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Abstract—We show that, as the number of nodes in the network
n tends to infinity, the maximum concurrent flow (MCF) and
the minimum cut-capacityscale asΘ(n2r3(n)/k) for a random
choice of k ≥ Θ(n) source-destination pairs, wherer(n) is the
communication range in the network. In addition, we show that it
is possible to attain this optimal order throughput in interference-
constrained networks if nodes are capable of multiple-packet
transmission and reception. This result provides an improvement
of Θ

`

nr2(n)
´

over the highest achieved capacity reported to date.
Furthermore, in stark contrast to the conventional wisdom that
has evolved from the Gupta-Kumar results, our results show
that the capacity of ad-hoc networks can actuallyincreasewith
n while the communication range tends to zero!

I. I NTRODUCTION

Gupta and Kumar’s seminal work [1] shows that the ca-
pacity of wireless ad-hoc networks does not scale with an
increase in network size when nodes are static, transmit or
receive one packet at a time, and the network traffic consists
of unicast sessions. However, recent advances in many-to-one
and many-to-many communication [2]–[4] and generalizations
of routing (e.g., network coding (NC) [5]) are challenging
the traditional view that avoiding multiple access interference
(MAI) is the right approach to build wireless ad hoc networks.
However, co-operative protocols that provide performance
benefits in specific network configurations need not scale well
with the network size. In particular, Liu et al. [6] showed that
NC cannot increase the throughput order of wireless ad-hoc
networks for multi-pair unicast applications under half-duplex
communication. On the other hand, several techniques have
been proposed aimed at improving the capacity of wireless
ad hoc networks, and include taking advantage of mobility
[7], changing physical-layer assumptions (e.g., using multiple
channels or directional antennas [8]), or establishing different
forms of cooperation between senders and receivers [9].
Cooperation can be extended to the simultaneous transmission
and reception at various nodes in the network, and Garcia-
Luna-Aceves et al. [3] have shown that, if nodes in the
network are capable of multi-packet reception (MPR), then
the order capacity of a network withn unicast sessions grows
as Θ(r(n)), where r(n) is the communication range. This
represents a gain ofΘ

(

nr2(n)
)

over the throughput order
of Θ(1/nr(n)) reported by Gupta and Kumar.

Interestingly, all the prior work on the capacity of wireless
networks has focused on what is attainable with specific
approaches to handle MAI. No prior work has focused on first
establishing what is the optimal capacity of a wireless network
in the absence of MAI, and then determining whether that
capacity is attainable when MAI is present. This is precisely
the focus and overall contribution of this paper.

Section II presents the network model assumed in this paper,
which consists of a random network withn nodes, a homoge-
neous communication range ofr(n), and unicast traffic fork
source-destination (S-D) pairs. In the absence of interference,
such a network corresponds to arandom geometric graphwith
an edge between any two nodes separated by a distance less
thanr(n). We define acombinatorial interference modelbased
on these graphs, and use it to introduce a protocol model
in which nodes have the ability to decode correctly multiple
packets transmitted concurrently from different nodes, and
transmit concurrently multiple packets to different nodes. We
refer to this as the multi-packet transmission and reception
(MPTR) protocol model.

Section III characterizes the optimal interference-free capac-
ity of a wireless network. The task of concurrently maximizing
the data-rate fork S-D pairs is an instance of the multi-
commodity flow problem. Hence, themaximum concurrent
multi-commodity flow-rate(MCF) in a random geometric
graph equals the interference free capacity (i.e., the optimal
capacity) of the network. The max-flow min-cut theorem by
Ford and Fulkerson [10] establishes that the MCF is tightly
bounded by the minimum capacity of a multi-commodity cut
for a single commodity. However, in general, the min-cut does
not provide a tight bound on the max-flow [11], which is
known to be tight only for special cases, and in general exhibits
a gap of at leastΘ(log k) [12]. Leighton and Rao [11] showed
that the gap between the max-flow and min-cut is at most
Θ(log n). We establish a tight max-flow min-cut theorem for
random geometric graphs for the first time, and show that
Θ

(

n2r3(n)/k
)

is a tight bound on the optimal capacity of
a wireless network. Our work is inspired by the analysis of
Leighton and Rao.

Section IV proves that the optimal capacity of wireless
networks is attainable in the presence of MAI. We show
that MPTR achieves the optimal capacity ofΘ

(

n2r3(n)/k
)

.



Hence, MPTR provides a gain ofΘ
(

nr2(n)
)

over MPR
and any previously reported feasible capacity. What is just
as striking is that MPTR can achieve the dual objective of
increasing capacity and decreasing the transmission rangeas
n increases. This is in stark contrast to the commonly held
view that the capacity of multihop wireless networks cannot
increase as the number of nodes increases. Indeed, our results
demonstrate that the capacity of ad-hoc networks can actually
increase with n while the communication range tends to
zero! Section V summarizes our results and points out future
research directions.

