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Lee, Aytül Erçil, Müjdat Cetin, and Javıer Movellan. Insights on spontaneous facial
expressions from automatic expression measurement. Dynamic Faces: Insights from
Experiments and Computation, 2006

Karan Sikka, Tingfan Wu, Josh Susskind, and Marian Bartlett. Exploring bag of
words architectures in the facial expression domain. In Computer Vision–ECCV
2012. Workshops and Demonstrations, pages 250–259. Springer, 2012

Fei Long, Tingfan Wu, Javier R Movellan, Marian S Bartlett, and Gwen Littlewort.
Learning spatiotemporal features by using independent component analysis with
application to facial expression recognition. Neurocomputing, 2012

Yiwen Wang, Tingfan Wu, Garrick Orchard, Piotr Dudek, Michele Rucci, and
Bertram E Shi. Hebbian learning of visually directed reaching by a robot arm.
In Biomedical Circuits and Systems Conference, 2009. BioCAS 2009. IEEE, pages
205–208. IEEE, 2009

xviii



Paul Ruvolo, Tingfan Wu, and Javier R Movellan. Control by gradient colloca-
tion: Applications to optimal obstacle avoidance and minimum torque control. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1173–1179. IEEE, 2012

xix



ABSTRACT OF THE DISSERTATION

Machine Learning for Humanoid Robot Modeling and Control

by

Tingfan Wu

Doctor of Philosophy in Computer Science

University of California, San Diego, 2013

Garrison Cottrell, Chair

Biologically inspired humanoid robots present new challenges for system

identification and control due to the presence of many degrees of freedom, highly

compliant actuators, and non-traditional force transmission mechanisms. In this

thesis, we address these challenges using machine learning approaches. The key

idea is to replace classical laborious manual model calibration and motion program-

ming with statistical inference and learning from multi-modal sensory data. To this

end, we develop several new parametric models and their parameter identification

algorithms enabling new sensor/ actuator configurations beyond the scope of pre-

vious approaches. In addition, we also develop a semi-parametric model to learn

from experiences not predicted by the parametric model. Using similar approaches

grounded in machine learning, we also develop methods to allow humanoid robots
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to learn to make facial expressions, kick a ball, and to reach for objects while

collaborating with people. We collected a unique dataset that describes develop-

ment of infant reaching behavior while interacting with an adult caregiver. We

compared the observed development of social reaching in human infants with the

machine learning based development behavior in a complex humanoid robot.
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Chapter 1

Introduction

A humanoid is a robot with human-like body, appearance, and move-

ment dynamics. This human-like design enables humanoids to operate in human-

engineered environment, such as stairs, and to use tools designed for humans,

such as a hammer. In addition, human-like appearance facilitates human-like in-

teraction between humans and robots, using channels such as hand gestures and

facial expressions. Besides these engineering benefits, building humanoids also con-

tributes the science of understanding how the human brain handles the complex

sensory-motor problem of controlling the human body.

Ambitious goals have been set for future humanoid robots. They are ex-

pected to serve as companions and assistants for humans in daily life and as ulti-

mate helpers in the case of natural disasters. The RoboCup robot soccer organi-

zation has also set a goal that in 2050, a team of humanoid robot soccer players

shall compete and win against the winner of the most recent World Cup. In 2014,

DARPA will hold the first Robotics Grand Challenge to promote the development

of robots which do things like humans in a world made for humans, with a focus

on disaster recovery challenge tasks.

Driven by these potential advantages and long-term vision, considerable

progress has been made in humanoid research, resulting in a number of anthro-

pomorphic robots. Figure 1.1 and Table 1.1 show several examples. “Diego-San”

is the robot used in this thesis. Unlike traditional industrial robot arms with

only a few degrees of freedom and electrical actuators, most humanoid robots are

1
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(a) Asimo (b) Hubo (c) iCub (d) Atlas (e) Diego-

San

Figure 1.1: humanoid robots

Table 1.1: List of arm and humanoid robots.

Name #Joint Actuator Face

Barret Arm 7 electric motor N/A

Asimo 34 electric motor N/A

Hubo-2 40 electric motor actuated realistic face

iCub 32 electric motor LED light animation

Baxter 16 SEA electric motor rendered computer animation

ATLAS 28 hydraulic N/A

Diego-San 38∗ pneumatic 18-servo actuated realistic face



3

Table 1.2: hardware and software specification of Diego-San humanoid robot

Full Name Diego-San

Body Creator Kokoro Corporation, Japan.

Face Creator Hanson Robotics, US

Height 130cm

Weight 35kg

Sensors 2 DragonFly-2 camera in the eyes, 2 microphones and 1

speaker in the ears and the mouth, 38 potentiometers, 88

pressure sensors, 2 Inertial measurement units

Actuators 44 pneumatic actuators for body joints. 18 electric RC

servos for the face

Computing The computer is a Intel Xeon 2.8Ghz 12-core machine.

The analog sensors and pneumatic actuators are con-

nected to the computer using a National Instruments

Data Acquisition System (DAQ)

Degrees of Freedom 38 independently controlled pneumatic body

joints (HeadNeck-4, Trunk-4, Each Arm-8 , Each Leg

7). And 6 pneumatic actuators on the hands controlling

all 26 finger joints with tendon coupling. Each joint has 2

degrees of freedom (position and compliance). 18 electric

servos for facial expression

designed to match human skeleton complexity and actuator capabilities. This re-

sults in high degree of freedom and the wide adoption of novel biologically inspired

actuators. In addition, humanoids designed to interact with humans are usually

equipped with animated faces capable of posing facial expressions. These special

designs pose new challenges in modeling and controlling humanoid robots, which

is the primary target of this thesis.
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1.1 Design of Diego-San Humanoid Robot

Humanoid robots stand out from general robots in the following aspects:

rich variety of sensors, high degrees of freedom, and novel biologically inspired

actuators. In this section, we discuss our design choices in these aspects for our

humanoid robot, Diego-San. For a list of the software and hardware specification

of Diego-San, please refer to Tbl. 1.2.

1.1.1 Pneumatic Joint Actuators

Actuators are the mechanism allowing a robot to act. Most humanoid

robots utilize electric motors; others use hydraulic or pneumatic actuators. Elec-

trical motors are popular due to the easiness to control as well as simple wiring.

However their torque output is weak and therefore, electrical motors are typically

coupled with geared transmission to amplify their torque. In turn the gearing

makes the joints stiff, and diagonalizes the robot’s inertial matrix. While this sim-

plifies the robot control problem, it results on stiff non-human movement that we

identify as robotic motion. Hydraulic actuators provide strong force but they are

not as compliant as pneumatic ones since liquid is not compressible.

In this thesis, we study the problem of system identification and control of

a complex humanoid robot (named Diego-San) that uses pneumatic actuators (see

Figure 1.2 for a diagram of a pneumatically actuated joint). Pneumatic actuators

are becoming increasingly popular in robotics due to their high speed and force

capability, which makes the use of complex transmission gears unnecessary, as well

as relatively low price and overall robustness. From the perspective of bio-robotics,

pneumatic actuators are further desirable because they have many of the essential

properties of biological muscle at the mechanism level. In particular: (i) as the

joint moves in the direction of actuated force, the chamber volume increases and

thus the pressure/force drops, resulting in stiffness; (ii) this stiffness can be tuned

by activating opposing cylinders, much like a biological limb becomes stiffer when

antagonist muscles co-contract; (iii) the actuator has an internal activation state

(air mass in the case of pneumatics, calcium concentration in the case of muscles)
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valves
(flow control)

q

pressure

moment arm
(depend on joint angle   )q

Figure 1.2: Pneumatic actuator and muscle for robot and human arms respec-

tively.

whose dynamics make the entire system 3rd-order. Fig. 1.3 compares the response

of air pressure and calcium concentration given a step command; The third or-

der dynamics effectively introduce a low-pass filter between command signals and

forces, with similar time-constants for muscles and pneumatic cylinders; (iv) since

the actuators are often linear they can be mounted in a way reminiscent of muscle

attachment to the skeleton, resulting in moment arms which vary with joint angle;

(v) the high force output makes gears and other amplification mechanisms unnec-

essary, which in turn results in uniquely compliant systems capable of dynamic

interactions with the environment. It can be argued that some of these proper-

ties are unnecessary complications that could be avoided by using stiff electrical

actuators. However, if we are serious about understanding the principles of bio-

logical control and replicating those principles in synthetic systems, it would be a

mistake to ignore the fact that biological control has evolved in the context of the

musculo-skeletal plant and is profoundly shaped by the properties of this plant.

The valve-cylinder connection on Diego-San humanoid robot uses a unique
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300ms step 
control input

pneumatic 
pressure response

muscle activation

(A)

(B)

(C)

Figure 1.3: Given a step input as in panel (a), the temporal response of pneumatic

pressure in panel (b) and muscle calcium concentration in panel (c)
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design. Each pneumatic cylinder has two outlets. Each outlet is connected to a

valve adjusting the pressure. In Chapter 4, we propose a novel pneumatic dynamic

model of our new design and identified model parameters from real data.

1.1.2 Sensors

As in the human body, the sensors on a robot enable it to perceive its sur-

rounding environment (exteroception) as well as the state of its own body (propri-

oception). The sensors on a humanoid robot are typically tailored to approximate

the capability of the human sensory system. In humans, the proprioceptive sense

is composed of information from sensory neurons located in the inner ear (motion

and orientation) and in the stretch receptors located in the muscles and the joint-

supporting ligaments (stance). The corresponding sensors in humanoids robots are

inertial measurement units, actuator-length/joint-angle sensor and actuator force

sensors. On Diego-San, joint angle information is provided by linear (on the actua-

tor) and rotary (on the joint) potentiometers; joint forces are measured by pressure

sensors on each chamber of the pneumatic actuators. While these proprioceptive

sensors measure the state of the robot, other sensors are responsible for sensing

the environment, including video cameras in each eye, and microphones in each

ear.

The information provided by these sensors generally needs to be further

processed to be useful. For example, a facial expression recognition system can

use the information provided by the cameras to extract emotional status of people

the robot interact with. The position, velocity and acceleration of the different

parts of the robot can be calculated from the history of joint angles using the

equations of kinematics and dynamics.

1.1.3 Articulated Body Kinematics and Dynamics

An articulated body is a collection of rigid bodies interconnected by joints.

The kinematics and dynamics of articulated bodies study relationship between

motion of these bodies and forces applied on them. Kinematics is the branch of
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classical mechanics that describes the motion of the bodies under constraints, such

as joints and contacts. Dynamics refers to the branch of classical mechanics that

focuses on the relationship between forces acting on the bodies (friction, gravity,

contact forces, actuator forces, Coriolis forces), the inertial properties of the bodies

(the moment of inertia matrix), and the resulting motion. The computational

complexity of kinematics and dynamics greatly depends on the structure of the

robot. In general, the complexity grows quadratically in the number of bodies since

one needs to compute the forces between each pair of the bodies. Fortunately, the

way these bodies (links) connect on a humanoid robot fits a special class called

“tree structure”, whose kinematics and dynamics can be calculated efficiently in

a recursive manner [71]. Being able to scale up with the number of degree of

freedom (essentially the number of bodies for tree structures) is crucial for high

degree-of-freedom robots.

Consider a humanoid robot of n joints. The robot’s kinematics describes

the relationship between the position of a point x ∈ R3 on the robot in Cartesian

coordinate system and generalized joint angles q ∈ Rn. The relationship can be

further divided into forward and inverse kinematics. Inverse kinematics refers to

the problem of inferring the position and orientation of the robot links, from the

joint angles

x = hx(q); (1.1)

the latter is about finding a feasible configuration of joint angles that move the

point x to a given goal position xg

q = h−1x (xg). (1.2)

Inverse kinematics is typically solved by numerical optimization minimizing the

distance between the given point and target position. The optimization is usually

relies on the Jacobian of x with respect to joint angles,

Jx =
∂hx(q)

∂q
∈ R3×n. (1.3)

Typically, under one-to-one joint-sensor setting, a joint angle q can be inferred di-

rectly from sensor measurement, such as inferring joint angle from the correspond-

ing potentiometer. However, in Diego-San and other complex humanoid robots
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(a) Baxter (b) Diego-San

(c) Einstein (d) iCub (e) Kismet

Figure 1.4: Faces in Humanoids.

a sensor measurement may depend on multiple joint angles, such as the length

measurement of a tendon/actuator span over multiple joints. In addition the re-

lationship between joint angles and sensor measurements may not be one-to-one.

In this case, more sophisticated inference is needed (see Chapter 2).

Dynamics in humanoids is typically formulated in joint angle space with

forces expressed as torques applied on the joints. These forces/torques include

actuator torque τ ∈ Rn, Coriolis (virtual) torques C ∈ Rn×n, Coulomb friction

τ c ∈ Rn, viscosity τ v ∈ Rn and gravity induced torques τ g ∈ Rn. Their relationship

can be described by the joint-space robot equation :

Mq̈ + C(q, q̇)q̇ = τ + τ c + τ v(q̇) + τ g(q), (1.4)

where M ∈ Rn×n is the robot inertial matrix.
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1.1.4 Deformable Bodies – Face

Facial expression plays an important role in human non-verbal communica-

tion. Robots’ ability to produce and perceive facial expression may help improve

the human-robot interaction. For this reason many modern humanoid robots have

human-like faces and facial expressions. Figure 1.4 show a small collection of them.

Some robot faces are very realistic to the extent it is hard to judge whether

they are human or robot faces. However, building such realistic faces is a com-

plicated task requiring special material and dedicated plastic skills. In addition,

a slightly imperfect realistic face may produce adversarial so effect that it is per-

ceived as creepier than a non-realistic face. The phenomena is called the “uncanny

valley” effect. Therefore, many robot designers choose to stay on the safer side

of the uncanny valley employing non-realistic faces, such as movable mechanical

parts (Kismet), programmable LED array (iCub) or even a display panel (Baxter).

Despite the fact of these faces are not human-like, they still serve good purpose of

communication.

Diego-San has a complex realistic face modeled after a child. The face is

made of a special rubber-like material designed to deform in a manner similar to the

way the facial tissue deforms in humans to produce facial expressions. Diego-San

has 18 electric servo motors mounted behind the face. The motors are connected

to the facial tissue via tendons. The deformations produced by these tendons

produce human-like facial expressions. Precise control of these servos is crucial to

make realistic facial expressions, which are typically manually tuned. However,

this manual tuning is a very time-consuming task. In Chapter 5, we develop an

automatic tuning approach to expedite the tuning process.

1.2 Machine Learning Approaches to Robot

Control

Robot control refers to the problem of how to send control signals to the

robot actuators so as to accomplish goals. For example the goal may be for the
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Agents and environments

?
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Agents include humans, robots, softbots, thermostats, etc.

The agent function maps from percept histories to actions:

f : P∗ → A

The agent program runs on the physical architecture to produce f

Chapter 2 4
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Y
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✓
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Figure 1.5: The optimal control algorithm utilizes sensor inputs, plans for actions

that gathers the optimal rewards

robot to grab a distant object, or to kick a ball as high as possible, or to make

a facial expressions that humans perceive as joyful. Stochastic optimal control

provides a useful formalism and a set of powerful mathematical tools to frame the

robot control problem. In optimal control the goal is expressed as a scalar func-

tion of the trajectories of the different robot parts and the relevant objects in the

environment. This scalar function is typically called the reward if the objective is

to maximize it, or the cost, if the objective is to minimize it. For example, if the

goal is to reach for an object as quickly as possible, we could use as the reward

function the negative Euclidean distance integrated over time, between the robot’s

right hand and the target object. Stochastic optimal control provides a range of

methods for finding exact solutions to some control problems, namely problems

with linear dynamics, Gaussian sensor noise, and quadratic cost functions. Unfor-

tunately most robot control problems do not satisfy these assumptions and thus

approximate methods are required. One class of methods that is becoming popular

in recent years originated from the machine learning literature, and are known as

Reinforcement Learning (RL) methods.

Figure 1.5 illustrates a typical Reinforcement Learning cycle, illustrating

the relationship between action, sensing, reward and learning. The robot has a

control policy parameterize by a vector θ. The policy maps the history of sensor

information into moment to moment signals sent to the robot actuators. As a

consequence of its actions the robot gets a scalar reward value. The RL algorithm

then fine tunes the policy parameter based on the observed reward. While RL is
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an expanding field, the currently the available RL algorithms can be divided into

two categories: Model Free and Model Based.

1.2.1 Model-Free Reinforcement Learning

Model-Free RL represents a class of RL algorithms that do not require a

model of the robot dynamics. These algorithms operate exclusively on the raw

actuator control, sensor values, and observed rewards. Typically the reward is

a real-valued function of the sensor values. For example, the proximity between

the robot’s hand and target is an ideal reward for a reaching task which can be

measured directly with a proximity sensor.

The simplicity makes model-free RL algorithms applicable to a wide range of

problems, including problems that involve interaction with humans. Unfortunately,

also because of their simplicity, model-free RL algorithms often exhibit extremely

slow learning in complex problems. One way to speed this up is to create virtual

experiences by having a model of the environment and running these algorithms

inside the model.

1.2.2 Model Based Reinforcement Learning

In model-based RL, as in the basic model-free approach, the primary goal of

learning is the improvement of a behavioral policy in order to maximize a numerical

reward signal. However, the approach differs from model-free RL in that the agent

simultaneously attempts to learn a model of its environment. Having such as

model is useful: it allows the agent to predict the consequences of actions before

they are taken, allowing the agent to generate virtual experience, as well as mental

search through a problem space to locate an efficient solution. Thus, model-based

RL integrates both learning on the basis of past experiences and planning future

actions. Further, a model of the environment is not directly tied to the task one

is currently performing. For example, consider a humanoid learning to draw a

circle on the whiteboard. While performing this task, the robot could acquire the

kinematics and dynamics model of its arm. If the task goals change, for example,
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from drawing a circle to toss a ball, the previously learned policy (the sequences

of joint angles to draw the circle) is of no help, but the learned arm model could

still aid the robot in achieving its new goal. Finally, in addition to learning the

model from experiences, it is also possible to directly construct an analytical model

from prior knowledge of the environment. For example, one can build a geometric

kinematics model directly as the prior knowledge of the robot.

The downside of the model based approach is that it increases the complex-

ity of the learning algorithm. In addition, a poorly designed model would provide

inaccurate prediction and may mislead the learning process.

1.3 Contributions

1.3.1 Models and Simulators for Humanoid Robots

Simulators are crucial for robot control development, which allow re-

searchers to try new algorithms before running on physical robots. Simulation

eliminates the risk of debugging code on physical robots which may be harmful.

It also allows us to execute algorithms in super-realtime which in turn speeds up

the development. In addition, simulators also open up the possibility of model-

predictive control.

We collaborated with Emanuel Todorov to develop a customized simulator

named Mujoco [80]. The kinematic model and rigid body dynamic model param-

eters were extracted from CAD model of Diego-San. We developed new kinematic

identification approach, STAC in Chapter 2, to identify the sensor parameters. We

built a new pneumatic model and identified its parameters for all 38 actuators for

the valve-cylinder actuator dynamics in Chapter 4.

Further, we find that a simple parametric model for rigid body dynamics

cannot capture the actual dynamics observed. There is unmodeled noise created

by cables and tubes going across joints. Ideally, this can be solved by data-driven

non-parametric regression. However, the high degree of freedom suggests that

regression in high dimensional space would require huge amount of data to perform

well. To take advantage of both parametric and non-parametric approach, we
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develop a semi-parametric Gaussian process approach, SGP, described in Chapter

3.

1.3.2 Learning to Control in Humanoid Robots

Robot Facial Expression: In Chapter 5, we tackle the problem of con-

trolling 18 servos on Diego-San’s face to produce facial expressions. The problem

is difficult as the specification of facial expressions is hard to obtain. To provide a

quantitative reward signal, we make use of computer expression recognition tool-

box (CERT) to evaluate the goodness of an expression posed by the robot during

random exploration. CERT essentially learns the visual definition of expressions

from thousands of examples of human facial expressions. With this visual feedback,

the robot learns to pose 6 basic emotion expression as well as individual action

units from facial action coding scheme (FACS). Prior to this automatic learning

approach, an expert had to spend weeks to manually tune these servo motors for

each facial expression. Our algorithm reduces the effort to just a few minutes.

