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Abstract—The capacity of a wireless network with n nodes
is studied when nodes communicate with one another in the
context of social groups. Each node is assumed to have at least
one local contact in each of the four directions of the plane
in which the wireless network operates, and q(n) independent
long-range social contacts forming its social group, one of which
it selects randomly as its destination. The distance between
source and the members of its social group follows a power-
law distribution with parameter α, and communication between
any two nodes takes place only within the physical transmission
range; hence, source-destination communication takes place over
multi-hop paths. The order capacity of such a composite network
is derived as a function of the number of nodes (n), the social-
group concentration (α), and the size of social groups (q(n)).
It is shown that the maximum order capacity is attained when
α ≥ 3, which makes social groups localized geographically, and
that a wireless network can be scale-free when social groups are
localized and independent of the number of nodes in the network,
i.e., q(n) is independent of n.

Index Terms—Capacity, Social Networks, Communication Net-
works, Complex Networks.

I. INTRODUCTION

Starting with the work by Gupta and Kumar [1], the
order throughput capacity of wireless communication networks
has been studied extensively in the recent past, and all this
prior work has assumed that sources select their destinations
according to a uniform distribution. However, in real wireless
networks, the selection of destinations by sources does not
follow a uniform distribution, because nodes interact with
one another in the context of social groups. It has been
observed [2] that the likelihood of having contact with a person
decreases with distance and follows a power-law distribution.
Consequently, it can be argued that prior results on the order
capacity of wireless networks are overly pessimistic, because
they inherently assume that source-destination flows involve
routes that consume too many communication resources.

On the other hand, as a result of early work by Milgram
on the small-world phenomenon [3], the modeling of social
networks have received considerable attention. However, this
work has not addressed the underlying limitations imposed by
the physical layer. For example, Watts and Strogatz [4] divide
the edges of a network into local and long-range contacts and
assume that there is always an edge between a node and any
of its local or long-range social contacts. Dietzfelbinger et al.

[7] calculated the average number of steps between any source
and target along a ring-based network in which each node is
connected to its left and right neighbor and possibly to some
further vertices, and the long-range contacts may be selected
through any distribution. Fraigniaud et al. [6] assumed that
the probability of a node being the long-range contact of a
source is proportional to the rank of their distance among the
distances from the source to all the other nodes. Kleinberg
[5] introduced a model for the characterization of the small-
world phenomenon consisting of a two-dimensional extended
grid with point-to-point links in which each node has four local
contacts and one long-range contact. The source node s selects
any other node v as its long-range contact with a probability
proportional to d−α(s, v), where d(s, v) is the lattice distance
between s and v, and α ≥ 0 shows the density of the social
network. Given that these models neglect the need to consume
the resources of the multi-hop paths needed to connect sources
with remote destinations in real networks, it can be argued that
they render an overly optimistic view of the capacity of social
networks.

What is needed to understand the true performance of
wireless networks is a model that captures the restrictions im-
posed by the communication infrastructure, together with the
distribution of flows rendered by social groups. In this regard,
Li et al. [8] studied the capacity of a wireless network in which
source-destination pairs follow a power-law distribution as in
Kleinberg’s model; however, they provide only upper bounds
that need not be tight and provide no insight on the impact of
social-group sizes. More recently, Azimdoost et al. [9] studied
the interaction between communication and social networks by
considering four local contacts and a single long-range contact
per node, with the source knowing the location of its four
local contacts and the destination. The source-destination pair
selection follows a power-law distribution that is a function of
the Euclidean distance between the source and the rest of the
nodes. While this model is a marked improvement over models
that assume a uniform distribution for source-destination pairs,
its results are limited in scope because a node usually has more
than one long-range social contact in its social group.

In this paper, we study the case of a wireless network
in which nodes communicate with others in the context of
social groups. Section II introduces the notation and some
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definitions and results used throughout the paper. If a source
communicates with other nodes in the context of a social
group, it has multiple remote social contacts, not just one.

Section III shows that the original power-law distribution
introduced by Kleinberg [5] cannot be used when the number
of long-range contacts q is a function of total number of nodes
n in the network. In fact, this limitation was also mentioned by
Kleinberg [5] . In addition, a modified power-law distribution
is introduced that is applicable for all values of q(n).

