this second stimulation period at first 

glance suggests that the Ccl5 and Saa3 genes may be tolerized. However, the fact that the Ccl5 

and Saa3 mRNA levels remain very high relative to the levels observed in unstimulated non-

tolerized BMDMs could be interpreted as evidence that the cells are not subject to tolerance. 
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Thus, it is difficult to determine from these mRNA data whether the Ccl5 and Saa3 genes should 

be placed in the tolerized or not tolerized classes.  

To evaluate more carefully the extent to which the Ccl5 and Saa3 genes are tolerized, it 

was necessary to analyze transcription independently of influences of mRNA stability. This was 

accomplished by examining nascent unspliced transcripts through the use of qRT-PCR primers 

that amplified fragments spanning exon-intron junctions. Strikingly, the nascent transcript level 

for the Ccl5 gene was reduced nearly to background in the tolerized and rested cells (Fig. 3-1B, 

bottom), demonstrating that the high Ccl5 mRNA level in these cells was not due to continued 

transcription, but rather to the existence of a stable mRNA pool. Importantly, when the tolerized 

and rested cells were re-stimulated with lipid A, induction of the Ccl5 gene was observed with a 

high dose of lipid A, but not with a low lipid A dose. This result demonstrates that the Ccl5 gene 

was partially tolerized, in that it was resistant to low-dose lipid A re-stimulation, but was not fully 

tolerized because it was potently induced by a high dose of lipid A.   

 We next analyzed the Il12b and Il6 genes. An analysis of Il12b nascent transcripts (Fig. 

3-1B, bottom) revealed that this gene was efficiently tolerized after the 24-hr initial stimulation 

period and short rest times of either 0.25 or 4 hrs, as nascent transcript induction was not 

observed after these short rest periods with either low or high doses of lipid A. However, potent 

Il12b induction was observed after rest periods of 8 or 24 hrs, but only by high-dose lipid A. An 

analysis of Il6 nascent transcripts revealed strong tolerance to low-dose lipid A after a rest 

period of 0.25 hrs, with loss of tolerance to low-dose lipid A after longer rest periods of 4, 8, and 

24 hrs. With high-dose lipid A, Il6 tolerance was not observed, even with the 0.25-hr rest period, 

as potent induction was consistently observed. The results obtained with Il12b and Il6 mRNAs 

were consistent with those obtained with their nascent transcripts, but these results were more 

challenging to interpret due to the apparent presence of stable pools of the Il12b and Il6 

mRNAs, which made it difficult to determine the extent to which gene transcription was 

tolerized. 
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To summarize, these results provide evidence that an examination of nascent transcripts 

is likely to be preferable for determining the extent to which genes are sensitive or resistant to 

endotoxin tolerance, due to confounding effects of mRNA stability. Furthermore, the results 

suggest that the extent of tolerance varies from gene to gene in a lipid A dose-dependent 

manner, and with the extent of tolerance diminishing to a variable extent with the length of the 

rest period following tolerance induction. 

 

Global Analysis of Gene Expression Patterns in Tolerized Cells 

To investigate endotoxin tolerance at a global level, we performed RNA-seq with non-tolerized 

and tolerized BMDMs. Based on the pilot studies in Figure 3-1, cells were either not tolerized 

(T0) or given a tolerizing lipid A dose (T24) and rested for either 0.25 or 8 hours (R0.25 or “short 

rest”, and R8 or “long rest”, respectively).  After the rest period, cells were given the low dose of 

stimulating lipid A (10 ng/ml) for 0, 0.5, or 2 hours (S0, S0.5, or S2). Additionally, naïve (non-

tolerized) cells were given the low dose of stimulating lipid A for 0, 0.5, or 2 hours (S0, S0.5, or 

S2). The experimental design with sample name designations are indicated in Table 3-1. 

Because our initial studies indicated that primary transcripts more accurately measured 

the effect of endotoxin tolerance at the transcriptional level, RNA-seq was performed on 

chromatin-associated RNA isolated from biochemically fractionated cell lysates. Nascent 

transcript RNA-seq has previously been shown to provide accurate kinetics and quantitation of 

transcriptional activation and inactivation of genes24.  

Preliminary examination of well-studied genes affected in tolerized cells verified that this 

approach would be useful to better understand endotoxin tolerance at a global level. 

“Tolerizable” genes, such as Il12b, Il6, Tnf, and Il1b, were induced by lipid A in non-tolerized 

(T0) cells, but these genes were activated to less than half of that stimulated level in tolerized 

cells (T24) treated with lipid A (Figure 3-2A). Of these genes, Il12b was the most potently 

suppressed, as its nascent transcript level was less than 1% of the T0-R0-S+ level (S+ is 
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henceforth used to designate cells given a stimulating dose of LPS for either 0.5 or 2 hours) in 

the T24-R0.25-S+ samples, and less than 3% of the T0-R0-S+ level in the T24-R8-S+ samples. 

Notably, the Tnf nascent transcript level in the T24-R.5-S+ samples were 37.7% of that 

observed in the T0-R0-S+ sample, whereas, after the long rest period (T24-R8-S+), it was 

59.4% of the level observed in the T0-R0-S+ sample. Thus, the strength of tolerance observed 

at Tnf appeared to diminish with the length of the rest period.  

The Il1b gene provides an example of another type of profile (Fig. 3-2A). In tolerized 

cells rested for 0.25 hrs, the nascent transcript level for Il1b remained high prior to re-

stimulation, presumably because active transcription was taking place at the end of the 24-hr 

initial stimulation period and had not yet subsided by the end of the 0.25 hr rest period. 

However, slightly lower transcript levels were observed 0.5 hrs after re-stimulation. After the 8-

hr rest period, Il1b nascent transcript levels returned to background levels and the gene was 

susceptible to induction, but only to 39.2% of the induced level observed without tolerance 

induction.  

We next assessed the expression patterns of the “not tolerizable” genes. The Ccl5 and 

Oasl1 nascent transcripts were induced to 62-63% of T0-R0-S+ samples after the long rest. 

Strikingly, we observed that some “not tolerizable” genes such as Oasl1, Saa3, and Fpr1 were 

expressed higher in T24-R0.25-S0 and T24-R8-S0 compared to T0-R0-S+ samples. For 

example, Oasl1 and Saa3 were expressed between 30-50% of T0-R0-S+ samples after the long 

rest before given the stimulating LPS dose, and over 200% of T0-R0-S+ samples for Fpr1. 

Since the data represent actively synthesized transcripts, this suggests that in addition to mRNA 

stability precluding the analysis for genes such as Ccl5 and Saa3 (Figure 3-1B), LPS tolerance 

may be challenging to interpret for the genes that remain actively transcribed after removal of 

the tolerizing LPS. It is important to note that the initial examination of Ccl5 primary transcript 

levels through qRT-PCR analysis suggested that T24-R0.25-S0 levels were close to 

background levels. In contrast, the nascent RNA-seq data revealed that Ccl5 transcript levels 
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were expressed at 42% in T24-R0.25-S0 samples relative to T0-R0-S0 (Figure 3-2A). The 

inconsistency observed could be explained by experimental differences: In pilot studies using 

qRT-PCR to measure tolerance, T24-R0.25-S0 cells were rested for two hours in addition to the 

0.25-hour rest while the T24-R0.25-S+ samples were given the stimulating dose of LPS. When 

preparing samples for RNA-seq, the T24-R0.25-S0 cells were rested for 0.25 hours only. The 

two additional hours of rest in the pilot studies therefore likely allowed Ccl5 primary transcripts 

to diminish. Furthermore, RNA-sequencing is a much more quantitative and accurate method to 

measure gene expression, and therefore is likely to be capable of detecting low levels of gene 

expression more accurately than qRT-PCR methods. Together, this provides higher confidence 

in the information obtained from RNA-seq than those gathered through qRT-PCR. 

To focus on the effects LPS tolerance has on LPS inducible genes, we limited the 

analysis to examine genes that were induced 5-fold or greater and expressed at least 1 RPKM 

in T0-R0-S+ relative to T0-R0-S0. The 554 5-fold induced genes were then hierarchically 

clustered to identify gene expression patterns in the T24 samples (Figure 3-2B). This approach 

revealed subsets of genes that remained inducible and other subsets of genes that were 

suppressed in both T24-R0.25-S+ and T24-R8-S+ samples. Interestingly, we observed a large 

proportion of genes whose expression remained high in T24-R0.25-S0 samples, and a smaller 

subset of genes with high expression in T24-R8-S0 samples (Figure 3-2B, right columns). 

Specifically, 26.7% and 41.7% of the 5-fold induced genes were expressed greater than 50% 

and between 10 and 50% in T24-R0.25-S0 samples relative to the maximum expression in T0-

R0-S+ samples, respectively (Figure 3-2C, blue). Furthermore, 6.5% and 33.2% of the 5-fold 

induced genes were expressed greater than 50% and between 10 and 50% in T24-R8-S0 

samples relative to the maximum expression in T0-R0-S+ samples, respectively (Figure 3-2C, 

red). Similar results were observed when we examined more potently induced genes (10-fold 

induction, 3 RPKM threshold; Figure 3-2D), indicating that this was not an artifact due to the 

induction levels of genes. Since the global analysis focused on newly synthesized rather than 
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mature transcripts, the data suggest that a large subset of LPS-inducible genes remain highly 

transcribed after the short rest, with a subset of these genes maintaining active transcription 

even after the long rest period prior to the stimulating LPS dose. 

 

Inducible Genes With Sustained Transcription Tend to be Secondary Response 

Inferferon-Stimulated Genes 

To better understand the properties of genes that sustained high expression levels after removal 

of the tolerizing LPS and before the stimulating LPS dose (henceforth called “high basal” 

genes), we focused on the 226 genes induced 10-fold or greater and expressed at least 3 

RPKM in response to lipid A that were characterized in Chapter 2. Importantly, the analysis in 

Chapter 2 classified the 226 genes into those that do not (primary response) or do (secondary 

response) require new protein synthesis for their activation. We therefore examined the 

expression levels of T24-R0.25-S0 and T24-R8-S0 samples relative to naïve T0-R0-S0 samples 

for the 226 genes classified as either primary or secondary response to determine if the “high 

basal” genes tended to be in one class or the other. We found that 8.6% and 34.1% of primary 

response genes had expression levels greater than 50% and 10-50% of T0-R0-S0 after the 

short rest, respectively (Figure 3-3A, left, blue). After the long rest, the distribution decreased to 

1.5% and 17.4% of primary response genes with expression greater than 50% and 10-50%, 

respectively (Figure 3-3A, left, red). In contrast, 14.9% and 61.7% of the secondary response 

genes exhibited expression levels greater than 50% and 10-50% of T0-R0-S0 after the short 

rest (Figure 3-3A, right, blue), and 10.6% and 52.2% of the secondary response genes 

remained expressed greater than 50% and 10-50% after the long rest, respectively (Figure 3-

3A, right, red). 

To gain further insight as to what signaling pathways or transcription factors may be 

contributing to the high basal expression of the secondary response genes, we examined the 

expression of the 226 genes in T24-R0.25-S0 and T24-R8-S0 samples in the context of the 
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classification described in Chapter 2. In general, we observed broad and robust levels of 

transcription after the short rest, including moderately high expression levels of IRF3 and TRIF 

gene classes from the primary response and high expression of the IFN-dependent secondary 

response gene class (Figure 3-3B). After the long rest, expression of most genes across all of 

the gene classes diminished to levels near 10% of T0-R0-S0 samples with the exception of the 

IFN-dependent secondary response genes, whose median expression was maintained above 

10% of T0-R0-S0 samples. Together, these results suggest that there is broad sustained 

expression of many genes after the short rest, but the IFN-dependent secondary response 

genes remain highly expressed even after the long rest. 

Due to the finding that genes with “high basal” expression after the long rest tended to 

be IFN-dependent secondary response genes, we further extended the analysis to explore the 

relationship between IFN-dependence and “high basal” expression of the 554 5-fold induced 

genes. The 554 genes were first classified into “high basal” or “low basal” based on the lowest 

expression they reached in either T24-R0.25-S0 or T24-R8-S0 samples. If a gene reached less 

than 10% of T0-R0-S0 in either short or long rested samples that were not given the stimulating 

LPS dose, it was classified as a “low basal” gene (further discussed in Figure 3-5 and 3-6). On 

the other hand, if a gene was expressed greater than 10% of T0-R0-S0 in both short and long 

rested samples, it was classified as a “high basal” gene. The “low basal” and “high basal” genes 

were then examined for their sensitivity to cycloheximide (CHX) as well as their dependence on 

IFN-signaling.  

We observed that 63.4% of the “high basal” genes had low expression in CHX-treated 

cells (< 33% expression in CHX relative to wildtype), compared to 33.8% of the “low basal” 

genes that exhibited CHX sensitivity (Figure 3-3C, left). Similarly, 48.1% of the “high basal” 

genes were IFN-dependent (< 33% expression in Ifnar-/- relative to wildtype), compared to 

16.3% of “low basal” genes (Figure 3-3C, right). Furthermore, an analysis of all cycloheximide-

sensitive genes in the group of 554 5-fold induced genes revealed a relationship between IFN-
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dependence and T24-R0.25-S0 or T24-R8-S0 expression levels: genes that were more strongly 

dependent on IFN signaling exhibiting higher expression in T24-R0.25-S0 or T24-R8-S0 

samples (Figure 3-3D). Taken together, the findings from the analysis of T24-R0.25-S0 and 

T24-R8-S0 samples in the context of the 226 well-characterized genes were consistent with the 

observations made when analyzing in the context of the 554 5-fold induced genes, and that the 

“high basal” genes tended to be secondary response and IFN-dependent. 