Diffusion Network Adaptation for Control: In Chapter 6, we devel-

oped a new reinforcement learning algorithm, named Diffusion Network Adapta-

tion (DNA), for robot control problems. We tested the DNA algorithm on sev-

eral model-free learning tasks in simulation, achieving state-of-the-art performance

comparable to other leading methods. Next, we evaluated the DNA on real-world

humanoid learning tasks: kick a ball and reaching. In both tasks, our robot learned

effective policies to achieve the task goals.

1.3.3 Developmental Psychology

Learning The Correspondence Between Facial Muscle Activation

And Facial Appearance: It is unknown how humans learn to control their own

facial muscles to generate expressions to match those they observe. Such facial

gesture imitation requires the cognitive system to equate the seen-but-unfelt with

the felt-but-unseen. Researchers are uncertain of the source of correspondence be-

tween visual and proprioceptive representation of facial actions. Rival accounts
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propose that this is either innate or learned. In Chapter 5, we demonstrate that

learning such correspondence is actually possible with very small amount of ex-

perience, which verifies the feasibility for the “learned” hypothesis. Interestingly,

human study [17] also suggests that visual feedback is necessary for facial expres-

sion imitation learning.

Learning To Develop Symbolic Behavior As part of this thesis we

studied how infants learn to reach for objects in the presence of a caretaker. We

first collected a dataset of infant-mother interaction in the presence of objects. We

found that infants generate fast and large limb movements when the toy is out of

the infant’s arm reaching distance. On the other hand, the infants exhibit slow,

small and precise, movements when they have the toy in hand. We hypothesize

that the large movements serve as social gestures for mothers to pass the toy.

This is known in the infant development literature as “protoimperative” symbols.

We studied whether Diego-San could learn to develop this type of proto-symbolic

behavior while interacting with humans. The results are presented in more detail

in Chapter 6.

1.3.4 Software

We utilized many off-the-shelf software packages developed by the robotics

community, such as Robotic Operating System (ROS) [61] and OpenCV [11].

In return, we contributed our non-robot-specific software back to the commu-

nity. These software packages are available at https://code.google.com/p/

mplab-ros-pkg/, where we received more than 70 downloads in the past 6 months.

Matlab-ROS Bridge: Matlab is one of the most popular programming

languages in engineering for its fast-prototyping and visualization capability. ROS

is the de-facto standard for integrating heterogeneous robot sensors and actuators

across multiple computers. We develop Matlab-ROS bridge to glue the best of these

two worlds together, making it possible to turn research ideas into complicated

real-world robotic experiment in short time.

ROS-National Instrument Driver (NIDAQ-IO): Digital analogue

converters (DACs) and analogue digital converters (ADCs) are essential interfac-

https://code.google.com/p/mplab-ros-pkg/
https://code.google.com/p/mplab-ros-pkg/
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ing hardware for computer-based control using analogue sensors/actuators such

as potentiometer and electrical motors. National Instrument is one of the major

brand. However, their hardware were unsupported in ROS. We develop the driver

to fill in the gap.
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Chapter 2

STAC: Simultaneous Tracking

and Calibration

Abstract : System identification is an essential first step in robotic control.

Here we focus on the calibration of kinematic sensors, such as joint angle po-

tentiometers, tendon/actuator extension sensors and motion capture markers, on

complex humanoid robots.

Manual calibration with protractors and rulers does not scale to complex

humanoids like the ones studied here. Classic automatic approaches cross-calibrate

multiple sensor systems on the same robot by exploiting their redundancy. How-

ever, these approaches make the strong assumption that the observed joint angles

are functions of the sensor measurements plus observation noise. This assumption

is too restrictive on modern humanoids where linear actuators and tendons span

multiple joints.

Here we formulate the calibration problem as a Bayesian inference pro-

cess on a generative model where hidden joint-angles generate sensor observations.

A novel alternating optimization approach is developed to simultaneously track

space-time joint angles and calibrate parameters (STAC). Explicit estimation of

joint angles makes it possible to calibrate sensors that otherwise cannot be han-

dled by classical approaches, such as tendons wrapping on complicated surfaces

and spanning multiple joints. We evaluate STAC to calibrate joint potentiometer,

tendon length sensor and motion capture marker positions, on a 38-DoF humanoid

18
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robot with 24 optical markers, and a 24 DoF tendon driven hand with 12 mark-

ers. We show that STAC can be applied to problems that cannot be handled with

classical approaches. In addition we show that for simpler problems STAC is more

robust than classical approaches and other probabilistic approaches such as the

Extended Kalman Filter.

2.1 Introduction

System identification (ID) is an essential first step in robotic control, and

can be divided into kinematic and dynamic system identification. Dynamic ID

deals with quantities which emerge when there is movement, like moments-of-

inertia and friction coefficients. Kinematic ID deals with parameters which are

relevant even when the velocity is zero, i.e. geometric properties. For example,

a pick-and-place robot with an inaccurate kinematics model will do a poor job,

regardless of how slow it moves. In this paper, we focus on kinematic ID, including

calibrating joint angle and cylinder extension sensors which are typically measured

by potentiometers, magnetic or optical encoders. Some of these sensors are directly

mounted on the joints; others are connected through a transmission mechanism,

such as cranks, cables, tendons or gears. These mechanisms while useful, may

change their dynamic range, linearity, and even accuracy of the sensors, all of

which essentially contribute additional parameters to be identified.

Manual calibration approaches usually rely on ground-truth joint angle mea-

surements using protractors, and the corresponding joint angle sensor readings.

Regression models are then used to learn a function that maps sensor reading into

joint angle estimates. We found this approach to be inaccurate and inefficient when

applied to complex robot platforms. Accurate measurements are hard to obtain

with a protractor, our robot’s arms are covered with tubes and their surface is un-

even; making it difficult to align a protractor to a joint. Empirically, measurement

precision can be as bad as 5 degrees. The approach is also very time-consuming es-

pecially on a large number of joints. One of the humanoid platforms studied in this

paper has 38 joints and many of them come with non-linear transmission mecha-
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nisms which require multiple measurements over different angles to fully identify

the underlying parameters. Furthermore, calibration values can change after each

repair or intensive use. The development of a fully automatic calibration system

is necessary to keep the robot fully functional.

More sophisticated kinematic ID approaches cross-calibrate multiple sensor

systems on the same robot by exploiting their redundancy [32]. For example,

consider a robot with potentiometers measuring joint angle and motion capture

markers attached to some of the bodies. Assuming both sensors are calibrated, one

can infer the pose of the robot using either system, thus the redundancy. However,

before the calibration, neither of the systems is accurate. Both come with unknown

parameters: the gain and bias for potentiometer and the positions of the markers.

To calibrate these parameters, one first collects synchronized measurement from

both sensors for multiple frames, and then tries to find the optimal values, such

that the two sensor systems agree with each other.

However current kinematic ID approaches assume that the observed joint

angles are a function of the sensor measurement plus some observation noise. This

assumption raises two issues: First, the assumption would only work for simple

one-joint-to-one-sensor sensor types as in Fig. 2.3abc. Pose sensor measurement

on modern humanoids may depend on multiple joint angles. For example, modern

dexterous hands are driven by tendons where the length of a tendon is a linear

function of multiple joint angles (Fig. 2.3e). For hydraulic or pneumatic systems,

it is common to apply linear actuators to multiple DoF joints such as the 2-DoF

rotational gimbal as in Fig. 2.3d and the Stewart platform [25]. In these cases, it is

generally not trivial to write joint angle as a function of the sensor measurement.

More importantly, in some cases the noise-free mapping between sensors and joint

angles may be a multi-valued function. In this work, we formulate the relationship

between sensors and joint angles as a Bayesian generative model in which sensor

measurements are noisy observations generated from joint angles. This contrasts

with the classical regression-based approach in which the joint angles are treated

as noisy observations generated by noiseless sensor readings. This approach lets us

calibrate robots in which the relationship between joint angles and sensors is very



21

complex and cases in which the observed angles are not a single-valued function

of the sensor readings.

2.2 Multi-sensor Parameter and Joint Angle Es-

timation

Consider a tree-structured robot of n-joints with a known (skeletal) kine-

matics model, including link lengths, joint positions and types. The robot is

equipped with different types of pose sensors which measure some quantities as

parameterized functions of one or more joint angles and derived quantities, such

as body positions or orientations. The goal is to identify these (fixed) sensor pa-

rameters from multiple synchronized measurements from the multiple sensors.

2.2.1 Classical Methods

The past decades have seen the development of kinematic calibration meth-

ods that do not require ground truth knowledge of joint angles [32]. Let the forward

kinematics function h of a robot arm be as follows

x̂ = h(q, θ) (2.1)

where x̂ is the end-effector pose, q ∈ Rn are the joint angles and θ are parameters

to be identified including potentiometer gains θgain and biases θbias. Typically,

potentiometer readings are linear functions of the joint angles,

qj = θgain,j · pj + θbias,j (2.2)

where pj is the reading from the corresponding potentiometer. Therefore we can

rewrite the (2.1) as

x̂ = h(θgain,jpj + θbias,j, θ) = h(pj, θ). (2.3)

Under this framework the system ID problem can be formulated as a non-linear re-

gression problem. Given a sufficient number synchronized measurement of (xt, pt),
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Figure 2.1: The graphical model of the (a) classical approach (b) our approach.

Joint angles q and sensor parameters θ are hidden and sensor measurements v are

observed (shaded).

the goal is to find a parameter vector θ that minimizes a sum of squared errors

cost function

L(θ; x1:T , p1:T ) =
T∑
t=1

||x̂t − xt||22 =
T∑
t=1

||h(pt, θ)− xt||22. (2.4)

Note that explicit estimation of joint angle q is unnecessary. Such formulation

is convenient. However regression approaches rely on the assumption that the

observed joint angles q are a function of the sensor readings plus some observation

noise. This assumption is often violated in complex, biologically-inspired humanoid

robots.
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2.2.2 Generative Model

While regression models assume that joint angles are a function of sen-

sor readings, here we use the much weaker assumption that sensor reading are a

function of joint angles. Figure 2.1 illustrates the probabilistic graphical models

corresponding to the classical regression based approach and to the approach we

propose (STAC). On the top row, each unshaded node qt represents the hidden joint

angles in snapshot t while on the left column, each unshaded node θi represents

unknown parameters of sensor i. In the middle, the observed sensor measurements

are organized into the array of shaded nodes, where the rows are measurements

from the same sensor and columns are measurements in the same snapshot. The

measurement from sensor i in snapshot t is then denoted as vit. The left panel

(a) shows the model for classical regression based approach. Joint angles q1:T are

generated from potentiometer reading v11:T and parameters θ1 as shown in dashed

arrows. For STAC on right panel (b), we re-assign these arrows that all the sensor

measurement (whether it is from potentiometer or not) are generated from joint

angles and sensor parameters.

Standard graphical model machinery can be used to compute the negative

log likelihood function used by STAC

LL(q1:T ,θ) = −
M∑
m=1

T∑
t=1

log p(vmt |qt; θm). (2.5)

where v represents sensor observations, θ represents kinematic parameters and q1:T

represents joint angles.

2.2.3 Alternating Descent Optimization

The standard maximum likelihood approach to estimate θ is to directly

minimize LL(q, θ). However, direct optimization over all the parameters and joint

angles is difficult due to large number of parameters. Consider a 38-DoF humanoid

with 2 parameters for each joint and a collection of 100 snapshots would easily

amount to 3876 parameters!

We found that the optimization process could be greatly accelerated by

using an approach that alternated between two phases: a p-phase that estimates



24

sensor parameters while keeping joint angle fixed and a q-phase that estimates

joint angles using the updated sensor parameters. The optimization in each phase

can be further divided into multiple simpler and parallelizable sub-problems taking

advantage of the special structure of the graphical model. The idea is justified by

the following two key observations:

• joint angles qt’s of different time frames are conditionally independent from

each other when θi’s are known;

• on the other hand, the parameter θi’s of different sensors are conditionally

independent from each other when joint angles are known.

Using this property we can re-write the maximum likelihood problem as

min
θ,q1:T

M∑
m=1

T∑
t=1

log p(vmt |qt; θm)

=
∑
m

min
θm

(
T∑
t=1

min
qt

log p(vmt |qt; θm)

)
. (2.6)

Notice that the maximization subproblems inside the summations can be opti-

mized independently. In many cases, the subproblems solving each qi or θi are

simple enough to have closed-form solutions. Even when numerical optimization is

necessary, these subproblems can be optimized in parallel over multiple processors.

2.2.4 Sensor Observation Noise Model

Typically, sensor measurement is assumed to be contaminated by additive

zero-mean σ2
v variance Gaussian noise,

P (vmt |qt; θ) = N
(
v|v̂m(qt; θ), σ

2
v

)
. (2.7)

Then, the maximum likelihood problem is equivalent to a least squares problem.

In other words, the likelihood function can be written as

LL(q,θ) =
1

2
r(θ, q)T r(θ, q) +

TM

2
log 2π (2.8)
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where the residual vector is

r(θ, q) =


r(θ, q1)

r(θ, q2)
...

r(θ, qT )

 , r(θ, qt) =
1

σv


v1t − v̂1t (θ, qt)
v2t − v̂2t (θ, qt)

...

vMt − v̂Mt (θ, qt)

 . (2.9)

Here we put the variance σv at sensor level as the same type of sensor typically share

similar noise variance. One can certainly use a per-sensor variance option when

necessary. There are off-the-shelf tools solving non-linear least squares problem,

such as Gauss-Newton or Levenberg-Marquardt approaches.

2.3 Case Study: Calibrating Joint/Tendon Po-

tentiometer Against Motion Capture

Motion capture systems, are becoming standard measuring tools in robotic

labs for various control and identification tasks [2,41,47]. In this section, we study

the case of using motion capture system to calibrate other sensors.

There are two type of pose sensors on the robot: rotary potentiometers for

1-DoF rotary joints and linear potentiometers for 2-DoF Gimbal joints. To identify

the potentiometer parameters, we attach M motion capture markers to some links

of the robot as auxiliary sensors. In total, the sensor parameters to be identified

are potentiometer gains and bias, the translation and rotation of motion capture

coordinate frame from the robot baselink frame and the marker positions on the

links, or

θ =
[
θgain θbias R T0 d1:M

]
. (2.10)

Next, we describe how the observations of the various types of sensors are

generated and how to solve for the parameters analytically in the “p-phase”. For

notational clarity, we further split the observation variable v : {x, p} into x for

motion capture markers and p for potentiometers.
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Figure 2.2: markers on kinematics chain

2.3.1 Motion Capture Markers

Figure 2.2 shows the spatial relationship of a marker m and the parent link

(link 2) it is attached to. Let dm be the unknown marker local position in the

parent link frame. Then the marker position in the robot (baselink) frame is,

x̂bm(dm, qt) = hr(qt)dm + hp(qt), (2.11)

where h(·) is the forward kinematics function that calculates the position (hp) and

orientation (hr) of the parent link, to transform dm into the baselink frame.

The motion capture system measures 3-dimensional position of the markers

xm,t ∈ R3,m = 1, 2, . . . ,M in the motion capture frame. We denote the transfor-

mation from baselink- to motion-capture-frame by rotation matrix R ∈ R3×3 and

translation T0 ∈ R3. Then the prediction of marker position in the motion capture

frame is

x̂m(R, T0, dm, qt) = Rx̂bm(dm, qt) + T0. (2.12)

During the “p-phase” of alternating descent, we solve for the parameters R, T0, dm

while fixing the joint angles q1:T . The transformation parameters (R, T0), which
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affect all markers at all times, can be solved for using Procrustes analysis of rigid

body motion problem [74]: First we calculate the center of the markers in each

coordinate system,

x̄b =
1

MT

M∑
m=1

T∑
t=1

x̂bm,t, x̄ =
1

MT

M∑
m=1

T∑
t=1

xm,t. (2.13)

Next, the rotation matrix can be obtained through singular-value-decomposition

of the “covariance matrix”,∑
m,t

(x̂bm,t − x̄b)(xm,t − x̄)T
SVD
= UΣV T . (2.14)

Then,

R = sign(det(Σ))V UT (2.15)

T0 = x̄−Rx̄b (2.16)

Finally, the local position of the markers in the corresponding link can be identified

by taking the average of observed marker position in the link coordinate (2.12) :

d̄m =
1

T

T∑
t=1

hr(qt)
−1 (R−1(xm,t − T0)− hp(qt))︸ ︷︷ ︸

xbm,t

(2.17)

2.3.2 Potentiometers

There are several popular types of potentiometer mountings as shown in

Fig.2.3. Although potentiometers are typically linear in the rotation angle or

linear in the displacement, the transmission mechanism can be either linear or

non-linear.

For linear (fixed gearing or direct driving) transmission, such as a hinge

joint with one rotary potentiometer (Fig.2.3a) or a sliding joint with a linear po-

tentiometer (Fig.2.3b), the output voltage p̂ is linear in the joint angle.

p̂(θ, q) = θgainq + θbias (2.18)
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2.3.3 Tendons

Tendons are force transmission mechanism connecting two links. The length

of a tendon can be used to determine the joint angles between the two links.

Classical regression based approaches cannot handle this case because typically

there are many joint angle combinations that yield the same tendon length i.e., the

mapping from tendon lengths to joint angles is not a single-valued function. Figure

2.3e shows the tendon used in an anthropomorphic tendon-driven finger. Another

type of tendon setup uses linear actuators/sensors on 2-DoF rotation joints. As

it is not easy to attach rotary potentiometers on the 2DoF Gimbal structure, two

linear potentiometers are attached across the two links on distinct pairs of points

(Fig.2.3d) to measure the joint angles. The anchor points are available from the

CAD model. For convenience, the measured voltage and calculated length of these

potentiometers are referred to as p1, p2 and L1, L2 while the corresponding joint

angles are q1 and q2. The predicted measurement is then

p̂1(θ, q) = θgainL1(q1, q2) + θbias (2.19)

p̂2(θ, q) = θgainL2(q1, q2) + θbias, (2.20)

Note that it is easy to calculate L(·) from q as part of the analytical forward kine-

matics routine but inferring q from L would require numerical inverse kinematics.

When solving for the potentiometer parameter given the joint angle qt and

the measured voltage pt at snapshot t, whether the transmission is linear or non-

linear, the equations (2.18)-(2.20) are always linear in θgain and θbias, and thus can

be estimated using linear least squares methods.

2.3.4 Space-Time Joint Angles

Once the sensor parameters are updated, we turn to the “q-phase”: opti-

mizing for the joint angles. The goal is to maximize the log-likelihood,

q∗t = max
qt

∑
m ||x̂mt − xmt||22

σ2
x

+

∑
j ||p̂jt − pjt||22

σ2
p

. (2.21)
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All we need is the Jacobian:

∂p̂j(θ, qt)

∂qt
=

θgain rotary pots.

θgain
∂L(qt)
∂qt

linear pots.
(2.22)

∂x̂m(θ, qt)

∂qt
=
∂hm(qt; dm)

∂qt
, (2.23)

where both ∂L(qt)
∂qt

and ∂hm
∂qt

are standard kinematics Jacobian available in almost

every kinematics packages such as [80].

2.3.5 Dynamic Variance Adjustment

Distinct types of sensors produce residual of different dynamics range so

the variances σ2
v : {σ2

x, σ
2
p} have to be adjusted to the right scale. We initialize

these parameter to the corresponding sensors’ dynamic range and re-estimate the

variance in each iteration based on the residuals.

2.4 Related Work

We compare our formulation to two related approaches here and present

the experimental comparison in the next Section.

2.4.1 Kalman Filter for Tracking and Calibration

The Extended Kalman filter (EKF) is an algorithm for tracking the state of

a system with known dynamics and observation function from a noisy time series

of observations. It has been applied to human skeleton tracking and kinematics

identification [82]. Figure 2.4 gives an example how the EKF can be used to solve

our tracking and calibration problem.

In this method, the state space consists of both joint angles qt and param-

eters θt. Since the control sequence applied to the robot is assumed unknown,

the dynamics equation contains only a drift term w with large variance Σq for
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Figure 2.4: Extended Kalman Filter for simultaneous calibration and tracking.
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time-varying joint angles and zero-variance for fixed parameters,[
θt+1

qt+1

]
=

[
θt

qt

]
+ w, w ∼ N (0,

[
0

Σq

]
) (2.24)

The observation function is same as what we use in STAC, see Sec.2.3. For

both potentiometers p̂ and motion capture markers x̂ with observation noise z

vt = [p̂(θt, qt); x̂(θt, qt)] (2.25)

vt+1 = vt + z, z ∼ N (0, σ2
v). (2.26)

The EKF updates require linearization vt around current state which needs the

Jacobian

∂vt
∂(θt, qt)

=

[
∂p̂
∂θt

∂p̂
∂qt

∂x̂
∂θt

∂x̂
∂qt

]
(2.27)

The derivatives with respect to q are in (2.22) and (2.23) and those with respect

to θ are also analytical. In practice, because the linearized observation function is

only valid at a local neighborhood around the current state, the EKF is prone to

divergence without proper seeding of initial state.

