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Abstract—We show that, as the number of nodes in the network  Interestingly, all the prior work on the capacity of wiretes
n tends to infinity, the maximum concurrent flow(MCF) and networks has focused on what is attainable with specific
the minimum cut-capacityscale asé(n’r®(n)/k) for a random approaches to handle MAI. No prior work has focused on first
choice of £ > ©(n) source-destination pairs, wherer(n) is the - . . . .
communication range in the network. In addition, we show tha it .eStab“Sh'ng what is the optimal capacity of.a.WIreIeSS netw
is possible to attain this optimal order throughput in interference- In the absence of MAI, and then determining whether that
constrained networks if nodes are capable of multiple-packt capacity is attainable when MAI is present. This is pregisel
transmission and reception. This result provides an improement the focus and overall contribution of this paper.
of © (nr?(n)) over the highest achieved capacity reported to date.  ggction || presents the network model assumed in this paper,

Furthermore, in stark contrast to the conventional wisdom that hich ists of d ¢ K withnod h
has evolved from the Gupta-Kumar results, our results show which consIsts of a random network withnodes, a homoge-

that the capacity of ad-hoc networks can actuallyincreasewith ~N€0OUS communication range ofr), and unicast traffic fok

n while the communication range tends to zero! source-destination (S-D) pairs. In the absence of interfes,
such a network corresponds tsandom geometric grapWith
. INTRODUCTION an edge between any two nodes separated by a distance less

thanr(n). We define a&ombinatorial interference modbhsed

Gupta and Kumar's seminal work [1] shows that the can these graphs, and use it to introduce a protocol model
pacity of wireless ad-hoc networks does not scale with am which nodes have the ability to decode correctly multiple
increase in network size when nodes are static, transmit ackets transmitted concurrently from different nodesd an
receive one packet at a time, and the network traffic consistansmit concurrently multiple packets to different nodéée
of unicast sessions. However, recent advances in manpdo-oefer to this as the multi-packet transmission and receaptio
and many-to-many communication [2]—[4] and generalizegio (MPTR) protocol model.
of routing (e.g., network coding (NC) [5]) are challenging Section Ill characterizes the optimal interference-fragac-
the traditional view that avoiding multiple access integfece ity of a wireless network. The task of concurrently maximgi
(MAI) is the right approach to build wireless ad hoc networkghe data-rate fork S-D pairs is an instance of the multi-
However, co-operative protocols that provide performan@®mmodity flow problem. Hence, thmaximum concurrent
benefits in specific network configurations need not scalé welulti-commodity flow-rate(MCF) in a random geometric
with the network size. In particular, Liu et al. [6] showedth graph equals the interference free capacity (i.e., thenwti
NC cannot increase the throughput order of wireless ad-hoapacity) of the network. The max-flow min-cut theorem by
networks for multi-pair unicast applications under haliptex Ford and Fulkerson [10] establishes that the MCF is tightly
communication. On the other hand, several techniques hda@inded by the minimum capacity of a multi-commodity cut
been proposed aimed at improving the capacity of wirelefw a single commodity. However, in general, the min-cutgloe
ad hoc networks, and include taking advantage of mobilityot provide a tight bound on the max-flow [11], which is
[7], changing physical-layer assumptions (e.g., usingtiplel known to be tight only for special cases, and in general éthib
channels or directional antennas [8]), or establishinfetbht a gap of at leas®(log k) [12]. Leighton and Rao [11] showed
forms of cooperation between senders and receivers [8jat the gap between the max-flow and min-cut is at most
Cooperation can be extended to the simultaneous tranemisgd (logn). We establish a tight max-flow min-cut theorem for
and reception at various nodes in the network, and Garci@ndom geometric graphs for the first time, and show that
Luna-Aceves et al. [3] have shown that, if nodes in th® (n?r3(n)/k) is a tight bound on the optimal capacity of
network are capable of multi-packet reception (MPR), them wireless network. Our work is inspired by the analysis of
the order capacity of a network with unicast sessions growsLeighton and Rao.
as O(r(n)), wherer(n) is the communication range. This Section IV proves that the optimal capacity of wireless
represents a gain o® (nrz(n)) over the throughput order networks is attainable in the presence of MAI. We show
of ©(1/nr(n)) reported by Gupta and Kumar. that MPTR achieves the optimal capacity ®f(n?r?(n)/k).
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Hence, MPTR provides a gain o (nr*(n)) over MPR Definition 2.3: Combinatorial Interference Model

and any previously reported feasible capacity. What is jushe interference model for the grapty(V, F) is determined