 

Persistent IFN-β  Contributes to Prolonged Transcription of ISGs 

To investigate why many interferon stimulated genes (ISGs) maintained high transcription levels 

after the cells were removed of the tolerizing LPS and rested for both short and long periods, we 

assessed the expression of the Ifnb1 gene, which encodes for the type I interferon IFN-β. Since 

many ISGs remained highly transcribed, we hypothesized that this could be due to high 

expression of Ifnb1 transcripts. qRT-PCR analysis revealed that Ifnb1 transcripts were induced 

in T0-R0-S+ samples, with maximal induction in T0-R0-S2 (Figure 3-4A). However, after the 24-

hour tolerizing LPS, Ifnb1 expression returned to background levels and was not induced when 

given the stimulating LPS dose in both short and long rested cells. ELISA analysis confirmed 

that IFN-β secretion was suppressed in both T24-R0.25-S2 and T24-R8-S2 samples relative to 

T0-R0-S2 (Figure 3-4B). We next measured IFN-β levels after the 24-hour tolerizing LPS but 

just prior to stimulus removal, as well as after the short and long rest period but prior to 

receiving the stimulating LPS dose to assess the presence of the cytokine in media that may be 

contributing to IFN-dependent gene expression. Interestingly, we observed low levels of IFN-β 

present in the media after the 24-hour tolerizing LPS treatment (Figure 3-4C, blue columns). 

Although these levels were low  (~4 pg/ml) relative to the amount of IFN-β secreted after 2 

hours of lipid A stimulation in non-tolerized macrophages (~100 pg/ml, Figure 3-4B), it is well 

documented that low levels of type I interferons is sufficient to stimulate expression of ISGs25. 
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Furthermore, we observed trace levels of IFN-β present in the media after removal of the 

tolerizing LPS and the long rest (T24-R8-S0), indicating that low amounts of IFN-β continued to 

be secreted out of the cell even after removal of the tolerizing LPS. Together, these results 

suggest that the “high basal” expression of IFN-dependent genes in T24-R0.25-S0 and T24-R8-

S0 samples could be due to the presence of IFN-β in the media 24 hours after the tolerizing 

LPS was given, even after transcription of the Ifnb1 gene has terminated. 

 

LPS Tolerance Broadly Impacts Inflammatory Gene Induction 

We next sought to better understand the “low basal” genes, which we defined as those that 

returned to within 10% expression in T24-R0.25-S0 or T24-R8-S0 samples relative to T0-R0-S0. 

The 337 “low basal” genes within the 554 5-fold induced genes from Figure 3-2A were first 

separated into 222 primary and 115 secondary response genes based on their sensitivity to 

cycloheximide (33% threshold). The secondary response “low basal” genes were further 

classified as IFN-independent (n=70) and IFN-dependent (n=45) based on their expression in 

Ifnar-/- macrophages stimulated with lipid A (33% threshold). Each of these classes of genes 

was then hierarchically clustered, taking into consideration all stimulation conditions (Figure 3-

5A). This revealed that a large proportion of genes in the three classes exhibited tolerance in 

T24-R0.25-S+ and T24-R8-S+ relative to T0-R0-S0. 

 Importantly, we also observed that nearly half of the 337 “low basal” genes were 

expressed greater than 10% in T24-R0.25-S0 samples relative to T0-R0-S0 (Figure 3-5A, fourth 

column; Figure 3-5B, top panel). Specifically, 103 of 222 primary response, 31 of 70 IFN-

independent secondary response, and 28 of 45 IFN-dependent secondary response genes 

exhibited expression levels greater than 10% in T24-R0.25-S0 samples relative to T0-R0-S0. 

This indicated that the “low basal” expression and inclusion in the analysis of these genes was 

due to T24-R8-S0 samples reaching within 10% of the T0-R0-S0 samples. Examination of the 
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maximum expression in T24-R0.25-S+ samples (Figure 3-5B, top panel) revealed that 80%, 

87%, and 82% of the primary response, IFN-independent, and IFN-dependent secondary 

responses (excluding those indicated as “high basal”) were expressed at less than 25% relative 

to T0-R0-S+, respectively. Furthermore, the T24-R08-S+ samples (Figure 3-5B, bottom panel) 

exhibited a similar broad level of tolerance, with just 10%, 17%, and 2% of the primary 

response, IFN-independent, and IFN-dependent secondary responses reaching at least 75% of 

the T0-R0-S+ stimulation level, respectively. Thus, the data indicate that after the short rest, the 

majority of genes exhibited “high basal” expression levels prior to treatment with the stimulating 

dose of LPS. Furthermore, nearly all of the genes that exhibited “low basal” expression were 

robustly tolerized. After the long rest however, many of these genes become inducible to 50% of 

the initial induction magnitude. These observations are further addressed below in Figure 3-6.  

To more concisely measure the level of tolerance, we used the maximum expression 

level of each “low basal” gene from either T24-R0.25-S+ or T24-R8-S+ samples to represent the 

overall degree of tolerance. This revealed that both primary response and IFN-independent 

secondary responses contained large subsets of genes that were “tolerized” and fewer genes 

that were “not tolerized”. For example, 80 of 222 (36%) and 35 of 70 (50%) of the genes were 

induced to less than 25% in the primary response and IFN-independent secondary response, 

respectively (Figure 3-5C). In contrast, just 24 of 222 (11%) and 12 of 70 (17%) of the genes 

were inducible to at least 75% of T0-R0-S+ in the primary response and IFN-independent 

secondary response, respectively. Furthermore, of the 45 IFN-dependent secondary response 

genes, 33 were expressed at less than 25% relative to T0-R0-S+ samples, while just one was 

expressed at greater than 75% in either T24-R0.25-S+ or T24-R8-S+ samples relative to T0-R0-

S+. Among the “not tolerized” subset were the primary response genes Ptgs2 and Tlr2, two 

genes that are involved in mediating inflammatory responses. Interestingly, both of these genes 

were previously classified as NF-κB target genes (Chapter 2). Further examination of the status 

of NF-κB signaling components in cells given the tolerizing dose of LPS and either long or short 
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rested may provide insight into the mechanism of tolerance for this subset of genes. 

Additionally, the IFN-independent secondary response genes Itgb8 and Flrt3 were inducible 

when given the stimulating dose of LPS after treated with the tolerizing LPS and rested. While 

these genes play roles in mediating cell migration and adhesion, how their expression is 

regulated is not known. It is important to note that these “not tolerized” genes exhibited high 

expression in T24-R0.25-S0 samples, and therefore their inducibility in T24-R0.25-S+ samples 

could not be examined. 

Because of the possibility that the classification of “tolerized” and “not tolerized” genes 

could be an artifact of the initial T0-R0-S+ induction levels, we next examined the fold inductions 

of genes in T0-R0-S+ samples in various degrees of tolerance bins. This revealed a broad fold 

induction distribution for genes in T0-R0-S+ samples, and across all of the defined tolerance 

bins for both the primary and secondary response classes (Figure 3-5D), suggesting that the 

broad downregulation of gene induction in tolerized cells was not due to an artifact of the 

dynamic range of the T0-R0-S+ fold induction levels. 

To gain insight as to what regulatory pathway the “tolerized” and “not tolerized” genes 

belonged to, we next assessed the maximum expression levels in either the T24-R0.25-S+ or 

T24-R8-S+ samples for the 149 of 226 “low basal” genes from Chapter 2 (Figure 3-4E). 

Interestingly, each co-regulated gene class demonstrated a broad range of expression levels 

relative to T0-R0-S+. For example, some genes were expressed at less than 10% in T24-R0.25-

S+ and T24-R8-S+ samples relative to T0-R0-S+ while others were expressed at greater than 

90% relative to T0-R0-S+ samples. Examination of median expression values within each co-

regulated gene cluster revealed a similar downregulation of expression, with median values 

ranging between 30-45% relative to T0-R0-S+ samples across all of the co-regulated gene 

classes. Notably, the three gene classes with the lowest median expression levels were the NF-

κB/IRF3 primary response, the IFN-dependent secondary response, and the IFN-independent 

secondary response. However, because the NF-κB/IRF3 cluster contained just three genes (the 
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other two NF-κB/IRF3 genes were “high basal” and not included in this analysis), it is unclear 

how significant this observation is. Nevertheless, both the IFN-dependent and IFN-independent 

secondary response genes exhibited lower expression levels in T24-R0.25-S+ and T24-R8-S+ 

compared to expression levels in the other co-regulated gene classes. This suggests a 

possibility that the low T24-R0.25-S+ and T24-R8-S+ expression levels observed for the 

secondary response genes could be due to the overall dampened response of the primary 

response in T24-R0.25-S+ and T24-R8-S+ samples. 

 

The Effect of LPS Tolerance Diminishes Over Time 

One observation made of the “low basal” genes was the moderately transient nature of gene 

suppression in tolerized cells, as discussed above (Figure 3-5B). Although we noted a broad 

downregulation of gene activation in T24-R0.25-S+ and T24-R8-S+ samples (Figure 3-5C,E), 

many genes appeared to be induced more highly after the long rest and treatment with the 

stimulating LPS compared to the short rest (Figure 3-5B). To more quantitatively investigate the 

differences, we subcategorized the “low basal” genes into 4 primary response clusters, 3 IFN-

independent secondary response clusters, and 1 IFN-dependent secondary response cluster 

based on the hierarchical clustering of the “low basal” genes (Figure 3-5A). We then performed 

box plot analysis of the nine stimulation conditions for each cluster of genes (Figure 3-6A). This 

revealed that some clusters such as Primary 3, Primary 4, IFN-i 1, and IFN-i 3 exhibited a 

higher dynamic range of induction in T24-R8-S+ samples compared to T24-R0.25-S+ samples. 

Furthermore, correlation dendrograms of the primary response and IFN-independent secondary 

response genes revealed that the long rest stimulation conditions (T24-R8) grouped with the 

non-tolerized samples (T0-R0), while short rested stimulation conditions (T24-R0.25) grouped 

with each other (Figure 3-6B). In contrast, the IFN-dependent secondary response genes 

generally clustered into the rest periods: the naïve non-tolerized samples grouped with each 

other while the T24-R0.25 samples clustered together. The T24-R8 samples were scattered 



! 121 

throughout the dendrogram, with the T24-R8-S+ samples more correlated with the T24-R0.25 

samples and the T24-R8-S0 sample grouped with the T0-R0 samples. This suggests that the 

tolerance of the long rested samples stimulated with LPS may be wearing off, and therefore 

exhibit similarities to T24-R0.25 samples that exhibit high transcription levels of the majority of 

IFN-dependent genes. Furthermore, the finding that the T24-R0.25 samples clustered with each 

other supports the hypothesis that many of the “high basal” IFN-dependent genes continued to 

be highly expressed in all T24-R0.25 samples due to the presence of IFN-β in the media (Figure 

3-4C). Taken together, the data suggests that although there is a broad downregulation of 

inflammatory gene expression during LPS tolerance, the effect of tolerance may be transient.  

 

Expression of Regulators Downstream of TLR4 Activation 

Numerous regulators of the TLR4 signaling pathway and response have been implicated in 

establishing the LPS tolerant state. We therefore examined expression patterns of the genes 

encoding these regulators using the RNA-seq datasets to gain insight as to what role they might 

play in LPS tolerance. Specifically, we compared gene expression in non-tolerized resting cells 

(T0-R0-S0) to cells given the tolerizing LPS but not the stimulating LPS (T24-R0.25-S0 and 

T24-R8-S0). This allows us to examine any changes in expression before and after 

establishment of tolerance. Examination of TLR4 signaling molecules and downstream 

transcription factors did not reveal substantial downregulation of expression for these genes in 

the tolerized state (T24, both short and long resting periods; Table 3-2, column 12 and 13). 

Nearly all genes examined after removal of the tolerizing LPS (T24-R0.25-S0 and T24-R8-S0) 

were expressed within 2-fold relative to T0-R0-S0. Furthermore, we also did not observe a 

substantial upregulation of anti-inflammatory mediators of the TLR4 response such as Il10 

(Table 3-3). However, it is important to note that unaltered gene expression does not 

necessarily translate to unaltered function of the protein encoded by the gene. In contrast, we 

observed upregulated expression of genes encoding for negative regulators of TLR4 signaling 
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in T24-R0.25-S0 and T24-R8-S0 samples relative to T0-R0-S0. For example, expression of the 

Irak3 gene encoding for IRAK-M was nearly 4-fold and 2-fold increased in T24-R0.25-S0 and 

T24-R8-S0 samples, respectively (Table 3-4, column 12 and 13). This agrees with previous 

studies demonstrating that IRAK-M inhibits TLR4 signaling, and that IRAK-M deficient mice fail 

to develop LPS tolerance7. We also observed a 8-fold and 4-fold higher induction of Socs3 in 

tolerized T24-R0.25-S0 and T24-R8-S0 samples relative to T0-R0-S0, respectively. Although 

SOCS3 has not been demonstrated to have a role in mediating LPS tolerance, it is a well-

studied molecule that negatively regulates of cytokine signaling through inhibition of STAT 

proteins26,27. Other genes encoding for negative regulators of the TLR4 response such as 

Dusp1 and Trafd1 also exhibited elevated levels in cells given the 24-hour tolerizing LPS dose 

compared to naïve, unstimulated cells. Taken together, the findings suggest that the global 

downregulation of gene expression observed in tolerized cells may be due to upregulation of 

various known negative regulators of TLR4 proximal signal transduction.  

 

Discussion 

The results of this study provide evidence that LPS tolerance broadly impacts inflammatory 

gene induction. Performing RNA-seq on chromatin-associated transcripts enabled us to 

examine LPS tolerance at the transcriptional activation level. By examining gene expression in 

tolerized cells compared to non-tolerized cells given a stimulating LPS dose in the context of the 

TLR4 network analysis (Chapter 2), we found only a small subset of not tolerized genes 

(inducible in T24-R0.25-S+ and T24-R8-S+ samples), but a much larger subset of genes that 

were tolerized in cells given the tolerizing LPS dose (not inducible in T24-R0.25-S+ and T24-

R8-S+ samples). Furthermore, the tolerized genes were broadly distributed across all of the co-

regulated gene classes. The finding that many well-known negative regulators of TLR4 signal 

transduction such as IRAK-M were upregulated after the 24-hr tolerizing LPS treatment suggest 
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that the broad inhibition of gene activation may be due to a proximal block in TLR4 signal 

transduction events. 

