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Abstract

Controlling Energy-Efficient Buildings in the Context of Smart Grid:
A Cyber Physical System Approach

by
Mehdi Maasoumy Haghighi
Doctor of Philosophy in Engineering - Mechanical Engineering
University of California, Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

The building sector is responsible for about 40% of energy consumption, 40% of
greenhouse gas emissions, and 70% of electricity use in the US. Over 50% of the energy
consumed in buildings is directly related to space heating, cooling and ventilation.
Optimal control of heating, ventilation and air conditioning (HVAC) systems is crucial
for reducing energy consumption in buildings.

We present a physics-based mathematical model of thermal behavior of buildings,
along with a novel Parameter Adaptive Building (PAB) model framework to update
the model parameters, as new measurements arrive, to reduce the model uncertainties.
We then present a Model Predictive Control (MPC), and a Robust Model Predictive
Control (RMPC) algorithm and a methodology for selecting a controller type, i.e.
RMPC or MPC, versus Rule Based Control (RBC) as a function of model uncertainty.

We then address the “Cyber-Physical” aspect of a building HVAC system in the
design flow. We present a co-design framework that analyzes the interaction between
the control algorithm and the embedded platform through a set of interface variables,
and demonstrate how the design space is explored to optimize the energy cost and
monetary cost, while satisfying the constraints for occupant comfort level.

The last part of this dissertation is centered on the role of smart buildings in
the context of the smart grid. Commercial buildings have inherent flexibility in how
their HVAC systems consume electricity. We first propose a means to define and
quantify the flexibility of a commercial building. We then present a contractual
framework that could be used by the building operator and the utility company to
declare flexibility on one side and reward structure on the other side. We also present
a control mechanism for the building to decide its flexibility for the next contractual
period to maximize the reward. We also present a Model Predictive Control (MPC)
scheme to direct the ancillary service power flow from buildings to improve upon the
classical Automatic Generation Control (AGC) practice. We show how constraints



such as slow and fast ramping rates for various ancillary service providers, and short-
term load forecast information can be integrated into the proposed MPC framework.
Finally, results from at-scale experiments are presented to demonstrate the feasibility
of the proposed algorithm.



To my mother for her unconditional love, my father for his continual support, and
my brothers for being my best friends.
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Chapter 1

Introduction

This dissertation addresses the broad area of energy-efficient buildings within the
context of the smart grid. Its overarching theme encompasses subjects such as mod-
eling thermal behavior of buildings using fundamental laws of Thermodynamics and
Heat Transfer, development of a parameter-adaptive building model that automati-
cally tune the parameters of the system to adapt to the changing environment, de-
velopment of optimal control algorithms to efficiently run the Heating Ventilation
and Air Conditioning (HVAC) systems of buildings, development of a framework to
co-design the control algorithm and the embedded platform, and the role of buildings
as significant consumers of energy in the context of the smart grid for providing reg-
ulation services as well as development of a novel MPC technique to control the flow
of such regulation services to improve upon the classical AGC practice.

1.1 Motivation

Total primary energy consumption in the United States increased from 78.3 quads'
in 1980 to over 100 quads in 2008, of which the building sector accounts for about
40%. The building sector is also responsible for almost 40% of greenhouse gas emis-
sions and 70% of electricity use. About 50% of the energy consumed in buildings
is directly related to space heating, cooling and ventilation (Figure 1.1). Therefore,
reducing building energy consumption by designing smart control systems to oper-
ate the HVAC system in a more efficient way is critically important to address the
worldwide energy and environmental concerns. With the advent of smart, easily-
controllable thermostats, smart meters, and two-way communication infrastructure
between the buildings as consumers of energy and utility companies as providers of
energy, the role of buildings in the operation of the smart grid will be even more

LA quad is a unit of energy equal to 1.055 x 10'® joules.
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Residential Sector Energy Consumption

Computers

Wet Cleaning . 1.7%
3.4% Cooking

3.1%
Electronics N\
2.9%

Refrigeration
4.0%

Lighting

2015 Residential Energy End-Use Splits

Figure 1.1: Breakdown of energy consumption in a typical building. Over 50% of energy
consumption is related to HVAC systems [11].

significant in the near future, compared to the current state-of-the-art.

Advanced control algorithms are considered critical enablers to achieve low energy
consumption in commercial buildings. Entire sections of the ASHRAE 90.1 standard
[77] are dedicated to the specification of control requirements. Although the optimal
control of an HVAC system is a complex multi-variable problem, it is standard practice
to rely on simple control strategies that include bang-bang controllers with hysteresis,
and PID controllers (Figure 1.2). In most cases, standard sequences of operations
for typical installations are used by control contractors. Each sequence controls the
HVAC equipment during an operation phase such as optimal start, safety shutdown
and normal operation. After installation and tuning, the building is inspected by
a commissioning agent that mainly verifies that the building satisfies the owner’s
expectations. The commissioning agent does not only verify the expected performance
right after installation, but also after the building has started its operations.

This short snapshot of design and validation practices in the building industry
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Figure 1.2: Control logic of a typical commercial building. The interaction and inter-
relation of building sub-systems is not addressed in the state-of-the-art control logic of
such systems. This may cause inefficient use of energy, such as simultaneous heating and
cooling of air in two different part of the system.

shows the importance of a model-based design flow for building controls. To attain
energy efficiency, control algorithms need to be tailored to the physical properties of
the building at hand rather than being an adaptation of a standard sequence designed
for a typical building. Thus, a thermal model of the building is needed that is also
suitable for optimal control design. Once such model is made available, it can be used
to design an optimal controller that balances comfort and energy usage. To achieve
building-level energy-optimality, the model should be able to capture the interaction
between physically connected spaces in the building, occupancy schedules, and state
and input constraints.
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1.2 Contributions

In recent years, a variety of works in the area of building energy efficiency and smart
grid has been done and can be found in the literature. A nonlinear model of the over-
all cooling system including the chillers, the cooling towers and the thermal storage
tank, as well as an MPC framework for minimizing the energy consumption of the
building is proposed in [51]. In [67] and [31], the authors use a model of the build-
ing which is bilinear between inputs, states and weather parameters and they use
Sequential Quadratic Programming (SQP) for solving non-linear problems in which
they iteratively linearize the non-convex constraints around the current solution, solve
the optimization problem and repeat until a convergence condition is met. Common
available methods for wall thermal analysis is proposed in [44]. A building thermal
model is proposed in [27] which is based on an Resistor-Capacitor (RC)-network,
with a large number of coupled linear differential equations. The authors then reduce
the order of the model via aggregation of states. In [35], the authors investigate the
potential of building thermal storage inventory, in particular the combined utilization
of active and passive inventory, for the reduction of electrical utility cost using com-
mon time-of-use rate differentials. In [63], the authors propose a dynamic multinodal
lumped-capacitance nonlinear model to describe a building, considering conduction
heat fluxes, envelope thermal capacity, lighting and people loads, infiltration, fen-
estration and thermal inertia of heating systems. A nonlinear disturbance rejection
state feedback controller for an HVAC system is proposed in [18].

Buildings are dynamical systems with uncertain and time-varying plant and oc-
cupant characteristics. The heat transfer characteristics of a building are highly
dependent on the ambient conditions. For instance, heat transfer properties such
as convective heat transfer coefficient h, of peripheral walls is dependent on outside
temperature, wind speed and direction. Also, unmodelled dynamics of a building [55]
is a function of 1) external factors: ambient weather conditions such as radiative heat
flux into the walls and windows, and cloudiness of the sky, and 2) internal factors:
such as occupancy level, internal heat generation from lighting, and computers. These
quantities are highly time-varying and therefore the dynamics of the building and,
consequently, parameters of the mathematical model describing the dynamics of the
buildings are constantly changing with time. Accordingly, the estimation algorithms
utilized to identify these parameters should take the time-varying aspect of buildings
into account and be adaptive in this respect.

Reliable dynamical models are crucial to model predictive control strategies. Mod-
eling and system identification are the most challenging and time-consuming parts
of building predictive control [71]. To address this challenge, over the last few years
numerous mathematical models of building thermal dynamics have been proposed
in the literature. Resistor-capacitor (RC) models with disturbances to capture un-
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modelled dynamics have been proposed in [56, 55, 53]. A bilinear version of an RC
model is presented in [67] that takes into account weather predictions to increase
building energy efficiency. In [15], the authors discovered that time-varying prop-
erties such as occupancy can significantly change the dynamic thermal model and
influence how building models are identified. While modeling a multi-zone building,
the authors of [15] observed that the experimental data often did not have sufficient
quality for system identification and hence, proposed a closed-loop architecture for ac-
tive system identification using prediction-error identification method (PEM). Other
modeling techniques with application in building predictive control include: subspace
methods, MPC relevant identification (MRI), deterministic semi-physical modeling
(DSPM), and probabilistic semi-physical modeling (PSPM). In a recent work, un-
scented Kalman filtering has been used for online estimation of building thermal
parameter estimation [72].

Optimal control of HVAC components using model-based control techniques has
shown promising results for achieving energy efficiency in buildings [55, 66, 85, 51,
67]. However, these control techniques rely heavily on a perfect (or almost perfect)
mathematical model of the building or a perfect (or almost perfect) estimation of the
unmodelled dynamics of the system [55].

Although a great deal of progress has been made in modeling the thermal behav-
ior of building envelope and HVAC system as mentioned above, the random nature
of some components of buildings makes it very hard to predict, with high fidelity,
the temperature evolution of the room using mathematical models. These random
events and phenomena include building occupancy by people which along with other
internal loads such as the heat emitted from electrical devices and lighting, account
for the total internal heat generation of the building. The outside environment of the
building is also subject to many random and hard-to-accurately-predict phenomena
such as the wind speed, solar radiation, cloudiness of the sky and outside air tem-
perature. The aggregate effect of all these factors constitutes the total external heat
gain of the building. We call these two heat gains of the building, the “unmodelled
dynamics”. As mentioned earlier, it is difficult to obtain a perfect prediction of the
loads in future times. On the other hand, model-based optimal controllers such as
Model Predictive Control (MPC) are highly dependent on accurate predictions of
these disturbances. In order to account for these modeling deficiencies, it is usually
a reasonable assumption to consider an additive norm-bounded uncertainty to the
model. The question here is how to integrate this uncertainty information in the
control design to achieve the desired comfort level while consuming minimum energy.
We will discuss this fundamental question in Chapter 4 of this dissertation.