II. NETWORK MODEL AND PRELIMINARIES

For a continuous regionR, |R| denotes its area. The
cardinality of a setS is denoted by|S|, and by‖x − y‖ the
distance between nodesx and y. Whenever convenient, we
utilize the indicator function1{P}, which is equal to one ifP
is true and zero ifP is false.Pr(E) represents the probability
of eventE. An eventE occurs with high probability (w.h.p.)
asn → ∞ if Pr(E) > (1− (1/n)) . We employ the standard
order notationsO, Ω, andΘ.

We assume a random wireless network withn nodes dis-
tributed uniformly in a unit-square. Asn goes to infinity,
the density of the network also goes to infinity. Therefore,
our analysis is applicable to dense networks. Furthermore,we
assume a fixed transmission ranger(n) for all the nodes in
the network. Thus, the network topology can be characterized
using a random geometric graph, which we denote byGr and
define next.

Definition 2.1: Random Geometric GraphGr

We associate adirected graph Gr(Vr , Er) with a wireless
network formed by distributingn nodes uniformly in a unit
square. We represent the node-set byV = {1, · · · , n}. Let
the locations of these nodes be given by{X1, · · · , Xn}, the
edge-set is thenE = {(i, j) | ‖Xi − Xj‖ ≤ r(n)} .

While the results in this paper can be extended to undirected
graphs, it is more convenient for us to use directed graphs due
to the edge-coloring techniques used in our work. Note that,
we permit two edges for a pair of connected vertices with
possibly different capacity in each direction.

We assume that the network operates using a slotted channel
and, in the absence of interference, the data rate in each time
slot for every transmitter-receiver pair is a constant value of W
bits/slot. Given that W does not change the order capacity, we
normalize its value to 1. Hence, we say that the interference-
free capacity of each edge inGr is equal to 1.

Gupta and Kumar [1] have proved the following criteria for
the connectivity ofGr.

Lemma 2.2:For a random distribution ofn nodes in a unit-
square, the graphGr is connected w.h.p, if and only if (iff)
r(n) ≥ rc(n) = Θ(

√

log n/n).
In a dense network, interference is the primary constraint

on the capacity of the network. Like Madan et al. [13], we
describe the interference of a network by the following generic
model.

Definition 2.3: Combinatorial Interference Model
The interference model for the graph1 G(V, E) is determined
by a functionI : E → P (E), whereP (E) is the power set of
E, i.e., the set of all possible subsets ofE. For everye ∈ E,
I(e) represents aninterference setsuch that, a transmission on
edgee is successful iff there are no concurrent transmissions
on any ê ∈ I(e). An interference model can be restricted to
a sub-graphH(VH , EH) by defining a functionIH : EH →
P (EH) such thatIH(e) = I(e)

⋂

EH .
The various protocol models that have been proposed in the

past can now be expressed as special cases onGr.
Gupta and Kumar [1] studied asingle packet reception

(SPR)protocol modelunder which a transmission from node
i to receiverj is successful iff‖Xi − Xj‖ ≤ r(n) and if
‖Xj −Xk‖ ≥ (1+ η)r(n) for any other transmitterk. Hereη
is a guard-zone that is assumed to be constant for the entire
network. Moreover, all the nodes operate in half-duplex mode.

Definition 2.4: Single-Packet Reception (SPR) Model:
Let e = (e+, e−) ∈ E, then the interference set for edgee is

ISPR(e) = J(e) − e,

J(e) = {ê ∈ Er | ‖Xê+ − Xe−‖ ≤ (1 + η)r(n)} .(1)

In this paper, we consider the case in which nodes have
MPR and MPT capabilities, i.e., can decode multiple con-
current transmissions or can transmit concurrently multiple
packets to different nodes, but operate strictly in a half-duplex
manner. The following definition expresses this model in terms
of the notation we have introduced.

Definition 2.5: Multi-Packet Transmission and Reception
(MPTR) Model:The MPTR interference set for edgee is

IMPTR(e) = J(e) − A(e) ∀e ∈ E

A(e) = {ê ∈ Er | ‖Xê+ − Xe−‖ ≤ r(n)} (2)

The traffic in the network is generated by unicast communi-
cation betweenk source-destination (S-D) pairs. A rate vector
λ = [λ1, · · · , λk] is associated with thesek pairs. The data
rate for each S-D pair is considered non-zero. Hence, without
loss of generality (w.l.g), the rate vector can be written as
λ = [fD1, · · · , fDk] wheref ∈ R+ and Di ∈ [1/2, 1] for
1 ≤ i ≤ k.We refer to the parameterf as theconcurrent flow
rate and toD = [D1, · · · , Dk] as thedemand vector.

Definition 2.6: Feasible Flow Rate
Given k S-D pairs {(s(1), d(1)), . . . , (s(k), d(k))}, a rate
vector λ = [fD1, · · · , fDk] is feasible if there exists a
spatial and temporal scheme for scheduling transmissions such
that by operating the network in a multi-hop fashion, and
buffering at intermediate nodes when awaiting transmission,
every sources(i) can sendλi bits/sec on average to the chosen
destinationd(i). A flow ratef is feasible for a demand vector
D = [D1, · · · , Dk] iff λ = [fD1, · · · , fDk] is a feasible.