Even with proper starting seed, once EKF loses track of the target due to

observation noise at time t, the estimation will typically remain off after t. This

is one of the major difference between STAC and EKF: while EKF tracks the pa-

rameters and space-time joint-angles sequentially in time, STAC jointly optimizes

for them across time. Therefore, an erroneous estimate at one time frame would

not propagate as in EKF. We will compare the robustness of EKF to STAC under

various seeding and observation noise in Sec.2.6.2.

2.4.2 Classical Regression-Based Approaches

Classical approaches (Sec. 2.2.1) can be seen as a special case of STAC

with zero joint potentiometer sensor noise σp = 0. In this way, the potentiometer

term in the likelihood function (2.21) approaches infinity, effectively making it a

constraint. Then the overall least squares problem can be simplified as

maxθ,d
∑

t maxqt
∑

m ||x̂mt(θ, qt)− xmt||22/σ2
x

subject to p̂jt(θ, qt) = pjt
(2.28)
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If the constraints are all about simple one-joint-to-one-potentiometer, such that

the joint angles can be inferred from measurement analytically, we can re-write

the constraints as qj = qj(pj, θj). Plugging qj into the objective function in place

of qj(·), we obtain

max
θ,d

∑
t

∑
m

||x̂mt(q(p̂t,θ))− xmt||22, (2.29)

which is identical to (2.4)

2.5 Experiment Setup

We performed experiments on a complex pneumatics-based humanoid robot

[83] named “Diego San” as well as a dexterous tendon-driven hand [39].

2.5.1 Humanoid

Figure 2.5c shows a picture of Diego San. It is a pneumatic humanoid with

body parts proportional to that of a 1-year old human body. Among 38 joints,

4 are 2-DoF Gimbal joints (as in Fig. 2.3(d)) with two linear potentiometers

measuring the length of the two pneumatic cylinders (e.g., neck, Fig. 2.5a); the

rest of the joints are hinge type (as in Fig. 2.3(a)) with gear transmitted rotary

potentiometers (e.g., elbow, Fig. 2.5b).

We attached 24 markers to every other link counting from the baselink

taking advantage of the fact that the rotation axes of adjacent joints are mostly

non-parallel. In this way, we were able to perform full-body sensor calibration

without putting markers to every link. During motion capture, the robot was

driven by a simple PID controller to move the joints randomly. Both marker

positions and potentiometer readings were captured synchronously at 100Hz for

250 seconds. The traces are visualized in Fig.2.5d.

The kinematic model was extracted from the CAD file provided by the

manufacturer (Kokoro Robotics), which includes link lengths, joint locations and

orientations. The baselink of the robot is the waist, which was hung from a stable
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Figure 2.5: Diego San – the humanoid robot used in this study.
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crane. Therefore we could safely assume that the transformation between the robot

baselink and motion capture coordinate systems was constant.

2.5.2 Tendon Driven Hand

The dexterous hand by Shadow Robot is a human sized hand with 24 joints

[39] (Fig.2.7(c)). The joints are actuated by pairs of tendons with the pneumatic

pistons mounted at the fore-arm. Each joint has a Hall-effect joint angle sensor

and the tendon lengths are also measured at the pistons. The tendon lengths are

functions of one or more joint angles depending on the anchor points.

2.6 Simulation-Based Experiments

To evaluate how precise our methods can recover the unknown parameters,

we started with a set of random ground-truth parameters internally, and then

generated simulated noisy sensor observations.

2.6.1 Selection of Optimization Algorithms for q-phase

Here we explore different strategies for optimizing the joint angles in q-

phase. The simulation experiments were performed using synthesized 200 random

joint angles and corresponding noisy observations from the Hand robot model.

The initial seeding parameters and joint angles are all zero except for the rotation

matrix which is set to the identity.

LM-batch: To start, we optimize for the joint angles until convergence

and then solve for sensor parameters until convergence. This gives the Levenberg-

Marquardt method enough steps to find the right step size. However, we observed

that allowing full LM convergence tended to drive the optimization process into

local minima before the sensor parameters had a chance to settle into the correct

region.

LM-iter: In addition, we observed that after few alternations, LM con-

verged in less than 5 iterations without much progress on the objective value. To
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address this problem we tested a second approach in which we alternated between

joint angles and sensor parameters after each LM step iteration.

BFGS: In addition to LM we also evaluated another popular optimization

algorithm, BFGS. When computing the gradient ∂LL/∂q, we first optimize for the

parameters until convergence.

Figure 2.6a and 2.6b show the negative likelihood of the objective function

and mean-relative-error between the estimated parameters and ground truth pa-

rameters. We use relative error because the range of different parameters is quite

different.

It is observed that BFGS performs best immediately followed by LM-iter.

LM-Batch converged slower and the parameter actually diverged in the first 10

iterations but recovered later.

2.6.2 STAC vs Kalman Filter - Resistance to Noise

We analyzed the sensitivity of the different algorithms to the quality of

seeding parameter as well as observation noise. Typically the seeding parameters

are from manual calibration. While precise manual calibration is time-consuming,

rough eyeballing measurement is generally enough to get the algorithm to converge

to the correct local minimum.

We first synthesized smooth random robot movement traces for 500 time

steps within the nominal joint limits. Next we added various amount of Gaussian

noise to both seeding parameter and the simulated sensor readings (3d markers

and generalized potentiometers).

Then the data was fed to both STAC and EKF to evaluate how well they

tracked the joint angles and parameters over time. The seeding and observation

noise σv in EKF and in STAC were set to match the injected noise.

Note that for EKF, the initial state consists of both initial parameter and

joint angle for the first frame. We set EKF initial joint angle q0 to ground truth

as it diverges immediately otherwise. On the other hand, STAC required seeding

for both parameter and the entire joint angle trajectory. We therefore initialized

every frame to the first frame given to EKF.
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Figure 2.7: The number of diverged parameters (top row) and space-time joint

angles (bottom row) under various parameter seeding error and sensor observation

noise. The first column is the seeding parameter error for comparison.
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The performance evaluation was separated into two parts: the accuracy of

estimated parameter and space-time joint angles. Figure 2.7 plots the number of

diverged variables as gray level images. Divergence is quantified by thresholding

the distance between the estimated and ground truth variable. With regard to

estimation of sensor parameters we found that EKF’s performance is quite robust

to the presence of sensor noise but it is very sensitive to noise in the seeding

parameter values. STAC was much more robust than EKF to noise in the seeding

parameter values but slightly more sensitive than EKF when large amount of

sensor noise was present. With regard to the tracking of joint angles, STAC greatly

outperformed EKF.

2.7 Experiments with Physical Robots

We evaluated the models learned by STAC using two different robots (Diego

San and the tendon driven dexterous hand). The evaluation criteria were based on

the precision of the estimated marker positions, and the ability to fit novel data.

2.7.1 Identified Marker Position

As we saw in the previous section, STAC is quite robust to errors in the

parameter initialization. In both robots, we initialized the marker positions to the

origin of the link it is attached to. Typically, the origin of a link is on the joint

connection to its parent link. Fig.2.9(a) and Fig.2.8(a) shows the initial position.

With Diego San we used manual calibration of joint angles as seed values

while for the dexterous hand we simply initialized all the parameter to zero. After

optimization, we compared the estimated marker position to the pictures of the

robots side-by-side in Fig. 2.8(b) and Fig.2.9(b) The close correspondence again

verified that our calibration procedure worked properly.
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(a) initial pos (b) calibrated (c) ground truth

Figure 2.8: Hand robot: marker positions before/after calibration

2.7.2 Cross-Sensor Prediction on Novel Data

As ground truth parameters of to-be-calibrated robots are unknown, we

employee a training/testing data approach to evaluate model accuracy. The col-

lected traces were split into training and testing sets. First we estimated system

parameters from the training set and then use these parameter to predict values of

one type of sensor in the test set given other sensor readings. We report the mean

absolute error in Tbl. 2.1 and Tbl. 2.2. The prediction is obtained by first running

the joint optimization algorithm given the selected subset of sensors (left column),

and then use the obtained joint angles to infer the target sensor value (column

header). For example, the first column “3D-marker” reports the mean distance

between predicted and measured marker positions given individual or combination

of other redundant sensors. The values in parentheses predict the same type of

sensors, which can be seen as fitness of the model to the data.

For the hand robot (Tbl. 2.1), the movement of a joint is observed by

all three types of sensors simultaneously. In fact, it is possible to predict joint

angle given only one type of sensor. Comparing to the manual calibration done

by manufacturer, STAC reduced the error by half in all sensor types. For Diego
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(a) initial pos (b) calibrated (c) ground truth

Figure 2.9: Diego San Humanoid: marker positions before/after calibration

Table 2.1: Hand: cross sensor prediction on novel data. (MAE)

Sensor Set 3D Marker(m) Joint (rad) Tendon (m)

Joint(manual) 0.0201 0.2610 0.0022

Marker (stac) (0.0026) 0.1384 0.0014

Joint (stac) 0.0119 (0.0020) 0.0010

Tendon (stac) 0.0077 0.0895 (0.0007)

Joint+Tendon (stac) 0.0095 (0.0164) (0.0009)

Joint+Tendon+Marker (stac) (0.0023) (0.0313) (0.0009)
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Table 2.2: Humanoid: cross sensor prediction on novel data (MAE).

Sensor Set Marker(m) Joint Pot(volt) Tendon (m)

Joint+Tendon(manual) 0.0836 0.0000 0.9707

Joint+Tendon(stac) 0.0114 (0.0012) (0.0028)

Joint+Tendon (stac-σp = 0 ) 0.0199 (0.0000) (0.0035)

San (Tbl. 2.2), we performed a very coarse manual calibration for joint/tendon

potentiometer gains and biases. We did not calibrate the markers. Comparing to

manual calibration, STAC reduced marker error 7.3-fold when using joint/tendon

sensors to infer joint angles.

The last row in Tbl. 2.2 reports the performance when the parameters

are trained with the classical transparent joint-angle approach (see Sec. 2.4.2)

assuming noise free joint angle sensor (σp = 0). The performance is worse than

STAC.

2.8 Discussion

We proposed an efficient approach “STAC”, that jointly estimates sensor

parameters as well as joint angles from multiple redundant sensors. Contrary to

previous approaches, STAC can handle complex biologically inspired configurations

in which the mapping from sensors to joint angles is one to many (i.e. not a

function). This allows STAC to handle a much wider range of sensors than classical

methods, like linear length sensors linking multiple joints. With the aid of multiple

markers, our approach converges with little or no initialization. The algorithm was

evaluated on complex 38-joint humanoid robot as well as a 24-joint tendon-driven

hand – with very good results.
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Chapter 3

Semi-parametric Gaussian

Process for Robot System

Identification

Abstract : One reason why control of biomimetic robots is so difficult is the

fact that we do not have sufficiently accurate mathematical models of their system

dynamics. Recent non-parametric machine learning approaches to system iden-

tification have shown good promise, outperforming parameterized mathematical

models when applied to complex robot system identification problems. Unfortu-

nately, non-parametric methods perform poorly when applied to regions of the

state space that are not densely covered by the training dataset. This problem

becomes particularly critical as the state space grows. Parametric methods use

the available data very efficiently but, on the flip side, they only provide crude ap-

proximations to the actual system dynamics. In practice the systematic deviations

between the parametric mathematical model and its physical realization results in

control laws that do not take advantage of the compliance and complex dynamics

of the robot. Here we present an approach to robot system identification, named

Semi-Parametric Gaussian Processes (SGP), that elegantly combines the advan-

tages of parametric and non-parametric approaches. Computer simulations and a

physical implementation of an underactuated robot system identification problem

show very promising results. We also demonstrate the applicability of SGP to ar-

44
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ticulated tree-structured robots of arbitrary complexity. In all experiments, SGP

significantly outperformed previous parametric and non-parametric approaches as

well as previous methods for combining the two approaches.

3.1 Introduction

System identification has been one of the major challenges for progress in

the control of biologically inspired robots. Obtaining a good model is crucial for

finding control laws that can take advantage of the compliance and complexity of

these robots. For example, when using computed torque control with an inaccurate

model, the un-modeled dynamics are treated as noise. The results of this are stiff

control laws to deal with any un-modeled deviations from the system dynamics.

More sophisticated approaches, like differential dynamic programming or iterative

LQR [85] can take advantage of the dynamic properties of complex robots but these

approaches require accurate models of the robot dynamics. In practice, accurate

dynamical models are critical to develop control laws that are compliant, energy

efficient and safe.

There are two major approaches for system identification: parametric and

non-parametric. Parametric approaches rely on parameterized Newtonian physics

models of the robot’s dynamics. The advantage of these models is that they capture

a great deal of prior knowledge that does not need to be learned from data. For

example, we know that robots are subject to gravitational forces, viscous forces

and joint constraints. It is indeed wasteful to have to go through a laborious data-

gathering and machine learning process to discover these well known constraints.

The disadvantage of parametric models is that they are only crude idealizations

of the actual system dynamics. For traditional industrial robots these un-modeled

dynamics are often ignorable. However, for modern biologically inspired robots

these errors result in significant control inefficiencies.

Non-parametric machine learning approaches avoid the model under-spec-

ification problem by directly learning from training sample data. Two popu-

lar non-parametric approaches include Locally Weighted Projection Regression
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Figure 3.1: Comparing parametric (PR) model and non-parametric model, Gaus-

sian process (GP) on learning acceleration of a pendulum.

(LWPR) [70, 86] and Gaussian Process (GP) [56] and neural networks [73]. The

major advantage of these models is the ability to fit virtually any dynamics as

long as they are locally smooth. The predictions are then based on interpola-

tion between similar (or nearby) instances in the training data. However, since

non-parametric models rely on local neighborhood training data to make predic-

tions, they do not generalize well to unexplored state regions with little or no

training data. Covering the entire state space becomes exponentially harder as

the complexity and number of degrees of freedom in the robot increases. Thus it

appears quite desirable to combine the benefits of parametric and non-parametric

approaches. However, doing so in an efficient way is not trivial. A reasonable

approach would be to first fit a parametric model and then fit a non-parametric

model to the errors made by the parametric model. However such an approach

is not ideal: it sequentially optimizes two models, rather than jointly optimizing

them. Here we propose an approach that allows joint optimal inference with para-



47

metric and non-parametric models that efficiently uses the available data. The

approach is formalized in the framework of what we call Semi-parametric Gaus-

sian Process (SGP), a type of Gaussian process designed for optimal inference with

combinations of parametric and non-parametric models.

3.1.1 Toy Problem

Here we illustrate the properties of parametric and non-parametric ap-

proaches, with a simple toy problem. We collect data from a pendulum that

happens to have a significant friction irregularity when it reaches angles between 2

and 2.5 radians. We use a parametric model derived from the classic viscous-free

equations of motion

θ̈ = w sin(θ),

where w is an unknown parameter. Note this model encodes a great deal of in-

formation about the forces and constraints operating on the system, however it

does not know about the fact that there are some significant friction forces that

happen to be a function of θ. To test this model we collected a sample of data

and found the value of w that best fit this data. We call this approach Parametric

Regression (PR). Fig.3.1 shows that PR successfully captured the general trend

of the data. It was also able to make reasonable predictions around state regions

that had very little training data. However, as expected, PR could not capture

the irregularities due to friction in the interval between 2 and 2.5 radians. We also

tried a standard non-parametric model (GP) shown to perform well in the robotics

system identification literature. GP did a remarkably good job at capturing the

effects of state dependent friction. However it did not generalize well in regions

that had little or no training data.

Below we first review related work in semi-parametric and non-parametric

approaches for system identification. Next, we present our formalization of the

problem of optimally combining parametric and non-parametric models, in what

we call a Semi-parametric Gaussian Process. After deriving the optimal inference

(system identification) equations we study its performance on the toy problem
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presented above and in actual physical system identification problems, including a

simple reaction wheel and a 3-link robotic arm.

3.2 Related Work

Semi-parametric regression has been a popular class of methods when par-

tial knowledge is available [68]. The idea of combining Gaussian Process Regression

with a global linear model was first explored in [9] where they use a GP to model

the residual from a polynomial regression.

Gaussian Process has been used widely for system identification in robotics.

However, most work used GP as a pure non-parametric model [16, 19, 20, 56, 67],

which did not utilize the prior knowledge of the system and applied GP to learn the

function directly. Such blackbox approaches are convenient but the lack of global

model1 unavoidably leads to poor generalization performance in unseen space and

thus requires large amount of training data to cover the operational space.

Recent work [36] on modeling the dynamics of a blimp suggested using GP

to learn the residual of the parametric Newtonian differential model. Their com-

bined model achieved significant performance improvement over pure Newtonian

model, which further demonstrated the benefit of semi-parametric model. How-

ever, since their model was not linear-in-parameter. They could not benefit from

simultaneous optimization of parametric and non-parametric model. Instead, the

non-parametric model is applied after parametric identification which may result

in suboptimal model as shown in Sec. 3.4.1.

1In fact, GP probably should be classified as global model. However, due to the typical use
of local basis function (eg. radial basis function), the impact of a data point is restricted to its
neighborhood.
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3.3 Semi-parametric Gaussian Process

We define an SGP as a collection of stochastic processes indexed by u ∈ Rp

and subject to the following constraints

W = µ+R (3.1)

X(u) = f(u)W + Z(u), for all u ∈ Rp (3.2)

Y (u) = g(u)X(u) + V (u), for all u ∈ Rp (3.3)

where

• µ ∈ Rnw is the prior mean of W

• R is an nw-dimensional Gaussian random vector with zero mean and variance

matrix σw ∈ Rnw×nw .

• X(u), Y (u) take values in Rnx and Rny respectively.

• f : Rp → Rnx×nw is a matrix function of a vector.

• Z is a nx-dimensional Gaussian process with zero mean and with covariance

structure specified below.

• g : Rp → Rny×nx is a matrix function.

• V is a ny dimensional Gaussian process with zero mean and with covariance

structure specified below

We developed the SGPs specifically for system identification in robotics problems.

u represents the current state: joint angles, angular velocities and either control

signals (in forward models) or accelerations (in inverse dynamics models). f(u)

represents the prediction made by the parametric model. It is either the predicted

acceleration (in a forward model) or the torque that produced the observed accel-

eration (in an inverse model), and W represents the unknown model parameters.

Here we take advantage of the fact that the inverse dynamics models of any ar-

ticulated robots are linear-in-parameter [28, 35]. The prior knowledge about W

is modeled by a prior mean µ and a prior covariance matrix σw. Z represents
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structural deviations from the parametric model. Z is independent of R and its

structure is captured via a matrix function κ : Rp×p → Rnx×nx that controls the

covariance structure of Z,

C(Z(u), Z(ũ)) = κ(u, ũ), for u, ũ

A popular choice is the squared exponential kernel

κ(u, ũ)ij = δ(i, j)σz exp(−(u− ũ)TP−1(u− ũ)/2). (3.4)

where σz > 0 and P = diag(`21, `
2
2, . . . , `

2
p) are model parameters. X(u) represents

the fused prediction made by the parametric part of the model f(u)W and the

non-parametric part of the model Z(u). Y (u) is a vector of sensory observations.

It is assumed to be a known function of the state X(u) plus additive white sensor

noise V (u). Thus the V (u) vectors are independent of Z, R and of each other, i.e.,

for all u, ũ ∈ Rnu , the covariances are

C(V (u), V (ũ)) = δ(u, ũ) σv (3.5)

C(Z(u), V (ũ)) = 0 (3.6)

C(Z(u), R) = 0. (3.7)

3.3.1 Learning/Inference

Given a data set D = {(u[1], y[1]), · · · , (u[s], y[s])} of input-output pairs, our

goal is to make inferences about the value ofX(q) for arbitrary query points q ∈ Rp.

This can be accomplished using the standard equations for conditional Gaussian

distributions. The expected value of X(q) given the available training data is

E[X(q) | D] = E[X(q)] + k (y − E[Y ]) (3.8)

where

E[X(q)] = f(q)µ (3.9)

E[Y (u[i])] = g(u)f(u[i])µ (3.10)
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Y =


Y (u[1])

...