The main contribution of this paper is stated in the following
theorem, which considers what we call a wireless social
network . In such a network, each of the n network nodes
has a social group consisting of at least one local social
contact in each of the four directions of the plane, and q(n)
long-range contacts selected independently. Long-range social
contacts are selected based on the power-law distribution
with parameter α identified in Section III, and one of those
long-range contacts is the destination of the node’s flow.
Communication between any two nodes can take place only if
they are within transmission range and interference and such
communication succeeds according to the protocol model of
multiple access interference [1].

Theorem 1. The maximum achievable capacity in a wireless social
network is

Θ( 1√
n logn

) for q = Θ(n)

Θ( 1√
n logn

) for (q, q
n

)
n→∞→ (∞, 0)

Θ(n−q+1
n

1√
n logn

) for q <∞, 0 ≤ α < 2

Θ(n−q+1
n2 (

√
n

logn
)α−1) for q <∞, 2 ≤ α ≤ 3

Θ(n−q+1
n

1
logn

) for q <∞, 3 < α

Section IV presents the proof of Theorem 1 by deriving
upper and lower bounds of the throughput capacity that coin-
cide for the various values of q(n). This result shows that the
scaling properties of a wireless network are a function of the
spread and size of the social groups. If the size of social groups
is proportional to the network size, then the order network
capacity is the same as if no social groups existed, which is
the same result by Gupta and Kumar [1]. Interestingly, this is
the case even when the size of social groups is an insignificant
fraction of the number of nodes n as n goes to infinity, and is
intuitive by noticing that in such a case source-destination pairs
must consume communication resources along large multi-
hop paths linking sources with destinations. By contrast, when
social group sizes do not grow as fast as the number of nodes
in the network n, and their spread is localized (α ≥ 2), then
a wireless network has order capacity increase compared to
the case in which no social groups exist. This is an exciting
result, because it is representative of most practical wireless
networks. Section V concludes the paper by discussing the
implications of our results.

To the best of our knowledge, this is the first work that
considers the interaction between social groups and the under-
lying wireless communication infrastructure in an analytical
framework of the order capacity of wireless networks.

II. PRELIMINARIES

The network is a dense network in a unit square area with n
uniformly distributed nodes. We use the protocol model [11]
to determine the success of communication in the presence of
multiple access interference (MAI). In particular, if χi, χj and
χk denote the Cartesian positions in the unit square area for
nodes vi, vj and vk, node vi can successfully transmit to node
vj if |χi−χj | ≤ r(n), where r(n) is the common transmission
range of all the nodes in the network, and for any node vk 6=
vi, that transmits at the same time as vi, |χk − χj | ≥ (1 +
∆)r(n), with ∆ > 0 as the guard zone factor. To guarantee
connectivity in this network [12], the transmission range (r(n))
is assumed to be r(n) = Θ(

√
logn/n).

As Figure 1 illustrates, a TDMA medium access control
scheme is assumed to avoid MAI. The network area is divided
into square-lets with side-length C1r(n), (C1 <

1
4 ), and at any

given time the cells separated by M square-lets distance are
the only cells allowed to transmit as shown with a cross sign
inside the cells in figure 1 where M ≥ (2 + ∆)/C1.

S
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) 
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x
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Fig. 1. The solid-line circle shows the transmission range. Dark gray cells
(si) contain the nodes with X = x. R1 (R2) are used as the distance of each
node in this region instead of their real distances to achieve upper (lower)
bounds on P (X = x).

The routing of information is very simple. Each node is
assumed to know the locations of its intended destination and
its immediate neighbors, and selects as its next hop to the
destination that local contact that is closest to the destination.
The local contacts are within the radio range since they are
the one hop physical neighbors of the node. By assuming that
there is at least one local contact in each of the four adjacent
cells of the source guarantees that this simple routing protocol
converges. If each node has more than four local contacts, i.e.,
all nodes within transmission range are local contacts, then
the order throughput capacity computation does not change
and the same results can be derived. The four local contacts
assumption was first considered in [5] for grid networks.

