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ABSTRACT OF THE DISSERTATION 
 

OXYGEN TRANSFER IN THE IMPLANT ENVIRONMENT 

by 

 

Jared Braden Goor 

Doctor of Philosophy in Bioengineering 

University of California, San Diego, 2007 

Professor David A Gough, Chair 

 

Oxygen mass transfer in the subcutaneous tissue environment was studied using 

implanted oxygen sensors and quantitative histology.  The impact of biomaterials on 

mass transfer was also observed through analysis of materials encased sensor 

performance and measurement of serum proteins.  Dynamic sensor challenges were used 

to gain insight into the oxygen stasis mechanisms of subcutaneous tissue and to estimate 

diffusion of oxygen through the tissue and biomaterials. 

Five hamsters were implanted with planar arrays consisting of 16 symmetrically 

distributed oxygen sensors.  Each array was half encased by smooth PDMS and half by a 

microporous cellulose membrane.  The sensor signals were measured over 14 days, 

including two sessions of hypoxic challenges.  Steady state sensor signals normalized to 

pre-surgical calibrations demonstrated elevated signal magnitudes for PDMS encased 

xx 



 

sensors, significant for the first 7 days (P<0.015).  Noise levels for PDMS encased 

sensors were observed to be lower except during hypoxia when the trend was reversed.  

At the hypoxic levels observed, sensitivity of the sensors to oxygen remained linear.   

In vitro and in vivo, cellulose encased sensors had smaller time constants, a 

measure of the sensor’s ability to respond to change.  However, time constants were more 

strongly dependent in vivo on the proximity of vasculature to the sensor, observed to be 

closer in tissues adjacent to cellulose.  Comparison of the time constants for oxygen 

increases versus decreases demonstrated a tissue resistance to oxygen loss inversely 

dependent on tissue volume and thus likely vascular in origin.  Diffusivity for the array 

environments was 1.91±0.86*10-5 cm2/s on average, with greater diffusion resistance in 

the cellulose membranes.  In vivo, loss of sensor signal magnitude and gain in time 

constants following hypoxic challenge was independent of biomaterials, but dependent 

on the tissue response to the implant. 

A method of analyzing digital images of histological sections using color and 

morphological filters was refined for the quantification and spatial mapping of specific 

tissue features with potential effect on oxygen diffusion.  Haptoglobin measurements 

over 7 days following biomaterials implantation in hamsters showed that microporous 

polytetrafluoroethylene and cellulose in window chambers elicited elevated responses 

versus a control and versus a window chamber only implantation. 
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CHAPTER 1: Introduction 
 

1.1 Relevance of the Dissertation 

1.1.1 Need for Study of Tissue Mass Transfer 

 Mass transfer is a crucial factor in tissue survival and metabolic processes, and for 

a growing number of implanted devices, it is required for device function.  Devices such 

as encapsulated beta cells(26, 45, 80), drug delivery devices, and biosensors(19), measure, 

depend on, or intervene in local metabolism.  These devices offer a new paradigm in the 

monitoring and treatment of disease through active chemical exchange with the tissue.  

Thus, an understanding of how mass transfer impacts the performance of these devices is 

important to their design and application.  

Oxygen is an ideal analyte for initial mass transfer studies.  It is a crucial tissue 

metabolite with high diffusivity and is useful as a co-analyte for the measurement of 

other important metabolites like glucose and lactate(11, 50, 84).  The electrochemical 

measurement of oxygen with implanted biosensors is an established practice. 

1.1.2 Overview of the Dissertation Research 

This study uses subcutaneously implanted oxygen sensor arrays in the hamster 

window chamber to observe oxygen diffusion characteristics of the tissue environment.  

The effects of smooth and microporous biomaterial membranes are observed on the 

sensor’s steady state and dynamic performance, as well as sensor performance following 

hypoxic exposure.  A process for quantifying and spatially mapping histological features 

of tissue that are relevant to oxygen transfer is established, and a method of assessing the 

inflammation response to biomaterials with acute phase response proteins is explored. 

1 
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 This introduction describes the background and science of oxygen sensor arrays, 

window chambers, the foreign body response to micro-featured biomaterials, and oxygen 

diffusion in tissue.  The goals of the dissertation are then asserted along with a brief 

discussion of the topics of study for each chapter. 

 

1.2 Oxygen Biosensors 

1.2.1 Electrochemical Oxygen Sensors 

The electrochemical oxygen biosensors used in this dissertation employ a highly 

stable three electrode design(9, 81).  In this design, the three electrodes are connected to a 

potentiostat, an instrument that enforces a fixed 500mV potential between two of the 

electrodes, the platinum working electrode and the silver chloride reference, with the 

working electrode cathodic.  The potential drives the reduction of oxygen on the working 

electrode but does not invite oxidation of interfering species such as peroxides(81).  The 

outer hydrophobic membrane also prevents access of other reducible, polar compounds to 

the electrode surface and reduces the effects of flow or motion in the external media.  

Oxygen reduction creates a current that passes through a conductive hydrogel medium -

confined between the electrode surfaces and hydrophobic membrane- which current 

passes from the working to the counter electrode for measurement and amplification by 

the potentiostat.  The current is amplified and converted by the potentiostat to a potential, 

referred to as the sensor signal.  When transfer of oxygen to the sensor is limited by 

diffusion through the surrounding medium, the sensor signal is proportional to the local 

oxygen concentration.  Signal acquisition is described in the Chapter 2 methods and 

diagrammed in Figure 2.3.  

 



3 

1.2.2 The Planar Oxygen Sensor Array 

The planar sensor array design has been described previously(85, 86).  In brief, the 

array houses up to 18 electrochemical oxygen sensors distributed evenly over a circular 

ceramic face (Figure 2.1A).  Working electrodes 125µm in diameter are segregated into 

four separate quadrants of the ceramic face, each with a single reference electrode.  A 

sinuous counter electrode passes around the sensor, evenly separating each reference 

electrodes from its respective working electrodes.  The electrode wires pass through the 

ceramic face to the rear, and run along a ceramic or plastic rectangular backing.  Gold 

plating on the ends of the wires connects the array to a multi-channel potentiostat. 

1.2.3 Sensor Arrays for Biomaterials Studies 

The dissertation uses the sensor array described above with two modifications, a 

symmetric arrangement of sensors, and a secondary biomaterial membrane.  For each 

array, two working sensors along the vertical midline are left inactive, and the remaining 

16 are segregated into two symmetrical groups of 8 working sensors, one group on each 

side of the array (Figure 2.1A) with one counter and two reference electrodes per group.  

Each group of sensors will be encased in one of two different biomaterial membranes 

previously observed to elicit different responses from the tissue when implanted.  The 

sensors are spaced such that the oxygen that reaches them will have passed through their 

respective biomaterial membrane directly from the tissue environment.   

In this dissertation, implanted biomaterials encased sensor arrays and histology 

are used to determine differences in oxygen transfer to the sensors and in the tissue 

adjacent to the biomaterials, and to examine potential connections. 

Subcutaneous tissue composition and vascular distribution at the millimeter scale 

is heterogenous(34, 57, 84, 130).  Taking measurements in multiple locations then allows the 

array to partially circumvent this heterogeneity.  Studying the effects of two membranes 
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in one animal reduces the error introduced by the often significant variation between 

animal physiologies.  Thus the biomaterial encased array both increases the number of 

experimental samples and improves control. 

1.2.4 Implanted Sensor Performance 

Individual sensors in vitro have strong signals with fast, clean responses to 

changes in oxygen concentration.  It has also been shown that differences in in vitro 

performance of the sensor per se before implantation and after explantation are 

statistically not significant, and that mass transfer resistance of the sensor’s hydrophobic 

membrane are negligible compared to that of the tissue(85).  Thus, in vivo, the sensor’s 

performance reflects the resistance to oxygen mass transfer of the biomaterial encasing 

and the tissue. 

The sensor’s steady state performance is defined by its signal magnitude, the 

measure of oxygen flux to the sensor.  The sensor’s dynamic performance involves its 

rate of response or signal delay after a change in oxygen.  These characteristics reflect 

both the mean diffusional distance and the diffusion coefficient in the tissue.   

 

1.3 Biomaterials and the Foreign Body Response 

1.3.1 The Tissue Response to Biomaterials 

1.3.1.1 General Response and Inflammatory Cells 

 Implantation of devices and materials subcutaneously elicits a foreign body 

response.  Proteins adsorb to the material surface, followed by the recruitment and 

adherence of local and circulating cells(43, 105).  Local and recruited mast cells, critical 

effectors of inflammation, produce and release granules consisting of histamine, heparin, 

cytokines, and other chemicals as part of the local and vascular inflammation response(43, 
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92, 111).  Inflammation of the tissue can cause vascular changes which increases the 

numbers of monocytes and other white blood cells(7, 43, 88).  Local and recruited 

phagocytic cells, notably macrophages, may attempt to break down and engulf the object, 

forming multinucleated giant cells and releasing degradative and other signaling agents 

when these attempts are not successful(6, 7). 

1.3.1.2 Formation of the Fibrous Capsule 

 In the tissue, meshlike deposits of proteins such as fibrin encourage the 

proliferation and migration of several repair cells, notably fibroblasts and endothelial 

cells (43).  These cells begin depositing the loose connective tissue that will form the new 

tissue structure and be replaced during the remodeling phase of the response.  Especially 

with increased inflammation(135), mesh-like collagen III is deposited in far greater 

proportions than are found in normal tissue, for later replacement by tighter, more 

oriented collagen I. 

 The layer of cells, proteins, and fibers that forms around the implant, frequently 

referred to as the fibrous capsule, may impose resistance to oxygen mass transfer.  

Reducing or guiding non-specific protein adhesion and capsule formation has been the 

focus of much of biomaterials research(31, 104).  However, there has been limited research 

into the effect of the fibrous capsule on tissue diffusion(121, 140-142). 

1.3.2 Timeline of the Tissue Response 

The experiments in this dissertation haven been carried out over two weeks, 

which coincides with the peak of neovascularization, and active phagocytic cell 

recruitment and invasion(43).  Neovascularization in tissues implanted with microporous 

membranes has been observed by Padera to peak within 10-21 days following 

microporous biomaterial implantation(97).  With regard to cell recruitment, the invasion of 

neutrophils is expected to have been completed by two weeks, while active macrophages 
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and mast cells are expected to remain(13, 89), continuing to affect tissue inflammation(44, 87).  

Padera also observed cell invasion of micropores to peak between 7-21 days.  Deposition 

of type III collagen and other fibers by migrating fibroblasts are expected to be in 

progress during this period(61, 135), but remodeling of tissue may have only begun. 

1.3.3 The Effects of Tissue Response on Oxygen Transfer 

The changes in tissue that affect oxygen mass transfer fall into two categories, 

factors that impact convective transfer and those that impact diffusive transfer.   

Inflammation and its effect on vascular perfusion and leakiness can affect 

convection in the blood.  Convection may also be affected by flow redistribution, the 

restructuring of existing vasculature, and development of new vasculature.    

Development of the fibrous capsule and tissue growth can affect the impact of 

convection by changing the diffusional distance.  Oxygen flux through the tissue is also 

affected by the solubility of the tissue to oxygen and the metabolic consumption of 

oxygen in the tissue. 

1.3.4 Hypoxia and the Tissue Response: What is Not Covered 

Hypoxia is known to drive and modulate many components of the foreign body 

response, including phagocyte metabolism(29) and migration(10), and vascular leakiness(78) 

and tortuosity(32, 77).  While hypoxia and oxygen levels in the tissue may greatly influence 

wound healing, this dissertation will not focus on the role of sensors in modulating tissue 

oxygenation.  Smaller electrodes which consume less oxygen were chosen for these 

experiments to minimize the impact as much as possible without sacrificing signal 

sensitivity.   
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1.3.5 In Vivo Diffusion Studies 

 To date, a few careful studies of diffusion in the tissue have been carried out in an 

effort to understand how the encapsulation of biomaterials and the development of new 

tissue affect diffusion.     

Sharkawy placed capsular tissues in dual-chambers and separately injected dyes into 

rats having different biomaterial implants, followed by timed explantation and cryo-

sectioning of the tissue surrounding the implants(121-123).  These experiments allowed 

estimation of diffusion constants, vascular density and permeability, and response rates 

for different tissue structures surrounding smooth and porous implants, and found all 

were improved in tissues adjacent to microporous biomaterials.  Wisniewski 

demonstrated that for subcutaneously implanted hollow poly(ether sulfone) and other 

microdialysis fibers,  there was a significant effect of protein and cellular adsorption on 

glucose diffusion, though the effect was observed to be 3-5 times smaller than the 

diffusive resistance of the tissue(140).  Researchers have also studied the effects of 

encapsulation on the diffusion of antibiotics and other drugs from implanted polymer 

delivery devices, finding that encapsulation can significantly retard drug release from an 

implant(8, 17, 113, 114).   

These studies demonstrated that biomaterials, the foreign body response, and 

encapsulation may affect diffusion in the tissue environment. 

1.3.6 Micro-Featuring and Oxygen Transfer 

Micro-features have been shown to alter the orientation, kinetics, and metabolism 

of cells in vitro, a phenomena known as contact guidance(30, 33, 93, 117, 143).  In vivo, micro-

features(13, 31) and trabecular micro-pores(19, 67, 68, 97, 136, 139), have been observed to reduce 

the thickness of the fibrous capsule, reduce the formation of giant cells, alter collagen 

deposition, and to encourage tissue integration and neovascularization.  Thus, the 
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application of micro-featured or microporous membranes are expected to alter the tissue 

in ways that should improve oxygen diffusion properties of the tissue.   

This dissertation employs a smooth material, polydimethylsiloxane (PDMS), and 

a microporous biomaterial, cellulose, which have been previously observed to elicit 

structurally distinct tissue responses which may affect oxygen diffusion.  These materials 

are easily available, workable, and well studied(14).  The micro-pore size of the membrane 

is 8µm, the pore size determined separately by Brauker and Padera to be optimal for 

neovascularization in the soft tissue (19, 97), though smaller than the pore size implemented 

by Sharkawy.   

This dissertation is part of a longer term goal to compare many polymers, 

including variations in micro-featuring and other surface modifications. 

 

1.4 Humorals Markers of Inflammation 

 As noted, biomaterials and the process of implanting them are known to elicit a 

systemic inflammation response.  Inflammation causes fluid retention, changes in 

vascular perfusion and affects cellular recruitment(43).  The early stages of the response to 

the implant, the Acute Phase Response, includes elevation of a number of key blood 

serum proteins recruited from the liver and discussed at greater length in the introduction 

to Chapter 7.  These acute phase response proteins (APRPs) may offer a unique method 

of quantifying the compatibility of biomaterials by correlation with the degree of 

inflammation they elicit. 
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1.5 The Subcutaneous Environment and Window Chamber 

1.5.1 The Window Chamber: Hamster Skinfold Model 

 Transparent viewing windows for the study of subcutaneous tissues were 

originally developed for use in the rabbit ear(24, 36, 116), for basic vascular study and the 

observation of tumor development.  The chamber was adapted to the skinfold(138), and 

then expanded to tumor and autologous transplantation studies in mice(3-5, 106), and was 

later developed for the hamster(40).  The loose dorsal fold of the hamster proved an 

excellent medium for the study of microhemodynamics(18, 25, 65, 130). 

 For the study of implanted biosensors, the hamster window chamber was 

modified, mounting a planar oxygen sensor array on one side of the dorsal fold and a 

glass viewing window on the opposite side(86).  The combination allows continuous 

nondestructive visualization of the tissue environment surrounding an active biosensor.  

This dissertation utilizes this modified hamster skinfold window chamber to mount the 

planar oxygen sensor array and the biomaterial membranes exposed to subcutaneous 

tissue. 

 The hamster window chamber preparation offers several advantages for in vivo 

biosensor studies.  Besides the potential for visualization of the sensor environment, the 

chamber frame supports the tissue and reduces relative mechanical motion.  This has the 

advantages of lessening potential non-biomaterials related inflammation and ensuring 

that the tissue and the biomaterial membrane of the sensor are in the same relative 

position for the duration the study.  The consistent tissue-sensor spatial relationship 

improves confidence that changes in sensor performance are due to changes in the local 

tissue and makes it possible to correlate specific regions of explanted tissue histology to 

specific regions of the sensor array. 
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1.5.2 The Subcutaneous Environment 

 The subcutaneous environment is frequently utilized as a location for sensors and 

other implanted devices, taking advantage of convenient fatty pockets.  Implantation 

under the skin is less invasive and less risky than deeper or vascular implantations, and 

offers easier access for repeat surgeries or modifications.  As well, the skin can easily be 

displaced without affecting gross function.   

The hamster skinfold offers an excellent medium for biomaterials and biosensor 

studies.  Window chamber surgeries can be used to easily and reproducibly expose 

dermal, fatty hypodermal, or muscular tissue.  The reticular muscle of the hamster affords 

a manipulable muscular environment that is approximable to human skeletal muscle(62, 

125), and it is this environment on which the dissertation will focus. 

 

1.6 Histological Techniques, Quantification 

 Histological observations have long been a preferred method of analyzing the 

effects of biomaterials on tissue.  High quality images of tissues offer a deeper 

understanding of their microscopic structure, and thus offer a basis of comparison 

between different interventions.  In order to evaluate the effects of tissue structure and 

composition on diffusion, or to apply tissue observations to quantitative diffusion models, 

highly quantitative measurements of the histology are needed. 
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1.7 Scope of the Dissertation 

Hypothesis:  Oxygen mass transfer to an implanted oxygen sensor is affected by the 

materials of the sensor membrane and their interaction with the tissue environment. 

 

1) Goal: To determine if biomaterials affect oxygen flux in the tissue environment.  

To determine if there are effects on 

a. the magnitude and dynamics of oxygen flux, 

b. magnitude and dynamics of oxygen flux following exposure to hypoxic 

challenges, and 

c. the sensor itself 

2) Goal: To determine if histological observations of the tissue adjacent to the sensor 

can be correlated to oxygen flux. 

3) Goal: To establish methodology for digitizing histological images and 

quantitatively analyzing certain tissue features.  To determine parameters for 

quantifying specific tissue features important to oxygen diffusion, including: 

microvessels, cell density, muscle fibers, collagen, and mast cells. 

4) Goal: To determine the effects of implanted biomaterials and the implantation 

process on serum levels of certain acute phase response proteins. 
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1.8 Chapter Summaries 

The chapters of the dissertation reflect the order of the dissertation goals.  Each 

chapter is written in an article format. 

In Chapter 2, the bulk of the experimental methods are described, with attention 

to the implementation of implanted oxygen sensor arrays, biomaterials, and animal 

subjects.  This chapter focuses on the in vivo comparison of the signals for oxygen 

sensors encased in different biomaterials.  Changes in signal magnitude and noise will be 

examined and compared to in vitro observations.  Lastly, the curve of the in vivo sensor 

response to exogenous oxygen levels with be plotted and its form examined. 

The oxygen sensitivity of sensor arrays are examined in Chapter 3, pre-

implantation and post-explantation, to determine the effects, on the sensor itself, of 

implantation with different biomaterials. 

In Chapter 4, the dynamics of implanted sensors in response to single shifts in 

inspired oxygen levels are observed, specifically the rate of response and delay in sensor 

response.  The rate of response for increasing versus decreasing oxygen is compared.  

The relationship between sensor dynamics and sensor vascular access is observed, and 

the tissue oxygen diffusion constant is estimated.  For each aspect of the study, the effects 

of the implanted biomaterials are compared. 

Chapter 5 explores the response of implanted sensors to a series of oxygen 

challenges consisting of multiple shifts in exogenous oxygen concentration.  The role of 

biomaterials and tissue on sensor signal magnitude and dynamics is analyzed. 

In Chapter 6, a method of quantifying histological observations is established, 

with specific application to tissue features that are expected to affect tissue oxygen 

diffusion.  A limited histological study of the tissue from the sensor-array-implanted 

animals is reported. 
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In Chapter 7, several biomaterials are compared in their effect on C-Reactive 

Protein and Haptoglobin serum concentrations following implantation.  A novel 

quantitative serial blood collection method is described.   Microporous materials and the 

window chamber itself are studied as potential sources of inflammation. 

 

1.8.1 Appendices 

Appendix A describes the derivation of the curve fitting method used for 

analyzing sensor dynamics.   

Appendix B describes a careful analysis of curve fitting and time constant 

calculation for incomplete and discretely samples signal curves.  This section is intended 

for application to sensor control and predictive algorithms. 

Appendix C is a model of oxygen diffusion in the subcutaneous tissue 

surrounding implanted sensors, using spatial maps of quantified histological features and 

several methods of solving the diffusion equation. 

 



 

CHAPTER 2: Biomaterials and Sensor Steady State 
Performance 

2.1 Abstract 

Five hamsters were implanted with planar arrays consisting of 16 symmetrically 

distributed oxygen sensors.  Each array was half encased by smooth 

polymethyldisiloxane (PDMS) and half by a microporous cellulose membrane.  The 

sensor signals were measured over 14 days, including two sessions of hypoxia.  The 

calibrated sensor signals corresponded to initial oxygen partial pressures of 2.92%, 

increasing significantly by day 7.  PDMS encased sensors had higher signal magnitudes 

than cellulose encased sensors during the first 7 days of implantation (P<0.015), 

indicating higher oxygen fluxes in these tissues.  These differences were still observed 

after normalization for material diffusive resistance, and also after normalization for 

inherent differences in tissue structure, indicating that flux differences were due to the 

tissue response to the biomaterials.   

Noise was determined by standard deviation of the steady state signal as a percent 

of signal magnitude.  Average in vivo signal noise was 1.73±2.19% at 20.9% oxygen, 

6.52% higher for sensors encased in cellulose than those in PDMS (P<0.0075).  During 

hypoxia, all sensors’ noise increased, and the noise of PDMS encased sensors surpassed 

that of cellulose encased sensors by 42.3%.  This was in direct contrast to in vitro results, 

where cellulose encased sensors had greater noise regardless of exogenous oxygen. 

A plot of sensor sensitivity to 10.0-20.9% exogenous oxygen was very linear in vivo, 

indicating that mass transfer to the sensor was diffusion limited and that hypoxia in this 

range did not affect the relationship between in vivo and exogenous oxygen. 
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2.2 Introduction 

 This study examined the relationship between the tissue response to biomaterials 

and oxygen diffusion by employing an implanted planar oxygen sensor array consisting 

of 16 symmetrically distributed oxygen electrodes.  Eight sensors on each side of the 

array were encased in two different adjacent biomaterial membranes to determine if the 

tissue response to the biomaterials would differentially affect oxygen transfer.  Smooth, 

oxygen permeable PDMS and cellulose with an 8µm pore structure were chosen for this 

initial experimental series.   

In this study, regular measurements of sensor magnitude were made during a 14 

day implantation, comparing the output of sensors encased in each material.  

Additionally, the effect of the biomaterials on signal noise and the slope of sensor output 

versus inspired oxygen were observed. 

 

2.3 Materials and Methods 

2.3.1 Preparation of the Sensor Arrays 

2.3.1.1 Sensor Design and Modifications 

Four planar oxygen sensor arrays were acquired in dry state from Glysens 

(Sorrento Valley, CA).  The basic design is described in Chapter 1 (Figure 2.1).  Platinum 

working electrodes 125µm in diameter were chosen for this experiment to improve 

spatial sensitivity while providing sufficient signal amplification. 

A breakout box for sensor connections to the potentiostat was designed 

specifically for this experiment.  The circuitry connects each working electrode to its 

respective reference and counter electrode.  Additionally, the box separates the 16 signals 

of the array into two sets of 8, corresponding to the biomaterial in which the sensors are  
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A

B 

 
Figure 2.1 Design of the Planar Oxygen Sensor Array   
(A) shows the design of the planar array.  The rear of the sensor is shown in order to 
diagram the wiring, while the front displays the different electrodes and their 
configuration.  A vertical midline is drawn to demonstrate the symmetry of the working 
electrodes, and thinner lines define the quadrants, four groups of four working electrodes 
each connected to a single reference electrode.  Either side of the midline is a group (side 
A or side B) of eight sensors which will correspond to one or the other biomaterial once 
the biomaterial membrane has been mounted.  The fan board is shown to demonstrate 
how the wiring connects to the breakout box (Figure 2.2) before reaching the potentiostat. 
(B) is an image of a planar array showing the rear and front respectively.  On the rear, the 
wiring feeds through the ceramic array to and along the blue sensor backing.  At the top 
of the backing, the gold plated connections are the site of transfer information between 
the electrodes and the potentiostat.  The retaining ring is also visible behind the array. 
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A 

B
 

 
Figure 2.2 Design of the Sensor-Potentiostat Breakout Box 
(A) shows the design of the breakout box, where the incoming electrode signals from the 
sensor are divided into two groups, A and B, and sent to different potentiostat boards.  
The breakout box is the site where the reference and counter electrodes are pooled, 
represented here by the five islands in the middle of the box.  (B) is an image of the 
underside of the breakout box, showing circuitry. 

 

encased (Figure 2.2).  The separation greatly simplified troubleshooting and data 

analysis. 

2.3.1.2 Sensor Preparation and Pre-Implant Calibration   

Prior to use, sensors were soaked in distilled water to remove excess salts, then 

soaked in Phosphate Buffer for 72+ hours to hydrate the internal conductive hydrogel 

layer to isotonicity with subcutaneous tissue.  All sensor arrays were pre-calibrated prior 

to being encased in the biomaterials membranes.   

Calibration is described in greater detail in Chapter 3, which discusses the 

differences between pre-implantation and post-explantation calibration sensitivity for the 
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arrays used in this experiment.  In brief, the sensors were placed in a warm, moist gas 

chamber and subjected to gas mixtures with specified oxygen content.  The resulting 

sensor responses were plotted against oxygen concentration to create a linear calibration 

standard for each electrode, referred to as the in vitro sensitivity of the sensor to oxygen. 

2.3.1.3 Signal Acquisition 

The potentiostat converts the currents between each working electrode and the 

counter electrodes into output potentials that can be amplified by gain setting (Figure 

2.3).  The default gain setting was (1V/10nA), but in some cases, the initial values of an 

acquisition were taken at lower gain, then multiplied by a factor of 10 during the data 

workup, introducing negligible error.  The resulting analog potentials are converted to 

digital using a NI-DAQ card (National Instruments) and recorded using an in-house 

program written in Labview software (v6.13, National Instruments). 

 

2.3.2  Preparation of the Biomaterials   

2.3.2.1 Dual Biomaterial Membrane Fabrication   

Titanium window chambers (WCs) had excess metal oxide removed by polishing 

and ultrasonication with an oxide remover (Branson).  WCs were vacuum dried and 

cleaned with anhydrous alcohol to remove all moisture prior to application of several 

layers of 3-aminopropyltriethoxysilane (APTES), 2% in acetone, which acts to prepare a 

surface for bonding to a hydrophobic substance(83). 

Whatman #2 microporous cellulose filters, 8µm exclusion size, were cut to 15mm 

half circles, then rinsed and ultrasonicated in distilled water followed by anhydrous 

alcohol to completely remove detritus, moisture, and loose fibers.  
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Figure 2.3 The Sensor Signal Acquisition Pathway 
The signal (dotted line) originates with the sensor array either in vivo (1A) or in the 
calibration flask (1B).  The breakout box (2) separates the signals and sends them to the 
potentiostat boards (3) which pass them to the analog to digital converter (4) and finally 
to the computer (5), where the signals are displayed and recorded (6).  The potentiostat 
(3) also returns feedback (dashed lined) to enforce the potential between the reference 
and working electrodes.  The breakout box (2) connects each working electrode to its 
respective reference and counter electrodes back on the sensor array. 

Sylgard 184 Encapsulating Polydimethylsiloxane (PDMS) (Dow Corning) was 

mixed at a 9:1 ratio of monomer to curing agent and degassed under vacuum.  To ensure 

very even distribution of curing agent, a low speed rotary tool was employed.   

Glass coverslips vapor deposited with Chlorotrimethylsilane (CTMS) liftoff 

agent(49) were mounted into the APTES coated titanium window chambers.  WCs were 

then coated with PDMS and baked upright for 8 minutes at 65ºC to initiate partial curing.  

The coverslips were removed, and the cellulose half circles were mounted, covering 
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exactly half of the chamber.  The window chambers were placed between CTMS treated 

slides in a small press which was then used to level and compress the membranes to their 

minimum thickness.  Another 20-40 minutes of heating finalized the PDMS curing.  The 

final window chamber mounted membrane (Figure 2.4) was cleaned of particles and 

steam sterilized.   