The broad suppression of gene induction also suggests that multiple mechanisms likely 

contribute to LPS tolerance. In contrast to a previous study17, we did not find substantial 

upregulation of Il10. However, this may be due to differences in cell type or tolerance protocol, 

or due to regulation of Il-10 through post-translational mechanisms. Further investigation of Il-10 

levels in tolerized and non-tolerized cells should clarify this. Furthermore, although we observed 

broad gene suppression in tolerized cells across nearly all of the co-regulated gene clusters, a 

closer examination of how components of signaling pathways such as NF-κB and MAP kinase 

are affected will help clarify both the degree and duration of LPS tolerance for each pathway. 

It is worthy to note that although we observed a broad suppression of TLR4-induced 

genes in tolerized macrophages, the suppression of genes was less substantial in the long rest 

compared to short rest cells given the stimulating LPS. This suggests that the hyporesponsive 

state of tolerized cells could be transient, and the resting time between tolerizing and stimulating 

LPS treatments allows cells to return to baseline. Although our analysis in context of the TLR4 

transcriptional network study did not reveal co-regulated gene clusters that were “not tolerized”, 

it will be interesting to further investigate what signaling molecules have returned to basal levels 

after the long rest period but not the short rest period that may account for the moderate de-

suppression in gene expression observed in T24-R8-S+ samples compared to T24-R0.25-S+. It 

will also be informative to better understand the regulatory mechanisms underlying activation of 

the genes that are “not tolerized” such as Tlr2 and Ptgs2, as it may reveal specialized 

mechanisms that are unaltered in tolerized cells. 

The global analysis of LPS tolerance uncovered a large subset of genes whose 

expression remained highly transcribed after stimulus removal (“high basal”). The high levels of 

expression during the rest period for these genes (After the tolerizing LPS was removed but 

before the stimulating LPS was given) proved to be difficult to classify as “tolerized” or “not 
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tolerized” because it appeared that the genes were not shut off after removal of the tolerizing 

LPS. Difficulty arose in determining what sample condition to use as a baseline for determine 

the level of tolerance, and it therefore seemed reasonable to perform a separate assessment of 

the “high basal” genes. Analysis in the context of the TLR4 transcriptional network revealed that 

nearly two-thirds of the “high basal” genes were secondary response genes. The secondary 

response genes require new protein synthesis, and their activation kinetics is delayed relative to 

the primary response, indicating that the secondary response genes likely have complex 

regulatory mechanisms responsible for their activation by the 24-hour tolerizing LPS period due 

to multiple layers of feedback. For example, transcription of these genes may be prolonged and 

can result in “high basal” expression levels if cytokines synthesized during the primary response 

have the capability to activate them and are synthesized at different times during the tolerizing 

LPS dose. Additionally, expression of these genes may be prolonged if the cytokine involved in 

its activation is synthesized during the primary response and has a long half-life. The finding 

that IFN-β was present in culture media after the 24-hour tolerizing LPS period, and the 

observation that nearly half of the “high basal” genes were IFN-dependent, supports this idea. 

For this study, we found it necessary to examine chromatin-associated transcripts due to 

differences in mRNA stability that complicated the analysis. It will be interesting to compare 

these datasets to a global analysis of LPS tolerance using mRNA to highlight any differences in 

LPS tolerance for different subsets of genes, which may indicate mechanisms of tolerance at 

post-transcriptional levels such as mRNA processing, export, and stability. 
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Methods and Materials 

Cell Culture and Activation 

Bone marrow-derived macrophages were prepared from C57Bl/6 mice. Bone marrow cells were 

harvested from the femurs and tibiae and cultured for 6 days in M-CSF conditioned media 

containing 20% serum. Macrophages were activated on day 6 with a tolerizing dose of lipid A 

(Sigma, 100 ng/ml). After 24 hours, the lipid A-containing media was removed and 

macrophages were washed with warm PBS before replacing with fresh lipid A-free media. Cells 

were rested for varying amounts of time before challenging with a second dose of lipid A (10 

ng/ml or 100 ng/ml). 

 

qRT-PCR 

RNA was extracted using TRI-Reagent (Molecular Research Center). RNA was DNase I treated 

(Qiagen) and purified using an RNeasy kit (Qiagen). RNA was reverse transcribed into cDNA 

using the Omniscript RT kit (Qiagen) and primed with random hexamers. cDNA fragments were 

analyzed by qRT-PCR using SensiMix Plus (Quantace) using primer pairs to amplify both 

mRNA and primary transcript products. 

 

RNA-seq Library Preparation 

Chromatin-associated RNA was purified as described. Chromatin purity was confirmed by 

immunoblot analysis of SNRP70, β"Tubulin (Sigma), and Histone H3 (Abcam). Chromatin RNA 

was depleted of ribosomal RNA using the Ribominus Eukaryote kit (Life Technologies). Strand-

specific libraries were generated by using 60 ng of chromatin RNA according to manufacturer’s 

instruction from the Truseq RNA Sample Preparation Kit v2 (Illumina), with the following 

modifications: second strand cDNA was synthesized in the presence of deoxyuridine 

triphosphate (dUTP) according to the dUTP method. cDNA libraries were single-end sequenced 

(50 bp) on an Illumina HiSeq 2000. 
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RNA-seq Read Mapping and Processing 

Reads were aligned to the mouse genome (NCBI37/mm9 build) with TopHat v1.3.3 and 

allowing reads to be aligned once with up to two mismatches per read permitted. RPKM values 

were calculated as described. Due to the possibility that chromatin transcripts may be spliced 

but remain associated with the chromatin/RNA polymerase complex, RPKM values were 

calculated by counting reads mapped to introns and divided by the sum of the length of all 

introns within the transcription unit. All RPKMs represent an average from two biological 

replicates. 

To determine the expression relative to non-tolerized samples, the RPKM value in basal, 

unstimulated samples was set to 0% and the maximum RPKM value from the non-tolerized 

samples given a stimulating LPS dose was scaled to 100% for each gene. The RPKM 

expression values for each sample were converted to percent expression using this scale. 
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Figure Legends 

Figure 3-1: Primary and Mature Transcripts Exhibit Distinct Gene Expression Patterns  

(A) Basic experimental design to investigate LPS tolerance. Cells were first given a tolerizing (T) 

LPS dose. After 24 hours, the stimulus was removed and rested (R) for 0.25, 4, 8, or 24 hours 

prior receiving a stimulating LPS (S) dose. (B) The fold induction of mRNA (top panel) and 

primary transcripts (bottom panel) for representative genes in tolerized cells stimulated with a 

low (10 ng/ml) or high (100 ng/ml) dose of LPS relative to naïve, unstimulated samples, 

quantified by qRT-PCR is shown. Cells that did not receive the second, stimulating LPS dose 

are indicated by the white bars. The rest periods between the tolerizing LPS and stimulating 

LPS are indicated in hours.  

 

Figure 3-2: Global Patterns of Gene Expression and Suppression Analyzed by RNA-seq 

of Chromatin-Associated RNA 

(A) Expression of genes previously described as either “tolerized” or “not tolerized” are shown 

and represented as a percent expression relative to the maximum expression in T0-R0-S+ 

(naïve cells given a stimulating LPS dose). (B) The 554 5-fold, 1 RPKM LPS-induced genes 

were hierarchically clustered taking all stimulation conditions (described in Table 3-1) into 

consideration. The heatmap is colored based on percentile of RPKM values.  The expression 

levels after removal of the tolerizing LPS and before given the stimulating LPS are indicated to 

the right of the heatmap after the short rest (R0.25, left column) or long rest (R8, right column) 

but prior to the stimulating LPS dose. The distribution of T24-R0.25-S0 (blue) and T24-R8-S0  

(red) percent expression relative to T0-R0-S0 samples for the (C) 5-fold and (D) 10-fold induced 

genes is shown. The horizontal dashed grey lines indicate the 10% expression threshold. The 
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tables below each graph indicate the number of genes in T24-R0.25-S0 and T24-R8-S0 

samples with expression levels of varying ranges. 

 

Figure 3-3: LPS-Inducible Genes with Sustained Expression Tend to be Interferon-

Dependent Secondary Response Genes 

(A) The 226 inducible genes from TLR4 network studies (Chapter 2) were subdivided into 

primary response (left) and secondary response (right). The distribution of the percent 

expressions in T24-R0.25-S0 (blue) and T24-R8-S0 (red) samples relative to T0-R0-S0 for the 

primary and secondary responses is shown. (B) The RPKM values in T24-R0.25-S0 (blue) and 

T24-R8-S0 (red) samples are plotted for each gene in each co-regulated gene class. The 

median RPKM values within each class for each resting period are indicated as horizontal black 

bars. The dashed grey line indicates the 10% expression threshold. (C) The 554 5-fold induced 

genes were separated based on the minimum percent expression reach in either T24-R0.25-S0 

or T24-R8-S0 samples. If a gene expressed within 10% of T0-R0-S0 samples in either T24-

R0.25-S0 or T24-R8-S0 samples, it was classified as “low basal”. If a gene was expressed 

greater than 10% in both T24-R0.25-S0 and T24-R8-S0 relative to T0-R0-S0, it was classified 

as “high basal”. The distribution of expression in cycloheximide-treated samples (CHX; left) and 

Ifnar-/- cells (right) are shown for the “high basal” (blue) and “low basal” (grey) genes. (D) The 

554 5-fold induced genes were first separated into those that were or were not sensitive to CHX 

treatment (33% expression threshold). The expression in Ifnar-/- macrophages (x-axis) and the 

minimum percent expression from either T24-R0.25-S0 or T24-R8-S0 (y-axis) is shown for the 

253 CHX-sensitive genes. The horizontal dashed grey line represents the 10% expression 

threshold. The table below the scatterplot indicates the distribution of the 253 CHX-sensitive 

genes based on their IFN-dependence and T24-R0.25-S0 or T24-R8-S0 expression. 
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Figure 3-4: Persistent IFN-β  Contributes to Prolonged Transcription of ISGs 

(A) The expression of Ifnb1 primary transcript in non-tolerized (T0) or tolerized (T24) 

macrophages given a stimulating dose of LPS for 0, 0.5, 1, 2, or 3 hours was quantified by qRT-

PCR. Tolerized macrophages were rested for 0.25 or 8 hours prior to treatment with the 

stimulating LPS. The values represent the relative amounts of transcript (ng) relative to genomic 

DNA standard curves. (B) IFN-β secretion was measured in non-tolerized (T0) and tolerized 

(T24) macrophages that were activated with LPS for 2 hours by ELISA. The tolerized 

macrophages were rested for either 0.25 (R0.25) or 8 (R8) hours after removal of the tolerizing 

LPS before given the stimulating dose of LPS. (C) IFN-β secretion was measured in 

macrophages treated with the 24-hour tolerizing LPS, both before the tolerizing LPS was 

removed, and after the indicated rest period (R0.25 or R8) by ELISA. 

 

Figure 3-5: LPS Tolerance Broadly Impacts Inflammatory Gene Induction 

(A) The 337 of 554 5-fold induced genes that had expression levels within 10% of T0-R0-S0 in 

either T24-R0.25-S0 or T24-R8-S0 samples (“low basal”) were separated into primary and 

secondary response based on their sensitivity to cycloheximide (33% expression threshold). 

The secondary response genes were further separated into IFN-dependent and IFN-

independent based on their expression in Ifnar-/- macrophages (33% expression threshold). The 

primary response and IFN-independent secondary response classes were then each 

hierarchically clustered, taking all stimulation conditions into account. The IFN-dependent genes 

were not clustered any further. Heatmap colors are based on percentile of expression. (B) The 

337 “low basal” genes were classified into primary response, IFN-independent secondary 

response, and IFN-dependent secondary response as described in (A). The maximum 

expression in T24-R0.25-S+ (top panel) and T24-R8-S+ (bottom panel) samples were binned 



! 130 

and is shown as a percent of total within each category. If expression in either T24-R0.25-S0 or 

T24-R8-S0 did not reach within 10% of T0-R0-S0 but did reach that threshold in the other, it 

was categorized as “high basal” for the sample that did not fall within the 10% threshold. (C) 

The distribution of maximum percent expression values in either T24-R0.25-S+ or T24-R8-S+ 

samples is shown for the “low basal” primary response, IFN-independent secondary response, 

and IFN-dependent secondary response classes. Values represent the maximum expression 

relative to T0-R0-S0 samples. (D) The primary response (top) and secondary response (bottom) 

genes were binned based on their maximum expression in tolerized macrophages treated with a 

stimulating LPS dose (T24-R0.25-S+ or T24-R8-S+). Each of these bins was further grouped 

based on the maximum fold induction in naïve, non-tolerized macrophages given the stimulating 

LPS dose (T0-R0-S+). The values indicate the relative distribution of these fold induction values 

within each expression bin. (E) The 226 inducible genes from Chapter 2 were analyzed for their 

expression in T24-R0.25-S0 and T24-R8-S0 samples. The 147 of 226 genes with “low basal” 

expression were grouped into co-regulated gene classes. The values represent the maximum 

expression level in either T24-R0.25-S+ or T24-R8-S+ samples. The median expression for 

each co-regulated group is indicated as horizontal red dashes. 

 

Figure 3-6: The Effect of LPS Tolerance Diminishes Over Time 

(A) The 337 5-fold induced genes with “low basal” expression were classified into primary 

response, IFN-independent secondary response, and IFN-dependent secondary response 

genes as described in Figure 3-5A. The primary response was separated into 4 sub-classes and 

the IFN-independent secondary response was separated into 3 sub-classes based on the 

hierarchical clustering in Figure 3-5A. We then performed box plot analysis on each of the 8 

groups of genes to identify the distribution of RPKM values within each group. (D) The 337 5-
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fold induced, “low basal” genes were separated into primary response, IFN-independent 

secondary response, and IFN-dependent secondary response. The experimental datasets 

(described in Table 3-1) were hierarchically clustered to identify experimental conditions that 

exhibited the highest degree of similarity to each other. 