We use the notation of [10] to denote the elementary
symmetric polynomials of the variables x = (x1, ..., xn) by
σp,n, 1 ≤ p ≤ n. In other words,

σp,n(x) = σp,n(x1, ..., xn) =
∑

1≤i1<i2<..<ip≤n

xi1 ...xip .
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Moreover, we define the elementary symmetric polynomials
of the same set of variables except one, xk, as

σkp,n−1(x1, ..., xn) = σp,n−1(x1, ..., xk−1, xk+1, ..., xn)

Lemma 1. Let x1, ..., xn be non-negative real numbers, n ≥ 2.
Then for 1 ≤ p ≤ n− 1, we have

σ1,nσp,n ≥
n(p+ 1)

n− p
σp+1,n.

The proof of this result is by induction and described in
[10]. In Section IV (Lemma 2), we prove that this is a tight
bound for values of p that do not grow as fast as n.

The standard notations of O and Ω are used to describe
the asymptotic upper and lower bounds respectively. When
f(n) = Θ(g(n)), then it is denoted by f(n) ≡ g(n).

III. A POWER-LAW DISTRIBUTION FOR SOCIAL GROUPS

In Kleinberg’s model [5], every node s has a directed edge to
every other node vi within lattice distance p ≥ 1, and directed
edges to q ≥ 0 other nodes using independent random trials.
The jth directed edge from s has endpoint vi, i = 1, .., n
with probability proportional to d−αi , d−α(s, vi) and nor-
malizing factor

∑n
i=1 d

−α
i . Considering the same probability

distribution function for long-range social contacts (LSC), the
probability that the LSC list contains exactly q independently
selected members is

P (|LSC| = q) =
∑

1≤i1<...<iq≤n

P (LSC = {vi1 , ..., viq})

=
∑

1≤i1<...<iq≤n

q∏
j=1

P (vij ∈ LSC)

=
∑

1≤i1<...<iq≤n

d−αi1 ...d−αiq

(
∑n
j=1 d

−α
j )q

.

As can be seen, this probability is close to one for q = Θ(1),
decreases by increasing q, and approaches zero when q =
Θ(n). Kleinberg [5] mentioned that q is a universally constant
value and the above derivation proves that the original power-
law distribution should be modified to consider those cases
when q is a function of n. We assume that each source node
has the same number of LSCs q(n) selected in independent
random trials.

The long-range contacts are selected independently, while
closer nodes to the source have a better chance of being
selected as a LSC, thus, the probability that a particular q-
member set is the LSC set is proportional to the product of
the inverse of the distances of its members from the source.
This probability can be written as

P (LSC = {vi1 , ..., viq}) =
d−αi1 ...d−αiq
Nα,q

. (1)

The normalization factor Nα,q is obtained using the fact that∑
1≤i1<...<iq≤n P (LSC = {vi1 , ..., viq}) = 1.

Nα,q =
∑

1≤i1<...<iq≤n d
−α
i1
...d−αiq (2)

The probability that a particular node vk is selected as a
LSC (i.e., the probability that vk is a member of the LSC set)
is given by1

P (vk ∈ LSC)

=
∑

1≤i1<...<iq−1≤n,ij 6=k

P (LSC = {vk, vi1 , ..., viq−1}),

=

∑
1≤i1<...<iq−1≤n,ij 6=k d

−α
k d−αi1 ...d−αiq−1∑

1≤i1<...<iq≤n d
−α
i1
...d−αiq

.

The above probability function denotes the probability of
node vk being in LSC, and is non-decreasing in q. It also
guarantees that the described process ends up with a q-member
LSC set for each source node.

Let ϑt be a random variable denoting the destination node.
Then, for each particular vk ∈ V (the set of nodes except
source), we have

P (ϑt = vk) = P (ϑt = vk | vk ∈ LSC)× P (vk ∈ LSC )

+ P (ϑt = vk | vk /∈ LSC)× P (vk /∈ LSC).

Given that the destination is only selected from LSCs,
P (vk /∈ LSC) = 0. Furthermore, the selection of destination
from LSCs has a uniform distribution.