The dual material membranes each consisted of a 210µm thick disc 15mm in 

diameter, half cellulose and half PDMS.  Both half circle sections are adhered to one 

another and to a thin layer of PDMS referred to as the backing in which the cellulose was 

embedded.  Because the window chamber has a thin lip of metal against which the array 

sits, the PDMS backing filled this region as well. 

2.3.2.2 Microscopic Observations of the Membrane   

Membranes where the cellulose did not adhere to or was soaked through by the 

PDMS backing layer were discarded.  Several membranes were cross-sectioned to assess 

PDMS penetration of the cellulose.  A Philips XL30 electron microscope was used to 

obtain scanning electron microscopy images of the PDMS and verify its smoothness 

(Figure 2.5).  Metal coating of the PDMS was not required, but care was taken to image 

regions of the PDMS before the scanning beam caused them to acquire charge. 

2.3.2.3 Sensor Calibration with Biomaterials   

Calibrations of sensors’ sensitivity to oxygen were also performed for each sensor 

array with its dual biomaterial membrane.   The values from the in vitro calibrations with 

the biomaterial membranes were used to normalize in vivo sensor responses, factoring out 

the effects of diffusion through the biomaterials.   
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Figure 2.4 Membrane Encased Sensor Array 
The image shows a moist planar oxygen sensor array encased in the dual biomaterial 
membrane.  The cellulose is mostly opaque, but the transparent PDMS allows the 
underlying electrode pattern to be seen.  Each of the 8 small dots is a working electrode.  
The metal ring around the electrode pattern is the window chamber. 
 

 

BA 

 
Figure 2.5 Scanning Electron Images of the PDMS Membrane 
(A) and (B) are scanning electron images of uncoated PDMS taken at 2288 and 36601X 
magnification respectively.  Dust was not prevalent but was found to show contrast and 
to demonstrate the submicron smoothness of the material.  The brightness in (B) is due to 
electron charging of the material.  The large dust speck in (B) is ~250nm wide. 
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2.3.3  Preparation of the Window Chamber 

2.3.3.1 Window Chamber Design and Fabrication   

Titanium window chambers and chamber frames were manufactured as previously 

reported(40, 86).  In brief, two frame halves are used to sandwich the rodent dorsal fold, 

which is then retained by four corner mounted bolts and multiple sutures.  The frame 

supports the dorsal fold in a vertical position and houses the window chamber (WC).  The 

thin, cylindrical WC mounts to the center of the frame and projects slightly inwards to 

create a seal with the tissue.  A bracket is mounted to the top of the frame to protect the 

array’s gold plated connector teeth from the animal. 

Window chambers with deeper interiors (1.65mm) were used for this experiment, 

in order to incorporate the biomaterial membrane.  The chamber interior was inwardly 

tapered to force the retaining ring against the sensor array and create a positive pressure 

seal between the hydrophobic membrane of the array and the biomaterials. 

2.3.3.2 Mounting the Sensor Array and Dual Biomaterial Membrane to 

the Window Chamber   

The sensor array was mounted into a window chamber already fitted with the dual 

biomaterial membrane (Figure 2.6).  Sterile tape was used to build up the frame behind 

the sensor, and heavy suture was used to lash the array backing tightly to the frame.  The 

mechanical restriction prevented torque between the sensor backing and the array, as well 

as relative movement between the sensor and the biomaterials.  Finally, an impermeable 

plasticized disc was mounted behind the sensor to prevent damage and seal out air. 

The center line of the material membrane was oriented normal to the animal’s 

body, achieving symmetry and aligning the materials with potential motion of the 

retractor muscle.  Anterior versus posterior placement of the biomaterials was 

randomized. 
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Figure 2.6 Window Chamber Assembly with a Mounted Sensor Array(84) 
The two gray halves of the frame sandwich the animal’s dorsal fold keeping it upright 
and holding the white sensor, mounted in the window chamber, against the exposed 
tissue site.  The four medium sized holes house bolts for structural support, while the 
small holes are for sutures to support the frame and reduced skin movement relative to 
the sensor.  The largest holes are to reduce the frame weight.  

2.3.4  Preparation of the Animal Subjects   

2.3.4.1 Animal Subjects   

Two litters of hamsters received at the same time were kept until they were 150-

200g in weight and 4-6 months of age.  The animals were fed Purina hamster chow ad 

libitum and regularly conditioned to sleeping in acrylic tubing, and to be accustomed to 

the sound and feel of compressed gases. 

2.3.4.2 Mounting the Window Chamber to the Hamster Dorsal Fold   

The window chamber procedure is detailed elsewhere(86), but is briefly described 

here with notes on modifications specific to this study. 
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Five hamsters were injected with 100 mg/kg of ketamine (Fort Dodge, Iowa) and 

0.25 mg/kg of medetomidine (Domitor, Espoo, Finland) IP.  The dorsal region was 

shaved, depilated, and sterilized, then drawn into the chamber frame.  A round area of the 

dermis, just larger than the window chamber, was cut from the center on the animals left, 

posterior to the A0 and V0 vessels.  The underlying retractor muscle was sectioned and 

turned outwards.  The membrane and array were positioned against the exposed 

contralateral retractor muscle, using the outwardly folded muscle layer to create a fluid 

seal.  Doubled sutures were passed through the frame and dorsal fold in around the frame 

periphery, ensuring minimal relative movement between the tissue and frame.  Recovery 

was aided by IP injection of 500 µg/kg of Atipamezole HCl (Antisedan, Pfizer, Exton, 

PA), a medetomidine antagonist, and 3-15 µg/kg of Buprenorphine HCl analgesic 

(Buprenex, Reckitt Benckiser, Richmond, VA).  A plasticized disc was sealed over the 

skin side of the chamber frame to prevent the animal from damaging its own tissue. 

 

2.3.5  In Vivo Data Collection   

2.3.5.1 Baseline In Vivo Acquisitions   

In vivo signal acquisition was performed by coaxing the hamsters into restrictive 

acrylic tubes with a narrow slit allowing the chamber frame and array to project(60).  The 

hamster and tube were placed in an acrylic box sealed with a removable rubber sheet.   

On 4, 7, 11, and 14 days post-surgery, the signal was acquired with the animal 

breathing room air, 20.9%, oxygen.  On medium gain, the potentiostat was activated, 

recording the initial drop of sensor signal until the signal was mostly resolved.  Signal 

magnitudes for each electrode were calculated by averaging 1-3 minutes of the resolved 

signal at high gain.  Noise was defined for simplicity as the standard deviation of the 

signal over this sample period as a percent of the magnitude (See Figure 4.2 for a visual). 
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2.3.5.2 Hypoxic Challenges  

On days 7 and 14 post-surgery, following acquisition of the baseline signal, the 

animals were put through a series of oxygen challenges.  First, the animal’s chamber and 

dorsal fold were wrapped in gas-impermeable plastic and sealed.  Then, the rubber sheet 

was replaced and a certified 15.0% oxygen mixture was introduced through a cotton 

filled baffle at the animal’s head.  Once the signal was technically resolved, less than a 

2.5% change over 5 minutes of acquisition, the oxygen mixture was changed to 10.0%, 

then back to 15.0%, and finally to room air, each time allowing technical signal 

resolution.  

 

2.3.6 Subcutaneous Tissue Collection and the Post-Explantation 

Sensor Calibration      

On day 14, during signal acquisition, the hamsters were given a dose of ketamine/ 

medetomidine anesthetic, followed by a lethal dose of Nembutal, 30mg/kg.  Following 

death, the sensor array was removed from the chamber and membrane and calibrated 

bare. 

  

2.3.7 Data Analysis: Data Filtration and Normalization 

Signal magnitudes in excess of 1.2V, the maximum valid signal from the 

potentiostat, and signals with noise above 50% of magnitude were eliminated from 

analysis.  Signal values below 0.0011V were determined to have unacceptable noise to 

magnitude ratios and/or some negative values, and so were eliminated. 

Sensor signal magnitudes for in vivo baseline responses were normalized to the 

baseline signal magnitudes from the array pre-calibration with biomaterials, in order to 

separate the diffusive resistance of the materials from that of the tissue.  Signal 
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magnitudes from the hypoxic challenges were all normalized to pre-calibration signal 

magnitudes at 10.0% oxygen.   

In order to separate out differences in the signal due to inherent tissue structure 

versus tissue changes due to the foreign body and wound healing response, sensor signal 

magnitudes were also separately normalized to their first in vivo baseline magnitudes.  

Both normalization methods were multiplicative rather than subtractive, since sensor 

signals are linearly proportional to oxygen concentration. 

ANOVA and paired t-testing with an assumption of unequal variances was used 

for statistical analyses between groups(48). 

 

2.4 Results and Discussion   

2.4.1  Validation of the Preparation 

2.4.1.1 Microscopic and Physical Analysis of Dual Membrane Integrity   

 Treatment of the titanium window chambers with APTES provided excellent 

adherence of the cured PDMS, preventing removal of the PDMS by tension or shear, both 

a significant problem with PDMS cured to untreated titanium.  In addition, the membrane 

seal to the titanium proved moisture and air-tight under mild applied pressure. 

 Microscopic analysis of membrane cross sections demonstrated that PDMS 

attached to the cellulose by integrating only the outermost fibers (Figure 2.7).  These 

results were validated by mechanical removal of the cellulose, where only a few fibers 

were left behind and no PDMS was removed.  The two step PDMS curing process 

allowed the cellulose to integrate while preventing the PDMS from penetrating or 

disturbing the cellulose’s trabecular pore structure.   
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It was noted that while the interface of cellulose and PDMS was flush in the 

membrane’s dry state, once wet, the cellulose swelled by 13.5-42.3%, possibly causing 

an imbalance in contact with the tissue. 

 

 
 
Figure 2.7 Cross Section of a Dual Biomaterial Membrane (40x) 
A membrane cross section shows the cellulose to be integrated spatially into the PDMS, 
but with only the outermost fibers embedded.  A Hematoxylin stain of the cellulose 
(darker color) penetrated up to the outermost fibers (bright white) noted by the small 
black arrow.  The larger black arrows designate the edges of the membrane, and the white 
arrow points to the membrane’s center line. 

2.4.1.2 Calibration of Sensor Response In Vitro   

 Sensors for all arrays responded quickly and cleanly to changes in oxygen during 

calibration.  Oxygen reduction was shown to be diffusion limited by the linearity of the 

sensitivity to oxygen (Figure 2.8). 

 One sensor on array H-136-8, sensor B2, was determined to be inactive.  In 

addition, the connector selected for the experiment, while providing the lowest noise and 

most consistent signal magnitudes, did not consistently transfer data from sensor A6. 
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2.4.1.3 Validation of Sensor Response In Vivo     

 All sensors responded to changes in exogenous, or inspired, oxygen (Figure 2.9).  

The curve form of the shift in magnitude was exponential, as expected of a diffusion 

limited shift in concentration, and plots of signal magnitude versus oxygen were linear. 

Shifts in the signal magnitude during hypoxic challenges were too slow to 

indicate leakage or other direct access of the sensors to exogenous air.  Thus, changes in 

sensor signal are believed to represent oxygen changes in the tissue. 
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Figure 2.8 Pre-Calibration of a Bare Sensor Array 
The linearity of the response of 16 sensors to oxygen (linearity of the sensor sensitivity) 
is demonstrated during an in vitro calibration for a bare sensor array.  2.0, 10.0 and 
20.9% oxygen were used in this example. 

2.4.2  In Vivo Data 

2.4.2.1 Baseline Oxygen Concentration in the Hamster Window Chamber   

The average baseline partial pressure for oxygen in the hamster skinfold was 

determined by calibration to be 2.92%, or 22.2mmHg, on day 4 following surgery.  This  
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Figure 2.9 In Vivo Sensor Acquisition During Two Cycles of Oxygen Challenges 
A plot of sensor signal magnitude over time during an in vivo acquisition with two rounds 
of inspired oxygen challenges.  “A” sensors are the 8 encased in PDMS, and “B” sensors 
are the 8 encased in cellulose.  Arrows along the curve for sensor A2 indicate the times at 
which exogenous oxygen levels were increased or decreased and the initial and final 
exogenous oxygen concentrations.  The first portion of the acquisition, labeled by the 
20.9% arrow, was performed at medium gain in order to view the initial drop in signal.  
At about 30 minutes, the gain was increased to high, multiplying the signals by a factor of 
10.  (An example of in vitro oxygen challenges can be seen in Figure 5.1). 

value correlates well to those seen previously in the hamster skinfold(66), which averaged 

2.95% oxygen.  By day 14, the average had risen to 5.99%, or 45.5mmHg, higher than 

expected for tissue not immediately adjacent to larger microvessels.  Previous studies 

were usually performed in the first few days following window chamber implantation, 

not providing an expectation of how oxygen concentrations from later in the experiment 

should appear.  These studies were also performed in the dermal tissue rather than 

muscular, though muscular tissue would not be expected to have significantly higher 

oxygen levels under resting conditions. 
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Baseline sensor signals on day 4 in vivo were 86.0±15.0% lower than exogenous 

oxygen, further validating that the oxygen contributing to the sensor signal was from the 

adjacent tissue. 

An ANOVA analysis comparing baseline signals taken on different days showed 

significant differences (P<0.0062).  Signals on days 4 versus 11 and 11 versus 14 were 

determined to be significantly different (P<0.020 and P<0.053 respectively), and those 

for days 4 and 14 highly different (P<0.0001).  However, due to high variance, the null 

hypothesis was not rejected for comparing days 7 and 11. 

2.4.2.2 Biomaterials and In Vivo Sensor Signal Magnitudes: Normalized 

to Pre-Calibrations with Biomaterials 

On days 4 and 7, pre-calibration normalized signal magnitudes for PDMS encased 

sensors were greater than those for sensors encased in cellulose (P<0.015, n=71), 

indicating greater flux to these sensors (Figure 2.10).  On days 11 and 14, the effect 

diminished greatly, and all sensors had roughly the same normalized signal.  Removal of 

outlying values 3 and 2 standard deviations had no effect on the form of Figure 2.10 or 

statistical significance, indicating that the results were not due to a few erratic sensors. 

Variance of sensor values was high through the experiment, especially for days 4 

and 7, reducing the significance of the comparison between cellulose and PDMS encased 

sensor values on day 4 (P<0.157).  On day 7, PDMS encased sensor signal magnitudes 

were 1.95 times higher than for cellulose, a difference that was significant despite the 

variance (P<0.036).  These results correspond well to previous work which determined 

that biomaterial driven neovascularization peaks near 7 days(97).  The inflammatory 

response(43) and infiltration of inflammatory cells also experiences a peak near 7 days(88), 

supporting the supposition that differences in tissue oxygen transport due to biomaterial 

implantation could manifest during this time period and begin to diminish afterwards. 
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Comparison of the Signal Magnitude for Oxygen 
Sensors Encased in Different Biomaterials Over 14 

Days, Normalized to Pre-Calibration Values
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Figure 2.10 Effect of Biomaterial Encapsulation on Baseline Sensor Signal Magnitudes 
Signal magnitudes, normalized by in vitro calibrations with biomaterials, were larger for 
PDMS encased sensors than for those encased in cellulose on days 4 and 7.  But the two 
groups’ magnitudes were similar on days 11 and 14.  The signal magnitudes on day 0, 
referring to the pre-surgical calibration with biomaterials, are equal to 1 as a consequence 
of the normalization, and are truncated for clarity.  In vivo oxygen pressure (PO2), 
calculated by comparison to pre-calibration values, are shown on the right hand 
dependent axis (Each 1.0% exogenous oxygen = 7.6mmHg of PO2). 

2.4.2.3 Biomaterials, Signal Magnitude, and Hypoxia 

 On day 7, there was large difference between signal magnitudes for sensors 

encased in different biomaterials during hypoxic conditions (Figure 2.11), though the 

difference was not exactly in proportion to the oxygen levels.  When exogenous oxygen 

levels were dropped to 15.0% O2, a 28.2% decrease, the gap between average signal 

values for PDMS and NC encased sensors dropped 39.8% from baseline.  The drop to 

10.0% oxygen, a 52.2% change, decreased the gap by 62.1%.  The differences are not 

perfectly proportional, which would imply that the biomaterials may have differentially 
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affected oxygen stasis mechanisms in the tissue to some degree, mechanisms responsive 

to hypoxia.  This was supported by the observation that sensor sensitivity was not seen to 

be differently affected by the material membranes in vitro (P>0.47). 

In Vivo Oxygen Levels During Implantation, Comparing 
Sensors Encased in Different Biomaterials

All Sensors 15.0%

All Sensors 10.0%

All Sensors 20.9%

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Days Following Implantation

Pe
rc

en
t O

xy
ge

n

0

10

20

30

40

50

60

O
xy

ge
n 

P
re

ss
ur

e 
(m

m
H

g)

All Sensors 15.0%

Cellulose 15.0%

PDMS 15.0%

All Sensors 10.0%

Cellulose 10.0%

PDMS 10%

All Sensors 20.9%

Cellulose 20.9%

PDMS 20.9%

 

Figure 2.11 The Gap Between PDMS and Cellulose Encased Sensor Signal Magnitudes 
at Baseline and Hypoxic Oxygen Levels, Days 7 and 14 
On day 7, the gap between signal magnitudes (pre-calibration normalized) for PDMS and 
cellulose encased sensors was greatest proportionally at 20.9% exogenous oxygen.  The 
gap grew more than proportionally smaller for hypoxic conditions of 15.0 and 10.0%.  
On day 14, the gaps diminished substantially at all oxygen levels.  The dependent axes 
are the calculated in vivo oxygen levels in both percent partial pressure and mmHg. 

Lower oxygen levels were avoided in the primary experiments to prevent agitating 

the animals, which generally slept during mild hypoxic conditions, but panicked when 

5.0% oxygen was introduced.  Ischemia by vessel constriction was likewise avoided to 

prevent damage to the tissue that could have marred histological evaluations.  Thus, 

future experiments are suggested to perform careful observations, with respect to 
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implanted biomaterials, of the tissue response to compressive ischemia and deeper 

hypoxia. 

2.4.2.4 Early In Vivo Values, Measurements Taken Prior to Day 4     

 Sensor signals taken prior to day 4 were found to high noise and magnitudes that 

drifted significantly over time.  In particular, signals observed on day 0, the day of 

surgery, could not be properly averaged.  This indicates contact between the sensor and 

the tissue was initially poor.  It may be possible to acquire effective signals in the three 

days following surgery, but for these experiments, time was given to assure properly 

equilibration of the sensors with their tissue environment. 

2.4.2.5 Normalization to the First In Vivo Values   

Sensor signals magnitudes were normalized to the first in vivo values, taken on 

day 4 of implantation, to account for any differences in the inherent tissue structure.  The 

signal magnitudes normalized in this fashion followed a similar pattern to those 

normalized by pre-calibration (Figure 2.12), demonstrating that much of the differences 

observed occurred post-implantation.  PDMS encased sensors signal magnitudes were 

much larger than those of cellulose encased sensors on day 7 (P<0.020, n=71), but unlike 

the pre-calibration normalized values, this disparity in magnitude persisted through to 

days 11 and 14.  The differences were not statistical on these days, but demonstrated a 

systematic difference due to biomaterials throughout the implantation. 

Comparison of these results to those for the pre-calibration normalized signal 

indicate that while some of the differences seen between the biomaterials occurred before 

day 4, much occurred from days 4-7, and some portion of these changes persisted through 

to day 14.  Thus, analysis of the sensor data by both normalization methods rules out that 

differences in diffusion are due to the biomaterials alone, and further, the normalization 

to the first in vivo values demonstrate with greater surety that much of the difference in 
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flux observed for sensors encased in different biomaterials are due to changes in the 

tissue which took place after the sensors were implanted.  This is as opposed to the 

differences in magnitude being due to inherent differences in tissue structure.  Future 

work with earlier and more frequent time points is suggested to better determine the 

timeline of changes in the tissue. 

 

Comparison of the Signal Magnitude for Oxygen 
Sensors Encased in Different Biomaterials Over 14 
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Figure 2.12 Effects of Biomaterials on Signals Normalized by Early In-Vivo Values 
Signal magnitudes for PDMS covered sensors were systematically higher than those for 
cellulose encased sensors, when normalized by the signal magnitudes from day 4.  As 
was true for magnitudes normalized by pre-calibration values, the largest difference was 
seen on day 7.  Day 4 values were all equal to 1 as a consequence of normalization.  Pre-
calibration values on day 0 are not shown, but are roughly an order of magnitude larger. 

2.4.2.6 Anterior Vs. Posterior Placement of Sensors In Vivo   

There were no significant differences on any day of the experiment between 

anteriorly versus posteriorly located electrodes for pre-calibration normalized sensor 

magnitudes.  There were also no statistical differences during the hypoxic experiments, 

between anterior and posterior sensor signal magnitudes at 10.0 or 15.0% inspired 

 



35 

oxygen.  Since anterior versus posterior placement of the biomaterials was randomized, 

these results further validated that differences seen between sensor signals were due to 

the tissue reaction to biomaterials, not inherent differences in tissue structure. 

 

2.4.3 Noise of the Sensor Signal       

2.4.3.1 Noise Magnitude and Origins 

Noise, as represented by the standard deviation of the acquired signal as a percent 

of magnitude, was fairly low in vivo, 1.73±2.19% at 20.9% oxygen.  Only rarely did 

signal noise complicate measurements of magnitude or observations of dynamics. 

Noise both in vitro and in vivo was observed to be largely proportional to the 

signal magnitude, with larger signals having larger noise for an individual experiment.  

However, noise was not proportional to gain, with higher gains having 8.9% less noise 

than lower gains.  Thus, at least this portion of the noise is artifact originating between 

the potentiostat and the computer.   

Noise for each sensor, as compared to its bare in vitro state, increased 50.0% with 

the addition of the biomaterials to the array, and then another 39.5% by the first time 

point of implantation (Figure 2.13).  Post-explantation calibration of the arrays 

demonstrated that the noise levels of the arrays themselves did not change during the 

implantation.  Thus, the biomaterials and tissue were the source of much of the signal 

noise, 23.9 and 28.3% respectively if noise is assumed to be linearly proportional to the 

signal magnitude.  The remaining noise is assumed to be due to the artifact already 

described and the connections between the potentiostat and the sensor.  Noise changed in 

vivo, increasing substantially to day 7 before falling to near in vitro levels by days 11 and 

14, as the contact between the sensor and tissue improved and oxygen flux in the tissue 

became more stable. 
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2.4.3.2 Noise and Hypoxia 

Both in vitro and in vivo, signal noise was inversely proportional to exogenous 

oxygen (Figure 2.14).  In vivo, the increase in noise with lower exogenous oxygen was 

substantially higher, even accounting for the order of magnitude lower oxygen 

concentrations that reach the sensor in vivo (Figure 2.14B).  The increase at lower oxygen 

potentially indicates that oxygen stasis mechanisms in the tissue, such as changes in 

hemoglobin saturation, functional capillary density(79) or cellular metabolism, may be a 

source of variations in local oxygen flux.  Increased heterogeneity of tissue oxygenation 

and subsequent measurement variance during hypoxia has been observed previously(63). 
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Figure 2.13 Comparing Noise for Sensors Encased in Different Biomaterials at Baseline 
Noise levels, as represented by deviation of the signal, increased with the addition of the 
biomaterial membrane and with implantation in the animal subject.  Noise continued to 
increase during the implantation to day 7, and then fell off to near in vitro values by day 
11.  Overall, cellulose encased signals reported higher noise than those in PDMS.  This 
difference persisted from that seen in vitro with the biomaterials membrane, and 
diminished over the course of the implantation. 
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Noise Vs. Oxygen Concentration for Sensors 
Encased in Different Biomaterials, Uncorrected In 

Vivo Oxygen
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Noise Vs. Oxygen Concentration for Sensors 
Encased in Different Biomaterials, Corrected to In 

Vivo Oxygen

0.5

1.5

2.5

3.5

4.5

5.5

05101520

Percent Oxygen of the Exogenous Mixture

%
 S

ta
nd

ar
d 

D
ev

ia
tio

n

All Sensors In Vitro
All Sensors In Vivo
Cellulose In Vivo
PDMS In Vivo
Cellulose In Vitro
PDMS In Vitro

 
Figure 2.14 Noise During Hypoxic Challenges 
Noise in vitro during hypoxic challenges on days 7 and 14 was more linearly proportional 
to exogenous oxygen than in vivo.  While cellulose encased sensor noise was higher in 
vitro, more so at lower oxygen, the reverse was true in vivo, where PDMS encased sensor 
noise was higher, more so at lower oxygen.  (A) shows the plots of error versus 
exogenous oxygen, while (B) corrects the in vivo oxygen levels to calibrated values. 

NC

PDMS

A 

B 
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2.4.3.3 Noise and Biomaterials 

Cellulose encased sensors had higher noise than those encased in PDMS at 

baseline (Figure 2.13), both in vitro and in vivo (P<0.0075 for all in vivo data after 

removal of outlying values above 2 standard deviations).  The difference in vivo 

diminished by days 11 and 14, but was still significant for the experiment as a whole. 

2.4.3.4 Noise, Biomaterials, and Hypoxic Challenges 

While PDMS encased sensor noise was lower than that of cellulose encased 

sensors at inspired room air, noise for PDMS encased sensors became larger during 

hypoxic conditions (Figure 2.14), surpassing that of cellulose encased sensors.  The gap 

increased as oxygen levels decreased.  This is the exact opposite of the trend seen in 

vitro, where cellulose encased sensor noise was higher, increasingly so with lower 

oxygen. 

Noise was not determined to vary significantly with repeated oxygen challenges. 

 

2.4.4 Sensor Sensitivity In Vitro and In Vivo 

 The sensor sensitivity to oxygen in vitro and in vivo during the oxygen challenges 

on days 7 and 14, were shown to be linear.  The R2 value for day 7 was 0.99, and that for 

day 14 was 0.94.  Thus, at least for the mild hypoxia the animal was subjected to, flux in 

the tissue was proportional to exogenous oxygen.  

There were no statistical differences seen either in vitro or in vivo between slopes 

of the sensitivity for sensors encased in the different biomaterials (Figure 2.15).  In 

comparing the in vivo sensitivity slopes on days 7 versus 14, there was an average 31.0% 

increase, but the difference was not statistically different (P<0.196) and did not depend 

on biomaterials.  No correlation was seen between the slopes and the thickness of 

granulation tissue, measured histologically (Chapter 6). 
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The high oxygen tension values seen in the tissue on days 7-14 indicates that the 

sensor’s in vivo sensitivity may have been overestimated.  The relative nature of all 

relationships described here would be preserved if this was the case, but differences 

would be smaller. 
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Figure 2.15 Slope of the Sensor Response to Oxygen: Sensitivity 
The slope of the sensor sensitivity, the plot of sensor signal magnitude versus exogenous 
oxygen concentration, was slightly higher in vitro with biomaterials.  The slope decreased 
significantly on implantation (P<10-25).  Sensors encased in different biomaterials were 
not shown to have significantly different slopes in vitro and had virtually identical slopes 
in vivo. 

2.4.5 Effects of Anesthesia on Signal Magnitude and Noise  

Following anesthesia with ketamine and medetomidine, signal magnitudes were 

observed to drop only slightly, 0.28±2.20%. However, noise rose by an average of 

27.8±9.6%, indicating that change in the microvasculature might have affected flux 

variance.  Neither change was different for sensors encased in different biomaterials.  
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Deeper investigation of the microvasculature’s role in signal noise and magnitude using 

vasoactive substances(53) and compressive ischemia is suggested by this study. 
 

2.4.6 Residual Sensor Signals Following Euthanasia 

Following death of the animals, signal magnitude did not immediately go to zero.  

Post mortem oxygen challenges showed some response from the sensors, indicating that 

despite measures taken to isolate and seal the surface of skinfold around the array, 

diffusion of oxygen through the dermis may still be providing a portion of the observed 

sensor signal.  These observations suggest future study in animals with thicker dermal 

layers, such as fat sand rats or pigs.  Still, subcutaneous tissues are believed to be 

partially dependent on oxygen diffusion through the skin(124), and it is a point of design 

that must be considered for the study and practical application of subcutaneous sensors. 