Definition 2.7: Capacity of Random Networks
The capacity per commodity of a network isΘ(f(n)) if under

1HereGr represents a random geometric graph whileG a general graph.



a random placement ofn nodes, a random choice ofk S-D
pairs and for an arbitrary demand vector we have:

lim
n→∞

Pr(cf(n)is feasible flow rate) = 1 (3)

lim infn→∞Pr(c′f(n)is infeasible flow rate) < 1 (4)

for somec > 0 andc < c′ < +∞.
In the following sections we repeatedly utilize the well

known Chernoff bounds.
Lemma 2.8: Chernoff Bounds:ConsiderN i.i.d random

variablesYi ∈ {0, 1} with p = Pr(Yi = 1). Let Y =
∑N

i=1 Yi.
Then for everyc > 0 there exist0 < δ1 < 1 andδ2 > 0 such
that

Pr(Y ≤ (1 − δ1)Np) < e−cNp (5)

Pr(Y ≥ (1 + δ2)Np) < e−cNp. (6)

We review some defintions from graph theory. In particular,
note that the task of identifying a feasible flow rate can be
posed as a multi-commodity flow problem, specifically the k-
commodity flow problem.

Definition 2.9: k-Commodity Flow Problem
Consider a directed graphG(V, E) with a capacity function
c : E → [0, 1]. Let {(s(1), d(1)), . . . , (s(k), d(k))) be k S-D
pairs, with a demand vectorD ∈ [1/2, 1]k. Let f ∈ R+ be
a concurrent flow rate. Find flow functionsfi : E → R+ for
1 ≤ i ≤ k, which satisfy the following flow constraints:
Capacity Constraint:

∑

1≤i≤k fi(e) ≤ c(e) ∀e ∈ E
Flow Conservation:

∑

e:e+=v fi(e) =
∑

e:e−=v fi(e) ∀v 6=
s(i), d(i)
Demand Satisfaction:

∑

e:e+=s(i) fi(e) =
∑

e:e−=d(i) fi(e) =
fDi for 1 ≤ i ≤ k

Flow functions that satisfy the above constraints are called
feasible. Other inputs to the problem being fixed, a flow rate
f is said to be feasible iff the above problem has a solution.
Furthermore, letf∗ be the MCF such that the above problem
has a feasible solution. A wireless network can be represented
by an equivalent graph with capacity functions determined
by the interference. Thus, the MCF in an equivalent graph
can be perceived as the maximum flow that can be routed
in a network. Additionally, if w.h.p.f∗ is the MCF for any
graph formed by a random distribution of nodes, sources and
destinations, then the capacity of the wireless network is also
f∗. Consider the following additional definitions.

Definition 2.10: Vertex Cut
Given a node setV , a cut is the separation of the vertex setV
into two disjoint and exhaustive sets(S, SC). We shall often
reference a cut just by the setS .

Definition 2.11: Multi-commodity Cut Capacity
Given a graphG(V, E), a capacity functionc : E → [0, 1] and
a cut (S, SC). The multi-commodity cut capacity is defined
as

ΥG,S =

∑

e∈E 1[e+∈S,e−∈SC ]c(e)
∑

i:s(i)∈S,d(i)∈SC Di
. (7)

Definition 2.12: Minimum Cut Capacity
Given a graphG(V, E), a capacity functionc : E → [0, 1] and

a cut(S, SC). The minimum multi-commodity cut capacity is
defined as

ΥG = min
S⊂V

∑

e∈E 1[e+∈S,e−∈SC ]c(e)
∑

i:s(i)∈S,d(i)∈SC Di
. (8)

It is well-known that the minimum cut-capacity provides an
upper bound on the maximum flow rate.

Lemma 2.13:For anyk-commodity flowf∗ ≤ ΥG

III. OPTIMAL CAPACITY

We show that for random geometric graphs, the MCF pro-
vides a tight approximation of the minimum-cut capacity. This
relationship implies a tight characterization of the interference-
free capacity of wireless ad-hoc networks with a homogenous
transmission range. Our approach can be summarized as
follows: For a particular demand vector, we provide an upper
bound by showing that there exists a multi-commodity cut in
Gr of order O(g(n)) and a lower bound by constructing a
flow of orderΩ(g(n)) in a sub-graphHr ⊆ Gr. These results
along with the following Lemmas prove that the capacity of
Hr andGr has a tight boundΘ(g(n)).

r(n)r(n)

O(nr(n)
2
)O(nr(n)

2
)

SS S
cS
c

AA

Fig. 1. A bi-partitioning of the unit square

Lemma 3.1:A graphG(V, E) and a sub-graphH(VH , EH)
satisfy the following two properties: (a) Iff is a feasible flow-
rate inH thenf is feasible inG; and (b) the capacity of a cut
(S, SC) in G is always greater than or equal to the capacity
of the cut inH .