 

Table 3-1: Experimental Design and Sample Name Designations of Global Analysis of 

LPS Tolerance 

The experimental design and sample naming system is shown in the table. The tolerizing LPS 

dose is designated as T, followed by either 0 or 24 to denote if the cells were non-tolerized (T0) 

or tolerized (T24) for 24 hours. The resting period is denoted by R, followed by the number of 

hours the cells were rested (0, 0.25, or 8). The stimulating LPS dose is designated as S, 

followed by a number to indicate the number of hours the cells received the stimulating dose of 

LPS (0, 0.5, or 2). In the text, “S+” is used to indicate any stimulated timepoint (0.5 or 2 hours) 

for simplicity. 

 

Table 3-2: Expression of TLR4 Signaling Molecules and Related Factors During LPS 

Tolerance 

The RPKM values of genes encoding for components of the TLR4 signal transduction pathway 

and related factors that promote inflammatory gene activation are shown. RPKM values are 

given for both tolerized (T24) and non-tolerized (T0) cells. The last two columns indicate the fold 

induction of each gene in T24-R0.25-S0 and T24-R8-S0 relative to expression in T0-R0-S0 

cells. 
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Table 3-3: Expression of Anti-Inflammatory Mediators During LPS Tolerance 

The RPKM values of genes encoding for anti-inflammatory mediators previously demonstrated 

to be critical to establish LPS tolerance are shown. RPKM values are indicated for both tolerized 

(T24) and non-tolerized (T0) cells. The last two columns indicate the fold induction of each gene 

in T24-R0.25-S0 and T24-R8-S0 relative to expression in T0-R0-S0 cells. 

 

Table 3-4: Expression of Negative Regulators of TLR4 Signal Transduction During LPS 

Tolerance 

The RPKM values of genes encoding for negative regulators of TLR4 signal transduction are 

shown. RPKM values are indicated for both tolerized (T24) and non-tolerized (T0) cells. The last 

two columns indicate the fold induction of each gene in T24-R0.25-S0 and T24-R8-S0 relative to 

expression in T0-R0-S0 cells. 

 

 

 

 

 

 

 

 

 

 

 

 



! 133 

Figure 3-1: Primary and Mature Transcripts Exhibit Distinct Gene Expression Patterns  
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Figure 3-2: Global Patterns of Gene Expression and Suppression Analyzed by RNA-seq 

of Chromatin-Associated RNA 
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Figure 3-2 (continued) 
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Figure 3-3: LPS-inducible Genes with Sustained Expression Tend To Be Interferon-

Dependent Secondary Response Genes 
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Figure 3-4: Persistent IFN-β  Contributes to Prolonged Transcription of ISGs 
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Figure 3-5: LPS Tolerance Broadly Impacts Inflammatory Gene Induction 
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Figure 3-5 (continued) 
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Figure 3-6: The Effect of Tolerance Wears Off Over Time 
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Table 3-1: Experimental Design and Sample Name Designations of Global Analysis of 
LPS Tolerance 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name Tolerizing LPS (T) Rest period (R) Stimulating LPS (S) 

1 T0-R0-S0 0 0 0 

2 T0-R0-S0.5 0 0 0.5 

3 T0-R0-S2 0 0 2 

4 T24-R0.25-S0 24 0.25 0 

5 T24-R0.25-S0.5 24 0.25 0.5 

6 T24-R0.25-S2 24 0.25 2 

7 T24-R8-S0 24 8 0 

8 T24-R8-S0.5 24 8 0.5 

9 T24-R8-S2 24 8 2 
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Table 3-2: Expression of TLR4 Signaling Molecules and Related Factors During LPS 
Tolerance 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Product Gene NT 0 NT 30 NT 120 T15 0 T15 30 T15 120 T8 0 T8 30 T8 120
Reads Per Kilobase x Total Mapped Reads (RPKM)

T15 0 / NT 0 T8 0 / NT 0
Fold Induction

Irak4 Irak4 1.3 0.5 0.6 1.4 1.1 1.1 1.7 1.0 1.4
Irak1 Irak1 4.3 3.3 2.6 3.0 3.4 2.4 3.8 3.6 3.0

p105 (p50) Nfkb1 3.6 14.5 24.4 5.3 12.1 17.0 3.9 11.9 16.1
p100 (p52) Nfkb2 3.6 30.1 36.9 7.7 17.4 17.4 4.1 17.7 17.3

RelA RelA 3.8 14.1 9.3 4.6 8.6 6.3 3.2 11.4 5.5
cRel Rel 2.4 12.9 19.6 4.2 7.9 6.9 3.0 11.1 8.5

Myd88 Myd88 2.3 4.8 12.1 4.4 7.0 7.1 4.1 6.7 5.4
Traf6 Traf6 1.7 2.2 1.8 2.0 2.0 2.0 1.8 2.1 1.9
Mal Mal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Tirap Tirap 1.0 0.2 1.5 1.0 0.6 1.2 1.0 0.4 1.5
Tbk1 Tbk1 5.2 9.0 8.6 9.8 11.9 9.1 7.0 8.8 7.3
IKKβ Ikbkb 3.1 6.1 8.5 3.4 4.4 5.5 3.1 4.8 6.6
IKKγ IKBKg 2.2 1.4 3.1 3.0 2.8 3.4 1.8 1.4 2.1

Tram1 Tram1 3.7 0.5 0.8 3.1 2.1 2.3 3.1 1.3 2.2
Tlr4 Tlr4 3.3 0.4 1.2 5.6 2.6 3.4 4.7 0.9 1.7
Lbp Lbp 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cd14 Cd14 11.9 98.7 18.8 42.6 68.1 37.8 13.4 88.6 22.1
Md2 Ly96 1.5 0.9 2.2 2.6 2.7 2.8 2.1 1.8 2.6

Trem1 Trem1 0.1 0.7 0.0 0.8 3.1 0.7 0.3 2.4 0.2
Itgb2 Itgb2 6.8 1.9 0.5 10.7 11.2 6.5 8.6 7.3 4.6

Usp18 Usp18 2.4 0.5 28.6 15.0 9.7 22.8 10.6 3.6 10.7
Tram2 Tram2 1.0 0.8 1.3 0.6 0.6 1.0 0.6 0.5 0.8
Irak2 Irak2 4.4 14.9 18.8 9.1 14.5 11.4 5.1 17.6 13.6
Tak1 Map3k7 2.3 1.9 1.6 2.8 2.8 2.7 2.9 2.5 2.8
Tab2 Tab2 6.4 9.2 16.8 7.7 7.1 8.6 7.3 7.1 10.1
Tab1 Tab1 3.6 1.1 1.0 1.7 1.4 1.3 2.4 1.5 1.4

Mekk3 Map3k3 3.2 1.6 0.8 2.5 1.6 1.9 3.6 2.4 2.9
Mkk3 Map2k3 4.8 11.2 0.9 4.9 7.7 3.2 3.3 6.3 1.4
Mkk6 Map2k6 0.1 0.1 0.0 0.1 0.1 0.2 0.1 0.1 0.1
Mkk7 Map2k7 5.4 4.2 3.2 5.1 5.4 4.8 4.7 4.7 4.3
p38 Mapk14 5.6 2.2 3.6 4.5 4.2 5.4 6.5 4.1 7.2
Jnk Mapk8 1.2 0.8 0.5 1.2 1.3 1.4 1.1 1.1 1.3
Erk Mapk14 5.6 2.2 3.6 4.5 4.2 5.4 6.5 4.1 7.2

1.1 1.3
0.7 0.9
1.5 1.1
2.1 1.1
1.2 0.8
1.8 1.3
1.9 1.8
1.2 1.1
0.9 0.9
0.9 0.9
1.9 1.3
1.1 1.0
1.4 0.8
0.9 0.9
1.7 1.4
1.8 1.2
3.6 1.1
1.8 1.5
6.2 2.3
1.6 1.3
6.2 4.4
0.6 0.6
2.1 1.2
1.2 1.2
1.2 1.1
0.5 0.7
0.8 1.1
1.0 0.7
0.5 0.6
0.9 0.9
0.8 1.2
1.0 0.9
0.8 1.2
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Table 3-3: Expression of Anti-Inflammatory Mediators During LPS Tolerance 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Product Gene NT 0 NT 30 NT 120 T15 0 T15 30 T15 120 T8 0 T8 30 T8 120T15 0 / NT 0T8 0 / NT 0
Il10 Il10 0.5 2.2 2.2 0.8 0.9 0.7 1.2 1.1 0.7 1.6 2.4

Tgfb1 Tgfb1 6.8 7.2 2.1 4.3 5.5 4.6 5.1 8.3 4.1 0.6 0.8
PI3K p85 pik3r1 2.8 3.9 2.2 2.2 2.4 1.8 2.7 2.6 1.8 0.8 1.0
PI3K p110 pik3ca 1.7 2.3 1.3 2.8 2.2 3.1 2.6 1.8 3.4 1.6 1.5

Reads Per Kilobase x Total Mapped Reads (RPKM) Fold Induction
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Table 3-4: Expression of Negative Regulators of TLR4 Signal Transduction During LPS 
Tolerance 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Product Gene NT 0 NT 30 NT 120 T15 0 T15 30 T15 120 T8 0 T8 30 T8 120
Reads Per Kilobase x Total Mapped Reads (RPKM)

T15 0 / NT 0 T8 0 / NT 0
Fold Induction

Tyro3 Tyro3 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
ST2L Il1rl1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TRAILR Tnfrsf10b 0.1 0.2 0.1 0.0 0.0 0.0 0.1 0.1 0.1
Sigirr Sigirr 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
Mer Mertk 2.6 1.2 2.8 3.4 1.9 2.3 3.3 2.2 1.8
Axl Axl 2.0 1.9 9.7 1.8 1.8 2.3 1.6 2.2 2.1

Tollip Tollip 2.4 2.5 1.0 2.3 2.8 2.0 2.1 2.4 2.1
IRAK-M Irak3 1.1 1.6 3.2 4.4 7.9 12.3 2.7 4.4 11.6
SHIP1 Inpp5d 11.6 6.7 0.3 11.9 10.6 4.4 11.1 11.7 2.9
Socs1 Socs1 0.4 0.1 9.3 0.9 0.2 1.9 0.6 0.1 0.9
Mkp1 Dusp1 10.7 103.4 7.4 31.5 32.3 13.8 13.9 50.4 9.6
Atf3 Atf3 13.8 49.5 42.0 20.6 14.0 21.2 15.0 26.2 12.9

Trafd1 Trafd1 6.0 3.0 34.7 18.8 17.6 22.2 13.6 8.4 15.2
Socs3 Socs3 0.4 38.7 44.4 3.3 14.3 18.1 1.8 20.5 21.0
IκBα Nfkbia 11.5 154.1 106.3 18.8 64.9 46.5 16.6 76.2 69.4
IκBβ Nfkbib 1.3 26.0 4.4 2.5 8.2 3.4 1.3 12.7 3.8
IκBε Nfkbie 2.0 30.3 21.0 9.5 18.1 11.6 2.8 27.8 12.4

IκB−NS Nfkbid 11.6 38.8 6.1 9.1 13.3 9.0 8.0 25.4 7.4
IκBζ Nfkbiz 6.9 161.6 58.5 18.0 57.7 22.5 12.2 90.0 31.6
A20 Tnfaip3 3.8 168.0 86.7 10.3 57.5 23.2 5.5 65.4 22.9

0.4 0.3
0.2 0.3
0.2 0.6
0.2 0.6
1.3 1.3
0.9 0.8
0.9 0.9
3.9 2.3
1.0 1.0
2.5 1.7
2.9 1.3
1.5 1.1
3.1 2.3
7.9 4.3
1.6 1.4
1.9 1.0
4.8 1.4
0.8 0.7
2.6 1.8
2.7 1.4
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Although Toll-like receptors (TLRs) were discovered less than 20 years ago1, an 

extensive number of studies related to TLRs now exist and continues to rapidly grow. The 

studies now provide us with the understanding that each member of the TLR family recognizes 

a unique and conserved pathogen-associated molecular pattern (PAMP) derived from foreign 

material. This recognition initiates numerous complex signaling events, resulting in the 

activation of many transcription factors that coordinate a stimulus-specific transcriptional output. 

Furthermore, mechanisms at the post-transcriptional, translational, and post-translational levels 

also exist to regulate the innate immune response. Importantly, Charles Janeway postulated 

over 20 years ago that the innate immune system is the critical link to adaptive immunity, as 

antigen alone is not sufficient for activation2. Indeed, it is now appreciated that the innate 

immune response activates adaptive immunity through cytokine release, antigen processing, 

and upregulation of co-stimulatory molecules. 

An appropriately balanced response is required for effective immunity. For example, a 

rapid and efficient response is necessary to counteract foreign pathogens and dangers, but 

excessive or prolonged responses can have pronounced damage to host tissues that can lead 

to chronic inflammatory disorders, autoimmune disorders, and tumor development. Current 

therapies are in use that target cytokines and signaling cascades to treat inflammatory diseases 

such as Crohn’s disease, colitis, and arthritis3. However, because these therapies target broad 

cytokine signaling pathways that can affect a wide array of targets, patients undergoing these 

treatment plans are often susceptible to opportunistic infections. Therefore, a more refined 

understanding of the precise transcriptional events that occur in response to pathogen 

recognition and how specificity of the response is achieved in innate immune cells is necessary 

to be able to develop more specific therapies for the future. 

The innate immune response is initiated by the transcriptional upregulation of hundreds 

of genes that is stimulus and cell-type specific. However, the mechanisms underlying selectivity 
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of the response remains unresolved. Additionally, the field of innate immunity continues to grow 

as more stimuli, signaling molecules, and transcription factors are identified and implicated to 

play indispensible roles in mediating inflammatory responses. This has resulted in an extremely 

complex picture of the events that occur, beginning from pathogen recognition to activation of 

numerous signaling molecules and transcription factors that mediate the upregulation of 

hundreds of genes to resolve infection. Therefore, in order to make progress towards 

understanding how selectivity of the innate immune response is achieved, a more careful 

examination of the contributions from various signaling and transcriptional cascades is 

necessary. 