as striking is that MPTR can achieve the dual objective @y a function/ : E — P(E), whereP(FE) is the power set of
increasing capacity and decreasing the transmission rasgeF, i.e., the set of all possible subsets 6f For everye € F,

n increases. This is in stark contrast to the commonly helde) represents amterference sesuch that, a transmission on
view that the capacity of multihop wireless networks canneidgee is successful iff there are no concurrent transmissions
increase as the number of nodes increases. Indeed, outsresant anyé € I(e). An interference model can be restricted to
demonstrate that the capacity of ad-hoc networks can d&gtua sub-graph (Viy, Ey) by defining a functionly : Fy —
increase with n while the communication range tends taP(Ey) such thatly(e) = I(e) () En.

zero! Section V summarizes our results and points out futureThe various protocol models that have been proposed in the

research directions. past can now be expressed as special casés,on
Gupta and Kumar [1] studied aingle packet reception
Il. NETWORK MODEL AND PRELIMINARIES (SPR)protocol modelunder which a transmission from node

i to receiverj is successful iff[|X; — X;| < r(n) and if

|X; — X&|| > (1+mn)r(n) for any other transmittek. Heren

is a guard-zone that is assumed to be constant for the entire
network. Moreover, all the nodes operate in half-duplex enod
Definition 2.4: Single-Packet Reception (SPR) Model:

te= (eT,e”) € E, then the interference set for edgds

For a continuous regionk, |R| denotes its area. The
cardinality of a setS is denoted by S|, and by||z — y|| the
distance between nodes and y. Whenever convenient, we
utilize the indicator functiori ¢y, which is equal to one i
is true and zero i? is false.Pr(FE) represents the probability Le
of eventE. An eventE occurs with high probability (w.h.p.)
asn — oo if Pr(E) > (1—(1/n)) . We employ the standard Ispr(e) = J(e) —e,
order notation®), 2, and ©. .

We assume a random wireless network witmodes dis- J(e) = {e€ B [[[Xer = Xe-[| < (1 +n)r(n)} (1)
tributed uniformly in a unit-square. A goes to infinity, In this paper, we consider the case in which nodes have
the densit)_/ c_)f the _network also goes to infinity. Thereforgpr and MPT capabilities, i.e., can decode multiple con-
our analysis is applicable to dense networks. Furthernveee, o, rent transmissions or can transmit concurrently migtip

assume a fixed transmission range) for all the nodes in 5 yets to different nodes, but operate strictly in a halplex

the network. Thus, the network topology can be characerizg,,nner The following definition expresses this model imer
using a random geometric graph, which we denoté&hyand ¢ ihe notation we have introduced.

define_ n_gxt. _ . Definition 2.5: Multi-Packet Transmission and Reception
Definition 2.1: Random Geometric Gragh, _ (MPTR) Model:The MPTR interference set for edges

We associate adirected graph G,.(V;., E,.) with a wireless

network formed by distributing: nodes uniformly in a unit Ivpr(e) = J(e)—Ale) VYec E

square. We represent the node-setWy= {1,--- ,n}. Let A — fec B X — Xl < 2

the locations of these nodes be given ¥, --- , X,,}, the () fe el Xes ell=rt)} @)

edge-set is thed = {(i, ) | [|Xi — X;[ < r(n)} . _ The traffic in the network is generated by unicast communi-
While the results in this paper can be extended to undirectegkion betweerk source-destination (S-D) pairs. A rate vector

graphs, it is more convenient for us to use directed grapls dy — [A1,---, A is associated with these pairs. The data

to the edge-coloring techniques used in our work. Note thakte for each S-D pair is considered non-zero. Hence, withou
we permit two edges for a pair of connected vertices willgss of generality (w.l.g), the rate vector can be written as
possibly different capacity in each direction. X\ = [fDiy,---,fD;] wheref € Ry and D; € [1/2,1] for
We assume that the network operates using a slotted chanine ; < k.We refer to the parametefr as theconcurrent flow
and, in the absence of interference, the data rate in eaeh tirate and toD = [Dy, - - - , D}] as thedemand vector
slot for every transmitter-receiver pair is a constant eadfi\W Definition 2.6: Feasible Flow Rate
bits/slot. Given that W does not change the order capacsy, \Given & S-D pairs {(s(1),d(1)),...,(s(k),d(k))}, a rate
normalize its value to 1. Hence, we say that the interferenGgector A = [fDy,---, fDy] is feasible if there exists a
free capacity of each edge @, is equal to 1. spatial and temporal scheme for scheduling transmissiatts s
Gupta and Kumar [1] have proved the following criteria fothat by operating the network in a multi-hop fashion, and
the connectivity ofG,.. buffering at intermediate nodes when awaiting transmigsio
Lemma 2.2:For a random distribution of nodes in a unit- every source(i) can send\; bits/sec on average to the chosen
square, the graply, is connected w.h.p, if and only if (iff) destinationd(s). A flow rate f is feasible for a demand vector
r(n) > re(n) = ©(y/logn/n). D =Dy, - ,Dp] iff A\=[fD1,---, fDg] is a feasible.
In a dense network, interference is the primary constraint Definition 2.7: Capacity of Random Networks
on the capacity of the network. Like Madan et al. [13], w&he capacity per commaodity of a network@¥ f(n)) if under
describe the interference of a network by the following gene
model. IHere G, represents a random geometric graph widilea general graph.