P (ϑt = vk) = 1
qP (vk ∈ LSC)

=

∑
1≤i1<...<iq−1≤n,ij 6=k

d−αk
∏q−1
j=1 d

−α
ij

q
∑

1≤i1<...<iq≤n
∏q
j=1 d

−α
ij

Let v = (v1, ..., vn) denote (d−α1 , ..., d−αn ), then the above
equation can be written as

P (ϑt = vk) =
d−αk σkq−1,n−1(v)

qσq,n(v)
. (3)

IV. THROUGHPUT CAPACITY ANALYSIS

Let λ denote the data rate for each node and X be the
number of hops traveled by each bit from source to destina-
tion. The total number of concurrent transmissions in such a
network is then nλE[X], where E[X] is the average number
of hops in a route for any given source-destination pair. This
value is upper bounded by the total bandwidth W available,
divided by the number of non-interfered groups in the TDMA
scheme as shown in Figure 1 (i.e., W

M2C2
1r

2(n)
). Therefore,

using the minimum transmission range necessary to guarantee
connectivity, the maximum data rate for each node is [9]

λ ≤ λmax = Θ(
1

log nE[X]
). (4)

The average number of hops can be computed as

E[X] =

xmax∑
x=1

xP (X = x) = P (X = 1) +

xmax∑
x=2

xP (X = x).

P (X = 1) is the probability that the packets travel just one
hop from source to destination. This probability is a positive

1Again, we assume that |LSC| is equal to q for all sources.
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number smaller than one, so we can ignore it when deriving
the order of expected number of hops.

To compute P (X = x) for x > 1, we need to consider
the long-range contacts outside the circle with radius r(n)
centered at the source node. Given that all the nodes inside
the transmission range of a source receive the data transmitted
from it in just one hop, P (X = x) = 0 for 1 < x < d 1

C1
+1e.

The information between source and destination located on
two opposite corners of the network area passes through the
maximum number of hops which is d 2

C1r(n)
e. Thus, P (X =

x) can be calculated as

E[X] ≡
d 2
C1r(n)

e∑
d 1
C1

+1e

xP (X = x).

To compute P (X = x) for x = d 1
C1

+ 1e, ..., d 2
C1r(n)

e,
we need to compute the number of nodes at a distance of
x hops from the source and their corresponding Euclidean
distances from the source. The geometric place of such nodes
is a rhombus around the source node as shown in Figure
1 and explained in [9]. The probability that the number of
hops between source and destination is x hops equals the
probability that the destination is located in one of the cells
on the boundaries of this rhombus. Hence,

P (X = x) =

4x∑
l=1

P (destination is inside sl)

=

4x∑
l=1

∑
vk in sl

P (ϑt = vk)

Therefore,

E[X] ≡
d 2
C1r(n)

e∑
d 1
C1

+1e

x
4x∑
l=1

∑
vk in sl

P (ϑt = vk)

≡
d 2
C1r(n)

e∑
d 1
C1

+1e

x
4x∑
l=1

∑
vk in sl

d−αk σkq−1,n−1(v)

qσq,n(v)
(5)

We now compute the average number of hops based on
different values of q as a function of n.

A. Case I: q grows with n

If q = n, then E[X] can be rewritten as

E[X] ≡
d 2
C1r(n)

e∑
x=d 1

C1
+1e

x
4x∑
l=1

∑
vk in sl

d−αk σkn−1,n−1(v)

nσn,n(v)
.

Since

d−αk σkn−1,n−1(v) = d−αk

n∏
i=1,i6=k

d−αi

=

n∏
i=1

d−αi = σn,n(v)

E[X] ≡
∑d 2

C1r(n)
e

x=d 1
C1

+1e x
∑4x
l=1

∑
vk in sl

1
n .

Because nodes are uniformly distributed over the network
area, there are nC2

1r
2(n) nodes inside each cell sl with high

probability. Thus2

E[X] ≡
d 2
C1r(n)

e∑
x=d 1

C1
+1e

4x2C2
1r

2(n)

≡ r2(n)

∫ d 2
C1r(n)

e

d 1
C1

+1e
u2du ≡ 1

r(n)
≡
√

n

log n
.

Hence, the per-node throughput capacity is 1√
n logn

, which is
the same as the result by Gupta and Kumar [1]. This result
is consistent, because the number of social contacts is equal
to the total number of nodes in the network, and one of these
nodes is selected randomly and uniformly as the destination,
which is a similar assumption to that of the original work by
Gupta and Kumar [1].