 

2.4.7 Potential Impact of Sensor Driven Hypoxia   

While the sensor was active during less than 5% of the implantation, when 

operational, it may have provided a substantial oxygen sink.  Thus, it cannot be 

completely ignored as a source of tissue change, possibly leading to vascular perfusion 

and capillary recruitment changes similar to those seen in chronic hypoxia(115).  It is 

possible that some portion of the differences in tissue diffusion seen for different 

biomaterials was the result of the biomaterials differentially modulating electrode driven 

hypoxia.  However, for the purposes of this study, given that the sensors encased in each 

biomaterial were equally active, and that the results are to be applicable to metabolically 

active sensors and devices, the meaning of the results does not change.  A logical 

progression from this work would be further experimentation and comparison of the 

tissue response to continuously active sensors versus briefly activated sensors. 
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2.5 Conclusion   

The important result of this experiment was the demonstration of a difference in 

signal magnitude for sensors encased in smooth versus microporous biomaterials for the 

first 7 days of implantation.  Comparing signal normalization methods demonstrated that 

most of the difference in the signal magnitude between sensors encased in different 

biomaterials developed during days 4-7, and that changes that occurred during this time 

persisted for the duration of implantation.  The timeline of the differences corresponds 

well to the timelines of inflammatory and foreign body responses.  Future experiments 

one week in length, with more frequent time points, would be desirable to further explore 

the timeline of biomaterial driven changes in the tissue. 

Noise was also seen to be biomaterial dependent, being greater for cellulose 

encased sensors at room air and greater for PDMS encased sensors during hypoxic 

challenges.  Sensor noise increased during anesthesia, irrespective of biomaterials 

encasement, indicating potential changes in the vasculature.  Observations of the effects 

of vascular ischemia and deeper hypoxia are suggested for future work to further 

determine whether differences are due to convection or diffusion. 

The linearity of the sensor response to oxygen was not expected.  However, the 

oxygen levels in this study were not below the animal’s comfort zone, and thus may not 

have explored the non-linear portion of the sensor’s in vivo sensitivity.   

Overall, the use of multi-sensor arrays and the dual biomaterial membranes 

allowed direct comparison of the biomaterial effect on sensor signal without the usual 

complications of animal to animal variations or local heterogeneity.  This technique 

offers a more quantitative method of comparing surface biomaterials for biosensors and 

other diffusion based devices.  Pairing this data with careful quantitative histology would 

provide insight into the tissue response to biomaterials and its effect on oxygen transport. 

 



 

CHAPTER 3: Effects of Implantation on Sensor 
Performance 

3.1 Abstract   

 The sensor response to exogenous oxygen was calibrated for 4 oxygen sensor 

arrays before and after 14 days of implantation in the hamster window chamber.  The 

magnitude of the sensor response and the slope of the sensor sensitivity were found to be 

consistent for calibrations before implantation and after explantation, with small but not 

statistically significant differences.  In addition, electrodes that had been implanted under 

PDMS did not perform differently from those that had been implanted under cellulose, 

improving confidence that differences in these sensors’ performance seen in vivo can be 

regarded as due to the biomaterial properties and the tissue environment.   

Variance for the slopes and magnitudes of each array’s sensitivity did increase 

significantly from pre-implantation to post-explantation, most likely due to differences in 

local hydrogel hydration and osmolarity which would affect oxygen diffusivity in the 

hydrogel and conductance of current by the gel.  Rate of response to exogenous oxygen 

changes increased for most sensors post-explantation, also a potential consequence of 

changes in the hydrogel 

 

3.2 Introduction   

 Several of the sensor performance criteria outlined in this dissertation rely on a 

consistent linear relationship(85) between the presence of local oxygen and the 

corresponding electrode signal, the sensor’s per se sensitivity.  In vitro calibrations 

provide information about the performance of sensors without the complicating factors of 

biomaterials or living tissue.  Comparison of pre-implantation and post-explantation 

42 
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calibrations are also a method of validating the results of in vivo experimentation. An 

assurance that differences in signal observed in vivo were not due to inherent change in 

the sensor strengthens confidence in using the sensor to comment on diffusion in the 

tissue.  

A methodical study was performed of the differences seen in calibrated sensor 

signals on 4 oxygen sensor arrays, before and after 14 days of implantation in the hamster 

window chamber.  Changes in the sensitivity slope and the rate of sensor response to 

changes in exogenous oxygen were calculated.  Shifts in sensor rank by signal 

magnitude, from pre to post-calibration were also observed. For all criteria, changes in 

performance were specifically compared for sensors which had been encased in different 

biomaterials.  

 

3.3 Materials and Methods   

 Chapter 2 methods describe sensor array preparation and signal acquisition.  

Chapter 4 methods describe time constant calculations. 

3.3.1 Gas Phase Sensor Array Calibrations   

 Sensor calibration techniques are described elsewhere(85), but specifics are 

mentioned here for the sake of reproducibility.   

 Sensors were moved from the PBS soaking solution into a jacketed flask of PBS 

kept at 30ºC, the approximate temperature of the hamster window chamber as measured 

by wire thermistor.  Rubber diaphragms sealed the moist flask from the array connector 

teeth.  Buffer was extracted from the flask to expose the sensor face, and compressed gas 

mixtures of specified oxygen were introduced through a flow controlled sparging unit to 

maintain a moist flow of gas to the array. 
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 Each sensor had signals acquired at least three oxygen levels from 2.0 to 20.9%, 

transitioning between the levels in fixed steps and allowing signals to resolve until 

change was less than 1% over 5 minutes.  Once resolved, signals were recorded for 1-3 

minutes to determine an average magnitude and to estimate signal noise.   

Care was taken to address potential error from salt deposits and moisture on the 

sensor connector, including replacing silicone rubber seals with rubber septums, 

increasing the frequency of connector cleaning, and re-calibrating sensors when needed.  

Overall, the connector was the greatest potential source of noise and error.  Thus, a new, 

low-noise connector was selected for the dissertation experiments and cleaned and dried 

regularly.  

3.3.2 Data Processing and Analytical Techniques    

The signal magnitude was plotted against exogenous oxygen concentration to 

determine the best fit line.  When curves demonstrated nonlinear behavior, the best 

resolved signal magnitudes were plotted and the curve was extrapolated. 

 Rank was assigned for the magnitude of each sensor’ signal for the pre and post-

calibrations, and then compared.  All statistical comparisons between groups were made 

using paired t-tests with an unequal variance assumption. 

 

3.4 Results   

3.4.1 Changes in Sensor Sensitivity   

 Sensor sensitivity was shown to be both pre- and post calibration to be linear in 

the tested range of 2.0-20.9% exogenous oxygen (Figure 3.1), validating array function.  

Sensitivity slopes for the 4 arrays decreased an average of 2.30±6.80%, which was not 

statistically significant.  Variance of the sensitivity slopes for all sensors increased an 
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Post-Explantation Calibration for Array H-136-4
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Figure 3.1 Comparing Pre-Implantation and Post-Explantation Array Calibrations 
An example of 16 sensor responses to exogenous oxygen is shown for pre- (A) and post- 
(B) calibrations.  The plots double back due to the order of the experiment, where oxygen 
concentration of the gas mixture was initially lowered to 2.0%, then raised back to 10.0 
and then 15.0%.  While the linearity of the curves is well preserved, there are changes in 
the slope and the variance of the signal magnitude and response slope. 
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 average of 36.4±43.0% from before implantation to post explantation.   

 Sensors ranked by magnitude pre-implantation shifted an average 2.09±0.63 ranks 

when compared to post-explantation rankings.  Median rank shift was 1.5±1, illustrating 

the effect of outliers.  It is worth noting that if one sensor on an array moves from the 

lowest to highest rank, with no other change, the result would be an apparent average 

rank shift of (n-1)/n, here 15/16. 

 These results indicate that the arrays were stable during implantation.  Consistent 

sensitivity implies a consistent response to oxygen, the most crucial point of sensor 

performance.  Only one sensor, H-136-8, stood out and skewed variance averages on its 

first use in animal S0411.  However, on the second use of the sensor, these issues were 

reduced, implying that the sensor may not have been properly conditioned prior to its first 

use. 

3.4.2 Ratio of Post versus Pre-Calibration Signal Magnitude   

 The average ratio of pre versus post calibration signal magnitude was 0.974±0.14, 

with the majority of values nearing unity.  The ratios for 10.0 and 15.0% oxygen 

responses were closer to unity, at respectively 0.96 and 0.97.  This implies a general 

consistency in sensor signal magnitude. 

3.4.3 Relation to Biomaterials   

 There was no statistically significant difference for changes in sensitivity slope or 

variance, or rank shift, between electrodes encased in different biomaterials, for any of 

the 4 arrays, P>0.251.  However, there was a slight systematic difference in sensitivity 

slopes for sensors that were encased in PDMS.  Their slopes rose 6.08% more than 

cellulose encased sensors, with negligible differences in variance.  This increase in 

sensitivity may indicate that PDMS encasement affected hydration or osmolarity changes 

in the hydrogel differently than cellulose encasement. 
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Rank shifting differences between electrodes encased in different biomaterials 

were negligible and statistically not significant.  There was also a negligible difference 

between biomaterials in the calculated ratio between pre and post-calibration signal 

responses. 

 There was also a small but systematic increase for all arrays in sensitivity slope 

magnitude and variance for the right hand anterior side of the sensor (B) relative to the 

left hand posterior side (A), independent of biomaterials.  The difference was isolated to 

the third quadrant reference electrode on the affected arrays.  An error in the reference 

electrode, such as dissolution, may have affected its enforced potential, affecting the 

reduction kinetics and thus the sensitivity of the sensors to oxygen.  The stability of the 

reference electrodes in has been well established(9, 81), but effort should continue to be 

made to automate methods of detecting systemic changes in sensor function in vivo. 

3.4.4 Dynamics   

 The time constants for the calibrations, indicative of the rate of sensor response 

(Chapter 4), did increase for some arrays without statistical significance.  However, since 

these changes do not correlate to changes in magnitude, they are likely due to the same 

differences in hydrogel hydration or osmolarity, or differences in compression of the 

sensor’s thin inner membrane.   

 Delays from the introduction of shifts in exogenous oxygen to the beginning of 

the sensor response did not appear different for pre and post-calibrations.  Diffusion 

through the sensor’s inner membrane and hydrogel layer would be expected to be rapid.  

Thus the majority of the delay would be due to the calibration apparatus, likely diffusion 

of gases through the sparging unit, and not the array.  Any noticeable change would have 

indicated a substantial alteration to sensor performance. 
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3.4.5 Potential Influences on Sensor Performance   

 Hydration or salt content of the sensor hydrogel are the most likely differences 

seen between pre and post-calibration sensor performance.  Both would affect oxygen 

diffusivity and differential swelling of the hydrogel.  The current between the working 

and counter electrodes is dependent on the ability of the hydrogel to transmit the electron 

carrying species, affecting rate of magnitude shift, but not the magnitudes themselves.    

3.4.6 The Effect of Connectors   

The potential for salt accumulation and moisture interference were greater for in 

vitro calibrations, affecting the stability of signal conduction by the sensor connector.  

Reduction of the number of connection points is suggested for future design, saving 

maintenance time and reducing potential error. 

 

3.5 Conclusion   

 Sensor signal magnitudes and sensitivity were found to be fairly consistent from 

pre-implantation to post-calibration, the change in neither being statistically significant.  

In addition, the in vitro performance of electrodes that had been implanted under PDMS 

was not significantly different from the performance of those implanted under cellulose, 

improving confidence that differences seen in vivo were genuine.  The biomaterial 

surface chosen does not appear to impact performance of the sensor array per se through 

the implantation process. 

The time constant for most sensors increased, implying a more rapid rate of curve 

resolution following implantation.  Signal and slope variance also increased significantly.  

Both sets of results highlight the importance of stabilizing or monitoring sensor 

hydration.    

 



 

CHAPTER 4: Biomaterials and the Sensor Dynamic 
Response to Single Oxygen Shifts 

 

4.1 Abstract   

Five hamsters fitted with oxygen sensor arrays encased in two adjacent but 

different biomaterials were subjected to challenges consisting of step shifts in exogenous 

oxygen.  The dynamics of the sensor response observed were the rate of signal response 

and delay in signal response following oxygen challenges.  The time constant τc, was 

used as a single value representation of the rate of signal response.  Dynamics were 

compared for sensors encased in cellulose versus PDMS, for increases versus decreases 

in oxygen, for in vitro versus in vivo cases, and finally correlated to histological 

measurements of the explanted tissue, specifically the average vascular proximity. 

The rate of sensor signal change in response to challenge and to a lesser extent its 

delay were found to be well correlated to vascular proximity, an estimation of oxygen’s 

diffusion path in the tissue, indicating potential use of oxygen challenges for non-

invasive characterization of an implanted sensor’s vascular access.  Time constants for 

response curves representing increases in oxygen were found to be larger than for those 

representing decreases.  This ratio was greater in vivo and also corresponded well to 

vascular proximity, suggesting a differential tissue response to increases versus decreases 

in tissue oxygen.  The existence of this differential response for even very small tissue 

volumes indicated vascular changes to be responsible. 

Oxygen transfer was significantly affected by biomaterials.  Sensors encased in 

PDMS had faster responses than those encased in cellulose to shifts in exogenous 

oxygen, despite the average distance to vasculature being greater in their adjacent tissues, 

indicating a relatively higher diffusion rate to these sensors than to those encased in 
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cellulose.  However, thinner microporous membranes would offer less diffusive 

resistance, and due to their correlation to closer vasculature may be potentially better 

choices for sensors with dynamic applications. 

The diffusion constant for the array environment was estimated on average to be 

1.91±0.86*10-5 cm2/s.  Differences between biomaterials were not statistically 

significant. 

 

4.2 Introduction   

4.2.1 General 

 Implanted sensor performance is not limited to static criteria, but rather is highly 

defined by the sensor dynamics.  The ability of a sensor to react to local changes both 

quickly and predictably is key to its diagnostic and predictive applications.   

There are many stages of transfer and diffusion before a change in exogenous 

oxygen levels manifests in the sensor’s tissue environment.  The lag, or delay, between 

the triggering event and the beginning of the actual shift in the sensor signal is an 

important value.  A minimal delay is optimal, especially for diagnosis or closed-loop 

sensor application where quick decisions may affect patient health and survival.  

Additionally, if the delay is greater than the timescale of the triggering event, one event 

may easily become confused with another as their effects overlap. 

Change in oxygen concentrations in the tissue following a change in vascular 

oxygen can be modeled as a diffusion-limited step shift (derivation and discussion in 

Appendix A). 

Equation 4.1   Ct = C1-(C1-Co)*e(-τc*Δt)

Co and C1 represent the initial and final concentrations.  The exponential term is 

dimensionless, where Δt is the elapsed time and τc is the time constant (units of inverse 
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time) representing the rate of concentration change independent of signal magnitude.  As 

seen in Appendix A, τc is a ratio of the diffusion constant over the diffusion path.  For the 

three electrode oxygen sensor, the signal is recorded in terms of voltage, V, which can be 

linearly converted to oxygen concentration, C, using calibrated values(85).  Equation 4.2 

describes the curve form of the sensor response to a step shift in oxygen. 

Equation 4.2  Vt = V1-(V1-Vo)*e(-τc*Δt)   

In this study, the time constants of implanted sensors for responses to single shifts 

in exogenous oxygen were calculated and compared for electrodes encased in different 

biomaterials, seeking to determine if differences exist in the mass transfer properties of 

the adjacent tissue.  The time constants after 14 days of implantation were related to 

histological analysis of the explanted tissue and used to estimation the diffusion constant. 

4.2.2 Determining Time Constants from Discretely Sampled and 

Incomplete Curves, Application to Sensor Control Algorithms 

An additional factor that may limit the use of dynamic information in diagnostic 

or predictive methods involves the accuracy of curve fitting.  For the sake of practical 

application, this study will include exploration of the effect of curve extent, sampling 

frequency, and specification of endpoint values on time constant calculations.  This 

section will be located in Appendix B. 

 

4.3 Materials and Methods   

4.3.1 Data Acquisition from In Vivo Oxygen Challenges   

Hamsters were fitted with window chambers and cellulose/PDMS encased planar 

oxygen arrays.  On days 7 and 14 following implantation, the animals were subjected to 

hypoxic challenges (Chapter 2). 
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4.3.2 Sensor Response Delay Calculations   

 Delays in sensor response were calculated in all animals during in vivo oxygen 

challenges on days 7 and 14, defined as the time difference between the introduction of a 

shift in exogenous oxygen concentration and the first time point of the sensor response 

curve.  Delays were separated for oxygen increases versus decreases.  

 

4.3.3 Calculating Time Constants   

4.3.3.1 Signal Shift Data Preparation in Excel Spreadsheets   

The acquisitions resulting from the oxygen challenges were translated to Excel 

(Microsoft, Version 2003) sheets, where plots were then dissected into individual 

responses to each change in oxygen.  The beginning of each shift was identified visually, 

and then the points at the beginning were filtered to find one that represented a change in 

signal more than twice the signal noise and the first point of a consistent trend.  Curves 

ended in the resolved portion previously used to determine average signal magnitude 

(Chapter 2).  For each shift, the signal data between the selected first and last points, 

along with Δt, was translated to a Tab Separated Values file for importation into 

Mathematica. 

4.3.3.2 Types of Data 

1. Signal shifts representing changes in exogenous oxygen concentration of 

10.0→15.0% and 15.0→10.0%, were prepared for all animals, on day 14 in vivo.   

2.  Signal shifts were prepared in vivo acquisitions for animal subject S0414, 

including 

 a. the signal shifts for 10.0→15.0% and 15.0→10.0% on days 7 and 14, and 
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 b. the signal drop following sensor activation on days 4 and 11. 

3.  Signal shifts representing changes between 2.0 and 10.0% exogenous oxygen for 

the pre-implantation calibration, the pre-calibration with biomaterials, and the post-

explantation calibration of array 136-4, corresponding to animal subject S0414.   

4.3.3.3 Time Constant Calculations in Mathematica  

 For proper recognition by Mathematica (Wolfram Research Labs, Version 5.0), 

the Tab Separated Values (.tsv) files prepared in Excel were changed to Data (.dat) files.  

Calculations of the time constant for all 16 sensors on each array were performed using 

Mathematica’s Nonlinear Regression tool, fitting the raw signal data for each electrode to 

Equation 4.2.  Vo and V1 values, when specified, were obtained by averaging the resolved 

signal magnitudes before and after the shift.  Vo values for the initial signal drop 

following sensor activation were calculated using the same nonlinear regression methods, 

where both Vo and τc were solved for. 

The best fit τc value for each curve was based on error minimization(12) between 

the raw data and an iteratively calculated exponential function.  To validate results, the 

calculated τc’s were used to plot the final fit curves against the raw signal data.  The 

curves were visually analyzed, and time constants from poorly fit curves, or those with 

high average squared error, were excluded from further analyses. 

 

4.3.4 Correlating Dynamics to Vascular Proximity   

The distance between the sensor array and the nearest vasculature, defined as 

microvessels in the granulation tissue or the retractor muscle layer, was calculated for 

each animal (Chapter 6).  This distance is referred to as vascular proximity.  In brief, 

distances were measured using digital images of the explanted tissue histology, with pixel 
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size calibrated by slide micrometer calibration.  Assuming diffusion limited mass 

transfer, roots of vascular proximity were used in correlations with dynamics. 

It is recognized that the proximity calculated by this method may be closer to the 

maximum than the average.  Capillaries in the granulation tissue, closer to the sensor, 

were more difficult to label and identify than those in the retractor muscle, and therefore 

may not have been fully accounted for. 

Animal S0415 was excluded from most proximity plots due to evidence of some 

hemorrhage.  This animal’s results are discussed however as an interesting case. 

 

4.3.5 Comparing Time Constants for Oxygen Increases and 

Decreases of Equal Step Size: The Shift Directional Ratio   

 For each animal subject, the time constants from the in vivo oxygen challenges on 

day 14 were compared for the equally sized increases and decreases in exogenous 

oxygen, calculating the ratio (τc Oxygen Increase/ τc Oxygen Decrease), referred to from 

here on as the Shift-Directional Ratio (SDR). 

 

4.3.6 Estimation of the Diffusion Constant   

Using the average time constants and vascular proximity calculations for day 14 

in each animal, the average oxygen diffusion constant (DO2) of the preparation was 

estimated.  This assumed the 2-dimensional approximation of τc as a ratio of the 

diffusion rate and the diffusion area(72) (Appendix A).  Diffusion constants for the PDMS 

and cellulose membranes were calculated from the in vitro calibrations.  The PDMS 

diffusion constant was calculated first, then used to factor out the role of the PDMS layer 

behind the cellulose, using Equation 4.3, where D is the diffusion constant and d is the 

thickness of each material.  Each term has units of time (seconds). 
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Equation 4.3  pdmspdmscellulosecellulosemembranemembrane DdDdDd /)(/)(/)( 222 +=

While imperfect, these calculations are intended to demonstrate that with thinner 

biomaterial membranes and high quality histology, diffusion in the tissue may be 

estimable using the dynamics of the sensor response.   

 

4.3.7 Analysis and Statistical Methods   

 All comparisons were performed using t-tests, assuming unequal variance.   

 Error for curve fitting was determined using average squared error, calculated by 

squaring the distance error between each point on the raw curve and the fit curve, then 

averaging by the number of points, all as a percent of total magnitude. 

 

4.4 Results and Discussion   

4.4.1 Time Constant Calculations in Mathematica  

 Curves produced with the calculated τc values fit the raw signal response curves 

very cleanly (Figure 4.2), validating the choice of the exponential function and time 

constants as representative of sensor dynamics.  Jumps in the raw data or high noise did 

not generally produce visibly misfit curves or unacceptable squared error.  However, a 

large proportion of response curves had mildly S-shaped bases, exhibiting inflection 

opposite that of the rest of the curve.  These signal shifts were slightly less cleanly 

reproduced, with the fit curve resolving early, increasing calculated time constants 

(Figure 4.2B).  The average squared error for these S-shaped curves still fell well below 

5% of the relative curve magnitude.   

 The S-shape in signal shifts could be explained by a source of active diffusive 

resistance with a low threshold.  Alternately, several convective sources at different 
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distances from the sensor each contributed to the signal, but with small differences in 

delay, making the initial signal rise slowly, then gain momentum. 
    

 
 

Figure 4.1 Sensor Signals During an In Vivo Oxygen Challenge 
An example plot of recorded sensor signals from an in vivo oxygen challenge.  Voltage is 
plotted against time simultaneously for the 16 electrodes of the planar array.  Here, the 
electrodes labeled A are encased in cellulose and those labeled B are encased in PDMS.  
The beginning of shifts in the exogenous oxygen levels are designated by arrows, with 
the initial and final oxygen levels noted.  Response curves begin with each arrow and end 
with the next. 

4.4.2 Delays in the Sensor Response   

4.4.2.1  Uncertainty in Delay Calculations 

There was some inherent error in delay calculations due to the speed at which the 

oxygen tanks in use could be switched.  A breakout valve system was devised to make 

switch times shorter and more accurate, but human error and the need to prevent the 
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Figure 4.2 Comparing Raw Data and Fit Curves 

Two example plots are shown of individual sensor responses to an upward shift in 
exogenous oxygen.  The raw data is represented by individual points and the curve fit 
determined by least squares regression in Mathematica is shown as a continuous line.  
(A) shows a smaller step with rapid resolution, where (B) shows a larger step with slower 
resolution.  The time constant for the curve in (A) is larger.  (B) also shows the slight S-
shape at the beginning of the response curve common to many sensor responses.  

These plots also allow closer observation of the noise (variance) of the sensor signal 
(Chapter 2). Noise for (A) is greater as a percentage of magnitude. 

 



58 

animal from becoming agitated often caused some uncertainty on the order of seconds 

about the actual time the new concentration was introduced.  Thus the recorded delay 

times were only semi-quantitative. 

4.4.2.2 Delay Results 

Delay averages for each animal ranged from 12.8±9.3 to 142.6±49.5 seconds, 

with an average of 57.1±57.9 seconds.  There was little variation between delay times for 

sensors on a given array, but some sensors were seen to begin responses up to 3 time 

points (~3 seconds) before or after their fellows.  Although the plot of delays versus the 

root of vasculature proximity not linear for all animals (R2 = 0.5031), removal of an 

outlier greatly increased linearity (R2 = 0.9091) (Figure 4.3).  The outlier had a lower 

delay than expected, implying that a few close microvessels that were observed in this 

tissue may have been undervalued by the averaging process, underestimating the vascular 

access of this array.  Modeling to determine the impact of lone microvessels on tissue 

oxygenation, and better methods of defining vascular proximity are suggested(41). 

Previous researchers’ estimations for the delay between exogenous changes and 

changes in capillary oxygenation were less than 10 seconds(63).  This suggests that the 

majority of the delay seen here, up to 93%, was in the diffusive transfer of oxygen 

through the tissue and not in convective transfer or other processes. 

Delays were observed to be systematically but not statistically longer, by 

14.7±12.6 seconds, for lower concentrations of exogenous oxygen.  In addition, delays 

for decreases in exogenous oxygen were on average far greater than those for increases in 

oxygen, roughly 2.47±1.07 times larger in vivo.  There is some potential that together 

these findings may imply an oxygen-concentration dependent behavior of tissue 

mechanisms or vascular flow to the subcutaneous tissue.  However, a more carefully 

controlled delay experiment would be warranted to substantiate these ideas.   
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Figure 4.3 Delay in the Sensor Response and Vascular Proximity 
The delays between the introduction of a shift in exogenous oxygen concentration and the 
sensor response are shown plotted against the root of vascular proximity for each animal 
subject.  The relationship is not substantially linear, as would be expected for purely 
diffusion limited situation, but removal of the low outlier increased linearity greatly.  The 
low delay value of the outlier implies the presence of a few close microvessels, keeping 
the response time low, but not altering the average vascular proximity. 

4.4.3 Correlating Time Constants to Vascular Proximity   

 The average time constants for 4 of the 5 animals correlated well to vascular 

proximity (Figure 4.4).  While the proportional relationship validates that the diffusion 

path dominates the time constant and therefore the rate of signal shift, the plot was not 

linear, indicating factors other than pure, homogenous diffusion.  Specifically, the data 

fits the pattern for disproportionately higher equilibration to exogenous changes in 

thinner tissues due to either higher diffusion constants or differences in perfusion.  
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Figure 4.4 Time Constants and Vascular Proximity 
Calculated time constant values for each animal are shown plotted against the square root 
of vascular proximity.  Curve shape is nonlinear, implying that more than diffusion 
distance contributes to the rate of curve resolution.  Time constants for oxygen increases 
were distinct from that for decreases, but followed a similar curve form.  Each point 
represents the average of 16 sensor measurements, 32 for the ‘Average’ series. 

4.4.4 Comparing Time Constants for Oxygen Increases and 

Decreases of Equal Step Size: The Shift-Directional Ratio     

4.4.4.1 In Vitro Shift-Directional Ratios 

Time constants for step increases in oxygen were found in all cases in vitro and in 

vivo to be larger than those for an equal size step decrease in oxygen.  The ratio 

(increase/decrease) of these time constants will be referred to as the Shift-Directional 

Ratio (SDR).  For the calibration of bare sensors and biomaterials encased sensors, SDRs 

were 1.18±0.14 and 1.18±0.14 respectively.  An SDR > 1 indicates some resistance to 

oxygen loss that is not present for oxygen gain.  The remarkable similarity of the in vitro 
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SDRs suggests that such a resistance to loss may exist in the sensor components, such as 

the hydrogel layer, that is not exhibited by the biomaterial membranes.  The time 

constants for the in vivo experiments were very different with and without biomaterials, 

and very different for sensors encased in different biomaterials.  Despite these 

differences, all in vitro measurements had the same SDR. 

4.4.4.2 In Vivo Shift-Directional Ratios 

The SDRs for the day 14 in vivo oxygen challenges correlated well to the root of 

vascular proximity for each animal (Figure 4.5).  SDRs increased with closer vasculature, 

and decreased with further vasculature, seeming to level off near a value of unity.   

The average ratio for all electrodes in all 5 animals on day 14 was 3.56±3.95.  

While the average time constant for all shifts in oxygen were much lower in vivo than in 

vitro, time constants for downward shifts in oxygen were disproportionately lower, 

increasing the SDRs.   

