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ABSTRACT OF THE DISSERTATION

Vibration Suppression, Stabilization,

Motion Planning and Tracking for Flexible Beams

by

Antranik Antonio Siranosian

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2009

Professor Miroslav Krstic, Chair

The problems of vibration suppression, stabilization, motion planning, and track-

ing for flexible beams are important for many practical mechanical systems, such

as the cantilevered beam in an atomic force microscope, a solar panel array on a

satellite, the boom on a crane, or a structure mounted on a shake table. This

work approaches the aforementioned control design problems using two methods;

backstepping for partial differential equations (PDEs), and extremum seeking.

PDE backstepping is a form of model reference control for infinite dimensional

systems where boundary control is used to make a closed-loop system perform like

a target system, which is the reference model with desirable performance character-

istics. Infinite dimensional state transformations, relating plant and target systems,

are the key to PDE backstepping designs and are used to find the desired boundary

controllers. PDE backstepping techniques are presented for motion planning and

tracking for the string and shear beam with Kelvin-Voigt (KV) damping, and a

combination of PDE backstepping and gain scheduling is presented for extending

linear PDE backstepping techniques to stabilization, motion planning, and track-

ing for the string and shear beam with KV damping and boundary-displacement

dependent free-end nonlinearities. Explicit motion planning reference solutions for

the shear beam are found, using backstepping transformations, as a function of the

target system reference solution, which itself is a function of the string solution. The

xvi



string solution is the easiest to find, and is done using traditional motion planning

tools. Tracking controllers are found as a combination of vibration suppression and

motion planning controllers. Gain scheduling is a method that replaces nonlinear

control design with the design of a family of linear controllers. When combined with

linear PDE backstepping techniques, it provides a means of extending vibration sup-

pression, stabilization, motion planning and tracking results to the string and shear

beam with free-end nonlinearities. Gain scheduling based designs, which produce

locally stabilizing controllers parameterized by a function of the nonlinearity, are a

more simple and manageable alternative to full-state feedback linearizing nonlinear

PDE control designs.

Extremum seeking (ES) is a non-model based method used for tuning param-

eter(s) to optimize an unknown nonlinear map. ES tuning for positive-position-

feedback compensators is presented as a method of selecting the parameter(s) of

the compensator to improve vibration suppression on a mechanical system forced

by a persistent sinusoidal disturbance. ES tuning for motion planning and tracking

is presented as a method for tuning the amplitude and phase of a sinusoidal input

to a stable linear plant to generate and track a sinusoid of desired amplitude and

phase at the output.
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1

Introduction

Vibration suppression, stabilization, motion planning and tracking for flexible

beams are important control problems for many practical mechanical systems, such

as the cantilevered beam in an atomic force microscope, an array of solar panels

deployed on a satellite, or the boom on a crane. Particular motivation for this work

comes from a shake table control problem for the Los Alamos National Laboratory

where a shake table is used to actuate the base of a flexible structure in order

to impart a desired motion near the structure’s free-end. Motivation also comes

from an experimental testbed provided by the laboratory, on which control designs

could be implemented. This work addresses the aforementioned control problems

via two approaches. The first approach employs backstepping techniques for partial

differential equations (PDEs), while the second approach uses extremum seeking

techniques to tune the parameters of finite dimensional compensators.

PDE backstepping is a form of model reference control for infinite dimensional

systems where the open-loop system is related to a target system—a reference model

with desirable performance characteristics—using infinite dimensional state trans-

formations. The same state transformations are then used to find the desired bound-

ary controllers. Advantages of using PDE backstepping theory is that the design

can be done for an infinite dimensional system without having to discretize and

truncate the model, and it allows for the design of non-collocated controllers that

use actuation at the base and sensing at the free-end. This work expands on pre-

vious results for vibration suppression for linear string and shear beam PDEs, with

1
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Kelvin-Voigt damping, in two ways. First, a combination of motion planning and

PDE backstepping tools has been employed for the formulation of explicit motion

planning reference solutions for the tip displacement (string, target system, and

shear beam) and tip deflection angle (shear beam) using only actuation at the base.

PDE backstepping tools simplify the problem of finding reference solutions for the

shear beam by using transformations to relate the string reference solution, which

is the easiest to find, to the target system, and then to the beam. Second, PDE

backstepping tools for linear systems have been extended to nonlinear PDEs using

gain scheduling techniques. Gain scheduling is a technique that replaces nonlinear

control design with the design of a family of linear controllers that are applied ac-

cording to a scheduling signal. The combination of gain scheduling and linear PDE

backstepping tools provides a more simple and manageable design alternative for the

challenging problem of nonlinear control design for PDEs, as compared to exactly

linearizing nonlinear full-state feedback. The resulting gain scheduling based designs

in this work are not scheduled in the traditional sense, rather they are implemented

as nonlinear controllers (linear PDE backstepping controllers with boundary-value

dependent gains).

Extremum seeking (ES) is a non-model based adaptive control technique for

tuning parameters to optimize an unknown nonlinear map. ES relies on persistency

of excitation—usually a sinusoid—to perturb the parameters being tuned in order to

quantify their effects on the output of the nonlinear map, then uses that information

to generate estimates of the optimal parameter values. This work presents two

applications of extremum seeking. The first employs ES to tune the parameter

of a positive-position-feedback compensator for improved vibration suppression for

a system forced by a sinusoidal disturbance. The second employs it to tune the

parameters of a sinusoidal input in order to generate and track a sinusoid at the

output of an unknown, stable plant.

1.1 Thesis Overview

This section outlines the contents of this thesis.
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Chapter 2 presents the experimental testbed provided by the Los Alamos Na-

tional Laboratory, and its analytical modeling and experimental identification by

trial-and-error.

Chapter 3 presents explicit motion planning reference solutions, and tracking

results for the string and shear beam PDEs with Kelvin-Voigt damping using PDE

backstepping techniques.

Chapter 4 presents gain scheduling-inspired control designs for the stabilization

of nonlinear PDEs. The control design, with a result for local exponential stability of

the origin of a closed-loop system, is presented for a benchmark first-order hyperbolic

PDE with boundary-value dependent in-domain nonlinearity. The design is then

applied to the string and shear beam with Kelvin-Voigt damping and boundary-

displacement dependent free-end nonlinearity.

Chapter 5 presents an extremum seeking based design for the real-time tuning

of the parameter of a positive-position-feedback compensator. The compensator is

used to suppress vibrations on a system forced by a sinusoidal disturbance.

Chapter 6 presents an extremum seeking based design for the generation and

tracking of a sinusoid at the output of a stable linear system. Motion planning is

done by assuming a sinusoidal form for the system input, then extremum seeking is

used to tune its amplitude and phase.

Chapter 7 summarizes the results of this thesis, and presents concluding re-

marks.

Appendix A presents results for the extremum seeking control of a point mass

for target tracking without position measurements.

Appendix B presents experimental results for active vibration absorbers ap-

plied to the testbed.
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Modeling and Identification of a

Shake Table-Specimen Testbed

This chapter presents the experimental testbed provided by the Los Alamos

National Laboratory (LANL), and its analytical modeling and experimental iden-

tification by trial-and-error. Figure 2.1 shows the testbed with an electrodynamic

shaker attached to a cantilevered beam. Locally hardening or softening nonlin-

earities can be introduced by arranging magnets around the free-end of the beam,

which has magnets or steel plates attached to it. The testbed captures pertinent

characteristics of a LANL shake table with specimen. The work done in modeling

the cantilevered beam helped to gain an understanding of flexible beams and their

models, which are used in Chapters 3 and 4. Experimental identification of the

testbed proved to be a valuable learning experience and provided insights to the its

characteristics, which were used for the work in Chapter 6 and Appendix B.

The testbed is composed of an Aluminum cantilevered beam with nominal di-

mensions 15 in× 2 in× 0.088 in (380 mm× 50 mm× 2.24 mm). The beam is forced

by in-domain actuation, approximately five inches (127 mm) from the base, by an

electrodynamic shaker [49]. Piezoelectric accelerometers [81] can be placed at de-

sired locations on the beam, depending on what is chosen as the testbed output.

Not shown are a linear power amplifier [79], signal conditioner and data acquisition

system [80], and host and target computers. Matlab and Simulink are used on the

4
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Cantilevered Beam

Actuator

Free End
Clamped

End

Figure 2.1: Photograph of testbed showing the cantilevered beam attached to the
electrodynamic shaker/actuator. Also shown is an accelerometer placed at the free
end of the beam.

host computer to design experiments to be run on the testbed. The xPC Target

toolbox is used to interface the Matlab code with data acquisition hardware in the

target computer. Matlab translates the Simulink block diagrams into executable

code that is downloaded and run on the target computer.

This chapter is organized as follows. Section 2.1 presents the analytical modeling

of the electrodynamic shaker, cantilevered beam, nonlinear interaction force, and

testbed (shaker attached to beam, with possible nonlinearities). Section 2.2 presents

the compilation of parameter values for the models in Section 2.1, along with the

experimental identification of the amplifier, shaker, cantilevered beam, and testbed

(amplifier, shaker attached to beam, with possible nonlinearities).

2.1 Analytical Modeling

2.1.1 Electrodynamic Shaker

An electrodynamic shaker is an electromechanical device whose operation is sim-

ilar to a that of a loudspeaker. Current is passed through coils wound on an arma-

ture, which produces an electro-magnetic field that interacts with a magnetic field

produced by permanent magnets in the shaker housing. The interaction between

the electro-magnetic and magnetic fields causes translation of the armature, which

is supported on springs mounted in the shaker body.
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The dimensional shaker dynamics are [13]

i∗t∗(t
∗) = − 1

L∗
s

(R∗i∗(t∗) + B∗l∗y∗t∗(t
∗)) +

1

L∗
s

v∗(t∗) (2.1)

y∗t∗t∗(t
∗) = − 1

m∗ (d
∗
sy

∗
t∗(t

∗) + k∗sy
∗(t∗)) +

B∗l∗

m∗ i∗(t∗) , (2.2)

where B∗ is the air-gap flux density in teslas (T), L∗
s is the armature coil inductance

in henries (H), R∗ is the armature coil resistance in ohms (Ω), d∗s is the shaker damp-

ing coefficient in newton-seconds-per-meter (N·s/m), k∗s is the shaker spring constant

in newtons-per-meter (N/m), l∗ is the armature coil length in meters (m), m∗ is the

mass of the shaker armature (including any attached hardware) in kilograms (kg),

t∗ is time in seconds (s), v∗(t∗) is the input to the shaker in volts (V), i∗(t∗) is the

armature current in amperes (A), and y∗(t∗) is the armature displacement in meters

(m). The superscript ∗ signifies dimensional parameters. The subscript t∗ denotes

a derivative with respect to time. The dimensional shaker transfer function, from

the input voltage v∗(t∗) to the armature displacement y∗(t∗), is

Y ∗(s)

V ∗(s)
=

B∗l∗

(m∗s2 + d∗ss + k∗s) (L∗
ss + R∗) + (B∗l∗)2 s

(2.3)

=

B∗l∗

m∗L∗
s

s3 +
(

R∗

L∗
s

+ d∗s
m∗

)
s2 +

(
R∗d∗s
L∗

sm∗ + (B∗l∗)2

L∗
sm∗ + k∗s

m∗

)
s + R∗k∗s

L∗
sm∗

, (2.4)

where V ∗(s) and Y ∗(s) represent the Laplace transforms of v∗(t∗) and y∗(t∗).