Y (u[s])

 , y =


y[1]

...

y[s]

 (3.11)

Next,

k = σqdσ
−1
dd (3.12)

where

σdd =


(σdd)11 (σdd)12 · · · (σdd)1s

(σdd)21 (σdd)22 · · · (σdd)2s
...

...
...

...

(σdd)s1 (σdd)s2 · · · (σdd)ss

 (3.13)

with

(σdd)ij = C[Y (u[i]), Y (u[j])] (3.14)

= g(u)C[X(u[i]), X(u[j])]g(u)T + C[V (u[i]), V (u[j])]

and

C[X(u[i]), X(u[j])] = f(u[i])σwf(u[j])T + κ(u[i], u[j]) (3.15)

σqd be defined as follows

σqd =
(

(σqd)1 (σqd)2 · · · (σqd)s

)
(3.16)

with

(σqd)j = C[X(q), Y (u[j])] (3.17)

= C[X(q), g(u[j])X(u[j]) + V (u[j])]

= C[X(q), X(u[j])]g(u[j])T (3.18)

=
(
f(q)σwf(u[j])T + κ(q, u[j])

)
g(u[j])T (3.19)

The uncertainty about the model’s prediction (its variance matrix) is given by the

following formula

V[X(q) | D] = σqq − kσddkT (3.20)
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These equations provide the optimal way to combine the prior parametric knowl-

edge about the system, the non-parametric knowledge of structural deviations from

the parametric model, and the available training data.

Since we assume the parametric model is just a rough approximation to

the actual robot dynamics we are not particularly interested on making inferences

about its parameters. Instead we want to use our knowledge and uncertainty about

the parameters as a component to make better predictions. Thus we marginalize

over the posterior distribution of W given the training data. Note however that

our beliefs about W , both the posterior mean and posterior variance have an effect

in the inference process. Automatically, as we get more data we may become more

certain about the value of W , thus, changing our inferences as we marginalize over

W . This becomes particularly important in regions with sparse training data.

3.3.2 Relationship to Gaussian Processes(GP)

A standard Gaussian process is typically defined as a collection of unidimen-

sional Gaussian random variables X(u) with zero mean and a covariance structure

defined by a kernel function, i.e.,

C(X(u), X(ũ)) = κ(u, ũ) (3.21)

This can be seen as a special type of SGP in which the parameter W is visible

and known to be zero (E[W ] = 0) with no uncertainty (V[W ] = 0), and X is

also directly visible, i.e., Y (u) = X(u). In the SGP notation this corresponds to

g(u) = Iny , the ny-dimensional identity matrix and V[V (u)] = 0 for all u ∈ I.

3.3.3 Relationship to Parametric Regression(PR)

In a standard parametric regression model X is a unidimensional variable,

nx = 1. The goal is to predict X as a linear combination of feature variables, i.e.,

X(u) = f(u)w (3.22)

and there is additive i.i.d. Gaussian noise V (u) to the observations, i.e.,

Y (u) = X(u) + V (u), (3.23)
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where V[V (u), V (ũ)] = δ(u, ũ)σv. The parameter w is typically chosen to minimize

the squared error using a dataset of f(u), Y (u) values,

ŵ = argmin
∑
i

‖Y (u[i])− f(u[i])w‖2 (3.24)

The solution takes the following form

ŵ = (
∑
i

f(u[i])Tf(u[i]) + σvI)−1(
∑
i

f(u[i])Tyi). (3.25)

Once ŵ is found, X can be estimated for new query points, i.e.,

X̂(q) = f(q)ŵ (3.26)

This can be seen as a special type of SGP in which the term Z is a constant

process, E[Z] = 0, V[Z] = 0, and both σw and the observation function g(u) are

identity matrices.

3.3.4 Hyper Parameter Selection

As in GPs, the hyper-parameters of an SGP ( σw, σv and the parameters in

kernel function κ) can be set using cross-validation methods or maximum likelihood

estimation. For the popular squared exponential kernel, the kernel parameters

include σz and `i, i = 1, 2, . . . , p. For problem with larger input dimension p,

the space of hyper-parameters can be too large for grid search in cross-validation.

Therefore, we take the maximum likelihood approach to find an (locally) optimal

set of hyper-parameters maximizing the likelihood of the training data,

log p(Y |X, f(·), g(·))

= −1

2
(g(u)f(u)E[W ]− Y (u))T (σqdσ

−1
dd σ

T
qd + σv)

−1

(g(u)f(u)E[W ]− Y (u))− 1

2
log det(σqdσ

−1
dd σ

T
qd + σv)

− n

2
log 2π.
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In practice, we put uninformative zero-mean prior over W , µ = 0, which simplifies

the likelihood to

log p(Y |X, f(·), g(·))

= −1

2
Y (u)T (σqdσ

−1
dd σ

T
qd + σv)

−1Y (u)

− 1

2
log det(σqdσ

−1
dd σ

T
qd + σv)−

n

2
log 2π.

Then, we initialize the parameter with some heuristic guess:

• σv: 1/100 of sample variance of y[i]’s.

• σz: sample variance of y[i]’s.

• `i: sample variance of u[i]’s.

• σw: some large number denoting the uninformative prior over W .

Finally, we optimize the likelihood using conjugate gradient ascent as in [63] to

find a local maximum.

3.4 Experiments

3.4.1 Toy Problem

A popular and reasonable way to combine parametric and non-parametric

approaches uses a two-step approach: first the parametric model is fit to the avail-

able data and then a non-parametric model is fit to the errors made by the para-

metric model. Fig. 3.2 shows that SGPs combine parametric and non-parametric

prior knowledge in a smarter way. The curve shows the result of the two-step

approach (PRGP) and the SGP approach on the simple pendulum task. Both

approaches perform well in the region densely populated with training data. How-

ever, in the region with sparse training data SGP achieves better prediction than

PRGP. The reason is that SGP jointly fits the global parameter W and Gaus-

sian process Z at the same time, thus allowing them to interact and complement

each other: The non-parametric part of the SGP “explains away” the irregular
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Figure 3.2: Comparing the two-stage method (PRGP) model and SGP on learn-

ing acceleration of a pendulum. Note the predictions from SGP are closer to the

desired dynamics in the region with sparse data (position [−2, 0]).
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Figure 3.3: The reaction wheel and our physical implementation.

bump, and allows for the parametric model parameter W to be less affected by

it. The result is a more accurate global model. In the two-phase approach, the

non-parametric model (GP) cannot affect the predictions made by the parametric

model, resulting in worse predictions around the regions with sparse training data.

3.4.2 Simulated Reaction Wheel

We compared SGP with PR and GP on a simulated reaction wheel problem.

A reaction wheel is a pendulum with a flywheel attached to the end of its pole

(see Figure 3.3). It has two parallel axes: the pole axis and the wheel axis. The

pole axis is un-actuated while the wheel axis has an electric motor. Both axes are

equipped with sensors which measure the angles θp and θw. The angular velocities

θ̇p, θ̇w are obtained via finite differences. The state space of the system is given by
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Figure 3.4: System identification error for simulated reaction wheel in pole-down

and pole-up testing conditions.

x = [θp, θw, θ̇p, θ̇w]T . In this case the Newtonian equation of motion is as follows

d

dt


θp

θw

θ̇p

θ̇w

 =


0 0 1 0

0 0 0 1

w1 w2 w3 w4

w5 w6 w7 w8




sin θp

θw

θ̇p

θ̇w

+


0

0

w9

w10

m, (3.27)

where w ∈ R10 is the model parameter and m ∈ R is the control (voltage to the

motor driver) applied to the flywheel. Note the dynamics are a linear function of

the parameters and therefore we can apply the SGP approach to model the forward

dynamics. The task was to predict the acceleration of both axes, y = [ d
dt
θ̇p,

d
dt
θ̇w],

given the current state x and control signal m. The performance criterion was

normalized mean square error(nMSE). The normalization was with respect to the

variance of the ground truth of target y. The goal of this experiment was to

evaluate how well PR, GP and SGP work when the parametric model provides

only a “rough” approximation to the real system dynamics. To do so, we obtained

training data from the full Newtonian model but fitted a parametric model with
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no viscous friction. Thus the training data came from a model with 10 parameters

but the parametric model only had 6 parameters,i.e., W ∈ R6. The feature matrix

of the parametric model looked as follows:

f(x,m) =

[
sin(θp) θw m 0 0 0

0 0 0 sin(θp) θw m

]
(3.28)

We used a squared exponential kernel with independent length-scale hyper-

parameter in each dimension. Since the sensors directly observe the angles of

the axes, we have the g(x) be an identity matrix. All the hyper-parameters were

optimized by maximum marginal likelihood.

The training traces were obtained by controlling the reaction wheel with a

mix of sinusoids signal of random frequencies for 1000 time steps at 100Hz. Due

to the fact that this is an under-actuated problem, the distribution of θp in the

training data was heavily biased toward the pole-down position. For testing, two

different groups of data were collected:

• pole-down: traces collected in the same manner as training data.

• pole-up: traces collected while the pole was balanced by an LQR controller

at the upward position. Note since there was noise in the simulated dynamics,

the reaction wheel randomly wondered around the balancing point rather

than being static.

The purpose of the two test sets was to simulate queries in regions of dense and

sparse training data. The simulation was repeated 5 times and the average was

reported. Figure 3.4 shows the performance of parametric regression (PR), Gaus-

sian Processes (GP) and Semi-parametric Gaussian Processes (SGP). Note in the

pole down position, which has a high density of training data, GP and SGP out-

performed PR. This shows that in this region better predictions could be made by

interpolation between local training data. However in the pole up position, where

there were sparse training data, the parametric model did much better and the

non-parametric model (GP) did quite poorly. SGP learned to rely on the para-

metric model in this case for the pole acceleration, and on training data for the

fly-wheel acceleration thus outperforming the GP and the PR approaches.
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Figure 3.5: The predicted (color-narrowband) versus actual (gray-wideband) ac-

celerations of the wheel axis in the pole-up condition of simulated reaction wheel.

In some cases, SGP performed surprisingly better than both GP and PR.

For example, for the wheel axis in the pole-up condition, SGP achieved almost

perfect prediction while PR and GP performed much worse (Fig. 3.4(b)). We plot

the traces for this specific condition in Fig. 3.5. Note the high accuracy of the SGP

method when compared to he other two. The predicted acceleration of the other

two method is either too small in magnitude (PR) or biased (GP).

3.4.3 Physical Reaction Wheel

The data collection procedure was the same as in the simulated reaction

wheel problem. Except that for the parametric model we used the full 10 parameter

Newtonian model in (3.27). The hope was that the non-parametric model could

capture the dynamics not modeled by the best known Newtonian model for our

problem.

Figure 3.6 plots the performance the three methods. Overall, the trend

resembles what we observed in the simulation. In the pole-down testing condition

where there were dense training data, SGP and GP outperformed PR. In the pole-
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Figure 3.6: System identification error for physical reaction wheel in pole-down

and pole-up testing conditions.

up condition with sparse training data PR and SGP beat GP. In all cases SGP

was the leading method.

Figure 3.7 shows some traces of pole-axis acceleration predicted by vari-

ous models. First we examine the pole-down condition (left column): parametric

model, PR, predicted very smooth curve but missed those small spikes. Some of

these spikes might be state dependent noise that could be captured by the Gaus-

sian Process in GP and SGP model. Indeed, both model captured some of the

spikes. But overall, SGP predicted the data better.

As for the pole-up condition (right column), since the state space was

quite distant from the training data collected in the pole-down condition, the

non-parametric component contributes little to the final prediction. In this par-

ticular case, GP predicted basically a flat-line (the zero-mean prior of GP), which

happened to be a good guess for pole-up balancing data. The prediction of SGP

was dominated by its parametric model as the prediction followed PR closely.
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Figure 3.8: The simulated 3-link robot used in the experiment. The figure-eight

horizontal (blue-solid) and vertical (red-dash) trajectories are also plotted.

3.4.4 Multi-Link Robot Arm

Next we experimented on learning the inverse dynamics model of a multi-

link robot arm as a demonstration of the applicability of SGP to arbitrary tree-

linked robot structure. The configuration of our simulated 3-link arm is shown in

Fig. 3.8. The goal was to learn the dynamic model on the horizontal (blue-solid)

figure-eight curve and then tested on vertical (red-dashed) one. In this way, we

could compare how different algorithms fitted the training data and generalized to

unseen curve. Although we experimented with a 3-link arm for simplicity, SGP

scales to as many degree-of-freedom open-chain robot as GP scales.
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For data collection, we drove the robot along these two figure-eight curves

with a simple proportional controller. Meanwhile, we recorded the trace

{θi, θ̇i, θ̈i, τi}i=1:t, where θi, θ̇i, θ̈i, τi ∈ R3. In the process, artificial state dependent

noise was injected by increasing the friction when joint 3 (the last joint that con-

nects the end-effector) approached its joint limits. Such noise in real-life may be

caused by cables between the links.

An inverse dynamics model predicts the required joint torque τ given the

current joint angle θ, joint angular velocity θ̇, and the desired angular accelera-

tion θ̈. The inverse dynamics of an articulated open-chain tree structured is the

following:

τ = −M(θ)θ̈ − C(θ, θ̇)θ̇ + τ ν + τ c + τ g, (3.29)

where M is the inertia matrix, C is Coriolis and centripetal forces matrix, τ v = θ̇ην

is the viscosity, τ c = sign[θ̇]ηc is the Coulomb friction and τ g is the gravitational

force.

To apply the regression algorithms, (3.29) can be written into in linear-in-

parameter form [1,28,35],

τ = f(θ, θ̇, θ̈)w, (3.30)

where w ∈ R3 is the dynamics parameters to be identified, including mass, center-

of-mass, inertia tensor for each link and viscosity/Coulomb parameters (ην , ηc) for

each joint. Fig. 3.9 compares the prediction error of the three algorithms. In the

left panel, all three model performed very well for the first two joints when tested

on the data in the neighborhood of training data. However, for joint 3, due to

the additional un-modeled noise, LR failed badly and GP also performed worse

than SGP. Further inspection suggested that GP did not fit the discontinuities

caused by friction very well. The optimal length-scale parameter li selected by

maximum likelihood was too large to fit the discontinuities. In comparison, the

parametric model in SGP had absorbed these discontinuities which resulted in a

better fit. Similar discontinuity fitting problem was also discovered in [15]. On the

right panel, PR generalized to new vertical trajectory quite well, closely followed
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by SGP. GP failed badly in this case as the testing data were quite distant from

the training data.

3.5 Discussion

In all the experiments, we found that SGP performs comparable or better

than the standard parametric (PR) and non-parametric (GP) approaches.

In the real world experiment, the non-parametric model (GP) performed

substantially better than the parametric model (PR) when dense training data

was available. This suggests that there were state dependent dynamics that the

parametric Newtonian model could not pick up. SGP performed best in data rich

and data poor conditions but the difference was not as large in the real world

experiment as in the computer simulation.

3.5.1 Knowing that You Don’t Know

Knowing how confident a model should be of its own predictions is very

important for designing optimal control policies [20]. One major problem for para-

metric models is that they tend to be overly-confident when making predictions

about regions with sparse training data. In addition to making better overall pre-

dictions, SGP also appeared to had a better sense of its own uncertainty. Figure

3.10 plots the predictions made by the different models (means and confidence

intervals) for the angular acceleration of the pole in the simulated reaction wheel

experiment. For better visualization, we show the model predictions for different

values of the pole’s angle θp with the other 4 input variables (θw, θ̇w, θ̇p,m) set to

zero. After training with data clustered around θp = π, the pole-down position,

all the models become more confident about the trained region. Although PR and

SGP make similar predictions in the region distant from the training data, PR is

overly-confident about these predictions. This could prove dangerous when mak-

ing long term planning. Interestingly GP is also overconfident but for a different

reason: it produces confidence intervals that do not cover the correct values. In

this case the problem is due to the fact that the expected values of the posterior
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distribution are too far off from the true values. SGP shows an interesting non-

uniform shrinkage of the confidence interval as pointed out by the arrows. These

points are close to the region of training data in the space spanned by the basis

induced by the parametric model f .

3.6 Conclusions

We presented a principled approach, named Semi-Parametric Gaussian Pro-

cesses, to combine parametric and non-parametric models in robot dynamics sys-

tem identification problems. The method applies to articulated robots of arbitrary

complexity as long as they can be expressed in tree-like structure. SGP flexi-

bly fuses the prior knowledge available in Newtonian parametric models and the

knowledge about local structure provided by non-parametric models. We showed

computer simulations and physical implementation results that suggested SGPs

capture the desirable properties of parametric and non-parametric models, both

in terms of the accuracy of their predictions and the knowledge about their own

uncertainty. One property that distinguishes SGPs from pure non-parametric ap-

proaches is the ability to make rough but useful generalizations over unexplored

state regions. This may prove particularly important for solving underactuated

robotics problems. In these problems it is difficult to develop a controller that

explores, and thus provides training data about target regions of the state space.

Without such training data it is difficult to train non-parametric models that could

be used to develop effective controllers. The parametric component of SGP pro-

vides the ability to generalize to unseen regions of the state space. This knowledge

while coarse, can prove useful to develop controllers that gather more data to train

the fine-grain non-parametric component of the SGP.
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Chapter 4

Modeling and Identification of

Pneumatic Actuators

Abstract: Pneumatic actuators are mechanically simple and robust, have

good energetic properties due to air compressibility, and are relatively cheap. De-

spite these advantages they are difficult to control – pressure dynamics have typi-

cal timescales on the order of 100ms, and this delay can severely cripple simplistic

control approaches. The solution is to use a model-based controller with a good

model of the pressure dynamics. Here we present a general parametric model of

these dynamics based on both a theoretical analysis and an empirical study with

a humanoid robot.

4.1 Introduction and Related Work

Pneumatic actuators are attractive for several reasons. They are naturally

back-drivable, have low friction, tunable compliance and are very robust. They

have a high strength-to-weight ratio – for example a typical cylinder of 5 cm

diameter weighing ∼100 grams, running at a standard 85 psi (=590 kPa) above

room pressure, produces 1160 Newtons or 260 pounds of force. Furthermore, the

mechanical simplicity of pneumatics makes them inexpensive.

The central disadvantage or complication, is that they are much slower than

electric motors or hydraulics, with dynamic timescales on the order of ∼100ms. In

69
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order to properly control a pneumatic system, a good model of these dynamics is

required. Models of such systems can in general be classified as physical or para-

metric models. Physical models are constructed from first principles and attempt

to conform as closely as possible to the underlying physical system. Parametric

models are functions with unknown constants which are found using a curve-fitting

procedure. While both types of models can have good predictive properties, the

design objectives are different. The physical model attempts to accurately capture

all the physical properties, regardless of how important they are for prediction. The

design of a parametric model, while focusing on predictive power, must also take

into account secondary objectives, like ensuring good convergence and eliminating

local minima in the parameter space.

Previous work has focused either on precise physical models of pneumatic

systems [10] [30] [31], or on linearized parametric models [59]. In this paper,

we first develop a physical model from first principles, and then use this model

to guide the design of a non-linear parametric model. The work most closely

related to ours is [62], where quadratic polynomials are used as a basis for the non-

linear parameterization. Rather than general polynomials, we use specially crafted

functions, chosen to conform to the predictions of the initial physical model. This

paper is a natural continuation of our earlier work in [84].

4.2 Physical Pneumatics model

4.2.1 Ports, Valves and Chambers

A pneumatic cylinder is a device with two chambers separated by a sliding

bore. The air pressure in each chamber is controlled by valve which can connect the

chamber to one of two ports : the supply port connects the chamber to a compressor

and the exhaust port connects the chamber to room pressure. In some setups a

single valve with two output ports is connected to both chambers of a cylinder,

allowing high pressure in either chamber, but not both. We chose the setup shown

in Figure 4.1, where the chamber pressures can be controlled independently – to

allow for the stiffness that results from high pressure on both sides. Another design
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roomcompressor roomcompressor

Figure 4.1: Pneumatic cylinder. Schematics of a cylinder with two valves, one

for each chamber. Each valve has two ports, one connected to room pressure Pr

and the other to the compressor Pc.

choice was to use proportional valves rather than binary valves with a Pulse Width

Modulation scheme. Proportional valves offer fine-grained control of the port size,

and are also less noisy than a PWM setup. The details of our particular setup are

further discussed in Section 4.5, but the theoretical analysis should apply equally

well to other configurations.

Port model

Upstream
Chamber

Flow

Downstream
Chamber

Pu Pd

Figure 4.2: Thin-plate port.