The focus of the papers mentioned above is on physical modeling and control
design without taking into account the limitations of the embedded platform. For
instance, in [54], weather and occupancy prediction uncertainties are considered in
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the control design process, and a robust model predictive control mechanism against
prediction uncertainties is derived. However, the uncertainties (errors) from the em-
bedded platform measurements are not addressed. Another set of papers [86, 87]
focuses on the design of the embedded software and hardware for a given control
algorithm, thus not addressing design space exploration for optimal HVAC system
design. Chapter 5 of this dissertation will discuss this problem.

The last two chapters of this dissertation discuss the role of smart buildings in
the emerging smart grid. Electricity storage is believed by some to be a solution to
the problem of frequency regulation in the new emerging highly Renewable Energy
Sources (RESs)-dependent smart grid by absorbing the variability associated with
RESs. However, storage has two important drawbacks. It is expensive and it is not
environmentally friendly. There is an emerging consensus that flexible loads with
thermal storage capabilities such as Thermostatically Controlled Loads (TCLs) will
play an important role in regulating the grid frequency and consequently in enabling
deep penetration of RESs. It has been reported that about 20% of the total electricity
consumption in the United States is used by residential TCLs such as air conditioners,
heat pumps, water heaters, and refrigerators [4, 9]. Recently, [75, 33] showed that
flexible loads such as TCLs are good candidates for providing ancillary services since
their aggregate flexibility has the characteristic of a stochastic battery.

These recent papers also demonstrate that TCLs have a great potential for provid-
ing fast regulating reserve services; speed is indeed beneficial, especially in the context
of recent regulations such as Federal Energy Regulatory Commission (FERC) Order
755 [13]. In fact, these new federal regulations require scheduling coordinators to pro-
cure and compensate more for regulation resources with faster ramping rates. There
is an emerging consensus that future regulation services will be distinguished and
compensated by capabilities of which ramping rate is one component.

Modeling, estimation, and control of aggregated heterogeneous TCLs for ancillary
services have been discussed in [42, 62]. TCLs are particularly well-suited for Direct
Load Control (DLC) and Demand Response (DR) programs that require loads to
both decrease and increase power consumption because they are capable of storing
thermal energy, much like a battery stores chemical energy. Fully responsive load
control is highlighted in [24] in the context of TCLs and plug-in Electric Vehicles
(EVs). Despite several challenges of using loads for system services, several key
advantages include: 1) Reducing overall grid emissions by using loads to provide
system services [78]. 2) Instantaneous response of loads to operator requests, versus
slow response of generators to make significant output changes [40], and 3) Less
variability associated to a very large number of small loads with respect to that of a
small number of large generators [40]. It may soon be the case that the only technical
impediment to reliable utilization of loads for system services is the development of
the necessary load models and control strategies and the development of inexpensive
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and scalable communication and sensing infrastructure [83].

This dissertation offers novel algorithms on the modeling, estimation, control,
and design of energy-efficient buildings as significant cyber-physical systems within
the Smart Grid.

At the conceptual level, the contributions of this dissertation can be summarized
as follows:

e Physics-based Modeling of Thermal Behavior of Buildings: We present
high fidelity models of building thermal dynamics which are obtained using fun-
damental laws of Thermodynamics and Heat Transfer. We model the conductive
and convective heat transfer phenomena which takes place in the walls and be-
tween the walls and the environment, respectively. We obtain a RC model of
the whole building. Each wall and room in the building is modeled as a node
with a designated capacitor, and these nodes are connected using resistances.
Historical data is then used to calibrate the parameters of the model. In order to
integrate internal (occupancy) and external (sun radiation, etc.) disturbances
to the model, we use CO2 concentration level and outside temperature from
sensors, respectively. Throughout this dissertation, we call these two quantities
unmodelled dynamics .

e Parameter-Adaptive Building (PAB) Model: Incorporating unmodelled
dynamics improves the accuracy of the mathematical model of the building.
However, the building is exposed to extremely time-varying phenomena in the
environment such as occupancy from inside, and solar radiation and wind from
outside. In order to account for such time-varying phenomena, we propose
a framework for online parameter adaptation and state estimation for build-
ing models. We call the resulting model, Parameter-Adaptive Building (PAB)
Model.

e Model Predictive Control: Once we obtain a fairly accurate mathematical
model of the building, we proceed with performing model predictive control of
the HVAC system of buildings. MPC provides a very attractive framework for
optimizing a cost function subject to constraints over a prediction horizon. This
framework is of utmost advantage to control of building HVAC systems. Opti-
mal control of building HVAC system includes minimizing energy consumption
or monetary cost of operating HVAC systems, subject to constraints on the
room temperature and on the inputs to the system such as air mass flow input.
We propose MPC and Robust Model Predictive Control (RMPC) algorithms.
RMPC is designed to account for model uncertainties. We also analyze the per-
formances of MPC, and RMPC for a range of model uncertainties and address
the trade-off between cost and comfort.
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Figure 1.3: As complex cyber-physical systems, HVAC systems involve three closely-
related subsystems - the control algorithm, the physical environment and the embedded
implementation platform.

e Co-design of Control Algorithm and Embedded Platform: Smart build-
ings today have sophisticated and distributed control systems as part of a
Building Automation System (BAS). The task of a BAS is to maintain build-
ing climate within a specified range, control the lighting based on the occupancy
schedule, and monitor the system performance and failures. To accomplish these
tasks, a BAS has to deal with computation and communication non-idealities
stemming from the distributed nature of the implementation platform.

The design of HVAC systems involves three main subsystems — the physical
building and its environment, the control algorithm that determines the system
operations based on sensing inputs from the building and the environment, and
the embedded platform that implements the control algorithm (Figure 1.3). In
the traditional top-down approach, the design of the HVAC control algorithm
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is done without explicit consideration of the embedded platform. The underly-
ing assumption is that the computation and communication capabilities of the
embedded platform are sufficiently performing for any type of control mecha-
nism. However, with the advent of more complex HVAC control algorithms for
energy efficiency, the use of distributed networked platforms, and the imposi-
tion of tighter requirements for user comfort, this assumption on the embedded
platform is no longer valid. Various aspects of the platform, including sensor
accuracy and availability, communication channel reliability, and computing
power of embedded processors, may have a significant impact on the quality
and cost of a BAS. Thus, the design of the control algorithm should take into
account the configuration of the implementation platform and wvice versa, i.e.,
the control algorithm and the embedded platform should be co-designed.

We propose a co-design approach that analyzes the interaction between the con-
trol algorithm and the embedded platform through a set of interface variables.
We present six control algorithms that take into account the sensing error, and
model the relation of control performance and cost versus sensing error. We also
capture the relation of embedded platform cost versus sensing error by analysis
of the collected data from a testbed. Based on these models, we explore the
co-design of the control algorithm and the temperature sensing subsystem of
the embedded platform to optimize with respect to energy cost and monetary
cost while satisfying the constraints for user comfort level.

e Flexibility of Buildings for Supply-Following: Commercial buildings have
inherent flexibility in how their HVAC systems consume electricity. We investi-
gate how to take advantage of this flexibility. We first propose a means to define
and quantify the flexibility of a commercial building. We then propose a con-
tractual framework that could be used by the building operator and the utility
to declare flexibility on the one side and reward structure on the other side. We
then design a control mechanism for the building to decide its flexibility for the
next contractual period to maximize the reward, given the contractual frame-
work. Finally, we perform at-scale experiments to demonstrate the feasibility
of the proposed algorithm.

e Control of Regulation Services from Buildings to the Smart Grid:
We first demonstrate that the demand-side flexibility of the HVAC system of a
typical commercial building can be exploited for providing frequency regulation
service to the power grid using at-scale experiments. We then show how this
flexibility in power consumption of building HVAC system can be leveraged for
providing regulation service. To this end, we consider a simplified model of the
power grid with uncertain demand and generation (Figure 1.4). We present
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Figure 1.4: As influential players in the smart grid domain, buildings have a significant role
in its operation. One of the services that buildings will provide to enhance the operation
of the smart grid is ancillary services to help frequency regulation through automated

demand response events.

an MPC scheme to direct the ancillary service power flow from buildings to
improve upon the classical AGC practice. We show how constraints such as slow
and fast ramping rates for various ancillary service providers, and short-term
load forecast information can be integrated into the proposed MPC framework.
Finally, we provide extensive simulation results to illustrate the effectiveness of
the proposed methodology for enhancing grid frequency regulation practice.

1.3 Organization

The remaining chapters of this dissertation are organized as follows:
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Chapter 2: Mathematical Modeling

We start from describing the fundamental Heat Transfer and Thermodynamics
phenomena such as Convection, Conduction and Radiation which influence the tem-
perature dynamics in a building in Chapter 2. We then present an RC model of the
heat transfer in the building and extend it to the whole building to create a large RC
model. Unmodelled dynamics such as internal and external heat gains are random,
time-varying and hard to accurately model and estimate. In order to account for
such dynamics, we use an affine mapping from measurable quantities such as CO2
concentration level and outside air temperature, respectively, to obtain an estimate of
such unmodelled dynamics. Using historical data, we calibrate the model, and show
the effectiveness of this methodology through modeling a real building and comparing
the results with the measurements.

Chapter 3: Parameter-Adaptive Building (PAB) Model

The modeling framework developed in Chapter 2 works fine for most buildings.
However, the methodology is not well scalable. From one building to another, one
needs to repeat all the calibration process. The modeling framework of Chapter 2
on the other hand, does not address the time-varying behavior of the building and
its indoor and outdoor environment. In Chapter 3 we improve the modeling frame-
work developed in Chapter 2 by introducing a Parameter Adaptive Building (PAB)
model. We present the architecture of the PAB model and its components includ-
ing its Kalman filter based estimation algorithm and validate the effectiveness of the
proposed approach through simulations.