The nondimensionalized shaker dynamics are

it(t) = − 1

Ls

(Ri(t) + yt(t)) +
1

Ls

v(t) (2.5)

ytt(t) = −(dsyt(t) + y(t)) + i(t) , (2.6)

where the dimensionless parameters are defined as Ls = L∗
sk∗

B∗2l∗2
, R =

R∗
√

k∗sm∗

B∗2l∗2
,

ds = d∗s√
k∗sm∗ , i = i∗B∗

k∗
, t = t∗

√
k∗

m∗ , v = v∗

B∗l∗2

√
m∗

k∗
, and y = y∗

l∗
. The nondimensional

shaker transfer function is

Y (s)

V (s)
=

1

(s2 + dss + 1) (Lss + R) + s
(2.7)

=
1

Ls

s3 +
(

R
Ls

+ ds

)
s2 +

(
1 + 1

Ls
+ dsR

Ls

)
s + R

Ls

. (2.8)
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2.1.2 Cantilevered Beam

The cantilevered beam is modeled as a Timoshenko beam with Kelvin-Voigt

damping (internal material damping)—which is the most complete and accurate of

the beam models—and is written as two coupled wave equations (second-order-in-

time, second-order-in-space partial differential equations). The dimensional model

for a beam that is free at the tip x∗ = 0 and clamped at the base x∗ = L∗ is [74, 91]

ρ∗A∗u∗t∗t∗(x
∗, t∗) = kA∗G∗(1 + d∗∂t∗) {u∗x∗x∗(x

∗, t∗)− αx∗(x
∗, t∗)} (2.9)

ρ∗I∗αt∗t∗(x
∗, t∗) = (1 + d∗∂t∗) {E∗I∗αx∗x∗(x

∗, t∗)

+kA∗G∗(u∗x∗(x
∗, t∗)− α(x∗, t∗))} (2.10)

u∗x∗(0, t) = kA∗G∗α(0, t) (2.11)

αx∗(0, t) = 0 (2.12)

u∗(L∗, t) = 0 (2.13)

α(L∗, t) = 0 , (2.14)

where A∗ is the cross-sectional area in square-meters (m2), E∗ is Young’s modulus

(modulus of elasticity) in newtons-per-meter-squared (N/m2), G∗ is shear modulus

in newtons-per-meter-squared (N/m2), I∗ is the moment of inertia of the cross-

section about the neutral axis in quartic-meters (m4), L∗ is the length of the beam

in meters (m), d∗ is the Kelvin-Voigt damping coefficient in seconds (s), k is the

shape factor, ρ∗ is the material density in kilograms-per-meter-cubed (kg/m3), t∗ is

time in seconds (s), x∗ is the axial location along the beam in meters (m), u∗(x∗, t∗)

is the transverse displacement of the beam in meters (m), and α(x∗, t∗) is the angle

of rotation due to the bending moment in radians (rad). The subscripts t∗ and x∗

denote partial derivatives with respect to time and space, respectively. The shape

factor depends on the cross-section, which for a rectangular cross-section is given

by [32] k = 10(1+ν)
12+11ν

where Poisson’s ratio ν = − εy

εx
= − εz

εx
is the ratio of the induced

strains εy and εz and the primary strain εx assuming the deforming force is applied

along the x-axis, and is constant during elastic deformation [74].

The nondimensionalized Timoshenko beam model is [32, 91]

ρAutt(x, t) = kAG(1 + d∂t) {uxx(x, t)− αx(x, t)} (2.15)
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ρIαtt(x, t) = (1 + d∂t) {αxx(x, t) + kAG(ux(x, t)− α(x, t))} (2.16)

ux(0, t) = α(0, t) (2.17)

αx(0, t) = 0 (2.18)

u(1, t) = 0 (2.19)

α(1, t) = 0 , (2.20)

where the dimensionless parameters are defined as A = A∗

L∗2 , G = G∗L∗4

E∗I∗
, I = I∗

L∗4 ,

L = L∗

L∗ , d = d∗ω∗
1, t = t∗ω∗

1, u = u∗

L∗ , x = x∗

L∗ , ρ = ρ∗
L∗6ω∗2

1

E∗I∗
, where ω∗

1 is the first

natural frequency of the beam in radians per second. A parameterized version of

the dimensionless Timoshenko beam model can be written as [43, 44]

εutt(x, t) = (1 + d∂t) {uxx(x, t)− αx(x, t)} (2.21)

µεαtt(x, t) = (1 + d∂t) {εαxx(x, t) + a(ux(x, t)− α(x, t))} (2.22)

ux(0, t) = α(0, t) (2.23)

αx(0, t) = 0 (2.24)

u(1, t) = 0 (2.25)

α(1, t) = 0 , (2.26)

where a = ρA =
ρ∗ω∗2

1 L∗4A∗

E∗I∗
, ε = ρ

kG
=

ρ∗ω∗2
1 L∗2

kG∗ , and µ = ρI =
ρ∗ω∗2

1 L∗2

E∗ . Figure

2.2 shows the relationships between the displacement u(x, t), slope ux(x, t), and

deflection angle α(x, t).

2.1.3 Nonlinear Interaction Force

Figure 2.3 shows a drawing depicting the top view of the testbed, focusing on the

nonlinear interaction. The x-axis corresponds to the displacement of the beam tip,

the y-axis is colinear with the neutral axis of the beam, r1 and r2 are the distances

from the steel located at (x, 0) to the magnets located at (x1, y1) = (a1, b1) and

(x2, y2) = (−a2, b2), the constants knl
1 , knl

2 are proportional to the pull force for each

magnet, and f is the interaction force in the x-axis. The interaction of stationary

magnets with steel/magnets attached to the beam tip suggests dynamic charac-

teristics of the magnetic field and the tip force it induces, however for low enough
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centerline

perpendicular to face
tangent to centerline

Figure 2.2: A differential element of length dx in the Timoshenko beam. The
diagram shows the relationship between the beam displacement u(x, t), the slope
ux(x, t) and the deflection angle α(x, t). This diagram has been adapted from a
figure in [74].

x

y

a1−a2

b2

b1
r1

r2

f

knl
1knl

2

Figure 2.3: Top view of the geometry of the testbed nonlinearity. The neutral axis
of the cantilevered beam is colinear to the y-axis. The steel or magnets placed at
the tip of the beam displace in the x-axis, while the magnets at (a1, b1) and (−a2, b2)
are stationary.

natural frequencies of the testbed the interaction can be modeled as a magnetostatic

phenomenon [37]. Also, the magnet/steel-magnet interaction force is expected to

behave inversely proportional to a power of the relative distance between the mag-

nets on the testbed table and steel-magnets at the beam tip. Qualitatively, the force

is expected to increase as the tip of the beam approaches the magnet, drop to zero

when the tip of the beam is directly under the magnet, then change signs and follow

a similar trend as the tip passes below the magnet and moves away.

The total force f acting on the steel in the x-axis will be the sum of the x-

components of the forces caused by each magnet, and can be written as f = f1x+f2x.

The form of the individual force fi, acting in the direction of ri, is postulated as

fi =
knl

i

rn
i

. Using the geometry of the problem, the magnitude of fi in the x-direction
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Figure 2.4: Plot of the nonlinear interaction force f as a function of the tip dis-
placement x, for magnets placed at (a,b) and (-a,b). The interaction force has been
normalized by the pull force.

is given by fix =
knl

i

rn
i

xi−x
ri

where ri =
√

(xi − x)2 + y2
i . The expression for the total

force given the magnet locations (x1, y1) = (a1, b1) and (x2, y2) = (−a2, b2) is then

f(x) =
knl

1 (a1 − x)(
(a1 − x)2 + b2

1

)n+1
2

− knl
2 (a2 + x)(

(a2 + x)2 + b2
2

)n+1
2

. (2.27)

Depending on the application, this model can be used as dimensional or dimension-

less.

Figure 2.4 is a plot of the total x-direction interaction f , normalized by the

maximum pull force fpull (the force required to pull a magnet away from a steel

plate) as a function of tip displacement x, for a pair of magnets of arbitrary strength

placed symmetrically about the y-axis at (a, b), (−a, b). The plot shows that the

model (2.27) captures the expected behavior of the interaction force as the tip of

the beam moves across the magnets.

2.1.4 Testbed

The dimensional testbed model is derived by combining the shaker model (2.1),

(2.2), beam model (2.9)–(2.12) with u∗(L∗, t) and α(L∗, t) actuated.
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The nondimensional testbed model is

it(t) = − 1

Ls

(Ri(t) + yt(t)) +
1

Ls

v(t) (2.28)

ytt(t) = −(dsyt(t) + ksy(t)) + li(t) , (2.29)

with (2.21)–(2.24), and u(1, t) and α(1, t) actuated, and the redefined nondimen-

sional shaker parameters Ls =
L∗

sω∗
1m∗

B∗2L∗2 , R =
R∗ω∗

1m∗

B∗2L∗2 , ds = d∗

ω∗
1m∗ , ks = k∗s

m∗ω∗2
1

, l = l∗

L∗ ,

i = i∗B∗

ω∗2
1 m∗ , v = v∗

B∗L∗2ω∗
1
, t = t∗ω∗

1, y = y∗

L∗ , with ω∗
1 redefined as the first natural

frequency of the testbed.

State dependent nonlinearities acting on the beam tip are accounted for by

augmenting the boundary condition (2.23) with the additive term f (u(0, t)), i.e.

ux(0, t) = α(0, t) + f (u(0, t)). Depending on the sign of f ′ (u(0, t)) = df(u(0,t))
du(0,t)

, the

nonlinearity can either have positive stiffness (f ′ > 0) or negative stiffness (f ′ < 0).

2.2 Identification

This section discusses the parameter selection for the analytical models pre-

sented in the previous section, and trial-and-error experimental identification of the

testbed and its individual components. Parameters for the shaker and cantilevered-

beam models were measured, given by manufacturer’s specifications, or found in the

literature.

Experimental identification by trial-and-error was done for the amplifier, shaker,

and testbed based on magnitude-frequency and phase-frequency (Bode) plots gen-

erated from experimental data. First, output data was recorded for a sine sweep

input. Then a discrete Fourier transform was performed on the collected input

and output data, and the ratio of the transformed data was used to compute the

magnitude and phase relationships from input to output. Observations of the exper-

imental magnitude-frequency and phase-frequency plots were used to find the form

of a transfer function or finite dimensional model, whose parameters were then cho-

sen based on trial-and-error comparisons of the experimental and identified models.

This work was done without a formal education in experimental system identifi-

cation techniques. All identification has been done for the physical, dimensional

systems. The superscript-star has been omitted for clarity.
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Figure 2.5: Comparison of experimental and identified amplifier input-voltage-to-
output-voltage magnitude-frequency plots.

2.2.1 Amplifier

Experimental Identification by Trial-and-Error

Input data was generated by the target PC. Output data was measured by

a probe connected to the output (load) on the back panel of the amplifier, and

collected by the target PC. The data was produced with three sine sweeps in the

frequency ranges 10−1–101 Hz, 101–103 Hz and 103–104 Hz. The sampling rate in

the first two ranges was chosen to be ten times the upper limit in each range, i.e.,

102 Hz and 104 Hz respectively. The sampling rate in the last range was chosen to

be 2×104 Hz, based on the minimum acceptable rate needed to accurately measure

the highest frequency signals [26] and the limitations of the data acquisition system.

Figure 2.5 shows the experimental and identified amplifier input-voltage-to-

output-voltage magnitude-frequency plots. The experimental data has a low fre-

quency slope of positive twenty decibels-per-decade. It then levels off around ten

hertz and stays level until around one-thousand hertz. Lastly, it drops off at an es-

timated slope of negative twenty decibels-per-decade. Based on these observations,

and knowledge of the frequency response of linear systems, the amplifier transfer

function has the form

V (s)

Vin(s)
=

Ks

(s + 2πf1) (s + 2πf2)
, (2.30)
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where Vin is the input voltage to the amplifier, V is the amplifier output voltage,

K > 0 is a constant gain, f1 > 0 is the frequency at which the magnitude first

levels off, and f2 > 0 is the frequency at which the magnitude drops off. The gain

K is arbitrary, in the sense that it depends on a gain adjustment dial located on

the front panel of the amplifier. For all experiments, the dial was set such that the

amplifier transfer function had unity gain in the frequency range 101–103 Hz. The

model values, based on trial-and-error estimates, were found to be K = 92.5× 103,

f1 = 0.8 Hz and f2 = 15 × 103 Hz. The measured and estimated magnitude-

frequency plots agree with the performance data provided by the manufacturer [79].

2.2.2 Electrodynamic Shaker

Parameter Selection

The nondimensional shaker parameters are Ls =
L∗

sω∗
1m∗

B∗2L∗2 , R =
R∗ω∗

1m∗

B∗2L∗2 , ds =
d∗s

ω∗
1m∗ , ks = k∗s

m∗ω∗2
1

, and l = l∗

L∗ , which require identification of dimensional physical

properties of the shaker electronics (air-gap flux density B∗, armature coil inductance

L∗
s, armature coil resistance R∗, armature coil length l∗) and mechanical sub-system

(damping coefficient d∗s, spring constant k∗s , mass of armature with attachment m∗),

as well as the first natural frequency ω∗
1 and length L∗ of the beam. Beam parameters

appear in the nondimensional shaker values, since the nondimensionalization was

done for the testbed as a whole.