The port model describes the movement of fluid that occurs when connect-

ing two chambers (upstream and downstream) of different pressure via a small
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orifice (Figure 4.2). Key assumptions are that the area of the port is small, that

the plate separating the chambers is thin, that the fluid is a perfect gas, that the

temperatures in the two chambers are equal, and that the flow is isotropic. Un-

der these assumptions the mass flow ṁ is the product of the orifice area a and a

function φ(pu, pd) of the upstream and downstream pressures:

ṁ = a · φ(pu, pd) (4.1a)

φ(·, ·) is called the thin-plate flow function [60].

φ(pu, pd) =

z(pu, pd) if pu ≥ pd

−z(pd, pu) if pu < pd

(4.1b)

z(pu, pd) =


α pu

√(
pd
pu

) 2
κ −

(
pd
pu

)κ+1
κ

for pu/pd ≤ θ

βpu for pu/pd > θ

(4.1c)

The physical constants κ, α, β and θ are described in the Appendix. Figure 4.3

shows the air-flow ṁ as a function of the pressure in one of the chambers while

the other chamber is at room pressure, for several orifice diameters. The function

is continuously differentiable. When the upstream pressure is larger than θ times

the downstream pressure, the flow becomes linear in the upstream pressure and

independent of the downstream pressure.

Two-port Chamber

The total flow of fluid mass into a chamber with 2 ports is the difference of

the flows:

ṁ(p, ac, ar) = acφ(Pc, p)− arφ(p, Pr) (4.2)

where ac, ar are the orifice areas connecting the chamber to the compressor and

room respectively, and Pc, Pr are the respective constant pressures. Figure 4.4

shows this function to be monotonically decreasing, which corresponds to stable
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dynamics which converge to a steady-state pressure pss given by acφ(Pc, pss) =

arφ(pss, Pr).

Valve model

A valve is a mechanism for controlling the orifice areas of the ports. Figure

4.5 illustrates a proportional valve. For an input voltage u, a moving part called

the spool assumes a position which is linear in u, and partially or fully obstructs

the ports. As the spool moves over the port the effective area of the port will

smoothly transition from a constant (very small) area when blocked, to a linearly

increasing area when unblocked. The precise form of the transition depends on the

relative shape of the port and the spool. We chose to model it with the function
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smax(x) = (
√
x2 + 1 + x)/2, which is a smooth approximation to max(x, 0).

ac(u) = Lc + smax((u− Uc)B − Lc) (4.3a)

ar(u) = Lr + smax((Ur − u)B − Lr) (4.3b)

here Lc, Lr are the respective minimal areas of the compressor and room port

orifices, corresponding to leakage when the ports are sealed. Uc, Ur are the voltage

values at which the respective ports are sealed and B is the coefficient which

translates from voltage to area. Different relative sizes of the spool and the ports

will lead to different partial obstructions at mid-voltage, as shown in Figure 4.6.

Chamber Model

We can now write the pressure dynamics of a single chamber:

ṗ(p, u, v, v̇) = κ
RT

v
ṁ− κ v̇

v
p (4.4a)

ṁ(p, u) = ac(u)φ(Pc, p)− ar(u)φ(p, Pr) (4.4b)
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chamber

roomcompressor

spool

Figure 4.5: Schematics of a proportional valve. A movable part called the

spool (black) moves to block or unblock the ports. Left: exhaust port open, supply

port closed. Center: exhaust and supply partially open. Right: exhaust closed,

supply open.

where v is the volume of the chamber, v̇ is the rate of change of that volume and

κ,R and T are physical constants (see Appendix). The first term in the pressure

dynamics equation (4.4a) is due to the flow from the valve, while the second one

is due to compression from the piston.

Independence from the Mechanics

Given the volume v and its derivative v̇, the pressure dynamics are inde-

pendent from the mechanical dynamics. Similarly, given the pressure difference

between the two chambers, the force is known, and the mechanical system is in-

dependent of the pressure dynamics. Because the cylinders are rigidly attached to

the limbs, v is a deterministic function of the joint angles q. Since barometers for

measuring p are cheap and accurate, as are potentiometers for measuring q, we

assume that both are indeed measured, and safely ignore the mechanics.

4.3 Parametric Model Design

The general parametric form of the pressure dynamics is

ṗ = f(p, u, v, v̇; c), (4.5)
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Figure 4.6: Valve model. We plot Eq. (4.3): Areas of the compressor port

ac and the room port ar as a function of the voltage u applied to the valve. The

different line-styles correspond to different choices of the parameters. The axes are

scaled to the valves we use, see Section 4.5.

where c is a vector of parameters to be fit to data measured from a real pneumatic

system. In principle, equations (4.1,4.3,4.4), constitute exactly such a model, but

this model cannot be applied to a real system in its current form, for two reasons.

First, it contains parameters which are very difficult to measure or fit, e.g.

the constants B,Uc, Lc, Ur, Lr in the valve equation (4.3). These constants depend

on the precise internal geometric alignment of the spool and the ports. The three

line-styles in Figure 4.6 correspond to “educated guesses” of these constants.

Second, though air dynamics are notorious for their slowness, they can also

be extremely fast. Consider the vertical scale of Figures (4.3,4.4); it is ∼104 cm3/s.

The chamber of a fully retracted cylinder can easily have a volume of ∼0.1 cm3,

leading to a pressure change on a timescale of 10 microseconds. In practice the

lower bound on the timescale is determined by the valve dynamics, but these are

usually quite fast, on the order of ∼10 ms for proportional valves and much faster

for switching valves. This means that in order to integrate (w.r.t time), we

would need either a very small timestep or a variable-timestep integrator. This
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could be computationally expensive and would complicate differentiation (w.r.t

state), which is often required for model-based control.

The model we want is cheap to compute and to differentiate, easy to inte-

grate, and has parameters that can be fit reliably, using a simple procedure. The

parametric form which satisfies all of these design requirements is

ṗ =
(
s(u, v, v̇; c)− p

)
· r(u, v, v̇; c). (4.6)

The function s() has units of pressure and describes the steady-state pressure of

the system; the function r() > 0 has units of inverse time and describes the total

change rate in the system. The central advantage of (4.6) over (4.5) is its linearity

with respect to p. Assuming fixed values for s and r over a small time-step h, we

can integrate (4.6) analytically:

p(t+ h) = s+
(
p(t)− s

)
e−r·h (4.7)

This integration scheme is stable for any time-step, and is easily differentiable if

s() and r() are differentiable.

Although we do not use the physical model (4.1,4.3,4.4) directly in our final

identification scheme, we will use it to instruct our design of the parametric model

(4.6) and its constituent functions s(), r().

4.3.1 Steady-State Pressure

The steady-state pressure function s() can be directly predicted from the

physical model. Assuming a constant volume v, we eliminate the second term of

(4.4a) and numerically solve for the steady-state solution ṁ(p) = 0. Figure 4.7

shows the numerical roots of (4.4a) for different values of u. The effective function

pss(u) shown in the figure serves two purposes:

First, it shows us the required shape of the function s(u, ·, ·; c). It is a

sigmoid with a flat kink at the origin. This flat region corresponds to the spool

fully obstructing both ports. In this case the only flow is the leakage modeled by

Lc, Lr in (4.3), which is independent of the precise position of the spool. We used

the quadratic sigmoid

g(x) = x/
√
x2 + 1, (4.8)
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Figure 4.7: Predicted steady-state pressure. pss(u): implicit solutions of

ṁ = 0. The three line-styles correspond to the three choices of valve model

constants used in Figure 4.6. See Figure 4.10 for the same curves measured on

the real system.

and enabled the flat kink by adding a cubic term to the argument of the sigmoid

(see below).

Second, it represents a theoretical prediction for the following simple ex-

periment. By locking the cylinders in place we can fix the volume v; changing the

command voltage u very slowly, so that the pressure is effectively at equilibrium,

ṁ vanishes and the measured pressure at the chamber should correspond to the

plot in the figure.

4.3.2 Rate

The dependence of the rate function on the voltage r(u, ·, ·; c) roughly cor-

responds to the total port area ac(u) + ar(u), because ṁ is linear in both ac and
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ar. We therefore use the function
√
x2 + 1 = smax(x) + smax(−x)

k(x; a, b, c) =
√
x2 + a2 − a+ b+ c · x, (4.9)

The parameters a, b, c correspond to the size of the smooth area near the origin,

a vertical shift of the whole function, and a tilt of the entire function around the

origin, respectively. a is related to the sealed regime of the valve, see below. The

bias b is required to model the leakage terms Lc, Lr. The tilt c models asymmetries

between the two ports.

4.3.3 Volume Dependence

Comparing (4.6) and (4.4a), we see that the volume v enters linearly in the

denominator, and can therefore be confined to the denominator of r(). The volume

velocity v̇ multiplies p and linearly “drives” the ratio r/s, so it cannot be confined

to one, but must appear in both r() and s().

4.4 The Proposed Model

Unlike the physical model where every term carries explicit units, the para-

metric model includes the necessary scaling and bias terms, which are found au-

tomatically by the fitting procedure. This means that sensors do not need to be

calibrated independently. For example if the volume v is measured with a linear

potentiometer on the piston (whose extension is linear with the volume), there is

no need to explicitly convert to units of cm3. Similarly, the output voltage of the

pressure sensor need not be calibrated into physical units and can remain in sensor

units.

Putting the pieces together, our model has 9 free parameters c =

(c1, c2, ...c9) per valve-chamber system which must be determined. Additionally

cb and cs are the bias and the gain of the steady-state pressure sigmoid and are

computed explicitly as cb = (Pc +Pr)/2 and cs = (Pc−Pr)/2. One parameter (cγ)

is chosen heuristically (see below). Written in sequential form, the model is given
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by (4.8),(4.9),(4.10):

û = u− c1 (4.10a)

ḡ = g(c2û+ c3û
3) (4.10b)

s = cb + csḡ + c4v̇ (4.10c)

k̄ = k(û, cγ, c9, c8) (4.10d)

r =
c7k̄ + c5v̇

1 + c6v
(4.10e)

ṗ(p, u, v, v̇; c) = (s− p)× r (4.10f)

More compactly, for û = u− c1 it is

ṗ =

(
cb + cs

c2û+ c3û
3√

(c2û+ c3û3)2 + 1
+ c4v̇ − p

)
×

c7

(√
û2 + cγ2 − cγ + c9 + c8 · û

)
1 + c6v

+
c5v̇p

1 + c6v
. (4.11)

Some of these parameters have physical interpretations that can lead to

explicit constraints in the parameter space, see Table 4.1. For example the “kink

factor” c3 must be larger than -1 to maintain the monotonicity of s(u).

The parameter cγ gives the range of voltage around u = c1 for which the

ports are “almost” sealed, i.e. when the leakage flow is not small relative to the

total flow. In terms of Eq. (4.3) this corresponds to Ur < u < Uc. Because cγ = 0

creates a non-differentiable point, it is important that it remain positive, yet at

cγ = 0 the derivative ∂k/∂cγ also vanishes, which leads to a bad local minimum

for the fitting procedure. For these reasons we set it globally to cγ = 0.1V .

The constant 1 in the denominator of (4.10e) is required to collapse the

multiplicative invariance of (c5, c6, c7), while still allowing all 3 degrees of freedom.

It can also be understood as the bias of the volume sensor, in units of volume

sensor bias.
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Table 4.1: Interpretation of model parameters

parameter interpretation comments

c1 valve-voltage origin, (Uc + Ur)/2 2 < c1 < 8

c2 valve-voltage scale, B

c3 kink factor −1 < c3

c4 ∂s/∂v̇

c5 ∂r/∂v̇

c6 volume-sensor scale

c7 B of Eq. (4.3)

c8 rate asymmetry −1 < c8 < 1

c9 leakage, (Lc + Lr)/2 0 < c9

cb pressure-sensor bias = (Pc + Pr)/2

cs pressure-sensor scale = (Pc − Pr)/2

cγ voltage range of leaky regime see below

4.5 Experiment

We identified the humanoid robot shown in Figure 4.8, made by Kokoro in

Japan. It has 44 pneumatically-actuated dofs; 6 of them are in the hands which

were removed for the purposes of this paper, so here we are controlling only 38 dofs.

Our long-term goal is to be able to make this humanoid perform various life-like

movements using model based control. Before attempting such a challenging task,

however, we need to identify the pneumatic system. Initial test were performed

and reported in [84], where we experimented with a 2-dof arm made by the same

manufacturer using the same components.

Each joint is driven by either a linear or a rotary pneumatic cylinder. The

drive is direct, without any gears, belts or cables (except for a couple of joints in the
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humanoid). This makes the system both more compliant and more robust – indeed

the robot has been hitting its joint limits at high speeds during the identification

tests, without any damage. Each cylinder has two chambers fitted with solid-

state pressure sensors. Each chamber is connected to a proportional valve, which

can be open towards the compressor (at 90 psi) or towards the room (where the

atmospheric pressure is 14.7 psi) or it can be sealed (up to small leakage). The

joint angles are measured by potentiometers. The humanoid has 114 sensors and

76 controls.

Figure 4.8: Left: Pneumatic humanoid robot. Right: Valve and spool.

In the classic setup the compressor is connected to 1, the chambers of a single

piston are connected to 4 and 2, and 5 and 3 are respective exhaust ports. We

connect a single chamber to 4 with an exhaust at 5, and plug ports 2 and 3.

We use the MPYE proportional directional control valves by festo. The

valves take a command voltage 0 < u < 10 Volts, but we used 3 < u < 7 Volts
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to avoid hitting the limits inside the valve. These valves are of the so called

“5/3” type, which are usually connected to both chambers of a cylinder, and can

alternatively conduct the compressor pressure either to one chamber or to the

other, but not to both. We are interested in exploiting the stiffness control that

is made possible by pressurizing both chambers, so chose to connect two valves to

each cylinder, one to each chamber. In order to apply our model to the standard

setup, the control voltage data for the single valve would simply be duplicated,

and each chamber identified separately.

We use National Instruments I/O boards. The valves have 100Hz band-

width, thus the control loop runs at 100Hz. The pressure sensors and potentiome-

ters are analog devices that can be sampled at arbitrary rates. We are sampling all

sensors at 20KHz and average every 200 samples, for a 100Hz sensorimotor loop.

Such averaging is beneficial because the sensor noise is essentially white. The soft-

ware system consists of the NIDAQmx drivers and a C function which reads the

driver buffers, returns averaged sensor data, and sets the desired valve voltages.

Data analysis was done in matlab.

4.5.1 Flow

We measured the steady-state flow rate as a function of voltage for the

two ports in the standard setup for a single valve using a festo SFAB-200U flow

sensor, see Figure 4.9. Since these are proportional to port area it can be seen

that our valve model in (Figure 4.6) captures the principal features of the area

function.

4.5.2 Steady-State Pressure

We performed the experiment described in Section 4.3.1, and measured

the chamber pressure for a locked cylinder, while changing the command voltage

u very slowly, to measure the steady-state pressure function s(). We performed

this measurement for all 78 valve-chamber pairs (Figure 4.10), and noted that

the resulting curves compared favorably to the solutions predicted by the physical
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Figure 4.9: Measured valve flow. Compare to Figure 4.6.

model (Figure 4.7).

4.5.3 Identification

We fit the parameters c1...9 using standard nonlinear least-squares on mea-

sured data. We recorded 100s (105 data points) of controlled movement during

which the robot was flailing its limbs (see video attachment). These movements

were controlled by a simple PID controller w.r.t the potentiometer reading, and

were designed to explore the state-space as violently as possible, without hitting

any joint limits so strongly that the robot would break. For each of the 76 valve-

chamber systems, the data consisted of the voltage ut, chamber pressure pt, and

joint-potentiometer reading vt (which are proportional to the volume). The latter

were finite-differenced to obtain joint velocities v̇t. Rather than fit ṗ directly, we

used the integration formula (4.7) and fit the pressure at the next timestep.

c∗ = argmin
c

∑
t

(pt+h − p̂t+h(pt, ut, vt, v̇t; c))2

where p̂t+1 is the value predicted by (4.7). The values of c were constrained by

the limits in Table 4.1. In our tests the optimization always converged to the
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same minimum, from different initial conditions. We have no formal guarantee of

convexity, but we had never encountered bad local minima with this parameter-

ization. It is worth noting that the particular functional form we use here is the

result of a long test process, where many other functional forms were tried, which

often mis-converged to bad minima. The empirically good convergence properties

of our model, though difficult to quantify, are one of its strongest features.

Figure 4.11 shows an overlay of the predicted and measured change in pres-

sure for a single valve-chamber system. Clearly the main features of the pressure

derivative function are captured by the model, but a simple overlay does not prop-

erly quantify the quality of the fit.

4.5.4 Multi-step Prediction

Our end goal is to use this model for model-based predictive control. Since

we do not yet have a a full kinematic and dynamic model of our robot, we can

do the next-best thing, which is to test how good the prediction is for a multistep

horizon. In this scenario we have a measurement of the current pressure pt, and a

planned sequence of command voltages ut...T . Given a prediction of the joint angles

qt...T (and therefore of future chamber volumes and velocities vt...T , v̇t...T ), we can

recursively integrate the pressure dynamics. Of course future joint angles depend

on the chamber pressures, so this prediction would be performed simultaneously

for p and q. Here however, we can simply take the measured values of u, v, v̇, while

integrating p using

p̂0 = p0

p̂t+h = p̂t+h(p̂t, ut, vt, v̇t; c).

Thus, the predicted pressure p̂t is allowed to diverge from the measured pressure

pt. Figure 4.12 shows this divergence for the same valve-chamber system of Figure

4.11. p̂t was initialized with pt at the dotted grid lines and integrated thereafter.

Surprisingly, almost no drift was detected.

Figure 4.13 shows the results of the same test performed for all 76 valve-

chamber systems. Starting from 48 time points in each dataset, we integrated the
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pressure prediction for 2 seconds. We plot the standard deviation of the prediction

error as a function of time for each valve separately, and for all 3648 = 76 × 48

integration sequences. Note that the vertical axis is scaled by (Pc − Pr)/10, so

the expected drift of the predicted pressure is less than %10 of the difference

between chamber and room pressure, and usually less than %4. We attribute the

surprising lack of drift both to the quality of the fit and to the parameterization

(4.5), which correctly captures the dynamical convergence to a set-point exhibited

by the pressure.

4.6 Conclusion

In this paper we presented a 9-parameter model for the pneumatic valve-

actuator system, given by (4.10). The model is based both on theoretical consider-

ations and on empirical quality of fit. The quality of the model was demonstrated

both by comparing steady-state measurements (Compare Figure 4.7 to 4.10 and

Figure 4.6 to 4.9) and by comparing measurements of the dynamical model (Fig-

ures 4.11,4.12,4.13). In the near future we will use this model to do optimal control

on our pneumatic humanoid robot.

4.7 Appendix

The physical constants in Eq. (4.1) are given by:

α = C

√
2M

Z R T

κ

κ− 1
(4.12)

β = C

√
κM

Z R T

(
2

κ+ 1

)κ+1
κ−1

(4.13)

θ =

(
κ+ 1

2

) κ
κ−1

(4.14)

M,Z,R, T, κ, C are defined in Table 4.2.
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Table 4.2: Parameters and units of the thin-plate port model.

Gas Molecular Mass M 0.029 for air, Kg/mol

Temperature T K◦

Universal Gas Constant R 8.31 (Pa ·m3)/(mol K◦)

Discharge coefficient C 0.72, dimensionless

Compressibility Factor Z 0.99 for air, dimensionless

Specific Heat Ratio κ 1.4 for air, dimensionless

Mass Flow ṁ Kg/s

Pressure p Pascals

Area a m2
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The bottom figure shows the same data at higher temporal resolution.
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Learning in Humanoid Robots

and Humans
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Chapter 5

Learning to Make Facial

Expressions

Abstract :

This chapter explores the process of self-guided learning of realistic facial

expression production by a robotic head with 31 degrees of freedom. Facial motor

parameters were learned using feedback from real-time facial expression recognition

from video. The experiments show that the mapping of servos to expressions was

learned in under one-hour of training time. We discuss how our work may help

illuminate the computational study of how infants learn to make facial expressions.

5.1 Introduction

The human face is a very complex system, with more than 44 muscles whose

activation can be combined in non-trivial ways to produce thousands of different

facial expressions. As android heads approximate the level of complexity of the

human face, scientists and engineers face a difficult control problem, not unlike the

problem faced by infants: how to send messages to the different actuators so as to

produce interpretable expressions.