a random placement of nodes, a random choice & S-D a cut(S, S¢). The minimum multi-commodity cut capacity is
pairs and for an arbitrary demand vector we have: defined as

lim Pr(cf(n)is feasible flow rate = 1 (3) Ye = min Yeen Leres.e-esiele) ®)
. scv Zi:s(i)GS,d(i)ESCDi

It is well-known that the minimum cut-capacity provides an

for somec > 0 ande < ¢’ < +o0. upper bound on the maximum flow rate.

In the following sections we repeatedly utilize the well | emma 2.13:For anyk-commodity flow f* < Y¢
known Chernoff bounds.

Lemma 2.8: Chernoff BoundsConsiderN i.i.d random I1l. OPTIMAL CAPACITY
variablesY; € {0,1} with p = Pr(Y; = 1). LetY = 3.~ ¥, .
Then for everyc > 0 there exist) < 6; < 1 andd, > 0 such ~ We show that for random geometric graphs, the MCF pro-
that vides a tight approximation of the minimum-cut capacityisTh
_eNp relationship implies a tight characterization of the ifdeence-
Pr(Yy < (1-01)Np) <e N ) free capacity of wireless ad-hoc networks with a homogenous
Pr(Y > (1+62)Np) < e . (6)  transmission range. Our approach can be summarized as

. _— . follows: For a particular demand vector, we provide an upper
We review some defintions from graph theory. In partlcuIaB . . : ) :
ound by showing that there exists a multi-commodity cut in

note that the task of identifying a feasible flow rate can b .
posed as a multi-commodity flow problem, specifically the kf& of order O(g(rn)) and a lower bound by constructing a

. low of orderQ(g(n)) in a sub-graph,. C G,.. These results
commodity flow problem. along with the following Lemmas prove that the capacity of
Definition 2.9: k-Commodity Flow Problem g g P pactty

Consider a directed grapfi(V, E) with a capacity function Hy and G, has a tight boun®(g(n)).
c¢: E —[0,1]. Let {(s(1),d(1)),...,(s(k),d(k))) bek S-D
pairs, with a demand vectad € [1/2,1]%. Let f € R, be s
a concurrent flow rate. Find flow functions : £ — R for
1 < i < k, which satisfy the following flow constraints:
Capacity Constraint) ", ., fi(e) < c(e) Ve € E
Flow Conservation) .. ,_, fi(e) = > ... _, file) Vv #
s(2),d(i)
Demand Satisfactiar)_, . ;) fi(e) = X .- _q) file) =
fD;for1<i<k

Flow functions that satisfy the above constraints are dalle
feasible. Other inputs to the problem being fixed, a flow rate
f is said to be feasible iff the above problem has a solution.
Furthermore, letf* be the MCF such that the above problem Leémma 3.1:A graphG(V, E) and a sub-graph/ (Vz, Er)
has a feasible solution. A wireless network can be represenfalisfy the following two properties: (a) If is a feasible flow-
by an equivalent graph with capacity functions determind@t® inf thenfis feasible inG:; and (b) the capacity of a cut
by the interference. Thus, the MCF in an equivalent gragh> $¢) in G is always greater than or equal to the capacity

can be perceived as the maximum flow that can be rout@fithe cutinH.