Chapter 4: Control Design

We use the dynamic models developed in Chapters 2, and 3 to design optimal con-
trollers for building HVAC system in Chapter 4. We first provide an overview of the
classical building HVAC controllers. We then present a hierarchical control scheme
in which the high-level controller optimizes a cost function and send the optimal set-
point to the local low-level PID controllers. The majority of Chapter 4 is devoted
to obtaining and studying MPC, RMPC, and studying performance of each in the
presence of model uncertainty. At the end of this Chapter we provide a guideline to
selecting the most appropriate control strategy based on the accuracy of the building
model.

Chapter 5: Co-Design Problem

After presenting various control strategies in Chapter 4, we present a framework
to co-design the control algorithm and the embedded platform for building HVAC
systems in Chapter 5. The goal of this chapter is to highlight energy efficient build-
ings as a cyber-physical system. As complex cyber-physical systems, HVAC systems
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involve three closely-related subsystems - the control algorithm, the physical envi-
ronment and the embedded implementation platform. In Chapter 5, we propose a
co-design approach that analyzes the interaction between the control algorithm and
the embedded platform through a set of interface variables in particular the sensing
accuracy. Based on the proposed models, we explore the co-design of the control
algorithm and the embedded platform to optimize a system with respect to energy
cost and monetary cost while satisfying the constraints for user comfort level.

Chapter 6: Building Flexibility

In Chapter 6, we address the role of energy-efficient buildings within the context
of the smart grid. We first propose a means to define and quantify the flexibility of a
commercial building. We then propose a contractual framework that could be used by
the building operator and the utility to declare flexibility on the one side and reward
structure on the other side. We then design a control mechanism for the building to
decide its flexibility for the next contractual period to maximize the reward, given
the contractual framework. Finally, we perform at-scale experiments to demonstrate
the feasibility of the proposed algorithm.

Chapter 7: Ancillary Control

After we defined, quantified and presented an algorithm to compute the flexibility
of commercial buildings in Chapter 6, we show how this flexibility in power consump-
tion of building HVAC system can be leveraged for providing regulation service, in
Chapter 7. In this chapter, we consider a simplified model of the power grid with
uncertain demand and generation. We present an MPC scheme to direct the ancillary
service power flow from buildings to improve upon the classical Automatic Genera-
tion Control (AGC) practice. We show how constraints such as slow and fast ramping
rates for various ancillary service providers, and short-term load forecast information
can be integrated into the proposed MPC framework. Finally, we provide extensive
simulation results to illustrate the effectiveness of the proposed methodology for en-
hancing grid frequency regulation practice.

Chapter 8: Conclusion
Finally, Chapter 8 draws conclusion of the dissertation with a discussion on the
possible directions for future work.
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Chapter 2

Mathematical Modeling

This chapter serves as a foundation for the rest of the Thesis. We discuss modeling
techniques which are used by the researchers in the domain of building simulation and
building climate control. This chapter includes a review of Thermodynamics extracted
form [36], and a review of building thermal model extracted from [56, 53, 55].

2.1 Principles of Building Thermal Models

Heat storage capacity and heat transmissibility are the fundamental thermal properties
of building elements. Walls, ceilings, floors and the air inside enclosed spaces are
building components that can store energy. The capacity of these elements in storing
energy is a function of their mass and their specific heat capacity. Heat is not only
stored, but it can be transmitted through building elements in different ways. A
useful representation of a thermal network is by means of a circuit analog where heat
storage is represented by capacitors and heat transmission by resistors. We develop
a model for building thermal elements such as rooms and walls using the lumped-
capacitance method. To be useful for control design, the model has to be simple yet
accurate enough so that relevant dynamic behaviors of thermal elements are retained.

2.1.1 Heat Storage

A basic property of materials is specific heat capacity c,, which is the measurable
physical quantity of heat or thermal energy required to change the temperature of
a unit quantity of a substance by one unit. More heat is required to increase the
temperature of a substance with high specific heat capacity than one with low specific
heat capacity. For an object with mass m and specific heat capacity ¢, , a rate
of change of temperature T corresponds to the heat flow, denoted by Q, as shown
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conduction convection radiationd

Figure 2.1: Mechanisms of heat transfer extracted from [36].

in equation (21) In the more familiar parlance of electrical engineering, mc, is
capacitance, T is the rate of change of electric potential (voltage) and Q is current.

Q = mce,T (2.1)

2.1.2 Heat Transfer

Heat transfer takes place via the mechanisms of conduction, convection, and radiation
as shown in Figure 2.1.

2.1.3 Conduction

When there is a temperature gradient in a stationary medium, we use the term
conduction to refer to the heat transfer that occurs across the medium. Conduction
may be viewed as the transfer of energy from the more energetic to the less energetic
particles of a substance due to the interactions between the particles [36].

It is possible to quantify the heat transfer process in terms of appropriate rate
equations. These equations may be used to compute the amount of energy being
transfered per unit time. For heat conduction, the rate equation is known as Fourier’s
law. For the one-dimensional plane wall shown in Figure 2.1 having a temperature
distribution T'(x), the rate equation is expressed as

dr

Iz = kAdx (2.2)
The heat g, (W) is the heat transfer rate in the = direction and is proportional
to the temperature gradient, dT'/dx, in this direction. The proportionality constant
k is a transport property known as the thermal conductivity (W/m.K) and is a
characteristic of the wall material. The minus sign is a consequence of the fact that
heat is transferred in the direction of decreasing temperature. Under the steady state
conditions the temperature distribution is linear, and the temperature gradient may

be expressed as

dar T, —T
dv L

(2.3)
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Table 2.1: Nomenclature

Parameter Definition
A; Area of wall 7
Awin, Total area of window on walls surrounding room %
Q; Absorption coefficient of surface of wall i
Tuwin, Transmissivity of glass of window i
Trad; Radiative heat flux density radiated to node i
Gint, Internal heat generation in thermal zone i
Ca Specific heat capacity of air
Cw Specific heat capacity of wall material
C, Capacitance of thermal zone i
Cu, Capacitance of wall ¢
h Convection heat transfer coefficient
k Conduction heat transfer coefficient
s Mass flow rate of conditioned air entering thermal zone
T, Temperature of room ¢
T, Supply air temperature into thermal zone ¢
T, Temperature of wall 7
R Thermal resistance between node 7 and node j
Rval,, R-value of wall
Rvaly, R-value of glass window
Rval,, R-value of inside air film
Ruval R-value of outside air film

and the heat flow is then

q= % (Ty — T3) (2.4)

In the context of buildings, conduction occurs through solid walls that are not in
thermal equilibrium.

2.1.4 Convection

The convection heat transfer mode is comprised of two mechanisms. In addition to
energy transfer due to random molecular motion (diffusion), energy is also transferred
by the bulk, or macroscopic motion of the fluid. Therefore we can describe the
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convection heat transfer mode as energy transfer occurring within a fluid due to the
combined effects of conduction and bulk fluid motion [36].

Regardless of the particular nature of the convection heat transfer process, the
appropriate rate equation is of the form

Where ¢, the convective heat transfer (W), is proportional to the difference be-
tween the surface and the fluid temperatures, T and T, respectively. This expression
is known as Newton’s law of cooling, and the proportionality constant h(W/m?.K)
is termed the convection heat transfer coefficient. It depends on conditions in the
boundary layer, which are influenced by surface geometry, the nature of the fluid
motion, and an assortment of fluid thermodynamics and transport properties.

When Equation (2.5) is used, the convection heat flow is presumed to be positive
if heat is transferred from the surface (75 > T'oo) and negative if heat is transferred
to the surface (T > T5).

2.1.5 Radiation

Thermal radiation is the energy emitted by matter that is at a finite temperature. The
energy of the radiation field is transported by electromagnetic waves (or alternatively,
photons) [36]. While the transfer of energy by conduction or convection requires the
presence of a material medium, radiation does not. In fact radiation transfer occurs
most efficiently in a vacuum. Consider radiation transfer processes for the surface
of Figure 2.1. Radiation that is emitted by the surface originates from the thermal
energy of matter bounded by the surface, and the rate at which energy is released per
unit area (1W/m?) is termed the surface emissive power E. There is an upper limit to
the emissive power, which is prescribed by the Stefan-Boltzmann law

By =oT? (2.6)

Where Ty is the absolute temperature (K) of the surface and o is the Stefan-
Boltzmann constant (o = 5.67 x 107®  W/m?. K). Such a surface is called an ideal
radiator or blackbody. The heat flux emitted by a real surface is less than that of a
blackbody at the same temperature and is given by

E = coT? (2.7)

Where ¢ is a relative property of the surface termed the emissivity. With values
in the range 0 < ¢ < 1. This property measures how efficiently a surface emits energy
relative to a blackbody. It depends strongly on the surface material and finish.
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Radiation may also be incident on a surface from its surroundings. The radiation
may originate from a special source, such as the sun, or from other surfaces to which
the surface of interest is exposed. Irrespective of the source(s), we designate the rate
at which all such radiation is incident on a unit area of the surface as the irradiation
G.

A portion or all of the the irradiation may be absorbed by the surface, thereby
increasing the thermal energy of the material. The rate at which radiant energy
is absorbed per unit surface area may be evaluated from the knowledge of surface
radiative property termed absorptivity «. That is,

Gabs =aG (28)

Where 0 < a < 1 and the surface is opaque, portions of the irradiation are
reflected. If the surface is semitransparent, portions of the irradiation may also be
transmitted. However, while absorbed and emitted radiation increase and reduce,
respectively, the thermal energy of matter, reflected and transmitted radiation have
no effect on this energy. Note that the value of o depends on the nature of the
irradiation, as well as on the surface itself. For example, the absorptivity of a surface
to solar radiation may differ from its absorptivity to radiation emitted by the walls
of a furnace.

A special case that occurs frequently involves radiation exchange between a small
surface at Ty and a much larger, isothermal surface that completely surrounds the
smaller one [36]. The surroundings could, for example be the walls of a room or a
furnace whose temperature Ty,, differs from that of an enclosed surface (T # Ty )-
If the surface is assumed to be one for which a = ¢ (a gray surface), the net rate of
radiation heat transfer from the surface, expressed per unit area of the surface, is

Qs = 5 = €B(T)) — aG = eo(T! = T2, (2.9)

This expression provides the difference between thermal energy that is released
due to radiation emission and that which is gained due to radiation absorption.