Others have explored the possibility of robots learning to control their bod-

ies through exploration. Olsson, Nehaniv, and Polani [58] proposed a method to

learn robot body configurations using vision and touch sensory feedback during

93
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random limbs movements. The algorithm worked well on the AIBO robots. How-

ever, AIBO has only 20 degrees of freedom and is subject to well known rigid body

physics. Here we utilize an android head (Hanson Robotics’ Einstein Head) that

has 31 degrees of freedom and non-rigid dynamics that map servo actuators to

facial expressions in non trivial ways. In practice, setting up the robot expressions

requires many hours of trial-and error work from people with high level of exper-

tise. In addition as time progresses some servos may fail or work differently thus

requiring constant recalibration of the expressions.

One possible way to avoid the need for costly human intervention is to

develop algorithms that would allow robots to learn to make facial expressions

on their own. In developmental psychology, it is believed that infants learn to

control their body through systematic exploratory movements [66]. For example,

they babble to learn to speak and wave their arms in what appear to be a random

manner as they learn to control their body and reach for objects. This process

may involve temporal contingency feedback from proprioceptive system and from

the sensory system that registers the consequences of body movements on the

external physical and social world [49]. Here we apply this same idea to the

problem of a robot learning to make realistic facial expressions: The robot uses

“expression-babbling” to progressively learn an inverse kinematics model of its own

face. The model maps the relationship between proprioceptive feedback from the

face and the control signals to 31 servo motors that caused that feedback. Since

the Einstein robot head does not have touch and stretch sensors, we simulated

the proprioceptive feedback using computer vision methods: An automatic facial

expression analyzer [5] was used that estimated, frame by frame, underlying human

facial muscle activation from the observed facial images produced by the android

head. Once the inverse kinematics model is learned the robot can generate new

control signals to produce desired facial expressions. The proposed mechanism is

not unlike the body-babbling approach hypothesized by [48] as a precursor for the

development of imitation in infants.
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(a) The FACS Action Units (AUs) (b) The A-E facial intensities defined in

FACS.

Figure 5.1: A face can be FACS-coded into a set of numbered AUs (each number

is a facial muscle group) along with letter-grades denoting intensity.

Copyright c©2002 Paul Ekman. Reprinted with permission.

5.2 Methods

5.2.1 Robotic Head

The robot head, “Einstein”, was developed by Hanson Robotics. The face

skin is made of a material called Frubber, that deforms in a skin-like manner

contributing to the realism of the robot expressions. The head is actuated by 31

servo motors, 27 of them controlling the expressions of the face and 4 controlling

the neck. Figure 5.4 presents a side-by-side comparison between the location of

servos in the robot head and human facial muscles. While the robot is able to

simulate the actions of all major muscle groups in the face and neck, there are

some important differences in the way the human muscles and the robot servo

motors actuate the face. In contrast to human muscles, these servos can both

pull and push loads and thus each motor can potentially simulate the action of

2 individually controlled muscle groups. Moreover in humans orbicular muscles,

like the Orbicularis oculi and the Orbicularis oris produce circular contractions

whereas the robot servos produce linear contractions that are coupled via circular

tendons.
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Figure 5.2: A close-up of actions units defined in FACS.

5.2.2 Facial Action Coding System

Paul Ekman [23] developed the Facial Action Coding System (FACS) as

comprehensive language to code facial expressions in terms of atomic muscle move-

ments, named facial action units (AUs). Figure 5.2 shows some major AUs. Given

a face image along with the neutral face of the same person, a certified FACS

coder can code the face (Figure 5.1a) in terms of active with a set of activating

AUs along with their intensity measured in 5 discrete levels (Figure 5.1b) based

on the appearance change on the face. These active AU can be seen as estimates

of the underlying muscle activation that caused the observed expressions.

In recent years the computer vision community has made significant

progress on the problem of automating FACS coding from video. Cohn’s group

at CMU [79] developed a system based on the use of active appearance model

that tracks 65 fiducial points on the face. AUs are recognized based on the rel-

ative position of the tracked points. Our group at UCSD has been pursuing an

alternative approach, called CERT (short for Computer Expression Recognition

Toolbox, see Figure 5.3), to directly recognize expressions from appearance-based
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Figure 5.3: Software framework of computer expression recognition toolkit

(CERT)

filters rather than from relative locations of fiducial points [5]. First the region

of the face is automatically segmented. The obtained image patch is then passed

through a bank of Gabor filters that decompose it into different spatial frequencies

and orientations. Feature selection methods, like Adaboost, are used to select the

more relevant filters. Finally, support vector machines (SVM) are used to classify

the existence of AUs given the extracted features.

In this paper, we use CERT as a way to simulate the proprioceptive system

of the human face: As the robot moved its facial servo motors CERT provided

feedback about which AUs were active. AUs approximately correspond to indi-

vidual face muscles, thus practically providing a proprioceptive (though visually

guided) system to the robot.

5.2.3 Learning: Random Movements and Feedback

The expression recognition software, CERT, can be seen as a non-linear

function F that takes a given image I and then outputs a vector F (I) ∈ Rm of

detected intensities of m AUs. Let S be the collection of servos used in the exper-

iment. We denote j-th random configuration encountered during motor babbling

as sj ∈ R|S|, and the corresponding face images as Isj . Further, let n denote the

number of random movements collected.

In order to produce a given expression, Einstein must learn an inverse kine-
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(a) (Upper face) muscular

anatomy∗

(b) Facial action units asso-

ciated with facial muscles∗

(c) Servo layout on the

robotic face

Figure 5.4: A comparison between human (a) facial muscles, (b) FACS AUs , and

(c) robotic servo layouts on Einstein. Copyright c©2002 Paul Ekman. Reprinted

with permission.
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matics model that maps desired proprioceptive signals to servo motor activations

that can generate the desired proprioceptions. In this document we use a linear

inverse kinematics model. For each servo i we train a linear regression model to

minimize the following objective function:

min
ci,bi

n∑
j=1

||(F (Isj)
Tci + bi)− (sj)i||2, (5.1)

where bi is a constant bias term. Thus the problem of learning the inverse kine-

matics model of the face reduces to a linear least squares problem with respect to

the parameters (ci, bi) ∈ Rm+1.

Once the model parameters are learned, we can use the model to generate

new servo movements {s′i}, i ∈ S for any desired AU configurations a according to

the linear mapping

s′i = aTci + bi. (5.2)

Efficient analytical and iterative solutions exists for this problem. Thus the

advantage of using linear models is that they are simple, fast, and easy to train.

The obvious disadvantage is that if underlying mapping between servo actuations

and expressions is not linear, the model will not work well. It was thus unclear

whether the proposed approach would work in practice.

5.3 Experiments

The real-time expression recognition was done using CERT version 4.4.1

running on a Dual Core Intel Based Mac Mini. The CERT software recognizes 12

AUs (see Figure 5.5 for a list). The output of CERT is a real-valued vector for each

video frame indicating the estimated intensity of each facial action. The output is

roughly base-lined at zero, with outputs above zero indicating the AU was present.

However, the actual baseline of neutral expression is subject dependent. Therefore,

we collect the baseline for Einstein aN , which will be used in expression synthesis

stage.

Communication with the ROBOT hardware was handled using RUBIOS2.0

a Java based open source communications API for Social Robots [40]. RUBIOS
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Figure 5.5: The learned connections between the AUs and servos learned in our

experiment.

Figure 5.6: Asymmetric random facial movements.

2.0 is built on top of QuickServer, an open source Java library for multi-threaded,

multi-client TCP server applications.

5.3.1 Learning

In order to collect data for learning a mapping between facial expressions

and servo movements, Einstein generated a series of random servo movements (see

Figure 5.6). The position of each servo was sampled uniformly and independently

from the safe operation range of each servo. This phase can be seen as the “body-

babbling” that allows learning a kinematic model of the face.

We excluded the servos for directing the eye gaze (servo 11, 13, 30), the

jaw (servo 0), and the neck (servo 14, 15, 28, 31) since they were not related

to the elementary facial muscle movements currently recognized by CERT. Two
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Table 5.1: correlation coefficient how well AU input predicts servo movements.

face region training testing

upper 0.7868 0.7237

lower 0.5657 0.4968

additional servos, 1 and 19, were also disabled after discovering that, when random

motor babbling caused pulling in opposition to servos 4 and 1, servo burnout

resulted. We are currently developing a mechanism for the robot to automatically

sense the energy spent by the servos and therefore to automatically avoid harmful

servo configurations, possibly by adding a fatigue term that simulates the limited

capacity of human facial muscles to contract for long periods of time. Such a

change might also lead to more realistic learned strategies for facial expression

synthesis.

We collected 500 instances of perception-production pairs. Each instance

consists of the configuration of the servos and the outputs of the 12 facial action

unit detectors produced by CERT. Since CERT estimates activations of individual

facial muscles, here CERT could be seen as playing the role of a human proprio-

ceptive system, informing which facial muscles are activated at every point in time.

The 500 instances were then used to train the linear regression model. The results

are shown in Table 5.1. We observed very good performance for expressions in

the upper face region and moderate performance for the lower face. We suspect

that this may be due to the facial hair on the robot (mustache) that probably

reduced the accuracy of the feedback provided by CERT. However it is also possi-

ble that the underlying mapping between servos and expressions, is less linear for

expressions in the lower face. We are currently investigating which of these two

explanations is more consistent with the data.

Figure 5.5 displays the mapping between AU and servo control signals

learned by the model. The values are normalized by the dynamic range of AU

intensity and servo movements. In each row, the figure shows the set of servos re-

lated to the generation the AU, with dark shading indicating strong involvement.
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For example, servo 6 and 23 plays the major roles in demonstrating AU2, while

servos 9, 17 and 25 also provides minor contribution. On the other hand, each

column shows which AUs predict or explain the servo movement the best. For

example, the movement of servo 6 is mainly explained by AU17 (chin raise, Figure

5.2).

5.3.2 Action Unit Synthesis

Coding of human facial action units best done in relation to a neutral face.

Here we face a similar issue in that we have to account for the Einstein’s neutral

expression and use it as baseline to synthesize other action unit configurations. Let

the baseline AU intensities of Einstein’s neutral face be denoted by aN = F (IN)

where IN is the neutral expression face of Einstein when all the servos are relaxed.

Then, the synthesized AU i intensities were set to a′ = aN +ei, where ei is a vector

of zeros with the exception that the i-th element to be one. Finally, we generated

the corresponding servo movements by s′i = a′Tci + bi.

Figure 5.7 shows examples of some of the synthesized AUs. We put the

neutral expression in (a) for reference. (b) is the synthesized AU1 expression

(inner eyebrow raise). For comparison, we also put the neutral and AU1 expression

demonstrated by a human in (c) and (d). Figure (e)-(h) gives more examples on

AU2, AU4, AU5 and AU9.

5.4 Discussion

While Hanson Robotics made an effort to explicitly map each servo to in-

dividual action units in the Facial Action Coding System, we observed that the

model learned to activate multiple servos to produce each AU. Subjectively the

AUs learned by the model, which synthesized multiple servos, appeared more re-

alistic than the equivalent AUs originally shipped with the robot that had been

set by hand. For example, AU4 (eyebrow narrowing) is recognizable by changes in

appearance that occur mainly at the midpoint between the two eyebrows. In hu-

mans the muscles that contribute to the appearance of AU4 are the left corrugator
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(a) Neutral (b) AU1: Inner

Brow Raise

(c) Human

Neutral∗

(d) Human AU1:

Inner Brow

Raise∗

(e) AU2: Outer

Brow Raise

(f) AU4: Brow

Lower

(g) AU5: Eye

Widen

(h) AU9: Nose

Wrinkle

Figure 5.7: Action units learned by Einstein

Copyright c©2002 Paul Ekman. Reprinted with permission.
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and right corrugator. If servos are tuned by hand, a heuristic assignment will be

moving inner eyebrow servos 7 and 24. Our model learned this obvious connection

clearly. However, as stated in FACS manual [24], the appearance change of AU4

“push the eye cover fold downwards and may narrow the eye aperture.” Our model

also learned to close the upper eyelid (servo 22) a bit to narrow the eye aperture.

Similar phenomena were also found in the lower face. AU 17 “chin raise” is rec-

ognizable by the bulging around the chin region (see Figure 5.2). While the robot

does not have any servos in that region of the face, the model learned to produce

the appearance of bulging using 3 lip servos (servos 10,16 27).

During the experiment, one of the servos burned out due to misconfigura-

tion. We therefore ran the experiment without that servo. We discovered that the

model learned to automatically compensate for the missing servo by activating a

combination of nearby servos.

Another interesting observation is that the robot learned to produce sym-

metric servo movements. This is likely due to the fact that the database of images

of facial expressions that was used to develop the CERT software had predomi-

nately symmetric expressions.

5.4.1 Developmental Implications

The primary goal of this work was to solve an engineering problem: How to

approximate the appearance of human facial muscle movements with the available

motors. Nevertheless this work also speaks to learning and development of facial

expressions in humans. It is not fully understood how humans develop control of

their facial muscles to produce the complex repertoire of facial expressions used in

daily social interaction. Some aspects of facial behavior appears to be learned, and

other aspects appear to be innate. For example, cross-cultural data [22] suggests

that some basic expressions, such as smiles, are shared universally among all the

peoples in the world, leading scientists to hypothesize that they are innate. More-

over, congenitally blind individuals show similar expressions of basic emotions in

the appropriate contexts, despite never having seem them [46], and even show brow

raises to emphasize speech [14].
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There are two distinct brain systems that control the facial muscles [65]:

a sub-cortical system that is responsible for affect driven expressions and a cor-

tical system that is responsible for voluntary expressions. During development

children learn to control voluntarily their own expressions. This transition from

felt to voluntary control of the face is clear to many parents when their children

start producing smile with a distinctly different morphology to that of spontaneous

smiles when they are posing to a camera. The mechanism proposed here would

explain how cortical systems can learn to control the face in a voluntary manner.

The sub-cortical system, for example, can spontaneously produce expressions of

emotion (e.g., smiles) that result on memorable proprioceptive traces. Body bab-

bling can be used to develop an inverse model of the face and then reproduce, in

a voluntary manner, the proprioceptive traces experienced during felt expressions

of emotions.

Our experiment demonstrates that complex facial expressions may be

learned through feedback of the type made available by CERT through the frame-

work shown in Figure 5.8a. One possibility is that CERT was basically serving

the role of a proprioceptive system (Figure 5.8b). As such the fact that CERT

happens to use visual input is incidental. Similar feedback to that produced by

CERT could have been obtained using proprioceptive sensors rather than visual

sensors. Another possibility is that people can actually encode the expressions

observed by others in a manner that mimics the function of CERT (Figure 5.8c).

There is empirical evidence that during social interaction people tend to mimic

the facial expressions of their interlocutors [21], which implies that humans have

the capability to visually encode facial expressions and map them onto their own

muscle movements. This behavior could effectively serve as a mirror that would

provide information about the effects of one’s own muscle movements onto the

external appearance of facial expressions. Blind children appear to have problems

masking expressions of negative emotions [27], indicating that seeing others may

be important for gaining voluntary control of facial expressions .

We are currently experimenting with an active learning mechanism to al-

low the robot to actively choose muscle movements, “facial babbling,” so as to
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Figure 5.8: The proposed framework of learning to demonstrate facial expression

on Einstein(a) and human(b)(c).
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optimize learning efficiency. Instead of making random movements, the brain may

move the face in more efficient ways to quickly reduce the uncertainly of the internal

expression-to-muscle model. Such active exploration may employ information max-

imization similar to models of human exploratory behavior in eye-movements [13].

Note that while the current system learned atomic expressions of emo-

tions, as defined in FACS, holistic expressions of emotions such as expressions of

happiness, sadness, anger, surprise, and disgust are, in principle, combination of

individual action units. We are currently investigating whether the expressions

learned this way are also currently investigating the mechanisms for learning holis-

tic expressions of emotion,
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Chapter 6

DNA for Optimal Control

Abstract : We introduce Diffusion Network Adaptation (DNA), a framework

for finding approximate solutions to continuous time, continuous state, continuous

action optimal control problems. We present two reinforcement learning algorithms

developed under this framework, one model based and the other model free. We

test the algorithms in computer simulations and in a complex pneumatic humanoid

robot that had to learn how to kick a ball. The algorithms are mathematically

elegant, easy to use, and achieve state of the art performance. The DNA framework

provides interesting links to recent reinforcement learning algorithms and helps

explain why these algorithms work well in conditions that violate the assumptions

under which they were originally developed.

6.1 Introduction

A wide range of models in physics [29], finance [8], psychology [52, 64],

robotics [12, 38], computer animation [42], computational neuroscience [81], and

artificial neural networks [54] are controlled diffusion networks of the following

form [33,51,57]

dXt = µ̄(t,Xt, Ut)dt+ σ(Xt)dBt (6.1)

where Xt is an n dimensional vector representing the state of the network, µ̄(·),
called the drift, represents the deterministic part of the system dynamics, Ut is a

108
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control signal that can be used to modulate the system dynamics, Bt is a Brownian

noise process, and σ(Xt), called the dispersion matrix, determines how the Brow-

nian noise affects the system dynamics. In robotics Xt typically represents joint

angles and angular velocities, Ut represents torques, and σ(Xt) represents uncer-

tainty in the robot dynamics. In finance Xt may represent the value of a portfolio,

Ut the investments made on different assets, and σ(Xt) the market volatility. In

psychology the states Xt may represent activation of internal representations and

the control signals represent external stimuli. In recurrent neural networks the

states Xt represent some potentials, and the control signals represent afferent in-

put currents.

The term “diffusion network” refers to the fact that these networks can be

seen as a set of interconnected nodes in which probability diffuses according to

the standard Fokker-Plank equations of fluid dynamics [33, 51, 57]. The machine

learning literature contains an unsupervised learning algorithm for training diffu-

sion networks to generate probability distributions of continuous paths [50,53–55].

Here we show that this algorithm provides a powerful framework for solving con-

tinuous optimal control problems. We refer to this framework as DNA (Diffusion

Network Adaptation). Here we present two reinforcement learning algorithms de-

veloped under this framework, the first model based and the second model free.

The algorithms are mathematically elegant, easy to use, and achieve state of the

art performance. The DNA framework provides interesting links to recent rein-

forcement learning algorithms and helps explain why these algorithms work well

in conditions that violate the assumptions under which they were originally devel-

oped.

6.2 Statement of The Problem

Our goal is to control a diffusion network using parameterized policies of

the form Ut = f(t, θ,Xt), where θ ∈ Rp is the policy’s parameter vector. For

convenience we will refer to θ as the policy. For each policy θ we let Xθ represent

the corresponding diffusion process. Since the control signal Ut is a function of Xθ
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and θ, we can redefine the system dynamics as follows

dXθ
t = µ(t, θ,Xθ

t )dt+ σ(Xθ
t )dBt (6.2)

where

µ(t, θ, xt) = µ̄(xt, f(t, θ, xt)), for x ∈ Rn (6.3)

This representation links nicely with the artificial neural network literature, where

the parameter θ typically represents the synaptic weights between point neurons

[54]. For generality we let the initial state probability density p(x0 | θ) be part of

the policy.

6.2.1 Mathematical Preliminaries

The mathematics of discrete time processes do not always apply to contin-

uous diffusion processes, thus care must be taken to use the appropriate tools from

stochastic calculus. In particular, the sample paths generated by diffusion networks

are continuous, non differentiable, and have finite quadratic variation [33, 51, 57].

More importantly these paths do not have the standard Lebesgue probability den-

sities used for discrete time processes. Instead when working with diffusion we

define a reference process Y that induces a reference probability measure (the sub-

stitute for the Lebesgue measure used in discrete time systems). We then formulate

path densities with respect to this reference. Here we use the zero-drift version of

Xθ as the reference process

dYt = σ(Yt)dBt (6.4)

We let py(y0) represent the initial state distribution of the reference process. Let

L(θ, x) be the relative density of the n-dimensional continuous path x in the interval

[0, T ]. Thus L(θ, x) is the Radon-Nykodim derivative [33,51,57] of the probability

measure induced by the processXθ with respect to the probability measure induced

by the reference process Y . In practice this means that expected values of functions

of paths from Xθ can be computed using expected values of functions of reference
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paths Y , i.e.