; - ; . Proof: To prove Part (a) of the lemma, lefy; for
in a network. Additionally, if w.n.p./* is the MCF for any 1 < i < k be the flow functions associated with the feasible

graph formed by a random distribution of nodes, sources afgy of rate fin H. Note that these flow functions satisfy
destinations, then the capacity of the wireless networksis athe constraints in Definition 2.9. We construct a flowGnof
f*. Consider the following additional definitions. rate f with the following flow functions: Forl < i < k let
Definition 2.10: Vertex Cut D stenvise. Kow, 1 we. ko that e fahctios., satily
leen a nng_seW » acutis th_e separatlocn of the vertex $et the flow cohstraiﬁts, then the flow rate is feasibzle inG.
into two disjoint and exhaustive sets, S“). We shall often pefinition 2.9 states thate) > 0 for all the edges. As a result,
reference a cut just by the sét. Ve € E — Ey the capacity constraints are satisfied trivially,

Definition 2.11: Multi-commodity Cut Capacity given thatfc ;(e) = 0 for such edges. Furthermorég € Ey
Given a graphG(V, E), a capacity function : E — [0,1] and W& haved .o, fui(e) = i<,y fai(e) < cle). There-

a cut (S, S¢). The multi-commodity cut capacity is defined©re. fc,: safisfy the capacity constraint. In addition, note that
’ the following equations holdv € V:

lim inf,,—,ooPr(¢’ f(n)is infeasible flow ratp < 1 (4)

n) s

&= ooy

9
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Fig. 1. A bi-partitioning of the unit square

as
YTes = DecE 1[e+€S,e*6SC]C(€)' ) Z fa.ile) = Z fa.ile) + Z fa.ie)
’ Zi:s(i)es,d(i)esc Di ecE:e” =v ecEpge”=v ecE—FEpg:e”=v
Definition 2.12: Minimum Cut Capacity — Z Fai(e) +0 9)

Given a graptG(V, E), a capacity functior : £ — [0, 1] and cC By e —u



R andd(i) does not. Under a uniformly random placement of
Y feale)= > faule)+ > fai(e)  nodes, P(Y; = 1) = |R|(1 — |R|). The total number of S-D

ccEiet—o c€Epet—uv c€F—Bpreteu pairs satisfying the required condition can be represehted
Y = Z'in. If & > clogn the Chernoff Bounds imply the
= Y. fuie)+0 (10) existence of constanis = 1/(c|R|(1 — |R[)), 0 < &; < 1
e€Epiet=v andd, > 0 such that

Egs. (9) and (10) imply that the net in-flow and the net  Pr(Y > (1 —&1)|R|(1 — |R|)k) > 1 — ¢~ “FIFIC-IRD
out-flow, underfq ; and fg ;, is identical for all nodes and vl RO Rl) logn
commodities. Thereforefc; satisfies the flow conservation 21-—e =1-(1/n) (14)
and demand constraints. e hIEI(—|B])

To show Part (b), observe that Priy < 1+ &)|R|(1 — |R)k) > 1—e

TG.’S _ TH’S . ZeGEfEH 1[e+ES,e*6SC]C(e) (11) —1_ e—mc\R\(lf\R\)logn —1_ (1/77,) (15)
Zi:s(i)GS,d(i)GSc D; ]
Because:(e) > 0 for all edges, we hav&g s > Tps. H Furthermore, consider the subsétin S defined by a strip
of dimensionl x r(n). The total number of vertices in A is
A. Upper Bound O(nr(n)) because of the uniform distribution of nodes in the
We utilize the following properties ofy,. network.
Lemma 3.2:If r(n) > r.(n), then w.h.p. grapli,. is such
that: (a) The minimum vertex degréé > © (nr*(n)), and o .

(b) the maximum vertex degre& < © (nr?(n)).
Proof: We first show thatV > © (nr?(n)). A node ’

v in G, is connected to all the nodes in a disk of radius .® m .
r(n) centered at . The area of this disk isr?(n). Given .
a uniformly random distribution of nodes, the probability o R LI I

another nodey lying within this disk is7r?(n). Consider a
random variabley,, ,, € {0,1} which is equal to one iff node
u IS connected to node. The degree of node can be written

asdeg(v) = ZuEV—{U} Y, .- Therefore, the Chernoff Bound Fig. 2. Decomposition of network area intd squarelets
implies thatVc > 0 there exists & < § < 1 such that
Pr(deg(v) < (1 — &)nmr?(n)) < e~ =™ ™ (12) Theorem 3.4:f r(n) > r.(n) andk > O(logn), then the

capacity of the cufS is T¢, . = O(n?r*(n)/k) w.h.p.
) ) Proof: According to the definition of7, two nodes are
From the union bound we obtain connected iff they are separated by a distance lessithan

Consequently, if an edge cuts acroSsthen it has to be
Pr(V < (1 - é)nmr?(n)) < nPr(deg(v) < (1 — 5)””2(”)()13) incident upon a node at a distance less thé&m) from the

boundary separating and S¢ , i.e. the head of the edge

should lie in the subset of dimension-(n) x 1. Furthermore,
Given thatr(n) > r.(n) we haver(n) > c14/logn/n for each node inA the maximum number of edges cutting

for somec, > 0. Therefore, Egs. (12) and (13) imply thatacross the cut is bounded y, i.e.,> . p ljctes,e-es0) <

Pr(V < (1 — 8)mnr2(n)) < ne=me11os™ = 1 /pemei=1 Now, |AJA. In the absence of interfereneg) = 1 for all the edges.