In the context of building thermal analysis, we will ignore the radiation heat trans-
fer among the internal walls in the building due to relative low range of temperatures
inside the building, but we will consider the irradiation from the sun on the external
sides of the walls and through the windows to the interior space of the building, in
deriving the differential equations of the temperature distribution in different walls
and rooms of the building.



CHAPTER 2. MATHEMATICAL MODELING 18

2.2 Equivalent Thermal Circuit

2.2.1 Thermal Resistance

At this point we note that a very important concept is suggested by (2.4). In partic-
ular there exists an analogy between the diffusion of heat and electrical charge. Just
as an electrical resistance is associated with the conduction of electricity, a thermal
resistance may be associated with the conduction of heat [36]. Defining resistance as
the ratio of a driving potential to the corresponding transfer rate, it follows from (2.4)
that the thermal resistance for conduction in a plane wall is

Ts,l - Ts,2 o L
¢ kA

Similarly for electrical conduction in the same system, Ohm’s law provides an
electrical resistance of the form

Rt,cond - (210)

Es,l - Es,2 L

Re=—"71"=,4

The analogy between Equations (2.10) and (2.11) is obvious. A thermal resistance

may also be associated with heat transfer by convection at a surface. From Newton’s
law of cooling,

(2.11)

q=hA(Ts — Ty) (2.12)
the thermal resistance for convection is then

T, — T, 1
Rycomy = =2 = — 2.13
t, q hA ( )

Circuit representations provide a useful tool for both conceptualizing and quanti-
fying heat transfer problems. The equivalent thermal circuit for the plane wall with
convection surface conditions is shown in Figure 2.2. The heat transfer rate may be
determined from separate consideration of each element in the network. Since ¢, is
constant through the network, it follows that

o Too,l - Ts,l o Ts,l - Ts,2 Ts,2 - Too,2
“=TUmA T LjkA 1/hy A

In terms of the overall temperature difference, T, 1 — T\ 2, and the total thermal
resistance, Ry, the heat transfer rate may be may also be expressed as

(2.14)

Qe = 7 — (215)
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Figure 2.2: Heat transfer through a plane wall. Temperature distribution and equivalent
thermal circuit

Because the conduction and convection resistances are in series and may be
summed, it follows that

Rit = 7— ++—++— (2.16)

2.2.2 Thermal Potential

As it was discussed above, in steady state conditions we can define thermal resistances
for different heat transfer modes such as conduction and convection. Accordingly, we
can construct an equivalent thermal circuit to analyze the thermal behavior of the
system. It was also shown that the equations derived here are analogous to the
corresponding equations in an electrical circuit.

The other similarity that is noticed is the notion of thermal potential or temperature
in thermal circuits which is analogous to the concept of electrical potential in electri-
cal circuits. The temperature (thermal potential) of a point is fixed in steady state
heat transfer, while it varies with time in transient heat transfer or heat storage.
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2.2.3 Thermal Capacitance

In order to analyze the transient thermal behavior of the building model, we need
to introduce the concept of thermal capacitance. During transient heat transfer the
internal energy (and accordingly temperature) of the materials change with time.
Thermal capacitance or heat capacity is the capacity of a body to store heat. It is
typically measured in units of (J/°C) or (J/K) (which are equivalent). If the body
consists of a homogeneous material with sufficiently known physical properties, the
thermal mass is simply the mass of material times the specific heat capacity of that
material. For bodies made of many materials, the sum of heat capacities for their
pure components may be used in the calculation.

In the context of building design, thermal mass provides “inertia” against tem-
perature fluctuations, sometimes known as the thermal flywheel effect. For example,
when outside temperatures are fluctuating throughout the day, a large thermal mass
within the insulated portion of a house can serve to “flatten out” the daily tempera-
ture fluctuations, since the thermal mass will absorb heat when the surroundings are
hotter than the mass, and give heat back when the surroundings are cooler. This is
distinct from a material’s insulative value, which reduces a building’s thermal con-
ductivity, allowing it to be heated or cooled relatively separate from the outside, or
even just retain the occupants’ body heat longer.

In order to capture the evolution of temperature of walls and rooms we assign a
capacitance with capacity C' = mc, to each node in the thermal circuit. Notice that
bodies of distributed mass like walls and air are considered as nodes in our modeling.
This approximation is done based on some assumptions that will be presented in
Section 2.3.

Example 2.2.3.1 Peripheral Wall
In this example we consider a peripheral wall (i.e. one side of the wall is exposed
to the outside air and to the sun, and the other side is exposed to the inside air) as
shown in Figure 2.3. The wall has a window with area A,,, thickness ¢ and conductive
heat transfer coefficient k,. The total area of the wall, not including the window, is
A. The circuit model for this example has three nodes with potentials 77, T5 and
T3 corresponding to the outside air, the inside air and the wall, respectively. The
nodes are connected to ground via capacitors with capacitance value Cy = my, ¢, for
the outside air, Cy = mg,¢c, for air in in the room, and C5 = m,,c,, for wall material
where mg,, mg,, and m,, are the masses fo each element, and ¢, and ¢, are specific
heat capacitance of air and wall material respectively.

Heat propagates from the outside to the inside through two parallel paths: the
walls and the window. The path through the walls is modeled by convective thermal
resistances R] = h%A between the outside air and the wall, R, = }LQLA between the

inside air and the wall, and a conductive thermal resistance R} = ;& of the wall. The
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Figure 2.3: Thermal and circuit network for a peripheral wall with window

path through the window is modeled by a resistance R} = hlilw + kwilw + h;‘w. The
radiative heat gain from the sun Q)4 is also shown on the circuit network by a variable
current source. The output of the current source that calculates the corresponding
sun radiation is a function of the altitude and azimuth angle of the location of the
building on the Earth, orientation of the considered wall or window, day of the year,

time of the day, outside weather and sky condition, and etc.

Remark. One advantage of the proposed model to the other models that can be
found in the literature is that the parameters of the proposed model have physical
meanings and interpretations. This feature makes it possible to modify the model
very easily when the parameters of the real building are changed from one building
to another. For example if the glazing of the windows are changed this change can
be applied to the model by only correcting the transmissivity of the windows in the
model and keeping other parameters intact. Also when analyzing two buildings with
the same wall materials and different wall thicknesses, we know that the Rwval, of the
two buildings are the same, therefore I;; between any two neighboring nodes for the
new building can be obtained by using the Rval,, and Rval;, of the old building and
the dimensions of the new building.



CHAPTER 2. MATHEMATICAL MODELING 22

2.3 Building Thermal Modeling

Using the heat transfer equations that was reviewed in Sections 2.1, and 2.2, we
are now ready to derive the governing heat transfer equations for the temperature
distribution in walls and rooms of a simple building. The heat transfer and storage
equations compose a simple plant model representing a three room building Figure 2.4.
Here are the simplifying assumptions made in deriving the equations:

e The air in a room has one temperature across its volume (lumped model) [29].
A more accurate model of temperature is significantly more complex and it does
not facilitate the derivation of control laws.

e The specific heat of air, ¢, is constant at 1.007. In reality, ¢, is 1.006 at 250
K and 1.007 at 300 K, so our assumption is accurate to within 0.1% error over
the range of temperatures that would occur in a building.

e All rooms are at the same pressure used in the heating and cooling ducts. Air
exchange between a room and vent is then isobaric, so the air mass in the room
will not change in the process. We denote the air mass in the room by m and
the rate of air mass entering the room, and also leaving the room, by .

e Radiative heating for each building face (N,S,E, W) is an input to the plant
model. In a real building, the changing position of the sun through the day,
and variations in atmospheric attenuation, will affect the radiation [28]. Here
due to lack of exact data for the intensity of irradiation from the sun for a given
time in a day, we use a sinusoidal input for the sun irradiation.

e We ignore radiative coupling between inner building walls; as the temperature
difference between pairs of walls should be small, the effects of interior radiative
coupling are likely to be minimal.

For a single room, the thermal model that results from our simplifying assumptions
is presented as Figure 2.4. Also the detailed view of room number 1, coupled to its
four surrounding walls, is given in detail. The temperature of room 1 is called 7T while
the temperature of the adjacent rooms 2 and 3 are called T; and T3 respectively. The
thermal capacity or thermal mass of room ¢ is denoted by C.; which is equal to the
mass of the air in room 7, m; times the specific heat capacity of air, ¢,, i.e.

Om' = M;Cp, (217)

where the mass of air in each room is obtained from the following equation

m; = paVi (2.18)
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Figure 2.4: Simple three-room building with heat transfer through exterior and interior
walls.

where p, is the density of air at room temperature and V; is the volume of room 1.

As shown in Figure 2.4, the thermal capacity of each room is inserted in the
thermal circuit representation of the building by a capacitor, C,; which is placed
between the node representing the temperature of the room and the ground.

Notice that the temperature assigned to every node in the thermal circuit is anal-
ogous to the voltage of the corresponding node in the electrical circuit. Therefore
by placing the capacitor in the mentioned location, the effect of increase of internal
energy of the room air is reflected to the temperature of the room by rising the tem-
perature of the room by AT = (AQ/mc,), which is analogous to the increase of the
voltage of the corresponding node in the electrical circuit by AV = Aq/C, where
AV, Aq and C are the increase in the voltage of the node, increase in the electrical
charge on the capacitor’s plates and the capacity of the capacitor, respectively.
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Other than the rooms the walls are also the main elements, that affect the thermal
behavior of a building. In our simple 3-room building model, there are 10 walls which
are identified by wi, ws,...,w1y. The area and the temperature of wall 7 is called
A; and T,,; respectively. The temperature of the wall is assigned to its centerline,
separating the wall into two parts. The thermal capacity of a wall which is denoted
by Cy; may be defined as

Cwi = MwiCp,, (219)

where the mass of wall ¢, m; can be obtained from the following equation

Moy = pwVwi (220)

where p,, is the density of the walls and V,,; is the volume of wall ¢« which is the area
of the wall times its thickness.