E
[
h(Xθ)

]
= E

[
L(θ, Y )h(Y )

]
(6.5)

A key theorem from stochastic calculus, called Girsanov’s theorem [33,51,57] tells

us that

L(θ, x) =
p(x0 | θ)
py(x0)

exp
{∫ T

0

µ′(θ, xt)k(xt)dxt −
1

2

∫ T

0

µ′(θ, xt)k(xt)µ(θ, xt)dt
}

(6.6)

where

k(xt) = (σ(xt)σ(xt)
′)−1 (6.7)

6.3 Unsupervised Learning of Path Distribu-

tions (Imitation Learning)

In unsupervised learning problems a system is exposed to a probability

distribution of real valued vectors and adjusts its policy to approximate the ob-

served distribution. In the robotics literature, this is sometimes known as imitation

learning. I our case a diffusion network is exposed to a probability distribution

of continuous n-dimensional paths, and the goal is to find a policy that approxi-

mates the observed path distribution as best as possible. Here we will utilize the

approach first derived in [50, 53–55]. We let Z represent the observed processes

whose distribution we want to approximate. We let the value of policy θ decrease

with the KL divergence between the distribution of observed paths Z and the dis-

tribution of Xθ. We also let the value increase a term log q(θ) that favors a priori

some policies over others

v(θ) = −E
[

log
Λ(Z)

L(θ, Z)

]
+ log q(θ) (6.8)

where Λ is the Radon-Nykodim derivative of the observed process Z with respect

to the reference process Y and

E
[

log
Λ(Z)

L(θ, Z)

]
(6.9)
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is the continuous path version of the KL divergence between the observed process

Z and the diffusion network process Xθ. Taking gradients

∇θv(θ) = E
[
F (θ, Z)

]
+∇θ log q(θ) (6.10)

where F (θ, x) is the continuous time version of the Fisher score with respect to θ,

i.e,

F (θ, x) = ∇θ logL(θ, x) (6.11)

= ∇θ log p(x0 | θ) +

∫ T

0

∇θµ(t, θ, xt)k(xt)
(
dxt − µ(θ, xt)dt

)
(6.12)

6.3.1 Application to Robotics

For Newtonian problems, including articulated robots, the drift function

takes the following form

µ(t, θ, xt) = a(xt) + b(xt)f(t, θ, xt) (6.13)

where xt is a vector with the joint angles and joint angle velocities, b(xt) is the

inverse of the robot’s inertial matrix, and a(xt) contains terms due to friction,

gravitational, inertial, and Coriolis forces. Thus in this case

∇θµ(t, θ, xt) =
(
∇θf(t, θ, xt)

)
b′(xt) (6.14)

and

F (θ, x) = ∇θ logL(θ, x) =

∫ T

0

(
∇θft(θ, xt)

)
b′(xt)k(xt)

(
dxt − µ(θ, xt)dt

)
(6.15)

Let the prior term be of the form −θ′qθ/2, where q is a positive definite matrix.

Let φ(xt) be an n × p matrix of features of the state xt. For policies of the form

ut = φ(xt)θ, the Fisher score takes the following form

F (θ, x) =

∫ T

0

φ′(xt)b
′(xt)k(xt)

(
dxt − a(xt)dt− b(xt)φ(xt)θdt

)
(6.16)



113

Thus

∇θv(θ) = E
[ ∫ T

0

φ′(Zt)b
′(Zt)k(Zt)

(
dZt − a(Zt)dt− b(xt)φ(Zt)θdt

)]
− qθ

= E
[ ∫ T

0

φ′(Zt)b
′(Zt)k(Zt)

(
dZt − a(Zt)dt

)]
− (q + E

[ ∫ T

0

φ′(Zt)b
′(Zt)k(Zt)b(Zt)φ(Zt)dt

]
)θ (6.17)

Setting the gradient equal to zero and solving gives us an analytical solution for

the optimal policy

θ∗ =
(
q + E

[ ∫ T

0

φ′(Zt)b(Zt)
′k(Zt)b(Zt)φ(Zt)dt

])−1
(6.18)

E
[ ∫ T

0

φ′(Zt)b
′(Zt)k(Zt)

(
dZt − a(Zt)dt

)]
(6.19)

6.4 Optimal Control/Reinforcement Learning

In optimal control and reinforcement learning problems our goal is to find

a policy that maximizes an expected reward. Let R(θ, x) be a non-negative scalar

function that represent the reward accumulated by the n-dimensional continuous

path x in the interval [0, T ]. Let v(θ) be the value achieved by policy θ, i.e., the

expected reward achieved by process Xθ

v(θ) = E
[
R(θ,Xθ)

]
(6.20)

One popular way to solve this problems is to take the gradient of the value function

with respect to θ and use it as the basis for a gradient-based optimization of v.

This is known in the literature as policy gradient. Here we adopt the iterative EM

approach first proposed in [18] for discrete time problems: Instead of optimizing v

directly, we optimize an auxiliary function Q. Improvements in Q are guaranteed

to result on improvements of v. For completeness here we briefly present the

continuous time version of the approach. Let κ be a fixed policy. We want to find
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a new policy θ∗ with better value than κ. Let θ be a candidate policy. Note

log
v(θ)

v(κ)
= log

E
[
R(θ,Xθ)

]
E
[
R(κ,Xκ)

]
= log

E
[
R(θ,Xκ)L(θ,Xκ)/L(κ,Xκ)

]
E
[
R(κ,Xκ)

]
= log E

[ R(θ,Xκ)

E
[
R(κ,Xκ)

] L(θ,Xκ)

L(κ,Xκ)

]
(6.21)

We decompose the reward R(θ, x) as the product of two non-negative scalar func-

tions, q(θ) and q(θ). The first one represents the a priori desirability of policy θ

and the second represents the desirability of a path x. For example, q(θ) can be

used to favor policies that utilize less energy, and g(x) could be used to favor paths

that achieve a specific goal

R(θ, x) = q(θ)g(x) (6.22)

then

log E
[ R(θ,Xκ)

E
[
R(κ,Xκ)

] L(θ,Xκ)

L(κ,Xκ)

]
= log E

[ q(θ)g(Xκ)

E
[
q(κ)g(Xκ)

] L(θ,Xκ)

L(κ,Xκ)

]
= log E

[ g(Xκ)

E
[
g(Xκ)

] q(θ)L(θ,Xκ)

q(κ)L(κ,Xκ)

]
(6.23)

Using Jensen’s inequality

log E
[ g(Xκ)

E
[
g(Xκ)

] q(θ)L(θ,Xκ)

q(κ)L(κ,Xκ)

]
≥ E

[ g(Xκ)

E
[
g(Xκ)

] log
q(θ)L(θ,Xκ)

q(κ)L(κ,Xκ)

]
= Q(κ, θ)−Q(κ, κ) (6.24)

where for any two policies κ,θ, the Q function is defined as follows

Q(κ, θ) = E
[ g(Xκ)

E
[
g(Xκ)

] log
(
L(θ,Xκ)

)]
+ log q(θ) (6.25)
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Thus

log v(θ)− log v(κ) ≥ Q(κ, θ)−Q(κ, κ) (6.26)

It follows that if we find a value of θ such that

Q(κ, θ) > Q(κ, κ) (6.27)

then

v(θ) > v(κ) (6.28)

Thus rather than optimizing v(θ) we can iteratively optimize Q(κ, θ). We start

with a initial policy κ and find a new policy θ for which Q(κ, θ) > Q(κ, κ). We

then let κ be the new policy and optimize again Q(κ, θ) with respect to θ. We

iterate this procedure until convergence. The approach guarantees that after each

iteration we will obtain a policy with better value than the previous one. Thus,

we guaranteed convergence to a local maximum of the value function. Here we

will optimize Q(κ, θ) with respect to θ by finding analytical solutions that set the

gradient of Q with respect to θ equal to zero.

6.5 Model Based DNA

Taking the gradient of Q(κ, θ) with respect to θ

∇θQ(κ, θ) = ∇θ log q(θ) + E
[ g(Xκ)

E
[
g(Xκ)

]F (θ,Xκ)
]

(6.29)

Note

E
[ g(Xκ)

E
[
g(Xκ)

]F (θ,Xκ)
]

= E
[ g(S)

E
[
g(S)

]W (S)F (θ, S)
]

= E
[
F (θ, S)

]
(6.30)

Where S is a process such that the Radon-Nykodim derivative of Xκ with respect

to S is as follows

W (x) =
E
[
g(Xκ)

]
g(Xκ)

(6.31)
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One way to get unbiased estimates of expected values with respect to S is to sample

from Xκ and to weight the samples times g(Xκ). Note

∇θQ(κ, θ) = E
[
F (θ, S)

]
+∇θ log q(θ) (6.32)

is the equation for solving the unsupervised learning problem we studied before.

In other words by maximizing Q(κ, θ) with respect to θ we are implicitly trying to

approximate a distribution similar to that produced by Xκ but with each path x

weighted by its value g(x).

6.5.1 Application to Robotics

As in the unsupervised learning case, for policies linear on the parameters

we can find the optimal value of θ analytically

θ∗ =
(
q + E

[ ∫ T

0

φ′(St)b(St)k(St)b(St)φ(St)dt
])−1

E
[ ∫ T

0

φ′(St)b
′(St)k(St)

(
dSt − a(St)dt

)]
(6.33)

Once we found θ∗ we let κ = θ∗ and iterate again until convergence.

6.6 Model Free DNA

In the previous algorithm the Fisher score requires knowledge of the system

dynamics. For example, in (6.33) we need to know the a, b functions. This includes

the robot’s inertial matrix, gravitational forces, friction forces etc. In some cases

system identification methods may be used to develop an approximate model.

However this approach becomes difficult when contact forces are involved, and

unravels when the robot dynamics include interaction with people. Here we show

that a model free version of the DNA algorithm can be developed in a straight-

forward manner. To do so we expand the network state vector X to include the

state of the original diffusion network process O that we wish to control (e.g., a

robot) and an auxiliary hidden random process H that determines the policy used

to control O, i.e. Xt = (Ot, Ht)
′. We let µo, σo represent the drift and dispersion of
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the original diffusion network, po its initial state distribution, and Bo the Brownian

motion that drives the uncertainty of the original network. Thus

dOθ
t = µo(t,H

θ
t , O

θ
t )dt+ σo(O

θ
t )dBo,t (6.34)

Note that Hθ
t represents what we used to call θ, i.e, Hθ

t determines the policy used

at time t to control the original network O. Under this formulation we let the policy

that controls O change with time. The dynamics of the policy Ht are determined

by its initial state distribution ph, its own drift function µh and dispersion processes

σh. We let the policy dynamics and its initial state distribution ph be a function

of a set of hyperparameters θ, i.e.,

dHθ
t = µh(t, θ,H

θ
t )dt+ σh(H

θ
t )dBh,t (6.35)

with initial distribution ph(h0 | θ). The combined system X = (O,H) is governed

by the standard diffusion network equations, and thus we can apply to it the DNA

framework

dXθ
t = µ(t, θ,Xθ

t )dt+ σ(Xt)dBt (6.36)

with

Xθ
t =

 Oθ
t

Hθ
t

 , µ(t, θ, x) =

 µo(t, ht, ot)

µh(t, θ, ht)

 , Bt =

 Bo,t

Bh,t

 (6.37)

σ(xt) =

 σo(ot) 0

0 σh(ht)

 , p(o0, h0 | θ) = po(o0)ph(h0 | θ) (6.38)

where x = (o, h) is an arbitrary path. Note now the path x combines a path o

of the original network states (e.g., the robot angles and angular velocities) and a

path h of policy parameters. The Fisher score with respect to θ takes the usual

form

F (θ, x) = ∇θ logL(θ, x) (6.39)

= ∇θ log p(x0 | θ) +

∫ T

0

∇θµ(t, θ, xt)k(xt)
(
dxt − µ(θ, xt)dt

)
(6.40)
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Most importantly, since ∇θµo(t, ht, ot) = 0 the Fisher score no longer depends on

the dynamics of the original network

F (θ, x) = ∇θ log p(x | θ) +

∫ T

0

∇θµh(t, θ, ht)(σ
′
h(ht)σh(ht))

−1
(
dht − µh(t, θ, ht)dt

)
(6.41)

Note the policy dynamics µh, σh are chosen by us, and the dynamics of the original

network are no longer needed to computer the Fisher score. Below we show an

example.

Example: We choose the policy parameter h0 from a Gaussian distribution with

mean vector θ1 and inverse covariance matrix θ2. We then let that policy evolve

in a manner that is not dependent on θ, e.g

dHt = αtdt+ βt(H0 −Ht)dt+ σh(Ht)dBh,t (6.42)

where αt, βt are fixed functions of time. In this case the Fisher score with respect

to θ1 is as follows

F1(θ, x) = ∇θ1 logL(θ, x) = ∇θ1 log p(h0 | θ) = θ2(h0 − θ1) (6.43)

and the Fisher score with respect to θ2 takes the following form

F2(θ, x) = ∇θ2 logL(θ, x) =
1

2
θ−12 −

1

2
(h0 − θ1)(h0 − θ1)T (6.44)

Thus the gradient of the Q(κ, θ) function with respect to θ1 looks as follows

∇θ1Q(κ, θ) = E
[ g(Xκ)

E
[
g(Xκ)

]F1(θ,X
κ)
]

(6.45)

= θ2E
[ g(Xκ)

E
[
g(Xκ)

](Hκ
0 − θ1

)]
(6.46)

Setting the gradient to zero and solving for θ1 we get

θ∗1 =
E
[
g(Xκ)Hκ

0

]
E
[
g(Xκ)

] (6.47)
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The gradient of the Q(κ, θ) function with respect to θ2 looks as follows

∇θ1Q(κ, θ) = E
[ g(Xκ)

E
[
g(Xκ)

]F2(θ,X
κ)
]

(6.48)

=
1

2
θ−12 −

1

2
E
[ g(Xκ)

E
[
g(Xκ)

](Hκ
0 − θ1)(Hκ

0 − θ1)T
]

(6.49)

Setting the gradient to zero and solving for θ1 we get

(θ∗2)
−1 =

E
[
g(Xκ)(Hκ

0 − θ∗1)(Hκ
0 − θ∗1)T

]
E
[
g(Xκ)

] (6.50)

At the end of the iteration we let κ = θ∗ and find a new θ∗ using equations (6.47)

and (6.50). We keep iterating until convergence is achieved.

6.7 Prior Work

The original work on unsupervised diffusion network adaptation was first

presented in [55] and later extended in [50, 53, 54]. The discrete time version of

the EM approach to reinforcement learning was first presented in [18]. A similar

approach was adopted by the POWER algorithm [37], one of the most successful

reinforcement learning approaches to robot control to date. The DNA framework

is also related to path integral (PI) approaches to reinforcement learning. The PI

framework and the DNA framework are designed for continuous time systems and

make full use of the powerful machinery of stochastic calculus. However PI does

not adopt the EM approach and instead uses the continuous time HJB optimality

equation. In doing so it makes assumptions about the structure of the system

dynamics that are not needed in DNA. The PI framework was greatly refined in [12]

for applications to model free robot control. This resulted on the PI2 algorithm,

which is considered comparable in performance to the POWER algorithm. In

recent years researchers have made a number of changes to PI2 that, while not

theoretically motivated, have been shown to improve performance. This changes

include the use of non-Brownian motion on the policy parameters [77], and the

application of blind optimization methods, like Covariance Matrix Adaptation [75].

These variations can be theoretically grounded within the DNA framework.
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Figure 6.1: Left: Double Slit Diffusion Task. Right: Learning Curves for the Via

Point Task

6.8 Simulations and Experiment with Humanoid

Robot

Figure 6.1 Left shows an illustration of imitation learning. The task was

to control a point mass to move between to chambers connected by two slits. The

controller observed two paths, shown in red in the figure, that take the point mass

from the left side chamber to the right side chamber. The features for the control

policy were radial basis functions. The actions are force vectors that can vary as

a function of time, position, and velocity. The figure shows the observed path

distribution (red) and the distribution of paths learned by the robot in one single

trial (blue).

We then compared the model-free DNA algorithm to the PI2 algorithm [12]

on a standard reinforcement learning problem. The task was to control a point

mass on a 2D space to move it in 1 second from an initial location to a target

location via a intermediate location, while minimizing the total control cost. The

control policy was parameterized using dynamic motor primitives [12]. Figure

6.1 Right compares the convergence speed of DNA and PI2. We did not observe

significant difference in performance between the two algorithms despite the fact

that DNA is much simpler to implement than PI2.

We then conducted a real world experiment on a robot named Diego-San,
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Figure 6.2: Humanoid robot soccer kicking experiment

one of the most complex humanoids built to date. It has 94 degrees of freedom that

control 38 body joints (each joint has a pair of agnostic and antagonistic pneumatic

actuators) and 18 facial muscles. The robot was designed to simulate the control

properties of a human infant body. In general it is very difficult to control using

standard robot control approaches due to the compliance, and elasticity provided

by the pneumatic actuators. The task was to kick a ball as high as possible with

all the actuators on the legs. Diego-San’s trunk was fixed to a harness to simulate

a similar study performed with human infants. The reward signal was the height

of the ball, provided in real time by the cameras in Diego-Sans’ eye sockets. The

control policy was parameterized using dynamic motor primitives [12]. Figure

6.2(a) shows the field of view. In one condition we positioned the ball close to the

left foot and in the other condition we positioned the ball equidistant from his feet.

Diego-San had to learn which of the actuators had an effect on the ball height, and

to synchronize them in a manner that maximized the impact of the kick. When

the ball was positioned close to the left foot it took Diego-San 60 trials, a total of

3 minutes, to learn to kick the ball efficiently. He did so by swinging his left leg

and keeping his right leg stationary(Fig. 6.2(b)). When the ball was positioned

equidistant between the legs, Diego-San learned in about the same time a strategy

that we had not anticipated and that turned out to better than kicking: he held

the ball with his feet and moved it upwards (Fig. 6.2(c)).
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Chapter 7

Collecting A Developmental

Dataset of Reaching Behaviors:

First Steps.

Abstract: At birth infants are faced with the difficult task of learning to

control their bodies to interact with the physical and social world around them.

From a motor control point of view the problem infants face is monumental, due

to the high number of degrees of freedom, high compliance, and low-repeatability

provided by the human musculoskeletal system. In fact the complexity of the

control tasks that infants solve so effortlessly far outstrips the abilities of the most

sophisticated approaches to motor control and artificial intelligence. Observing

how infants develop such motor skills as they interact with objects and caregivers

may provide insights for new approaches to robotics. One obstacle for progress

in this area is the lack of datasets that simultaneously capture the motion of

multiple limbs of infants and caregivers across the developmental process. Here

we present our first steps towards the collection of one such datasets, focused on

the development of reaching behaviors. We describe the technical and logistic

problems we faced so far and the solutions we found. We also show preliminary

analyses that illustrate how the collected data suggests new approaches to motor

control in robotics, and to theories of motor development in infants.
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7.1 Introduction

The sensory-motor systems of the brain generate movements that are com-

pliant and non-repeatable, yet remarkably well-adapted to an unstructured, uncer-

tain and non-stationary world. Contrary to this, the fields of robotics and motor

control has for the most part focused on simplifying the control problem by us-

ing stiff, highly geared actuators, emphasizing repeatability over compliance, and

avoiding unstructured conditions. This approach worked well for industrial appli-

cations and revolutionized the assembly line. However, in order to develop robotic

technology that could transform daily life, it is important to focus on robots that

approximate the control properties of the human body. The problem is that due

to the complexity, compliance, non-repeatability, and temporal dynamics of the

human body, most of the control schemes used in current practice become inap-

plicable.

Infants face the very difficult task of learning to control their bodies to in-

teract efficiently with the physical and social world around them. From a motor

control point of view this problem is formidable, due to the high number of degrees

of freedom, high compliance, and low-repeatability provided by the human mus-

culoskeletal system. The solution to this problem eludes the most sophisticated

approaches to robotics and artificial intelligence. Yet infants solve this problem

seamlessly within a few years of life. Understanding how this is done and re-

producing this process in robots may have profound scientific and technological

consequences. One obstacle for progress in this line of work is the lack of datasets

that jointly capture the joint development of infant and caregiver body motions

at high temporal and spatial resolution. Such datasets may provide the key to

reverse engineer human motor development and to synthesize it in new human-

mimetic control algorithms for robots. Another obstacle for progress is the lack of

robot systems that approximate the complexity, compliance and control dynamics

of the human body. Based on these motivating ideas, we have been pursuing a

project whose goal is to gain a computational understanding of how infants learn

to control their bodies. One component of this project focuses on the development

of a sophisticated humanoid robot named Diego San (see Fig.7.1), that approxi-
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Figure 7.1: Diego: a humanoid robot that approximates human body complexity

and dynamics.
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mates the complexity, compliance and control dynamics of the human body. The

other component, which is the focus of this paper, focuses on the collection of a

motion capture dataset to understand the development of reaching behaviors in

the context of physical and social interactions with the world. While the use of

motion capture has recently become popular in the motor development literature,

a unique aspect of our work is the attempt to simultaneously capture the motion

of the entire body (arms, legs, trunk, head) in both the infant and caregiver. In

this paper, we present our initial steps towards capturing such data. We describe

the technological and logistic problems we are facing and the solutions we are find-

ing to these problems. We also describe our preliminary steps analyzing the data

obtained so far.

