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Abstract We present a new approach for creating repositories of real software faults.
We have developed a tool, the Automatic Fault IDentification Tool (AFID), that im-
plements this approach. AFID records both a fault revealing test case and a faulty
version of the source code for any crashing faults that the developer discovers and
a fault correcting source code change for any crashing faults that the developer cor-
rects. The test cases are a significant contribution, because they enable new research
that explores the dynamic behaviors of the software faults. AFID uses an operating
system level monitoring mechanism to monitor both the compilation and execution of
the application. This technique makes it straightforward for AFID to support a wide
range of programming languages and compilers.

We present our experience using AFID in a controlled case study and in a real
development environment to collect software faults in the internal development of our
group’s compiler. The case studies collected several real software faults and validated
the basic approach. The longer term internal study revealed weaknesses in using the
original version of AFID for real development. This experience led to a number of
refinements to the tool for use in real software development. We have collected over
20 real software faults in large programs and continue to collect software faults.
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1 Introduction

The software engineering and programming languages research communities have
traditionally relied upon anecdotes and intuition about the relative importance of var-
ious types of software faults to guide our efforts. Numerous papers evaluate prototype
tools on a few hand-selected software faults or even synthetically-injected faults. In
the rare cases when researchers do use their tools to detect new faults in existing
systems, they must manually verify that the software faults they detect are both real
and important. Moreover, in such studies the research often does not provide empiri-
cal evidence that their tool catches a significant percentage of important faults of the
given type because fault sets to perform such tests are often unavailable.

Researchers have recently begun to perform empirical studies of large data sets
of software faults. These studies typically mine fault data from CVS archives that
have become available in recent years due to the creation of large, open software
systems by the open-source community. Unfortunately, these archives often lack the
information necessary to easily reproduce the software faults.

Collections of real software faults and the test cases to reproduce the faults have
the potential to provide a powerful new tool for software researchers. We can use
the test cases to automatically classify faults based on the error they introduce in the
program’s execution. A researcher could, for example, use such a classification to
determine whether null pointer exceptions represent an important real world prob-
lem. Later on, the same data sets would enable researchers to more easily and more
rigorously evaluate fault finding tools. The fault data set would provide real software
faults that researchers could use to evaluate their tools in an automated fashion.

One problem with most existing data sets is that they lack test cases that reveal
software faults. In an early attempt to remedy this situation, we tried to manually
collect real software faults. Our approach was to ask graduate students to record the
faults that they corrected while developing software for their research. For each fault,
we asked the students to record: (1) the test case that revealed the fault, (2) a copy of
the source code that contained the fault, and (3) the source code change that removed
the fault. They found recording this information to be tedious, and instead they often
focused on the development task at hand and forgot to record any information. The
lesson from this experience is that the successful collection of software faults must
be automated.

1.1 Basic approach

In this paper we introduce a novel approach that monitors the software development
process to automatically record software fault data. For each fault, our approach
records: (1) a test case that reveals the fault, (2) a version of the source code that
contains the fault, and (3) a change to the source code that corrects the fault.

We have implemented this approach in the Automated Fault IDentification Tool
(AFID). AFID automatically records software faults by monitoring the compilation
and execution steps of the software development process. The underlying design prin-
ciple for AFID is to record as much software fault data as possible while imposing
minimal runtime overheads and requiring minimal assistance from the developer. The
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Fig. 1 Overview of fault characterization

final goal of the AFID project is to collect fault data from a wide range of software de-
velopers working on real projects. Therefore, requiring the developer to actively par-
ticipate in recording faults would potentially make finding developers to use AFID
much more difficult. According to this principle, AFID has been designed to only
record faults that actually cause crashes. AFID does not recognize more subtle cor-
rectness faults because that would burden the developer with describing the desired
behavior of an application. We expect that we can learn much interesting information
from crashing faults alone.

Figure 1 presents an overview of our approach. Our approach is architected with
the following three primary components:

1. Execution monitor: The execution monitor traces executions of the application
under development. The execution monitor records the inputs to the application. If
the application crashes, the execution monitor uses the recorded inputs to create a
test case that reproduces the observed failed execution. At this point, AFID records
(1) a test case that contains the application inputs that reveal the fault and (2) the
source code version in which the fault was discovered. AFID places this new test
case in its repository of unresolved test cases and stores a reference to the current
version of the subversion source repository in the test case.

2. Compilation monitor: The compilation monitor traces executions of the compiler
to automatically discover which source files comprise the application under devel-
opment. Whenever the application is recompiled, the compilation monitor records
both a list of any new source files it discovers and a list of all source files that
have changed since the last compilation. The compilation monitor then updates its
internal subversion repository with any changes that have been made to the appli-
cation. Finally, the compilation monitor invokes the replay component to check if
the recent changes correct any known software faults.

3. Replay component: The replay component executes the newly compiled version
of the application on all of the unresolved fault revealing test cases. If the appli-
cation executes a fault revealing test case without crashing, the replay component
assumes that the most recent code change corrected the underlying fault. The re-
play component records the current version identifier as the fault correcting code
change. The replay component then marks the test case as resolved. Researchers
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have developed many replay systems for debugging applications (Choi and Srini-
vasan 1998; Steven et al. 2000; LeBlanc and Mellor-Crummey 1987). These other
systems replay the exact execution, while AFID generates test cases from the ap-
plication inputs with the goal of running different versions of the application on
the same test case. The exact executions of these new versions can potentially
differ from the version in which the test case was first recorded.

1.2 Contributions

This paper makes the following contributions:

– Automated fault collection strategy: It presents heuristics that monitor the develop-
ment process to automatically record fault revealing test cases and automatically
detect which code changes correct these software faults.

– Process monitoring technique: It presents a language and tool chain independent
technique to monitor both the executions of the application under development and
the evolution of its source code.

– Automated recording of test cases: It presents a technique to automatically record
test cases from failed executions. These test cases can potentially be incorporated
into the application’s regression test suite.

– Monitoring overhead measurement: It presents measurements of the runtime over-
head of AFID’s monitoring for both a computationally bound benchmark and an
I/O bound benchmark.

– Case study: It presents our experience using the tool to collect software faults in a
case study.