Now we have one node for the air inside the room and four nodes for the surround-
ing walls. These nodes should be linked to each other using the thermal resistances
that were defined in Section 5.2. having the walls separated into two sides, we can
define the thermal resistance for conduction for both sides of the wall. Therefore the
thermal resistance for conduction for each side of the wall can be defined as

Ry
Rcond,half = 9 (221)
where R, is the total thermal resistance of the wall, which can be expressed as
L
Ry = — 2.29
A (2.22)

where L is the thickness of the wall, k is the thermal conductivity of the wall material,
and A is the area of the wall.

We can define thermal resistance for the convection heat transfer on both sides
of the walls by using the equations presented in Section 2.2. Since h, the convective
heat transfer coefficient depends on the type of fluid, flow properties and temperature
properties, it will have different values for the two sides of the walls depending on the
factors mentioned above for each side[44]. For simplicity, we only consider two differ-
ent convective heat transfer coefficients, one for the internal and one for the external
sides of the peripheral walls. Notice that the internal walls have the same convective
heat transfer coefficient on their both sides. We denote the internal convective heat
transfer coefficient, by h; and the external convective heat transfer coefficient, by h,.
Accordingly the thermal resistance for convection on the internal and external sides of
the peripheral walls denoted by (R;) and (R,), respectively, can be defined as follows
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1
Fi= g (2.23)
Ro= 1= (2.24)

Now we can derive the governing equation for the temperature evolution in walls
and rooms of the building, using the resistances and capacitors defined above. By
performing nodal analysis we can get the following equation for the temperature of
walls and rooms [63]. For wall w; in Figure (2.4) we have

Too — T, Ty — Ty,
R+ %), " (R+ )
Where the subscripts of the parentheses refer to the number of the wall, for which
the equation is written and hence the wall that the resistances should be calculated
for. The first term in the above equation accounts for the heat that is transferred
form outside to the wall. The second term represents the heat transfer from the air in
room number 1 to the wall. The term aq,.q4, accounts for the portion of the radiation
heat from the sun, that is absorbed by the wall, where « is the absorptivity coefficient
of the wall and ¢,.4 is the total radiation heat that reaches the wall. Notice that the
rest of the radiation heat that is not absorbed by the wall, is reflected. T, refers to
the outside temperature. A similar equation can be written for wall 2:

d(T'wl)
dt

+ aAlQ;“/adl = Cwl (225)

1 1

Too — T, Ty — Ty,
(R0+ RQw)g (Ri+%)2
We can write this equation for all of the walls of the building. So we have 10
equations governing the temperature evolution in the walls [20]. By doing the same
Nodal Analysis for each room in the building we can get the following equations:
For room 1 we have:

d(Tw2>
dt

+ adagygq, = Cuz (2.26)

Tw1 - Tl Tw2 - Tl ng - Tl Twm - Tl
Ruy, Fuy, R R
(Ri+50 (Ri+5 )2 (Ri+5%)s  (Bi+ 5o
d(T)

+ 1y, (To — 1) + Ginet = Cr17

(2.27)

Where 1 is the air mass flow through the ducts into room number 1, ¢, is the
specific heat of air, Ty is the temperature of the chilled air or hot air that comes into
the rooms through the ducts, and ¢;,; is the heat generation inside the rooms which
can be from electrical devices such as computers, or from humans, lighting and etc.
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The same equation can be written for room 2 and 3 as follows.

Room 2:
Ty — T Ty, — T - Ty, — T
(Ri+%)s (Rt %) (Rit+%)s (Rt )
. d(T:
+ TTLQCpa (TO — TQ) + Qint2 = CTQ% (2.28)
Room 3:
Tw7 - T3 T’wlo - T3 ng - T3 Tw5 - T3 T’LUG - T3
(Ri+ %) (Ri+5)0  (Ri+5)  (Ri+5)s  (Ri+ %)
. d(T:
+ 1mscp, (To — T3) + Gints = Crs—(dt?)) (2.29)

If we write the heat transfer equation for every wall and room in the building and
represent the equations in a state space form we get the following form of equation.

Tt =Ar+ f(z,u) (2.30)
y=_Cx (2.31)

where z is the state, u is the input and y is the output of the system. The matrices
A, C and the vector = and f(z,u) are defined as follows:

l':[Twl Tw, Tws .. Twy, 11 Ts T3}T

(2.32)

A=[M Nj
Where M and N are as follows
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- —1
AT G 0 0 0 0 0 0 0 0 0
0 = 0 0 0 0 0 0 0 0
R’2 Cuwey
0 0 —1 0 0 0 0 0 0 0
RLCug
0 0 0 —1 0 0 0 0 0 0
R} Cuwy
-1
0 0 0 0 0 0 0 0 0
R[Cuwjg
—1
0 0 0 0 0 0 0 0 0
Ré Cug
M= -1
0 0 0 0 0 0 FTCur 0 0 0
—1
0 0 0 0 0 0 0 0 0
RgCug
—1
0 0 0 0 0 0 0 0 = 0
Ré Cuwg
—1
0 0 0 0 0 0 0 0 0 ——1l
R1oCwig
1 1 1 1
R1Crq R3Crp 0 0 0 0 0 RgCry 0 R10Crp
1 1 1 1
0 0 R3Cry RiCry 0 0 0 RgCry RgCry 0
1 1 1 1
L 0 0 0 0 R5Crg RoCry RrCry 0 RoCry R10Crg
— 1 0 0 -
R Cwl
L 0 0
RoClyy
0 L 0
R3Cwq
L 0
R4Cw4
0 0 1
R5 Cw5
0 0 1
RpCuyg
N = 0 0 1
R7Cy,
1 1 0
RSCwS RBng
0 1 1
RQCwQ Ry ng
1 0 1
R10Cwy R10Cuwyg
a 0 0
L 0 0 c )

where the constants R, R, a, b and c are defined as follows:

27
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1 1
R R+ R,/2
I 1 1

B Ryt Ruf2 Rt Ruf2
-1,1 1 1 1

(0= (ot o+ =+ —
Crl(Rl Ry Rg RIO)
-1 1 1 1 1

b= - i _ _
o mTRTR TR
-1 1 1 1 1

= bt

C’m(ﬁg, R¢ Ry RIO>

Matrix C' which determines the outputs is defined as

0000O0OO0OO0OO0OO0OO0OT1TQO0O®O0
C=1({0000O0O0O0O0O0O0O0OT1OQ0
0000O0OO0OO0OO0OOOO0OTO01
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(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

and f(x,u), the nonlinear part of the system equations is defined as follows:

a1
_dqradlAl t o rT CwiRol

wlRol
(o]

qradg A2 oA - CooRoo

w2 w2R02

(o]
qTad3 A3 + CwSROS

w3

a
Cua qrad4A4 o CoaRoa

w4 Ro4
(o]

qrad5 A5 T Rk Co=Ros

w5 wE)RoS

[e]
f(x) u) e Cué qrad6A6 + CwGROG

%qu?A? + Gorkr Cw7Ro7
0
0
0
e [M1cp, (To = T0) + Ginty ]

o [Ma2cp, (To = To) + Gine,

o [Macp, (To — T3) + Gints |

(2.39)
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As you can see in f(z,u) the control input (ri;) is multiplied by the state (z;) which
makes the dynamics of the system nonlinear. This f vector is actually composed of
both the input and the disturbance to the system model. In order to be able to study
the dynamics of the system more rigorously, we decompose vector f into the input
vector and the disturbance vector, i.e.

fa,u) = g(a, u) + d(t) (2.40)
Where g(z,u) which contains the input terms is

(2.41)

DD DD DD DO OO oo

o [, (To — Th)]
o ey, (To — 13)]

e ey, (To — Ty)] |

= ﬁ

Which can be written in the form below. Note that the following form, the state
space representation for a dynamical system, is the form we will use for the control
purposes.
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g(w,u)

OO OO OO OO oo

‘p_

5

— T1>

3
o

0

and the disturbance term is as follows

« /!
Cus Irads As+ 7 5 CuwsRo3

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0
L (T — T) 0
0 o= (To

Clwlqi’/adlAl T Gorkor C'wlRol

a 1
Cw2 q”adQAQ + C, 2R02

w3R03

[0} !
C, 4q7’5’«d4‘/44 + C 4Ro4

(6}
Cuw 5q7’ad5A5 + C, 5Ro5

(o]
Cwﬁ qTadG A6 + CwGRUG

@ 7
Cw7 qTad7A7 —I— Cw7Ro7

0
0
0

1

C7'1 qint1
1

C’T2 qint2

1
Cry Gints

— )]

30
my
Ty (2.42)
ms
(2.43)

The nonlinearity in the system is of the form zu (i.e. the product of state and
input) and it is only seen in the input vector. There are some techniques such as feed-
back linearization including Input/Output Linearization or Input/State Linearization
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techniques which can be used to deal with the nonlinearities of the system. It can be
shown that due to the high order of the system these linearization techniques lead to
very messy calculations, and the internal dynamics is of very high order with respect
to the order of the transformed linearized state dynamics.

Therefore, we use the conventional Jacobian Linearization approach to take the
system dynamics into the standard state space realization. it can be shown that due
to the small range of temperatures in the building, the Jacobian linearization which
is done about a certain equilibrium point is fairly accurate for our control purposes.

2.4 Model Validation

For validating the model that was developed in section 2.3, we have used the data of
zone temperature of a specific zone at Bancroft library of UC Berkeley campus along
with airflow, discharge air temperature (DAT) and outside air temperature (OAT)
data to simulate the thermal behavior of that specific zone and then compare the
simulation results with the measured temperature of the zone. We have used the
WebCTRL of Automated Logic Corporation (ALC) to download the temperature
data.

2.4.1 Parameter Identification

In order to estimate the parameters of the model such as the overall thermal resistance
of each wall we have used some typical R-values for walls from ASHRAE handbook
[77] as the initial guesses and then we have used the fmincon function in MATLAB
to solve for the optimal parameters by minimizing the error between the measured
temperature and the simulated temperature of the zone with respect to constraints
on the parameters. The results of model validation is shown in Figure 2.5. In this
optimization problem, the optimization parameters include the thermal resistances
of the walls and the masses in the energy balance equation. The parameters of the
model are reported in Table 2.2.

Note that since the presence of people in the room is very random and has not
been considered in the modeling we have used the data of a weekend in order to
minimize the disturbance effect of internal heat gains by the people in the system.