The second case is when q = Θ(n) but q 6= n. Define i.i.d.
random variables Yi = d−αi for 1 ≤ i ≤ n and define the
sequence Zi = log Yi for all values of i. It is obvious that Zi
are i.i.d. as well. Utilizing the law of large numbers, we have
limm→∞

1
m

∑m
i=1 Zi = Z where Z is the expected value of

random variable Zi. Thus Eq. (3) can be computed as

P (ϑt = vk) ≡
∑

1≤i1<..<iq≤n,∃h:ih=k
∏q
j=1 Yij

q
∑

1≤i1<..<iq≤n
∏q
j=1 Yij

≡
∑

1≤i1<..<iq≤n,∃h:ih=k exp
∑q
j=1 Zij

q
∑

1≤i1<..<iq≤n exp
∑q
j=1 Zij

≡
∑

1≤i1<..<iq≤n,∃h:ih=k exp qZ

q
∑

1≤i1<..<iq≤n exp qZ

≡
(n−1q−1 )

q(nq )
=

1

n

Therefore, the value of E[X] is similar to the case q = n.

E[X] ≡
d 2
C1r(n)

e∑
x=d 1

C1
+1e

x
4x∑
l=1

∑
vk in sl

1

n
≡
√

n

log n
.

Using Eq. (4) provides the maximum capacity as

λmax = Θ(
1√

n log n
).

B. Case II: n grows much faster than q

In this case, the expected number of hops between source
and destination is obtained when limn→∞

q
n = 0, and two

mutually exclusive situations must be considered, namely:
limn→∞q =∞ and limn→∞ q <∞.

2Note that we are computing the order of E[X] dropping constant factors.
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When limn→∞ q = ∞, we can use law of large numbers
and a similar procedure as before to arrive at

E[X] = Θ(

√
n

log n
),

λmax = Θ(
1√

n log n
).

When each node has finite number of contacts (limn→∞ q <
∞), the numerator of P (ϑt = vk) can be expanded as

d−αk σkq−1,n−1(v)

= d−αk (σq−1,n(v) − d−αk σkq−2,n−1(v))

= d−αk (σq−1,n(v) − d−αk (σq−2,n(v)− d−αk σkq−3,n−1(v)))

Note that d−αk and σq−i,n−j are positive values; therefore,
the upper and lower bounds for P (ϑt = vk) are obtained as

Plower ≤ P (ϑt = vk) ≤ Pupper, (6)

where Plower = d−αk
σq−1,n(v)−d−αk σq−2,n(v)

qσq,n(v)
and Pupper =

d−αk σq−1,n(v)

qσq,n(v)
.

Lemma 2. Let Ψ = {ψ1, ..., ψn} be a set of n ≥ 2 non-
negative real numbers. Then for a finite p, i.e., limn→∞ p <
∞, we have

σ1,n(Ψ)σp,n(Ψ)

(p+ 1)σp+1,n(Ψ)
= Θ

(
n

n− p

)
. (7)

Proof: Define random variables Upi = ψi1 ...ψip for
i = 1, .., (np ) where 1 ≤ i1 < .. < ip ≤ n. Due to
symmetry, these random variables are identically distributed.
Moreover, their mean Up is a function of p. It can easily be
seen that these random variables are not independent, as they
may have common factors of ψij . We partition the set Ψ into p-
member subsets. Assume that T p is the set of all possible such
partitionings (each denoted by T pi ) with no common member,
i.e., T pi ∩ T

p
j = φ. For a finite p, the number of T p members

is |T p| ≡ (np )/(np ) = (n−1p−1 ).
Now we can expand σp,n(Ψ) to separate summations over

different partitions described above. Thus,

σp,n =
∑

1≤i1<..<ip≤n

ψi1 ..ψip =

|Tp|∑
j=1

∑
{ψi1 ..ψip}∈T

p
j

ψi1 ..ψip

Because each inner summation is applied over one possible
partitioning of Ψ, it is performed over n

p of independent Ui
as described before. The law of large numbers can be applied
here.

lim
n→∞

∑
{ψi1 ..ψip}∈T

p
j

ψi1 ..ψip = lim
n→∞

∑
{ψi1 ..ψip}∈T

p
j

Upi =
n

p
Up

Thus,

σp,n =

|Tp|∑
j=1

n

p
Up = (np )Up.

A similar formulation can be derived for σp+1,n(Ψ).