Table 2.1 summarizes the manufacturer specified, computed and measured di-

mensional shaker properties. The armature coil inductance L∗
s, armature mass m∗

and the force-to-current ratio F ∗/i∗ were given by manufacturer’s specifications [49,

53]. The product B∗l∗ was computed using the manufacturer’s specification of

F ∗/i∗ = 1.38 lbf/A and the force-current relationship F ∗ = 2.542K1i
∗B∗l∗ [49]. The

armature coil resistance R∗ was measured with an ohmmeter. The spring constant

k∗s was measured experimentally using a pull scale to measure force, a ruler to mea-

sure displacement, and a linear proportional relationship to relate the applied force

and resulting displacement to the spring constant k∗s .
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Table 2.1: Manufacturer’s specifications, computed properties and measured prop-
erties of the electrodynamic shaker.

Manufacturer’s Specifications
L∗

s, H 0.28× 10−3
m∗, kg (lbm) 0.031 (0.069)

Computed Properties
B∗l∗, T·m (T·in) 6.14 (242)

Measured Properties
R∗, Ω 1.6
k∗s , N/m (lbf/in) 2940 (16.8)

Experimental Identification by Trial-and-Error

An estimate of the shaker damping d∗s was to be made by comparing the ex-

perimental shaker Bode plot to that of the shaker transfer function (2.4), but a

comparison of the plots showed that the analytical model did not match the exper-

imental data. The source of the discrepancy was that R∗ and L∗
s were assumed to

be static parameters, but were in fact functions of the input voltage frequency [13].

While one option was to estimate R∗ = R∗(ω∗) and L∗
s = L∗

s(ω
∗) [13], the simple

solution was to group their effects into the shaker transfer function. Therefore, a

new transfer function was derived for the input-output characteristics of the shaker

based on the experimental magnitude-frequency data.

Experiments were conducted with the shaker disconnected from the beam. The

data generation method used for the amplifier-shaker system, was similar to that

used for the amplifier. Input data was generated and collected by the target PC.

Output data was collected with an accelerometer attached to the shaker armature.

Sine sweeps were used to produce data in the overlapping frequency ranges 10−1–

103 Hz, 101–104 Hz, and 102–104 Hz. Sampling rates were chosen as they were for

the amplifier data collection.

Figure 2.6 shows the experimental and identified shaker voltage-to-acceleration

magnitude-frequency plots. The collected data is for the combined amplifier-shaker

system, however the amplifier dynamics are mostly unity gain between 100–103 Hz

and were ignored. The experimental magnitude-frequency plot shows zero slope for
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Figure 2.6: Comparison of experimental and identified shaker voltage-to-acceleration
magnitude-frequency plots.

low frequencies, but that data was deemed unreliable since it was collected near the

lower bound of the accelerometer bandwidth of 1–104 Hz [81], and because a positive

forty decibel-per-decade slope is expected when measuring acceleration. Ignoring

the initial zero slope portion of the plot, the experimental magnitude-frequency

plot begins with a positive forty decibel-per-decade slope. Next it levels off, then

drops off with a slope of negative twenty decibels per decade. Lastly, the plot has

a lightly damped resonant peak, which agrees with the manufacturer’s specification

for the fundamental resonance of the shaker lying between 9.5–10 × 104 Hz [49].

Observations suggest a shaker transfer function of the form

A(s)

Vin(s)
=

Ks2

(s + 2πf1)
2 (s + 2πf2)

(
s2 + 2ζ (2πf3) s + (2πf3)

2
) , (2.31)

where K > 0 is a constant gain, f1 > 0 is the frequency at which the curve levels

off, f2 > 0 is the frequency at which the curve rolls over, and f3 > 0 is the natural

frequency of the resonant pole with damping ratio ζ > 0. The parameter values,

based on trial-and-error estimates, were found to be K = 160 × 1012, f1 = 54 Hz,

f2 = 370 Hz, f3 = 6.3× 103 Hz and ζ = 0.025.
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Table 2.2: Physical properties, measured dimensions, computed properties, first
natural frequency and nondimensional parameters for the cantilevered beam.

Physical Properties
E∗, Pa (psi) 70.3× 109 (10.2× 106)
G∗, Pa (psi) 26.2× 109 (3.80× 106)
ν 0.35
ρ∗, kg/m3 (lb/in3) 2.71× 103 (0.098)

Measured Dimensions
L∗, m (in) 381× 10−3 (15.0)
h∗, m (in) 50.0× 10−3 (1.97)
b∗, m (in) 2.24× 10−3 (0.0880)

Computed Properties
A∗, m2 (in2) 0.112× 10−3 (0.173)
I∗, m4 (in4) 46.8× 10−12 (0.112× 10−3)
k 0.852

Natural Frequency
ω∗

1, rad/s (Hz) 79.2 (12.6)

Nondimensional Parameters
a 12.2
ε 0.111× 10−3
µ 0.0351× 10−3

2.2.3 Cantilevered Beam

Parameter Selection

The nondimensional beam parameters are a =
ρ∗ω∗2

1 L∗4A∗

E∗I∗
, d = d∗ω∗

1, ε =
ρ∗ω∗2

1 L∗2

kG∗

and µ =
ρ∗ω∗2

1 L∗2

E∗ , with A∗ = b∗h∗, I∗ = h∗b∗3

12
and k = 10(1+ν)

12+11ν
, which require

identification of the beam’s material properties (Young’s modulus E∗, shear modulus

G∗, Poisson’s ratio ν, density ρ∗), measured physical dimensions (clamped length

L∗, height h∗, thickness b∗), computed physical properties (cross-sectional area A∗,

moment of inertia I∗, shape factor k) and estimated physical properties (Kelvin-

Voigt damping d∗, first natural frequency ω∗
1).

Table 2.2 tabulates the material properties of 6061-T6 Aluminum [58], the mea-

sured beam dimensions, the computed properties, the estimated first natural fre-

quency (found experimentally), and the nondimensional parameters. Figure 2.7

shows a magnitude-frequency plot highlighting the first three natural frequencies of
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Figure 2.7: Magnitude-frequency plot of beam tip acceleration for response to initial
conditions, showing first three natural frequencies of the cantilevered beam.

Table 2.3: Comparison of first three theoretical and identified natural frequencies
of cantilevered beam.

Frequency, rad/s (Hz)
theoretical identified

ω∗
1 79.7 (12.7) 79.2 (12.6)

ω∗
2 499 (79.4) 497 (79.1)

ω∗
3 1400 (223) 1390 (221)

the cantilevered beam, in response to an initial displacement. Table 2.3 compares

the experimentally estimated natural frequencies with the frequencies computed by

the formula [32] ω∗
i =

√
E∗I∗

ρ∗A∗L∗4 a
2
i , where ω∗

i is the ith natural frequency in radians-

per-second, and ai is the ith wave number (a1 = 1.875, a2 = 4.694, a3 = 7.855).

The largest error between the experimentally estimated and theoretical computed

values is less than one percent, with all the theoretical values overestimating their

corresponding experimental values. Aside from confirming the estimated natural

frequencies, this also shows that the beam properties summarized in Table 2.2, and

used for the ω∗
i computations, are correct.

An attempt was made to find the Kelvin-Voigt (KV) damping coefficient by sim-

ulating a cantilevered beam with a, ε and µ given in Table 2.2 and adjusting the KV

damping to match experimental data. The simulated data and nondimensionalized

experimental data did not match, suggesting that either the parameters used to
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compute a, ε and µ were incorrect, or the Timoshenko beam model did not account

for extraneous effects on the beam. As another means of checking the beam prop-

erties, the beam’s “spring constant” was measured and compared to the theoretical

spring constant found using f ∗ = 3E∗I∗

L∗3 x∗ [58]. A comparison of the theoretical and

experimental force-deflection curves showed that the theoretical and experimental

spring constants were within one-half of a percent of each other. This again verified

that the beam properties in Table 2.2 were correct.

Since the theoretical beam model required base actuation, while the testbed

provided in-domain actuation, further work to identify the Kelvin-Voigt damping

coefficient was suspended in favor of identification the testbed as a whole (amplifier,

shaker with beam attached, and possible nonlinearities).

2.2.4 Testbed and Nonlinear Force

Experimental Identification by Trial-and-Error of the Testbed Without

Nonlinearities

Input data was generated and collected by the target computer. Output data

was collected with an accelerometer attached to the tip of the beam. Sine sweep

ranges, and sampling rates were chosen the same as for the shaker identification

experiments.

Figure 2.8 shows the experimental testbed Bode plot, showing multiple resonant

peaks becoming more closely spaced as the frequency increases, along with the

occasional anti-resonant peaks. The phase-frequency figure is plotted in the range

±180◦ (±π rad) as wrapped data, i.e. when the curve reaches −180◦ it jumps up

to 180◦ rather than continue into more negative values. While Figure 2.8 suggests

low frequency slope and phase of zero, this is once again an issue of unreliable

accelerometer data, which is further supported by a magnitude-frequency plot for the

voltage-to-displacement output. Figure 2.9 compares the voltage-to-acceleration,

voltage-to-displacement, and voltage-to-twice differentiated displacement (found by

adding a line of slope +40 db/dec to the voltage-to-displacement data). Beam tip

displacement data was measured using a laser displacement meter [34] (located at
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Figure 2.8: Experimental testbed voltage-to-acceleration Bode plot for an accelerom-
eter attached to the tip of the beam.

the LANL), which provided reliable data in the low frequency range. The voltage-

to-displacement curve has zero slope for low frequencies. The twice differentiated

voltage-to-acceleration curve matches the trends of the experimental voltage-to-

acceleration curve well, but is shifted by an arbitrary constant. This confirms that

the voltage-to-acceleration curve should have a low frequency slope of positive forty

decibels-per-decade.

Figure 2.10 compares the experimental and identified testbed voltage-to-acceleration

magnitude-frequency plots. Based on observations of figures 2.8 and 2.9, focusing on

the first three resonant modes, the voltage-to-acceleration testbed transfer function

has the form

Atip(s)

Vin(s)
=

Ks2 (s + 2πz1) (s + 2πz2)(
s2 + 2ζ1 (2πf1) s + (2πf1)

2
) (

s2 + 2ζ2 (2πf2) s + (2πf2)
2
)

× 1(
s2 + 2ζ3 (2πf3) s + (2πf3)

2
) , (2.32)

where the K > 0 is a constant gain, the zi > 0 are zeros, and the fi > 0 are
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Figure 2.9: Comparison of the experimental magnitude-frequency plots from the in-
put voltage to output acceleration and displacement, as well as a curve generated by
twice differentiating (added line with +40 dB/dec slope) the voltage-to-displacement
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Figure 2.10: Comparison of experimental and identified testbed voltage-to-
acceleration magnitude-frequency plots.

frequencies of the resonant poles with damping rations ζi > 0. The parameter values,

based on trial-and-error estimates, were found to be K = 15 × 106, f1 = 16 Hz,

f2 = 72 Hz, f3 = 188 Hz, z1 = 23 Hz, z2 = 102 Hz, ζ1 = 0.06, ζ2 = 0.06, and

ζ3 = 0.03.
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Figure 2.11: Model used for experimental identification of the testbed with
nonlinearities.

Finite Dimensional Model for Testbed with Nonlinearities

Based on the resulting finite dimensional model for the testbed without nonlin-

earities, given in (2.32), the choice was made to find a finite dimensional model for

the testbed with nonlinearities then identify its parameters experimentally. Figure

2.11 shows the model whose parameters must be identified. The cantilevered beam

is modeled as three coupled spring-mass-damper systems, with a fixed base and

nonlinear spring providing the nonlinear interaction force at the tip. The beam is

actuated by the shaker modeled as a spring-mass-damper and transfer function.