2.4.2 Parameter Validation

In order to validate the parameters listed in Table 2.2 we have simulated the temper-
ature of the same thermal zone using the data of next weekend (Oct 24). The results
of the simulation is presented in Figure 2.6.
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Figure 2.5: Simulated temperature versus measured temperature of zone 8 of Bancroft
library on the campus of UC Berkeley (Oct 17, 2010).

Table 2.2: Parameter identification results.

Parameter Value (kJ/K)

Parameter Value (m.K/W)

Cr, 1.673 x
Cu, 2.707 x
Cu, 2.730 x
Cluy 1.895 x
Cu, 3.898 x

103
10
104
104
104

Rval, 1.659
Rualy 0.124
Rval;, 0.062
Rval,; 2.149

Note that zone 8 is located in the north east corner of second floor of DOE library
building. The walls on North and East side of the building face outside and have
windows. There are two points in dealing with walls with windows. First, we have
to take into account the R-value of windows which is in parallel with the R-value
of the wall, and also we have to take into account the effect of radiation gain from
the sun during the day and the radiation loss due to heat transfer between the room
and the sky at night. We have assumed an additive sinusoidal disturbance to the
model to represent the effect of solar radiation gain and heat loss to the sky at night.
The amplitude of the sinusoidal wave and the transmissivity of the windows are the
optimization variables that are obtained in the identification process.
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Figure 2.6: Simulated temperature versus measured temperature of zone 8 of Bancroft
library on the campus of UC Berkeley (Oct 24, 2010).

2.5 Jacobian Linearization

In modeling systems, we see that nearly all systems are nonlinear, in that the dif-
ferential equations governing the evolution of the system’s variables are nonlinear.
However, most of the theory we have developed has centered on linear systems. So,
a question arises: “In what limited sense can a nonlinear system be viewed as a lin-
ear system?” In this section we review the concept of Jacobian linearization of a
nonlinear system, about a specific operating point, called an equilibrium point [14].

2.5.1 Equilibrium Points
Consider a nonlinear differential equation:

i = fla(t),u(t)) (2.44)
where f is a function mapping R" x R"™ — R"™. A point = € R" is called an equilibrium
point if there is a specific u € R™ (called the equilibrium input) such that

f(z,u) =0, (2.45)

Suppose T is an equilibrium point with the equilibrium input @. Consider starting
the system (2.44) from initial condition z(tg) = Z, and applying the input u(t) = u
for all ¢ > 5. The resulting solution x(t) satisfies

z(t) = 7 (2.46)
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for all t > ty. That is why it is called an equilibrium point.

2.5.2 Deviation Variables

Suppose (Z, @) is an equilibrium point and input. We know that if we start the system
at x(tp) = z, and apply the constant input u(¢) = u, then the state of the system will
remain fixed at z(t) = & for all ¢. What happens if we start a little bit away from z,
and we apply a slightly different input from u. Define deviation variables to measure
the difference.

(t)

=z z (2.47)
0u(t) := u(t)

i (2.48)

Here, we are simply relabeling where we call 0. Now, the variables z(t) and wu(t)
are related by the differential equation

2(t) = f(x(t), ult)) (2.49)

substituting in, using the constant and deviation variables, we get

Su(t) = f(T + 6,(1), @ + 6, (1)) (2.50)

This is exact. Now perform a Taylor expansion of the right hand side, and neglect
all higher (higher than 1%%) order terms

oy, 9Of
0x(t) ~ f(,3) + == . (2.51)
Considering that f(z,u) = 0, we have:
0. (t) ~ p . (2.52)

This differential equation approximately (we are neglecting 2"¢ order and higher

terms) describes the behavior of the deviation variables d,(t) and d,(t), as long as they
remain small. It is a linear, time-invariant, differential equation, since the derivatives
of ¢, are linear combinations of the ¢§, variables and the deviation inputs, J,. The
matrices

_of nxn _of
A= oo €R Bi=gel .

T
u u=1u

€ R™ (2.53)

T
u
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are constant matrices. With the matrices A and B as defined in (2.53), the linear
system

Oo(t) = Ab,(t) + Bd,(t) (2.54)
is called the Jacobian Linearization of the original nonlinear system (2.44), about
the equilibrium point (z,u). For “small” values of 0, and d,, the linear equation
approximately governs the exact relationship between the deviation variables ¢, and
ox.

If we design a controller that effectively controls the deviations d,, then we have
designed a controller that works well when the system is operating near the equi-
librium point (Z, ). This is a common, and effective way of dealing with nonlinear
systems approximating them with a linear system.

To implement this method, we need to find the equilibrium points of the system.
The equilibrium points are obtained by fixing the input, « and then solving for z. In
this system there are infinite equilibrium points which can be obtained by assuming
different equilibrium inputs. However we are only interested in one equilibrium point
in which the system is working most of the time.

That equilibrium point is obtained by setting the temperature of the rooms equal
to the set point temperatures that are assigned by the users (building occupants), and
then solving for the equilibrium temperature of the walls and the equilibrium inputs.
Here we have ignored the disturbance terms. The equilibrium point is achieved only
by setting the nonlinear differential equation (2.44) equal to zero. We have solved for
an equilibrium point near the setpoint Ty, Vi = 1,2,3. By solving the equation
we find the equilibrium point to be

[0.0058 ]
0.0058
0.0058
0.0058
0.0058
0.0014 0.000333

X, = | 0.0058 u. = [0.000333 (2.55)
0.0116 0.000665

0.0116
0.0116
22.0666
22.0666
22.0292 ]

Now we can find the linearized system by evaluating the matrices A and B from
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equation (2.53). Therefore the linearized state space realization of the system is as
follows

& = Az + Bu+d(t) (2.56)

where matrix A stays the same as before but matrix B is as follows

i 0 0 0 i
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

B= 0 0 0 (2.57)

0 0 0
0 0 0
Cc_fl(TO - Tstpntl) O 0
0 Ccv_fQ(TO - Tstpnt?) 0

L 0 0 S_Z(TO - TstpntS)_

Where Tj is the temperature of the chilled or hot air which comes into the room
from the HVAC ducts, which is assumed to be constant, and Ty, Vi = 1,2,3 are
the set point temperatures that the occupants set for each room in the building. Now
that we have the linearized state space representation of the system, we will introduce
the control algorithm and implement it on the system in Chapter 4.

2.5.3 Linearization of a Generic Nonlinear Dynamic Model

For a generic nonlinear model of building, we linearize the system dynamics around
the nearest equilibrium point to the specified operating point of the system (details
in [56]). The algorithm to find the equilibrium point of the system starts from an
initial point and searches, using a sequential quadratic programming algorithm, until
it finds the nearest equilibrium point. First we linearize the model considering all
the inputs to the model. Once the linearization is done, we divide the inputs into
manipulated variables and disturbance variables. Discretizing the state space realiza-
tion leads to xyy1 = Axy + Bug + Edj, where dj, stores the disturbance at time k£ and
the original B obtained from linearization process is split into two parts. The new
B keeps the columns corresponding to the manipulated variables and E stores the
columns of the original B corresponding to the disturbance variables. In this study
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Figure 2.7: Measured data of air flow and discharge air temperature.
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Figure 2.8: Temperature of room from measured data, nonlinear model and the linearized
model.

we have kept the air flow as a manipulated variable and we regard the rest of the
inputs as the disturbance input on which we don’t have control. Note that since the
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range of the variations of inputs as shown in Figure 2.7 during day (on-mode) and
also the thermal zone temperature that the system experiences in the course of a day
is not so wide (usually 20 - 22 ° C), linearizing about the equilibrium point does not
introduce significant error as shown in Figure 2.8. On the other hand dealing with
a linear system dramatically decreases the computational efforts. The results of the
linearization is shown in Figure 2.8.

2.6 Unmodelled Dynamics Estimation

The model developed up to this point in this chapter works well as long as the
internal heat generation, and heat transfer to the room from external sources such as
sun radiation that are not captured in the model are negligible. However, this is not a
good assumption in the case of almost every single building. Hence, these contributors
to the temperature dynamics which are not captured by the model introduced earlier
in Chapter 2, as we call them “unmodelled dynamics”, should be accounted for by
some means. In this section, we develop a methodology to estimate such unmodelled
dynamics using measurable quantities such as CO2 concentration level and outside
air temperature.

2.6.1 Estimating External Loads

Heat flux is radiated from the sun to the exposed walls and to the peripheral rooms
through windows. This heat flux is a hard-to-estimate function of several variables
including the altitude and azimuth angle of the location of the building on the Earth,
orientation of the considered wall or window, day of the year, time of the day, outside
weather and sky condition. However, to be able to estimate the heat flux at each
time, we approximate it by assuming that this quantity is an affine function of the
outside air temperature! given by

Graa, (t) = Xou(t) + (2.58)

where A and v will be obtained by the parameter estimation algorithm detailed later.
Hence, we parameterize g, (t) and then identify all of the parameters using nonlinear
regression. Note that this method does not cover all the uncertainties associated with
external loads to the building, however it leads to a decent estimation as shown later
in Section 2.7.

!Note that other quantities such as global horizontal irradiance (GHI) data either from the Cal-
ifornia Irrigation Management Information System, CIMIS [1] or METAR data [7] from nearby
airports archived in the National Climatic Data Center, can be used for the purpose of this param-
eterization as well.
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2.6.2 Estimating Internal Loads

Internal loads in the building are usually related to occupants and electrical devices.
The heat emitted from electrical devices is easy to identify based on the electrical
characteristics of the device with high precision; the main uncertainty in identifying
the internal loads is due to the load associated to the building occupants. We propose
a parameterization of the internal loads by occupants using the C'Os; sensor data
(current C'O, concentration in the room) which yields

Gint(t) = p¥(t) + v (2.59)

where U(t) is the CO, concentration in the room in (ppm). p and v are constants
to be obtained from the identification process.