The studies described in the dissertation attempt to uncover the mechanisms and 

regulatory logic underlying transcriptional activation of genes during the TLR4-mediated innate 

immune response. Previous work from the lab began to assemble a framework describing the 

mechanisms of gene activation in response to LPS in macrophages, and demonstrated that 

LPS-inducible genes could be classified based on promoter properties, chromatin conformation, 

and transcription factor dependence4. However, because the studies were performed on a 

limited number of well-known proinflammatory genes using quantitative real-time PCR (qRT-

PCR), whether or not the findings were relevant on a global scale at all LPS-inducible genes 

were unclear. 

In Chapter 2, we expanded as well as refined these studies. Recent advancements in 

technology have transformed the fields of genetics and molecular biology. In particular, high-

throughput sequencing methods such as RNA-seq and ChIP-seq have allowed for a deeper 

understanding of the principles governing innate immune responses at a genome-wide level. 

Although microarray-based studies have greatly contributed to our knowledge of molecular 

immunology, next-generation sequencing methods are beneficial because they produce highly 

specific and quantitative information, and are not limited to probes of known genomic regions. 
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Moreover, studies from our lab demonstrated that RNA populations from subcellular fractions 

could be isolated biochemically and subjected to RNA-seq5,6. This revealed a number of insights 

into the dynamic regulation of gene expression cascades at the levels of transcription, RNA 

processing, and RNA transport. One key finding was that RNA-seq analysis chromatin-

associated transcripts isolated from stimulated cells provided a highly quantitative and accurate 

view of the activation kinetics of inducible genes. Using the approach of analyzing chromatin-

associated transcripts in stimulated cells by RNA-seq, LPS-inducible genes were classified into 

primary and secondary response based on their requirement for new protein synthesis. 

Additionally, using BMDMs derived from gene knockout mice provided highly quantitative 

information as to what subsets of genes require signaling cascades such as MyD88, TRIF, 

IRF3, or MAPK. The inducible genes were further characterized by taking a unique approach to 

analyze the genes in the context of ChIP-seq and transcription factor binding motif datasets.  

This revealed critical insights into the quantitative relationship between ChIP-seq peaks and 

transcription factor binding motifs.  Furthermore, using these methods, putative NF-κB, IRF3, 

and SRF target genes were identified. These findings in conjunction with their expression 

dynamics and requirement for the signaling pathways and transcription factors known to 

activate them provided strong evidence for their regulation. This approach provided the ability to 

connect a transcription factor to a set of target genes with higher confidence than previously 

appreciated, and should advance our understanding of how selective immune responses to 

pathogens are achieved. 

The studies presented in Chapter 3 demonstrated how the framework established in 

Chapter 2 could be applied to a physiological setting by examining the mechanisms of LPS 

tolerance. Notably, a global downregulation of inflammatory gene activation in tolerized 

macrophages given a second LPS treatment was observed. The finding that genes encoding for 

numerous negative regulators of the TLR4 response were upregulated, such as those blocking 
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proximal signal transduction events at the TLR4 receptor, in tolerized cells suggest that multiple 

mechanisms targeting a broad range of signaling cascades likely coordinate the tolerant state. 

In addition, the interferon receptor-dependent genes identified in Chapter 2 remained highly 

transcribed after the tolerizing LPS was removed. This was partially explained by the finding that 

IFN-β was present at low levels in the tolerant state. Thus, although LPS tolerance was exerting 

its effects downstream of TLR4, many secondary response genes could still be transcribed due 

to prolonged half-lives of their regulators that were induced during the primary response. Further 

studies focusing on candidate regulators should expand our understanding of the degree to 

which these factors contribute to the tolerant state. 

The studies presented in the dissertation describe how signaling pathways and 

transcription factors contribute to the TLR4 transcriptional activation network. Importantly, the 

framework is not comprehensive but serves as a foundation to begin understanding how 

selectivity of innate immune responses is achieved. In this chapter, I briefly discuss future 

directions that should advance our understanding of selective transcription during immune 

responses. 

Importantly, the mechanisms regulating inflammatory gene activation are not limited to 

the signaling cascades discussed in the dissertation. Although numerous transcription factors 

and signaling pathways have been implicated to be critical for the inflammatory response, how 

these various cascades act together to coordinate gene activation is unclear. Therefore, it will 

be critical to continue dissecting the TLR4 response through whole-genome profiling of 

activated macrophages deficient for various signaling pathways. This would most certainly 

refine the framework into additional co-regulated classes and would provide a deeper 

understanding of the inflammatory gene program. 
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A critical aspect of the TLR4 transcriptional network that needs to be addressed is the 

role that chromatin plays in regulating selective transcription in the context of the described 

framework. First, previous studies from the lab highlighted the important role that chromatin 

plays in mediating selective gene activation. A subset of TLR4-inducible genes including Ccl5 

requires chromatin remodeling by the SWI/SNF remodeling complex to induce promoter 

accessibility that is necessary for its activation. The findings also coincided with the delayed 

activation kinetics of these genes, supporting the hypothesis that nucleosome remodeling at 

selective promoters allows access for transcription factors to bind and recruit the transcription 

machinery. Indeed, the ChIP-seq studies described in Chapter 2 demonstrated that RelA bound 

to the promoter of Ccl5 with delayed kinetics relative to other RelA target genes, likely because 

RelA did not have access to DNA until SWI/SNF complexes reconfigured the promoter to an 

open and accessible conformation. Along these lines, it will be informative to understand in the 

context of the framework which subset of TLR4 responsive genes remodel their promoters in 

response to lipid A through genome-wide DNase hypersensitivity approaches, as well as 

identifying the subset of these genes that require the SWI/SNF chromatin remodeling complex 

or other remodeling factors. 

Secondly, there is still a limited understanding of the role that histone modifications play 

in regulating inducible gene activation. Numerous studies of the epigenetic landscape in 

macrophages have demonstrated extensive diversity of histone modifications present in resting 

cells, as well as modifications that are inducibly gained or lost after stimulation7. Importantly, 

specific histone modifications are more often found at a subset of rather than at all inflammatory 

genes. Both the diversity and specificity of these epigenetic markers indicates that distinct 

mechanisms likely exist to regulate select subsets of genes to achieve a transcriptional output 

that is tailored towards the stimulus detected. Therefore, further investigation of the role of 
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histone modifications in inducible transcription will reveal properties of select subsets of genes 

and should provide insight into their unique regulatory mechanisms. 

Selectivity of inducible gene activation occurs not only in response to different stimuli, 

but in different cell types responding to the same stimulus. For example, preliminary studies 

from our lab have demonstrated that Il6 transcription is a secondary response in LPS-stimulated 

macrophages, but a primary response in endothelial cells stimulated with LPS4. Furthermore, 

the findings described in Chapter 2 suggest that a subset of putative NF-κB target genes may 

be activated in a cell type-specific manner. A large proportion of the promoter-regulated NF-κB 

genes encode for NF-κB family members and regulators itself, suggesting a possibility that they 

may be activated by diverse stimuli and in various cell types. Notably, a subset of primary 

response genes exhibited similar activation kinetics and RelA dependence, yet did not have 

promoter-bound RelA in response to stimulus. This implies that RelA may be functioning at 

distal enhancer elements that are established through binding of lineage-determining factors 

such as PU.1 in macrophages to induce a cell type-specific response. Genome-wide profiling of 

diverse cell types stimulated with LPS will reveal if promoter- or putative enhancer-regulated 

NF-κB targets are differentially expressed between the cell types. Furthermore, because 

enhancers are important in mediating tissue-specific responses, detailed enhancer analysis by 

examining the overlap between distal RelA binding peaks, PU.1, and enhancer markers such as 

H3K4me1 should further clarify the prevalence of RelA binding at enhancers. Mapping 

enhancers to their target genes is a major challenge in the field that has been difficult to 

overcome because enhancers can regulate its targets as much as hundreds of kilobases 

upstream or downstream from the transcriptional start site and do not necessarily regulate the 

closest gene8. Chromatin-conformation studies such as Hi-C will be useful to decipher the three-

dimensional organization of chromosomes in the LPS-inducible system. While these studies will 

certainly advance our understanding of the interactions made between distal functional 
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elements such as enhancers and their putative target genes, additional studies will be 

necessary to determine the in vivo functional relevance by connecting these interactions with 

changes in gene expression. The recent advancement of engineered nucleases such as the 

CRISPR/Cas9 system that enables rapid genome editing9 has already begun to transform 

biological research. Using this strategy to disrupt sequence-specific binding sites at enhancers 

should reveal the functional significance they have in regulating expression of their target 

genes, and will undoubtedly play a critical role in advancing our understanding of mechanisms 

that establish cell type-specific responses. 

It is clear that our understanding of selective transcription during the innate immune 

response has only just begun. However, technological advances have come to a point where 

the cis-elements and trans-factors for every gene can be investigated to better understand how 

they coordinate gene expression in response to an environmental change. Furthermore, 

investigating how these components interact in three-dimensional space, the functional 

consequences of these interactions, as well as the heterogeneity of inflammatory responses 

through single-cell studies will be essential to understand the selectivity of transcriptional 

activation in the innate immune system. 
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Abstract  

A variety of age-related differences in the innate and adaptive immune systems have been 

proposed to contribute to the increased susceptibility to infection of human neonates and older 

adults. The emergence of RNA sequencing (RNA-seq) provides an opportunity to obtain an 

unbiased, comprehensive, and quantitative view of gene expression differences in defined cell 

types from different age groups. An examination of ex vivo human monocyte responses to 

lipopolysaccharide stimulation or Listeria monocytogenes infection by RNA-seq revealed 

extensive similarities between neonates, young adults, and older adults, with an unexpectedly 

small number of genes exhibiting statistically significant age-dependent differences. By 

examining the differentially induced genes in the context of transcription factor binding motifs 

and RNA-seq data sets from mutant mouse strains, a previously described deficiency in 

interferon response factor-3 activity could be implicated in most of the differences between 

newborns and young adults. Contrary to these observations, older adults exhibited elevated 

expression of inflammatory genes at baseline, yet the responses following stimulation correlated 

closely with those observed in younger adults. Notably, major differences in the expression of 

constitutively expressed genes were not observed, suggesting that the age-related differences 

are driven by environmental influences rather than cell-autonomous differences in monocyte 

development. 

 
Introduction 

Age-related differences in clinical susceptibility to infection have been extensively documented, 

with diminished protective responses and enhanced susceptibility observed in pre-term and 

term infants, as well as in older adults when compared to young adults [1-5]. This clinical 

observation of an age-dependent risk for infectious morbidity and mortality has led to an interest 

in identifying the underlying mechanisms and deriving strategies to enhance protective immune 

responses at the extreme ends of life [1-3]. 
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Differences in innate immune responses are thought to contribute to the overall 

susceptibility observed in neonates and older adults [2,6]. Neonates have been reported to 

produce lower levels of effector molecules, such as oxygen radicals [2,7]. A number of other 

proteins have also been reported at reduced levels in innate immune cells, including reduced 

expression of IFNα, CD40, CD80, CD83, and CD86 in neonatal plasmacytoid dendritic cells [5].  

Furthermore, newborns and older adults produce altered levels of cytokines that regulate the 

development of adaptive immunity (reviewed in [2]). For example, the heterodimeric, Th1-

inducing innate cytokine, interleukin(IL)-12, is expressed at reduced levels in neonates, due to 

the reduced expression of its p35 subunit [8-10]. In contrast, the anti-inflammatory cytokine, IL-

10, and the Th17-inducing cytokines, IL-6 and IL-23, have been observed at elevated levels in 

neonates [9,11].  In older adults, a variety of innate effector responses appear to be reduced, 

including superoxide generation and the phagocytosis of microorganisms [12,13]. Systemic low-

level inflammation is another common characteristic of older adults that may alter their response 

to infection (reviewed in [2]).  

The approaches used to identify age-dependent differences that lead to an increased 

risk to suffer from infection at the extreme ends of life have been largely balkanized and focused 

on a few particular components, the choice of which appears to depend on the expertise of a 

given group of investigators. What has been missing is an unbiased yet comprehensive 

interrogation of the events that occur in the very young and the very old following recognition of 

an infectious threat. In addition to our deficiency in knowledge of age-dependent differences in 

the immune system, little is known about the molecular mechanisms responsible for these 

differences. Reduced activation of transcription factors such as interferon response factor 3 

(IRF3), defects in nucleosome remodeling, and differences in the expression of pattern 

recognition receptors and signaling molecules (e.g. MyD88) are among the mechanisms that 

have been proposed to be responsible for the diminished innate immune responses observed in 

neonates [2,14-16].  
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 Age-dependent differences in hematopoietic stem cells and in the development of 

hematopoietic lineages have also been observed, providing one possible explanation for the 

immune response differences [17-19]. According to this scenario, myeloid cell types may be 

fundamentally different in neonates, adults, and older adults, resulting in different gene 

expression responses following stimulation or infection. As an alternative, the myeloid cell 

populations may be similar, but age-related differences in the blood or tissue microenvironment 

may lead to different responses [20]. The response differences may be lost when cells from 

different age groups are cultured under the same conditions, or they may be retained via 

epigenetic mechanisms or other memory mechanisms [3].  

DNA microarrays were previously used to obtain genome-scale insight into age-

dependent differences in gene expression following infectious exposure [15]. More recently, 

RNA sequencing (RNA-seq) has emerged as a more quantitative method for examining 

transcriptomes [21]. The availability of the RNA-seq method provides an opportunity to unravel, 

with greater precision, the age-dependent differences in the immune system that increase risk 

for a serious outcome following infection. As a first step, the identification of age-related 

differences in gene expression following ex vivo infectious exposure of defined cell populations, 

along with the identification of differences in constitutive gene expression in these populations, 

would be of considerable value.  

In this study, RNA-seq was used to compare the gene expression responses to LPS 

stimulation or Listeria monocytogenes (Lm) infection in cord blood monocytes and in peripheral 

blood monocytes from young and older adults. LPS provides an example of a well-defined 

innate immune stimulator; Lm causes suffering and dying in the very old and the very young, 

while most young adults rarely even display symptoms if infected [22]. Our data reveal 

extensive similarities in constitutive gene expression and in the response to stimulation or 

infection in monocytes from the three age groups. Furthermore, most of the differences 

identified between neonates and young adults could be connected to the previously reported 

reduction in IRF3 activity in neonates [15]. In contrast, most differences between young adults 
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and older adults appeared to result from a low-level inflammatory state (‘inflammaging’) that 

characterized monocytes from older adults. Interestingly, large differences in the expression of 

constitutively expressed genes, which would be expected if blood monocytes from neonates, 

adults, and older adults were fundamentally different, were not identified. This finding supports a 

hypothesis in which age-related environmental differences are responsible for the inability of 

neonatal monocytes to mount a robust IRF3-mediated response.  