Proof: To prove Part (a) of the lemma, letfH,i for
1 ≤ i ≤ k be the flow functions associated with the feasible
flow of rate f in H . Note that these flow functions satisfy
the constraints in Definition 2.9. We construct a flow inG of
rate f with the following flow functions: For1 ≤ i ≤ k let
fG,i : E → R+ such thatfG,i(e) = fH,i(e) if e ∈ EH and
0 otherwise. Now, if we show that the functionsfH,i satisfy
the flow constraints, then the flow ratef is feasible inG.
Definition 2.9 states thatc(e) ≥ 0 for all the edges. As a result,
∀e ∈ E − EH the capacity constraints are satisfied trivially,
given thatfG,i(e) = 0 for such edges. Furthermore,∀e ∈ EH

we have
∑

1≤i≤k fH,i(e) =
∑

1≤i≤k fG,i(e) ≤ c(e). There-
fore, fG,i satisfy the capacity constraint. In addition, note that
the following equations hold∀v ∈ V :

X

e∈E:e−=v

fG,i(e) =
X

e∈EH :e−=v

fG,i(e) +
X

e∈E−EH :e−=v

fG,i(e)

=
X

e∈EH :e−=v

fH,i(e) + 0 (9)



X

e∈E:e+=v

fG,i(e) =
X

e∈EH :e+=v

fG,i(e) +
X

e∈E−EH :e+=v

fG,i(e)

=
X

e∈EH :e+=v

fH,i(e) + 0 (10)

Eqs. (9) and (10) imply that the net in-flow and the net
out-flow, underfG,i and fH,i, is identical for all nodes and
commodities. Therefore,fG,i satisfies the flow conservation
and demand constraints.

To show Part (b), observe that

ΥG,S = ΥH,S +

∑

e∈E−EH
1[e+∈S,e−∈SC ]c(e)

∑

i:s(i)∈S,d(i)∈SC Di
(11)

Becausec(e) ≥ 0 for all edges, we haveΥG,S ≥ ΥH,S .

A. Upper Bound

We utilize the following properties ofGr.
Lemma 3.2:If r(n) ≥ rc(n), then w.h.p. graphGr is such

that: (a) The minimum vertex degree∇ ≥ Θ
(

nr2(n)
)

, and
(b) the maximum vertex degree∆ ≤ Θ

(

nr2(n)
)

.
Proof: We first show that∇ ≥ Θ

(

nr2(n)
)

. A node
v in Gr is connected to all the nodes in a disk of radius
r(n) centered atv . The area of this disk isπr2(n). Given
a uniformly random distribution of nodes, the probability of
another nodeu lying within this disk isπr2(n). Consider a
random variableYv,u ∈ {0, 1} which is equal to one iff node
u is connected to nodev. The degree of nodev can be written
asdeg(v) =

∑

u∈V −{v} Yv,u. Therefore, the Chernoff Bound
implies that∀c > 0 there exists a0 ≤ δ ≤ 1 such that

Pr
`

deg(v) ≤ (1 − δ)nπr2(n)
´

< e−cnπr2(n) (12)

From the union bound we obtain

Pr
`

∇ ≤ (1 − δ)nπr2(n)
´

< nPr
`

deg(v) ≤ (1 − δ)nπr2(n)
´

(13)

Given that r(n) ≥ rc(n) we haver(n) ≥ c1

√

log n/n
for somec1 > 0. Therefore, Eqs. (12) and (13) imply that
Pr

(

∇ ≤ (1 − δ)πnr2(n)
)

< ne−cπc1 log n = 1/ncπc1−1 Now,
Lemma 2.8 tell us that we can choosec ≥ 2/(πc1)) and cor-
responding0 < δ1 < 1 such that Pr

(

∇ ≥ (1 − δ)πnr2(n)
)

>
1 − (1/n) We use similar arguments to show that∆ ≤
Θ

(

nr2(n)
)

w.h.p.. This fact follows from Eq. (8), which
implies that ∀c > 0 there exists a0 ≤ δ ≤ 1 such
that Pr

(

deg(v) ≥ (1 + δ1)nπr2(n)
)

< e−cnπr2(n) The union
bound and the fact thatr(n) ≥ c2

√

log n/n implies that
Pr

(

∆ ≥ (1 + δ)πnr2(n)
)

< ne−cπc2 log n Therefore, there
exists a δ2 > 0 such that Pr

(

∆ ≤ (1 + δ2)πnr2(n)
)

>
1 − (1/n)

Consider the cutS described by Figure 1. The cut consists
of all the nodes in the rectangular region of a constant area.

Lemma 3.3:If the network consists ofk ≥ Θ(log n) S-D
pairs, then w.h.p. a regionR of constant area|R| contains
Θ(k) sources with destinations outside regionR.