2.7 Unmodelled Dynamics Identification

We use historical data to identify the parameters of the system along with the unmod-
elled dynamics described in Section 2.3. The identification process is done through
an optimization problem over the parameters given in (2.60).

min Y™ —Y?|3 2.60
C[-]vR[.]7>\7’Y,u7V|| ||2 ( )
i 4 T = Awp o+ flaf,u d) t=0,..,N—1

Where the subscript ¢ refers to time and the superscript m and s refer to measured
and simulated data, respectively. The vector Y € RV*! stores the values of y; for
t=1,---,N.

2.7.1 Parameter Identification

For identifying the parameters of the model we have used the data of zone tempera-
ture of a specific zone at Bancroft library of UC Berkeley campus along with airflow,
discharge air temperature (DAT) and outside air temperature (OAT) data to sim-
ulate the thermal behavior of that specific zone and then compare the simulation
results with the measured temperature of the zone. We have used the WebCTRL of
Automated Logic Corporation (ALC) to download the temperature data. The results
of model validation is shown in Figure 2.9. We store the unmodelled dynamics in a
time-varying vector called disturbance d;.

Note that there are two peaks in the unmodelled dynamics values, one around 9
a.m. and another around 3 p.m. which are due to occupants and outside radiation.
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Figure 2.9: Simulated temperature and measured temperature of zone 8 of Bancroft
library (Oct 24, 2010) and unmodelled dynamics.

The interesting observation is that the first peak of disturbance load does not cause
as much temperature increase in the room as opposed to the second disturbance peak.
The reason is that in the morning the walls which represent the slow-dynamic masses
in the system are cold due to low temperature at night. Therefore part of the heating
load, earlier in the day, goes toward warming up the slow-dynamic thermal masses in
the building (e.g. walls and furniture). However in the afternoon the slow-dynamic
thermal masses absorb heat at a slower rate and therefore, cause faster increase to the
temperature of the fast-dynamic thermal mass of the system which is the air in the
room. Also a decrease in the values of the unmodelled dynamics is observed which
can be due to the people leaving the room around noon for lunch and/or cloudy sky.
The optimal parameters of the model are reported in [53].

2.7.2 Parameter Validation

In order to validate the parameters of the model, we have simulated the temperature
of the same thermal zone using the data of next weekend. The results of the simulation
are presented in [53].
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Chapter 3

Parameter Adaptive Building
(PAB) Model

Model-based control of building energy offers an attractive way to minimize en-
ergy consumption in buildings. Model-based controllers require mathematical models
that can accurately predict the behavior of the system. For buildings, specifically,
these models are difficult to obtain due to highly time varying, and nonlinear nature of
building dynamics. Also, model-based controllers often need information of all states,
while not all the states of a building model are measurable. In addition, it is challeng-
ing to accurately estimate building model parameters (e.g. convective heat transfer
coefficient of varying outside air). In this chapter, we propose a modeling framework
for “online estimation” of states and unknown parameters of buildings models, leading
to the Parameter-Adaptive Building (PAB) model. Extended Kalman filter (EKF)
and unscented Kalman filter (UKF) techniques are used to design the PAB model
which simultaneously tunes the parameters of the model and provides an estimate for
all states of the model. The proposed PAB model is tested against experimental data
collected from Lakeshore Center building at Michigan Tech University. Our results
indicate that the new framework can accurately predict states and parameters of the
building thermal model. The material of this chapter is extracted from [57].

3.1 Why Parameter Adaptive Building Model?

Buildings are dynamical systems with uncertain and time-varying plant and occupant
characteristics. The heat transfer characteristics of a building are highly dependent
on the ambient conditions. For instance, heat transfer properties such as convective
heat transfer coefficient h, of peripheral walls is dependent on outside temperature,
wind speed and direction. Also, unmodelled dynamics of a building (See [55]). is
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function of 1) external factors: ambient weather conditions such as radiative heat
flux into the walls and windows, and cloudiness of the sky, and 2) internal factors:
such as occupancy level, internal heat generation from lighting, and computers. These
quantities are highly time-varying and therefore the dynamics of the building and,
consequently, parameters of the mathematical model describing the dynamics of the
buildings are constantly changing with time. Accordingly, the estimation algorithms
utilized to identify these parameters should take the time-varying aspect of buildings
into account and be adaptive in this respect.

Reliable dynamical models are crucial to model predictive control strategies. Mod-
eling and system identification are the most challenging and time-consuming parts
of building predictive control [71]. To address this challenge, over the last few years
numerous mathematical models of building thermal dynamics have been proposed in
the literature. Resistor-capacitor (RC) models with disturbances to capture unmod-
elled dynamics have been proposed in [56, 55, 53]. A bilinear version of an RC model
is presented in [67] that takes into account weather predictions to increase building
energy efficiency. In [15], the authors found that time varying properties such as occu-
pancy can significantly change the dynamic thermal model and influence how building
models are identified. While modeling a multi-zone building, the authors observed
that the experimental data often did not have sufficient quality for system identifi-
cation and hence, proposed a closed-loop architecture for active system identification
using prediction-error identification method (PEM). Other modeling techniques with
application in building predictive control include: subspace methods, MPC' relevant
identification (MRI), deterministic semi-physical modeling (DSPM), and probabilistic
semi-physical modeling (PSPM). In this paper we focus on DSPM. In a recent work,
unscented Kalman filtering has been used for online estimation of building thermal
parameter estimation [72], although the model used in that work is over-simplified
and the state estimation is not performed.

Building models can be linear or nonlinear. While nonlinear models typically
provide better prediction of building thermal dynamics, they are computationally
intensive when incorporated in building controller algorithms. On the other hand,
linear models are less computationally intensive for use in building controllers but
they are limited to the operating zones they have been tuned for. One approach to
increase the accuracy of the linear building models is to use an adaptive parameter
estimation technique such that the building parameters are updated as the environ-
ment changes. This leads to an adaptive modeling framework for building predictive
control. Although this technique has been adopted for simultaneous state-parameter
estimation in other applications [69, 64, 73], to the best of the authors’ knowledge, this
paper is the first study on developing adaptive modeling framework for simultaneous
estimation of building parameter, states and unmodelled dynamics.

The contributions of this chapter are twofold: a novel adaptive modeling frame-



CHAPTER 3. PARAMETER ADAPTIVE BUILDING (PAB) MODEL 43

work for building predictive control and the application of extended Kalman filter
(EKF) and unscented Kalman filter (UKF) techniques for building online parameter
identification and state estimation using historical data from a test-bed.

3.2 Mathematical Model

We utilize the same model that we developed in Chapter 2, and build on top of
that model. For consistency of notation throughout this chapter we first present
a summary of the model developed in Chapter 2 with appropriate notation geared
towards the purpose of this chapter.

Figure 3.1 depicts the schematic of a typical room which will be studied. We
use lumped model analysis to reduce the complexity, and obtain a low order model,
suitable for control purposes. Note that due to having forced convection inside the
room, the temperature is assumed uniform inside the room. We use the RC model
from Chapter 2, in which the building is considered as a network. Then we modify
the representation of the system dynamics to account for time varying parameters by
augmenting the parameters into the state vector.

3.2.1 Conductive and Convective Heat Transfer

There are two types of nodes in the building network: walls and rooms. There are in
total n nodes, m of which represent rooms and the remaining n — m nodes represent
walls. We assign a number ¢ = 1,...,m to each room, and denote the temperature of
the room with 7). The wall node and temperature of the wall between room ¢ and j
is denoted by (i, j) and T, ;, respectively, and is governed by the following equation:

dl,, . 1., —T,. .
o wij _ Tk Wi,
D Vi

kENw, ; Ik

+ TidoﬁJAwi,j Qradi,j (31)

where C};, a; j and A,, ; are heat capacity, radiation heat absorption coefficient and
area of wall between room ¢ and j, respectively. R, j, is the total thermal resistance
between the centerline of wall (7, j) and the side of the wall where node k is located.
Qrad,, 1s the radiative heat flux density on wall (i,7). N, , is the set of all of
neighboring nodes to node w; ;. r; ; is equal to 0 for internal walls, and equal to 1 for
peripheral walls (i.e. either i or j is the outside node). Temperature of the i’ room

is governed by the following equation:

dT,,
cr="
i

T, — T, i )
= Z b + mrica(Tsi - TT‘Z) + wiTwiAwiniQradi + Qinti (32)
kEN;, Lk
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Figure 3.1: Schematic of a typical room with a window. Temperature sensors are denoted
by "S" in this figure.

where 7)., CT and r,, are the temperature, heat capacity and air mass flow into the
room ¢, respectively. ¢, is the specific heat capacity of air. T}, is the temperature of
the supply air to room 7. wj; is equal to 0 if none of the walls surrounding room ¢ have
window, and is equal to 1 if at least one of them has a window. 7, is the transmissivity
of glass of window 7, A, is the total area of window on walls surrounding room 4,
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(Qrad; 1s the radiative heat flux density per unit area radiated to room ¢, and thl
is the internal heat generation in room 4. N, is the set of all of the neighboring
“room” nodes to room ¢. The details of building thermal modeling and estimation of
the unmodelled dynamics is available in [56, 53, 55]. Note that we approximate the
values of Q.44 (t) and th(t) based on the following equations:

Qradi (t) = TTout(t) + C (33)
Qint(t) = p¥(t) + v

where T,,; and ¥ are the outside air temperature and C'O, concentration in the room,
respectively. Parameters 7, (, ;4 and v are obtained by the parameter estimation
algorithm detailed in Section 3.3.

3.2.2 Radiative Heat Transfer

We compute the radiative heat transfer between building and ambient environment as
proposed in [30]. The amount of heat transferred from the building to the environment
is given by the Stefan-Boltzmann law:

ledg = GO-Tlfldg (35)

where Ty, is the average temperature of the building.

We also consider solar radiation heat transfer, ()., emitted on the walls, and
inside the room through the windows. The data used in this paper is based on the
past 30 years monthly average of solar radiation for flat-plate collectors facing south
(resembling the south facing flat vertical walls of the building), and is obtained from
NREL (National Renewable Energy Laboratory) [8] database for Houghton, MI in
January.

Furthermore, we take into account the radiation cooling at night (i.e. sky thermal
radiation to the building) based on the proposed relation in [30]:

sty — (1 4 Kc2>878 % 10—13T5.852RH0.07195 (36)

out

where K is the coefficient related to the cloud height and C is a function of cloud
coverage. We use K = 0.34 and C = 0.8 for simulations, as explained in [30]. T, is
the outside air temperature, and RH is the air relative humidity percentage.