The model to be matched to the experimental data is

Fs(s) = Gs(s)Ga(s)Vin(s) (2.33)

msẍs(t) + (cs + c1 + c2) ẋs(t) + (ks + k1 + k2) xs(t) = fs(t) + c1ẋ1(t) + k1x1(t)

+c2ẋ2(t) + k2x2(t) (2.34)

m1ẍ1(t) + (c0 + c1) ẋ1(t) + (k0 + k1) x1(t) = c1ẋs(t) + k1xs(t) (2.35)

m2ẍ2(t) + (c2 + c3) ẋ2(t) + (k2 + k3) x2(t) = c2ẋs(t) + k2xs(t)

+c3ẋtip(t) + k3xtip(t) (2.36)

m3ẍtip(t) + c3ẋtip(t) + k3xtip(t)± f (xtip) = c3ẋ2(t) + k3x2(t) , (2.37)
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where fs(t) is the electromagnetic force of the shaker armature, Ga(s) is the amplifier

transfer function given in (2.30), Gs(s) is a transfer function accounting for the

shaker electronics and is to be identified along with the damping coefficients, ci > 0,

spring constants, ki > 0 and masses, mi > 0, and the nonlinear interaction force

f (xtip) given in (2.27). The significance of the ± sign in (2.37) is that the magnet-

steel/magnet interaction can be locally softening (−) or hardening (+).

Experimental Identification by Trial-and-Error of the Testbed with Non-

linearities

Experimental system identification was done in three parts. First the parameters

for the shaker spring-mass-damper and transfer function were identified with the

beam disconnected. Second, the testbed model with f (xtip) = 0 was used to identify

parameters of the three coupled spring-mass-damper systems modeling the beam.

Lastly, nonlinearities were introduced to identify the parameters of f (xtip).

The shaker parameters cs, ks, and the transfer function Gs(s) were experimen-

tally identified by trial-and-error by comparison to a voltage-to-acceleration Bode

plot for the shaker with hardware, but disconnected from the beam. The total mass

of the shaker armature, with hardware to attach it to the beam, is ms = 0.039 kg.

Figure 2.12 compares the experimental Bode plot of the shaker and the identified

model. The identified parameters and transfer function, based on trial-and-error

estimates, were cs = 200 N·s/m and ks = 110.5× 106 N/m, and

Gs(s) =
Ksf

s2
1 f s

2

(s + 2πf s
1 )2 (s + 2πf s

2 )
, (2.38)

with f s
1 = 54 Hz, f s

2 = 200 Hz and Ks = 2.8 × 109. The identified model matches

the experimental Bode plot in the frequency range of interest, which captures the

first three modes of the testbed.

Next the cantilevered beam portion of the model was identified for f (xtip) = 0.

The mass of the cantilevered beam was equally distributed to the three spring-

mass-damper systems, hence m1 = m2 = m3 = 0.04 kg. The damping and spring

constants c0, c1, c2, c3, k0, k1, k2, and k3 were experimentally identified using accel-

eration data collected at the beam tip for the testbed without nonlinearities. Figure
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Figure 2.12: Comparison of experimental and identified voltage-to-acceleration
Bode plots for shaker portion of finite dimensional testbed model for nonlinear
identification.

2.13 compares the experimental and identified voltage-to-acceleration Bode plots

of the linear portion of the identified nonlinear testbed. The parameter values are

c0 = 2.2 N·s/m, c1 = 1.1 N·s/m, c2 = 1.1 N·s/m, c3 = 2.2 N·s/m, k0 = 1750 N/m,

k1 = 875 N/m, k2 = 875 N/m, and k3 = 4375 N/m. A gain of two-and-a-half was

also needed to adjust the level of the magnitude-frequency plot. The identified model

does a good job matching the first mode, which is exhibits the most displacement

and would therefore interact most with the nonlinear force at the tip. The discrep-

ancy between the phase plots was caused by a poorly chosen cut-off frequency of a

high-pass filter used on the experimental data. Comparisons of experimental data

and the identified system were also made to evaluate the performance of the iden-

tified model when extra mass was placed at the end of the cantilevered beam. The

identified model performed very well with either steel plates or magnets attached to

the tip of the beam.

The parameters of the nonlinearity a1, a2, b1 and b2 depend on the geometry of

the magnet locations with respect to the steel/magnets at the end of the beam. Their

values, measured for the particular experimental set-up, were a1 = a2 = 0.038 m,

and b1 = b2 = 0.022 m. First a locally hardening set-up was made by attaching

magnets at the end of the beam to repel the magnets on the testbed. The nonlinear
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Figure 2.13: Comparison of experimental and identified voltage-to-acceleration Bode
plots of finite dimensional testbed model without nonlinearities.

spring constants for the locally hardening set-up, identified by trial-and-error com-

parisons of experimental and simulated data, were kn1 = kn2 = 0.2 × 10−3 N·m2.

Comparisons of voltage-to-acceleration Bode plots showed that the model captured

the nonlinear effects and matched the increase in resonant frequency of the first

mode caused by the locally hardening nonlinearity.

A locally softening set-up was made by attaching steel plates at the end of the

beam, which are attracted to the magnets on the testbed. The nonlinear spring

constants for the locally softening set-up, identified by trial-and-error comparisons

of experimental and simulated data, were kn1 = kn2 = 0.35×10−3 N·m2. The model

captured the decrease in resonant frequency of the first mode caused by the locally

softening nonlinearity.

Experiments were also done to characterize the effects of the amplitude of the

sine sweep input to the testbed with locally hardening and softening nonlineari-

ties. Simulation results showed that the identified model captured those nonlinear

behaviors of the testbed.
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Motion Planning and Tracking for

the Shear Beam PDE

This chapter presents explicit motion planning reference solutions for flexible

beams with Kelvin-Voigt (KV) damping. The goal is to generate periodic reference

signals for the displacement and deflection angle at the free-end of the beam using

only actuation at the base. The explicit deflection angle reference solution is found

as a result of writing the shear beam model in a strict-feedback form. PDE backstep-

ping transformations relate the strict-feedback model to a target system, governed

by an exponentially stable wave equation with KV damping, whose displacement

reference solution is relatively easy to find. The explicit beam displacement refer-

ence solution is found using the target system solution and an inverse backstepping

transformation. The explicit reference solutions for the wave equation and shear

beam with KV damping are novel results. State-feedback tracking boundary con-

trollers are found by extending previous PDE backstepping stabilization results.

Application of the shear beam results to the more complicated Timoshenko beam

is discussed.

25
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3.1 Introduction

Great strides have been made in the design and implementation of collocated

boundary controllers—a control architecture with sensing and actuation implemented

at the same boundary point—for flexible beams for vibration suppression and sta-

bilization. A comprehensive monograph on collocated boundary control of flexible

beams [52] presents the key approaches for studying stability and for imparting

damping via boundary control. Work done in [10, 11, 20, 21, 90] has achieved an-

alytical and experimental success in designing collocated boundary controllers for

flexible beams. Recent work has also been done to extend vibration suppression and

stabilizing controllers to non-collocated systems [71, 75, 76, 88]—systems with ac-

tuation and sensing at different points. This work pursues the line of non-collocated

boundary control, going beyond the problem of equilibrium stabilization to solve

the problems of motion planning and reference tracking for flexible beams. Motion

planning (trajectory generation) is the problem of finding the appropriate boundary

input to produce a desired output. The full-state motion planning reference solu-

tion can be used to find an open-loop boundary input, or combined with tracking

boundary controllers to improve the rate of convergence to the reference solution.

Motion planning results for strings and flexible structures without Kelvin-Voigt

(KV) damping—internal/material damping—have been presented in [1, 27, 55, 56,

60, 62]. This work considers systems with KV damping since they are more physi-

cally relevant, and note that the damping terms make finding the reference solution

more difficult (though they make the stabilization problem slightly easier). The sys-

tem models being considered are the wave equation (string and target system) and

the shear and Timoshenko beams. A string is a single-input-single-output system,

with the displacement at the base as the input, and the same quantity at the free-end

as the output. A beam is a two-input-two-output system with the displacement and

deflection angle at the base as the inputs, and the same quantities at the free-end

as outputs. Figure 3.1 shows a diagram representing the problem set-up. Motiva-

tion for this set-up comes from a particular shake table control problem where the

table provides boundary actuation to a structure, modeled here as a flexible beam,

in order to impart a desired reference trajectory at its free-end. This set-up also
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0 1

xu(x, t)

Figure 3.1: Diagram depicting a string/beam with transverse displacement u(x, t).
The goal is to generate and track a reference trajectory at x = 0. The arrows at
x = 1 represent actuation, and the circle at x = 0 represents the desired reference
trajectory.

applies directly to the control of dynamic mode atomic force microscopy (AFM),

where a cantilevered beam is actuated at the base to produce a sinusoidal output

at the free-end.

The shear beam design begins by writing the model in a strict-feedback (spatially

causal) form to which PDE backstepping techniques can be applied [39, 40, 43, 44].

The deflection angle boundary controller is found as a result of this step, and a

clever modification of that controller produces the explicit deflection angle reference

solution. PDE backstepping transformations—state transformations that relate one

PDE and boundary condition(s) to another—are used to relate the strict-feedback

shear beam model to the target system—a reference model used in control design,

governed by a wave equation with KV damping. The inverse state transformation

is used to find the explicit beam displacement reference solution given the target

system reference solution. The target system reference solution is found using the

direct transformation between the target and string states and the explicit string

reference solution. The explicit motion planning reference solution for the string

model is found by postulating the reference solution as a power series of the spatial

variable with time dependent coefficients [1, 24, 27, 28, 50, 55, 56, 60, 62]. The

advantage of employing PDE backstepping techniques is that they provide a means

for the rather complicated shear beam reference solution to be found using the

relatively simple reference solution for the string.

The motion planning results in the presence of Kelvin-Voigt damping for the

string, target system, and especially for the shear beam models are novel and non-

trivial results. The KV damping introduces a new complexity in propagating the
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control signal from one boundary to the other boundary, and the shear beam requires

a two-stage construction of the motion-planning solution, which does not arise with

simple wave equations and Euler-Bernoulli beams. Furthermore, explicit motion

planning results are novel.

Aside from facilitating the motion planning designs, the PDE backstepping ap-

proach is also used to combine the open-loop reference solutions with state-feedback

boundary controllers to achieve exponential convergence to the reference trajecto-

ries. These results are extensions of the stabilizing boundary controller designs for

the string model, and the shear and Timoshenko beams [39, 40, 41, 42, 43, 44].

This Chapter is organized as follows. Section 3.2 presents the system models.

Section 3.3 presents the reference solutions for the string, target system, and shear

beam. Section 3.4 presents stabilizing tracking boundary controllers for the string

and the shear beam. Section 3.5 presents simulation results for the generation and

tracking of sinusoids for the string and the Timoshenko beam.

3.2 System Models

3.2.1 String

The string model is given by the wave equation

εutt(x, t) = (1 + d∂t) uxx(x, t) (3.1)

ux(0, t) = 0 , (3.2)

where u(x, t) is the displacement of the string along 0 ≤ x ≤ 1 at time 0 ≤ t < ∞,

with initial conditions u0(x) = u(x, 0) and u̇0(x) = ut(x, 0), d is the Kelvin-Voigt

(KV) damping coefficient, and ε is the inverse of the nondimensional string stiffness.

Partial derivatives with respect to space and time are denoted by sub-scripts x and

t respectively. The boundary condition (3.2) at x = 0 represents a free-end. The

boundary input ux(1, t) is used as a control input.
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0 1
x

w(x, t)c0 c1

Figure 3.2: Diagram representing the target system.

3.2.2 Target System

The target system is an exponentially stable reference model used in PDE back-

stepping control design. It is not necessarily unique or optimal, but is chosen to

have desirable performance characteristics and work well within the framework of

PDE backstepping theory. The target system model used for string, shear beam

and Timoshenko beam designs [39, 40, 41, 42, 43, 44], shown in Fig. 3.2 as a string

with a spring at x = 0 and a damper at x = 1, is given by the wave equation

εwtt(x, t) = (1 + d∂t) wxx(x, t) (3.3)

wx(0, t) = c0w(0, t) (3.4)

wx(1, t) = −c1wt(1, t) , (3.5)

where w(x, t) is the displacement of the target system, and has initial conditions

w0(x) = w(x, 0) and ẇ0(x) = wt(x, 0). The parameters c0 > 0 and c1 > 0 are

design gains representing the spring stiffness and damping coefficient of the spring

and damper located at opposite ends of the string. The spring stiffness c0 should be

large to emulate a pinned boundary condition at x = 0, and the damping coefficient

c1 should be chosen near
√

ε to emulate a tuned damper at the end x = 1.