Proof: Let Yi ∈ 0, 1 be a random variable that is equal
to one iff the ith S-D pair is such thats(i) belongs to region

R andd(i) does not. Under a uniformly random placement of
nodes, Pr(Yi = 1) = |R|(1 − |R|). The total number of S-D
pairs satisfying the required condition can be representedby
Y =

∑k
1 Yi. If k ≥ c log n the Chernoff Bounds imply the

existence of constantsc1 = 1/(c|R|(1 − |R|)), 0 ≤ δ1 ≤ 1
andδ2 > 0 such that

Pr(Y ≥ (1 − δ1)|R|(1 − |R|)k) > 1 − e−c1k|R|(1−|R|)

≥ 1 − e−c1c|R|(1−|R|) log n = 1 − (1/n) (14)

Pr(Y ≤ (1 + δ2)|R|(1 − |R|)k) > 1 − e−c1k|R|(1−|R|)

= 1 − e−c1c|R|(1−|R|) log n = 1 − (1/n) (15)

Furthermore, consider the subsetA in S defined by a strip
of dimension1 × r(n). The total number of vertices in A is
Θ(nr(n)) because of the uniform distribution of nodes in the
network.

h =

r(n)/3

1

i

l

1 j l

(i, j)
th

square-let

Fig. 2. Decomposition of network area intol2 squarelets

Theorem 3.4:If r(n) ≥ rc(n) andk ≥ Θ(log n), then the
capacity of the cutS is ΥGr,S

= O(n2r3(n)/k) w.h.p.
Proof: According to the definition ofGr two nodes are

connected iff they are separated by a distance less thanr(n).
Consequently, if an edge cuts acrossS then it has to be
incident upon a node at a distance less thanr(n) from the
boundary separatingS and SC , i.e. the head of the edge
should lie in the subsetA of dimensionr(n)×1. Furthermore,
for each node inA the maximum number of edges cutting
across the cut is bounded by∆, i.e.,

∑

e∈E 1[e+∈S,e−∈SC ] ≤
|A|∆. In the absence of interferencec(e) = 1 for all the edges.
Hence,

ΥGr,S =

P

e∈Er
1[e+∈S,e−∈SC ]

P

i:s(i)∈S,d(i)∈SC Di
≤

|A|∆
P

i:s(i)∈S,d(i)∈SC Di

According to Lemma 3.3, there existsc1 > 0 s.t. the
total number S-D pairs across the cut isc1k. Furthermore,
by Definition 2.9 the demand for each pair is at least 1/2.
Hence,ΥGr,S ≤ (2|A|∆)/c1k. Lemma 3.2 implies that there
exists ac2 > 0 s.t. ∆ < c2nr2(n), while uniform distribution
of nodes in the network implies that there exists ac3 > 0 s.t.
|A| ≤ c3nr(n). Hence,ΥGr,S ≤ 2c2c3n

2r3(n)/(c1k).

Any cut in Gr has a capacity greater than the minimum
cut capacityΥGr

. Consequently Theorem 4.4 implies the
following Corollary.

Corollary 3.5: If r(n) ≥ rc(n) and k ≥ Θ(log n), then
ΥGr

is upper bounded asO(n2r3(n)/k).



B. Lower Bound

To describe a capacity-achieving flow in a more generic
setting, we use an important result from parallel and distributed
computing. Consider a mesh ofl2 processing units withl
processors in each row and column. Let each processor be
a source and destination of exactlyh packets. The problem of
routing thehl2 packets to their destinations is known ash×h
permutation routing and can be characterized by the following
result [14].

Lemma 3.6:If in a single slot, each processor can transmit
one packet each to its immediate horizontal and vertical
neighbors, then anh × h permutation routing in al × l mesh
can be performed deterministically inhl/2 + o(hl) steps.

We utilize the following corollary that can be readily
deduced from the above Lemma.

Corollary 3.7: If a processor is capable of transmitting at
leastη packets to each of its neighbors in each slot, then an
h × h permutation routing in al × l mesh can be performed
deterministically inO(hl/η) steps.

Now consider a sub-graphHr ⊆ Gr obtained by employing
location based constraints on the edge-set. In order to describe
these constraints, we first define a location dependent hash
function.

Definition 3.8: Index Functionζ
Divide the network area intol2 squarelets [15] of side-length
a = r(n)/3 , as shown in Figure 2. Letζ be a function that
associates an index(i, j) with a squarelet in theith column
andjth row. Furthurmore, the index assigned to each squarelet
is associated with each vertex in the squarelet.

We obtainHr by removing all edges, except those connect-
ing two nodes in vertically or horizontally adjacent squarelets.
We do not necessarily have to considerHr in order to obtain
a lower bound on the interference-free capacity. However, the
performance bounds forHr play an important role when we
analyze interference constrained networks in Section IV.

Definition 3.9: Geographically Restricted Sub-GraphHr

The graphHr(Vr , Er,H) is a sub-graph ofGr with an identical
node-set and an edge-set defined as

Er,H = {e ∈ E | ζ(e−) = (a, b) ⇒ ζ(e+) = (a ± 1, b ± 1)}.
(16)

25%

r(n)

r(n)

3

Fig. 3. A geometric proof to show that any two points in adjacent square-lets
are within a distance r(n) of each other. The proof follows from the fact that
the chord of a circle lies within it.