σp+1,n =

|Tp+1|∑
j=1

n

p+ 1
Up+1 = (np+1)Up+1

Therefore,

σ1,nσp,n
(p+ 1)σp+1,n

=
σ1,n(np )Up

(p+ 1)(np+1)Up+1

.

Note that Upi have identical distribution and ψi are i.i.d..
Therefore, the expected value Up+1 can be expressed in terms
of Up

Up+1 = E[Up+1
i ] = E[ψi1 ...ψip+1

]

=
∑
ψip+1

E[ψi1 ...ψipψip+1
|ψip+1

]p(ψip+1
)

=
∑
ψip+1

ψip+1
E[ψi1 ...ψip ]p(ψip+1

)

= Up
∑
ψip+1

ψip+1p(ψip+1)

= Up.ψp+1 = Up.ψ

Furthermore, by utilizing law of large numbers for σ1,n results
in σ1,n(Ψ)→ nψ. Thus

σ1,n(Ψ)σp,n(Ψ)

(p+ 1)σp+1,n(Ψ)
≡

n(np )

(p+ 1)(np+1)
=

n

n− p
.

Returning to the case of finite contacts, we use Lemma 2
(for p = q − 1) and inequality (6) to obtain an upper bound
for E[X] in eq. (5).

E[X] ≤
d 2
C1r(n)

e∑
d 1
C1

+1e

x
4x∑
l=1

∑
vk in sl

d−αk σq−1,n(v)

qσq,n(v)

≡ n

n− q + 1

d 2
C1r(n)

e∑
d 1
C1

+1e

x
4x∑
l=1

∑
vk in sl

d−αk
σ1,n

(8)

Referring to the results presented in [9], it can be observed
that the average number of hops in this case is n

n−q+1 times
more than the case when there is only one long-range contact
for each source. To calculate the above summation, we need to
compute the distance between each node in si and the source.
To simplify the problem, we use distances R1 = xC1r(n)/A1

and R2 = A2xC1r(n) (A1, A2 > 1) for all such nodes to
reach upper and lower bounds for this summation (see figure
1).

4x∑
l=1

∑
vk in sl

(A2xC1r(n))−α ≤
4x∑
l=1

∑
vk in sl

d−αk

≤
4x∑
l=1

∑
vk in sl

(xC1r(n)/A1)−α
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By replacing the number of nodes in each cell by nC2
1r

2(n)
and ignoring the constant values in the above inequality, we
can see that the order of both upper and lower bounds are the
same.

d 2
C1r(n)

e∑
d 1
C1

+1e

x
4x∑
l=1

∑
vk in sl

d−αk

≡ nr2−α(n)

d 2
C1r(n)

e∑
d 1
C1

+1e

x2−α

a≡ nr2−α(n)

∫ d 2
C1r(n)

e+1

d 1
C1

+1e
u2−αdu

The last equality (a) is obtained by replacing the sum by its
integral approximation. After computing that integral for a
sufficiently large value of n we arrive at
d 2
C1r(n)

e∑
d 1
C1

+1e

x
4x∑
l=1

∑
vk in sl

d−αk

≡

 Θ(n
√

n
logn ) , for 0 ≤ α ≤ 3

Θ(n(
√

n
logn )α−2) , for 3 ≤ α

(9)

Moreover, σ1,n can be written as

σ1,n =
∑
vk

d−αk ≡
∫ γdmax

r(n)

nu1−αdu,

where dmax is the maximum distance between any two nodes
in the network, and γ ≤ 1. Calculating the integral for a
sufficiently large value of n leads to

σ1,n ≡

 Θ(n) for 0 ≤ α ≤ 2

Θ(n(
√

n
logn )α−2) for 2 ≤ α (10)

The derivations of Eqs. (9) and (10) are described in the
Appendix.

Now we can use these results in Eq. (8) to obtain the
following upper bound for E[X]. Note that E[X] ≥ 1;
therefore, if the computation ends up with E[X] < 1, we
replace it with 1.

E[X] =


O( n

n−q+1

√
n

logn ) for 0 ≤ α < 2

O( n
n−q+1 (

√
n

logn )3−α) for 2 ≤ α ≤ 3

O( n
n−q+1 ) for 3 < α

The lower bound capacity follows immediately.