3.2.3 Flexible Beams

The Timoshenko beam model is written as the two coupled wave equations (2.21),

(2.22) with the free-end boundary conditions (2.23), (2.24), with actuation at the

base x = 1 through the boundary inputs ux(1, t) and α(1, t). The states u(x, t)

and α(x, t) denote the displacement and deflection angle, with initial conditions

u0(x) = u(x, 0), u̇0(x) = ut(x, 0), α0(x) = α(x, 0) and α̇0(x) = αt(x, 0) respectively.
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The shear beam model can be written as a singular perturbation (µ = 0) of the

Timoshenko beam model, and is given by the wave equation (2.21) coupled with the

second-order-in-space ordinary differential equation

0 = εαxx(x, t) + a (ux(x, t)− α(x, t)) . (3.6)

This model also has free end boundary conditions (2.23), (2.24), and boundary

inputs ux(1, t), α(1, t).

The shear and Timoshenko beam models are considered for this work since they

are the more physically relevant and complete beam models. The Timoshenko beam

model is the most accurate of the four, accounting for transverse displacement,

bending moment, shear distortion and rotary inertia [32].

3.3 Motion Planning

Motion planning for the displacement (string, target system, shear beam) and

deflection angle (shear beam) is done for sinusoidal reference trajectories since they

are relevant functions in the fields of shake table control and dynamic mode atomic

force microscopy, where reference trajectories tend to be oscillatory, and since they

can form a basis for more complicated functions.

3.3.1 String

The solution to the motion planning problem for the string model (3.1), (3.2),

is found for the sinusoidal tip displacement reference trajectory

ur(0, t) = Au sin (ωut) (3.7)

by postulating the reference solution ur(x, t) as a power series of the spatial variable

with time dependent coefficients, i.e., ur(x, t) =
∑∞

i=0 ai(t)
xi

i!
. Applications of this

approach can be found in [1, 28, 50, 62]. The string reference solution is

ur(x, t) = −jAu

2

[
cosh (jσx) ejωut − cosh (jσ̄x) e−jωut

]
, (3.8)
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with the complex valued constant σ = ωu
√

ε√
1+jωud

. Equation (3.8) can be written as

the purely real function

ur(x, t) =
Au

2

[
eβ̂(ωu)x sin (ωut + β(ωu)x) + e−β̂(ωu)x sin (ωut− β(ωu)x)

]
, (3.9)

where the real functions β(n) and β̂(n) are defined as

β(n) = n
√

ε

√√√√√
1 + n2d2 + 1

2 (1 + n2d2)
(3.10)

β̂(n) = n
√

ε

√√√√√
1 + n2d2 − 1

2 (1 + n2d2)
. (3.11)

The open-loop displacement (Dirichlet) control ur(1, t) is found by evaluating

(3.9) at x = 1. The expression for the open-loop slope/force (Neumann) control

input ur
x(1, t), found by evaluating the partial derivative with-respect-to-x of (3.9)

at x = 1, is

ur
x(1, t) =

Au

2

[
β̂(ωu)e

β̂(ωu) sin (ωut + β(ωu)) + β(ωu)e
β̂(ωu) cos (ωut + β(ωu))

−β̂(ωu)e
−β̂(ωu) sin (ωut− β(ωu))− β(ωu)e

−β̂(ωu) cos (ωut− β(ωu))
]

.

(3.12)

Theorem 3.1 The string model (3.1), (3.2) is satisfied by the state reference trajec-

tory (3.9). The output of the system satisfies the tip displacement reference trajectory

(3.7) given the open-loop Neumann control input (3.12), assuming u0(x) = ur(x, 0)

and u̇0(x) = ur
t (x, 0).

Proof: The reference solution (3.9) evaluated at x = 0 satisfies the desired

reference trajectory (3.7). Equation (3.9) substituted into (3.1) and (3.2) satisfies

the string PDE and free-end boundary condition.

3.3.2 Target System

The solution to the motion planning problem for the target system model (3.3),

(3.4) is found using the reference solution for the string model and a PDE backstep-

ping state transformation. The string model (3.1), (3.2) with boundary actuation
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ux(1, t), and the target system (3.3)–(3.5) are related via the direct backstepping

transformation w(x, t) = u(x, t) + c0

∫ x
0 u(y, t) dy [41, 42], which when substituted

into (3.3), (3.4) satisfies (3.1), (3.2). Therefore, the target system reference solution

wr(x, t), found as a function of the string reference solution ur(x, t), is given by

wr(x, t) = ur(x, t) + c0

∫ x

0
ur(x, t) dy . (3.13)

Backstepping transformations preserve values at the boundary x = 0, i.e. w(0, t) =

u(0, t), and so the target system tip displacement reference trajectory

wr(0, t) = Au sin(ωut) (3.14)

is equivalent to the string reference trajectory ur(0, t). The reference solution, found

by substituting (3.8) into (3.13) and evaluating the integral, is

wr(x, t) = −jAu

2

[
cosh (jσx) ejωut − cosh (jσ̄x) e−jωut

]
−c0Au

2

[
1

σ
sinh (jσx)ejωut − 1

σ̄
sinh (jσ̄x) e−jωut

]
, (3.15)

with the complex valued constant σ = ωu
√

ε√
1+jωud

. The expression for wr(x, t) can be

written as the purely real function

wr(x, t) =
Au

2

[
eβ̂(ωu)x sin (ωut + β(ωu)x) + e−β̂(ωu)x sin (ωut− β(ωu)x)

]
−c0Au

2

×
{
γ(ωu)

[
eβ̂(ωu)x cos (ωut + β(ωu)x)− e−β̂(ωu)x cos (ωut− β(ωu)x)

]
−γ̂(ωu)

[
eβ̂(ωu)x sin (ωut + β(ωu)x)− e−β̂(ωu)x sin (ωut− β(ωu)x)

]}
,

(3.16)

where the real valued functions β(n), and β̂(n) are defined in (3.10), (3.11) respec-

tively, and γ(n), and γ̂(n) are defined as

γ(n) =
1

n
√

ε

√√
1 + n2d2 + 1

2
(3.17)

γ̂(n) =
1

n
√

ε

√√
1 + n2d2 − 1

2
. (3.18)
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αr(1, t) αr(0, t)

ur(0, t)ur(1, t)

find strict-feedback model

solve TPBVP for α

solve PDE for r(x, t)
and find ur(x, t)

using transformation

Figure 3.3: Pictorial representation of the structure of the input-output relationship
{ur(1, t), αr(1, t)} 7→ {ur(0, t), αr(0, t)}, and a description of the types of problems
involved in solving the simultaneous motion planning problem for the shear beam.

The open-loop displacement (Dirichlet) control wr(1, t) is found by evaluating

(3.16) at x = 1. The open-loop slope/force (Neumann) control wr
x(1, t) is found by

evaluating the partial derivative with-respect-to-x of (3.16) at x = 1.

Theorem 3.2 The target system (3.3), (3.4) is satisfied by the state reference tra-

jectory (3.16). The output of the system satisfies the tip displacement reference

trajectory (3.14) given the open-loop Neumann control input wr
x(1, t), assuming

w0(x) = wr(x, 0) and ẇ0(x) = wr
t (x, 0).

Proof: The reference solution (3.16) evaluated at x = 0 satisfies the reference

trajectory (3.14). Equation (3.16) substituted into (3.3) and (3.4) satisfies the target

system PDE and x = 0 boundary condition.

3.3.3 Shear Beam

Figure 3.3 shows a pictorial representation of the two-part structure of the si-

multaneous motion planning problem for the shear beam. Finding αr(1, t) involves

solving a two point boundary value problem (TPBVP) for α(x, t), then modifying

the resulting boundary input α(1, t) to satisfy both spatial causality of the shear

beam and motion planning. Finding ur(1, t) requires solving a PDE for an auxiliary

system r(x, t), then employing a direct transformation from wr(x, t) to ur(x, t).

A backstepping transformation is ultimately used to find the state reference tra-

jectory, therefore the first part requires writing the shear beam model (2.21), (3.6),
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u(x, t) w(x, t) u(x, t)

strict-feedback
shear beam

string target
−c0e−c0(x−y)

−c0 l(x, y)

k(x, y)

Figure 3.4: The string of invertible transformations involved in solving the shear
beam motion planning problem. The functions above and below the arrows represent
the appropriate transformation gains.

(2.23), (2.24) in a strict-feedback (spatially causal) form that makes PDE backstep-

ping tools applicable. The second part requires solving the simultaneous motion

planning problem by first finding the reference solution for the free-end deflection

angle α(0, t), and then using a backstepping transformation to find the reference

solution for the free-end displacement u(0, t). Figure 3.4 shows the transformations

relating the string, target system, and strict-feedback shear beam used to relate the

string displacement reference solution (easiest to find) to the strict-feedback shear

beam solution.

Strict-Feedback Shear Beam Model

The ordinary differential equation (ODE) in (3.6), with the boundary condition

(2.24) and α(1, t) available as the control input, constitutes a two-point-boundary-

value problem. The general solution of that problem is [39, 40, 43, 44]

α(x, t) = cosh(bx)α(0, t) + b sinh(bx)u(0, t)

−b2
∫ x

0
cosh (b(x− y)) u(y, t) dy , (3.19)

with b =
√

a
ε
, which can be evaluated at x = 1 and written as

α(0, t) =
1

cosh(b)
(α(1, t)− b sinh(b)u(0, t)

+b2
∫ 1

0
cosh (b(1− y)) u(y, t) dy

)
. (3.20)

Substituting the partial derivative with-respect-to-x of (3.19) into (2.21), and (3.20)

into (2.23), produces

εutt(x, t) = (1 + d∂t)
[
uxx(x, t) + b2u(x, t)− b2 cosh (bx) u(0, t)
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+b3
∫ x

0
sinh (b (x− y)) u(y, t) dy

−b sinh(bx)

cosh(b)
{α(1, t)− b sinh(b)u(0, t)

+b
∫ 1

0
sinh (b(1− y)) u(y, t) dy

}]
(3.21)

ux(0, t) =
1

cosh(b)
{α(1, t)− b sinh(b)u(0, t)

+b
∫ 1

0
sinh (b(1− y)) u(y, t) dy

}
. (3.22)

Backstepping tools require that the plant model be in a strict-feedback form, there-

fore (3.21) and (3.22) cannot contain terms that violate spatial causality, i.e., in-

tegrals over the entire spatial domain
(∫ 1

0 · dy
)
. Therefore, the boundary control

α(1, t) is chosen as

α(1, t) = b sinh(b)u(0, t)− b
∫ 1

0
sinh (b(1− y)) u(y, t) dy , (3.23)

which simplifies (3.21), (3.22) into the strict-feedback model [39, 40, 43, 44]

εutt(x, t) = (1 + d∂t)
{
uxx(x, t) + b2u(x, t)− b2 cosh (bx) u(0, t)

+b3
∫ x

0
sinh (b (x− y)) u(y, t) dy

}
(3.24)

ux(0, t) = 0 (3.25)

to which backstepping tools can now be applied.

The strict-feedback shear beam model (3.24), (3.25) with boundary actuation

ux(1, t), and the target system (3.3)–(3.5) are related by the direct backstepping

transformation

w(x, t) = u(x, t)−
∫ x

0
k(x, y)u(y, t) dy , (3.26)

with k(x, y) satisfying the partial-integro differential equation (PIDE) [39, 40, 43, 44]

kxx(x, y) = kyy(x, y) + b2k(x, y)− b3 sinh (b(x− y))

+b3
∫ x

y
k(x, ξ) sinh (b(ξ − y)) dξ (3.27)

k(x, x) = −b2

2
x− c0 (3.28)

ky(x, 0) = −b2 cosh(bx) + b2
∫ x

0
k(x, y) cosh(by) dy (3.29)
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on the domain 0 ≤ y ≤ x ≤ 1, which when substituted into (3.3), (3.4) satisfies

(3.24), (3.25). The two systems are also related through the inverse backstepping

transformation

u(x, t) = w(x, t) +
∫ x

0
l(x, y)w(y, t) dy , (3.30)

where l(x, y) satisfies the PIDE

lxx(x, y) = lyy(x, y)− b2l(x, y)− b3 sinh (b(x− y))

−b3
∫ x

y
sinh (b(x− ξ)) l(ξ, y) dξ (3.31)

l(x, x) = −b2

2
x− c0 (3.32)

ly(x, 0) = c0l(x, 0)− b2 cosh(bx) (3.33)

on the domain 0 ≤ y ≤ x ≤ 1.