Consider some of the properties of the squarelets andHr.

Lemma 3.10: [15] If r(n) ≥ rc(n), then w.h.p. the total
number of nodes in any squarelet isΘ(nr2(n)).

Proof: The area of a squarelet is equal toΘ(r2(n)).
Hence, the proof is identical to that of Lemma 3.2.

Lemma 3.11:If r(n) ≥ rc(n) and k ≥ Θ(n), then w.h.p.
the total number of sources in any squarelet areΘ(kr2(n))
and the total destinations in any squarelet areΘ(kr2(n)).

Proof: For1 ≤ i ≤ k let Yi,m ∈ 0, 1 be a random variable
that is equal to one iff sources(i) belongs to themth squarelet.
Let Ym =

∑k
1 Yi,m represent the total number of sources in

the squarelet. Becauser(n) ≥ rc(n), Eq.(11) implies

Pr
(

Ym ≤ (1 − δ)kr2(n))
)

< e−(ck log n)/n (17)

The total number of squarelets in a unit square is equal to
(3/r(n))×(3/r(n)) ≤ c1n/ logn. Therefore, the union bound
implies that

Pr
`

min. no. of nodes in a squarelet< Θ(kr2(n)
´

≤ (total no. of squarelets) × e−(ck log n)/n

≤ (c1n/ log n) × e−(ck log n)/n = c1/(n
(ck/n)−1 log n)

Thus,k ≥ Θ(n) guarantees the required convergence and
hence we can say that each squarelet has at leastΘ(kr2(n))
sources. The upper bound on the number of sources and
the bounds on the number of destinations can be calculated
similarly.

Theorem 3.12:If r(n) ≥ rc(n) andk ≥ Θ(n), then w.h.p.
the maximum flow ratef∗

H in Hr is at leastΘ
(

n2r3(n)/k
)

.
Proof: The proof follows from mapping various compo-

nents of the above defined problem to theh × h permutation
routing problem. Let us map each squarelet to a processor.
Consequently, for the chosen size of squarelets, the network
equates to a mesh ofl2 processors withl = 3/r(n). Assume
that each source intends to transmitDi as the ith element of
the demand vector. BecauseDi ≤ 1, Lemma 3.11 implies that
the total number of bits to be transmitted to and from each
squarelet are at mosth ≤ ckr2(n). Finally, note that any two
nodes in adjacent squarelets are within a distancer(n). Fig. 3
provides a geometric proof for this fact; an alternative proof
can be easily obtained by employing the Pythagoras theorem.
In each slot, we can send one packet along each edge be-
tween two adjacent squarelets. Therefore, Lemma 3.10 implies
that η = (min. no. of edges between adjacent squarelets) ≤
(min. no. of nodes per squarelet)2 ≤ c1n

2r4(n). Hence, the
total number of slotsγ required to complete the desired
routing is γ ≤ (c2hl/η) ≤ c2 × (ckr2(n)) × (3/r(n)) ×
(1/c1n

2r4(n)) = (3c2ck/c1n
2r3(n)). We can repeat the

above routing periodically to guarantee a flow rate off =
(1/γ) ≥ Θ(n2r3(n)/k). By definition, the max-flow rate is
greater than any other feasible flow rate, and the theorem
follows.

Aggregating the above results we have the following con-
clusion.

Theorem 3.13:If r(n) ≥ Θ
√

log n/n andk ≥ Θ(n), then
the max- flowf∗

G in Gr can be approximated tightly by the



min-cut capacityΥ∗
Gr

in Gr. Moreover, thef∗
G andΥ∗

Gr
scale

asΘ
(

n2r3(n)/k
)

.
Proof: Lemma 3.1 implies thatf∗

G ≥ f∗
H . Hence, the

result follows from the lower bound provided by Theorem
3.12 and the upper bound provided by Corollary 3.5

The following corollary follows for the case in whichk =
Θ(n), which has been studied in the literature.

Corollary 3.14: Consider an ad-hoc network described by
a random placement ofn nodes in a unit square, withΘ(n)
S-D pairs and a homogenous transmission range ofr(n) ≥
Θ(

√

log n/n). The interference-free capacity of the network
scales asΘ

(

nr3(n)
)

.

IV. I NTERFERENCE-L IMITED CAPACITY

A. General Results on Interference Models

Interference can severely limit the network capacity. In this
section we obtain scaling laws for the MPTR interference
model to show by example that the optimal capacity of
wireless networks can be attained.

Definition 4.1: Dual-Interference-Set
Consider an edge setE and an interference setI(e) for an edge
e ∈ E, as defined in Definition 2.3. The dual interference-set
for e is defined byF (e) = {ê ∈ E | e ∈ I(ê)}, which is
the set of edges that experience a collision on account of a
transmission on edgee.

Definition 4.2: Dual Conflict Graph
Given a graphG(V, E) and an interference functionI , we
define thedual conflict graphasGD(E, ED) , whereED =
{(e, ê) | ê ∈ I(e))}.