– Real world experience: It presents our experience using AFID to monitor the de-
velopment of our research groups’ compiler infrastructure.

The remainder of the paper is structured as follows. Section 2 presents an example
to illustrate how the approach works. Section 3 presents the automatic fault collec-
tion tool AFID. Section 4 discusses possible privacy concerns. Section 5 presents
overhead measurements and the results of our initial case study. Section 6 presents
our real world experience using AFID to collect software faults. Section 7 presents
related work; we conclude in Sect. 8.

2 Example

We next use an example to illustrate our approach. Let’s suppose that the developer
uses a text editor to write the program shown in Fig. 2. This program takes a command
parameter that specifies its input file. The program then opens this file and reads a
series of commands from it. These commands instruct the program to either write
a digit to an array element, print an array element, or prompt the user whether to
continue. Note that line 19 is missing a break statement, which would cause the
execution of the prompt command to erroneously continue into the code for the read
command.
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Fig. 2 Faulty example program

2.1 Monitoring compilation

After a developer finishes writing the program, he/she would typically compile the
program using one of many Java compilers. AFID tracks the evolution of the pro-
gram’s code by monitoring the execution of the compiler. When the compiler com-
piles the example program, it would make a system call to the operating system to
open Example.java for read access. AFID intercepts the open system calls made
by the compiler to record when the developer adds new source files to the application.
AFID then examines the file’s extension to determine that this file contains source
code for the application. The primary benefit of this approach is that it enables AFID
to support most compilers while not requiring the developer to manually identify the
source files that comprise the application’s source code.

2.2 Monitoring program execution

In the normal development process, we expect that the developer would next execute
the example program on an input file. Figure 3 presents an input file for the example
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Fig. 3 Fault revealing input file
input.txt

program. The input file contains a sequence of three commands: W23 instructs the
program to write the value 3 to array element 2, P instructs the program to prompt
the user whether to continue, and R2 instructs the program to print the second ar-
ray element. Note that this input file invokes the prompt functionality and if the user
chooses to continue it would reveal the fault in the prompt functionality of the exam-
ple program.

Typically, the developer would next execute the example program on this input file
by typing java Example input.txt. AFID’s execution monitor then records
the command line used to execute the program. The program’s execution opens the
file input.txt for read access using the open system call. AFID’s process moni-
tor intercepts this call and records that the execution reads from the file input.txt.
Then the process prints the string Continue (y/n)? to the screen. Let’s suppose
the developer types “y” which reveals the fault in the prompt code that causes the
program to continue into the array element printing code. The program then uses the
byte intended to specify the read command as an index. This causes the program to
exit due to an array out of bounds exception. AFID inspects the execution’s exit value
to determine that the program crashed.

The goal is to create a test case that can reproduce the crash. AFID records the
command line that was used to invoke the fault revealing execution, makes copies
of all the input files that the program opened, stores a trace of the console user in-
teractions, and stores the mapping from the pathnames of the files that the program
opened to the copies made by AFID.

2.3 Recording fault corrections

We expect that the developer will eventually correct any important software faults.
In this case, we assume that the developer has corrected the fault in this program by
changing line 19 to a break statement. When the developer compiles the corrected
program, AFID would then record that line 19 of the Example.java file has been
changed.

AFID then invokes its replay component to replay the fault revealing test cases on
the new version of the example program. The replay component executes the exam-
ple program using the recorded command line. When the example program executes,
it makes a system call to open the input.txt file. AFID intercepts this system call
before the operating system processes it and changes the filename to the name of the
copy in the test case. When the program prompts for user input, AFID recognizes
the prompt and responds with the recorded input y. Because the developer corrected
the underlying software fault, the program executes correctly on the test case. AFID
inspects the program’s return value to determine that the underlying fault was cor-
rected.

At this point, AFID has identified that the most recent source code change corrects
the underlying software fault. AFID has recorded the following information for the
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example fault: (1) the buggy version of the example program from Fig. 2, (2) the test
case that reveals a fault in the buggy version from Fig. 3, and (3) a diff that gives the
source code change that corrects the fault (for this example, replacing line 19 with
break;). AFID records all of this information in its record for this fault. It then
(optionally) uploads this fault information to a centralized fault repository.

3 Automated fault identification

We have architected AFID as three basic components: (1) the execution moni-
tor, which records crashes and creates fault revealing test cases to reproduce these
crashes, (2) the compilation monitor, which identifies new source files and tracks
changes to the source code, and (3) the replay component, which records when a
source code change corrects a fault. Each component of AFID uses the same basic
monitoring strategy—they intercept the system calls that the application or compiler
uses to communicate with the underlying operating system. This approach enables
AFID to easily support many different compilers, virtual machines, and program-
ming languages with only small configuration changes.

The goal of AFID is to collect complete information for software faults. AFID
collects the following information for each fault:

– Fault revealing test case: For each reported fault, AFID records the test case that
reveals this fault.

– A version of the application with the fault: For each reported fault, AFID records
a copy of the source code of the application version that contains the fault. For
space efficiency, this is stored as a version identifier to a version control system
repository.

– Fault correction: For each reported fault, AFID records the source code change
that corrected the fault. For space efficiency, this is stored as a version identifier to
the version control system update that stores the correction.

– Revision history of the application: AFID records a fine-grained revision history
of changes to the application’s source code.

3.1 Recording test cases

AFID’s execution monitor traces the executions of the application under development
to generate fault revealing test cases. The execution monitor records the inputs to the
application’s execution by intercepting the system calls from the application to the
underlying operating system.

The execution monitor uses the ptrace system call to monitor executions of
the application under development (Haardt and Coleman 1999). Figure 4 presents an
overview of the approach. The ptrace interface allows the execution monitor to in-
tercept system calls made by the application under development before the operating
system processes the call. We next describe our ptrace-based approach in more
detail.

The execution monitor begins by forking a new child process, the child process
calls ptrace with the PTRACE_TRACEME option to request tracing, and then the
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Fig. 4 Ptrace interface

child process calls the exec system call to execute the application under develop-
ment. When the child calls the exec system call, the previous invocation of ptrace
with the PTRACE_TRACEME option causes the child process to stop before executing
the new application image.