The largest SDRs were for S0414, jumping from 1.18 in vitro to 3.43±1.83 on day 

7 in vivo.  By day 14 of the implantation, S0414’s SDR had increased to 7.82±5.46, due 

to both reduced time constants for oxygen decreases and increased time constants for 

oxygen increases, nearing in vitro values (Figure 4.6).  S0414’s extremely thin 

granulation and dermal tissues contributed to these observations and suggest that small 

amounts of tissue can actively resist oxygen loss, but do not work to prevent oxygen gain.  

Thicker tissues may still have only the same ability to resist loss, but a higher resistance 

to overall diffusion of oxygen reduces the rate at which oxygen increases can take place.  

Thus, it is most likely that the mechanisms involved are vascular, such as changes in 

vascular perfusion and functional capillary density. 
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Figure 4.5 The Shift-Directional Ratio and Vascular Proximity 
The Shift-Directional Ratio plotted against the square root of vascular proximity, 
exhibiting a strong relationship in all animals.  However, the shift-directional ratio was 
not seen to be dependent on the biomaterial encasing the sensor.  The plot is not exactly 
linear, R2=0.925 for the closest fit linear trend, implying that other tissue factors may 
impact the ratio.  The curve does not appear to level off as proximity increases, but does 
appear to head towards a value of 1 as proximity decreases. 

4.4.5 Correlating Dynamics to the Presence of Biomaterials   

4.4.5.1 Time Constants and Biomaterials 

In vivo time constants for electrodes encased in cellulose were found to be lower 

on average than those for electrodes encased in PDMS, with a ratio of 0.867±0.147 

(PDMS/cellulose, n=141).  Due to high variance, differences were only found to be 

statistically significant for 1 of 5 animals (P<0.012).  However, when the comparison was 

further broken down to time constants for increases versus decreases in exogenous 

oxygen, greatly reducing variance, cellulose sensors had significantly lower time 

constants in 4 of the 10 in vivo cases (P<0.037 for 3 groups, and P<0.084 for the 4th). 
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Figure 4.6 Time Constant Changes from Day 7 to Day 14 
(A) shows the average time constants for signal responses corresponding to both oxygen 
decreases and increases in 16 sensors on day 7 following implantation in animal S0414.  
(B) shows the time constants for the same sensors on day 14 following implantation.  By 
day 14, there is a drop in time constants for oxygen decreases and a jump in the time 
constants for oxygen increases, both leading to higher shift-directional ratios. 
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4.4.5.2 Biomaterials and Vascular Proximity 

The results of higher time constants correlating to PDMS encasement appear to 

contrast with the findings in Chapter 6, that the distance from the membrane to the 

vasculature in tissues over cellulose were 17.9% shorter on average than for those over 

PDMS (P=0.129), especially given that time constants were seen to correlate well to 

vascular proximity independent of biomaterials (Figure 4.7).  However, time constants 

for in vitro calibrations of the electrodes encased in cellulose were found to be 4.88 fold 

smaller than those for PDMS, indicating that wet cellulose has a greater resistance to 

diffusion.  In vivo, the impact of this higher diffusion resistance remains, but has either 

been diminished by ingrowth of the tissue into the cellulose, or by the relatively large 

diffusion resistance of the tissue.  If thinner membranes of the same biomaterials were 

implemented, it is possible that the difference in vascular proximity elicited by cellulose 

may still be exhibited, but that the material itself would have a far lesser impact on 

diffusion, thus making microporous materials a potential better choice for optimizing 

sensor dynamic performance. 

4.4.5.3 The Effects of Biomaterials on the Sensor 

Time constants for the post calibration of the sensor array, though higher than 

time constants calculated for the pre-calibration, showed no statistical difference in this 

change between sensors encased in different biomaterials, similar to observations in 

Chapter 3.  This indicates that differences seen in vivo are due to biomaterials and tissue. 

4.4.6 Time Constant and Initial Magnitude Calculations for the 

Initial Signal Drop In Vivo: Effect of Biomaterials     

Following sensor activation, a 20-30 long drop in signal magnitude was observed, 

far larger in time scale than transient signals seen in in vitro calibrations of the arrays and 

then previously observed for in vitro sensors(82, 131). 
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The time constants calculated for S0414’s drop in signal after sensor activation 

decreased an average of 67.2%, from 0.73±0.74 on day 4 to 0.24±0.12 on day 11  in 

animal S0414.  Time constants started 4.27 times higher for cellulose encased sensor τc’s 

than PDMS encased sensor τc’s.  The two groups saw a loss of 86% and a gain 1.7% 

respectively by day 11, significantly different (P<0.012) (Figure 4.8).  Time constants for 

sensors encased in different biomaterials was significantly different on both days 4 and 

11 (P<0.020 and P<0.026 respectively), indicating that at some point between days, the 

groups may have been similar. 
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Figure 4.7 Biomaterials, Time Constants, and Vascular Proximity 
Calculated average time constants are shown plotted against the root of vascular 
proximity for each animal and each encasing biomaterial.  The curve of time constants 
for electrodes encased in cellulose is distinctly lower from that for sensors encased in 
PDMS, but follows a similar curve form.  Each point represents the average of 16 sensor 
measurements. 
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Figure 4.8 Time Constants and the Initial Signal Drop In Vivo  
Time constants are shown for the initial drop in sensor signal following its activation, on 
days 4 and 11 of implantation for animal S0414.  The average magnitude and variance of 
the time constants for cellulose encased sensors (A) decrease by day 11, while those for 
PDMS encased sensors do not significantly change (B). 

The change in the initial signal magnitude for each sensor, calculated by nonlinear 

regression, was highly dependent on the encasing biomaterial, falling 63.2±33.5% for 

cellulose and rising 37.4±70.8% for PDMS, a significant difference (P<0.0048) despite 

the high variation of the PDMS group, (Figure 4.9). 

Higher initial signal magnitudes would suggest storage of higher concentrations 

of oxygen, increasing flux of oxygen at activation, while higher time constants suggest 

more accessible oxygen stores that were rapidly depleted.  It is possible that the oxygen 

storage of the cellulose or its contents was initially high at first but was greatly reduced, 

while the oxygen storage in tissues adjacent to both materials increased, more so for 

tissue adjacent to PDMS, which had 17.9% longer tissue diffusion distances on average.  
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Changes in the Initial Signal Magnitude for 
Biomaterials Encased Oxygen Sensors

PDMSCellulose
Day 4 Day 11 Day 11Day 4

0

0.1

0.2

0.3

0.4

0.5

0.6

Se
ns

or
 S

ig
na

l (
vo

lts
, V

=1
0n

A
)

A1
A2
A3
A4
A5
A6
A7
A8
B1
B2
B3
B4
B5
B6
B7
B8

 

 
Figure 4.9 Biomaterials and Transient Initial Signal Magnitude 
The calculated initial magnitudes for the initial drop in signal are shown for both 
cellulose and PDMS encased sensors on days 4 and 11 following implantation.  While the 
cellulose encased sensors had a much reduced initial signal magnitude by day 11, 
possibly due to the ingrowth of tissue, the PDMS encased sensors experienced an 
increase in initial signal magnitude. 

Final signal magnitudes for the sensors rose 10.0±28.2% from day 4 to 11 for all 

sensors, supporting the theory of increased oxygen storage or flux.  Histological 

observations described in Chapter 6 also showed that the tissue had completely 

penetrated S0414’s cellulose leaving a thin layer of dense connective tissue and cells.  

This supports the explanation that the oxygen storage of cellulose changed during 

implantation.   
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4.4.7 Estimating the Diffusion Constant   

Using the calibrations of arrays with biomaterials, the diffusion constant in PDMS 

was estimated to be 2.15*10-5 cm2/s, on par with values from the literature(28, 96).  

However, the sensor hydrogel layer was not accounted for, which implies that true values 

may be higher.  Using the estimated DO2 for PDMS and Equation 4.3, the diffusion 

constant in cellulose was found to be 4.41*10-7 cm2/s. 

Estimates of the fiffusion constants for the array environment, combining the 

material membranes and the tissue, varied for each animal from 1.04-8.10*10-5 cm2/s 

(Table 4.1).  The large outlier value was again for S0415, and the average of the 

remaining values was 1.91±0.86*10-5 cm2/s.  These values are within the expected order 

of magnitude for tissue diffusion constants seen by previous investigators in the hamster 

skinfold and similar muscular tissues(15, 16, 129, 145).  However, when the DO2 of tissue in 

the preparations was calculated by factoring out the contribution of the biomaterial 

membranes, unrealistic values were obtained, indicating that the diffusion constants of 

the biomaterials may have increased from their in vitro values.  Alternately, in vitro 

values may have been underestimated due to excess moisture on the membrane surfaces. 

With better histology and biomaterial characterization, there is a potential use of 

sensor dynamics in determining the tissue diffusion constant in vivo. 

4.4.8 Limitations of the Histology and Future Directions   

The outlier for all proximity calculations, S0415’s average distance to vasculature 

was the highest at 591.2µm, but a few close capillaries around muscle fibers may have 

increased the time constants for this animal to 0.397, the second highest observed 

average.  In addition, evidence of fluid presence or hemorrhage was found in S0415’s 
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tissue which could have affected diffusion.  This latter observation was the driving force 

for removing S0415 from most calculations. 

Table 4.1 Oxygen Diffusion Constants for the Array Environment 
Diffusion constants to the array are estimated for each animal, using average time 
constants and vascular proximity.  The diffusion path accounts for the distances in the 
tissue as well as the membrane thickness, which was relatively constant. 
 

Table 4.1 Estimated Oxygen Diffusion Constants for the Array Environment 
 

Animal Subject Diffusion Path (cm2) Time Constant 
15.0→10.0% O2 (min-1) DO2 (10-5 cm2/s) 

S0411 0.01275 0.089044 1.89 
S0414 0.00543 0.340499 3.08 
S0416 0.00672 0.0925 1.04 
S0417 0.01196 0.082003 1.63 

Combined S0411-S0417 1.91±0.86 
S0415 0.01668 0.291318 8.10 

 It should be noted that the presence of capillaries in the granulation tissue could 

not be absolutely determined due to the absence of suitable hamster antibody stains, the 

failure of enzyme activity stains, and a thaw defect that occurred with the frozen 

histology.  These issues are discussed in Chapter 6.  As well, a site relatively devoid of 

large venules and arterioles was chosen with the intention of creating an initially evenly 

oxygenated preparation.  For the most part, capillaries surrounding retractor muscle fibers 

constituted the nearest identifiable vasculature.   

For the benefit of future work, anti-hamster antibodies for targets such as 

endothelial cell CD-31 marker are currently being tested.  These may improve the 

identification of vasculature for future studies. 
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4.5 Conclusion   

 Time constants for electrode curves were found to be well correlated to the 

sensor’s access to vasculature, with faster signal resolution for closer microvessels.  

However, the extreme curvature of the relationship implied that thinner tissues may have 

had distinctly higher diffusion rates.  Delays between challenges and sensor responses 

showed similar correlation, with outliers tending to have lesser delays, perhaps due to a 

few undetected microvessels close to the biomaterial membrane surface.  Cellulose 

encasement reduced sensor time constants, to a much lesser extent in vivo than in vitro, 

but with visible effects even after 14 days of implantation.   

 Time constants were consistently higher for increases in oxygen versus decreases.  

The shift-directional ratio in vitro was the same for both bare sensor arrays and those 

encased in biomaterials, implying that biomaterials do not inherently affect this ratio.  

However, the ratio was, on average, 3.02 times larger in vivo, and correlated very cleanly 

to vascular proximity.  These results both suggest that the tissue, most likely the local 

vasculature plays a role in buffering against hypoxia, and that implanted sensors are a 

potential method of studying these phenomena.  

Overall, this study validates the dynamics of sensor signals as a valuable part of 

assessing sensor performance.  Time constants were demonstrated to be a simple 

representation of sensor dynamics, utilizing empirical in vitro and in vivo data as well as 

quantified histology.  Between the correlation of time constants and the shift-directional 

ratio to vascular proximity, artificial oxygen challenges are strongly suggested as a means 

for non-invasively determining the access of implanted sensors to vasculature.   

Calculations of diffusion constants for the array environment were similar in 

magnitude to those expected from material and tissue values in the literature, but 

estimation of tissue DO2 was not successful, due to possible changes in the diffusion 
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through the biomaterials in vivo.  More carefully controlled experimentation would be 

needed to use the implanted sensor as a measure of tissue DO2.  

This study encourages future work on in vivo dynamics for other analytes, such as 

glucose and lactate, particularly with regards to biomaterials.  Alternate methods of 

challenges, such as ischemia or hyperoxia, would provide a more specific understanding 

of which tissue mechanisms affect dynamics and how biomaterials affect these 

mechanisms. 
 

 



 

CHAPTER 5: Biomaterials and the Response to 
Hypoxia and Oxygen Challenges  

 

5.1 Abstract   

Sensor performance was measured in response to several dynamic oxygen 

challenges with and without a dual biomaterial membrane in vitro and with a dual 

membrane in vivo.  The challenges took the form of short term hypoxic exposure and 

repeated cycles of oxygen decreases and increases. 

Following hypoxia, sensor signals in bare arrays did not return to their former 

magnitudes, but resolved at lower values.  The effect was reversible by extended 

exposure to higher oxygen levels.  With the biomaterial membranes, these effects were 

greater, with an average 8.85±2.68% loss of signal magnitude following an 80% 

reduction in oxygen concentration.  Cellulose encased sensors experienced significantly 

greater signal loss than PDMS encased sensors (P<0.0011).  Loss and gain of dissolved 

oxygen in the materials and fluids of the sensor may have contributed to these 

phenomena by creating a temporary imbalance in flux, even in the short diffusion path of 

the bare arrays.  In vivo, loss of signal magnitude following hypoxia was greater, 

15.73±12.88% with a 28% reduction in oxygen, but with no significant difference in 

biomaterials.  Signal loss was significantly greater on day 14 than day 7.  Continued loss 

of signal magnitude was observed with repeated oxygen challenge cycles. 

The time constants for in vivo sensor response curves were observed to increase 

following hypoxic shifts.  Time constants also increased on subsequent cycles of the 

repeated oxygen challenges.  In vitro, where no oxygen dependent mechanisms are 

assumed to exist, time constants actually decreased with rapid repeated cycles of oxygen 

challenge.   

72 
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These results indicate that signal magnitude and dynamics are both dependent on 

oxygen history, and that the tissue response can affect this dependence. 

 

5.2 Introduction   

 Many elements of physiology exhibit active responses to metabolic challenges.  In 

particular, the short and long term reactions of cells and tissue to oxygen fluctuation and 

hypoxia is an important phenomena to wound healing and device implantation(34, 63, 115, 

120).  Biosensors are inherently likely to be in environments experiencing variable oxygen 

flux, and thus their designs should take into account the effect of dynamic change on 

performance.  In addition, it should be considered how the response of the tissue to the 

device implantation and to the implant materials affects these changes. 

This study examined the effects on sensor magnitude and rate of response of short 

term hypoxia and of repeated cycles of oxygen decreases and increases.  For the purposes 

of the study, normoxic levels were considered to be those at room air, or 20.9% oxygen.  

A shift to lower oxygen and back, for example 15.0→10.0→15.0%, is referred to as a 

hypoxic exposure.  Hyperoxia was never introduced, but in several instances, 

measurements are made at 15.0% oxygen following shifts to and from 20.9% oxygen.  In 

these situations, the shift is referred to as an exposure to elevated oxygen.  

 

5.3 Materials and Methods   

5.3.1 In Vitro Data Collection: Bare Arrays     

During in vitro calibrations (Chapter 3) of several bare arrays, sensors had three 

separate experiments performed on them for hypoxic exposure. 

1.) 20.9→2.0→20.9% exogenous oxygen, a simple hypoxic exposure.   
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2.) 20.9→2.0→15.0→20.9%, hypoxic exposure with interim equilibration. 

3.) 10.0→2.0→10.0%, a smaller scale hypoxic exposure. 

The in vitro multi-cycle challenges were performed on one array, starting at 

20.9%, then following the pattern, (2→10→15→), three times (Figure 5.1).   

 

 
 
Figure 5.1 In Vitro Calibration of a Bare Sensor Array: 3 Cycles of Hypoxic Challenges 
The signal magnitudes for 16 oxygen sensors of a planar array are plotted against time.  
The array is exposed to 3 cycles of oxygen challenge, with increases in oxygen indicated 
by upturned arrows and decreases indicated by downturned arrows.  The initial and final 
concentrations of each shift in exogenous oxygen are noted at the arrows.  The times at 
which measurements of signal magnitude were made are noted by colored rings on an 
example sensor signal.  The grey rings denote measurements at 10.0% exogenous 
oxygen, and the white rings measurements at 15.0%.  Time constants were measured for 
each shift in oxygen, beginning at an arrow, and ending at a ring. 

 

For the three single shift experiments, the signal magnitude was measured 

(Chapter 2) before and after the exposure for comparison.  For the multi-cycle challenge, 

signal magnitudes were collected at 10.0 and 15.0% oxygen for each cycle. 
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5.3.2 In Vitro Data Collection: Arrays with Biomaterials   

 During in vitro calibrations of several arrays encased in their biomaterial 

membranes, sensors had their signal magnitudes measured before and after a 

10.0→2.0→10.0% hypoxic exposure.  Loss of signal magnitude was compared for 

sensors encased in different biomaterials. 

 

 
 
Figure 5.2 In Vivo Acquisitions of 16 Oxygen Sensors: 2 Cycles of Hypoxic Challenges 
The signal magnitudes for 16 oxygen sensors of a planar array are plotted against time.  
The array is exposed to 2 cycles of oxygen challenge, with increases in oxygen indicated 
by upturned arrows and decreases indicated by downturned arrows.  The arrows indicate 
the beginning of a shift in the exogenous oxygen mixture, with the initial and final 
oxygen levels noted.  Rings are shown to denote the time at which signal magnitudes 
were measured and are further described in (Table 5.3).  Time constants were measured 
for each shift in oxygen, beginning at an arrow, and ending at a ring. 
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5.3.3 In Vivo Data Collection   

 For all animals on days 7 and 14 following implantation of the sensor array and 

biomaterial membranes, signal magnitude was measured before and after two types of 

hypoxic exposures: 1.) 20.9→15.0→20.9%, and 2.) 15.0→10.0→15.0%. 

On day 7, for animals in good temperament, the hypoxic challenge cycle (Chapter 

4 methods), 20.9→15.0→10.0→15.0→20.9%, was repeated two full times consecutively 

(Figure 5.2), constituting the multi-cycle challenge.  Signal magnitudes were measured at 

each exogenous oxygen level.  The length of these experiments and comfort of the animal 

allowed only two of these experiments to be performed. 

 

5.3.4 Sensor Dynamics: Time Constants   

 Time constants were calculated (Chapter 4) for each shift from 10.0 to 15.0% 

exogenous oxygen during the bare array multi-cycle challenge.  Time constants were 

calculated for all shifts of exogenous oxygen for the in vivo multi-cycle oxygen 

challenges. 

 

5.3.5 Data Analysis and Statistical Methods   

 Loss or gain of signal magnitude was determined as a percentage of the original 

magnitude.  The sensor magnitudes and time constants were compared for each cycle of 

the multi-cycle challenge using ANOVA methods.  Other two group comparisons were 

made using paired t-testing with the assumption of unequal variance. 

 

 



77 

5.4 Results and Discussion   

5.4.1  Hypoxic Exposure and Signal Magnitude   

5.4.1.1 Hypoxia and the Bare Sensor Array   

Changes in signal magnitude for the three single cycle experiments are shown in 

(Table 5.1).  The signals measured at 20.9% with exposure to 2.0% lost significantly less 

magnitude when allowed to equilibrate at 15.0% before returning to 20.9% (P<0.054).  

Signals measured at 10.0% with exposure to 2.0%, lost significantly more magnitude 

than the signals at 20.9% with the 2.0% exposure and 15.0% equilibration (P<0.000293, 

n=59), but did not lose significantly more magnitude than for the 20.9% measurements 

with simple 2.0% exposure. 

 

Table 5.1 Changes in Signal Magnitude In Vitro Following Hypoxic Exposure 
Values are given as the change in signal magnitude as a percent of original magnitude. 
 

Table 5.1: The Bare Sensor Array, Changes in Sensor Signal Magnitude Following Hypoxic 
Exposure 

 
Oxygen Levels  

Measurement Level Intervening Hypoxic Exposure Change in Magnitude 
20.90% 2.0% -2.26±3.07 
20.90% 2.0, then 15.0% -0.37±1.66 
10.0% 2.0% -2.98±2.76 

 

For the experiment with three full cycles, the signal magnitudes did not change 

significantly from cycle to cycle (Figures 5.1 and 5.3).  However, the first signal was 

collected following a period of 2.0% oxygen, so the signal magnitude may have already 

dropped by as much as was possible prior to this measurement. 

A possible explanation for the loss of signal magnitude following hypoxia is 

based on the linear relationship between oxygen concentration in aqueous media and  
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Figure 5.3 Signal Magnitudes for 3 Cycles of In Vitro Oxygen Challenges 
The signal magnitudes taken at 10.0 and 15.0% exogenous oxygen are compared for 
three cycles of oxygen challenge during a sensor array calibration.  The values for the 16 
sensors are relatively stable, not changing significantly from one cycle to another. 
 

the exogenous partial pressure of oxygen (Henry’s Law).  The results show that more 

extreme hypoxia caused a greater loss of signal magnitude, and that the effects were 

observed to be reversible with exposure to elevated oxygen.  Both support the possibility 

of changes in dissolved oxygen which could have temporarily disrupted the flux balance, 

lowering the sensor signal.  While some elements of the calibration apparatus may retain 

oxygen, such as the fluid media in the calibration flask, the timescale of the changes that 

were observed, their rapid reversibility, and the clean exponential form of the signal 

shifts, imply a smaller closer source than the flask media such as the hydrogel layer, the 

hydrophobic membrane, or adsorbed moisture.  

There was no clear relationship between signal loss and the oxygen concentration 

at which measurements were taken, only dependence on the size of the hypoxic shift. 
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5.4.1.2 Hypoxia and the Sensor Array with Biomaterials   

 The loss of signal magnitude seen following a hypoxic challenge was much 

greater with the biomaterial membrane in place.   Sensor signals measured at 10.0% 

oxygen, with intervening 2.0% exposure, lost an average of -8.85±2.68% magnitude.  

The average loss for sensors encased in cellulose was -12.79±2.95%, significantly larger 

than the average loss for those encased in PDMS, -5.17±2.78% (P<0.0011). 

 PDMS is known to have some solubility for oxygen, but far less than water.  Thus 

its solvation of oxygen may be augmented by water vapor retention.  Solubility of oxygen 

in cellulose will also be due largely to the aqueous buffer it retains.  Assuming solubility 

is constant throughout the membrane volume, the cellulose had a 5.91 fold greater impact 

than PDMS on signal loss, creating a greater temporary flux imbalance.  While medical 

applications would utilize thinner membranes, those requiring higher accuracy should 

take material oxygen solubility into account when designing for dynamic environments, 

also considering the fluid and vapor retention of these materials. 

5.4.1.3 Hypoxia In Vivo: Single Exposures   

 Table 5.2 shows the change in signal magnitudes in vivo at 20.9% and 15.0% 

exogenous oxygen, following short term hypoxic exposure.  All measurements showed a 

loss of signal, greater on day 14 than day 7 (P<0.018, n=273), but almost identical for 

sensors encased in different biomaterials.  Loss was larger than seen in vitro with 

biomaterials by a factor of 1.96, suggesting the tissue stores equivalent oxygen or 

alternately that the lower flux experienced in vivo was easier to perturb.  Signal loss did 

not appear to correspond to vascular proximity (Chapter 4 methods).  One animal, S0415, 

lost far less signal.  Histological observations of the animal’s tissue showed strong 

evidence of hemorrhage, fluid retention, and loose red blood cells.  Thus, the hypoxia 

may have not fully depleted the potentially considerable stores of oxygen in this tissue. 
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Table 5.2 Changes in Signal Magnitude In Vivo Following Hypoxic Exposure 
Change in magnitude as a percent of original signal magnitude following hypoxic 
exposure is shown for all animals on days 7 and 14 following implantation, with standard 
deviations.  Changes with respect to biomaterial encasement are also shown.  The 
increase in the sensor signal loss on day 14 versus 7 should be noted. 
 

Table 5.2: The Sensor Array with Biomaterials In Vivo, Changes in Sensor Signal Magnitude 
Following Hypoxic Exposure 

 

Days Following 
Implantation Oxygen Levels Change in Magnitude 

 Measurement 
Level 

Hypoxic 
Exposure All Sensors Cellulose 

Encased 
PDMS 

Encased 

20.9% 15.0% -14.90±9.10 -14.30±8.77 -15.47±9.52 
15.0% 10.0% -12.58±10.27 -13.29±11.62 -11.89±8.92 7 

Combined -13.74±9.73 -13.80±10.22 -13.68±9.32 
20.9% 15.0% -16.74±16.51 -15.59±18.51 -17.91±14.33 
15.0% 10.0% -17.96±12.92 -19.30±14.40 -16.55±11.18 14 

Combined -17.34±14.80 -17.45±16.58 -17.24±12.80 
 

20.9% 15.0% -15.91±13.69 -15.02±14.94 -16.80±12.35 
15.0% 10.0% -15.54±12.06 -16.66±13.50 -14.40±10.39 All Days 

Combined -15.73±12.88 -15.84±14.21 -15.61±11.44 
 
 
Table 5.3 Changes in Signal Magnitude In Vitro Between Cycles of Oxygen Challenges 
Changes in signal magnitudes between the two cycles of a multi-cycle oxygen challenge 
are shown at all oxygen concentrations.  Measurements were not made immediately 
before and after a single exposure, but rather at the same position in each cycle.  The 
measurements are marked by colored rings on the plot of one example sensor in Figure 
5.2.  Here, the intervening oxygen level is defined as the hypoxic or elevated exogenous 
oxygen level the sensor was most recently exposed to.     
 

Table 5.3: The Sensor Array with Biomaterials In Vivo, Changes in Sensor Signal Magnitude 
Between Cycles of a Multi-Cycle Oxygen Challenge 

 

Figure 5.2 
Marking Oxygen Levels Change in Magnitude 

By Ring Color Measurement 
Level 

Intervening 
Level All Sensors Cellulose 

Encased 
PDMS 

Encased 
Light Grey 15.0% 10.0% -10.17±7.54 -8.11±5.75 -12.14±9.20 

White 20.90% 15.0% -7.97±1.42 -7.22±2.31 -8.81±2.17 
Dark Grey 10.0% 15.0% -7.39±6.74% -6.39±5.31% -8.36±8.14 

Black 15.0% 20.9 1.34±1.77 0.49±1.18 2.32±2.18 
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Figure 5.4 Normalized Signal Magnitudes for 2 Cycles of In Vivo Oxygen Challenges 
Measured signal magnitudes are compared for two cycles of an in vivo oxygen challenge 
on the 7th day following implantation of the sensor array with biomaterials.  Magnitudes 
at each oxygen level, 10.0%, 15.0%, and 20.9% oxygen dropped from the 1st to the 2nd 
cycle, except for those at 15% immediately following exposure to 20.9% oxygen, which 
rose slightly.  Normalization was to pre-calibration of the array with biomaterials. 

5.4.1.4 Hypoxia In Vivo: Multi-Cycle Oxygen Challenges 

 For the multi-cycle oxygen challenges, signal magnitudes from the first to the 

second cycle dropped for all measurements at 20.9% and 10.0% exogenous oxygen 

(Table 5.3) (Figure 5.4).  The signals measured at 15.0% oxygen also lost magnitude 

following exposure to 10.0%, but with elevated 20.9% oxygen intervening, magnitudes 

actually increased, with high significance for a difference between these two groups 

(P<1.28*10-7).  This last result, where change in signal magnitude was dependent on the 

levels of intervening oxygen exposure, was consistent with the in vitro results, indicating 

strongly that the biomaterials and the tissue have a depletable store of oxygen, or that 

oxygen dependent tissue mechanisms were activated such as changes in cellular oxygen 
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metabolism, or changes in functional capillary density, vascular tension or flow rate, or 

hemoglobin saturation.  Most sensor signals lost magnitude from cycle to cycle, even the 

measurements at 10.0% oxygen, further indicating changes in the tissue that may affect 

flux and flux balance.  Careful experiments relating changes in dissolved oxygen to 

changes in exogenous oxygen may be a potential method of estimating the solubility 

coefficient of the tissue. 