Lemma 2.8 tell us that we can choose 2/(rc1)) and cor- HENCe,

responding) < d; < 1 such that P(V > (1 — 0)mnr?(n)) > N Seer, letes,e—eso) _ |A|A

1 — (1/n) We use similar arguments to show that < Gr.S =

© (nr?(n)) w.h.p.. This fact follows from Eq. (8), which

implies thatvVe > 0 there exists a0 < § < 1 such

that Pr(deg(v) > (1 + &;)nar?(n)) < e=*"(™) The union

bound and the fact that(n) > c24/logn/n implies that

Pr(A > (14 0)mnr?(n)) < ne cmezloen Therefore, there

exists ady > 0 such that P(A < (1+6z)mnr?(n)) >

Zi:s(i)GS,d(i)GSC D; — Zi:s(i)ES,d(i)ESC D;

According to Lemma 3.3, there existy > 0 s.t. the
total number S-D pairs across the cutdgk. Furthermore,
by Definition 2.9 the demand for each pair is at least 1/2.
Hence,Yq, s < (2|A]A)/cik. Lemma 3.2 implies that there
exists acy > 0 s.t. A < canr?(n), while uniform distribution

1—(1/n) ] . L ,

. . . . of nodes in the network implies that there existesa> 0 s.t.

Consider the cub described by Figure 1. The cut ConSIStZA| < ¢snr(n). Hence,Y¢ §< 2¢oc n27’3(n)/(01?<:3) [ ]
of all the nodes in the rectangular region of a constant area. , s ' o o '

Any cut in G, has a capacity greater than the minimum

Lemma 3.3:If the network consists of > O(logn) S-D cut capacity Y¢,. Consequently Theorem 4.4 implies the

pairs, then w.h.p. a regio® of constant aredR| contains following Corollary.
O(k) sources with destinations outside regiBin v

Proof: Let Y; € 0,1 be a random variable that is equal Corollary 3.5: If 7(n) > Tg(g) andk > ©(logn), then
to one iff the ith S-D pair is such thati) belongs to region Y, is upper bounded a(n"r"(n)/k).



B. Lower Bound Lemma 3.10: [15] If r(n) > r.(n), then w.h.p. the total

To describe a capacity-achieving flow in a more generfmber of nodes in any squarelet@gnr?(n)).
setting, we use an important result from parallel and disted Proof: The area of a squarelet is equal &@(r*(n)).
computing. Consider a mesh @# processing units with Hence, the proof is identical to that of Lemma 3.2. |
processors in each row and column. Let each processor béemma 3.11:if r(n) > rc(n) andk > ©(n), then w.h.p.
a source and destination of exactlypackets. The problem of the total number of sources in any squarelet @x@r?(n))
routing thehi? packets to their destinations is known’as », and the total destinations in any squarelet @(&r*(n)).
permutation routing and can be characterized by the foligwi Proof: Forl <i < kletY;,, € 0,1 be arandom variable
result [14]. that is equal to one iff sourcdi) belongs to then'" squarelet.
Lemma 3.6:If in a single slot, each processor can transmitet Y;, = .1 V; ., represent the total number of sources in
one packet each to its immediate horizontal and verticle squarelet. Becausgn) > r.(n), Eq.(11) implies
neighbors, then ah x h permutation routing in & x [ mesh —(cklozm) /n
can be performed deterministically /2 + o(hl) steps. Pr (Yo < (1= 8)kr?(n))) < e=(Hlesm)/ (17)

We utilize the following corollary that can be readilyThe total number of squarelets in a unit square is equal to
deduced from the above Lemma. (3/r(n))x (3/r(n)) < c¢1n/logn. Therefore, the union bound

Corollary 3.7: If a processor is capable of transmitting atmplies that
leastn packets to each of its neighbors in each slot, then an
h x h permutation routing in d x [ mesh can be performed
deterministically inO(hl/n) steps. < (total no. of squarelefsx e