The monitoring process then calls the ptrace system call with the
PTRACE_SYSCALL option and then calls wait. The next time the child process
makes a system call, the operating system suspends the child process and wakes up
the monitoring process. When the execution monitor is awoken, it uses ptrace’s
PTRACE_GETREGS option to read the system call parameters to determine the type
of the system call. If the child process performs an open system call, the execution
monitor reads the system call parameters to obtain a pointer to the filename and the
file access mode. The execution monitor then uses ptrace’s PTRACE_PEEKDATA
option to read the filename from the monitored process’s memory space using the
pointer passed into the open system call. AFID records the absolute pathname of the
file that was opened.

If the monitored application has requested to open the file for write access, the ex-
ecution monitor must immediately make a copy of that file. If AFID delays copying
the file until the monitored application actually crashes, the monitored application
would likely have already changed the contents of the file. If the monitored applica-
tion has requested to open the file for read access, the execution monitor uses a lazy
copy strategy. It delays the overhead of copying the file until the monitored applica-
tion actually crashes.

When the monitored application exits, the execution monitor inspects its return
value to determine whether it crashed. If the monitored application has crashed, the
execution monitor makes copies of all of the files that the monitored application read.
It then stores the mapping between the pathnames that the monitored application used
to access the files and the files’ copies in a text file in the test case. Otherwise, if the
application successfully exits, AFID discards the files.

3.1.1 Recording user interactions

We next describe how AFID records user interactions. AFID uses the same ptrace-
based mechanism to record a trace of read events from standard input and write events
to standard output. One potential issue with simply replaying the exact user interac-
tion is that changes in the program (or even the time) may change the text that the
program outputs. For example, consider the user interaction shown below:



Autom Softw Eng (2010) 17: 347–372 355

Display: <STARTING>
Display: [Tuesday, April 20, 2010]>
Response: ls

If we require that the output match exactly, the test case will have significant prob-
lems generalizing to future executions of the program. Instead, for each input event
AFID computes the shortest suffix of the program output since the last input event
that uniquely identifies when the input occurred. For the example, this suffix is just
the last two character ’]>’ in the prompt. This fuzzy matching approach allows the
recorded test case to generalize over small changes to the program’s output.

3.1.2 Duplicate test cases

One potential issue is that the developer may rerun the same test case multiple times.
To avoid storing multiple copies of the same test case, the monitor computes a hash-
code for each test case. The monitor then compares this hashcode to a list of hash-
codes for the other test cases. If AFID records a hashcode match, it deletes the new
test cases. AFID makes the assumption that the hash values do not collide. In the un-
likely event that two different test cases have the same hash value, AFID only stores
the first test case.

3.1.3 Filtering inputs

The monitored application’s execution typically reads many files that would not be
considered inputs to the application. For example, the dynamic linker may load li-
brary files or a virtual machine may load class files, virtual machine components,
virtual machine configuration files, and various system files. These extraneous input
files would make the test cases very large. Moreover, recording input files from dy-
namic libraries or virtual machine internals could make the test case specific to the
exact execution environment.

AFID employs a filtering mechanism to remove these extraneous files. The filter
mechanism uses a configuration file that contains a list of regular expressions that
match the filenames to exclude from the test cases. AFID can automatically generate
this configuration file for Java applications by monitoring the execution of a dummy
Java application and then generating a list of files that are loaded by the JVM. AFID
then adds some default expressions that exclude class files and other known extrane-
ous files.

3.2 Monitoring compilation

AFID stores a copy of the source code each time the developer compiles the appli-
cation. To efficiently store multiple versions of the application’s source code, AFID
maintains an internal subversion repository. Subversion is an open-source version
control system with support for atomic commits (Collins-Sussman 2002). AFID in-
teracts with subversion by calling the standard command line Subversion client. Mod-
ern decentralized version control systems such as GIT could alternatively be used to
possibly support merging the AFID repository into the main branch, but would re-
quire a tighter coupling with the development repository (Chacon 2010). Each time
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the developer compiles the application, the compilation monitor component of AFID
monitors the compiler to determine which files contain the application’s source code.
The compilation monitor uses the ptrace-based monitoring technique described in
Sect. 3.1 to record application source files.

When the compilation monitor discovers a new source file, it adds the file to its in-
ternal subversion repository. Then the compilation monitor commits all of the source
code changes since the last compile to its internal subversion repository. Finally, the
compilation monitor calls the replay component to replay all of the unresolved fault-
revealing test cases on the new version of the application.

One challenge is that AFID’s internal subversion repository may conflict with de-
velopment projects that make use of subversion. To maintain compatibility with sub-
version, the compilation monitor makes its own copy of the source code tree to use
for its internal subversion repository. To avoid the overhead of copying large files,
the compilation monitor makes hardlinks from the filename in its internal copy of the
source code tree to the original in the developer’s source code tree. The compilation
monitor then uses the copy of the source code tree to build its internal repository.

3.3 Replaying test cases

The replay component checks whether the most recent source code changes correct
any of the faults AFID has recorded. The basic strategy is to execute the new version
of the application on each of the unresolved fault revealing test cases. If the applica-
tion executes successfully, the replay component has determined that the most recent
code change corrects the fault revealed by that test case. The replay component then
stores the subversion version identifier of the source code version that corrects the
fault in the test case and marks the test case as resolved.

3.3.1 Sandboxing replay

A naive replay implementation would simply copy the files in the test case back to
their original locations and then execute the application. However, this strategy has
serious potential consequences—the replay component could potentially overwrite
important files when copying the test case files or the execution of the application
could overwrite important files. AFID prevents the replay of applications from over-
writing important data by using the same ptrace-based technique to partially sand-
box the application. This sandbox is not intended to isolate a hostile application—it
is intended to prevent the replay of normal applications from accidentally overwriting
important files.

The replay component implements the sandbox by intercepting file open requests.
If the application makes a file open request for one of the test case files, the replay
component will redirect the request to the file in the test case. If the application makes
a request for an excluded file, the replay component will pass the open request un-
modified to the operating system. Note that if the application is modified or the fault
is corrected, the application can open files that were neither present in the test case
nor filtered by the filter expressions. It is straightforward to modify the replay com-
ponent to make a copy of that file and redirect the request to the copy. This sandbox
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provides the application with the illusion that the test case files are in the same loca-
tion as the files in the original execution—a secondary benefit of this approach is that
it enables the test case to reproduce software faults that depend on the exact location
of the input files.