Lemma 3.1 The inverse backstepping transformation (3.30), with l(x, y) satisfying

(3.31)–(3.33), substituted into (3.24), (3.25) satisfies (3.3), (3.4).

Proof: Substituting (3.30) and its appropriate partial derivatives into (3.24),

(3.25), and using the relationships in (3.3), (3.4), shows that l(x, y) must satisfy

(3.31)–(3.33) in order to satisfy the transformation from target to plant states.

Simultaneous Motion Planning

The boundary control signal (3.23) satisfies the need for the shear beam model

to be spatially causal, but it also forces α(0, t) = 0 in (3.20) and eliminates the

opportunity to do motion planning for the tip deflection angle. However, for a

given reference signal αr(0, t), augmenting the boundary control law (3.23) with the

additive term cosh(b)αr(0, t) produces the boundary condition α(0, t) = αr(0, t) and

satisfies the desired tip deflection angle reference trajectory. The strict-feedback

shear beam model for motion planning is then

εutt(x, t) = (1 + d∂t)
{
uxx(x, t) + b2u(x, t)− b2 cosh (bx) u(0, t)

+b3
∫ x

0
sinh (b (x− y)) u(y, t) dy − b sinh (bx) αr(0, t)

}
(3.34)

ux(0, t) = αr(0, t) . (3.35)



37

The explicit deflection angle reference solution is given by

αr(x, t) = cosh(bx)αr(0, t) + b sinh(bx)ur(0, t)

−b2
∫ x

0
cosh (b(x− y)) ur(y, t) dy , (3.36)

and the boundary control for motion planning is

αr(1, t) = cosh(b)αr(0, t) + b sinh(b)ur(0, t)

−b2
∫ 1

0
cosh (b(1− y)) ur(y, t) dy , (3.37)

where ur(x, t) is the state reference trajectory for the strict-feedback shear beam

model (3.34), (3.35), and can be found using a PDE backstepping transformation

from the target system to the strict-feedback shear beam model.

The strict-feedback shear beam model for motion planning (3.34), (3.35) with

boundary actuation ux(1, t), and the target system (3.3)–(3.5) are related through

the direct backstepping transformation

w(x, t) = u(x, t)−
∫ x

0
k(x, y)u(y, t) dy + r(x, t) (3.38)

where k(x, y) satisfies (3.27)–(3.29), and r(x, t) is the state of an auxiliary system

satisfying the PDE

εrtt(x, t) = (1 + d∂t) {rxx(x, t)

+
(
−b sinh(bx) + b

∫ x

0
k(x, y) sinh(by) dy

)
αr(0, t)

}
(3.39)

r(0, t) = 0 (3.40)

rx(0, t) = αr(0, t) . (3.41)

The auxiliary state r(x, t) is required in order to satisfy the transformation from

target to plant when the reference solution for the tip deflection angle is introduced

into the design. The two systems are also related through the inverse backstepping

transformation

u(x, t) = w(x, t)− r(x, t) +
∫ x

0
l(x, y) [w(y, t)− r(y, t)] dy , (3.42)

where l(x, y) and r(x, t) satisy (3.31)–(3.33) and (3.39)–(3.41).
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Lemma 3.2 The direct backstepping transformation (3.38), with k(x, y) satisfying

(3.27)–(3.29) and r(x, t) satisfying (3.39)–(3.41), substituted into (3.3), (3.4) satis-

fies (3.34), (3.35).

Proof: Substituting (3.38) and its partial derivatives into (3.3), (3.4), using

the relationships in (3.34), (3.35), shows that k(x, y) and r(x, t) must satisfy (3.27)–

(3.29) and (3.39)–(3.41).

Lemma 3.3 The inverse backstepping transformation (3.42), with l(x, y) satisfy-

ing (3.31)–(3.33) and r(x, t) satisfying (3.39)–(3.41), substituted into (3.34), (3.35)

satisfies (3.3), (3.4).

Proof: Substituting (3.42) and its appropriate partial derivatives into (3.34),

(3.35), and using the relationships in (3.3), (3.4), shows that l(x, y) and r(x, t) must

satisfy (3.31)–(3.33) and (3.39)–(3.41) respectively.

The explicit displacement reference solution for the strict-feedback shear beam

model for motion planning, found using the inverse transformation (3.42), is

ur(x, t) = wr(x, t)− r(x, t) +
∫ x

0
l(x, y) [wr(y, t)− r(y, t)] dy , (3.43)

where wr(x, t) is given in (3.16), and r(x, t) must be found for a particular tip deflec-

tion angle reference trajectory αr(0, t). The shear beam tip displacement reference

trajectory, found by evaluating (3.43) at x = 0, is given by (3.7).

The open-loop displacement (Dirichlet) boundary control is found by evaluating

(3.43) at x = 1. The open-loop slope/force (Neumann) boundary control, found by

evaluating the partial derivative with-respect-to-x of (3.43) at x = 1, is

ur
x(1, t) = wr

x(1, t)− rx(1, t) + l(1, 1) [wr(1, t)− r(1, t)]

+
∫ 1

0
lx(1, y) [wr(y, t)− r(y, t)] dy , (3.44)

where wr(1, t) is given by (3.16) evaluated at x = 1, and wr
x(1, t) is given by the

partial derivative with-respect-to-x of (3.16) evaluated at x = 1. The expressions

r(1, t) and rx(1, t) can be derived from the solution for r(x, t).

To that end consider the sinusoidal tip deflection angle reference trajectory

αr(0, t) = Aα sin (ωαt) , (3.45)
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where Aα and ωα are the amplitude and frequency respectively. The solution to

the auxiliary system r(x, t) is found by first taking a Laplace transform in space of

(3.39)–(3.41), which reduces the PDE in space and time to the ODE in time

εR̈(s, t)− ds2Ṙ(s, t)− s2R(s, t) = (Φ(s)− 1)(αr(0, t) + dα̇r(0, t)) , (3.46)

where Φ(s) denotes the Laplace transform of

φ(x) = −b sinh(bx) + b
∫ x

0
k(x, y) sinh(by) dy . (3.47)

The solution to (3.46), ignoring transients, is assumed to be of the form

R(s, t) = A1(s) sin (ωαt) + A2(s) cos (ωαt) , (3.48)

where A1(s) and A2(s) must by found.

Substituting (3.45) and (3.48) into (3.46), grouping terms common in sin (ωαt)

and cos (ωαt), then solving the resulting linear algebra problem for A1(s) and A2(s)

gives A1(s) = AαF1(s) (1− Φ(s)) and A2(s) = AαF2(s) (1− Φ(s)) , where F1(s) =
(1+ω2

αd2)s2+εω2
α

(1+ω2
αd2)s4+2εω2

αs2+(εω2
α)2

and F2(s) = εω3
αd

(1+ω2
αd2)s4+2εω2

αs2+(εω2
α)2

. The inverse Laplace

transforms of A1(s), A2(s), F1(s), and F2(s) are

a1(x) = Aα

(
f1(x)−

∫ x

0
f1(x− y)φ(y) dy

)
(3.49)

a2(x) = Aα

(
f2(x)−

∫ x

0
f2(x− y)φ(y) dy

)
(3.50)

f1(x) =
1

2

(
1

ν
sin (νx) +

1

ν̄
sin (ν̄x)

)
(3.51)

f2(x) =
j

2

(
1

ν
sin (νx)− 1

ν̄
sin (ν̄x)

)
, (3.52)

with the complex valued constant ν = ωα

√
ε
√

1+jωαd
1+ω2

αd2 . The expressions in (3.51) and

(3.52) can be written as the purely real functions

f1(x) = γ(ωα) sin (β(ωα)x) cosh(β̂(ωα)x)

+γ̂(ωα) cos (β(ωα)x) sinh(β̂(ωα)x) (3.53)

f2(x) = −γ(ωα) cos (β(ωα)x) sinh(β̂(ωα)x)

+γ̂(ωα) sin (β(ωα)x) cosh(β̂(ωα)x) , (3.54)
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where the real valued functions β(n), β̂(n), γ(n) and γ̂(n) are defined in (3.10),

(3.11), (3.17) and (3.18) respectively.

The solution to the auxiliary system, given by the inverse Laplace transform of

(3.48) with a1(x) and a2(x) given in (3.49), (3.50), is then

r(x, t) = Aα

(
f1(x)−

∫ x

0
f1(x− y)φ(y) dy

)
sin(ωαt)

+Aα

(
f2(x)−

∫ x

0
f2(x− y)φ(y) dy

)
cos(ωαt) . (3.55)

Theorem 3.3 The shear beam model (2.21), (3.6), (2.23), (2.24) is satisfied by the

state reference trajectories (3.36) and (3.43), where l(x, y) satisfies (3.31)–(3.33),

wr(x, t) is given in (3.16), and r(x, t) is given in (3.55). The outputs of the system

satisfy the tip displacement and deflection angle reference trajectories (3.7), (3.45)

given the open-loop control inputs (3.37), (3.44), assuming u0(x) = ur(x, 0) and

u̇0(x) = ur
t (x, 0).

Proof: The reference solutions (3.36) and (3.43) evaluated at x = 0 satisfy the

desired free-end displacement and deflection angle reference trajectories. Equations

(3.36) and (3.43) substituted into (2.21), (3.6), (2.23), (2.24) satisfy the shear beam

PDE and free-end boundary conditions.

3.4 Reference Tracking

Reference tracking controllers combine the open-loop motion planning reference

solutions with stabilizing feedback controllers. Their purpose is to stabilize the sys-

tem and improve the rate of convergence to the reference solution when their exists

a mismatch in initial conditions between the system state and reference solution.

Definition 3.1 The reference trajectory ur(x, t) is said to be exponentially stable

if there exist positive constants M and m such that(
‖u(t)− ur(t)‖2 + ‖ut(t)− ur

t (t)‖2
)1/2

≤ Me−mt
(
‖u0 − ur

0‖2 + ‖u̇0 − u̇r
0‖2

)1/2
, (3.56)

where ‖ · ‖ denotes the norm of v, ‖v‖ =
(∫ 1

0 v (x)2 dx
)1/2

, and u0(x) = u(x, 0),

ur
0(x) = ur(x, 0), u̇0(x) = ut(x, 0), u̇r

0(x) = ur
t (x, 0).



41

3.4.1 String

The tracking controller is an extension of the stabilizing controller in [41, 42].

Theorem 3.4 The state feedback tracking controller

ux(1, t) = −c0u(1, t)− c1ut(1, t)− c0c1

∫ 1

0
ut(y, t) dy

+wr
x(1, t) + c1w

r
t (1, t) , (3.57)

exponentially stabilizes the string system (3.1), (3.2) about the state reference tra-

jectory (3.9).

Proof: The expression for the boundary controller (3.57) is found by writing

the standard boundary controller in [41, 42] in terms of the reference tracking er-

ror ũ(x, t) = u(x, t) − ur(x, t), where wr
x(1, t) + c1w

r
t (1, t) = ur

x(1, t) + c0u
r(1, t) +

c1u
r
t (1, t) + c0c1

∫ 1
0 ur

t (y, t) dy .

The string reference solution (3.9) satisfies the string model (3.1), (3.2), (3.57),

and therefore has the same dynamics. The tracking error dynamics can then be

written as

εũtt = (1 + d∂t) ũxx (3.58)

ũx(0, t) = 0 (3.59)

ũx(1, t) = −c0ũ(1, t)− c1ũt(1, t)− c0c1

∫ 1

0
ũt(y, t) dy , (3.60)

which resemble the closed-loop string dynamics with a stabilizing controller. The

direct and inverse backstepping transformations w̃(x, t) = ũ(x, t) + c0

∫ x
0 ũ(y, t) dy,

and ũ(x, t) = w̃(x, t) − c0

∫ x
0 e−c0(x−y)w̃(y, t) dy relate the tracking error dynamics

(3.58)–(3.60) and the exponentially stable tracking error target system

εw̃tt = (1 + d∂t) w̃xx (3.61)

w̃x(0, t) = c0w̃(0, t) (3.62)

w̃x(1, t) = −c1w̃t(1, t) . (3.63)

The state of the tracking error system ũ(x, t) can be bounded by the state of the

tracking error target system w̃(x, t) by ‖ũ(t)‖ ≤ (1 + c0) ‖w̃(t)‖ , and the same is true

for the time derivatives, so the closed-loop system (3.1), (3.2), (3.57) is exponentially

stable around the reference solution (3.9).
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The string boundary controller (3.57) requires slope/force actuation at the base,

but can also be written in a form that requires displacement actuation. When

combined with the full state observers in [41, 42], the output-feedback tracking

controller requires sensing of the free-end displacement and velocity.