The total radiation exchange between building and ambient environment is then
given by:

Qrad = sty + Qsolar - ledg (37)
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Note that Qsy and Qs are heat flow into the building, and Qqg, is the heat
flow from the building to the environment.

The heat transfer equations for each wall and room yield the following system
dynamics:

Ty = f(ﬂ%ut, d, t)
Yy = Cmt (38)

where x; € R” is the state vector representing the temperature of the nodes in the
thermal network, u; € R"™ is the input vector representing the air mass flow rate and
discharge air temperature of conditioned air into each thermal zone, and y, € R™
is the output vector of the system which represents the temperature of the thermal
zones. [ is the number of inputs to each thermal zone (e.g., air mass flow and supply
air temperature). C is a matrix of proper dimension and the disturbance vector is

given by d; = g(Qpaq, (), th(t), Tout(t)).

3.2.3 Disturbance

Following the intuitive linear relation between T,,;, th and ,qq, We approximate ¢
with an affine function of these quantities, leading to:

dy = aQradi (t) + lent(t> + cTous (t) +e (39)

where e is a constant to be estimated. By substituting (5.3) and (5.4) into (5.6) and
rearranging the terms, we get:

dy = (a1 4 ¢)Tou(t) + op¥ (t) + al + bv + e 310
= aT,,(t) + bV (t) + ¢ (3:10)
where @ = ar 4+ ¢, b = by, and € = a + bv + e. Therefore, only measurements of
outside air temperature and C'Oy concentration level are needed to determine the
disturbance. The values of @, b, and € are estimated along with other parameters of
the model.

3.2.4 State-Parameter Estimation

State space form of the system is required for state-parameter estimation. Here, the
state space form of building equations is presented, using (3.1) for each wall and (3.2)
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for each room node in the building network.

. 1 (( 1 1 1 1 1 . )
= — - — — — — —— —hC | T
! Cy Ry, Rz, Ry, Ris, RY" ! !
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+ win + AwinTQrad + Qinh) (311&)
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e (3211 (3211 R212> ? R212> ( )
. 1 T 1
Ty = —. — T3 + 3.11c
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! CH (3411 Ry, R414 R414 ( )
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where Ty, T3, Ty, Ty are the temperatures of the surrounding zones, as shown in
Figure 3.1. These temperatures act as disturbance to the system dynamics for a
single zone thermal model, and x is the state vector:

Tr = [Trla Tw127 Tw137 Tw147 TwlS] ’ (312)

One way to adapt the model to account for time varying parameters is to assume
that all the parameters of the model are independent, and hence define a state cor-
responding to each state. However, this would lead to excessive number of states.
We take a different approach. Note that thermal properties of wall material (e.g.
specific heat capacity and conductive heat transfer coefficient) are the same across
the building. In addition, the thickness of internal walls and thickness of peripheral
walls are the same throughout the building. Thus, we can reduce the number of
independent parameters from 18 to 10. Hence we re-write the thermal equations of
the wall, i.e. (3.11b)-(3.11d) as follows:
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b2 = g~ (JwQwaZ * Of;w (3:13)
iy = Cf}%w - CWQwag + Cf;’%w (3.14)
1= g~ (JwQme * (Jﬁzw (3.15)
iy = C;éml —~ ( 052511 - Cg]11R515> 5 + Cgijéms + Aw5£0f2““d (3.16)
As shown in (3.17), C, R,, is not a function of the area of each wall:
CYR, = (chwLw)(Lw/2 - ) = ol - Colu (3.17)
kwAw — hinAy 2k, hin,

where ¢, k., A, and L, are the specific heat capacity, conductive heat transfer
coefficient of wall material, area and thickness of wall, respectively, and h;, is the
indoor convective heat transfer coefficient. Hence, we can use one common term to
express thermal capacitance-resistance between centerline of each wall and the node
on each side of the wall for the equations of walls in the building.

In order to use Kalman filtering for parameter estimation along with state esti-
mation we augment the parameter vector into state vector and define the new state
update equation accordingly. Effectively, we augment the following time-varying pa-
rameters to the state vector:

1 1

’ ClRia, ' Cihs, 19
1 1
xrg = - Tg = - (319)
Cl R141 Cl R151
1 1
Ti0o = =, T11 = (320)
! ! (3.21)
T12 = 13 — .
27 08 Ry, B C8 Ry,
« 1
T14 = o T15 = i (322)
CY R

As it can be seen in the continuous state space form, rate of change of these
augmented states is equal to zero. We later add a low-magnitude fictitious noise to
the dynamics of parameters to allow slow changes in the values of parameters over
time.
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T = (376 — X7 — Xy — Tg9g — X10T15 — xlouQca)xl + TgTo + T7x3 + TTy

+ 295 + (cattrtiy + Ts15 + AwinT™Qrad + Qint)-T10 (3.23)
to = (x1 — 2x9 + T3) .13 (3.24)
i3 = (r1 — 2w3 + T3).211 (3.25)
1y = (v1 — 2x4 + T)). 213 (3.26)
&5 = 21212 — (@12 + T13)@5 + T5013 + A 214Qrad (3.27)
;=0  Vi=86,7,..15. (3.28)

where u is the input vector:

u = {.Tsl] (3.29)

my1

In summary, we express the dynamics of the system using state space model below:

T = f(l’kfl, Up—1, dp—1, wkq)

where wy and v, are the process and measurement noise and are assumed to be zero
mean multivariate Gaussian process with covariance Wy and Vj, (i.e. wy, ~ N(0, W)
and v, ~ N(0, V%)), respectively.

3.3 Combined State-Parameter Estimation

In order to estimate the unknown parameters of the system we augment the states
of the system with a vector p, which stores the parameters of the system, with
a time evolution dynamics of pr.1 = pg, as explained in Section 3.2. Nonlinear
estimation algorithms can then be exploited to simultaneously estimate the states
and the parameters of the system. Here we exploit the extended Kalman filter (EKF)
and unscented Kalman filter (UKF) techniques. Simulation results are compared in
Section 3.5. The architecture of the proposed Parameter-Adaptive Building (PAB)
model [57] is shown in Figure 3.2.

3.3.1 Extended Kalman Filter

In the EKF, the state transition and observation models need not be linear functions
of the state but may instead be differentiable functions. The Kalman filter algorithm
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Figure 3.2: Architecture of the building control system utilizing the PAB model. Updated
model parameters are obtained form UKF estimation process at each time step. At the
next time step, the controller (in tis case, MPC) uses the model with updated parameters
to calculate the optimal inputs. Inputs are implemented on the system and at the next
sampling time new states (temperatures) are measured and sent to the PAB model, and
this process repeats. Black dotted lines connecting the traditional control system to the
building are replaced by the red solid lines connecting the estimation module to the MPC
block and the MPC block to the building. Comprehensive study of MPC is provided in
Section 4.4.

consists of two steps — prediction followed by update. The states of the system are
approximated by a Gaussian random variable. In the prediction step, the filter prop-
agates the a-priori state estimate through the nonlinear state update equation from
time step £ —1 to the current time step k, and the state estimation error covariance is
propagated through the linearized approximation of the state equations to compute
the a-priori state estimation error covariance. In the update step, the a-posterior:
state estimate and state estimation error covariance are computed.

With the stochastic state update equation given in (5.17), and the following no-
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tations
ik\kfl = ]E[l’k\«zo,zl, ---,Zkfl]
fk\k = E[$k|20, 21, 721@]
Pyt = E[(zx — Zrjp—1) @k — Tup—1)" |20, 21, -, 251

P = E[(zh — Tigr) (@ — Tagp) " 205 21, -0, 28]
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where E|[x|y] represents mean of variable x, given measurement y. Each iteration of

the EKF is presented in [37, 39] and is summarized here as follows:

~ Extended Kalman Filter Algorithm

Prediction:

A-priori state estimate:  Typp—1 = f(Zp_1)6—1, Uk—1, dk—1,0)
State transition and observation matrices:

of oh
Fr_1 = %’f:k,l\kﬂ,ukfl Hy, = %‘jk\k—l

A-priori state estimation error covariance:

Pyt = Fyo1 Poap FiL )+ Wi

Update:
A-priori output estimation error: Uk = 26 — h(Trp—1)
Innovation or residual covariance: Sy = Hp Py H kT + Vi
Near-optimal Kalman gain: K, = Pk|k_1HkTSk_1
A-posteriori state estimate: Tpp = Trpp—1 + Ki Uk
A-posteriori state estimation error covariance: Py = (I — KiHy) Pyj—1

3.3.2 Unscented Kalman Filter

A nonlinear KF that shows promise as an improvement over the EKF is the un-
scented Kalman filter (UKF). The basic premise behind the UKF is that it is easier
to approximate a Gaussian distribution than to approximate an arbitrary nonlinear
function. The UKF addresses the approximation issues of the EKF. Instead of us-
ing Jacobian matrix, UKF uses a deterministic sampling approach to capture the
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mean and covariance estimates with a minimal set of sample points [81]. As with the
EKF, we present an algorithmic description of the UKF, omitting some theoretical
considerations. More details can be found in [37, 39].

The state distribution is represented by a Gaussian random variable (GRV), but
is now specified using a minimal set of carefully chosen sample points. These sam-
ple points completely capture the true mean and covariance of the GRV, and when
propagating through the true nonlinear system, capture the posterior mean and co-
variance accurately to the 3rd order (Taylor series expansion) for any nonlinearity.
Unscented Transformation (UT) is a method used for calculating the statistics of a
random variable which undergoes a nonlinear transformation [37]. We conduct the
following initialization:

3o = Elzo) (3.35)
Py = E[(zo — &0) (0 — #0)"]

w
(@)}
~

Each step of the UKF is presented in [37, 39] and is summarized here as follows:
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23

—~ Unscented Kalman Filter Algorithm

Prediction:
Calculate sigma points:

X1 = [Th—1  Tp—1 +7V P Th—1 — v/ Pr-1]

Propagate each column of &},_; through time:
()i = f((Xr-1)s) 1=20,1,...,2L

i : . o 2L