We next discuss how we implement the sandbox using the ptrace system call.
The replay component begins by making a copy of the test case. It then starts the
monitored application’s execution inside the partial sandbox. The basic idea is to use
the technique described in Sect. 3.1 to intercept open system calls. When the replay
component intercepts an open system call, it retrieves the requested filename. If the
filename is contained in the test case, the replay component will modify the system
call’s parameters to open the copy in the test case. The replay component changes
the open system call’s filename by using ptrace’s PTRACE_SETREGS option to
modify the register that stores the pointer to the filename to point to a new memory
location. Then the replay component uses ptrace’s PTRACE_ POKEDATA com-
mand to write the filename of the copy to this new memory location. The replay
component then restarts the application to allow the operating system to service the
system call.

Note that the replay tool must obtain memory in the other application’s memory
space to store the filenames of the copies. The replay system obtains this memory
by intercepting the first system call that the application performs. The replay system
rewrites this system call’s parameters to change it into a brk1 system call to obtain
the initial bottom of the heap. The replay system restarts the application and then
the operating system executes the injected brk call. The application is halted after
the system call is performed and control is returned to the replay tool. The replay
tool then modifies the program counter to cause the application to re-execute the
same system call. The replay tool then repeats the same system call injection strategy
to inject a second brk system call that sets the new bottom of the heap. The replay
system has now allocated its own space in the application’s memory space. The replay
system then resets the program counter another time to perform the initial system call.
If the application later uses the exec system call to load a new binary, the replay
system repeats the same procedure to obtain space in the newly loaded application’s
memory space.

If the application’s execution is successful, the replay component has discovered
that the most recent source code change corrects the fault. Note that the test case
may not contain some files that were present on the local disk. In this case, it is
straightforward for the replay component to add copies of these files to the test case.

3.3.2 Termination

It is possible that the developer may make a source code change that causes the ap-
plication to loop on an unresolved test case. To address this issue, AFID records the
elapsed time for each execution of the application. The replay component then uses

1The brk system call is used to read and set the bottom of the heap. This system call is the primitive that
underlies library-based memory allocation functions such as malloc.



358 Autom Softw Eng (2010) 17: 347–372

this record of execution times to estimate an upper bound on the application’s execu-
tion. When the application executes for longer than this bound, AFID assumes that
the application is looping. This prevents the replay component from waiting indefi-
nitely for a non-terminating computation. Note that in the worst case, when a timeout
is used to incorrectly identify an execution as looping, the effect is only to prevent
AFID from recognizing a fault correction.

3.4 AFID server

AFID uses a web-based server application that aggregates the faults discovered by
the AFID client. AFID supports two update modes: automated and manual. The au-
tomated mode automatically uploads a test case once the client has discovered the
fault correcting code change. The manual mode allows the developer to manually
control the uploading process. We developed the manual mode in anticipation that
some developers will wish to maintain control over when uploads are performed. The
client uploads the fault revealing test case, the version identifier for the source code
version whose execution generated the fault revealing test case, the version identifier
for the code change that corrects the fault revealing test case, and the latest version
of AFID’s internal subversion repository for the application.

3.5 Interpreted languages

The current implementation of AFID is designed for language environments in which
there is a separate compilation and execution phase. Therefore it does not adequately
address interpreted languages. We note that the basic techniques developed in this pa-
per can be used in this environment if the execution monitor and compilation monitor
are combined into a single tool.

The basic idea is to record for execution (1) the source files that the interpreter
opens and (2) the files that the program reads. The two types of files can be distin-
guished by their extensions. The combined monitor would then perform a repository
checking for the source files in the same manner as the compilation monitor. If the
program crashed, the combined monitor would generate a test case in the same man-
ner as the execution monitor.

3.6 Recording regression tests

The design of AFID is focused on recording fault data for research. However, we
expect that practitioners may also find AFID beneficial for recording regression tests.
In particular, AFID’s fault data set includes test cases for each fault that the developer
has discovered and corrected. We expect that this library of test cases may be a useful
addition to the application’s regression test suite. AFID’s execution monitor provides
the functionality to cleanly bundle the component files into test cases. AFID’s replay
component allows the test cases to be easily replayed on future versions of the appli-
cation. Practitioners may find AFID particularly useful for test cases that contain files
that are scattered throughout the directory structure or that involve the modification
of common configuration files or any other files that are shared with other applica-
tions. An AFID test case consists of a collection of input files that comprise the inputs
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for the test case, a transcript that records the user interactions, and a text file that list
the original pathnames for each of the input files. For test cases whose input files are
isolated into a single directory, it is straightforward to convert an AFID test case into
a standard test case that is usable in regression testing frameworks.

3.7 Limitations

The primary design goal of AFID, to minimize developer burden, places significant
limitations on its scope. For example, AFID relies on the error code returned by a
program to detect crashes instead of using test cases to validate correct behavior. This
approach works well to detect uncaught exceptions in Java applications. However,
many programs return error codes in their normal execution to indicate an error in
their input. For example, our compiler returns a negative value if the input source code
contains syntax errors or semantic errors. This causes a difficulty—AFID cannot tell
the difference between an error in the compiler and an error in the input. Note that
errors in the input will never generate a false report as the given input will always
cause the compiler to exit with a negative return value. But over time these test cases
can build up, and cause the replay process take increasing amounts of time. A second
concern is that bugs in error handling code will often never be recorded, because even
after they are corrected the program will still return a negative value.

AFID implicitly assumes that bugs are deterministic. Non-deterministic bugs can
cause AFID to report the wrong code change as a bug fix. In our internal use of AFID,
we have occasionally observed this problem. We have found that asking the developer
to confirm bug fixes helps filter these cases. We have also occasionally filtered such
bug reports on the server side. Retrying test cases multiple times can be used to
automatically exclude non-deterministic bugs. If capturing non-deterministic bugs
is desirable, statistical approaches applied across many versions of the code could
potentially be used to detect which source code change was likely to have corrected
the bug.