Now consider a sub-grapH,. C G, obtained by employing < (ein/logn) x e FOEM/T = oy /(M og )
location based constraints on the edge-set. In order taibesc

these constraints, we first define a location dependent hash )
function. Thus, k > ©(n) guarantees the required convergence and

Definition 3.8: Index Functiorg hence we can say that each squarelet has at &@st*(n))
Divide the network area int&? squarelets [15] of side-length SOUrCeS. The upper bound on the number of sources and
a = r(n)/3 , as shown in Figure 2. Le} be a function that the bounds on the number of destinations can be calculated
associates an indei, j) with a squarelet in thé®” column Similarly. _ u
and;j*" row. Furthurmore, the index assigned to each squarelet! "eorem 3.12if »(n) *Z,TC(”) andk > @(”)'then w.n.p.
is associated with each vertex in the squarelet. the maximum flow ratefj; in H, is at least® (nr(n)/k) .

We obtainH,. by removing all edges, except those connect-  Preof: The proof follows from mapping various compo-
ing two nodes in vertically or horizontally adjacent square "€Nts of the above defined problem to the 7 permutation
We do not necessarily have to considér in order to obtain "0Uting problem. Let us map each squarelet to a processor.
a lower bound on the interference-free capacity. Howewer, tCOnsequently, for the chosen size of squarelets, the networ
performance bounds faH, play an important role when we €duates to a mesh &f processors with — 3/7’}§”)- Assume
analyze interference constrained networks in Section Iy, that each source intends to transmit as the " element of

Definition 3.9: Geographically Restricted Sub-Gragh the demand vector. Becaugg < 1, Lemma 3.11 implies that

The graphtl,(V,, E,. ;) is a sub-graph of, with an identical the total number of bits to be transmitted to and from each
node-set and ar; ec]ge-set defined as squarelet are at mogét < ckr?(n). Finally, note that any two

nodes in adjacent squarelets are within a distarieg. Fig. 3
E.g={ec€E|((e”)=(a,b)=((e")=(a£1,b£1)}. provides a geometric proof for this fact; an alternativeqfro
(16) can be easily obtained by employing the Pythagoras theorem.
In each slot, we can send one packet along each edge be-
tween two adjacent squarelets. Therefore, Lemma 3.10éspli
thatn = (min. no. of edges between adjacent squarglets

Pr  (min. no. of nodes in a squarelet © (kr”(n))
—(cklogn)/n

N 7\ (min. no. of nodes per squarejét< c;n?r*(n). Hence, the
N total number of slotsy required to complete the desired
N routing is v < (cohl/n) < ez x (ckr?(n)) x (3/r(n)) x
) AN (1/01n2r4(7?)) = .(3c.gck/c1n2r3(n)). We can repeat the
3 > above routing periodically to guarantee a flow rate fof=

(1/v) > ©(n?r3(n)/k). By definition, the max-flow rate is
greater than any other feasible flow rate, and the theorem

follows. |
Fig. 3. A geometric proof to show that any two points in adjgcuare-lets . .
are within a distance r(n) of each other. The proof followanirthe fact that ~ Adgregating the above results we have the following con-

the chord of a circle lies within it. clusion.
_ . Theorem 3.13if r(n) > ©4/logn/n andk > ©(n), then
Consider some of the properties of the squareletsdpd  the max- flow ¢, in G, can be approximated tightly by the

r(n)




min-cut capacityl's, in G,.. Moreover, thef, and Y, scale of protocol models, we introduce the conceptimterference
asO (n?r*(n)/k). clones
Proof: Lemma 3.1 implies thaffs > f;,. Hence, the  Definition 4.5: Interference Clone
result follows from the lower bound provided by TheorenTwo edgese;,e, are said to be interference-clones under
3.12 and the upper bound provided by Corollary 3.5 ® function[ if they satisfy the conditions that/(e;) = M (e2).
The following corollary follows for the case in which = Lemma 4.6: Clone Piggy-backing
©(n), which has been studied in the literature. Consider a graphG(V,E) along with interference func-
Corollary 3.14: Consider an ad-hoc network described btions 74 and I, then I4 and Ip are such that: (af =
a random placement of nodes in a unit square, witB(n) max.cr|[Ma(e)|, and (b) there exists a se/, p(e) C
S-D pairs and a homogenous transmission range(oj > Ma(e) Ye € E such that every edge belonging, (.
O(y/logn/n). The interference-free capacity of the networks an interference-clone of under Iz . Further, lety =

scales a® (nr?(n)). min.ecp [M45(e)|. If f is a feasible flow rate irG' without
any interferencef;, = f/(1+ ) is a feasible flow rate i~