Definition 4.3: Total Degree in Dual Conflict Graph
The total degree of each node in a dual conflict graph is equal
to |M(e)| whereM(e) = I(e)

⋃

F (e).
Similar to the work in [13], we have the following Lemma.
Lemma 4.4:Consider a graphG(V, E) and interferenceI.

Let κ = maxe∈E |M(e)|, the maximum vertex degree of the
dual conflict graphGD. If f is a feasible flow rate in the
absence of interference, then flow ratefI = f/(1 + κ) is
feasible in presence of interferenceI.

Proof: In the absence of interference the capacity of each
edge is assumed to be one. However, because of interference,
all edges cannot be activated simultaneously. Letσ be the
minimum frequency with which each edge is activated without
causing any interference conflicts. Then, for each edge we have
c(e) ≥ 1/σ. It is well known that, ifκ is the maximum vertex
degree, thenκ + 1 colors are sufficient to provide a proper
vertex coloring [16]. Thus, by providing a vertex coloring for
the dual conflict graph, we can partition the edge-setE into 1+
κ subsets such that no two edges in the same subset interfere.
Consequently, we can periodically activate these subsets to
realizec(e) ≥ 1/(1 + κ) for each edge. Thus, a feasible flow
rate fI = f/(1 + κ) can be obtained by scaling the flow
functions associated withf by a factor of1/(1 + κ).

The maximum vertex degree does not provide a tight bound
on the minimum number of colors required to provide a proper
vertex coloring. Hence, in order to analyze a wider variety

of protocol models, we introduce the concept ofinterference
clones.

Definition 4.5: Interference Clone
Two edgese1, e2 are said to be interference-clones under
functionI if they satisfy the conditions thatM(e1) = M(e2).

Lemma 4.6: Clone Piggy-backing
Consider a graphG(V, E) along with interference func-
tions IA and IB , then IA and IB are such that: (a)κ =
maxe∈E |MA(e)|, and (b) there exists a setMA,B̄(e) ⊆
MA(e) ∀e ∈ E such that every edge belongingMA,B̄(e)

is an interference-clone ofe under IB . Further, let µ =
mine∈E |MAB̄(e)|. If f is a feasible flow rate inG without
any interference,fIA

= f/(1+κ) is a feasible flow rate inG
under theIA interference function andκ as its correponding
parameter, thenfIB

= f(1+µ)/(1+κ) is feasible in presence
of interference defined byIB .

Proof: Consider the interference defined byIA. From
Lemma 4.4 we know that there exists a conflict free periodic
schedule which can activate each edge at least once every
(1 + κ) slots. Let us represent this schedule by an indicator
function α(e, τ) which equals one iff edgee is active in slot
τ . Note that the capacity of each edge under scheduleα is
given by cα(e) = Στα(e, τ) = 1/(1 + κ). Now let us use
this schedule in the presence of interferenceIB . Observe
that, for everye, α allocates a distinct slot for each edge
in MA,B̄(e)

⋂

{e}. Consequently, every edge has|MA,B̄(e)|
interference clones scheduled in slots distinct from each other
and the edge itself. In addition, note that if an edge is activated
in a time slot meant for one of its interference clones, then it
does not lead to any conflict. Therefore, we can define a new
conflict-free scheduleβ such thatβ(e, τ) = 1 iff there exits an
e1 ∈ MA,B̄(e)

⋂

{e} such thatα(e1, τ) = 1. Given thatµ =
mine∈E |MAB̄(e)|, the capacity of each edge under scheduleβ
for interferenceIB , is given bycβ(e) = Σe1∈M

A,B̂
Στα(e1, τ)

≤ (1 + µ) × (1/(1 + κ)). Accordingly, a feasible flow of
fIB

= f(1 + µ)/(1 + κ) can be obtained by scaling all the
flow functions associated with the inference-free flow by a
factor of (1 + µ)/(1 + κ).

In the subsequent discussion, we find it convenient to
deduce a bound for a particular interference model and then
show that it applies to a wider set of models. In order to
facilitate such arguments, we define the following partial order.

Definition 4.7: Partial Order of Interference Models
An interference functionIA is said to be more restrictive
than IB , represented asIA � IB , iff every edge satisfies the
conditions thatIB(e) ⊆ IA(e) .

Lemma 4.8:Consider a graphG(V, E) along with interfer-
enceIA and IB . If IA � IB , then a feasible flow rate under
IA remains feasible underIB.

Proof: A conflict free schedule underIA remains conflict
free underIB . Hence we can say that

cA(e) ≤ cB(e) (18)

where cA(e) and cB(e) represent the edge capacities under
each interference model. Therefore, if a particular flow satisfies



the capacity constraints underIA, it necessarily satisfies those
same constraints underIB.

B. Lower Bound

For mathematical convenience, we define a restrictive in-
terference model for MPTR that introduces more restrictions
(i.e., collisions) on the interference set for each edge than those
strictly dictated by the original interference model. We show
that, under this restrictive model, the order of the lower bound
capacity achieves the upper bound under the original (non-
restrictive) interference model. Lemma 4.8 allows us to utilize
this performance limit to indirectly bind the capacity under
the interference model MPTR.