AFID is currently limited to console programs. AFID could be extended to support
applications that interact with users through the graphical user interface. The idea is
to extend the GUI library to export a trace of both user inputs and program events
and an interface that allows AFID to inject user inputs. AFID could then use a similar
approach to its approach for console I/O to the GUI.

4 Privacy concerns

Privacy may be a concern when using AFID for software fault user studies. Because
AFID records all source code changes along with the application inputs, it may be
possible to discover the actual identity of a study participant from the comments,
coding style, project, and test cases. We expect that user studies will not use AFID
to monitor the development of applications that contain sensitive source code or that
may process sensitive inputs. Because a developer may accidentally input private in-
formation into the application under development, AFID supports a manual test case
transfer mode that allows the developer to maintain complete control over whether to
include test cases in a data set.



360 Autom Softw Eng (2010) 17: 347–372

5 Evaluation

We next discuss our experience using the AFID implementation. The AFID imple-
mentation consists of approximately 5,000 lines of C code and shell scripts. The
implementation is available for download at http://demsky.eecs.uci.edu/afid/ and we
encourage readers to download AFID and contribute bugs to the repository. In this
section, we report our measurements of AFID’s monitoring overhead on two applica-
tions and then discuss our experiences using AFID to monitor software developers.

We measured AFID’s overheads on a workstation with a 2.2 GHz Core 2 Duo
processor, 2 GB of RAM, and Debian Linux running kernel version 2.6.25. We used
version 1.5.0_14 of Sun’s HotSpot JDK.

We used two different benchmarks: the Jasmin byte code assembler and the Inyo
ray tracer. We used version 2.3 of the Jasmin bytecode assembler. It contains 11,450
lines of code and is available for download at http://jasmin.sourceforge.net/. We se-
lected Jasmin because assembling bytecode involves a relatively large amount of I/O
and therefore is likely to incur a significant monitoring overhead under AFID. The
Inyo ray tracer contains 5,843 lines of code and is available for download at http://
inyo.sourceforge.net/. We selected Inyo to give results for a longer-running, computa-
tional-bound benchmark.

5.1 Compilation overhead

Table 1 presents the compilation overhead measurements. All of these measurements
were taking with no outstanding test cases and no code changes. Without monitoring,
we measured the time to compile Jasmin as 2.54 seconds, the time to compile Inyo
as 1.34 seconds, and the time to compiler our group’s compiler as 8.32 seconds. With
monitoring and updating AFID’s internal SVN repository, we measured the time to
compile Jasmin as 6.53 seconds, Inyo as 4.67 seconds, and our group’s compiler as
13.98 seconds. We then measured the time to compile with monitoring but without
updating the internal SVN repository for Jasmin as 3.79 seconds, for Inyo as 1.57
seconds, and for our group’s compiler as 11.32 seconds. In our initial conference
publication, we initially expected that these numbers were acceptable. After using
AFID to monitor our own internal development, we have since discovered that even
these delays were annoying.

One of the largest issues we discussed above was the extra time AFID adds to com-
pilation. We have addressed this concern by extending AFID to support background
commits to the subversion repository and to replay test cases in the background. The
combination of these two changes means that AFID’s monitoring causes a negligi-
ble delay in the compilation time. The primary challenge with supporting background

Table 1 Monitoring overhead
Jasmin Inyo Compiler

Normal compile 2.54 s 1.34 s 8.32 s

Monitored compile with svn 6.53 s 4.67 s 13.98 s

Monitored compile without svn 3.79 s 1.57 s 11.32 s

Background compiler 2.95 s 1.43 s 8.71 s

http://demsky.eecs.uci.edu/afid/
http://jasmin.sourceforge.net/
http://inyo.sourceforge.net/
http://inyo.sourceforge.net/
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Table 2 Execution overhead
Jasmin Inyo

Normal execution 0.21 s 30.73 s

Monitored execution 0.43 s 31.99 s

processing is ensuring that multiple background instances of the compilation monitor
cannot simultaneously update and therefore potentially corrupt AFID’s internal data
structures. We have modified AFID to use locking to ensure that only a single back-
ground instance of the compilation monitor can update the internal data structures at
once. We have modified the execution monitor to atomically add new test cases to the
repository of unresolved test cases using the standard directory renaming technique
to prevent possible races with the replay component.

Table 1 also presents overhead measurements for the compilation monitor that
compares foreground processing to the new background processing mode. We can
see that background processing significantly lowers the overhead of monitoring com-
pilation. With background processing, the compilation monitoring overhead is only
9% on average. Note that the relative benefits of background processing increase as
the system builds a collection of test cases as they are also tested in the background.

5.2 Execution overhead

Table 2 presents the execution overhead measurements. Our workload for Jasmin
consisted of all of the examples contained in the Jasmin distribution. Without moni-
toring, Jasmin took 0.21 seconds to execute on this workload. With monitoring, Jas-
min took 0.43 seconds to execute on this workload. Our workload for Inyo consisted
of the model file included with the Inyo distribution. Without monitoring, Inyo took
30.73 seconds to execute on this workload. With monitoring, Inyo took 31.99 sec-
onds to execute on this workload. We expect that Jasmin’s monitoring overhead of
104% represents a worst case as Jasmin performs a large number of system calls,
which incur extra overheads under AFID, and relatively little computation. We ex-
pect that Inyo’s monitoring overhead of 4% represents the best case as Inyo performs
relatively few system calls and a large amount of computation. We expect that this
range of overhead will be acceptable in most development environments.

5.3 Scalability

We performed a set of experiments to explore how AFID’s execution time varies as
the number of test cases increases. We performed these experiments on a 2.26 GHz
Core 2 Duo with 2 GB of RAM running Linux version 2.6.30 and JDK version
1.5.0_19-b02. We generated a set of 50 inputs that cause the Inyo ray tracer to exit
with an error code. We then measured how long it took to compile the Inyo ray tracer
under AFID as we increased the number of outstanding test cases. Figure 5 presents
the results of this experiment. For the foreground mode of AFID, we see that the
compilation time increases linearly in this experiment with the number of test cases.
We note that test cases that take longer to execute would result in longer compilation
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Fig. 5 Scalability of AFID

times. For the background mode of AFID, we see that the compilation time does not
change as we increase the number of test cases. As modern processors typically in-
clude 4 or more cores, we expect that the background processing performed by AFID
will have a negligible effect on the usability of the machine.