7.2 Setup and Data Collection Procedure

Although motion capture technology is now quite mature, most modern

systems are optimized for single adults in standing postures with low levels of oc-

clusions. However, our experiment focuses on infants in a natural lying posture

interacting with their caregivers. Based on pilot work with several motion capture

systems, we decided to use the PhaseSpace Impulse, because of the fact that it

uses active LED markers. In contrast to systems using passive markers (such as

the Vicon system), active LED markers have individual digital signatures so that

the system can easily tell the identity of each marker at each point in time. This

is particularly important in setups, like ours, with a large number of occlusions.

Another alternative would have been to use magnetic based motion capture. Un-

fortunately due to the magnetic characteristics of our experimental room this was

not an option we could use. A disadvantage of active markers is that they need

to be powered via cables attached to a small wireless driver (see Figure 7.2). Our

final system utilized 10 infrared cameras. The cameras were installed around the

perimeter of a 3.3m×3.3m sound-attenuated playroom for recording. Additionally,

four fixed video cameras are used to supplement the infrared system. This includes

a small headband camera worn by the mother to record the infant’s expressions
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during the sessions.

7.2.1 Mocap Suit Design

As there are no commercially available motion capture suits for infants we

had to develop our own. This apparently mundane task turned out to be sur-

prisingly difficult. While we have made significant progress, every capture session

teaches us new lessons on how to improve the design. Originally we had 4 design

criteria:

• Scalability the system needed to allow for the addition and removal of LED

markers depending on task demands.

• Low profile the wiring and placement of the suit markers should not inter-

fere with infant movement, or distract the infant during sessions. Addition-

ally, the markers could not touch the infant’s skin.

• Durability the longitudinal design involved multiple observation sessions a

week with each infant being seen over the course of 8-10 weeks. The suit

needed to be robust enough to functionally endure these sessions.

• Redundancy capturing the motion of an infant lying in the prone position

with his or her mother leaning over the infant presented significant line of

sight problems that are not typically encountered in traditional motion cap-

ture on adults. Thus, the suit had to be designed with a high degree of

marker redundancy to optimize the amount of time each part of the infant’s

body was able to be tracked by the PhaseSpace system.

Each system of markers connects to an individual wireless LED driver,

which supplies power for the markers and sends data from the markers to the

server. Initially, the 24-gauge ribbon cable that connects the LED driver was

spliced and an array of parallel LEDs was connected to each port in the LED

driver. The markers were then attached using Velcro adhesive strips connected to

an infant onesie. The procedure was to dress the infant in the onesie, attach the
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A	   B	  

Figure 7.2: Versions of the infant suit. A) An early suit prototype, note the

diffusion of light from the LEDs on the infant’s arms and body created by the

external onesie. B) The current suit design, note the absence of the external

onesie, and the additional markers
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markers, and then place another onesie over the markers. (See Fig. 7.2A). After

several pilot sessions with using this configuration, we found that the additional

onesie caused diffusion in the LEDs, causing inconsistent tracking of markers.

A modified suit was designed (see Fig.7.2B), this time using series connec-

tions from the LED driver with connectors that could be crimped onto the wire

directly. The series connections both reduced the amount of wire and made for a

more logical arrangement of the LED strings. Each LED string could accommo-

date up to 7 markers per string. Five LED strings were constructed, two for the

arms, two legs, and a head/body string. Given earlier tracking problems caused

by the outermost onesie (see Fig.7.2A), we piloted a session with only the inner

onesie and the now external wiring. Surprisingly, the pilot infant did not appear

to notice the external wiring or the LED markers. We are currently using this

configuration for all data acquisition. To date, no infants have spent a noticeable

amount of time gazing at or touching the markers or other components of the suit.

7.2.2 Experimental Procedure

On each motion capture session infant and caregiver are brought into the

motion capture playroom and the infant is placed on his/her back with caregiver

facing the child (see Fig. 7.3). Caregiver is instructed to interact with infant in

the following conditions:

1. Face to face without any toys for 2 minutes.

2. Caregiver offers a series of toys for 10 minutes with the goal of initiating

reaching.

3. Unstructured infant play with mobile for 1 minute.

The session ends with the examiner presenting toys to the infant in predetermined

series of positions.
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	  Figure 7.3: An example of our experiment scenario. The infant is looking at the

toy shown by the mother.

7.3 Preliminary Results

7.3.1 The Nature of the Developmental Process

The classic robot control literature typically measures the difficulty of a

control problem in terms of the number of degrees of freedom and joint com-

pliance. A robot with a large number of compliant joints, results on a highly

dimensional problem with tightly coupled non-linear dynamics. Such problems are

very difficult to solve with current approaches. A classical solution is to reduce the

effective number of degrees of freedom by temporarily or permanently stiffening

some joints, so that the control problem decouples into a small set of independent

equations. Perhaps influenced by classic robotics theory, the literature in develop-

mental psychology has adopted a similar point of view. For example, it has been

proposed that infants’ early attempts to reach engage a low number of degrees of

freedom. From this point of view development proceeds from engagement of less

to engagement of more degrees of freedom.
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Figure 7.4: correlation of movement magnitude between body regions by marker



132

Unfortunately much of the behavioral evidence supporting this less-to-more

view of motor development has focused on laboratory experiments that capture

the motion of a single infant arm as it reaches towards an object in very restricted

conditions [6, 7].

Thus our dataset will offer a unique opportunity to test current theories

of motor control by analyzing how the different parts of the body, not just an

individual arm, coordinate throughout development. To begin exploring this issue

we performed some preliminary analysis on the data obtained so far, focusing

on how hands and legs move while mom offers baby a toy for him/her to reach.

The analysis was performed on a single motion capture session of an 18 week old

infant. First, the instantaneous motion energy of each marker was estimated by

squaring the displacement between adjacent frames. A displacement was counted

only when a marker is visible in both frames and the displacement is reasonable

(speed < 24m/s) so as to exclude missing markers and motion marker jitter. The

displacement values were normalized per marker across the entire session. Second,

the temporal correlations between the average group motion energy for marker

located on two segments of the infant’s body were computed over the entire session.

If two limbs were moving at the same time regardless of the direction of movement,

there will be a high correlation between the corresponding markers (Fig.7.4).

Not surprisingly, high correlations were observed for markers located within

each of the following groups: head, left arm, right arm, left leg and right leg.

Interestingly, high correlations were also observed between markers on different

limbs (e.g., 0.4 Pearson correlation coefficient between the left and right arm).

Basically it appears that infants were simultaneously using all the limbs (the two

arms and legs). To explore the temporal unfolding of inter-limb correlation, we

plotted the motion energy over time as the infant attempted to reach for an object

(see Figure 7.5(a)).

Note that the two arms and legs move in synchrony bursts that lasts ap-

proximately 4 seconds. Looking closer at the second burst (see Fig.7.5(b)), we

see a fine grain motion energy plot. Figure 7.6 shows the actual movement of all

tracked groups in the horizontal plane.
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Fig. 4. correlation of movement magnitude between body regions by marker

3) Unstructured infant play with mobile for 1 minute.
4) Examiner presenting tracked toys in predetermined po-

sitions.

III. PRELIMINARY RESULTS

A. Measuring Concurrent Movement: Motion Energy Corre-
lation Analysis

One question that our dataset can address that has been
outside of the scope of infant motion capture studies with
only a limited number of motion markers is whether a subject
moves one joint at a time or multiple joints at the same time
during a reach. While, some degree of joint movement would
be expected to occur, having a rich quantitative description
of this coupling and how it changes over the course of
interaction and development is the focus of our future work.
For this preliminary analysis, a simple correlational tool was
developed to perform these analyses. First, the instantaneous
motion energy of each marker is estimated by squaring the
displacement between adjacent frames. A displacement is
counted only when a marker is visible in both frames and the
displacement is reasonable (speed < 24m/s) so that we exclude
missing markers and motion marker jitter. The displacement
values are normalized per marker across the entire session.
Second, the temporal correlations between the average group
motion energy for marker located on two segments of the
infant’s body are computed over the entire session. If two
limbs are moving at the same time regardless of the direction
of movement, there will be a high correlation between the
corresponding markers (Fig.4).

High correlations are observed in the following groups:
head, left arm, right arm, left leg (first 2 leg markers) and right
leg (last 3 markers). Surprisingly, high correlations were ob-
served between markers on different limbs (e.g., 0.4 between
the left and right arm). To explore the temporal unfolding
of inter-limb correlation, we plotted the motion energy over
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(b) zoom-in the second episode (shaded) in (a) (smoothing window =
.05s)

Fig. 5. Kinetic energy for left arm, right arm, and legs during a 20 second
segment

!
Fig. 6. Marker trajectories (projected on to the X-Y plane) of the movement
episode shown in Fig. 5

time. For simplicity, the markers have been grouped by their
corresponding limbs and group averages are reported.

Figure 5(a) shows a 20 second segment in which both arms
are moving together over time. The legs are also moving
together over time, though the intensity of movement is lower.
This subject appears to move his limbs in ballistic episodes,
where each episode lasts for about 4 seconds. Looking closer
at the second episode (see Fig.5(b)), we see a fine grain motion
energy plot. Figure 6 shows the actual movement of all tracked
groups in the horizontal plane.

To sum up, using simple motion energy correlation method,
we are able to identify ballistic episodes that the infant
appeared to move both hands and legs at the same time while
the mother was trying to offer the baby a toy.

B. Quantifying Contingencies Between Mother and Infant

The issue of which actions of a particular partner within the
context of a dyadic interaction engender predictable responses

(a) a 20s segment (smoothing window = 1s)
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(b) zoom-in the second episode (shaded) in (a) (smoothing window = .05s)

Figure 7.5: Kinetic energy for left arm, right arm, and legs during a 20 second

segment
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Figure 7.6: Marker trajectories (projected on to the X-Y plane) of the movement

episode shown in Fig. 7.5

Thus the evidence, while preliminary, does not appear to be consistent

with a less-to-more view of motor development. If anything early in development

children appear to use many more joints than necessary. Rather than reaching

with a single arm, they appear to be simultaneously reaching with both their arms

and limbs.

7.3.2 Analyzing Mother Infant Contingency Structures

An important component of the dataset we are collecting is the fact that

we simultaneously motion capture infant and caregiver data. Our use of motion

capture technology allows the analysis of contingencies between behavior of mother

and infant at a very high spatial and temporal resolution with minimal human

coding. The issue of which actions of a particular partner within the context of a

dyadic interaction engender predictable (contingent) responses of the other partner

has long been a focus of developmental science [26, 34]. Most work in this area

follows two basic steps: first use coarse-grained hand-coded variables to describe

the dyadic interaction (e.g. coding infant gaze as being to one of several candidate
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loci of attention); second, use techniques such as cross-correlation to identify the

temporal properties of influence between mother and infant [26]. Here we address

this issue by examining to what extent the 3D position of a marker on the infant can

be predicted by the 3D position of a marker on mother and vice-versa. Specifically,

we are interested in the following questions:

1. Movement of which parts of mother’s body are most predictive of the orien-

tation of the infant’s head?

2. What is the temporal delay for each possible location on the mother’s body

that is maximally predictive of the orientation of the infant’s head?

In this section we present our initial steps in developing computational strategies

to address these questions. We used windowed Canonical Correlation Analysis [78]

of the 3D position of one marker on the mother and the 3D position of the marker

at the center of the infant’s forehead.

Within the context of time series analysis, Canonical Correlation Analysis

is a technique for projecting each of two multivariate time series to create two uni-

variate time series that are maximally correlated. In the context of motion capture

analysis we can view this as computing two directions of motion: one for marker 1

and one for marker 2 such that the motion of each of these markers projected onto

the computed directions is maximally correlated. For example, Canonical Corre-

lation might project the movement of mother’s hand in the direction transverse to

the infant’s body and the infant’s head motion direction along the same direction,

indicating that motion of mother’s hand across the infant’s body is predictive of

shaking of the infant’s head. For each experiment one time series was composed of

3D positions of the marker on the center of the infant’s forehead and the second

time series was the 3D position of a particular marker on the mother. We used

two marker locations on mother to investigate which was most informative of the

infant’s head orientation. Specifically, one marker was on mother’s right hand and

the second marker we investigated was at the center of mother’s forehead.

We computed the canonical correlation as a function of time by using a

running temporal window. We utilized two different window lengths: one short



136

window (2.08 seconds) that gives us fine temporal resolution but a somewhat noisy

estimate of the local canonical correlation, and a longer window (16.67 seconds)

that gives us a more stable characterization of the canonical correlation that is use-

ful for characterizing coordination over entire sessions. For each session analyzed

and for each time window length, the canonical correlation was computed using

a sliding window with 50% temporal overlap between adjacent windows (e.g. for

the 16.67 second window the first temporal window would be 0s to 16.67s and the

second would be 8.34s to 25s, followed by 16.67s to 33.33s).

We examined one particular mother-infant dyad (Subject 10) at two time

periods, 7 weeks apart. The Infant was 13 weeks old at the first session and

20 weeks old at the second. For each session we computed windowed canonical

correlations between the two markers on mother and the marker at the center of

the infant’s forehead. The plots in Fig.7.7 show the mean canonical correlation

values for each of the sessions as a function of delay. Peaks in the negative region

indicate periods in which the movement of the mother’s marker was predicted by

a preceding movement of the infant’s head, i.e., mom was following the infant.

Peaks in the positive region indicate periods in which the infant is following mom.

Figure 7.7 (a) suggests an approximately equal number of episodes in which mom’s

head motion follows infant’s head motion and episodes in which infant head motion

follows mom head motion. The time delay in these contingencies decreases with

development. Figure 7.7 (b) shows that for the most part infant’s head follows

mom’s hand movement, rather than mom’s hand movement following infant’s head.

Again the temporal delay of this contingency decreases with development.

In addition to analyzing the mean canonical correlation over the entire

session, we also investigated whether short-time Canonical Correlation Analysis

(window length of 2.08 seconds) could be used to to spotlight meaningful episodes

of mother-infant interaction. The 3 regions with highest canonical correlation were

as follows:

1. Subject 10 at 13 weeks: Mother struck a butterfly mobile that she was holding

above the infant with her right hand and approximately 1 second later the

infant shook its head. This segment had a high canonical correlation with a
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Figure 7.7: Windowed Canonical Correlation for two sessions between infant

head movement and mother head movement (top) and infant head movement and

mother right hand movement (bottom).
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Figure 7.8: Windowed Canonical Correlation for a segment where the infant

shakes head and subsequently moves a toy that mother is holding (which causes

her hand to move). This event happens at time = 4 seconds on the graph. The

event causes the canonical correlation for Infant Ahead 1.04s to spike since the

head motion precedes the motion of the marker on mother’s right hand.
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positive delay of 1.08 seconds whereas the canonical correlation for 0 delay

and a delay of -1.08 seconds was lower.

2. Subject 10 at 13 weeks: While the infant grasped a toy that mother holding

simultaneously, the infant shook his head and then moved the object with

his hand. The movement of the infant’s hand caused mother’s hand to move

as well. This episode is an example of a contingency between mother motion

and infant motion that was entirely created by infant motor movements. The

Windowed Canonical Correlations are given in Fig.7.8.

3. Subject 10 at 20 weeks: Mother tickled infant with her right hand, 1 second

later the infant shook his head

Interestingly, most of the highest coupling events were not instances of

the infant tracking the movement of mother’s hand, but rather were composed

of dynamic interactive events that incorporated both play with objects as well as

social interaction.

While the present analysis is promising there are several extensions that we

will pursue in the future:

• Multiple Markers Canonical correlation between multiple points on infant

and multiple points on mother may give interesting contingency patterns

that go beyond the single body part to single body part analyses presented

here.

• Canonical Correlation with Infant Kinematics Instead of using the

location of the center marker on the infant’s head, it may be more informative

to look at quantities derived from the markers such as infant head orientation

or joint angles of various limbs of the infant.

7.3.3 Analyzing Infant Motion Energy to Head-Toy Dis-

tance

Infant’s limb movement appears to be episodic. In particular, there are fast-

moving high motion energy (HME) episodes and slow-drifting low motion energy
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Figure 7.9: motion energy of arms (a) and legs (b) with respect to toy-head

distance; smoothed motion energy of arms (c) and legs(d)
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(LME) episodes. After watching the video carefully, we speculate that a transition

from HME to LME is typically triggered by hand contact with the toy; a transition

from LME to HME is typically triggered by the toy moving out of baby’s reach.

To further analyze this speculation, we plot limb motion energy against toy-

infant distance. Same as in the previous section, motion energy is calculated using

sliding windows. Whether the toy is within reaching distance or not is measured

by the distance between the markers on the toy and the markers on the infant’s

head. We do not label the touch events as they are hard to judge from the video.

Figure 7.9(a)(b) plots the raw data. Each point represents the average motion

energy and toy-infant distance calculated from a sliding window at certain time.

Figure 7.9 plots the smoothed curves of the raw data for better visualization.

For both arms and legs, there is a high energy peak at toy-head distance

around 40cm which trigger the most of fast movements.

7.4 Discussion and Conclusion

The human musculoskeletal system is a sophisticated machine designed to

support movements that are compliant, versatile, and adapted to the uncertain

nature of the world. The price paid for this compliance and versatility is the fact

that simple control approaches like the ones used in contemporary robotics, do

not work. From an engineering point of view, infants face a formidable motor

control problem when learning to control their own bodies. While controlling

robots with the complexity and dynamics of the human body is currently beyond

our most sophisticated algorithms and powerful computers, infants learn to do so

seamlessly in less than two years. Uncovering how this is done will have profound

scientific and technological consequences. A critical limitation of the literature on

motor development is the fact that it is carved into isolated research niches e.g.,

reaching, facial expressions, crawling, walking, shared attention. Each of these

niches typically studies one part of the body as it performs a single task, e.g.,

hands and arms reaching for an object. While this research strategy is reasonable,

it may result in a distorted perspective of how infants really learn to control their
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bodies. Here we presented our first steps to address the current limitations in the

developmental literature.

The preliminary data obtained so far is already presenting a different per-

spective about the development of motor control. For example, current work on

the development of reaching emphasizes the fact that infants reach with very little

movement in the elbow’s joint when compared to adults. This is interpreted as

evidence of a “less-to-more” developmental trajectory [6, 7]. This point of view

seems plausible because we tend to assume that moving less degrees of freedom is

easier than moving more degrees of freedom. Our experience with the compliant

humanoid robot Diego San, being developed as part of this project is that this

is not necessarily the case, i.e., due to the high compliance of the joints, getting

Diego San to move one degree of freedom at a time is quite difficult. Interestingly

our motion capture data suggests that during early reaching episodes infants not

only move their arms and hands but also engage their legs, head and face. If any-

thing the data suggests a developmental trajectory that progresses from engaging

more degrees of freedom (reaching with two arms and two legs), to engaging less

degrees of freedom (reaching with one arm). We are also finding that the physical

and social contexts of motor development are tightly coupled. The result is that

behavioral categories that are natural from an adult perspective may be artificial

from an infant’s perspective. For example, when a caregiver is present, making

facial expressions, vocalizing, or moving the legs, may be as effective to make con-

tact with an interesting object, as reaching with the arms and hands. Thus, it

could be argued that moving the legs or making facial expressions should be a le-

gitimate part of the literature on the development of reaching. This developmental

approach is quite different to the standard way we get robots to reach: simplify the

control problem by using as few degrees of freedom as possible. Thus it appears

that our current notion of “simple” in robotics may not match well the notion of

“simple” that infants appear to work with.

The results presented here are still preliminary and thus they should be

taken only as an illustration of things to come. Yet the approach and the tech-

nologies we are exploring are already contributing a different perspective on motor
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development. This perspective may give us clues to develop a new generation of

robots that learn to control their own bodies.
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