 

Materials and Methods 

Isolation of cells and stimulation conditions 

All studies were approved by the Institutional Ethics Review Board at the University of British 

Columbia. Samples of cord blood from healthy, full-term elective Caesarean sections without 

labor and samples of healthy young adult and older adult peripheral blood were collected 

directly into sodium heparin-containing vacutainers (BD Biosciences). Within two hrs of the 

blood draw, mononuclear cells were isolated by density gradient centrifugation [11]. Positive 

selection of monocytes from mononuclear cells was then carried out using Miltenyi microbeads 

according to the manufacturer’s protocol with some revisions. Briefly, mononuclear cells were 

incubated with 800 uL MACS buffer and 200 uL anti-human CD14 microbeads at 4oC. Cells 

were then washed with MACS buffer prior to positive selection of monocytes using Miltenyi 

selection columns. Purified monocytes from each donor were cultured in RPMI 1640 medium 

supplemented with Glutamax (Gibco, Life Technologies) and 10% human AB serum (Gemini 

Bio Products). The monocytes were counted and plated onto 96 well plates at a density of 1x106 

cells/well. Monocytes were stimulated with LPS (10 ng/ml) (InvivoGen) or infected with Lm at 

MOI=5. Wild-type (WT) Lm strain 10403s was provided by Dr. D. Portnoy (University of 

California, Berkeley, CA) and grown as described [23].   

Mouse macrophages were prepared from the bone marrow of 6-week-old C57BL/6, 

IRF3-/-, or IFNAR-/- mice as described [24,25], and were stimulated with lipid A (100 ng/mL) 

(Sigma) after 6 days of differentiation. 
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RNA isolation, library preparation, and sequencing  

Human monocyte RNA was purified using the RNeasy Mini Kit (Qiagen) according to the 

manufacturer’s protocol. Strand-specific libraries were prepared using 120 ng RNA input 

according to the “deoxyuridine triphosphate (dUTP)” method [26]. Mouse macrophage 

experiments involved analyses of chromatin-associated RNAs, as previously described [25]. A 

HiSeq 2000 (Illumina) was used for sequencing, with a single end sequencing length of 50 

nucleotides. Sequencing data have been submitted to GEO under accession number 

GSE60216. 

 

Bioinformatic analyses  

All bioinformatic analyses were conducted using the Galaxy platform [27].  Reads were aligned 

to the human GRCh37 or mouse mm9 reference genomes with Tophat [28] using most default 

parameters.  Alignments were restricted to uniquely mapping reads with two possible 

mismatches permitted. RPKM (reads per kilobase pair per million mapped reads) were 

calculated using Seqmonk (http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/). 

Coexpressed gene classes were evaluated with Cluster3 by applying k-means clustering to 

mean-centered log2(RPKM) expression values [29]. Statistically significant gene expression 

differences were evaluated using DESeq [30]. Mouse orthologs of human genes were identified 

using BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Pscan was used to detect DNA motifs 

overrepresented in each class between nucleotides -450 and +50 relative to the transcription 

start site [31].  

 

Results 

Gene expression cascades induced in monocytes by LPS and Lm  

An attractive starting point toward a full understanding of age-related differences in immune 

responses is to employ RNA-seq to carefully examine mRNA transcript levels following 

stimulation or infection of defined cell types. Toward this goal, peripheral blood monocytes were 
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obtained from healthy young adults between the ages of 19 and 45, and healthy older adults 

aged 65 years and older. In addition, neonatal monocytes were obtained from umbilical cord 

blood samples. The monocytes were stimulated with LPS or infected with Lm immediately after 

isolation to avoid alterations in cell properties caused by culturing. For both the LPS and Lm 

experiments, three individuals from each age group were analyzed. For the LPS experiments, 

samples for RNA-seq were secured at 0, 1, and 6 hrs post-stimulation. For the experiments 

involving live Lm infection, samples were collected for RNA-seq 2 and 6 hrs after infection; in 

this experiment, uninfected cells (referred to as 0-hr time point) were collected after culturing 

without Lm for 2 hrs, whereas the unstimulated cells in the LPS experiment were collected 

immediately after isolation. After mRNA isolation and cDNA library preparation, RNA-seq was 

performed. The number of mapped reads ranged from 3.4 x 106 to 1.3 x 107 per sample.  

An examination of the data sets from the LPS experiment identified 1147 annotated 

RefSeq genes that were induced by at least five-fold at the 1- or 6-hr time point (relative to the 

unstimulated sample) in at least one sample from any age group, and that exhibited a transcript 

level exceeding four RPKM following induction. To examine the relationship between the 

different time points and age groups in the response to LPS, hierarchical clustering was 

performed with these 1147 genes (Figure C-1A). This analysis revealed that each of the nine 

samples from a given time point was more closely related to the other samples from the same 

time point than to any sample from the other two time-points. The most significant difference 

that showed a possible relationship to age was that the three unstimulated samples from older 

adults (OA1.0, OA2.0, and OA3.0) and one young adult unstimulated sample (A1.0) clustered 

separately from the remaining unstimulated samples from young adults and neonates.  

Small age-related differences were also observed with the 6-hr time-point data, in that, 

with only one exception (neonatal sample N3.6), each age group clustered separately from the 

others. In contrast, the nine 1-hr time-point samples correlated closely, with no apparent age-

related differences. The Pearson correlation values (R values) used for the hierarchical 

clustering are shown in Figure C-1B. These results provide initial evidence that the vast majority 
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of LPS-induced genes are induced similarly in the three age groups. 

Examination of the Lm data sets identified 865 annotated RefSeq genes that were 

induced by at least five-fold at the 2-hr or 6-hr time point in at least one sample, and that 

exhibited a transcript level exceeding four RPKM following induction. The hierarchical clustering 

results and the Pearson correlation values revealed even stronger correlations between age 

groups at each time point than were observed with the LPS data (Figure C-2). That is, although 

strong time-dependent clustering was observed, no consistent age-related differences were 

observed at any of the time points. 

  

K-means cluster analysis of LPS- and Lm-induced genes  

To extend the analysis of age-related differences in inducible gene expression, k-means 

clustering was used to define groups of genes that exhibited similar expression patterns among 

the three age groups and three time points. The k-means algorithm considers induction kinetics, 

induction magnitudes, and differences among age groups. Figure C-3A shows the results 

obtained when the 1147 LPS-induced genes (using the average expression values from the 

three independent samples analyzed for each age group and each time point) were assigned to 

one of ten distinct clusters. As expected on the basis of the hierarchical clustering, extensive 

similarities were apparent in the three age groups in almost all of the clusters. The similarities 

are also apparent in line graphs showing the average relative expression levels for all genes in 

a given cluster (Figure C-3B).  

Only one cluster (Cluster I) was identified that showed substantial age-related 

differences (Figure C-3A,B). Genes in this cluster were generally expressed at a lower level in 

both unstimulated and LPS-stimulated monocytes from neonates in comparison to the young 

adult and older adult samples. Although the average induction magnitude for genes in this 

cluster was comparable among the age groups, the average expression level of these genes 

was significantly lower in neonates than in young adults at all three time points.  

K-means clustering of the Lm-induced genes also revealed extensive similarities among 
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the three age groups (Figure C-4). Only one cluster (Cluster G) showed slightly reduced 

average expression in the neonatal and older adult samples in comparison to the young adult 

samples.  

 

Analysis of genes exhibiting statistically significant expression differences 

Because the clustering results described above revealed extensive similarities with limited age-

related differences, we envisioned that meaningful insights would require the use of defined 

parameters to identify genes that exhibited the greatest differential expression. Toward this end, 

we first focused our attention on genes induced to a statistically significant extent (p<0.01) that 

also exhibited differential expression between neonates and young adults at a high level of 

statistical significance (p<0.01). Only 118 of the 1147 LPS-induced genes met these criteria.  

The 118 genes (gene identities listed in Figure C-6) were separated into groups 

according to the time point at which their maximum mRNA level was observed (Figure C-5A: 1-

hr peak expression for Groups I and II; 6-hr peak expression for Groups III-VI). The genes were 

then further grouped according to their expression level in neonates relative to their expression 

level in young adults (Figure C-5A, column 7). (For this calculation, the baseline and maximum 

expression levels in young adults were defined as 0% and 100%, respectively; the maximum 

expression level in neonates was then determined as a percentage relative to that range.) This 

analysis revealed 35 genes that exhibited enhanced expression in the neonatal samples 

(Groups I and III, lightest shade of purple) and 83 genes that exhibited reduced expression 

(Groups II, IV, V, and VI, three darker shades of purple). Group VI contains the 34 genes that 

exhibited the greatest difference between neonates and young adults. For these genes, the 

maximum LPS-induced mRNA level in neonates was less than 20% of the maximum level 

observed in young adults.  

A parallel analysis with the Lm samples identified 123 genes (listed in Figure C-8) that 

were inducible and differentially expressed between neonates and young adults with a high 

level of statistical significance (p<0.01 for both induction and differential expression). Grouping 
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of these genes using the same strategy as above revealed 13 genes that were expressed more 

highly in neonates than young adults (Figure C-7A, Groups I and V) and 110 genes that were 

expressed more highly in young adults than neonates (Groups II-IV and VI-VIII). Forty-seven of 

these later genes exhibited mRNA levels in neonates that were less than 20% of the young 

adult levels (Groups IV and VIII).   

 

A prominent role for IRF3 and Type I IFN signaling in the neonate-adult differences 

To gain insight into the mechanisms responsible for differential gene expression in neonatal and 

young adult monocytes, we first examined the requirements for expression of the mouse 

orthologs of the differentially expressed genes. This analysis took advantage of a large number 

of RNA-seq data sets that have been generated in our laboratory using mouse bone marrow-

derived macrophages stimulated with the Lipid A component of LPS. This collection of data sets 

includes kinetic analyses of lipid A-induced gene expression in macrophages from a variety of 

mutant mouse strains lacking key signaling molecules or transcription factors thought to be 

important for inducible transcription ([25] and unpublished results).  

By examining the expression requirements for the mouse orthologs of the genes that 

were differentially expressed in human neonates and young adults, evidence was obtained that 

these genes frequently require the transcription factor IRF3 or Type I IFN receptor signaling. 

That is, many of the age-dependent differentially expressed genes were expressed at 

substantially reduced levels in Irf3-/- and/or Ifnar-/- macrophages stimulated with Lipid A.  

To document the extent to which IRF3 and IFNAR signaling might contribute to the 

differential expression of LPS-induced genes in neonates and adults, human genes for which 

mouse orthologs could clearly be identified (114 of 118 genes; Figure C-5A, column 8, dark pink 

and red) were first separated from the small number of genes lacking obvious mouse orthologs 

(Figure C-5A, column 8, lightest pink). Then, the RNA-seq data sets were analyzed to identify 

genes that were both expressed (RPKM > 4 when maximally expressed) and induced (>5-fold) 

in both the human monocytes and wild-type mouse macrophages. The 38 genes that met these 
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criteria (Figure C-5A, column 8, red) were then evaluated for their dependence on IRF3 and 

IFNAR in mouse bone marrow-derived macrophages stimulated with Lipid A. The results 

revealed IRF3-dependence for 14 of the 16 genes in Group VI (Figure C-5A, column 9, dark 

blue if <10% of the wild-type expression level in Irf3-/- macrophages and light blue if 10-33% of 

the wild-type level in Irf3-/- macrophages). 14 of the 16 genes also exhibited reduced expression 

in Ifnar--/- macrophages (column 10). IRF3- and/or IFNAR-dependence was also observed for 

most Group V genes for which mouse orthologs were both expressed and induced in mouse 

macrophages (Figure C-5A).  

As an independent strategy, a transcription factor binding site motif analysis was 

performed using the Pscan program [31] with the promoter regions of all genes in Groups I 

through VI. The goal of this analysis was to identify transcription factors whose binding sites are 

over-represented in the promoters of specific clusters of genes. The small number of 

transcription factors for which significant enrichment was observed are shown in Figure C-5B. 

Transcription factor binding motif enrichment generally was not observed for Groups I through 

V. However, highly significant enrichment of binding sites for IRF1, IRF2, STAT1, and a 

STAT2:STAT1 heterodimer was found at the promoters of Group VI genes (Figure C-5B). The 

IRF1 and IRF2 binding sites used by the Pscan program are similar to the experimentally 

defined consensus IRF3 binding motif [32], which is not assessed by Pscan. Importantly, IRF 

and STAT motifs were identified in the promoters of the vast majority of Group VI genes, 

including most genes whose mouse orthologs could not be examined for IRF3 and IFNAR 

dependence due to lack of inducible expression in both mice and humans (Figure C-5A, column 

11).  

Thus, both the functional analysis and motif analysis strongly support the hypothesis that 

reduced activation of IRF3- and IFNAR-dependent genes explains most gene expression 

differences between neonatal and adult monocytes. It is noteworthy that a previous study which 

documented reduced IRF3 activity in neonatal dendritic cells found that neonatal and adult cells 

were similarly responsive to IFNβ stimulation, suggesting that the reduced expression of IFNAR-
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dependent genes is due to reduced IRF3 activity (resulting in reduced IFNβ expression) rather 

than a reduction in IFNAR signaling [15]. 

Consistent with the analysis of the LPS-induced genes, mouse orthologs of the human 

genes that exhibited differential expression upon Lm infection were generally found to exhibit 

IRF3- and/or IFNAR-dependence (Figure C-7A). Furthermore, binding sites for IRF1, IRF2, 

STAT1, and the STAT2:STAT1 heterodimer were greatly enriched in the Group VIII genes and 

to a lesser extent in Group VII genes (Figures 6A and 6B). Thus, although IRF3 is thought to be 

activated by different pathways in LPS-stimulated and Lm-infected cells [33,34], a common 

reduction in IRF3 activity is likely to be responsible for the strongest gene expression 

differences between neonatal and adult monocytes.   