5.4 Case study

Our case study attempts to explore the most basic question one can ask about the
AFID tool: Does it effectively record real software faults? To answer this question,
we recruited a population of software developers and had each developer complete a
programming problem while being monitored by AFID.

5.4.1 Developer population

One goal of this case study is to verify that AFID’s fault identification heuristics work
with the wide range of debugging approaches used by developers. We attempted to
represent this wide range in our study population by recruiting 8 students with diverse
backgrounds: the study participants had widely varying educational backgrounds, in-
dustrial experience, years of programming experience, and countries of education.
Their educational backgrounds ranged from current undergraduate students to doc-
torates. Several participants had industrial experience while other participants had
only academic experience. The study participants were educated in the United States,
China, and India.

5.4.2 Methodology

We installed the AFID tool in each developer’s account and instructed the developer
in the use of the AFID tool. We then asked each developer to complete a programming
problem in Java while using the AFID monitoring tool. We selected the programming
problems from practice programming contest problems and basic data structure im-
plementation problems.
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Table 3 Fault breakdown
Fault Type Count

Parsing logic error 3

Null pointer dereference error 3

Initialization error 2

Missing condition check 1

Loop bound error 1

Shadowed field 1

Incorrect comparison 1

5.4.3 Fault breakdown

After a developer completed the problem, we asked the developer to go through the
fault reports that AFID had collected, verify that the recorded corrections were cor-
rect, and if so, to describe the underlying programming error. We then examined their
responses and attempted to classify the faults by their underlying programming er-
rors. Table 3 presents a breakdown of the recorded faults by the type of the underlying
programming error. The two largest categories were errors in the logic for parsing the
input and null pointer dereference errors. The parsing errors typically involved errors
in reading the specification of the input format. The null pointer dereference errors
were not simply omitted null pointer checks, but instead a wide range of logic errors
that caused the programs to dereference null pointers.

We observed that even though AFID can only record failures that cause the appli-
cation to throw an exception, in our case study, AFID recorded a rich set of software
faults. Even in this small case study, AFID recorded high-level faults including errors
caused by misunderstandings of the exact format of the input file.

5.4.4 Fault recording errors

We next discuss how often AFID recorded the correct fault-correcting source code
change. For each recorded fault, we asked the participant to verify whether AFID had
correctly identified this change as fault correcting. We report the results in Table 4.
The table contains a row for each participant in the study. The first column gives
designators for each participant, the second column reports the number of faults AFID
recorded for that participant, and the third column reports how many of these faults
contained the correct fault correcting source code change.

We note from the table that AFID has recorded fault data entries that contain the
wrong fault correcting code change for two of the study participants. We then ex-
amined the incorrect fault correcting source code changes to better understand the
problem. We found a surprise—these two study participants employed an experi-
mental approach to correcting software faults. They made changes to the code to
improve their understanding of why the application threw an exception. For exam-
ple, in two cases the participant commented out the line of code that was throwing
the exception. AFID then recorded that this source code change cause the program
to no longer crash and record the experimental code change as the fault correcting
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Table 4 Fault counts by
participant Participant Number of recorded Number of verified

faults corrections

A 2 2

B 1 1

C 4 2

D 8 5

E 1 1

F 1 1

G 0 0

H 0 0

code change. In the other three such cases, the participants commented out incorrect
debugging code that caused the program to throw an exception. The programming
problems were relatively simple and participants G and H solved the problems with-
out making any errors.

In response to this case study, we have extended AFID to verify suspected fault
correcting source code changes with the developer before adding them to the reposi-
tory. We made use of this functionality in the internal deployment of AFID described
in Sect. 6.

5.4.5 Multiple corrections

When we manually reviewed the fault correcting source code changes, we noticed
one source code change that contained corrections for many different faults. In this
case, what happened was when the developer discovered the first fault, he realized
he had made the same mistake two more times in the same method and corrected all
instances of this mistake. We observed only a single instance of a source code change
that corrected multiple faults. We foresee that future versions of AFID will allow a
developer to note when the developer believes that a source code change corrects
multiple fault instances.

5.4.6 Developer feedback

The user experience for AFID users is a concern for large user studies. After the user
study, we asked the participants to provide feedback about their experience using
the AFID monitoring tool. One participant commented that using the tool was unno-
ticeable as the user just used the regular javac and java commands. The participant
thought the general experience was very good. One participant was “amazed . . . at
how accurately AFID caught my critical bugs”. Several participants noticed a slight
delay when compiling programs. We plan to address this delay by performing both
the repository updating and test case replaying in the background.
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6 Real world experience

During the past several months we have used AFID internally in our group. Group
members have used AFID to monitor the development of our research compiler and
some of their course assignments. In this effort we have collected information about
several real software faults. This effort exposed several usability issues with our orig-
inal implementation and we have adapted the implementation to address these issues.

6.1 Faults recorded

Table 5 presents the faults we have recorded using AFID. We have recorded faults
during the development of our group’s research compiler (C1 through C15) and two
class projects (P1 and H1 through H6). Our group’s research compiler currently con-
tains over 68,000 lines of Java and C code.

An examination of the faults reveals that AFID has recorded a rich set of faults.
The faults include examples of common programming errors including negation of
the condition in an if statement and errors in code to handle null pointers. The faults
also include more complex algorithm specific errors in parsing code, type checking
logic, and pointer analysis logic.