 The change in signal magnitude between cycles was systematically, but not 

statistically larger for cellulose encased sensors than PDMS encased sensors in vivo.  

Tissue effects on oxygen flux during challenges may have largely outweighed the effects 

of the materials. 

As was also observed in vitro, no pattern was established relating changes in 

signal magnitude to the oxygen levels at which the measurements were taken. 

 

5.4.2 Hypoxic Exposure and Time Constants   

5.4.2.1 Time Constants and In Vitro Multi-Cycle Challenges   

 For the in vitro multi-cycle oxygen challenges, the average time constants 

decreased from each cycle to the next, losing 4.92±11.50% from the first to the second 

cycle, and 14.12±12.34% from the second to the third cycle, a total loss of 20.47±10.98% 

(Figure 5.5).  An ANOVA test of the time constants for each cycle showed a significant 

difference (P<0.011), and t-tests between the last two cycles showed their time constants 

to be significantly different (P<0.020).  While the initial and final signal magnitudes are 

virtually identical (Figures 5.1 and 5.3), the response to shifts in oxygen took longer to 

resolve.  The most likely reason is reduced hydration or altered osmolarity of the sensor 

hydrogel, or changes in the adsorbed moisture on the sensor face.  Even given the short 

duration of the calibration, hydration may have had an effect on sensor performance. 
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Figure 5.5 Time Constants for Three Cycles of In Vitro Oxygen Challenges 

5.4.2.2 Time Constants and In Vivo Multi-Cycle Challenges   

 For the multi-cycle in vivo oxygen challenges, time constants were seen to 

increase significantly from the first cycle to the second (P<0.013, n=112) (Table 5.4) 

(Figure 5.6).  Time constants for the shift from 20.9% exogenous oxygen to 15.0% 

showed the least increase between cycles, significantly different than for the other shifts 

(P<1.2*10-9).  This correlates well to the results for changes in signal magnitude, where 

this was the only data point to increase.  The difference in time constant values from the 

1st to the 2nd cycle was significant for the shift from 15.0 to 10.0% exogenous oxygen and 

the shift from 15 to 20.9% (P<2.09*10-5 and P<0.033 respectively), but was not seen to 

be significant for the other two shifts.  Increases in time constants were far greater than 

those expected due to the reduction of signal magnitudes and the consequently increased 

ease of curve resolution. 
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Visual inspection of the response curve form demonstrated that the first portion of 

each response curve, the exponential portion, was similar from cycle to cycle, but the 

second more linear portion of the response curve lost a significant amount of slope in 

later cycles (Figure 5.2).  This more linear portion may correspond to specific effects of 

the tissue or materials on diffusion or flux. 

 
Table 5.4 Changes in Time Constants In Vivo Between Cycles of Oxygen Challenges 
Changes in time constants between the two cycles of a multi-cycle oxygen challenge are 
shown at all oxygen concentrations.  The response curves are marked on (Figure 5.2), 
beginning at the appropriate arrow and ending with the assigned colored ring.  Initial and 
final oxygen values of the corresponding exogenous shift are noted at the arrow. 
 

Table 5.4: The Sensor Array with Biomaterials In Vivo, Changes in Time Constants Between 
Cycles of a Multi-Cycle Oxygen Challenge 

 

Response Curve 
Markings in 
Figure 5.2 

Oxygen Shift Change in Magnitude From the 1st to 2nd Cycle 

By Ring Color  All Sensors Cellulose Encased PDMS Encased 
Light Grey 10.0→15.0% 16.28±13.67 15.21±16.49 17.35±11.41 

White 15.0→20.9% 52.72±23.23 53.85±26.16 51.60±21.96 
Dark Grey 15.0→10.0% 59.45±41.99 69.30±51.99 49.61±29.85 

Black 20.9→15.0% 0.75±9.15 -2.79±6.86 4.29±10.24 
 Combined 32.30±34.94 

 

Tissue reactions to hypoxia and oxygen dynamics may have caused increases in 

the functional capillary density of the tissue(79, 94, 132), reducing the average diffusional 

distance.  Other factors that could increase the rate of the tissue’s response to exogenous 

change could be increased myoglobin facilitated diffusion in the muscle(39, 52, 91), or 

increased vascular flow or extraction of oxygen from hemoglobin in nearer vessels. 

 There were no consistent or significant differences seen in the time constant 

changes for sensors encased in different biomaterials.  It is likely that, for this particular 

experiment, rapid dynamic changes in the tissue due to hypoxia may have overshadowed 

any long term effects of the biomaterials. 
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Time Constants for 16 Sensors Over 2 Cycles of 
In Vivo Oxygen Challenges , Subject S0415
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Figure 5.6 Time Constants for Two Cycles of In Vivo Oxygen Challenges 
Calculated time constants are shown for four different shifts in exogenous oxygen, during 
the first and second cycle of an in vivo oxygen challenge.  (A) shows the time constants 
for all 16 sensors in different cycles.  The oxygen shift the time constants were calculated 
for is noted, and the first and second cycle are shown separately.  (B) shows the averages 
for each shift for clarity.  In general, time constants increased significantly from the 1st to 
the 2nd cycle, the exception being the shift from 20.9 to 15.0% oxygen. 
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5.4.2.3 Effect of Signal Resolution   

 While many of the sensor responses in these experiments were not allowed to 

resolve fully, the signal loss from allowing technical resolution as opposed to complete 

resolution was estimated to be an order of magnitude smaller than the loss of signal 

magnitude seen with hypoxic exposure. 

5.4.2.4 Use of Relative Measures   

 It is not known for sure how much of the solubility of tissue oxygen is dependent 

on exogenous oxygen concentration.  As well, the respective roles of potential vascular 

changes versus dissolved oxygen have not yet been established.  These uncertainties 

complicate comparison of in vitro and in vivo data.  Future experimentation would 

benefit from sensor calibrations performed at lower exogenous oxygen concentrations, 

closer to those experienced by the sensor in vivo. 

 

5.5 Conclusion   

 The results of this experiment demonstrate a role of both tissue and the 

biomaterials in the response of the sensor to oxygen challenges.  The in vitro results 

demonstrate that biomaterials may retain dissolved oxygen that acts to buffer rapid shifts 

in oxygen concentration.  Following periods of hypoxia, these stores are depleted and do 

not contribute to the sensor signal until the flux imbalance is resolved.  

In vivo results strongly indicate that tissue also acts to store oxygen, changing 

measurements in signal magnitude following hypoxic events elevated oxygen exposure.  

In particular the lesser increase in time constants and the overall increase in signal 

magnitude at 15.0% oxygen following elevated oxygen exposure demonstrate that the 

tissue is retaining oxygen that can be depleted and replenished.  It is also possible that 

tissue mechanisms, specifically vascular, may affect the signal magnitude following 
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hypoxic exposures by altering the flux balance or diffusion properties.  Implanted 

biomaterials seemed to have a less significant effect than the tissue, at least over the two 

weeks covered by the current study. 

Time constants increased during in vivo challenges, which conflicts with the in 

vitro observations.  Paired with the loss of magnitude from cycle to cycle of the in vivo 

challenges, indicate that oxygen transfer in the tissue was altered by hypoxia.  The most 

likely changes involve increases in functional capillary density or other delivery of 

oxygen to nearer vessels, changes that would increase the ability of the tissue to adjust to 

oxygen changes.  However, it is interesting that subcutaneous tissue, in the range of 

hypoxia explored in these studies, does not appear to substantially stabilize oxygen 

levels, but rather seems to only slow or reduce the loss of oxygen.   

There were two key observations of these experiments.  First, there was a 

dependence of the sensor signal and dynamic performance on oxygen history, an 

important consideration for using the sensor in diagnostic or predictive applications, or 

for the function of enzymatic sensor co-analyzing oxygen.  Second, the tissue response to 

the material implantation affected this dependency. 

A future direction for experimentation would be to study the effects of chronic 

hypoxia on the phenomena observed here, specifically the change in signal magnitude 

and time constants.  In addition, the comparison of the magnitude of the results seen in 

vitro and in vivo were complicated by the relationship of the exogenous oxygen to the 

actual oxygen experienced by the sensor.  Thus future experiments would benefit from 

calibrations performed at low oxygen levels, closer to those seen in vivo. 

 Experiments using vasoactive compounds(53) to even out perfusion of the 

vasculature may also allow the roles of dissolved oxygen or vascular changes in the tissue 

during oxygen challenges to be quantified.

 



 

CHAPTER 6: Quantitative Histological Analysis of 
Subcutaneous Tissue from Biomaterial Implantations 

 

6.1 Abstract   

 In this study, a large scale project to quantify histology through analysis of digital 

images was undertaken.  First a technique for creating seamless images of tissue sections 

at high resolution was developed.  Then, using in-house image processing tools 

programmed in Matlab (Mathworks), a user interface was created to analyze the digitized 

histology with respect to specific tissue features with potential impact on oxygen 

diffusion: including microvessels, muscle fibers, collagen, and cells.  For each specific 

tissue feature, several tools were created to allow analysis of its general color and 

morphological properties.  The established properties were used to filter images, isolating 

the desired features, quantifying them, and providing information about their spatial 

distribution.      

 The results of the project were that color filters, especially those in NTSC space 

proved useful in feature identification, but morphological filters were required for full 

isolation of features, and most images required some form of artifact removal, for which 

tools were developed.  The ability of the program to isolate a wide range of features was 

validated despite variations in sample color and form due to the histological process.  The 

versatility of the program with respect to those elements was also validated. 

 Subcutaneous tissues from sensor implantations in the hamster window chamber 

were analyzed with the final program for the vascular proximity values in Chapters 2, 4 

and 5 of this dissertation.  Tissues adjacent to cellulose were found to have a 17.9% lower 

average distance to vasculature from the sensor, and cellulose membranes were observed 

to have been completely penetrated by ingrown tissue by day 14.  In addition dermal 
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tissues adjacent to cellulose in animals implanted with only biomaterial membranes were 

observed to have a lower mast cell density than tissues adjacent to PDMS. 

 Potential improvements in future programming, computational capacity, and 

histological processing are also discussed. 

 

6.2 Introduction   

Historically, histological evaluation of the tissue response to biomaterials has 

tended to be more qualitative in nature.  The lower numbers of animal subjects used in 

these experiments and the implicit difficulty of histological analyses encouraged 

randomized sampling and subjective scoring of tissue samples.  However, to study tissue 

mass transfer, analysis of histology should be complete, quantitative, and spatial, and 

should also be correlatable to a method of analyte measurement, such as the implanted 

oxygen sensors studied in the early chapters of this dissertation.   

In this study, methodology is described for analyzing and quantifying several 

specific tissue features -including microvessels, muscle fibers, collagen, and cells- that 

may impact oxygen diffusion in the subcutaneous sensor environment.  Parameters for 

isolation using color and morphological filters will be determined, as well as other 

methods such as combining images from different staining of similar tissue sections, and 

artifact removal.  The study also seeks to create spatially maps of the tissue features, 

preparing them for application, in future work, to a spatial empirical model of oxygen 

diffusion.  Methods for digitizing histological samples are also detailed in this work, 

along with a description of the histological measurements used in the earlier chapters of 

the dissertation.   

Because of the variability inherent to tissue collection and staining, fully 

automated analysis faces significant artifact.  The programming in this study is optimized 
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to allow input from the user during the identification and quantification of features by 

color and morphological properties and during artifact removal.   

 

6.3 Materials and Methods   

6.3.1 Nature of the Tissue Samples   

 Cutaneous tissue samples were collected as described in Chapter 2 methods.  

Arrays were active in the 5 animal subjects described in Chapters 2 methods, for about 14 

hours over the course of the implantation, with consequent oxygen consumption during 

those times.  In addition, tissue was collected from several animals with dual biomaterial 

membranes but no active sensor.  To test methods for specific stains and tissue features, 

some samples of paraffin embedded organs were used from fat sand rats. 

  

6.3.2 Tissue Sample Processing   

The cutaneous tissue adjacent to each dual material membrane was stiffened using 

a tetrafluoroethylene (TFE) cooling spray, then was excised with the membrane attached.  

Each samples’ epidermis was carefully marked for orientation before the samples were 

soaked in histological freezing medium and placed in a double bath of isopentane (2-

methyl butane) in liquid nitrogen.  The frozen samples were cut into four cross-sections 

perpendicular to the midline between the biomaterials.  Half of these sections were 

resealed with freezing medium and transferred to a -80ºC freezer, and half were 

transferred to buffered Formalin.   

Formalin fixed samples were placed between polyester sponges to prevent 

deformation and allowed to soak for 24 hours.  The samples were then dehydrated over 

24 hours in increasing concentrations of ethanol, submerged for 10 minutes in benzene, 
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and finally transferred to a warm paraffin bath for 24 hours, with two changes of paraffin 

before embedding.  Paraffin samples were professionally sectioned to 8-13µm thick at the 

UC San Diego Medical Center (Hillcrest Facility). 

Frozen samples were sectioned on a Leica 3050 Cryostat at 8-13µm thickness at a 

5-10 degree angle.  Regular spraying of the samples with TFE between cuts allowed 

better sectioning.  Slices were mounted to positively charged glass slides (Fisher 

Superfrost Plus slides, Fisher Scientific) and fixed in 4ºC acetone for 5 minutes. 

For all samples, the resulting slides were cross-sections of the cutaneous tissue 

with the epidermis at the top, and the sensor on the other.  The tissues adjacent to each 

biomaterial were located on either side, with the cellulose membrane remaining 

embedded to determine location of the biomaterials. 

 

6.3.3 Sample Section Staining 

Sections from each sample were stained with Hematoxylin and Eosin (H&E) to 

view basic tissue structure and nuclei, with Trichrome for additional identification of 

collagen, and with a long stain of Giemsa to identify metachromatic cells.  Additional 

frozen sections were stained separately for alkaline phosphatase, periodic acid Schiff, and 

human and rat CD-31 in order to label the microvasculature. 

Paraffin sections were embedded in permount (Fisher Scientific), and frozen 

sections in glycergel (Dako).  Histoclear (Fisher scientific) clearing agent was used for all 

sections, and fresh anhydrous ethanol was used for mixing dehydration solutions. 

H&E stains for paraffin sections were performed by the UCSD Medical Center.  

H&E staining of frozen sections was performed using a 20 and 5 seconds in Harris’ 

Modified Hematoxylin (Fisher) and Eosin Y respectively with differentiation in acid 

alcohol (1% HCl in 70% ethanol).  Gomori’s one step Trichrome (Fisher) with 

Hematoxylin counterstain was applied per manufacturer instructions to both frozen and 
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paraffin sections from each sample and compared to consecutive paraffin sections stained 

with Chromaview’s Masson’s Trichrome staining kit (Richard Allen Scientific), adopting 

the methodology of the kit.  Both types of sections were soaked in filtered Giemsa, 10% 

from stock (Fisher) for 20-60 minutes.  

Staining for alkaline phosphatase on frozen sections was performed using 

Burstone’s methods(23, 51).  Periodic acid Schiff staining was performed on paraffin 

sections using a kit and the manufacturer’s protocol (Sigma Aldrich 395B).  Human and 

rat anti-CD-31 immunohistochemistry staining specific to endothelial cells, was 

performed on paraffin sections by the UCSD Medical Center.  Successful CD31 labeled 

sections of human tissue were also provided by the UCSD Medical Center. 

 

6.3.4 Digitization of Stained Sections   

 Stained sections were mounted on a BX-51WI intravital microscope stage and 

photographed with an Olympus E330 DSLR camera.  Slightly high exposure photographs 

were taken in a raster pattern assuring contrast with the background, and roughly 15% 

overlap of adjacent images and of image rows.  The dual CCD was used for real-time 

focusing, avoiding discrepancies in the parfocality.  Focus discrepancies were carefully 

avoided to maximize both photomerge quality and the contrast of individual tissue 

elements for later machine vision application.  Images were taken at 4 and 10x objective 

magnification using Olympus air objectives, and at 20 or 40x using water objectives, 

each with 10x magnification by the microscope body. 

A multi-core workstation with 4 Gigabytes of high-bus RAM was constructed for 

image analysis.  Virtual memory, the previous bottleneck in photomerge processing, was 

extended to 64 Gigabytes by exploiting a 64 bit processing architecture. 

Photographs were opened in exact consecutive order in Photoshop (vCS2, 

Adobe), and an in-house program was used to automate cropping of uneven lighting or 
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edge effects due to the trinocular housing.  Once cleaned, images were compiled with the 

photomerge tool.  Despite the increased computing capacity, photomerges taken at 20x 

objective magnification or greater or greater were compiled in multiple sections.  And 

although the high image exposure reduced background coloration, the final images had 

their color channel curves flattened in the near white range to increase feature contrast. 

 

6.3.5 User Guided Quantitative Analysis of Digitized Histology   

 An extensive programming project was undertaken to construct an image 

processing tool capable of adjustable color and morphological segmentation and filtration 

of digitized histology.  A user interface (Figure 6.1) was constructed for user guided 

feature selection and artifact removal, export of spatial feature maps, and export of 

complete spreadsheets of the quantified measurements.  The project, termed HistoQuant 

(HQ), was programmed in Matlab (v6.5.1-2006a, Mathworks) and compiled to an 

executable program using Matlab Compiler v4 (Mathworks). 

 

6.3.6 Abbreviated Processing Pathway and Algorithms 

 Complete code and algorithm annotation for the programming has been made 

available (Appendix D).  The general processes for identifying and quantifying a tissue 

feature are described here in brief. 

Analysis is begun by converting an image selection to a 24-bit, 3 layer numerical 

matrix representing the RGB (Red Green Blue) color space.  An spatial map of RGB 

value labels for each pixel (Figure 6.2) (Matlab v2006a, Mathworks), as well as pseudo-

color images and histograms of each color space (Figure 6.3) are used to help determine 

the color values and morphology of a specific feature.  Each image is also converted to 

NTSC space (Figure 6.4), a common camera and television broadcasting format.  This 
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Figure 6.1 The HistoQuant User Interface: Isolating Collagen in Masson’s Trichrome 
Stained Liver Images 
The HistoQuant user interface is shown in full.  An image is selected in the first step, and 
then a series of tools are employed to determine the color and morphological qualities of 
the desired tissue feature.  The determined values, along with several manual artifact 
removal tools, are used to isolate the tissue features, quantifying their number and 
morphology.  The image of the isolated tissue is exported for modeling, and all numerical 
data is finally exported to a spreadsheet for analysis.  Collagen is shown stained blue by 
Masson’s Trichrome in a liver section (200x) (A).  The program used a low pass filter for 
blue coloration and a high pass for in-phase chrominance to isolate the collagen (B). 
The axes are labeled in pixels, at 0.52µm/pixel. 
 

method has proven to be helpful in distinguishing features that are similarly colored in 

RGB space.  Once the color properties of the feature of interest are found, they are used 

to filter the image matrix keeping only values above the established minimum and 

maximum values for  

 



95 

 

A 

B

Figure 6.2 Spatial Map of RGB Pixel Values: Isolating Erythrocytes in Masson’s 
Trichrome Stained Subcutaneous Tissue Images 
The figure shows a spatial map of RGB pixel values (B) transposed onto the 
corresponding real color pixels from an enlarged high resolution image of the small 
selection in (A) labeled by the black arrow.  The left hand side of (B) shows the red 
coloration of an erythrocyte against a background of blue stained collagen (200x) at the 
right.  Values for color filters were gleaned from comparing RGB values in these two 
sections.  The axes are labeled in pixels, at 0.52µm/pixel. 
 

a feature.  The Hadamard product of the RBG and NTSC matrices, often referred to as 

the ‘dot’ or ‘entrywise’ product, is flattened by further entrywise multiplication of the 3 

layers, resulting in a 2-dimensional matrix.  The matrix is normalized, resulting in a 

binary image, with all pixels passing the color filters having a value of 1. 

Camera model and objective magnification are used to calculate the true size of 

an image pixel based on pre-calibration images of slide micrometers.  These calculations 

are used to estimate the area and length of the feature.  Besides the simple proportion 

measurements, the eccentricity, solidity, and Euler number of the feature are determined.   
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Figure 6.3 Pseudo-Color Images and Histograms of the RGB Color Channels: Isolating 
Mast Cells in Giemsa Stained Subcutaneous Tissue Images 
Subcutaneous tissue from adjacent to an inactive cellulose covered biosensor is shown, 
separated into RGB color channels.  The red (A), green (B), and blue (C) color 
information from the image are displayed in pseudo-color.  A color bar at right shows 
how the pseudo-color scale relate to the pixel’s color intensity in 8-bits (range = 0-255).  
The histograms for the three color channels are shown (D-F).  Bins on the X-axis are for 
pixel intensities from 0-255, with the number of pixels in the bin shown on the Y-axis.  
These tools, along with those for the NTSC channels, allow the color filters to be 
determined for isolating specific features.  Mast cells (200x) are visible in (C) as green 
dots and in (B) as dark blue dots.  Too few mast cells are present to create a peak in the 
histograms.  The axes are labeled in pixels, at 0.52µm/pixel. 
 

             

Figure 6.4 Conversion Matrix for NTSC Color Space 
The conversion matrix shown is used to translate red (R), Green (G), and Blue (B) pixel 
values and translate them into the three color channels utilized by NTSC, luminance (Y), 
In Phase Chrominance (I), and Quadrature Chrominance (Q).  For programming 
purposes, the RGB values are first normalized.  Y has a range from 0-1, but I and Q 
values, due to color subtraction, have ranges of ±0.596 and ±0.523 respectively. 
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 Eccentricity refers to the relationship between the major axis, a of the feature and 

its minor axis, b (Eccentricity = √(1-b2/a2)), where a circle has an eccentricity of 0, and a 

line an eccentricity of 1 (Range: 0-1).  Solidity is the fraction of non-zero pixels in a 

feature (Range: 0-1).  Euler number is the number of objects minus the number of holes 

in the object (Range: -∞-1).  

 For morphological filtering, Equivalence methodology(54) is applied, first 

identifying pixels in the image that are adjacent to one another, or ‘clustered’, then 

assigning clusters of pixels unique numerical labels.  Cluster boundaries and orientation 

are used to determine their morphological characteristics.  Then, the properties of each 

pixel clusters are logically compared to the desired minimum and maximum 

morphological properties of the specific feature.  Pixel clusters meeting the criteria are 

kept, while those which do not are eliminated.  Clusters that are too large or small, too 

eccentric, not solid enough, etc. are removed from the image and the remaining clusters 

are re-identified and their properties quantified.  Initial determination of a specific 

feature’s morphological properties is thus often iteratively determined by several 

adjustments to filter values. 

The images are segmented by color and morphology and filtered for pixels and 

pixel clusters that do not meet filter criteria of the feature under analysis.  Next, a user 

guided system allows the removal of remaining artifacts.  Two types of tools are 

employed: a polygonal elimination tool (Figure 6.6) and line-drawing tools designed to 

separate adjoined objects by minimized deletion of their connecting pixels (Figure 6.7).  

After artifact removal, the remaining pixel clusters are re-analyzed, their properties 

calculated, and the resulting data exported to Excel (v2003 Microsoft) spreadsheet format 

for further analysis.  The spatial map of the clusters is also exported. 
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In addition to pixel selection, the HQ program allows true scale length 

measurements.  A user guided tool is used to trace lines on the original image, which are 

converted to real distances using the pre-calibrated pixel size measurements. 

 

6.3.7 Features of Interest   

 Several tissue features were analyzed that were expected to have a significant 

effect on oxygen transfer: these features were nonspecific cell nuclei, mast cells, muscle 

fibers, microvasculature, and collagen.  In addition, the thicknesses of the muscle layer, 

the distance between the biomaterial and the muscle layer, the thickness of the dense 

tissue at the biomaterial surface, and the depth of tissue penetration into the microporous 

biomaterials were measured. 

 While the detailed analysis of tissue from biosensor implantations is the long term 

goal of the histological quantification project, for the purposes of this dissertation, the 

focus will be on methods and parameters for identifying tissue features and the successful 

production of spatial feature maps.   The maps are for use in spatial analysis of feature 

distribution and for future use in spatial diffusion modeling of oxygen transfer in the 

tissue surrounding implanted sensors. 

 

6.4 Results   
 

6.4.1 Length Measurements   

 The length measurement tool was found to be highly reliable down to within 1-2 

pixels.  However, images with poor resolution were prone to error in true distance.  A 

solution to reduce the error from pixelation was implemented, where the endpoints of 

measurement lines were not rounded off to exact pixels, i.e. forced onto a grid, but rather 
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allowed to be designated in fractions of pixels.  Accuracy of measurements was improved 

an estimated 7.9% in the measurement of capillaries imaged at 1.04µm per pixel. 

 Table 6.1 lists the distance measurements made in the tissue samples from the 5 

animals.  Tissue penetration of the cellulose was determined to be 100% in all samples.  

For animal S0414, whose cellulose was completely intact, the cellulose itself was found 

to occupy only 33.20% of its bounding box (Figure 6.5).  The ingrown tissue, mostly 

loose connective tissue, occupied 12.42% of this space inside the cellulose with 

remainder being occupied by elements such as fluids or proteoglycans which would have 

been removed by the histological processing.  The ingrown tissue was largely 

concentrated at the interface of the cellulose with layer of PDMS backing.  It occupied a 

space 92.79±15.35µm on average from this inner membrane.  Very little ingrown tissue 

was seen surrounding cellulose fibers, further indicating that the tissue reacted more to 

the PDMS inside the cellulose than to the cellulose.  The results in S0414 reflected those 

seen in intact regions of cellulose in other animals. 

6.4.2  Color and Morphological Criteria for Feature Isolation   

Table 6.2 lists the collected filtration criteria that were determined for each of the 

specific features, including methods of manual artifact removal.  These criteria allowed 

artifact free spatial maps of the features to be created for used in the tissue oxygen 

diffusion model. 
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Table 6.1 Measured Distances in Subcutaneous Tissue Explanted from Hamster Window 
Chambers with Active Oxygen Sensor Arrays 
Vascular proximity is measured to the membrane rather than the array for contrast.  In 
addition to the measured distances shown in the table, the results of magnitude and time 
constant measurements for each animal on day 14, just prior to sacrifice, are included for 
reference.  These values are referred to in Chapters 2 and 4 respectively.  Time constants 
for both upward and downward shifts in exogenous oxygen are shown. 
 