3.4.2 Shear Beam

The tracking controllers for the shear beam are extensions of the stabilizing

controllers in [39, 40, 43, 44].

Theorem 3.5 The state feedback tracking controllers

ux(1, t) = k(1, 1)u(1, t) +
∫ 1

0
kx(1, y)u(y, t) dy

−c1ut(1, t) + c1

∫ 1

0
k(1, y)ut(y, t) dy

+wr
x(1, t) + c1w

r
t (1, t)− rx(1, t)− c1rt(1, t) (3.64)

α(1, t) = cosh(b)αr(0, t) + b sinh(b)u(0, t)

−b2
∫ 1

0
cosh (b(1− y)) u(y, t) dy , (3.65)

exponentially stabilize the shear beam (2.21), (3.6), (2.23), (2.24) about the state

reference trajectories (3.36) and (3.43). The tip displacement and deflection angle

track (3.7) and (3.45) respectively.

Proof: The expression for the boundary controller (3.64) is found by ex-

pressing the target system boundary condition (3.5) in terms of the tracking error

[wx(1, t)− wr
x(1, t)] = −c1 [wt(1, t)− wr

t (1, t)], and using the transformation (3.38)

to substitute for wx(1, t) and wt(1, t).

Application of the boundary controller (3.65) makes the shear beam spatially

causal. The shear beam reference solution (3.43) satisfies the strict-feedback shear

beam model for motion planning (3.34), (3.35), (3.64), and therefore has the same
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dynamics. The tracking error dynamics can then be written as

εũtt = (1 + d∂t)
(
ũxx + b2ũ− b2 cosh (bx) ũ(0, t)

+b3
∫ x

0
sinh (b (x− y)) ũ(y, t) dy

)
(3.66)

ũx(0, t) = 0 (3.67)

ũx(1, t) = k(1, 1)ũ(1, t) +
∫ 1

0
kx(1, y)ũ(y, t) dy − c1ũt(1, t)

+c1

∫ 1

0
k(1, y)ũt(y, t) dy , (3.68)

which resemble the closed-loop strict-feedback shear beam model dynamics. The di-

rect and inverse backstepping transformations w̃(x, t) = ũ(x, t)−
∫ x
0 k(x, y)ũ(y, t) dy,

and ũ(x, t) = w̃(x, t)+
∫ x
0 l(x, y)w̃(y, t) dy relate the tracking error dynamics (3.66)–

(3.68) to the exponentially stable tracking error target system (3.61)–(3.63). The

state of the tracking error system can be upper bounded by the state of the tracking

error target system, so the closed-loop system (2.21), (3.6), (2.23), (2.24), (3.64),

(3.65) is exponentially stable around the reference solutions (3.36) and (3.43).

The shear beam boundary controllers (3.64), (3.65) require actuation of the slope

(or displacement) and bending moment at the base. When combined with full state

observers [39, 40, 43, 44], the output-feedback tracking controllers require sensing

of the free-end displacement and velocity.

The Timoshenko beam control design in [43, 44] is done using a singular per-

turbation approach to reduce the Timoshenko beam to the shear beam model. The

design is analogous to the shear beam design [39, 40], and all results for the shear

beam apply approximately to the Timoshenko beam. Therefore the reference track-

ing results presented in Theorem 3.5 also apply approximately to the Timoshenko

beam modulo an O(µ) residual in the tracking error.

3.5 Simulation Results

Simulations employ finite-differences to resolve partial derivatives in space, and

the Crank-Nicolson method to march the equations forward in time.
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3.5.1 String

This section presents simulation results for the string (3.1), (3.2) in closed-loop

with the boundary controller (3.57). The spatial and temporal step sizes used in

the simulations are ∆x = 1
100

, and ∆t = 1
100

respectively. The string parameters are

d = 0.08, and ε = 5, and the controller parameters are c0 = 100, and c1 = 0.99
√

5.

The reference trajectory parameters are Au = 1
2

and ωu = π. The simulation was

initialized with zero initial displacement and velocity.

Figures 3.5 and 3.6 present simulation results for the reference trajectory ur(0, t) =

Au[sin(ωut) + sin(
√

2ωut)]. Generation and tracking of two sinusoids is achieved by

implementing the boundary controller as a function of the linear combination of the

target system reference solutions for each sinusoid. Figure 3.5 shows the evolution of

the string state u(x, t) as a sequence of snapshots in time, with increasing darkness

corresponding to increasing time in each sequence. The reference trajectory at the

corresponding time is represented by a circle at x = 0 of the same shade. Figure

3.6(a) compares the tip displacement u(0, t) to the tip reference trajectory ur(0, t).

Figure 3.6(b) compares the base displacement u(1, t) to the reference displacement

ur(1, t). Figure 3.6(c) compares the boundary input ux(1, t) to the reference bound-

ary input ur
x(1, t).

3.5.2 Timoshenko Beam

This section presents simulation results for the Timoshenko beam model (2.21)–

(2.24) in closed-loop with the state-feedback controllers (3.64), (3.65). The spatial

and temporal step sizes used in simulation are ∆x = 1
100

and ∆t = 1
50

respectively.

The beam parameters are a = 5, d = 0.1, ε = 20, and µ = 0.02. The controller

parameters are c0 = 100 and c1 = 0.99
√

20. The reference trajectory parameters

are Au = 1
2
, ωu = π

3
, and Aα = 1

4
, ωα = π. The beam is initialized with an

initial displacement u (x, 0) = − 1
10

(1− x)2, an initial deflection angle of α (x, 0) =

1
5
(1− x), and zero initial velocity.

Figures 3.7–3.9 present results for the simultaneous tracking of the sinusoidal

tip reference trajectories ur(0, t) = Au sin(ωut) and αr(0, t) = Aα sin(ωαt). Figures
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Figure 3.5: String simulation showing the state as snapshots in time.

3.7(a) and (b) show the evolution of the beam states u(x, t) and α(x, t). Differ-

ent time scales are used in Figures 3.7(a) and (b) since the u and α reference

trajectories have different frequencies. Figures 3.8(a), (b) and (c) show the tip

displacement tracking error u(0, t)− ur(0, t), the base displacement u(1, t) and ref-

erence displacement ur(1, t), and the boundary control ux(1, t) and reference control

ur
x(1, t) respectively. Figures 3.9(a) and (b) show the tip deflection angle track-

ing error α(0, t) − αr(0, t), and the boundary control α(1, t) and reference control

αr(1, t). Both tracking error plots show a periodic steady state error on the order

of µ = 0.02, with frequency ωα.

Simultaneous tracking simulations have also been done for reference trajectories
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Figure 3.6: String simulation results comparing the (a) tip displacement u(0, t) and
reference trajectory ur(0, t), (b) base displacement u(1, t) and reference displacement
ur(1, t), and (c) boundary control input ux(1, t) and reference input ur

x(1, t).

where either ur(0, t) or αr(0, t) are zero. Simulations with ur(0, t) = 0, αr(0, t) =

Aα sin(ωαt) show how the the approximate nature of the shear beam results ap-

plied to the Timoshenko beam appear as a periodic disturbance to the u-system.

The ux(1, t) controller is not able to fully suppress the disturbance, and u(x, t) ex-

hibits O(µ) oscillations of frequency ωα. Simulations with ur(0, t) = Au sin(ωut),

αr(0, t) = 0 do not exhibit the O(µ) tracking error, and the α(1, t) boundary con-

troller stabilizes α(0, t) to zero.

Figures 3.10(a) and (b) show the control gains k(1, y) and kx(1, y) on the interval

0 ≤ y ≤ 1. The curves are relatively simple and can be approximated by quadratic

and a linear functions respectively.

3.6 Conclusions

This chapter has presented explicit reference solutions to the motion planning

problem for the wave equation (string and target system) and shear beam models

with Kelvin-Voigt damping. The displacement reference solution was first found for

the string, which is the simplest model being considered, then PDE backstepping

transformations were used to find the displacement solutions for the target system

and shear beam as a function of the string solution. PDE backstepping techniques

were also used to find the deflection angle reference solution for the shear beam.

Combining PDE boundary backstepping methods with classical trajectory gener-



47

(a) (b)

Figure 3.7: Timoshenko beam simulation results showing snapshots of the beam
states (a) u(x, t) and (b) α(x, t).

ation methods simplified the problem of solving the motion planning problem for

the shear beam, described by a wave equation coupled with an ODE, to finding the

reference solution for the much simpler target system.

While this chapter has focused on motion planning for periodic trajectories,

this approach extends to a far broader class of temporal waveforms, that includes

polynomials, exponentials, sinusoids, and products thereof as special cases. With

a slight modification one can obtain solutions to motion planning for all output

reference trajectories that can be written in the form ur(0, t) = CX(t) where X(t) is

a solution of the autonomous linear ‘exosystem’ Ẋ = AX for a given initial condition
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Figure 3.8: Timoshenko beam simulation results showing (a) the tip displacement
tracking error u(0, t) − ur(0, t), (b) the base displacement u(1, t) and the reference
displacement ur(1, t), and (c) the boundary control ux(1, t) and the reference control
ur

x(1, t).
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Figure 3.9: Timoshenko beam simulation results showing (a) the tip deflection angle
tracking error α(0, t)− αr(0, t), and (b) the boundary control α(1, t) and reference
control αr(1, t).

X(0). For example, if the reference output is ur(0, t) = te−t sin t, the parameters

of the exosystem would be chosen as C = [1 0 0 0], A =



0 1 0 0

0 0 1 0

0 0 0 1

−4 −8 −8 −4

,

X(0) = [2 2 0 0]T, and finding the motion planning solution would proceed using

the matrix exponentials of A.

This chapter is in full an adaptation of material as it appears in: A. A. Siranosian,

M. Krstic, A. Smyshlyaev, and M. Bement “Motion Planning and Tracking for Tip

Displacement and Deflection Angle for Flexible Beams,” ASME Journal of Dynamic
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Systems, Measurement and Control, to appear.

The dissertation author was the primary investigator and author of this paper.
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Gain Scheduling-Inspired Control

for Nonlinear PDE Systems

This chapter presents a control design method for nonlinear partial differential

equations (PDEs) based on a combination of gain scheduling and backstepping the-

ory for linear PDEs. A benchmark first-order hyperbolic system with an in-domain

nonlinearity is considered first. For this system a nonlinear feedback law, based on

gain scheduling, is derived explicitly, and a proof of local exponential stability, with

an estimate of the region of attraction, is presented for the closed-loop system. Con-

trol designs (without proofs) are then presented for a string PDE and a shear beam

PDE, both with Kelvin-Voigt damping and free-end nonlinearities of a potentially

destabilizing kind. String and beam simulation results illustrate the merits of the

gain scheduling approach over the linearization-based design.

4.1 Introduction

The stabilization of nonlinear partial differential equations (PDEs) is an im-

portant area in control design motivated by real-world applications in the areas

of thermal, reaction, fluid, structural and plasma systems. Several control design

methods for PDEs have been reported in the literature. The following is an overview

of only those that are relatively broadly applicable, rather than being for a single

50
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specific PDE. Finite dimensional backstepping methods were used for the design of

stabilizing boundary controllers for spatially discretized parabolic PDEs in [7, 8, 9].

Nonlinear model reduction and input-output feedback linearization for quasilinear

first-order hyperbolic and parabolic systems, were presented in [14]. Passivity based

exponentially stabilizing control design and a flatness based approach for trajectory

generation for flexible structures were presented in [48]. Feedforward and feedback

controllers based on formal power series parameterization and summation methods

for stabilization and tracking for nonlinear PDEs were presented in [54]. A gain

scheduling approach for nonlinear PDEs in [4] used a linearization based approach,

where controllers were designed for the finite-dimensional approximation of the sys-

tem linearized about a family of operating points. An approach for full-state feed-

back linearization for a broad class of nonlinear parabolic partial integro-differential

equations was presented in [77, 78], where the nonlinear feedback operators are

constructed using Volterra series in the spatial variable.