One potential concern with AFID’s crash recording approach is whether it can
record programming faults beyond simple bugs such as division by zero errors and
missing null pointer checks. A quick review of the recorded faults reveals that AFID

Table 5 Faults collected
P1. Missing condition in if statement and error in array index

H1. Use of wrong variable

H2. Use of == instead of ! = in if statement

H3. Missing table lookup

H4. Missing bit shift

H5. Extra bit shift

H6. High level changes in use of array

C1. Missing null pointer check in printing code

C2. Parse tree traversal bug when generating AST

C3. Logic bug about which allocation site to analyze

C4. Parse tree traversal bug when generating AST

C5. Null pointer check when flattening AST

C6. Null pointer check when flattening AST

C7. Null pointer check when comparing specificity of methods

C8. Negated condition in if statement

C9. Missing if condition in array type checking code

C10. Error in handling null in testing equivalence

C11. Error in ordering of operations when mutating graph

C12. Cast to the wrong class

C13. Omission of adding node to set to visit

C14. Missing null pointer check

C15. Large logic change
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recorded a rich set of software faults. The intuition why AFID can record complex
faults is that AFID can record faults that break subtle program invariants because
these program invariants are implicitly checked by other parts of the program. When
an invariant is violated, these implicit checks cause the program to crash, and this
crash is detected by AFID.

Examples of rich faults that AFID has recorded include bugs in the compiler code
that generates the abstract syntax tree from the parse tree. Our compiler contained
two bugs that improperly traversed the parse tree and resulted in errors. AFID was
able to record both of these bugs.

AFID also recorded a fault in the compiler’s loop optimization pass. This fault
performs transforms to control flow graph that spliced in a loop header and added
edges in the wrong order.

In monitoring the development of our research compiler, AFID has recorded
both recently introduced faults introduced and long lived faults. While many of the
recorded faults were recently, AFID did record long lived faults. In particular, fault
C9 in the type checking code had existed for over two years.

An examination of the recorded faults reveals them to be significantly richer than
those generated by automated fault injection strategies. While we did observe sim-
ple faults such as negating conditions, missing statements, and missing null pointer
checks in our fault collection, much of our record fault data set was made up of more
subtle faults.

6.2 Lessons learned

We learned a great deal in the process of deploying AFID in our internal development
environment.

6.2.1 Build processes

The first lesson is that real world build processes are complex. Our compiler’s build
process calls javacup to build the java source files for the parser from a cup grammar,
then makes multiple invocations to javac, and finally calls javadoc to generate doc-
umentation. One problem is that AFID assumes that it can check test cases after the
execution of the javac. During our build process, the Java class files may not be com-
pletely built until the make file performs the final invocation of javac. This example
highlights the need for AFID to provide flexible options that can be used to support a
wide range of different build setups.

6.2.2 Development environments

Another lesson is that real world development environments are complex. The stu-
dents in our group use a wide range of development environments including vi,
emacs, eclipse, and netbeans. The initial version of AFID assumed that the com-
piler would provide a terminal window to allow the developer to tell AFID whether
a change was likely to correct a fault. Unfortunately, environments like Eclipse or
NetBeans do not provide a terminal window.
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6.2.3 Compilation times

During compilation, our initial version of AFID required developers to wait while
it executed its testcases. We found that this version AFID’s replay takes too long.
Our group develops a number of long running analyses. When they fail and generate
testcases, running these testcases can take quite some time. Moreover, we have dis-
covered that developers find any extra time waiting for compilation to be distracting.

6.2.4 Forgetting to use AFID

In our experiences, developers often forget to turn AFID on. We have found the best
course of action was to setup AFID to always run. The idea is to include an AFID
configuration file in the root of the project that AFID is monitoring that tells AFID
to monitor the compilation and execution of programs in this part of the directory
hierarchy.

The concern then becomes that the developer may forget that AFID is on and ac-
cidental disclose private information. This could happen if the developer inputs their
personal information into the program under development and the same execution
reveals a program fault. In this case, AFID would report a test case that contains the
developer’s personal information. To make the execution monitoring obvious, AFID
now prompts that it is running whenever it monitors the compilation or execution of
a program.

6.2.5 Applicability

We have not been able to apply AFID to all of the projects in our group. Some of
these projects are performance sensitive. In these projects we are concerned with
developing a precise understanding of their performance, and do not wish to introduce
performance changes by monitoring them with AFID. Other projects in our group
make extensive use of high-bandwidth, latency sensitive network communications,
and therefore are not good candidates for AFID. However, in spite of these limitations
we have been able to use AFID to monitor the vast majority of our group’s software
development effort.

6.2.6 Network file system

Our group’s development environment consists of a cluster of networked worksta-
tions all of which mount a networked filesystem with the user directories. One issue
with using in AFID in this environment is that if a developer uses AFID on two dif-
ferent machines, the list of filenames to exclude can be incorrect. We have updated
AFID to create a list of files to exclude on each host that it runs on.

6.2.7 Privacy

In our internal development, the hypothetical privacy concerns we discussed earlier
have not occurred. The compiler code is freely available and the inputs are typically
publicly available benchmarks. A few students have been unable to use AFID due
to work involving confidential code. We expect that in practice, confidential code is
likely to present a larger challenge.
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6.3 Extensions

We next discuss how we extended AFID to address the issues that we discovered
while using AFID internally.

6.3.1 Complex build processes

There are two approaches to support complex build processes with AFID. The
straightforward approach is to simply wrap the make command with AFID’s com-
pilation monitor. We have found that it is sometimes useful to simply modify the
make file to explicitly support AFID.

We have also extended AFID’s compilation monitor to support two modes: a com-
pilation monitor mode that simply updates the repository without replaying test cases
and the normal mode that both updates the repository and replays the test cases.

To address the wide range of development environments some of which provide a
terminal window and some of which provide X-windows access, we have extended
AFID to use X-windows when available to create a window to ask the use, and to
use the terminal when the X-windows support is not available. One of the primary
advantages of X-windows support is that AFID can display user dialogs after return-
ing control of the console, and therefore it enables AFID’s compilation monitor to
perform time consuming operations in the background.

6.3.2 Improved sandbox

In the earlier version, we sandboxed only the files that the original execution ac-
cessed. We have found that in practice either fault corrections or other source code
changes often cause replayed test cases to generate new output files in the developer’s
directories. The creation of these output files by the replay component is distracting
at best and at worse has the potential to overwrite important files. To address this is-
sue, we have improved AFID’s sandbox to sandbox all files that replayed executions
write using the same ptrace-based technique.