 

Low-level inflammation in older adults 

To evaluate gene expression differences between young adults and older adults, we first used 

the strategy described above to identify differentially induced genes. This analysis revealed 

minimal differences in transcriptional induction (data not shown), suggesting that the pathways 

involved in the responses to LPS and Lm in monocytes from the two age groups are highly 

similar. Instead, the largest differences were observed when examining transcript levels for 

inducible genes prior to stimulation. Specifically, 189 LPS-induced genes (>5-fold induction 

magnitude; induction significance p<0.01; maximum induced transcript level >4 RPKM) 

exhibited transcript levels that were significantly different (p<0.01) in unstimulated cells from 

young adults in comparison to older adults (Figure C-9A; gene list in Figure C-10). For these 

189 genes, Figure C-9A, column 7 shows the ratio of the unstimulated transcript level in older 

adults to that in younger adults (OA0/A0). In this figure, the genes are grouped on the basis of 

their time point of maximum expression, and the genes were then rank-ordered by the ratio of 

the unstimulated transcript level. This analysis revealed that a large majority of the differentially 

expressed genes are expressed at an elevated level in older adults (shown as shades of red, 

see vertical color scale at right). In fact, 52% of the differentially expressed genes exhibited 
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unstimulated transcript levels in older adults that were at least 3-fold higher than in young 

adults, whereas only 3% exhibited transcript levels that were at least 3-fold higher in young 

adults than in older adults. Similar results were observed in the Lm experiment (data not 

shown), but the number of genes showing differential expression was lower, probably because 

the unstimulated cells for the Lm experiment were cultured for 2 hrs prior to collection, whereas 

the unstimulated cells in the LPS experiment were collected without culturing. 

Importantly, although relatively large differences in expression between young adults 

and older adults were observed in the unstimulated cells, the magnitudes of the differences 

were generally lower after stimulation. This is apparent in Figure C-9A, column 8 (max OA/max 

A), which shows the ratio between the maximum induced transcript levels in older adults versus 

young adults. Because the same color scale is used for columns 7 and 8, it is readily apparent 

that the transcript level ratios move toward 1 after stimulation for most genes that are 

differentially expressed prior to stimulation. Figure C-9B, which displays average transcript 

levels for all genes in Groups I and II, also shows that transcript levels in older adults were 

elevated to a greater extent prior to stimulation than after stimulation. Thus, an inflammatory 

state is readily apparent in unstimulated monocytes from older adults. This inflammatory state in 

unstimulated cells may influence transcript levels observed after stimulation or infection, but to a 

limited extent relative to the differences observed in the basal state.  

 

Discussion  

The diminished capacity of human neonates and older adults to mount an immune response to 

infectious agents has been well documented [1,2]. However, because of the complexity of the 

human immune system and limitations in the experimental approaches that are available for 

studying immune responses in humans, insights into the underlying mechanisms have been 

difficult to obtain. One starting point toward a mechanistic understanding can be characterized 

as reductionist, in which the goal is to first delineate age-related differences intrinsic to defined 
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immune cell types in an ex vivo setting, with subsequent experiments focusing on how these 

intrinsic differences contribute to clinical observations in the far more complex in vivo setting.  

In this study, RNA-seq was used to examine the intrinsic response of blood monocytes 

to LPS stimulation and Lm infection. The improved dynamic range of the RNA-seq method in 

comparison to microarray methods [21] led to the expectation that the results might reveal 

extensive differences among the age groups. Given this expectation, the most striking finding is 

perhaps the extensive similarity in both constitutive and inducible gene expression. The results 

suggest that a single mechanism – variable induction of IRF3 – may be responsible for most 

and perhaps all differences between neonatal and young adult monocytes. Another defined 

mechanism, variable low-level inflammation prior to induction, may explain most of the 

differences between young adults and older adults.   

Our results strengthen previous evidence that reduced IRF3 activity makes a major 

contribution to the deficient innate responses of neonates to infectious stimuli [15]. The previous 

study was performed with LPS-stimulated dendritic cells differentiated from cord blood or adult 

peripheral blood, whereas the current study was performed with freshly isolated monocytes 

stimulated with LPS or infected with Lm. In the previous study, a large number of IRF3- and 

Type 1 IFN-dependent genes were found to be expressed at reduced levels in neonates. The 

reduced expression of these genes was attributed to reduced IRF3 activity because the 

neonatal and adult cells responded similarly to direct stimulation with IFNβ. Reduced IRF3 

activity would lead to a broad reduction in the expression of IFN-dependent genes because 

IRF3 is critical for the initial induction of IFNB transcription in LPS-stimulated cells.  

Interestingly, the previous study found that IRF3 translocated to the nucleus similarly in 

neonatal and adult cells, and its in vitro DNA-binding activity was similarly induced [15]. 

However, its ability to bind endogenous target genes was reduced, suggesting that an additional 

event – possibly an additional post-translational modification – is needed for binding to target 

genes and may be reduced in neonatal cells. Of relevance, a separate study identified a major 

defect in IRF7 activation in neonatal plasmacytoid dendritic cells and, in this cell type, a defect 
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in nuclear translocation of IRF7 was observed in neonates [35]. An additional clue into the 

underlying mechanism is our finding of a similar deficiency in both LPS-stimulated and Lm-

infected cells. LPS and Lm activate IRF3 via different signaling pathways – the TRIF pathway 

for LPS and the STING pathway for Lm [33,34] – suggesting that the reduced IRF3 activity in 

neonatal cells involves a mechanism that influences the activation of IRF3-dependent genes via 

both of these pathways. 

In addition to elucidating the specific mechanism, it will also be important to understand 

why this difference exists between neonatal and adult monocytes. The simplest model is that 

neonatal monocytes are fundamentally different from adult monocytes and represent a 

developmentally distinct monocyte subtype. However, this model predicts that prominent gene 

expression differences would be observed prior to stimulation. The differentially expressed 

genes would be expected to include cell-surface markers that define different myeloid cell 

populations and genes that might help regulate IFN responses. Surprisingly, the expression 

profiles of the unstimulated monocytes from neonates and adults were remarkably similar (data 

not shown), with no large differences suggesting that they represent different myeloid subtypes, 

and no differences that would be predictive of the differential induction of IRF3-dependent 

genes. 

One possible explanation for this apparent paradox is that the differences between 

neonatal and adult monocytes are due to the differential expression of micro-RNAs or long 

noncoding RNAs, which were not examined in this analysis. However, the differential 

expression or processing of non-coding RNAs would be expected to require the differential 

expression of transcription factors that regulate the non-coding RNA genes, or the differential 

expression of processing enzymes; these protein-coding genes would have been included in 

our analysis. Differences in alternative pre-mRNA splicing also were not examined in our 

analysis. Once again, differential splicing would be expected to require the differential 

expression of genes encoding splicing factors. A more likely possibility is that the pronounced 
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difference in the induction of IRF3-dependent genes is regulated by genes whose expression 

levels vary by only a small and statistically insignificant amount. 

Because the RNA-seq profiles failed to provide evidence that the neonatal and adult 

cells represent developmentally distinct monocyte subtypes, the neonatal-adult differences may 

instead be due to environmental differences that act on the fully differentiated cells to influence 

their capacity to induce IRF3 activity. Such a mechanism would need to influence IRF3’s 

capacity for induction for a prolonged time period, because the IRF3 difference has been 

observed in dendritic cells differentiated for several days in vitro [15]. This environmental 

difference may lead to small and stable differences in the expression of genes that regulate 

IRF3 activity. Alternatively, the neonatal microenvironment may alter the structure of chromatin 

at IRF3-dependent genes, resulting in a reduced capacity for IRF3 binding in response to a 

stimulus.  

To summarize, the results of this study will help guide future efforts to understand the 

mechanisms responsible for the immune deficiencies observed in neonates and older adults. 

The results suggest that the intrinsic properties of blood monocytes are remarkably stable 

throughout life and vary to only a limited extent. The reduced capacity of neonatal monocytes to 

activate IRF3-dependent genes could play an important role in the deficient response of 

neonates to many microbial pathogens. Furthermore, the low-level inflammation that is readily 

apparent in monocytes from older adults could also influence anti-microbial responses. RNA-

seq studies to quantitatively characterize intrinsic age-related differences in other innate and 

adaptive immune cell types should provide additional insights and should ultimately suggest 

strategies to enhance immune responses in deficient populations.  
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Figure Legends 

Figure C-1. Hierarchical clustering of LPS-stimulated monocyte transcriptomes from 

human neonates, adults, and older adults.  (A) RNA-seq experiments were performed with 

three independent human monocyte samples from cord blood (N), young adult peripheral blood 

(A), and older adult peripheral blood (OA) stimulated with LPS for 0, 1, and 6 hrs. Hierarchical 

clustering was performed with the 1147 genes found to be induced by at least 5-fold at the 1- or 

6-hr time point in at least one sample and with an induced RPKM of at least 4 (genes smaller 

than 200 bp were also excluded from the analysis). Sample codes correspond to the age 

abbreviation followed by the sample number (1 through 3 for each age); the time point (0, 1, or 6 

hr) is indicated after the period. Inducible transcriptomes exhibit strong time-dependent 

clustering, with much less age-dependent clustering. (B) Pearson correlation values (R) used for 

the hierarchical clustering in panel A are shown. Each time point from each sample was 

compared to every other sample and time point. R values are color-coded from low (green) to 

high (red). Samples on the X and Y axes are grouped first according to age group, then time 

point (0, 1, or 6), and then sample number (1-3). 

 

Figure C-2. Hierarchical clustering of Lm-infected monocyte transcriptomes from human 

neonates, adults, and older adults. (A) RNA-seq experiments were performed with three 

independent human monocyte samples from cord blood (N), young adult peripheral blood (A), 

and older adult peripheral blood (OA) infected with Lm for 0, 2, and 6 hrs. Hierarchical clustering 

was performed with the 865 genes found to be induced by at least 5-fold at the 2- or 6-hr time 

point in at least one sample and with an induced RPKM of at least 4 (genes smaller than 200 bp 

were also excluded from the analysis). Sample codes correspond to the age abbreviation 

followed by the sample number (1 through 3 for each age); the time point (0, 2, or 6 hr) is 

indicated after the period. Inducible transcriptomes exhibit strong time-dependent clustering, 

with much less age-dependent clustering. (B) Pearson correlation values (R) used for the 

hierarchical clustering in panel A are shown. Each time point from each sample was compared 
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to every other sample and time point. R values are color-coded from low (green) to high (red). 

Samples on the X and Y axes are grouped first according to age group, then time point (0, 2, or 

6), and then sample number (1-3). 

 

 Figure C-3. Analysis of LPS-induced genes in monocytes by K-means cluster analysis. 

(A) The 1147 genes that exceeded 200 bp in length, exhibited an RPKM of at least 4 in one 

sample, and were induced by LPS by at least 5-fold in the same sample were divided into 10 

clusters by k-means cluster analysis, which considers similarities in transcript levels for each 

gene across all 27 samples (3 age groups, 3 samples for each age group, and 3 time points for 

each sample). The three independent samples are shown in parallel for each age group. Colors 

indicate the percentile of the relative expression level (based on the log-transformed mean-

centered RPKM for each gene), as indicated at the bottom. (B) The average relative transcript 

levels for genes within each cluster are shown for each age group (neonates, blue diamonds; 

young adults, red squares; older adults, green triangles). 

 

Figure C-4. Analysis of Lm-induced genes in monocytes by K-means cluster analysis. (A) 

The 865 genes that exceeded 200 bp in length, exhibited an RPKM of at least 4 in one sample, 

and were induced by Lm infection by at least 5-fold in the same sample were divided into 10 

clusters by k-means cluster analysis, which considers similarities in transcript levels for each 

gene across all 27 samples (3 age groups, 3 samples for each age group, and 3 time points for 

each sample). The three independent samples are shown in parallel for each age group. Colors 

indicate the percentile of the relative expression level (based on the log-transformed mean-

centered RPKM for each gene), as indicated at the bottom. (B) The average relative transcript 

levels for genes within each cluster and are shown for each age group (neonates, blue 

diamonds; young adults, red squares; older adults, green triangles). 

 



 208 

Figure C-5. Genes that exhibit the greatest expression deficit in LPS-stimulated cord 

blood monocytes in comparison to adult monocytes are regulated by IRF3 and/or Type I 

IFNs. (A) LPS-induced genes exhibiting statistically significant differential expression in 

neonates and adults (n = 118) were grouped according to the time point at which their maximum 

transcript levels were observed (1 or 6 hrs). They were then grouped according to their relative 

maximum transcript levels in cord blood (neonates) versus young adults. Induced genes with a 

higher maximum transcript level in neonates than young adults (with statistically significant 

differential expression) are included in classes I (1-hr peak) and III (6-hr peak) (column 7). 

Genes exhibiting a maximum transcript level in neonates that was 50-100% of the young adult 

transcript level (but with statistically significant differential expression) are included in class IV 

(no genes with peak transcript levels at 1-hr fit this criterion). Genes exhibiting a maximum 

transcript level in neonates that was 20-50% of the young adult transcript level are in classes II 

(1-hr) and V (6-hr). Genes with a maximum transcript level in neonates below 20% of the young 

adult transcript level are in class VI. Columns 1-6 show the relative transcript levels (based on 

the log-transformed mean-centered RPKM) for these 118 classified genes in all samples and all 

time points from both neonates and young adults. Column 8 indicates genes that lack obvious 

mouse orthologs (lightest pink), genes that contain mouse orthologs that are either not 

expressed or not induced in mouse bone marrow-derived macrophages (dark pink), and genes 

containing mouse orthologs that are both expressed and induced by LPS (red). Columns 9 and 

10 show relative expression of the mouse ortholog of the human gene in Lipid A-stimulated 

macrophages from IRF3-/- and IFNAR-/- mice, respectively (see blue scale at right). Note that 

these columns are only relevant for genes shown in red in Column 8. Column 11 indicates 

genes with promoters that contain an IRF1 transcription factor binding motif between -450 and 

+50 bps relative to the transcription start site. (B) Enrichment of transcription factor binding sites 

determined using the Pscan program is shown for each gene class from panel A. Color intensity 

is proportional to the negative log(p-value).  
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Figure C-6. LPS-induced genes exhibiting statistically significant differences in transcript 

levels in cord blood and young adult monocytes. An expanded version of Figure C-5A is 

shown, which includes the identities of the LPS-induced genes that are differentially expressed 

in cord blood and young adult monocytes. RefSeq IDs and gene names are shown for human 

genes and their mouse orthologs. 