IV. INTERFERENCELIMITED CAPACITY under thel 4 interference function and as its correponding

A. General Results on Interference Models parameter, thefir, = f(1+p)/(1+#) is feasible in presence

o .. of interference defined byg.
Interference can severely limit the network capacity. lis th

. biai ina | for th interf Proof: Consider the interference defined ly. From
section we obtain scaling laws for the M',DTR InterterenGlamma 4.4 we know that there exists a conflict free periodic
model to show by example that the optimal capacity

irel K b ined chedule which can activate each edge at least once every
WITEIess .networ $ can be attained. (1 + k) slots. Let us represent this schedule by an indicator
Definition 4.1: Dual-Interference-Set

) A function a(e, 7) which equals one iff edge is active in slot
Consider an edge sétand an interference séte) foranedge _ \ote that the capacity of each edge under schedule

e € I, as defined in Definition 2.3. The dual interference-ssgven by cale) = Srale,7) = 1/(1 + x). Now let us use
for ¢ is defined byF(e) = {¢ € E [ e € I(¢)}, which IS his” schedule in the presence of interferenge Observe
the set of edges that experience a collision on account off; for everye, o allocates a distinct slot for each edge
transmission on edge _ in M, 5(e)(N{e}. Consequently, every edge ha¥l , 5(e)|
Definition 4.2: Dual Conflict Graph _ interference clones scheduled in slots distinct from edhkro
Given a graphG:(V, E) and an interference functioh , we g the edge itself. In addition, note that if an edge is atiy

define thedual conflict graphas Gp(E. Ep) , whereEp = i 3 time slot meant for one of its interference clones, then i

{(e, é) | € I(e)_)}- _ _ does not lead to any conflict. Therefore, we can define a new
Definition 4.3: Total Degree in Dual Conflict Graph conflict-free schedulg such that3(e, 7) = 1 iff there exits an

The total degree of each node in a dual conflict graph is eqyal ¢ M, 5(e)N{e} such thata(es, 7) = 1. Given thaty =

to [M(e)| where M (e) = I(e) J F (e). min.c | M 4 5(e)|, the capacity of each edge under schedule

Similar to the WOI’.k in [13], we have the fo!lowing Lemmaor interferencel s, is given bycs(e) = Seyenr, ,Sraler, )

Lemma 4.4:Consider a graph}’_(M E) and interferencd. < (14 p) x (1/(1 + &)). Accordingly, a feasible flow of
Let k = MaXee |M(e)l|, the maximum vertex degree_ of thesz = f(1+ p)/(1+ k) can be obtained by scaling all the
dual conflict graphGp. If f is a feasible flow rate in the fiow functions associated with the inference-free flow by a
absence of interference, then flow rafe = f/(1 4+ k) IS factor of (1 + p)/(1 + k). m
feasible in presence of interference _ In the subsequent discussion, we find it convenient to

Proof: In the absence of interference the capacity of eagfaduce a bound for a particular interference model and then

edge is assumed to be one. However, because of interferergguy that it applies to a wider set of models. In order to

all edges cannot be activated simultaneously. &ebe the facilitate such arguments, we define the following partialen.
minimum frequency with which each edge is activated without pefinition 4.7: Partial Order of Interference Models

causing any interference conflicts. Then, for each edge we ha, interference functionl, is said to be more restrictive

c(e) > 1/o. Itis well known that, ifx is the maximum vertex than I, represented as, < I, iff every edge satisfies the
degree, thens + 1 colors are sufficient to provide a proper.qngitions thatl(e) C Ia(e) .

vertex coloring [16]. Thus, by prov?ding a vertex cplorimyf Lemma 4.8:Consider a grapli(V, E) along with interfer-
the dual conflict graph, we can partition the edgefs@tto 1+ encel, andIg. If I, < Iz, then a feasible flow rate under
x subsets such that no two edges in the same subset interf?reremains feasible uﬁde[rB.