6.3.3 Manual control

In the process of using AFID, we have found times when limited manual interac-
tion was useful. We have observed cases in which over time erroneous inputs cause
AFID to store a large number of unresolved test cases. To address this issue, we
have provided a mechanism that allows developer to periodically flush the test case
archive. We have also found that bad fault information was occasionally uploaded to
the server. We have found it straightforward to manually review the faults and remove
any faults that are problematic.

7 Related work

Researchers have recently developed tools to mine CVS repositories to collect
some of this information (Nagappan et al. 2006; Williams and Hollingsworth 2004;
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Neuhaus et al. 2007). The CVS mining research identifies CVS commits that cor-
rect software faults through a heuristic analysis of the CVS checkin comments. Re-
searchers have discovered many interesting properties including that code changes
on Fridays are more likely to cause problems (Śliwerski et al. 2005). Other research
discovers implicit interface rules by searching for code changes that occur together
(Livshits and Zimmermann 2005). The primary way that our work differs from previ-
ous work on CVS mining is that our work provides fault revealing test cases in a for-
mat suitable for automated tools. The extra information provided by these test cases
will enable empirical software research to explore software faults in new ways—for
example, the test cases will enable researchers to use dynamic analyses to explore the
faulty executions.

Developers sometimes commit CVS updates that both correct a software fault and
make other changes. Traditional CVS mining techniques do not distinguish between
the fault correcting changes and other bundled changes and therefore can extract soft-
ware fault corrections that are too large. Developers typically compile their code more
often than they commit changes to a code repository. As our work is likely to log
changes to the code base more frequently, it has the potential to more precisely char-
acterize the changes that correct a software fault. We note that existing techniques
such as delta debugging used in conjunction with CVS mining could help to mini-
mize the failure producing changes (Zeller 1999).

The Marmoset project course submission system records snapshots of student’s
code development (Spacco et al. 2005). While both systems can collect information
about software faults, they target different development environments. The two sys-
tems differ in how they detect which source files comprise an application. Marmoset
functions as a plugin to Eclipse and can therefore use Eclipse’s internal project man-
agement functionality to detect source files, while AFID attempts to be compatible
with all build environments. A more critical difference is that Marmoset uses a set of
test cases provided by an instructor while AFID must monitor the executions of an
application to collect fault revealing test cases.

Researchers have also developed data sets of applications with seeded faults (Do
et al. 2005). These data sets are limited in size because they are labor intensive to
create—researchers must manually seed faults and create test cases that reveal these
faults. While these data sets have proven to be a useful tool, potential differences be-
tween seeded faults and real software faults can threaten the validity of experiments.
Moreover, because the software faults are seeded, the data set does not contain infor-
mation that can be mined to learn about real-world software faults.

The iBUGS project is based on the observation that after developers correct a bug,
they often add regression tests designed to ensure that future changes do not reintro-
duce similar bugs (Dallmeier and Zimmermann 2007). Their approach searches CVS
commit messages for text that indicates that the change corrects a bug. They then
build pre-fix and post-fix versions of the application and run the versions on the test
suite to identify any test cases that reveal the given fault. They have successfully used
this technique to build a repository of software bugs.

BugBench is a collection of large scale programs and test cases to trigger bugs
(Lu et al. 2005). The collection contains 19 bugs from 17 different applications. These
bugs include 13 memory-related bugs, 4 concurrent bugs, and 2 semantic bugs. AFID
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could automate the construction of such test suites—we note that many of the bugs in
BugBench cause crashes and therefore AFID’s crash detection technique would work
for these bugs.

Researchers have developed many replay systems for debugging applications
(Choi and Srinivasan 1998; Steven et al. 2000; LeBlanc and Mellor-Crummey 1987).
These other systems replay the exact execution, often with the goal to help develop-
ers deterministically replay software bugs in multi-threaded programs. AFID’s goal
is to execute new versions of the application on the same test case. As a result of
these goals, the two system designs are very different. Replay systems incur signifi-
cant overheads to ensure that they replay the execution of threads in the exact same
order. Because AFID must support replaying a test case on a modified version of the
program, there cannot be a similar notion of preserving the exact order that threads
execute in. Replay systems can simply record the exact outputs of the sequence of
system calls an application makes while AFID must replay a test case even if an
application has been modified to perform system calls in different orders.

AFID relies on the ptrace interface to monitor both application compilation
and execution. Researchers have used the ptrace interface to inject faults into ap-
plications (Some et al. 2001) and to safely execute untrusted code (Sekar et al. 2003).
Researchers have also used similar program monitoring techniques to implement user
space file systems (Spillane et al. 2007).

Cooperative Bug Isolation monitors the execution of applications by the end user
to provide the developer with information to help isolate and correct bugs (Liblit et al.
2003). CBI is constrained in that it must make strong guarantees about maintaining
end user’s privacy. We expect that adapting techniques like AFID to monitor end users
could be very useful for studying and replicating software bugs if the considerable
privacy concerns could be addressed. Automatically collecting enough information
to replicate software bugs without divulging personal information remains an open
problem.

Techniques based on symbolic execution can be used to generate test cases that
drive an application into a failing state (Cadar and Engler 2005). AFID differs from
these techniques in that it simply monitors the inputs to actual program executions
and if the program crashes uses these inputs to generate a test case that reproduces
the failure while these other techniques attempt to find unknown bugs.

This paper extends our previous work on AFID (Edwards et al. 2008) with our
experiences using AFID in real world development. This experience has led to an
evolution of the basic technique to improve its usability in the real world. It has also
validated that the approach is a viable approach to collect data on software faults.

8 Conclusion

Data sets of real software faults have the potential to enable the creation of new tools
for software engineering and programming language researchers. Our previous expe-
rience shows that manual efforts to collect such data are tedious. The AFID tool is
a new approach for recording software fault data. A key benefit of AFID is that the
data it collects includes fault revealing test cases in addition to a faulty version of
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the application and the fault correcting source code change. This key results include
(1) a technique to automatically record software faults without requiring developer
intervention, (2) the implementation of this technique in the AFID tool, (3) an evalu-
ation of the overhead of these techniques, (4) our experiences using the tool to record
real software faults, and (5) our experiences using AFID in the daily development
environment of our research group, and (6) how we have improved AFID in response
to these experiences. Our study results indicate that AFID can automatically record
software faults and we continue to build a repository of software faults.
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