 

Figure C-7. Genes that exhibit the greatest expression deficit in Lm-stimulated cord 

blood monocytes in comparison to adult monocytes are regulated by IRF3 and/or Type I 

IFNs. (A) Lm-induced genes exhibiting statistically significant differential expression in neonates 

and young adults (n = 123) were grouped according to the time point at which their maximum 

transcript levels were observed (2 or 6 hrs). They were then grouped according to their relative 

maximum transcript levels in cord blood (neonates) versus young adults. Induced genes with a 

higher maximum transcript level in neonates than young adults (with statistically significant 

differential expression) are included in classes I (2-hr peak) and V (6-hr peak) (column 7). 

Genes exhibiting a maximum transcript level in neonates that was 50-100% of the young adult 

transcript level (but with statistically significant differential expression) are included in classes II 

(2-hr) and VI (6-hr). Genes exhibiting a maximum transcript level in neonates that was 20-50% 

of the young adult transcript level are in classes III (2-hr) and VII (6-hr). Genes with a maximum 

transcript level in neonates below 20% of the young adult transcript level are in classes IV (2-hr) 

and VIII (6-hr). Columns 1-6 show the relative transcript levels (based on the log-transformed 

mean-centered RPKM) for these 123 classified genes in all samples and all time points from 

both neonates and young adults. Column 8 indicates genes that lack obvious mouse orthologs 

(lightest pink), genes that contain mouse orthologs that are either not expressed or not induced 

in mouse bone marrow-derived macrophages (dark pink), and genes containing mouse 

orthologs that are both expressed and induced by LPS (red). Columns 9 and 10 show relative 

expression of the mouse ortholog of the human gene in Lipid A-stimulated macrophages from 

IRF3-/- and IFNAR-/- mice, respectively (see blue scale at right). Note that these columns are 



 210 

only relevant for genes shown in red in Column 8. Column 11 indicates genes with promoters 

that contain an IRF1 transcription factor binding motif between -450 and +50 bps relative to the 

transcription start site. (B) Enrichment of transcription factor binding sites determined using the 

Pscan program is shown for each gene class from panel A. Color intensity is proportional to the 

negative log(p-value).  

 

Figure C-8. Lm-induced genes exhibiting statistically significant differences in transcript 

levels in cord blood and young adult monocytes. An expanded version of Figure C-7 is 

shown, which includes the identities of the Lm-induced genes that are differentially expressed in 

cord blood and young adult monocytes. RefSeq IDs and gene names are shown for human 

genes and their mouse orthologs. 

 

Figure C-9. Elevated expression of a broad range of inflammatory genes prior to 

stimulation of freshly isolated monocytes from older adults. (A) LPS-induced genes 

exhibiting differential basal expression between adults and older adults (n = 189) are grouped 

according to maximum mRNA level. Columns 7 and 8 show the ratio of transcript levels 

between older adults and young adults before stimulation and at maximum transcript levels, 

respectively. (B) The average relative transcript levels within each cluster and for each age are 

shown. 

 

Figure C-10. LPS-induced genes that exhibit statistically significant differences in basal 

transcript levels in monocytes from young and older adults. An expanded version of Figure 

C-9A is shown, which includes the identities of LPS-induced genes that are differentially 

expressed in unstimulated young and older adult monocytes. Human RefSeq IDs and gene 

names are shown. 
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Figure C-1. Hierarchical clustering of LPS-stimulated monocyte transcriptomes from 

human neonates, adults, and older adults.   
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Figure C-2. Hierarchical clustering of Lm-infected monocyte transcriptomes from human 

neonates, adults, and older adults. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N1 N2 N3 N1 N2 N3 N1 N2 N3 A1 A2 A3 A1 A2 A3 A1 A2 A3 OA1 OA2 OA3 OA1 OA2 OA3 OA1 OA2 OA3
N1 1.00
N2 0.92 1.00
N3 0.93 0.97 1.00

N1 0.63 0.59 0.71 1.00
N2 0.57 0.56 0.69 0.99 1.00
N3 0.52 0.54 0.67 0.98 0.99 1.00

N1 0.51 0.58 0.68 0.89 0.91 0.92 1.00
N2 0.52 0.58 0.69 0.89 0.91 0.92 0.99 1.00
N3 0.48 0.58 0.68 0.89 0.93 0.95 0.97 0.97 1.00

A1 0.86 0.91 0.86 0.37 0.33 0.31 0.34 0.36 0.35 1.00
A2 0.91 0.90 0.88 0.50 0.45 0.42 0.45 0.45 0.44 0.86 1.00
A3 0.90 0.90 0.88 0.54 0.49 0.46 0.48 0.47 0.47 0.80 0.92 1.00

A1 0.66 0.60 0.72 0.98 0.96 0.94 0.84 0.84 0.84 0.40 0.53 0.57 1.00
A2 0.66 0.61 0.73 1.00 0.99 0.96 0.88 0.88 0.88 0.39 0.54 0.56 0.98 1.00
A3 0.64 0.60 0.73 1.00 0.99 0.97 0.89 0.89 0.90 0.39 0.52 0.57 0.98 0.99 1.00

A1 0.53 0.58 0.69 0.93 0.95 0.96 0.98 0.98 0.98 0.35 0.45 0.48 0.89 0.92 0.93 1.00
A2 0.58 0.60 0.69 0.81 0.81 0.81 0.95 0.95 0.86 0.41 0.54 0.53 0.78 0.82 0.81 0.91 1.00
A3 0.56 0.60 0.69 0.82 0.83 0.83 0.96 0.97 0.89 0.40 0.50 0.52 0.80 0.83 0.83 0.93 0.99 1.00

OA1 0.94 0.94 0.94 0.58 0.54 0.50 0.54 0.54 0.50 0.86 0.89 0.89 0.61 0.61 0.60 0.54 0.60 0.59 1.00
OA2 0.94 0.94 0.94 0.55 0.52 0.49 0.51 0.52 0.50 0.87 0.93 0.94 0.58 0.58 0.58 0.51 0.57 0.55 0.93 1.00
OA3 0.92 0.92 0.91 0.57 0.52 0.49 0.51 0.52 0.50 0.88 0.92 0.94 0.60 0.60 0.60 0.53 0.57 0.57 0.89 0.93 1.00

OA1 0.63 0.57 0.70 0.99 0.98 0.96 0.86 0.87 0.86 0.36 0.48 0.51 0.98 0.99 0.99 0.91 0.79 0.80 0.59 0.55 0.55 1.00
OA2 0.58 0.54 0.68 0.99 1.00 0.98 0.90 0.90 0.90 0.32 0.44 0.47 0.97 0.99 0.99 0.93 0.81 0.82 0.54 0.51 0.51 0.99 1.00
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Figure C-3. Analysis of LPS-induced genes in monocytes by K-means cluster analysis. 
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Figure C-4. Analysis of Lm-induced genes in monocytes by K-means cluster analysis. 
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Figure C-5. Genes that exhibit the greatest expression deficit in LPS-stimulated cord 

blood monocytes in comparison to adult monocytes are regulated by IRF3 and/or Type I 

IFNs. 
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Figure C-6. LPS-induced genes exhibiting statistically significant differences in transcript 

levels in cord blood and young adult monocytes. 
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Figure C-7. Genes that exhibit the greatest expression deficit in Lm-stimulated cord 

blood monocytes in comparison to adult monocytes are regulated by IRF3 and/or Type I 

IFNs. 
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Figure C-8. Lm-induced genes exhibiting statistically significant differences in transcript 

levels in cord blood and young adult monocytes. 
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NM_003955 SOCS3 NM_007707 Socs3
NM_024873 TNIP3 NM_001001495 Tnip3
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Figure C-9. Elevated expression of a broad range of inflammatory genes prior to 

stimulation of freshly isolated monocytes from older adults. 
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Figure C-10. LPS-induced genes that exhibit statistically significant differences in basal 

transcript levels in monocytes from young and older adults. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RefSeq&ID Gene&Name
NM_004430 EGR3
NM_005512 LRRC32
NM_004418 dusp2
NM_001002036 Astl
NM_001136537 BTBD19
NM_002135 NR4A1
NM_025079 ZC3H12A
NM_004073 plk3
NM_181711 Grasp
NR_003051 RMRP
NM_007350 phlda1
NM_014452 TNFRSF21
NM_005438 FOSL1
NM_139239 NFKBID
NM_002999 Sdc4
NM_005306 FFAR2
NM_004878 PTGES
NM_203411 TMEM88
NM_006981 nr4a3
NM_014400 LYPD3
NM_002984 CCL4
NM_000228 Lamb3
NR_028308 LOC100302650
NM_001198 PRDM1
NM_002658 PLAU
NM_002089 CXCL2
NM_020530 Osm
NM_000201 ICAM1
NM_001001852 PIM3
NM_006779 Cdc42ep2
NM_001013632 TCTEX1D4
NM_001004492 OR2B11
NM_004951 Gpr183
NM_002852 Ptx3
NM_030948 PHACTR1
NM_004556 Nfkbie
NM_033027 CSRNP1
NM_015259 ICOSLG
NM_005178 Bcl3
NM_004004 gjb2
NM_000757 csf1
NM_002360 mafk
NM_031419 NFKBIZ
NM_178815 ARL5B
NM_000759 CSF3
NM_005842 SPRY2
NM_013345 GPR132
NM_002659 PLAUR
NM_212481 Arid5a
NM_004895 NLRP3
NM_001080424 KDM6B
NM_182919 TICAM1
NR_028138 LOC338758
NM_001007561 Irgq
NM_005239 Ets2
NM_002503 NFKBIB
NM_016639 TNFRSF12A
NM_000389 CDKN1A
NM_001165 BIRC3
NM_004049 BCL2A1
NM_005729 PPIF
NM_003670 bhlhe40
NM_000891 KCNJ2
NM_013376 Sertad1
NM_005461 Mafb
NR_036515 LOC284454
NM_002908 rel
NM_031435 Thap2
NM_001002926 twistnb
NM_000361 THBD
NM_002357 MXD1
NM_000956 Ptger2
NM_152545 RASGEF1B
NM_181054 HIF1A
NM_022136 SAMSN1
NM_024496 c14orf4

NM_003246 Thbs1
NM_004994 Mmp9
NM_003486 SLC7A5
NM_000675 Adora2a
NR_028483 C22orf45
NM_178452 LRRC50
NM_001013699 h3f3c
NM_002638 PI3
NM_001099287 Nipal4
NM_003955 socs3
NM_001144941 VMO1
NM_004148 Ninj1
NM_005319 Hist1h1c
NM_001432 ereg
NM_019058 ddit4
NM_021958 hlx
NM_152264 SLC39A13
NM_016327 UPB1
NM_001145536 C17orf107
NM_002090 Cxcl3
NM_000963 PTGS2
NM_021175 Hamp
NM_001572 IRF7
NM_005985 snai1
NM_001004431 metrnl
NM_001130677 C17orf96
NM_000572 il10
NM_001124 ADM
NM_004566 pfkfb3
NM_001136046 Zmynd15
NM_002201 ISG20
NM_002187 IL12B
NM_004310 Rhoh
NM_003443 ZBTB17
NR_038911 LOC284889
NM_004421 DVL1L1
NM_016368 isyna1
NR_001458 MIR155
NM_175839 SMOX
NM_145699 APOBEC3A
NM_012291 ESPL1
NM_001109 Adam8
NM_002856 PVRL2
NM_014963 SBNO2
NM_001570 IRAK2
NM_000858 GUK1
NM_152899 IL4I1
NM_002502 NFKB2
NM_021727 Fads3
NM_002250 KCNN4
NM_005098 MSC
NM_002231 CD82
NM_002340 LSS
NM_005658 Traf1
NM_002675 LOC652346
NM_006266 RALGDS
NM_005240 ETV3
NM_004207 SLC16A3
NR_024586 LOC100216545
NM_005204 MAP3K8
NM_000117 emd
NM_013321 SNX8
NM_152513 MEI1
NM_024119 dhx58
NM_024309 TNIP2
NM_006927 ST3GAL2
NM_002068 GNA15
NM_005746 NAMPT
NM_033405 PRIC285
NM_022117 TSPYL2
NM_006238 Ppard
NM_020895 Gramd1a
NM_002359 MAFG
NM_005451 Pdlim7
NM_021923 Fgfrl1
NM_022833 Fam129b
NM_006847 LILRB4
NM_017869 BANP
NM_022489 INF2
NM_032482 Dot1l
NM_002985 CCL5
NM_022059 CXCL16
NM_015167 JMJD6
NM_016612 Slc25a37
NM_017966 VPS37C
NM_016489 NT5C3
NM_001256045 PIK3CB
NM_001002811 LOC100134230
NM_002906 rdx
NM_005063 scd
NM_001243281 ALCAM
NM_033407 DOCK7
NM_002807 PSMD1
NM_003374 VDAC1P1
NR_036624 VDAC1
NM_033109 Pnpt1
NM_017897 OXSM
NR_026778 NCRNA00201
NM_002061 GCLM
NM_013410 AK3L2
NM_152295 Tars
NM_006644 HSPH1
NM_152277 Ubtd2
NM_002161 iars
NM_016441 Crim1
NM_181690 Akt3
NM_013252 CLEC5A
NM_001769 CD9
NR_033652 LOC100132891
NM_153259 Mcoln2
NM_005806 Olig2
NM_002026 fn1
NM_004900 APOBEC3B
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