λmax =


Ω(n−q+1

n
1√

n logn
) for 0 ≤ α < 2

Ω(n−q+1
n2 (

√
n

logn )α−1) for 2 ≤ α ≤ 3

Ω(n−q+1
n

1
logn ) for 3 < α

Thus, these are the upper bounds of E[X] and the lower
bounds on the capacity if the number of long-range contacts
is a finite number greater than one.

To compute the lower bound for E[X], we will study the
lower bound of P (ϑt = vk) in Eq. (6). First, we calculate
the order of σq−2,n(v)

qσq,n(v)
. This value is obtained by replacing

p = q − 1 and p = q − 2 in Eq. (7).

σ1,nσq−1,n
qσq,n

= Θ

(
n

n− q + 1

)
σ1,nσq−2,n

(q − 1)σq−1,n
= Θ

(
n

n− q + 2

)
By multiplying these two equations and combining with Eq.

(10), we arrive at

σq−2,n
qσq,n

= Θ(
(q − 1)n2

(n− q + 1)(n− q + 2)σ2
1,n

)

=

{
Θ( (q−1)

(n−q+1)(n−q+2) ) for 0 ≤ α < 2

Θ( (q−1)(logn)α−2

(n−q+1)(n−q+2)nα−2 ) for 2 < α
(11)

The lower bound for E[X] is derived by combining Eqs.
(5) and (6).

E[X] ≥
d 2
C1r(n)

e∑
d 1
C1

+1e

x

4x∑
l=1

∑
vk in sl

d−αk σq−1,n(v)− d−2αk σq−2,n(v)

qσq,n(v)
,

=
σq−1,n(v)

qσq,n(v)

d 2
C1r(n)

e∑
d 1
C1

+1e

x
4x∑
l=1

∑
vk in sl

d−αk ,

− σq−2,n(v)

qσq,n(v)

d 2
C1r(n)

e∑
d 1
C1

+1e

x
4x∑
l=1

∑
vk in sl

d−2αk .

If we replace the terms in the negative part of the above
formula with their equivalents from Eqs. (9) and (11), it
appears that this part will be of an order less than one. Thus,
it can be ignored when comparing the positive part of this
formula and the lower bound for E[X] are the same as its
upper bound. Therefore, the obtained lower bounds on capacity
are indeed tight bounds.

However, it is important to compute the traffic carried in
each cell and find out if this throughput capacity can be
supported for each cell. It can be proved that the total traffic to
each cell is upper bounded by log n. Therefore, the maximum
throughput capacity is upper bounded by the inverse of this
traffic [13], i.e., λmax ≤ 1

logn , which does not violate the
throughput capacity bounds we derived earlier.

V. DISCUSSION AND FUTURE WORK

This paper presents the first modeling framework for the
capacity of a wireless network in which nodes communicate
in the context of social groups and successful transmissions
can occur only between nodes within transmission range of
each other. The model characterizes a wireless network of n
nodes with each social group has a size that is a function
of the number of nodes n, the probability of a node being a
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long-range social contact of a source is inversely proportional
to their Euclidean distance with power factor α, and MAI is
modeled according to the protocol model.

Figure 2 illustrates the results of Theorem 1 by plotting the
network capacity as a function of n for different values of α
when the number of long-range contacts is a fixed number,
i.e., q(n) = 5. The capacity order decreases exponentially as
the number of nodes increases. However, increasing the value
of α affects the rate of this capacity decrease. Small values
of α correspond to the case in which the social groups are
highly distributed in the wireless network, and lead to a rate of
order-capacity decrease similar to the results derived by Gupta
and Kumar [1], in which no social groups exist. In contrast,
for large values of α, social groups are localized, the paths
from sources to destinations involve only Θ(1) hops, and the
maximum throughput capacity is achieved. Furthermore, rate
of order-capacity decrease is much smaller than with small
values of α.
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Fig. 2. Throughput capacity vs. the number of nodes when q = 5.