 Table 6.1  Measurements in Subcutaneous Tissue From Active Oxygen Sensors 

 
Animal Subject S0411 S0414 S0415 S0416 S0417 

Combined 429.0± 
102.7 

37.1± 
29.1 

591.7± 
171.7 

120.0± 
40.6 

393.7± 
63.8 

Over Cellulose 437.3± 
102.0 

15.1± 
7.74 

519.8± 
112.2 

102.2± 
16.5 

450.8± 
25.8 

Vascular 
Proximity to 
Membrane 

(µm) 
(n > 48) Over PDMS 421.1± 

104.7 
54.7± 
28.0 

678.5± 
192.3 

145.7± 
50.8 

340.7± 
36.2 

Combined 279.5± 
151.0 

8.29± 
16.0 

142.2± 
148.2 n/a 91.6± 

58.1 

Over Cellulose 240.9± 
154.6 

1.75± 
1.89 

82.8± 
65.0 n/a 47.0± 

15.1 

Muscle Layer 
Thickness 

(µm) 
(n>48) 

Over PDMS 318.2± 
139.4 

14.2± 
20.4 

201.7± 
183.1 n/a 134.1± 

46.9 

15.0→10.0% 0.085± 
0.010 

0.364± 
0.123 

0.256± 
0.268 

0.065± 
0.019 

0.088± 
0.003 

C
el

lu
lo

se
 

10.0→15.0% 0.061± 
0.008 

1.929± 
0.353 

0.544± 
0.058 

0.397± 
0.141 

0.094± 
0.007 

15.0→10.0% 0.093± 
0.027 

0.320± 
0.125 

0.327± 
0.101 

0.124± 
0.075 

0.078± 
0.009 

PD
M

S 

10.0→15.0% 0.150± 
0.065 

2.397± 
1.061 

0.461± 
0.037 

0.321± 
0.122 

0.114± 
0.034 

Time 
Constant 

(min-1) 
(n > 6) 

Combined Average 0.092± 
0.041 

1.259± 
1.099 

0.397± 
0.180 

0.204± 
0.162 

0.094± 
0.023 

Cellulose 0.510± 
0.112 

0.091± 
0.017 

0.272± 
0.118 

0.458± 
0.225 

0.096± 
0.021 

PDMS 0.427± 
0.052 

0.131± 
0.048 

0.235± 
0.071 

0.567± 
0.337 

0.342± 
0.278 

Pr
e-

C
al

ib
ra

tio
n 

Combined 0.351± 
0.380 

0.113± 
0.041 

0.253± 
0.095 

0.509± 
0.278 

0.227± 
0.234 

Cellulose 3.45± 
2.79 

1.69± 
0.22 

0.63± 
0.11 

3.99± 
2.23 

1.62± 
0.60 

PDMS 1.28± 
0.86 

1.47± 
0.43 

1.93± 
2.20 

4.57± 
4.67 

5.11± 
3.49 

Baseline 
Signal 

Magnitude on 
Day 14, 

Normalized 
To: 

 
(n > 6) 

D
ay

 4
 

Combined 0.24± 
2.30 

1.58± 
0.35 

1.54± 
1.90 

4.26± 
3.45 

3.48± 
3.09 
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Figure 6.5 Tissue Ingrowth into Cellulose Implanted in Hamster Subcutaneous Tissue 
In (A) the original true color image of H&E stained cellulose from a 14 day implantation 
adjacent to a sensor is shown.  (B) shows the binary image of isolated cellulose fibers 
produced by a low pass filter for all RGB color channels, and a banded filter for 
quadrature chrominance.  Figure (C) shows the binary image of the isolation of ingrown 
tissue from the original image in (A), created using a high pass filter for in-phase 
chrominance (IPC).  (D) shows the pseudo-color image of the IPC channel.  The axes are 
labeled in pixels, at 0.56µm/pixel. 
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Table 6.2 Filtration Parameters for Isolating Specific Tissue Features in Digital Images 
of Histological Sections 
The table gives an overview of the filter parameters determined to be effective in 
isolating histological features in digital images.  Effective isolation was defined as the 
ability to quantify the feature’s morphology, and to distinguish features from one another, 
from artifact, and from background.  In general, color filters alone were not sufficient and 
required pairing with morphological filters.  Many images retained artifacts after 
filtration that required manual removal.  The artifact removal process for each feature is 
listed.   
(RGB color space = R, G, and B) (luminance = Y, in-phase chrominance = I, and 
quadrature chrominance = Q) (Eccentricity = Ecc, Solidity = Sol)   
 

Table 6.2  Filter Parameters for Digital Histological Feature Isolation 
 

     Tissue Feature Parameters           Filters      
Feature Tissue Type Stain Color Morphological 

Artifact 
Removal 

Collagen 
Liver 

Masson's 
Trichrome 

Low: B, High: 
IPC n/a Polygon 

Mast Cells Subcutaneous Giemsa Low: RGB,Y,I High: Area Polygon 
Nuclei 

Subcutaneous H&E Low: R,B,Y Band: Area 

Polygon, 
Knife, 

Dilation 

Subcutaneous H&E Band: I 
High: Area, Low: 

Ecc n/a 
Muscle 
Fibers 

Subcutaneous Giemsa Low: I High: Area n/a 
Erythrocytes 

Subcutaneous
Masson's 
Trichrome 

Low: G,B 
High: I 

Band: Area, Low: 
Ecc, High: Sol n/a 

Endothelial 
Cells Human Tumor

CD-31 
IHC 

Low: R, High: 
I 

Low: Area, before 
and after dilation 

Dilation & 
Erosion 

6.4.2.1 Collagen   

 Collagen was isolated as a measure of potential diffusive resistance in the tissue.  

Staining via Masson’s Trichrome also provided a simple example of the use of color 

filtration (Figure 6.1).  Collagen in large vessel walls and subcutaneous tissue was easily 

isolated and distinguishable from counter stains using only color filters. 

 Future studies with labels specific to new collagen, or immunohistochemical 

methods for labeling type I versus type III collagen(61, 135) would be useful in the further 

understanding of potential wound healing differences in the tissue adjacent to the 

biosensors. 
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6.4.2.2 Mast Cells   
 Mast cells were isolated as a potential measure of tissue inflammation.  Counts 

during preliminary data analysis found that the tissue adjacent to cellulose implants had a 

systematically but not statistically greater number of mast cells than tissues adjacent to 

PDMS, by 21.85±8.18% on average, n=12.  The relationship was by linear density, where 

cell number was normalized by the width of the tissue cross-section.  By area the 

disparity was greater, since PDMS tissues were seen to be thicker on average from the 

muscle to the biomaterial membrane (Table 6.1).   

An average of 521.3 cells were found per square millimeter in the tissue adjacent 

to cellulose implants without active sensors, most located near large microvessels or in 

the retractor muscle layer 184-376µm away from the sensor.  The more avascular 

samples from animals with sensors had generally very few mast cells, which makes sense 

given that vessels, preferentially larger ones, are required to introduce mast cells recruited 

from the marrow(43).  The mast cells that were observed were found to be in various 

stages of degranulation, indicating that the cells were still active. 

 Isolation of the mast cells in Giemsa stains was primarily accomplished by several 

low pass color filters (Figure 6.6).  Filters for any one color were effective in removing 

most of the background tissue, but a combination was more effective at removing 

artifacts such as dye deposits, and tissue folds, and dust or oil in the optical path.  

Distinguishing mast cells from other nuclei was effected by a low pass for red coloration.  

Color filtering allowed many artifacts to remain, especially small clusters or individual 

pixels not large enough to be cells.  Other artifacts included clusters of non-specific cell 

nuclei.  High pass filters for area and solidity, as well as a low pass filter for cell 

eccentricity, removed most of these artifacts, but a few were removed by hand using a 
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Figure 6.6 Isolating Mast Cells in Giemsa Stained Subcutaneous Tissue Images 
The figure shows isolation of mast cells using a combination of filters.  (A) shows the 
original polygonal selection taken from a digitized histological slice (200x) of 
subcutaneous tissue from a cellulose membrane without an active sensor.  (B) is a binary 
image, representing the pixels which passed color filters.  (C) then shows the binary 
image after a low pass filter for pixel cluster eccentricity, and high pass filters for cluster 
area and solidity.  The polygon shown in (C) is the user guided artifact elimination tool in 
the process of removing some dark staining portions of the fibrous capsule.  These 
artifacts then do not appear in the final binary image (D), which is ready for numerical 
analysis and export to the empirical oxygen diffusion model.  The axes are labeled in 
pixels, at 0.52µm/pixel.  
 

polygon removal tool (Figure 6.6C).  Euler number also proved useful in removing a few 

artifacts with significant holes, which the solidity filter did not catch.  In the program, 
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jagged objects appear to have lower solidity.  Thus, solidity filters could not be too 

stringent, or genuine cells that are not smooth at the edges would have been removed. 

 Using the determined isolation criteria, mast cells in the biomaterials preparations 

were found to have an average area or, 50.04±18.83µm2, which varied slightly for cells in 

different stages of degranulation.  Future refinements to the program may utilize solidity 

and perimeter analyses, as well as cluster entropy measurements to isolate cells in the 

process of degranulating, a potentially more powerful marker of inflammation. 

6.4.2.3 General Nuclei   

 Microscopic observations demonstrated the presence of fibroblasts, lymphocytes, 

and vascular endothelial cells in the dermal tissue and near the implants, as well as other 

cell types more difficult to identify morphologically.  General nuclei from these cells 

were isolated for the purpose of estimating tissue consumption, under the simplified 

assumption that greater numbers of cells would relate to greater oxygen consumption.  It 

is understood that the rate of individual cellular consumption varies by cell type and can 

be altered by inflammation, hypoxia, and other factors.  Thus, future studies using 

mitochondrial markers or active measures of tissue metabolism may lead to improved 

understanding of tissue oxygen diffusion.  Additionally, immunohistochemical stains or 

use of unique nuclei shapes could help separate different cell types using the program. 

 Using H&E stains, isolation of nuclei was essentially isolation detection of 

regions of heavy hematoxylin stain.  Red and luminance low pass filters were sufficient 

to remove most, 85.2%, of the tissue background (Figure 6.7).  The area of the nuclei was 

very consistent, and thus a banded area filter removed virtually all remaining artifacts, or 

36.9% of pixels which passed the color filters but were not nuclei.  Unlike Mast cells, 

there was more clustering of nuclei, so for small images, the knife tool built into the 

program helped to separate these nuclei prior to quantification, without greatly altering 

density measurements (Figure 6.8).  The average nuclei area before using the knife tool  
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Figure 6.7 Isolating General Cell Nuclei in H&E Stained Subcutaneous Tissue Images 
(B) shows the initial isolation of general cell nuclei from the original image selection (A) 
(100x), using color filters, specifically low pass red and luminance.  Many artifacts 
remain.  (C) shows the final binary image after an a banded area filter, polygon 
elimination of the artifact in the bottom right corner, and some cell separation with the 
knife tool (Figure 6.8).  The luminance (D) channel is shown in pseudo-color, where 
nuclei are visible as dark blue spots indicating the high concentration of hematoxylin and 
a lack of eosin.  Larger artifact regions are easily identifiable as light blue, indicating 
incomplete hematoxylin stain and some eosin.  The axes are labeled in pixels, at 
0.56µm/pixel.  
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was 51.4±27.0µm2, while that after was 43.0±18.3µm2, a drop of 16.4%, indicating that 

nuclei clustering is a problem to quantification.  Thinner tissue sections would very likely 

circumvent the problem of nuclei clustering, as would improvements in image focus.  An 

alternative to the knife tool, for larger tissue samples, is to perform careful counts on a 

few small images and use the ratio of nuclei count to density to calibrate larger images. 

 

       

A B C

Figure 6.8 Separation of Adjoined Features 
A cluster of two nuclei that are mathematically indistinguishable is shown in (A).  The 
image was verified by microscopic observation at higher magnification to be two 
different nuclei.  (B) is a binary image of the pixels that met color filter criteria.  The two 
nuclei are not distinguished from one another.  In (C) the knife tool is shown while 
separating the nuclei by the minimum number of pixels required to classify them as 
distinct.  The axes are labeled in pixels, at 0.56µm/pixel.  
 

 Prior to use in an oxygen diffusion model, spatial maps of the nuclei would be 

modified.  Knowing that cellular oxygen consumption occurs in the mitochondria, pixel 

clusters representing the cell nuclei are proportionately dilated to encompass the cell 

cytoplasm (Figure 6.9).  The dilated nuclei have the same eccentricity and orientation, but 

the method does not account for variations in different cell types’ nucleus-to-cell area 

ratio or for the unique shapes like flattened fibroblasts or macrophages. 
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6.4.2.4 Muscle Fibers   

 Muscle fibers were isolated from images of both H&E and Giemsa stained 

sections using in-phase chrominance filters (Figures 6.10 and 6.11).  High pass filtering 

of pixel cluster areas removed some artifact, but a low pass filter for eccentricity finalized 

the isolation.  Eccentricity of the muscle fibers was very low due to their circular nature  

 

A B

Figure 6.9 Dilation of Nuclei to Define Cell Boundaries 
(A) is the same binary image seen in Figure 6.9D, representing isolation of general nuclei 
from an image of H&E stained subcutaneous tissue.  (B) is the map after dilation of the 
nuclei using the general proportion of fibroblast area to nucleus area.  Such maps would 
be more useful in estimations of diffusion and consumption.  The axes are labeled in 
pixels, at 0.56µm/pixel.  

 

in cross section, so most artifacts were removable by eccentricity filtering.  The greater 

contrast of muscle in Giemsa required no eccentricity filters.   

The binary image of the H&E stained muscle was full of holes due to removal of 

counterstained muscle nuclei and endothelial cell nuclei from adjacent capillaries.  

Giemsa images without counterstain produced clean fiber isolations. 

 Muscle fiber will be an important part of diffusion modeling for studies in the 

hamster window chamber, and other models including reticular muscles, due to potential 

differences in consumption as well as the effects of myoglobin on oxygen diffusion(91).  
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NTSC color filters appear to be extremely helpful in muscle fiber isolation (Figures 6.10 

and 6.11). 

 

 

A B C

ED 

 
Figure 6.10 Isolating Muscle Fibers in H&E Stained Subcutaneous Tissue Images 
Pseudo-color maps of the green (A), blue (B), and in-phase chrominance (C) channels are 
shown for an image of H&E stained subcutaneous tissue (D) (100x).  The maps 
demonstrate the effectiveness of NTSC filters.  The granulation tissue at the top of the 
image is defined by a white horizontal line in (D), also visible in (A) as a red line.  Below 
this line are the muscle fibers and some large blood vessels.  Green color (A) defines 
some muscle fibers but not others.  Blue color (B) does not define the fibers, but does 
clearly distinguish the blood vessels.  IPC banded filtering (C) clearly defines muscle 
fibers.  The final binary image (E) on the right has been color filtered and filtered by a 
high pass for area and a low pass for eccentricity.  The interference of muscle and 
endothelial cell nuclei, breaking up the muscle image, should be noted.  The axes are 
labeled in pixels, at 1.04µm/pixel.  
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Figure 6.11 Isolating Muscle Fibers in Giemsa Stained Subcutaneous Tissue Images 
(A) shows the original image of the subcutaneous tissue on the left (200x), and (B) shows 
the binary image of the retractor muscle fibers.  The Giemsa stain required only a low 
pass IPC filter (C) and a high pass area filter for the clusters.  (C) clearly shows the 
muscle as having very low IPC values, contrasting it against all background and local 
nuclei.  Without the deep hematoxylin counterstain, it is visible in both (B) and (C) that 
the nuclei do not interfere with muscle detection, as with the H&E stain.  The red channel 
histogram (D) is included to demonstrate that for a dense feature like muscle, a strong 
peak (at the left) will be present, aiding determination of color filter criteria.  The axes are 
labeled in pixels, at 0.52µm/pixel.  
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6.4.2.5 Microvessels: Masson’s Trichrome   

 Capillary detection in Trichrome stained samples was highly dependent on 

erythrocytes staining.  For oxygen modeling purposes, only actively flowing capillaries 

would be desirable to include in the model, and the presence of an erythrocyte is a 

method of defining a capillary as active(52). 

 Again, in-phase chrominance proved an effective filter (Figure 6.12).  In 

Masson’s Trichrome, many nuclei stained slightly reddish, complicating detection, so a 

low pass filter for blue was used to remove these artifacts (Figure 6.13).  Color filters 

were highly effective in background and collagen removal, but retractor muscle removal 

required a band pass for area, and in some cases a high pass for solidity.  A low pass for 

eccentricity cleanly removed almost all remaining artifact with respect to capillaries, but 

could not be used when larger vessels such as venules were present.  Manual artifact 

removal was not generally required unless hemorrhage was present. 

 

               
 
Figure 6.12 In Phase Chrominance of Masson’s Trichrome Stained Subcutaneous Tissue 
The figure shows a pseudo-color image of the in-phase chrominance channel.  The 
erythrocytes appear very clearly as red spots in the tissue, where the retractor muscle at 
the right stains is colored as intensely, but less evenly.  The axes are labeled in pixels, at 
0.52µm/pixel. 
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Figure 6.13 Isolating Erythrocytes in Masson’s Trichrome Stained Subcutaneous Tissue 
Images 
(A) shows the original true color image of the stained tissue.  An erythrocyte is labeled 
by the black arrow.  The binary image (B) has been filtered using a low pass of the green 
and blue color channels, and most importantly a high pass of IPC.  (C) shows the binary 
image after a banded area filter.  The axes are labeled in pixels, at 0.52µm/pixel.  
 

 The erythrocytes labeled using the determined criteria were 5.14±1.77µm in 

diameter, approximately the expected size for erythrocytes constricted by capillary walls.   

Microscopic observation of the detected features confirmed thin walls around the 

erythrocytes, further indicating capillaries.   
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Several tissue samples had small venules where the erythrocytes contained in 

them were spread out enough to be distinct and were mistaken for capillaries.  Clustered 

erythrocytes were distinguished easily by their size and eccentricity, but a refined 

algorithm would be needed to identify the walls of venules, perhaps using contrast with 

the white lumens. 

6.4.2.6 Microvessels and Immunohistochemical Stains   

 CD-31 anti-endothelial cell labels in paraffin embedded sections of human tumors 

were used to provide a suitable example for microvascular isolation with the HistoQuant 

program.  The deep brown characteristic to diaminobenzidine staining was partly isolated 

using a low pass for red coloration, and mostly isolated using an in-phase chrominance 

high pass filter (Figure 6.14).  This isolated most vessels, with a low pass for area 

removing most artifacts.  However, if the vessel perimeter was not solidly stained, the 

high pass area filter could not be stringent since the vessel wall was broken into smaller 

sections, and so a dilation and erosion technique was required to define vessel boundaries 

(Figure 6.14).  A high pass for area before dilation and erosion just to remove loose 

pixels was used, followed by a more stringent area filter after dilation/erosion. 

Immunohistochemical stains provide a versatile method of identifying specific 

cell types and thus are highly worth developing quantification methodology for.  In 

combination with collagen stains to define thicker arterial walls, and with erythrocyte 

stains to verify vascular perfusion, an anti-hamster cd-31 stain would be an effective tool 

for characterizing the microvessel content of explanted tissues and applying them to the 

oxygen diffusion model. 
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Figure 6.14 Isolating Endothelial Cells in CD-31 Labeled Tumor Images 
The figure shows the isolation of labeled CD-31 antigens on endothelial cells in a section 
of a human tumor (200x).  The labeled cells in this image (B) did not create a solid 
outline of the vessel, sometimes a problem with IHC brown stains, so compensation was 
made.  The binary isolation image (B) was dilated and then eroded, leaving the solid 
perimeters seen in (C).  From this point the vessels could be filled or skeletonized, 
depending on whether the image is to be compared to similar section stained for collagen 
or erythrocytes. The axes are labeled in pixels, at 0.28µm/pixel.  
 

6.4.2.7 Microvascular Labeling Issues   

 Larger microvessels and capillaries adjacent to muscle fibers were identifiable 

with H&E and Trichrome stains.  However, for most samples of tissues from PDMS and 

cellulose implantations, capillaries were not observed in the tissue between the retractor 
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muscle layer and the biomaterials, potentially due to low contrast with the surrounding 

tissue.  Control H&E stained samples of hamster cutaneous tissue from window-

chamber-only implantations showed the presence of some vessels, indicating that 

neovascularization may not have occurred in the tissues adjacent to biomaterial implants. 

It has been previously observed that granulation tissue in muscular implants develops less 

close vascular structures than that in fatty tissues(97).  In addition, relatively avascular 

regions of the skinfold were chosen for the sensor implantations.  Thus few large vessels 

were seen, and neovascularization may have been stunted in the chosen environment. 

 The immunohistochemical methods explored did not prove effective in labeling 

hamster microvessels, since anti-hamster labels were not readily available at the time of 

the experiment and cross-reactivity with available anti-rodent and human CD-31 

antibodies was low.  At the time of manuscript preparation, at least one company has 

announced commercial production of anti-hamster labels. 

 Despite multiple tries and adjustments, alkaline phosphatase staining did not 

effectively label the microvasculature, producing a yellow coloration in the granulation 

tissue, but not the red coloration expected to concentrate in endothelial cells.  The age of 

samples may have been a factor, but even tissue sectioned within 2 hours of death did not 

appear to be properly labeled.  PAS stain was likewise unsuccessful in labeling the 

glycogen concentrations in the vessel lumen.  Both of these stains may have functioned 

poorly due to problems in tissue processing, specifically the use of TFE to stiffen the 

tissue, which may have caused ice crystal formation or other protein damage.  Future 

samples should be fixed in formalin while still in stretched position and processed using 

paraffin technique.  Cryosectioning, while offering many advantages, is skill intensive. 
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6.4.3 Limitations to Tissue Analysis in Animals with Active Sensors   

 Tissue collected from the animals with active sensors experienced a freezing 

artifact, possibly due to the TFE, that reduced clarity of both the frozen and paraffin 

sections for those animals.  While gross tissue structure and dimensions remain clear, 

collagen labeling and the other specialized stains studied appear to have been negatively 

affected.  Nuclei were not consistently counterstained.  Future work with improved tissue 

collection methods would circumvent this problem. 

 

6.4.4 Variability of Histology   

 The most common source of variability in the digitized histology was the staining 

process.  Different batches of H&E stains varied in nuclei staining and the intensity of 

eosin, especially with respect to erythrocyte staining.  Other stains were more consistent.  

The addition of variations in color intensity due to camera exposure, the lighting of the 

microscope, ambient light during imaging, and even variations in the color profiles of 

individual computers introduced small variations in color into the digital histology.  

Changes in focus during the raster scan of a slide, or due to folds or ripples in the tissue 

section, frequently altered nuclei and other feature dimensions, blurring the edges and 

increasing the apparent area of the feature.  These many factors support the crucial nature 

of user input in the quantification process and validated the versatility of the 

programming. 

 

6.4.5 Computational Limits   

 Despite the advances in computational technology which allowed this project to 

be undertaken, there were limitations.  The chief limitation was simply a limit to the 

number of pixels in an image that could be processed.  Computers operating on 32-bit 
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processing systems are limited to 4Gb of virtual memory for access by Matlab and other 

programs.  This means that a section of tissue consisting of 20-40 images taken at 100x 

magnification (10x objective) with 6 mega-pixel resolution cannot be processed all at 

once by the HistoQuant program, but rather must be broken up into sections, 

disproportionately increasing labor.  The use of a 64-bit system with highly increased 

virtual memory vastly improved this consideration, but was insufficient to allow the 

program to process whole sections above 100x magnification. 

 Future improvements in random access memory, virtual memory, and processor 

parallelization would greatly improve HistoQuant’s efficiency. 

 

6.5 Conclusion   

 The HistoQuant program proved to be an effective methodology for versatile 

analysis of digitized histology.  High variations in the samples validated the user guided 

approach to isolating specific tissue features. 

 Features with potential impact on oxygen diffusion in the tissue, including 

capillaries, venules, muscle fibers, collagen, and cell nuclei, were successfully isolated 

from digital images using the HistoQuant program.  These isolations effectively provided 

spatial maps of the tissue for potential use in an oxygen diffusion model.  Combinations 

of RGB and NTSC color filters, and morphological analysis were utilized.  Color filters 

in the NTSC color space proved particularly useful in isolating many features, including 

erythrocytes, muscle fibers, and loose connective tissue.  However, color filters were 

insufficient by themselves, and the use of morphological filters, mostly those for feature 

area, but also those for eccentricity and solidity were capable of removing most artifacts 

from images.  Two manual tools for the removal of artifacts proved necessary in some 

instances: a tool for selected removal of regions of artifact, and a knife tool which 

separated adjoined features.  In particular, isolation of general nuclei required the knife 

 



118 

tool.  Future work would benefit from thinner tissue sections for which nuclei overlap 

would be reduced. 

 In the subcutaneous tissues from sensor array implantations in the hamster 

window chamber, tissue adjacent to different biomaterials was observed to have a 

different average diffusion path between the biomaterial membrane and the vasculature 

or musculature, 17.9% higher for PDMS on average.  No statistical significance was 

found for these differences.  However, the vascular proximity for each animal was found 

to be applicable to sensor dynamics, as already discussed in Chapters 4 and 5.  It was 

observed that cellulose membranes were completely penetrated by cellular ingrowth, but 

only 12.42% of the space around the cellulose fibers was occupied by tissue, mostly 

adjacent to the PDMS backing layer of the membrane.  The process of tissue penetration 

into the cellulose may explain some of the effects seen in Chapter 2, 4, and 5 with respect 

to changes in cellulose encased sensor performance over the duration of the implantation. 

 The ability to quantify histology was validated.  However, the quality of the 

quantification was still dependent on the quality of the histology and thus cannot 

substitute for good histological practices.  Improvements in computational capacity and 

the expansion of immunohistochemical stains to non-traditional animals such as hamsters 

will expand future application of the programming techniques described here.   

 

6.5.1 Future Programming Directions   

 The first programming improvement to be implemented will be the use of feature 

templating.  In templating, an individual feature of interest is chosen by hand, then 

analyzed for its general color and morphological properties.  Each template the program 

is given helps it to learn what to look for in a feature, reducing the labor required to 

analyze new features or large images. 

 



 

CHAPTER 7: Quantitative Biocompatibility: Acute 
Phase Response Protein Assays in Rodent Models 
 

7.1 Abstract   

Two Acute Phase Response proteins, C-Reactive Protein (CRP) and Haptoglobin 

(Hp), were explored as potential quantitative and specific measures of material 

biocompatibility in several rodent models.  In two separate tests, Wistar rats implanted 

with cellulose or polytetrafluoroethylene membranes were tested over 7 days for serum 

levels of CRP and Hp, and Hamsters fitted with window chambers with or without 

biomaterial membranes were tested over 7 days for serum Hp only.  Low volume blood 

collections were made regularly using a novel quantitative saphenous venipuncture 

method.   

Sample measurements made using the low volume technique were shown to be 

highly consistent with one another and cardiac puncture samples, allowing for more 

frequent serum sampling.  While, neither C-Reactive Protein or Hp levels showed any 

discernible pattern over the 7 days in the rat preparation, Hp levels in hamsters responded 

to microporous biomaterial implantation, showing a clear prolonged relative increase 

versus the control and window chamber only subjects. 

 

7.2 Introduction    

Acute Phase Response (APR) proteins are liver proteins isolable from blood 

serum(47, 74, 87).  These proteins generally circulate at low levels(69), but their presence is 

amplified dramatically in response to inflammation(133), disease(73, 146), or trauma to the 

system(75).  A commonly cited APR protein is C-Reactive protein, due to its use as a 

119 
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marker for inflammation and cardiovascular risk assessment(1, 2, 70, 107-110).  Recent study 

has suggested that C-Reactive protein and other APR proteins are important indicators of 

inflammation in response to adjuvants, drugs, and potentially medical implants(42, 47).   

Acute Phase Proteins offer the potential of a quantitative method of measuring 

biomaterial compatibility over the life of an implant, with frequent sampling that does not 

require sacrificing the subject (35, 42, 47).  This greatly reduces the number of animals 

required for an experiment.   

 Even though the CRP structure in rats has been reported to be similar to that of 

humans(112), reports that rodent CRP may not increase substantially after insult have led 

researchers to explore additional APRPs that are more responsive(27, 47, 95).  In particular, 

Haptoglobin (Hp), a molecule with high affinity for free hemoglobin, that is present in 

high amounts during hemolysis, has been suggested as a sensitive marker(137).  Hp is 

known to bind hemoglobin, creating a complex with robust peroxidase properties(90) that 

persist at low pH conditions that normally disable hemoglobin’s peroxidase capabilities, 

thus allowing the presence of Hp to be linked to assays for peroxides.  While CRP and 

other APRPs require immunoassay techniques, quantifying Hp through its enzymatic 

function offers the significant advantage of a non-species specific assay, allowing a wider 

range of animal study and a potentially higher correlatability between studies.  In 

addition, enzymatic function testing is significantly faster than antibody methodology 

since multiple incubations of the testing solutions with the different antibodies is not 

required. 

 In this study, the cross reactivity of mouse, rat, hamster, and fat sand rat CRP with 

Human and Rat monoclonal antibody tests was observed.  Serial collections of serum 

were performed using a novel method of quantitative saphenous serum collection.  Using 

this method, CRP and Hp levels were measured for 1 week in rats following surgical 

implantation of several biomaterials.  Hp levels were also measured in hamsters for 1 
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week following window chamber and biomaterial implantation.  The latter test was 

intended to approach the question of whether surgical implantation methods or the 

implant itself has a greater effect on the subject’s response to implantation. 

7.2.1 Relevance to the Dissertation   

 This work is relevant to the rest of the dissertation as another quantitative method 

of analyzing biomaterials with potential application to biosensors.  Inflammation caused 

by material implantation may have an effect on oxygen transfer, especially with regards 

to vascular flow and extraction properties.  Thus, understanding the systemic effects is 

also important to understanding the impact of biomaterials on oxygen transfer and 

implanted sensor performance. 

 

7.3 Materials and Methods   

7.3.1 Animal Samples and Cross Reactivity of CRP Antibodies  

Blood samples were taken via cardiac puncture from white mice, Wistar rats, 

Gold Syrian hamsters, and fat sand rats 80:20 in heparinized saline (1000u/mL in 0.9% 

NaCl injectable).  The blood samples were centrifuged at 2000rpm for 8 minutes and the 

serum was removed.  Samples were tested for activity using two C-Reactive Protein 

(CRP) test kits: BioQuant’s Human CRP measurement kit and Helica Biosystems Inc.’s 

Rat CRP measurement kit.  Protocols from each of the kits’ literature were adopted.  The 

two kits utilize ELISA (Enzyme-Linked ImmunoSorbant Assay) measurement of CRP 

levels in diluted blood serum(118, 134). 