Definition 4.9: Restricted SPR (RSPR) Model:

IRSPR(e) = W (e) − {e} ∀e ∈ Er,H

where W (e) =
⋃

ê:ζ(ê−)=ζ(e−)

MSPR(ê) (19)

Definition 4.10: Restricted MPTR (RMPTR) Model

IRMPTR(e) = W (e) − V (e) ∀e ∈ Er,H

V (e) =
⋃

ê:ζ(ê−)=ζ(e−)

U(ê)

U(e) =
{

ê ∈ Er,H | ê− = e−
}

(20)

Consider the following properties of the restricted model.
Lemma 4.11:For the graphHr, we have a partial order

defined byIRSPR� IRMPTR � IMPTR

Proof: (Sketch) The left side of the partial order follows
directly from definition. Meanwhile the right side follows from
the fact that thatA(e) ⊆ V (e).

Lemma 4.12:If r(n) ≥ rc(n), then all edgese ∈ Er,H

have |M(e)| = Θ
(

n2r4(n)
)

under interference described by
IMPTR, IRMPTR or IRSPR.

Proof: (Sketch) Due to Lemma 4.11 it suffices to prove

γmax = maxe∈Er,H
|IRSPR(e)| = O(n2r4(n)) (21)

γmin = mine∈Er,H
|IMPTR(e)| = Ω(n2r4(n)) (22)

Recall that a node inHr is connected to all and only those
nodes that are placed in adjacent squarelets. Hence Lemma
3.10 tells us that the degree of each vertexv ∈ Hr is bounded
as 4c1nr2(n) ≤ deg(v) ≤ 4c2nr2(n). We can prove the
lower bound by considering the model MPTR. According
to Definition 2.5, the transmission on edgee experiences
interference from any transmission by a nodev such that
r(n) < ‖Xe− − Xv‖ ≤ (1 + η)r(n). Therefore, there exists
an annular ring arounde− of width ηr(n) such that any
transmission from a node in this ring interferes withe. The
area of this annular ring is given byη(2 + η)πr2(n). We
have already seen ( Lemma 3.2) that an area ofΘ(r2(n))
contains at leastΘ(nr2(n)) nodes. Hence, there exists ac3

such thatγmin ≥ c3nr2(n) × 4c1nr2(n), which proves the
lower bound. The proof for the upper bound is obtained with
a similar argument, and the proof is ommitted due to space
limitations.

Lemma 4.13:Consider the graphHr with r(n) ≥ rc(n)
and k ≥ Θ(n). In such a graph, each edgee has at least
Θ

(

n2r4(n)
)

clones under interferenceIRMPTR. such that these
clones interfere with each other ande, under the interference
IRSPR.

Proof: According to Definition 4.10, V (e) repre-
sents the desired set of clones forIRMPTR. Lemma
3.10 implies that there existc1 and c2 such that
µRMPTR = mine∈Er,H

|V (e)| ≥ [mine∈Er,H
|U(e)|] ×

min. nodes per squarelet≥ c1nr2(n) × c2nr2(n).
Theorem 4.14:For r(n) ≥ rc(n) and k ≥ Θ(n), the ca-

pacity of random geometric network is at leastΘ(n2r3(n)/k)
under the MPTR model.

Proof: Recall that the capacity of the random network
is greater than the feasible flow rate inHr. Theorem 3.12
shows that a rate off = c1n

2r3(n)/k is feasible inHr. If we
take into consideration the interference clones, then Lemma
4.6 further implies that the ratef × (1/(1 + κRSPR))× (1 +
µRMPTR) ≥ (c3/r(n)k)×(c5n

2r4(n)) = (c3c5n
2r3(n)/k) is

feasible under the RMPTR model. Finally, note that a feasible
rate under a restricted model is necessarily feasible under
the original model. Hence, the result proven in Lemma 4.12
completes the proof.

The interference-free capacity provides an upper bound on
the capacity under any model, and Theorem 4.14 already
shows that the MPTR model achieves this capacity, thus we
have a tight bound ofΘ(n2r3(n)/k) on the capacity under
the MPTR model.

V. CONCLUSIONS ANDFUTURE WORK

We have shown that the optimal capacity thatany protocol
architecture can attain in a wireless network isΘ

(

n2r3(n)/k
)

.
In addition, we demonstrated that this capacity can indeed
be attained when nodes embrace MAI as transmitters and
receivers, and that a non-vanishing capacity is attainableper
S-D pair even when information must be disseminated over
multiple hops. While these results provide a completely new
outlook on the design of wireless ad hoc networks from the tra-
ditional view based on avoiding MAI, much work remains to
be done to fully understand the fundamental limits of wireless
networks! In particular, the cases of multicast and broadcast
information dissemination must be considered. We also hope
that this paper motivates research on protocol architectures that
combines multi-packet reception and transmission to attain
massively scalable ad hoc networks.
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