Consequently, we can periodically activate these subsets Proof: A conflict free schedule unddr, remains conflict

realizec(e) > 1/(1 + x) for each edge. Thus, a feasible flo
rate ff = f/(1 + k) can be obtained by scaling the fIO\\/Iv\ﬂtree underr. Hence we can say that

functions associated witffi by a factor of1/(1 + ). | cale) < cple) (18)
The maximum vertex degree does not provide a tight bound

on the minimum number of colors required to provide a properhere c4(e) and cg(e) represent the edge capacities under

vertex coloring. Hence, in order to analyze a wider varietgach interference model. Therefore, if a particular flovisfiats



the capacity constraints undgs, it necessarily satisfies those Lemma 4.13:Consider the graptd, with r(n) > r.(n)
same constraints undép. B andk > ©O(n). In such a graph, each edgehas at least
© (n*r*(n)) clones under interferendgyvprr. such that these
clones interfere with each other andunder the interference
For mathematical convenience, we define a restrictive ifirspr
terference model for MPTR that introduces more restriction ~ Proof: According to Definition 4.10,V(e) repre-
(i.e., collisions) on the interference set for each edga thase sents the desired set of clones falrmptr Lemma
strictly dictated by the original interference model. Weowh 3.10 implies that there existc; and c; such that
that, under this restrictive model, the order of the loweuth®d prrprr = minecr, 4|V(€)] > [mincep, ,|U(e)] x
capacity achieves the upper bound under the original (namin. nodes per squarelet c;nr?(n) x cznrz(n)’. [ |
restrictive) interference model. Lemma 4.8 allows us ttiagi Theorem 4.14:For r(n) > r.(n) andk > O(n), the ca-
this performance limit to indirectly bind the capacity undepacity of random geometric network is at le&sn?r3(n)/k)

B. Lower Bound

the interference model MPTR. under the MPTR model.
Definition 4.9: Restricted SPR (RSPR) Model: Proof: Recall that the capacity of the random network
_ _ is greater than the feasible flow rate #i.. Theorem 3.12
lrspe(e) = W(e) —{e} Ve € Ern shows that a rate of = ¢;n2r3(n)/k is feasible inH,.. If we
where W(e) = U Mspr(e) (19) take into consideration the interference clones, then Lamm
e:¢(é7)=C(e™) 4.6 further implies that the raté x (1/(1+ xkrspr)) x (1 +
Definition 4.10: Restricted MPTR (RMPTR) Model ~ KramPTR) = (c3/r(n)k) x(csnri(n)) = (csesn®r® (n) /k) is
feasible under the RMPTR model. Finally, note that a feasibl
Irvptr(e) = W(e)—V(e) Ye€ Er gy rate under a restricted model is necessarily feasible under
Vie) = U U(é) the original model. Hence, the result proven in Lemma 4.12
e ()t (em) completes the proof. |
Ule) = {'é €Enu|é = e_} (20) The interference-free capacity provides an upper bound on

the capacity under any model, and Theorem 4.14 already
Consider the following properties of the restricted model.shows that the MPTR model achieves this capacity, thus we

Lemma 4.11:For the graphH,, we have a partial order have a tight bound oB(n*r(n)/k) on the capacity under

defined bylrspr =< IrmpTR = IMPTR the MPTR model.

Proof: (Sketch) The left side of the partial order follows
directly from definition. Meanwhile the right side followsoin V. CONCLUSIONS AND FUTURE WORK
the fact that thatd(e) C V(e). |

We have shown that the optimal capacity that protocol
architecture can attain in a wireless networlign?r3(n) /k).

YIn addition, we demonstrated that this capacity can indeed
Twetr, TrweTr OF Trspr . . be attained when nodes embrace MAI as transmitters and
Proof: (Sketch) Due to Lemma 4.11 it suffices to PrOV&eceivers, and that a non-vanishing capacity is attainpbte

Vmaz = Mazee s, | Irspre)| = O(n?r(n)) (21) S-D_pair even Wh_en information must pe disseminated over
. 2 4 multiple hops. While these results provide a completely new
Ymin = Mincep, | Iwptr(e)] = 2(n7r"(n)) (22) outlook on the design of wireless ad hoc networks from the tra

Recall that a node itH, is connected to all and only thoseditional view based on avoiding MAI, much work remains to
nodes that are placed in adjacent squarelets. Hence Lenfgedone to fully understand the fundamental limits of wissle
3.10 tells us that the degree of each ventex H, is bounded networks! In particular, the cases of multicast and broatica
as 4cinr?(n) < deg(v) < 4cgnr?(n). We can prove the information dissemination must be considered. We also hope
lower bound by considering the model MPTR. Accordinghat this paper motivates research on protocol architesttimat

to Definition 2.5, the transmission on edgeexperiences combines multi-packet reception and transmission to rattai
interference from any transmission by a nodesuch that massively scalable ad hoc networks.

r(n) < || Xe- — Xo| < (1 4+ n)r(n). Therefore, there exists

an annular ring around~ of width 7r(n) such that any VI. ACKNOWLEDGMENTS
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Lemma 4.12:f r(n) > r.(n), then all edges: € E, g
have|M(e)| = © (n*r*(n)) under interference described b
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