7.3.2 Immuno Assay for Human CRP 

Briefly, the sera were diluted 100 fold in the provided diluent, followed by 

mixture of the diluted serum with goat anti-human CRP antibody linked to horseradish 
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peroxidase in mouse anti-human CRP-antibody coated plate wells.  The resulting 

complexes of CRP molecule bound between enzymes was washed, and then incubated 

with tetramethylbenzidine (TMB) development solution.  After incubation, acid was used 

to stop color formation, and a spectrophotometer plate reader was used read the well 

absorption values at 450nm.  Increase in the intensity of coloration is positively 

correlated to the quantity of C-Reactive Protein bound in the plate well by the CRP 

antibodies.  Plate reader values were observed using an E-Max reader and saved using 

Soft Max Pro software.  A non-linear calibration curve for CRP concentration was 

generated with the calibration solutions provided in the kit.  Two known-concentration 

control samples from the provided calibrant solutions were run with each overall test to 

verify efficacy, as well as a negative control of pure diluent solution. 

 Following early negative test readings, a pure, undiluted serum from the hamster 

and rat samples were tested for activity. 

7.3.3 Immunoassay for Rat CRP 

 Samples prepared for use with Helica’s Rat CRP measurement kit (Helica 

951CRP01R) were diluted 4000 fold using the provided Tween 20 mixture.  Use of the 

rat kit was similar to that of the human kit, including the measurement at 450nm.  The 

mouse, rat, hamster, and fat sand rat serum samples were tested for activity along with a 

sample of the human CRP standard provided in BioQuant’s CRP measurement kit.  

Serum samples diluted only 100 fold were also tested. 

7.3.4 Quantitative Blood Collection from Saphenous Puncture: 

 Saphenous puncture was performed on animal subjects every 2 days during blood 

serum experiments, using alternating legs.  During collection, the animals were 

restrained, exposing their hind leg for shaving, sterilization and with betadine, and 

preparation with a thin coat of silicone grease to increase fluid beading.  Tubes of 
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heparinized saline 1000u/mL and Pipetmen with heparin soaked wide mouth tips were 

prepared.  Venipuncture was used to collect 10-50µL of blood, which was immediately 

injected into a tube with the proper amount of saline for an overall 100 fold dilution.  

Blood-air contact was avoided.  Tubes of diluted blood were mixed by inversion and 

centrifuged for 8 minutes at 2000rpm with gentle acceleration and deceleration before 

collecting serum. 

 For several rats, samples were taken from the same animal on both legs and from 

cardiac puncture to verify the consistency of serum measurements.  All other animals had 

samples collected by cardiac puncture just prior to sacrifice for comparison to the most 

recent saphenous sample. 

7.3.5 Biomaterial Implantation: CRP and Haptoglobin in Rats   

 A group of 4 sibling Wistar Rats weighing 358+-29g was obtained, separating one 

animal out as a control.  The three experimental animals were anesthetized with 50mg/kg 

Ketamine HCl and 125µg/kg Medetomidine HCl intraperitoneally, then prepped for 

surgery by shaving and sterilizing two regions 2cm to either side of the spine and 1cm 

anterior to the scapula.  Longitudinal incisions were made in the shaved regions and 

pockets were created against the skeletal muscle using blunt dissection.  One animal had 

12mm diameter circles of microporous PTFE (MilliPore, 10µm exclusion) implanted in 

each pocket, another had 12mm circles of porous cellulose (Whatman #2, 8µm exclusion) 

implanted, and the last animal had nothing implanted as a sham surgery.  The incisions 

were sealed with Vetbond veterinary adhesive, treated with topical antibiotic, and the 

wound sites sealed inside a high adhesion bandaid. 

 Following surgery, all animals had blood drawn by saphenous venipuncture as 

described above.  Buprenorphine HCl, 5µg/kg, was administered pre-recovery as an 

analgesic, while Atipamezole HCl, 0.5mg/Kg was given as a competitive antidote to the 

Medetomidine to aid recovery. 
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 Saphenous draws were taken from all animals 3, 5 and 7 days following surgery, 

with 25% of the original surgical dosage of Ketamine/Medetomidine to briefly calm the 

animal.  Venipuncture sites were alternated.  Each sample was immediately diluted, 

centrifuged and tested using the rat CRP kit and a non-species specific haptoglobin test 

from Tridelta Diagnostics (Kildare, Ireland).   

7.3.6 Haptoglobin Assay for Hemoglobin Peroxidase Activity 

The Hp measurements were made according to the instructions in TriDelta’s 

product insert.  Briefly, 7.5µL of serum from each sample was mixed with 100µL of 

Tridelta’s hemoglobin/diluent solution in sterile 96-well-plate wells.  Then, 140µL of 

stabilized hydrogen peroxide based chromogen solution was added.  After exactly 5 

minutes of incubation, measurements were made at 590 and 650nm on a plate reader.  

This differed from the suggested 630nm due to equipment limitations. 

7.3.7 Biomaterial Implantation: Haptoglobin in Hamsters   

 Four sibling Gold Syrian Hamsters weighing 208+-6g were obtained, separating 

one animal out as a control.  The experimental hamsters were anesthetized using 

100mg/kg Ketamine HCl and 250µg/kg Medetomidine HCl intraperitoneally, then had 

window chambers implanted following the procedures of Makale et al(86) and Chapter 2.  

One animal was chambered with a 12mm circular PTFE implant inside the chamber, 

another with a cellulose implant and another with only the glass cover slip. 

 All four animals had blood drawn by saphenous venipuncture as described above.  

The total dilution ratio was 99:1 saline to whole blood.  Buprenorphine HCl and  

Atipamezole HCl administered in the same dose as for rats. 

Saphenous draws were taken from all animals 3, 5 and 7 days following surgery, 

with 25% of the original surgical dosage of Ketamine/Medetomidine.  Venipuncture sites 
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were alternated.  Each sample was immediately diluted, centrifuged and tested using 

Tridelta Diagnostic’s Haptoglobin kit as described in the previous section. 

 

7.4 Results and Discussion   

7.4.1 Methods Results 

7.4.1.1 Cross Reactivity  

Cross reactivity of the rodent samples with the human CRP kit was seen to be 

negligible.  Similarly, only the rat serum show activity with the rat CRP kit even when 

full strength serums from the hamster and fat sand rat were assayed.  Since these early 

experiments, lack of cross-reactivity has been established in other studies. 

7.4.1.2 Rat CRP: Nonlinearity of Measurements and Dilution 

 The normal rat serum samples, assayed 4000 fold diluted with the rat CRP kit, 

showed values inside the expected curve, with absorbance of 0.238-0.265 corresponding 

to 26.5-32.1µg/mL CRP as determined by the logarithmic control curve.   

The 100 fold dilution serum showed absorbance of 0.338-0.388, corresponding to 

53.9-77.0µg/mL.  The relationship between the dilution of the samples and the measured 

concentrations was not consistent with the logarithmic control ladder, being off by a 

factor of 18.  Increasing dilution two fold corresponded to an average decrease of only 

28.9%.  Serum was consistently observed to not follow the dilution curve, which was 

generated by a ladder of 6 separate standards, as opposed to serial dilution of a single 

standard. 
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7.4.1.3 Quantitative Blood Collection from Saphenous Puncture 

 Animals responded well to the serial blood collections, with saphenous veins 

recovering very well in each two day time frame.  For measurements involving dilute 

serum, this method of pre-diluting whole blood prior to centrifugation allows more 

frequent collections of blood than previous more invasive methods like cardiac puncture 

and catheterization, and therefore a more complete picture of post procedure protein 

levels.  Important elements of the methodology are the thin grease layer and clean post-

puncture compression to preserve site integrity.  Additionally, for haptoglobin, strong 

care was taken to avoid hemolysis in collected samples, since haptoglobin binds to free 

hemoglobin.  Gentle treatment of blood samples, low shear in the pipette tip, early 

separation of the serum from the whole blood, and low air contact should all be observed. 

Given the high sensitivity of CRP measurements to variations in dilutions, 

consistency in dilution amounts throughout an experiment is also highly suggested for all 

serum protein measurements 

7.4.1.4 Calibration Curves: Form and Sensitivity 

 Both the CRP and Hp curves were strongly linear for a plot of optical density 

versus Log10 of protein concentration.  The CRP curve had an R2 of 0.9994 over the 

range of the rat test samples, while that of the Hp had an R2 of 0.9979 in the range of the 

Hamster test samples.  Minimum optical density for both tests was non-zero and thus 

both curves displayed an S-shaped change of inflection near zero concentration, which 

was more pronounced in the Hp test.  This rat Hp samples, especially those under 

0.25mg/mL, to have large variations in calculated protein for very small changes in 

absorbance.  This region was approximated by a quartic curve found in Excel, and so 

protein concentrations were solved for using Mathematica (v5.0 Wolfram). 
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 The calibration curve produced for Hp at 650nm had lower sensitivity than the 

curve for 590nm, due to lower overall optical densities.  Though the curves were almost 

identical in shape, the 590nm curve was used for all calculations. 

7.4.1.5 Comparing Blood Collection Sites 

 Samples taken by saphenous and cardiac puncture were shown to have consistent 

optical density readings for Hp (1.37+-0.38%, n=3), as did samples from different legs 

(3.55+-2.75%, n=6).  Measurements for CRP were still reasonably consistent between 

cardiac and venipuncture samples (10.9+-4.74%, n=3) and between venipuncture samples 

from different legs (9.48+-8.92) (Table 7.1).  These results compare well to pre-surgical 

variations between animals of 5.21% for CRP and 8.30% for Hp. 

Due the S-shape in the calibration curve near zero concentration, especially for 

Hp, errors in the actual calculated serum concentrations become higher the lower the 

tested range.  This was a greater issue for measurement of Hp in the rat preparation, 

which had lower serum concentrations than for hamsters.  In particular, the difference 

between opposite leg venipuncture samples below 0.17mg/mL was 18.5% versus 3.97% 

for those above 0.17mg/mL (Table 7.1).  Conversely, the standard deviation of calculated 

pre-surgical hamster Hp, all of which were above 0.25mg/mL, was lower than the 

standard deviation of the optical densities. 

7.4.2 Biomaterial Implantations 

7.4.2.1 Biomaterial Implantation: CRP in Wistar Rats   

 As a whole, over the 7 days following surgery, the CRP levels of the animals 

were variable and did not follow a discernible pattern with respect to surgery or 

biomaterial implantation (Figure 7.1).  Human CRP levels have been reported to rise 

significantly within 24 hours in cases of surgery and acute inflammation(58).  The current 
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preparation may not have approached this level of insult, the insult may not have been 

sufficiently greater than saphenous venipuncture, or alternately, rat CRP mechanisms 

may not respond to the same degree as human mechanisms as suggested by the previous 

literature. 

 

Table 7.1 Variation of Serum Measurements: Different Test Sites, Animal Populations 
(A): Differences, as a percent of averages, for optical densities and protein concentrations 
between samples taken from different sites.  Pairs of samples from the same animal, 
opposite saphenous veins, and from the same animal, saphenous versus cardiac puncture, 
are shown. 
(B): Standard deviations, as a percent of average, for optical densities and protein 
concentrations in pre-surgical and control animal populations. 

 
Table 7.1: Comparison of CRP and Hp Measurements Between Test Sites 
and Within Populations 

 
A: Difference Between Comparison Samples as a Percent of Average 

Difference between comparison 
samples 

N 
pairs 

StDev in Optical 
Density 

StDev in Calculated 
Concentration 

Rat CRP    
Same animal different Legs 6 10.8±4.74% 19.7±8.1% 

Same animal, saphenous vs. 
cardiac puncture 3 9.48±8.92% 16.0±12.9% 

Rat Hp    
Same animal different Legs 6 3.55±2.75% 13.7±12.8% 
Leg-Leg below 0.17mg/mL 4 4.47±2.96% 18.5±13.4% 
Leg-Leg above 0.17mg/mL 2 1.71±1.19% 3.97±2.61% 

Same animal, saphenous vs. 
cardiac puncture 3 4.40±2.51% 22.0±9.7% 

 
B: Group Standard Deviation as a Percent of Average 

Standard Deviation Within 
Populations N StDev in Optical 

Density 
StDev in Calculated 

Concentration 
Rat CRP    

All rats pre-surgery 5 5.21% 9.64% 
Control samples throughout 

experiment 5 12.50% 23.40% 

Rat Hp    
All rats pre-surgery 5 8.30% 41.90% 

Control samples throughout 
experiment 5 2.10% 25.10% 

Hamster Hp    
All hamsters pre-surgery 4 10.00% 6.76% 
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7.4.2.2 Biomaterial Implantation: Haptoglobin in Wistar Rats   

 The day following surgery, Hp levels in the rats all increased.  However, 

following this initial concerted increase, Hp levels in the rats over the remainder of the 

experiment did not follow a discernible pattern (Figure 7.2).  Control Hp levels increased 

throughout the experiment, potentially indicating that Hp measurements, when the 

sample range is low, are sensitive to the hemolysis induced by venipuncture. 

7.4.2.3 Comparison of Rat CRP and Haptoglobin Levels   

 Pre-surgical magnitudes of CRP and Hp for each animal followed approximately 

the same rank and relative range, potentially indicating that baseline CRP and Hp levels 

are related.  However, following surgery, the rank of each group’s magnitude switched 

frequently and did not follow the same pattern for CRP and Hp. 
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Figure 7.1 Rat C-Reactive Protein Following Implantation of Biomaterials 
The figure shows a plot of serum concentrations of C-Reactive Protein in rats for 7 days 
following biomaterial implantation, with each animal’s values normalized to pre-surgical 
measurements (Day 0), and then to the control.  No distinguishable pattern was observed.  
The cellulose animal was removed from the study after day 2 for unrelated reasons. 
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Figure 7.2 Rat Haptoglobin Following Implantation of Biomaterials 
The figure shows a plot of serum concentrations of Haptoglobin in rats for 7 days 
following biomaterial implantation, with each animal’s values normalized to pre-surgical 
measurements (Day 0), and then to the control.  No distinguishable pattern was observed.  
The cellulose animal was removed from the study after day 2 for unrelated reasons. 

7.4.2.4 Biomaterial Implantation: Haptoglobin Hamsters   

 The day following surgery, Hp increased for all hamster groups.  The trend for the 

overall experiment was also an increase in Hp levels for all groups including the control.  

The trend of greater increases for the biomaterial implanted animals is discernible in the 

raw data.  However, when Hp concentrations were normalized to each animals’ pre-

surgical values, and then to the control values for each day, the trend becomes obvious 

and significant (Figure 7.3).  All window chambered animals showed significant and 

prolonged elevation of Hp relative to the control (P<0.0094).  Microporous biomaterial 

implanted animals showed a further significant increase over the window chamber only 

group (P<0.0038), indicating greater inflammation or a prolonged hemolytic 

environment.  There was no significant difference between the two microporous 
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biomaterials in the first 7 days, but future experiments over longer periods may 

demonstrate changes in the time course of Hp elevation for these and other materials. 

Enzymatic function test results by nature are dependent on the time at which the 

samples are measured and can vary by environmental conditions.  Thus, calibration 

samples should be run regularly, and values should be normalized for relative rather than 

absolute comparison.  However, the benefit of plotting normalized profiles over time is 

that the error due to animal to animal variation in baseline values is reduced.  Change in 

serum protein levels, rather than absolute values, are measured. 
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Figure 7.3 Hamster Haptoglobin Following Window Chamber and Biomaterial 
Implantation 
Normalized serum concentrations of Haptoglobin in hamsters are shown for 7 days 
following window chamber and biomaterial implantation, with each animal’s values 
normalized to pre-surgical measurements (Day 0), and then to the control.  The 
microporous biomaterials experience a rapid and prolonged elevation in concentration 
relative to the control and the window chamber only group.  The window chamber only 
group had elevated levels relative to the control group. 
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7.5 Conclusions   

C-Reactive Protein and Haptoglobin measurements were found to be highly 

consistent when taken from different veins or cardiac puncture, validating the saphenous 

methodology.  However, CRP measurements were found to be highly sensitive to dilution 

ratios.  Rat Hp levels were on the low end of the measurement method’s sensitivity and 

were very sensitive to measurement timing.  Measurements made in the non-linear 

portion of the calibration curve were more difficult to interpret, suggesting future 

experiments use consistent, lower dilution levels. 

Neither C-Reactive Protein or Hp levels showed any discernible pattern over the 7 

days in the rat preparation.  However, Hp levels in hamsters responded to microporous 

biomaterial implantation, showing a clear prolonged relative increase versus the control 

and window chamber only subjects.  In particular, the result that microporous 

biomaterials elicited an increased Hp response relative to the titanium and glass 

experienced by the window-chamber-only group warrants further investigation.  

Additionally, the elevated protein profiles had not settled by the end of 7 days, suggesting 

longer time frames for future studies.  Longer studies may also help to define differences 

between biomaterials that elicit similar acute responses such as the microporous 

membranes observed here. 

Serum protein measurements were validated in this study as a quantitative marker 

of biomaterial compatibility, though CRP measurements did not appear to be as effective 

in rodents.  Future experiments with other markers, such as fibronectin, larger animal 

groups, and a wider variety of biomaterial implants are a natural progression of this work, 

potentially leading to more specific definitions of compatibility based on application.  

Since the different serum proteins each respond to a slightly different element of tissue 

inflammation, such as Hp to free hemoglobin, multi-protein profiles may be an effective 

way to understand how different biomaterials specifically affect their tissue environment. 

 



 

CHAPTER 8: Conclusions of the Dissertation 
 

8.1 Conclusions 

The performance of implanted oxygen sensors was affected by the presence of 

biomaterials.  This was most clearly evidenced by higher signal magnitude for sensors 

encased in PDMS than those encased in cellulose for the first 7 days of implantation, with 

the greatest differences observed to occur between days 4-7.  Following day 7 until day 

14, the differences between the magnitudes of the differently encased sensors diminished, 

though PDMS sensors retained systematically higher values.  The increase in cellulose 

encased sensor magnitude may have been due to tissue ingrowth into the cellulose that 

was observed histologically to be complete by day 14.  The majority of the disparity 

between PDMS and cellulose encased sensor signals appeared following implantation 

and following day 4, suggesting a connection to changes in the tissue following the same 

timeline.  In addition, all sensor signals were higher on day 14 than day 7, implying either 

better contact with the tissue or improved convective transfer of oxygen to the implant 

site for both materials. 

The disparity in signal magnitude for PDMS and cellulose encased sensors was 

observed to be disproportionately lesser in during hypoxic exposure, where the advantage 

of PDMS to signal magnitude was lessened.  Overall, the sensitivity of sensors to 

exogenous oxygen was more linear than expected at lower oxygen concentrations.    

Cellulose encased sensor were observed to have higher signal noise, which is not 

advantageous, but at lower exogenous oxygen concentrations, though noise increased for 

sensors encased in both biomaterials, the noise for PDMS encased sensors became 

relatively greater.  Thus, the projected oxygen levels in the implant site are worth taking 

into consideration when making choices in sensor materials. 
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Comparison of sensor array function in vitro before and after implantation in the 

hamsters validated that implantation had not significantly affected the sensitivity of the 

sensors.  However, changes in the variance of the sensitivity suggest that there were 

issues with sensor hydration that may need to be addressed for future application of 

sensors utilizing hydrogel media. 

Sensor dynamics and challenges proved to be a potentially useful tool in studying 

oxygen diffusion characteristics in vivo.  Curve fittings methods were effective and the 

resulting time constant calculations allowed comparisons of sensor dynamics for sensors 

encased in different biomaterials.  The results showed that while materials significantly 

affected sensor dynamics in vitro, the effect diminishes in vivo.  Cellulose still had lower 

time constants during the implantation, but a stronger correlation between vascular access 

and time constants was found than between biomaterials and time constants, implying 

tissue to be dominant over materials in limiting diffusion to the sensor.  Vascular 

proximity was correlated to a lesser extent to the delay in sensor response to challenges, 

but also interestingly to the shift-directional ratio, an indication of the relative resistance 

to oxygen increases versus decreases in the tissue.  The SDR was not affected by 

biomaterials in vitro.  Larger SDR larger values in thinner tissue implied that mechanisms 

restricting oxygen loss in the tissue are largely vascular. 

Oxygen diffusion constants estimations for the diffusion path to the sensor arrays 

were found to be on the expected order of magnitude, as were estimates of diffusion in 

the PDMS.  The cellulose membranes were determined to have almost two orders of 

magnitude higher resistance to diffusion in vitro.  Determination of tissue diffusion 

constants was complicated by possible changes in membrane diffusion in vivo. 

Observations of serial oxygen challenges indicated that dissolved oxygen in both 

the biomaterials and the tissue may contribute to the sensor signal, and that following 

depletion of dissolved oxygen, temporary flux imbalance may reduce the sensor signal 
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magnitude.  In vitro the effect was seen to be proportional to the size of the step reduction 

in oxygen, and reversible with exposure to elevated oxygen.  In vivo, sensor signal 

magnitudes were reduced significantly following exposure of the animals to hypoxic 

condition, with continued loss of magnitude on repeated challenges.  In vitro this loss of 

magnitude was seen to be greater for cellulose encased sensors, but in vivo, on days 7 and 

14, there were no difference seen due to biomaterial encasement.  Time constants for the 

sensor response were increased by hypoxic exposure and rose dramatically during 

multiple cycles of oxygen challenge.  This implied a potential active reaction of the tissue 

to hypoxia such as increased vascular activity.  These results demonstrated path rather 

than just state dependency of sensor signal and dynamic performance. 

Quantification of tissue features with color and morphological feature 

identification and filtration proved to be highly effective and versatile.  The HistoQuant 

programming was used to successfully create spatial maps of vasculature, general cells, 

inflammatory mast cells, muscle fibers, and collagen.  Color and morphological 

parameters for isolating these features were established for future studies. 

Observations of the tissue from biomaterial membranes with HistoQuant 

demonstrated thicker granulation tissue adjacent to PDMS as well as lower numbers of 

mast cells relative to cellulose tissues.  The other major observation was the total 

penetration, but not occupation of the cellulose membranes by loose connective tissues, 

which accumulated at the interface between the cellulose and the PDMS backing.  

Limitations in the explanted histology from animals with active sensors, due to tissue 

processing errors, prevented further comment on tissue characteristics, excepting 

structural ones, such as measurements of the distance from the membrane to the nearest 

vasculature, generally designated by the distance to the retractor muscle.   

Serum measurements in hamsters implanted with microporous membranes 

demonstrated elevated haptoglobin levels relative to the control and to window chamber 
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implanted animals over 7 days.  The serial quantitative blood collection method was 

validated as consistent, comparable to past methods, and effective in acquiring samples.  

The observations that rat CRP and haptoglobin did not follow a specific pattern may 

indicate the need for larger numbers of subjects or a more reproducible surgical 

preparation. 

Overall, oxygen transfer in the implant environment was studied through the use 

of implanted sensors, dynamic challenges, and quantitative histology.  The methods were 

validated and showed several clear differences between the performance of sensors 

encased in different biomaterials and helped to characterize some of the mass transfer 

properties of the tissue environment.    Sensor dynamics, especially the time constant and 

the shift-directional ratio were also shown to be potential methods of estimating the 

vascular access of implanted devices and the solubility and diffusion constants for the 

tissue surrounding the device. 

 

8.2 Future Directions   

This work suggests that the sensor implantations should be studied in their more 

acute state, taking histological samples at 7 days with more frequent data points for 

sensor acquisitions.  In addition, experiments with deeper hypoxia, vasoactive 

compounds or compressive ischemia would provide further insight into the origins of the 

differences seen in diffusion around different biomaterials.  Expansion of the experiment 

to larger animals with thicker skin is suggested to reduce the impact of diffusion through 

the skinfold.  Finally, the use of the sensor to drive local hypoxia, its effect on tissue, and 

the modulation of that effect by biomaterials is a potential future direction. 

Studies of other biomaterials such as smooth versus expanded PTFE, and studies 

of other analytes such as glucose and lactate are a logical progression of this work.   

 



 

APPENDIX A: Step Shift Curve Form Derivation 
 The original derivation of this equation was performed by Lucas Kumosa(72) (UC 
San Diego Bioengineering, PhD Student). 
 
The Model and Initial Conditions   
 The equation was originally derived for step shifts in concentrations of gases 
mixing in a fixed volume space, with a specific inlet and outlet, such as the flask used in 
sensor calibrations.  The gas concentration at the outlet is a function of the concentration 
at the inlet and of the flow of gas through the chamber, assuming fixed pressure.  This 
outlet concentration represents the mixed gas of the chamber and thus the current state of 
chamber concentration.  The mass balance, where CE is the concentration at the inlet and 
CS is the concentration at the outlet, is… 
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U represents flow through the openings and V the volume of the fixed space, while t is 
time. 
 For a diffusion limited situation, the diffusion represents flow.  The far more rapid 
convective events are dominated and thus no longer contribute to the curve form.  Such a 
situation is diffusion of oxygen through the tissue to the sensor, following extraction from 
the microvasculature.  In this case, CE becomes the extracted oxygen concentration or 
that at the external surface of the vasculature.  CS is the concentration at the sensor.  
Volume becomes that of the diffusion path, while flow, as suggested, is diffusion.  For a 
two dimensional model, thickness can be factored out, leaving τc as the ratio of the 
diffusion rate and the area of diffusion. 
 Derivation of the curve form now involves solving the mass balance equation for 
CS.  The first step of which is to factor out U, and to rearrange the scalar values. 
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CSo is the original value of oxygen at the sensor.   
The equations are then integrated.  The left hand side is simple, but the right hand side 
uses an identity for the integral of a denominator with a scalar addition(37). 
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Solution of the equation for CS yields the following equation. 
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This can be simplified by multiplying out the first exponential term, and then factoring.  
The final form is a simple exponential equation. 
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We then find that the time constant is equal to U/V and acts to modify –Δt in the 
exponent, accelerating curve resolution as it increases in magnitude. 
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The final curve form has a maximum value of CE, but in the tissue, CE is theoretically 
never achieved due to cellular consumption and other factors.  So ultimately, Cs 
approaches some steady state maximum below that of the local microvasculature, and 
CSmax = CE –CX, where CX represents tissue factors that limit maximum oxygen 
concentration.  This assumption does not, however, change the shape of the function. 
Another potentially complicating factor is that U may be affected by vascular factors 
such as flow rate, functional capillary density and the rate of extraction of oxygen from 
hemoglobin.  While none of these alter the pure diffusion rate, they may create an 
increase in the amount of oxygen passing through the tissue, increasing the apparent flow 
rate. 
 

 



 

APPENDIX B: Time Constants from Discretely 
Sampled and Incomplete Curves, Application to 
Algorithms   

 
B.1 Introduction   
 An additional factor that may limit the use of dynamic information in diagnostic 
or predictive algorithms involves the accuracy of curve fitting.  For the sake of practical 
application, this study will explore of the effect of curve extent, sampling frequency, and 
specification of endpoint values, on time constant calculation. 
 Curve extent defines the amount of the beginning and end of each curve that is 
included in calculations.  Greater curve extent indicates that fewer points are being 
overlooked. 
 Sampling frequency is a concern of computational cost.  More samples require 
more energy for collection and computation.  In implanted applications, lower sampling 
frequencies allow longer battery life and thus less potential for battery replacement 
surgery.  Thus, it is optimal to find the lowest sampling frequency which allows curve 
fitting to real world data. 

Specification of endpoint values is partly an issue specific to the use of nonlinear 
regression methods.  For curve fitting, a curve form or function can be suggested which 
the regression fits to the raw data using least squared methods.  The curve fit is more 
rapidly achieved and less likely to blow up if the first and last point of the function are 
specified.  However, due to the uncertainty inherent to real world situations, the 
endpoints of a curve may be difficult to identify, especially when curves overlap or fail to 
completely resolve. 
 While the concepts discussed so far are not novel to algorithm design and have 
been theoretically explored, this study provides a methodical analysis of actual sensor 
data and will hopefully offer insight to more in-depth studies or a starting point for future 
algorithm design. 
 