Figure 3 shows the throughput capacity versus the power
law exponent (α) for two types of values of q(n). In one case,
q(n) is a function of n, i.e., q(n) = f(n), where f(n) is
an increasing function of n, and in the second case q(n) is a
constant value, i.e., q(n) = 100. As the figure illustrates, if the
number of long-range contacts is not a function of the number
of nodes, the resulting capacity changes with the parameter α.
If α assumes small values (α ≤ 2), the network behaves as
if there were no social groups. For medium values of α (2 <
α < 3), an exponential growth is observed in the throughput
capacity from Θ(1/

√
n log n) to Θ(1/ log n). For large values

of α (α ≥ 3), each source selects its destination along a path
involving only Θ(1) hops w.h.p. and the resulting capacity is
the maximum capacity that can be obtained. We also observe
that the rate of capacity increase is very slow for α > 4.

However, if the number of long-range social contacts q(n)
grows proportional to the number of nodes n, the network
behaves as if the network had no social groups, independently
of the rate of growth for q(n), and each node selects its
destination randomly from all the other network nodes. In this

case, the throughput capacity does not change with parameter
α, and this is true even if q(n) is much smaller than n, i.e.,
q(n) = log log(n) which is a small number even when n is a
very large number.
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Fig. 3. Throughput capacity changes with α.

While the above results may appear somewhat in the ab-
stract, they are actually great news for real wireless networks,
because the size of social groups of individuals are finite (and
could be argued relatively small) and become independent of
the total number of nodes as the latter grows to infinity.

In this work we have made many assumptions to simplify
our analytical framework. For example, we have assumed
that all the nodes have social groups with the same size and
dispersion, that each source unicasts with a single destination
in its social group, that the protocol model is used to model
MAI, and that all radios are similar. In addition, we have not
addressed the role of content popularity or common interest
in content within social groups. We hope to relax these
assumptions in our future work, and that this paper will inspire
more modeling work on the impact of social groups in wireless
networks.

APPENDIX

DETAILED DERIVATION OF EQUATION (9)

d 2
C1r(n)

e∑
d 1
C1

+1e

x
4x∑
l=1

∑
vk in sl

d−αk

≡ nr2−α(n)

∫ d 2
C1r(n)

e+1

d 1
C1

+1e
u2−αdu

=
nr2−α(n)

3− α
((d 2

C1r(n)
e+ 1)3−α − (d 1

C1
+ 1e)3−α)

If the transmission range is the minimum range required
for the network connectivity, i.e. r(n) = Θ(

√
logn
n ), then for

sufficiently large n, we have
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(
d 2

C1r(n)
e+ 1

)3−α

= Θ((

√
n

log n
)3−α)

If α < 3,3

(d 2

C1r(n)
e+ 1)3−α − (d 1

C1
+ 1e)3−α

≡ Θ((

√
n

log n
)3−α)−Θ(1)

= Θ

(
(

√
n

log n
)3−α

)
Therefore,

d 2
C1r(n)

e∑
d 1
C1

+1e

x

4x∑
l=1

∑
vk in sl

d−αk

≡ nr2−α(n)

3− α
Θ((

√
n

log n
)3−α) ≡ Θ(n

√
n

log n
)

For dense social networks in which α > 3 we have

d 2
C1r(n)

e∑
d 1
C1

+1e

x

4x∑
l=1

∑
vk in sl

d−αk

≡ nr2−α(n)

α− 3
((

1

d 1
C1

+ 1e
)α−3 − (

1

d 2
C1r(n)

e+ 1
)α−3)

and for large n

(
1

d 1
C1

+ 1e
)α−3 − (

1

d 2
C1r(n)

e+ 1
)α−3

≡ Θ(1)−Θ((

√
log n

n
)α−3) ≡ Θ(1)

Thus, the above summation is equivalent to

nr2−α(n)

α− 3
Θ(1) ≡ Θ

(
n(

√
n

log n
)α−2

)
DETAILED DERIVATION OF EQUATION (10)

For large n with minimum transmission range:

σ1,n ≡
∫ γdmax

r(n)

nu1−αdu

=
n

2− α
((γdmax)2−α − r2−α(n))

If α < 2, for large n, the transmission range is very small;
therefore,

σ1,n ≡
n

2− α
(γdmax)2−α ≡ Θ(n)

3Note that for α = 3, both Cases I and II give the same result.

And for larger α, σ1,n is

σ1,n ≡ n

α− 2
((

√
n

log n
)α−2 − (

1

γdmax
)α−2)

≡ n

α− 2
(

√
n

log n
)α−2 ≡ Θ

(
n(

√
n

log n
)α−2

)
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