B.2 Materials and Methods   

 
B.2.1 Comparing Specified and Calculated Initial Signal Magnitudes 

(Voltages), and the Effects of Curve Length   
 To determine the magnitude of artifact due to curve extents, τc was calculated 
during incremental removal of points from each end of several calibration curves. 
In addition, τc was calculated for several curves with specified initial magnitudes, Vo 
values, and compared to τc values calculated by nonlinear regression without specified 
initial signal magnitudes.   
 

B.2.2 Determining the Effect of Sampling Frequency on Curve Fitting   
 The time constants for sixteen electrode calibration curves sampled every 4.375 
seconds were calculated in Mathematica, without specified initial signal magnitudes.  
Sum of the least squared error between the raw data and the fit curve was also calculated 
with each τc, and normalized to the number of samples taken for the curve.  The 
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sampling frequency was then iteratively reduced by a factor of 2, repeating the time 
constant and error calculations each time, until only 3 points were taken.  Both 
normalized error per sample and time constants were separately plotted as a function of 
the number of samples taken per curve (Figures B.1 and B.2). 

 
B.3 Results and Discussion     

B.3.1 Comparing Specified and Calculated Initial Voltages, and the 
Effects of Curve Length   

 For 16 calibration curves consisting of 100 points, removal of points at the 
beginning of the curve slope exhibited a stronger effect on error and time constant values 
than removal of points near the end of the slope.  This is logical given that the raw data fit 
exponential curves, where the initial slope is by nature far greater than that near the end. 
Removal of 5 and 10 points from the beginning of the curve respectively caused 
systematic 41.3±7.6% and 91.5±16.7% increases in the time constant, making the curves 
appear to resolve much more quickly.  However, removal of up to 25 points from the end 
of the curve resulted in a decrease of calculated time constants of less than 0.01±0.02%.  
Once the curve began to resolve, if a final signal magnitude was specified, time constant 
calculations were fairly consistent regardless of how many points remained.   

Failure to specify the final signal magnitudes, V1 values, increased error and 
reduced consistency of time constant calculations.  To the contrary, using Mathematica to 
determine initial signal magnitudes (Vo’s) rather than specifying them, resulted in 
relatively small change in the time constant calculations, and more robust calculations for 
the removal of early points on the curve.  Time constant calculations increased by only 
14.5±6.0% and 14.7±12.0% respectively, for removal of the same 5 and 10 points if 
initial signal magnitudes were unspecified.  These results are encouraging, given that the 
initial values of actual data curves can be mathematically difficult to identify, or 
inconsistent between electrodes on an array.  Thus, while some accuracy may be 
sacrificed by failure to specify the initial values, more robust algorithms are desirable. 

The use of calculated initial magnitudes rather than specified also decreased 
average squared error by roughly 500 fold .  However, it is unknown whether the time 
constants derived from specified or calculated end voltage values are more accurate.  
During the in vivo experiments, curves were rarely allowed to complete resolution for the 
sake of time, instead using a definition of technical resolution based on rate-of-change 
criteria.  So it is possible that specification of initial magnitudes may have introduced 
more artifact than it prevented.  Many questionable values were run both ways in the 
main experiment to verify the accuracy of the curve fit.  
 

B.3.2 Determining the Effect of Sampling Frequency on Curve Fitting   
 Error due to sampling rates was observed to be lower for a large or very small 
number of samples per curve.  Error was actually lower for 3-5 points per curve (Figure 
B.1), due to the greater ease of finding a tight fit, but time constant calculations at lower 
sampling rates were less stable, blowing up at less than 5 points.  Excluding the lowest 
sampling value, the standard deviation of time constants calculated at different sampling 
rates was on average only 6.04±6.45%, and deviation between the three highest sampling 
groups was 2.62±1.44% as a percent of average.  These results indicate that if efficiency 
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of calculations is desired for an implanted sensor, assuming a non-overlap of events, only 
a very few samples per curve, need be taken to calculate the time constant (Figure B.2). 
 
B.4 Conclusions 
 Curve fitting to real sensor response curves provide more in-depth insight into the 
needs and limitations of predictive algorithms.  This study demonstrated that relatively 
few points are needed, preferably in the early portion of the curve, for the robust and 
consistent determination of time constants.  Time constants may be a more 
computationally efficient method of making control and predictive decisions.  These 
results are applicable to biosensors, but also to other applications requiring efficient 
characterization of exponential curves such as in vivo thermistors and drug delivery 
models. 
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Figure B.1 Curve Fitting Error and Sampling Frequency 
Squared error for a nonlinear regression curve fit, normalized to the number of samples, 
is shown plotted against the sampling rate for 16 electrodes.  Sensor calibration data was 
sampled at increasing frequency to determine the optimal sampling rate for algorithm 
design and practical diagnostic use.  Error at low sampling rates was artificially low since 
the curve fitting was simplified by the need to encompass fewer points.  Increasing 
sampling frequency after 32 samples appeared to begin a slow decrease in error, making 
32 samples the sweet spot of efficiency. 
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Figure B.2 Time Constant Calculation and Sampling Frequency 
The calculated time constants for 16 electrodes are shown plotted against sampling 
frequency.  The time constants were found to be fairly consistent at higher sampling 
rates, while at lower sampling rates, variance increased and finally blew up for less than 5 
samples per curve. 

 



 

APPENDIX C: 2-Dimensional Oxygen Diffusion 
Model of the Subcutaneous Tissue Surrounding a 
Sensor Array 
 

C.1 Abstract   
 The development of a model of oxygen diffusion in subcutaneous tissue cross 
sections is detailed in this Appendix.  Digitized histology is used to create spatial maps of 
tissue features that produce or consume analytes, or that alter analyte diffusion.  The 
spatial maps are modified for use in either a superimposition of steady state solutions or a 
mesh-based partial differential equation solution of the diffusion equation.  The end result 
is a spatial map of oxygen in the tissue. 
 The model was designed modularly to allow multiple methods of solving the 
diffusion equation.  Recent software advances may allow the model to implement 
dynamic boundary conditions that represent vascular flow, the activity of an implanted 
sensor, or heat gradients and changes in the tissue. 
 The model may potentially be used to validate observations of oxygen transfer 
differences seen in the tissue with implanted sensors or optical methods.  Calibration of 
the model with empirical measurements from sensors and other tools could refine it to 
allow high throughput determination of how tissue interventions like biomaterial 
implantation may affect oxygen diffusion. 
 

C.2 Introduction 
 Existing oxygen diffusion models are largely based on the radial diffusion 

methods posited by Krogh(71) in his seminal work on muscle capillary physiology.   
Establishing a robust model of oxygen transfer in the vascular network and tissue has 
been a focal goal of many groups, using tools such as finite element and Greens Function 
methods(57, 101, 103, 119).  Aided by an improved understanding of the role of the 
microvasculature in oxygen transfer and delivery(63, 129, 130), these models offer great value 
to oncology, cardiovascular research, and implant design.  However, many of these 
models treat tissue as a homogenous mass, and do are not concerned with what happens 
to the oxygen once it has left the vasculature. 
 Modeling oxygen transfer is important to understanding how the tissue 
environment and changes to that environment affect the performance of biosensors.  
Models should be empirically based (57, 101, 103, 119), drawing on real world spatial and 
diffusion properties of the tissue.  Oxygen measurement tools(34) such as implantable 
sensors(21, 22) and optical methods such as phosphorylation quenching and decay (55, 64, 127) 
and hemoglobin saturation(99, 100), can be used to calibrate the models, eventually 
allowing them to be useful in a predictive capacity. 

In the model, digital images of the histology are used to create spatial maps of the 
vasculature and potentially consumptive elements (cells) (Chapter 6).  Implanted sensor 
experiments and values mined from existing literature are used to estimate diffusion 
variables and vascular oxygen levels.  The spatial maps are then combined and analyzed 
by steady state approximation of the diffusion equation, using field superimposition 

143 



144 

similar in application to Green’s Function methods(119), or Partial Differential Equation 
(PDE) solving tools.  The result will be a spatial map of oxygen concentration in the 
tissue, which can then be compared to measured readings, such as those from an oxygen 
sensor array, for calibration.  While the early model is limited in capability, it is designed 
in a modular fashion, so that improved computational methods or updates to our 
understanding of oxygen diffusion in the tissue will be easily applicable.  

An empirical oxygen model offers great value to research in both diffusion and 
biomaterials, establishing predicted diffusion properties of the tissue response to 
biomaterials as a quantitative measure of their compatibility.  
 
 

C.3 Materials, Methods and Discussion   
C.3.1 Programming and Design     
A user interface (Figure C.1) was designed in Matlab (v6.5.1, Mathworks) to 

allow the import of and combination of spatial maps of the microvasculature and other 
tissue features, followed by the solution of the diffusion equation, ultimately resulting in 
a map of tissue oxygenation.  The imported spatial maps are to be largely generated by 
the HistoQuant program from cross-sections of subcutaneous tissue, as described in 
Chapter 6.  However, the program designed for this study also allows importation of non-
quantified images, which the user then analyzes by hand. 

Three types of spatial maps, each introducing different boundary conditions, will 
be discussed in this work.  The first is maps of the vasculature: capillaries, venules, and 
arterioles.  These maps will be used by the program to define sources of oxygen.  The 
second type of spatial map is a map of consumptive elements in the tissue, such as cells, 
or an active sensor.  In the current study, these maps are used to determine relative 
differences in consumption between different tissues based on the ratio of their cell 
density.  The relative differences are used to adjust the steady state solution to the 
diffusion equation.  However, programming currently underway will allow these maps to 
be imported into the model with intact spatial relationships, rather than lumped 
parameters.  The last type of spatial map is one that defines regions of altered diffusion, 
such as retractor muscle with unsaturated myoglobin.  Only the vascular maps will be 
described in detail in this work. 
 Once the spatial maps are combined and their respective boundary conditions are 
applied, the image undergoes one of two methods of solving for diffusion.  The first is by 
superimposition of steady state solutions.  In the second, partial differential equation 
(PDE) software is applied.  The final result is a spatial map of oxygen concentration in 
the tissue.  The latter approach, PDE solvers, can also be applied to dynamic states of the 
tissue, such as changes in vascular perfusion or oxygenation. 
 

C.3.2 Diffusion Constants   
 Default diffusion variables were obstained from the literature.  Many studies 
found similar values for the diffusion constant (DO2), from 1.15-2.59*10-5 cm2/s in the 
rat mesentery(145) and several hamster muscle types(16, 39).  However, there was a wide 
variety in the reported consumption rates, potentially reflecting differences in the 
preparation and tissue types.  Work by Tsai, which detailed the combination all three 
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diffusion variables, including DO2 and consumption rate m, as well as solubility α, is 
utilized for this model’s default values(129).  Tsai used phosphorylation decay techniques 
to determine radial oxygen profiles around several vessels in vivo.  Profiles were fit to the 
steady state diffusion equation solution to find the diffusion variables.  Figure C.1 shows 
the default values and units used.   
 

 

A B

 
Figure C.1 The Oxygen Diffusion Model User Interface: Spatial Vascular Map   
The HistoQuant diffusion modeler is shown, with the original spatial map of vasculature 
generated by HistoQuant (A) for the Trichrome erythrocyte isolation shown in Figure 
6.13.  (B) shows the map after comparison to the vessel oxygenation curves.  The color 
bar on the right shows vascular oxygenation (extravascular levels only) as PO2 in mmHg.  
The purple colored circles are capillaries, which are dilated for visibility, and the two 
pink colored objects are veins. 
True pixel size is designated in Step 2 using calibrations with a slide micrometer (See 
Chapter 6 Methods), so that the solutions to the diffusion equation are spatially accurate.  
Diffusion constants are shown at their default values in Step 3 with appropriate units.  
These values can be altered by the user based on parameter estimation from cell density 
counts and analysis of sensor signal dynamics. 
 
 This dissertation also demonstrated in Chapter 4, that the oxygen diffusion 
constant in the tissue could potentially be calculated using the signal curves for implanted 
oxygen sensors.  Future work will potentially employ this method to specialize the 
diffusion constant to each tissue sample.  Likewise, it was discussed in Chapter 5, that 
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solubility of tissue may potentially be estimable using the loss of sensor signal magnitude 
following hypoxic exposure in proportion to exogenous oxygen changes. 
 

C.3.3 Generating Spatial Vascular Maps   
 The first step in generation of spatial maps in HistoQuant is simply the process of 
isolating tissue features and removing artifacts, as discussed in Chapter 6.  Once a binary 
image is produced by HistoQuant, it must sometimes be processed for used in the 
diffusion model, as with dilating nuclei maps to represent cells (Figure 6.9). 

 C.3.3.1 Vascular Maps from HistoQuant   
 Identification of the vasculature for HistoQuant requires a suitable staining 
method.  One approach is to label erythrocytes, but a more effective approach is 
immunohistochemical staining of vascular endothelial cells.  Such labels are easily color 
segmented and allow simpler determination of the vascular type.   
 Each microvessel type should have its own spatial map for the model.  Different 
vessel types are differently oxygenated, and separating their maps simplifies estimation 
of vascular oxygenation.  In the separate maps, pixel clusters are measured for their 
minor axis, the assumed diameter of the vessel.  This causes some error with veins, but is 
highly effective for both capillaries and arterioles.  The diameter is compared to empirical 
vascular oxygenation curves to determine its projected oxygen content.  It is this later 
value that will be used to define the radial diffusion profile emanating from each vessel. 

 C.3.3.2 User Generated Maps   
 When vascular map are not available from HistoQuant, but the user can identify 
microvessels in the sample image by eye, vascular maps can be user generated.  A mouse 
cursor is used to select the center of capillaries, which are treated as circles.  Venules and 
arterioles are treated as ellipses, and the cursor is used to define the major and minor axes 
of each.  Separate maps are generated of each vessel type.  The minor axis of each vessel 
is then compared to empirical vascular oxygenation curves. 
 

C.3.4 Vascular Oxygenation Curves   
 Curves of microvessel oxygen content were constructed from the literature.  
Studies by Kerger and Torres Filho utilized optical methods to measure microvascular 
oxygen levels in the hamster window chamber(66, 128).  The results for the oxygen content 
of each vessel type as a function of outer diameter were plotted and curve fitted in Excel 
(v2003, Microsoft).  The curve form for arterioles proved to be a diminishing exponential 
curve, while that for venules was more s-shaped, curving up from post-capillary values, 
then changing inflection to a diminishing exponential with larger values.  Capillary 
diameter was assumed to vary little, and so oxygen content was averaged.  All 
measurements of vascular oxygenation had high variation, but future application of a 
stochastic model or a refined understanding of oxygenation in vascular networks could be 
applied without disrupting the model. 
 Mathematically, the spatial maps of the vasculature are modified to account for 
their vascular content by multiplying the perimeter of each vessel by its extravascular 
(just outside the vessel walls) oxygen concentration calculated from the oxygenation 
curves.  The lumen of each vessel is multiplied by its intravascular oxygen content.  The 
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previously binary maps become maps of oxygen values inside vessels.  The right hand 
side of Figure C.1 demonstrates a very simple example of such a map.  
 

C.3.5 Minimum Oxygen Values and Diffusion through the Skin   
 Research has suggested that most tissues do not have regions of zero oxygenation, 
even during hypoxia(144, 145).  It has also been previously observed by Stucker that 
subcutaneous tissue 0.25-0.40mm beneath the surface may be highly dependent on 
diffusion of exogenous oxygen through the skin surface, which would present a constant 
oxygen supply.(124).  Thus, the model was designed to allow designation of a minimum 
non-zero oxygen level. 
 

C.3.6 The Wall Gradient 
 There is a great deal of debate regarding the disparity between intravascular and 
extravascular oxygen content.  An excellent discussion of this debate has  been made by 
Tsai et al(130).  In brief, there are two camps, which respectively contend that the either 
the cells of the vascular wall are responsible for significant consumption of oxygen, thus 
causing the large drop in oxygenation from inside to outside the vessel known as the wall 
gradient, or that other consumptive sources or systematic measurement errors are 
responsible.  In the past, the wall gradient had been regarded as an indication that larger 
blood vessels were differentially permeable to oxygen, though this is no longer a widely 
held belief.  Regardless of the cause of the wall gradient, its presence is accounted for in 
the model and may become of some importance when dynamics are applied to the model 
in the future.  Figure C.2 shows the impact of the wall gradient. 
 

C.3.7 Solving the Diffusion Equation   
 Spatial oxygen maps depend on the solution of the diffusion equation.  The most 
common form of the equation is differential. 

Equation C.1  m
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PO2 is the pressure of oxygen in the tissue, while DO2 is the diffusion constant for 
oxygen in tissue.  The variables α and m respectively represent solubility of oxygen in the 
tissue and consumption of oxygen by the tissue (units of α = (Vol O2)/(Vol tissue * 
Pressure) (Units of m =  ((Vol O2)/(Vol tissue * time)) (Units of DO2 = flux, or 
(area/time).  The equation can be solved for the steady state, where the time dependent 
term is equal to zero, as in Equation C.2.  Consumption is assumed to be constant, and it 
is assumed that there are no oxygen gradients perpendicular to the tissue slice. 
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If time dependent components exist, a numerical approximation must be made for the 
transient state using equation solver software.  With the user of a PDE solver, dynamic 
boundary conditions can even be applied, such as pulsatile vascular flow or intermittent 
function of an implanted sensor. 
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Figure C.2 2-Dimensional Tissue Oxygen Maps   
(A) shows a pseudo-color map of oxygenation in the vascular map from Figure C.1.  
Values are PO2 in mmHg as per the color bar.  The radial distribution of oxygen is clearly 
visible.  (B) shows the same map with the intravascular oxygenation included.  This is 
reflected in the greater range of the colorbar and demonstrates the significant wall 
gradient in even small microvessels. 
 

C.3.7.1 Diffusion Equation Solution Approach 1: Superimposition 
 The superimposition approach to spatial mapping of oxygen in the tissue uses 
individually calculated “masks” for of the radial oxygen profile for each vessel, which are 
superimposed.  It is computationally very inexpensive in two dimensions and does not 
require the complexity of assigning boundary conditions to the tissue perimeter.  It allows 
the solution of much larger models that would exhaust computational capacity using PDE 
solvers. 
 The superimposition approach assumes steady state conditions and thus parabolic 
radial oxygen gradients.  The value of oxygen, PO2, decreases as the distance from the 
vessel ‘x’ increases, following the parabolic form of Equation C.3, which is the solution 
of Equation C.2 for PO2. 

Equation C.3  O
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At the vessel wall, x = 0. The range of the equation is for x from 0 to δ, where δ is the 
theoretical oxygen penetration distance of the vessel (Equation C.4), with units of 
distance.  PO2o is the oxygen pressure at the vessel wall, assumed to be constant with 
constant flux from the vessel wall. 

Equation C.4   m
PODO

O222α
δ =  

 To apply the superimposition approach, each vessel in the spatial map is given its 
own digital mask the size of its penetration capability, a matrix with dimensions of 2δ 
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plus the vessel diameter on each side, with all pixels valued at unity.  The distance of 
each pixel in the mask from the vessel wall is calculated, and using Equation C.3 and the 
empirical oxygen constants already discussed, the oxygen value of each pixel is solved 
for and replaces the pixel value.  It is not supposed that measurements will be taken 
between the vessels and thus error from this approach is not expected to be large under 
stable conditions. 

C.3.7.2 Ellipse Estimation in the Superimposition Approach   
 For circular vessels, radial symmetry is assumed.  However, for elliptical vessels, 
the distance ‘x’ which is plugged into Equations C.3 and C.5, is actually the average 
distance from the two foci with the distance from the foci to the vessel wall subtracted.  
This method was shown produce almost negligible error (<1%) compared to PDE 
solutions of a single ellipse, estimated by the average percent difference between each 
pixel’s oxygen value in the vessel masks.  More eccentric ellipses had higher error, but 
error dropped off rapidly as x increased. 
 Figure C.2A shows the 2-Dimensional results of superimposition of the steady 
state solution of radial diffusion for several venules and capillaries, without intravascular 
values.  A venule with high eccentricity was chosen to illustrate the ellipse estimation. 

C.3.7.3 Diffusion Equation Solution Approach 2: PDE Solvers   
 As has been stated, this model was designed to be highly modular, allowing 
improvements in computation to be incorporated.  One such improvement is the 
application of increasingly powerful PDE solver software.  This project employed 
Matlab’s PDE Tool (v2006a, Mathworks) as a second approach to solving the diffusion 
equation of small models.  Application of the vascular spatial maps to the PDE solver 
simply requires that the shape and oxygen content of each vessel be conveyed.  First, a 
rectangular model size of the tissue sample is established in the solver with an 
empirically determined minimum value and semi-infinite boundary conditions(119).  Then, 
each vessel’s center, its major and minor axes, and the orientation of the major axis, 
determined by HistoQuant, are used to draw the vessel geometries into the solver.  The 
vessels are given boundary conditions of fixed concentrations based on those calculated 
from oxygenation curves.  The program then establishes a triangular mesh using the 
methods of George(46), which can be refined for greater accuracy and resolution, but at a 
higher computational cost.  The mesh is then solved for a parabolic equation with 
diffusion constants provided to the solver by the modeling program, ultimately producing 
a spatial map of oxygen levels in the tissue. 
 Future implementation of Comsol Multiphysics (Comsol, formerly Femlab) will 
allow the use of dynamic boundary conditions and the application of heat gradients, 
which are a significant consideration for subcutaneous implants(15, 16). 
 Figure C.3 shows the same vascular map as Figure C.1B, after transfer to 
Matlab’s PDE Tool (v2006a, Mathworks), a PDE solver program.  This program was 
found to communicate effectively with Matlab, but had some problems with specific 
capillary geometries, and single capillaries were often moved or left out of the mesh 
creation.  These problems were not seen in preliminary tests with Comsol (v3.2a 
Comsol), a more advanced PDE solver program. 

 



150 

 

Figure C.3 Mesh Solution for a Spatial Vascular Map 
The vascular map from Figures C.1 and C.2 is shown in the Matlab PDE solver.  A 
triangular mesh grid has been established for solution of the equation.  The grid shown is 
at the second level of refinement, offering greater resolution at higher computational cost.  
Several capillaries were slightly displaced by the solver, a common error in the 
communication between the model program and Matlab’s PDE solver. 

C.3.8 Oxygen Measurements at the Sensor Boundary   
 Once the final spatial map of oxygen has been produced, oxygen levels can be 
measured by querying the map pixel by pixel.  Alternately, a line can be traced on the 
image, and a profile of oxygen values along that line can be created (Figure C.4).  This is 
beneficial to sensor studies where an oxygen profile at the sensor membrane is desirable. 
 

C.3.9 Consumptive and Altered-Diffusion Maps: Potential 
Application of the Model to Other Analytes   

 Spatial maps of consumptive elements like cells are not easily applied to the 
superimposition approach.  In superimposition, consumption maps are used to estimate 
the average consumption rate of the tissue and alter the steady state solution accordingly.  
However, using PDE solvers, these maps can be applied to the model in the same fashion 
as the vascular maps.  In the PDE solver, the consumptive elements are drawn as ellipses 
with a boundary condition of fixed consumption.  An understanding of individual cell 
consumption is necessary for this approach, as most calculations of tissue consumption 
are calculated by tissue volume. 
 In the same manner, maps of features which alter diffusion cannot be applied by 
superimposition.  However, importation of these spatial maps into PDE solvers is simply 
a matter of transferring their geometries to the PDE tool, and assigning different DO2 
values within the geometries.  Models utilizing these maps would be useful in 
applications with layered or mixed tissue environments or in situations where 
impermeable objects such as implanted materials may be affecting diffusion through the  
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A 

B 

Figure C.4 Topograhical Tissue Oxygenation Map: Profile of Oxygen at the Sensor   
(A) shows a contour map of tissue oxygenation for the vascular map of Figure C.1, 

with oxygen as PO2 in mmHg per the colorbar at the right.  The Y-axis has been flipped 
due to Matlab internal programming (Matlab utilizes reversed axes, so Y is left-right and 
X is up-down).  The two black arrows designate veins, while the remaining columns are 
capillaries.  The columns are a result of including intravascular values and the wall 
gradient in the model, while the cone shapes at their bases are the actual extravascular 
radial oxygen profiles for the vessels.  The outlines of vessel boundary conditions, 
appearing as rings, are visible on the XY plane in the background. 

The yellow band indicates the projected location of the sensor, along which an 
oxygen profile is taken.  The profile is displayed in (B) as a function of oxygen tension 
PO2.   
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tissue.  In particular, application of the model to new analytes such as glucose would 
require that the selective permeability of cell membranes be accounted for.  Previous 
models of glucose diffusion in the tissue have discussed this issue (41). 

 C.3.10 Observations of the Model 
 The superposition approach was used to model several interesting phenomena.  
The first was the dominant role of arterioles in tissue oxygenation at a resting state.  In a 
field with several capillaries, the addition of even a small arteriole -8 to 10µm in 
diameter- overpowered the contribution of any capillaries or veins within a hundred 
microns.  This agreed with previous observations(38, 59, 102, 126, 130).  This observation was 
predictable from the large extra-vascular oxygen pressures of arterioles. 
 Secondly, with respect to capillaries, proximity was observed to be key.  A row of 
20 capillaries modeled in the retractor muscle 100 microns or more from the sensor 
contributed less to the sensor oxygen content than a single capillary modled 50 microns 
distant from the sensor, at default values for the diffusion variables.  When consumption 
rates were lowered, the penetration of capillary oxygenation increased, and this 
relationship softened.  The opposite was seen for increases in solubility. 
 

C.3.11 Requirements and Limitations of the Model   
 This study was limited by problems in the histological processing of tissue from 
sensor implantations.  Thus, empirical models could not be created for these specific 
tissues.  The future goal is to model the tissue surrounding a sensor and compare actual 
sensor readings to the predicted tissue oxygenation at the sensor location.  In order to 
accomplish this, better histology will be needed.  Additionally, tightly sequential sections 
will be needed so that different stains for vasculature, cell nuclei etc. can be applied to 
very similar cross-sections, allowing combination in the model.  Lastly, better methods of 
spatial relationships between the sensor array electrodes and the tissue are desirable, so 
that rather than an average, the oxygenation for individual sensors can be predicted and 
calibrated to the sensor signals. 
 Computationally, the limits of the program were mostly errors in transferring the 
spatial map geometries into the PDE solvers.  There were many problems with the PDE 
solvers rejecting certain configurations which may be lessened by more advanced solvers.  
The superimposition approach worked well when static conditions were assumed, but 
requires lumping of parameters for consumption and solubility, which limits the potential 
usefulness of the model and prevent application of the model to glucose or other analytes. 
 Finally, regarding our understanding of tissue oxygen diffusion, the effect of 
individual tissue features is still poorly defined.  Features like collagen are likely to affect 
diffusion at higher concentrations, but the relationship between collagen density and 
solubility or diffusion rates in the tissue are unclear.  Additionally, the oxygen 
consumption behavior of cells is not well understood, especially with respect to wound 
healing and oxygen dynamics.   

Fortunately, the modular design of the model will allow implementation of 
solutions for these concerns as they become available. 
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C.3.12 Future Computing Directions   
 Implementation of advanced PDE solvers is the first stage in improving the 
capabilities of the model.  Increased computational capacity may also allow the 
preparation of 3-Dimensional models from confocal z-stacks(18, 98) or by stacking 
regularly spaced sections from the tissue(56).  Finally, multiphysics solvers like Comsol 
(Comsol), would allow the implementation of chemical or heat gradients that affect 
diffusion, the latter of which has a significant effect on DO2 in subcutaneous tissue(15, 16). 
 To either the PDE solvers or the superimposition approach, stochastic 
determination of vascular oxygenation would improve the randomness of larger samples. 

 



 

APPENDIX D: Matlab and Mathematica Code for 
the Dissertation 
 
 

The working HistoQuant histological quantification program and Mathematica 
time constant estimation code can be downloaded from  
http://be-web.ucsd.edu/faculty/area/biosens/public_html/programming.htm  
or can be requested by contacting the dissertation author jbg4e@alumni.virginia.edu. 
 

Mathematica code was co-authored by the dissertation author and Lucas Kumosa 
(UCSD Bioengineering, Ph.D. Student). 
 

Matlab code for the HistoQuant histological quantification program was written 
by the dissertation author. 

 
Matlab code for the diffusion model was co-authored by the dissertation auther 

and Alex Hsiao (UCSD Bioengineering, Ph.D. Student). 
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