This chapter presents a gain scheduling inspired control design for nonlinear

PDEs based on the backstepping approach for linear PDEs. Gain scheduling [15,

16, 17, 35, 63, 64, 65, 66, 67, 68] is a technique that replaces a fully nonlinear

control design (such as, for example backstepping or forwarding, which yield global

stability) with the design of a family of linear controllers that are implemented

according to a scheduling signal. It requires linearizing the plant about a family

of operating points (ex. [64, 82, 83]) or the formulation of the model in a quasi-

linear parameter varying (LPV) form (ex. [64, 68]), such that linear control tools

can be applied. PDE backstepping [46] is an approach for the design of boundary

controllers for infinite dimensional PDE models without discretization or model

reduction. As a form of model reference control for infinite dimensional systems,

state transformations relating a closed-loop system to a target system are used to

design stabilizing controllers.

The design of a stabilizing controller begins by writing the PDE model in a

form to which gain scheduling techniques apply. Once in the appropriate form, gain

scheduled PDE backstepping transformations—similar to standard PDE backstep-

ping transformations in structure, but employing state-dependent transformation
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gains—are used to relate the nonlinear PDE model to a target system. Unlike typical

gain scheduled controllers, where either the controller or its parameters are sched-

uled, the resulting controllers in this work are applied as nonlinear controllers (linear

controllers with ‘continuously scheduled’ state-dependent parameters). While not

as powerful as the exactly linearizing nonlinear PDE backstepping boundary con-

trollers in [77, 78], gain scheduling controllers are a simpler and much more manage-

able design alternative for the challenging problem of nonlinear PDE control, with

performance advantages over linearization based designs.

This chapter first presents an explicit gain scheduling-based control design for a

benchmark first-order hyperbolic PDE with a boundary-value-dependent in-domain

nonlinearity, which is an extension of the result in [45]. For this benchmark system

a detailed analysis of local exponential stability is presented, with an estimate of the

region of attraction. Even for this relatively simple nonlinear PDE system, the anal-

ysis is quite complex and highlights the issues that one would face in performing a

stability analysis for more complex nonlinear PDEs with gain scheduling controllers.

These issues include the construction of Lyapunov functionals using nonlinear back-

stepping transformations, the bounding of nonlinear terms left uncompensated in

the gain scheduling approach, and perhaps most importantly, the choice of system

norms and the derivation of stability estimates and regions of attraction in high

enough Sobolev norms to capture the effect of nonlinear perturbations in the sta-

bility analysis.

The focus of this chapter is then turned to some relevant basic mechanical

PDE systems—the string and shear beam PDEs with Kelvin-Voigt damping and

boundary-displacement-dependent free-end nonlinearities. These designs are exten-

sions of results for the string [41, 42, 69, 70], and shear beam [39, 40, 69, 70]. The

merits of these designs are highlighted by simulation. Motivation for these systems

comes from shake table control and from atomic force microscopy. In shake table

control the table provides boundary actuation to a structure in order to impart a

desired reference trajectory at some point near its free-end, which possibly exhibits

nonlinear behavior. In atomic force microscopy the base of a cantilevered beam is

actuated to stabilize a probe at its free-end, which interacts nonlinearly with the
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sample surface.

The chapter is organized as follows. Section 4.2 presents the gain scheduling

based control design for a benchmark first-order hyperbolic PDE with boundary-

value-dependent in-domain nonlinearity. Section 4.3 presents the proof of sta-

bility for the resulting closed-loop system in Section 4.2. Sections 4.4 and 4.5

present the control design and simulation results for a string with Kelvin-Voigt

damping and boundary-displacement-dependent free-end nonlinearity. Section 4.6

presents the control design for the shear beam with Kelvin-Voigt damping and

boundary-displacement-dependent free-end nonlinearity. Section 4.7 presents simu-

lation results for the Timoshenko beam with Kelvin-Voigt damping and boundary-

displacement-dependent free-end nonlinearity, based on the shear beam designs of

Section 4.6.

4.2 Gain Scheduling Design for a Benchmark First-

Order Hyperbolic PDE

Consider the first-order hyperbolic PDE with a boundary-value-dependent in-

domain nonlinearity

ut(x, t) = ux(x, t) + g(u(0, t))eb(u(0,t))xu(0, t) (4.1)

where u(x, t) is the state of the system on the domain 0 ≤ x ≤ 1 at time 0 ≤ t < ∞,

with initial condition u0(x) = u(x, 0). Control is applied at x = 1 through the

boundary condition u(1, t). The functions b(·) and g(·) are arbitrary piecewise con-

tinuous functions. The nonlinearity g(u(0, t))eb(u(0,t))xu(0, t) destabilizes the origin

of the open-loop system (4.1), u(1, t) = 0, therefore some form of control is needed

to stabilize the equilibrium u ≡ 0.

Though the gain scheduling design can be developed (and proved) for a much

broader class of PDEs (not only first-order hyperbolic but also parabolic and second-

order hyperbolic), and where nonlinearities include dependence on the full state

u(x, t), rather than on u(0, t) only, (4.1) is used as a benchmark problem because

all the steps of the analysis can be completed by explicit calculations.
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The following steps are taken for the gain scheduling based PDE backstepping

design. First, the nonlinearity is written in the quasi-linear parameter varying (LPV)

form f̄(·)u(·). Following gain scheduling techniques f̄(·) is considered to be a con-

stant f̄ , then PDE backstepping techniques are used to find transformations relating

the plant to a target system. Having found the transformations, f̄ is replaced by

f̄(·) and a gain scheduling based nonlinear controller is found using PDE backstep-

ping techniques. If work has already been done for a system with constant f̄ , i.e., a

linear force, then f̄(·) is simply substituted for f̄ in those results.

For the current problem, the nonlinearity g(u(0, t))eb(u(0,t))xu(0, t) is already in

the LPV form, with f̄(·) = g(·)eb(·)x. Motivated by [45, Example 2.1] where b and g

are constant, this work introduces the backstepping transformations

w(x, t) = u(x, t)−
∫ x

0
k (x, y, u(0, t)) u(y, t) dy (4.2)

u(x, t) = w(x, t) +
∫ x

0
l (x, y, w(0, t)) w(y, t) dy , (4.3)

where in the present problem with b(u(0, t)) and g(u(0, t)) the boundary-value-

dependent gains are given by

k (x, y, u(0, t)) = −g(u(0, t))e(g(u(0,t))+b(u(0,t)))(x−y) (4.4)

l (x, y, w(0, t)) = −g(w(0, t))eb(w(0,t))(x−y) (4.5)

where w(x, t) is the state of a first-order hyperbolic target system on the domain

0 ≤ x ≤ 1 at time 0 ≤ t < ∞, with initial condition w0(x) = w(x, 0). The gain

(4.4) was found by setting b = b(u(0, t)) and g = g(u(0, t)) in the results of [45,

Example 2.1], while (4.5) was found following the general design steps, i.e., assume

b, g constant and find l(x, y) using PDE backstepping tools, then substitute b(·),
g(·). Similar to [45, Example 2.1], the boundary controller is chosen as

u(1, t) = −
∫ 1

0
g (u(0, t)) e(g(u(0,t))+b(u(0,t)))(1−y)u(y, t) dy . (4.6)

When b and g are constants the closed-loop system is equivalent to the exponentially

stable target system wt(x, t) = wx(x, t), w(1, t) = 0, whereas for general b(·) and

g(·) the target system is

wt(x, t) = wx(x, t)− wx(0, t)
∫ x

0
l3 (x, y, w(0, t)) w(y, t) dy (4.7)

w(1, t) = 0 , (4.8)
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where l3 (x, y, w(0, t)) is used to denote the partial derivative of l (x, y, w(0, t)) with

respect to w(0, t), and for this particular problem it is given by

l3 (x, y, w(0, t)) = − [g (w(0, t)) b′ (w(0, t)) (x− y) + g′ (w(0, t))] eb(w(0,t))(x−y).(4.9)

The main result of this section is that the gain scheduling based nonlinear con-

troller is locally exponentially stabilizing with respect to the appropriate norm. In

the context of gain scheduling, the ‘continuously scheduled’ controller is locally ex-

ponentially stabilizing independent of the magnitude of the rate of change of the

scheduling signal u(0, t).

Definition 4.1 Let Γ(t) denote the norm of the state of a dynamic system at time

t. The equilibrium at the origin is said to be locally exponentially stable if there

exist positive constants M , m, and γ such that for all initial states such that Γ0 < γ,

the following holds:

Γ(t) ≤ MΓ0e
−mt , ∀t ≥ 0 . (4.10)

Theorem 4.1 Consider the closed-loop system consisting of the plant (4.1) and the

boundary controller (4.6), and let

Ω(t) = u(0, t)2 + ‖u(t)‖2 + ‖ux(t)‖2 (4.11)

denote its norm with respect to x at time t. The equilibrium u ≡ 0 of the closed-loop

system is locally exponentially stable.

4.3 Proof of Theorem 4.1

The proof of Theorem 4.1 requires finding the stability properties of the equi-

librium w ≡ 0 of the target system (4.7), (4.8), then relating those properties to

the closed-loop system (4.1), (4.6) in the u-variable. First, results for the transfor-

mations and norms relating the systems are presented. Next a Lyapunov analysis

is done to determine the stability of the equilibrium w ≡ 0 of the target system.

The proof is completed by relating the results of the Lyapunov analysis in the w-

variable to the u-variable using the system norms and the transformations. When
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possible, spatial (x), temporal (t), and/or boundary displacement (u(0, t) , w(0, t))

dependence is suppressed.

Lemma 4.1 The transformations u 7→ w and w 7→ u given by (4.2)–(4.5) are

consistent (one is the inverse of the other).

Proof: The partial derivative with-respect-to x of (4.2), with gain (4.4) can

be written as u′ = b(u(0))u+w′− [b (u(0)) + g (u(0))] w, which is a linear ODE with

solution given by (4.3), (4.5). The partial derivative with-respect-to x of (4.3), with

gain (4.5) can be written as w′ = [g (w(0)) + b (w(0))] w + u′− b (u(0)) u, which is a

linear ODE with solution given by (4.2), (4.4).

Lemma 4.2 Let the functions u(x, t) and w(x, t) be related by (4.2)–(4.5). The

function u(x, t) satisfies the nonlinear system (4.1) with boundary control (4.6) if

and only if the function w(x, t) satisfies the target system (4.7), (4.8).

Proof: Substituting (4.3) into (4.1) and grouping terms gives

0 = ut − ux − g(u(0))eb(u(0))xu(0)

= wt − wx + wx(0)
∫ x

0
l3 (x, y, w(0)) w(y) dy (4.12a)

−
∫ x

0
{lx (x, y, w(0)) + ly (x, y, w(0))}w(y) dy (4.12b)

−
{
l (x, 0, w(0)) + g(w(0))eb(w(0))x

}
w(0) . (4.12c)

The expression in (4.12a) is satisfied by (4.7), and the braced expressions in (4.12b),

(4.12c) are equal to zero given the inverse gain kernel (4.5). Substituting (4.3) into

(4.6) gives

w(1, t) =
∫ 1

0
{l (1, y, w(0))− k (1, y, w(0))

−
∫ 1

y
k (1, ξ, w(0)) l (ξ, y, w(0)) dξ

}
w(y) dy , (4.13)

where the braced expression in (4.13) is equal to zero given (4.4), (4.5).

Lemma 4.3 Consider the target system (4.7), (4.8), with the Lyapunov function

candidate

V (t) =
∫ 1

0
(1 + x)w2(x, t) dx +

∫ 1

0
(1 + x)w2

x(x, t) dx . (4.14)
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There exists a positive constant V such that if V0 ≤ V then

V̇ (t) ≤ −1

4
V (t) , ∀t ≥ 0 . (4.15)

Proof: The derivative of (4.14), with respect to time t, is

V̇ (t) = 2
∫ 1

0
(1 + x)wwt dx + 2

∫ 1

0
(1 + x)wxwxt dx , (4.16)

where wt is given in (4.7), and the wx-system is given by

wxt(x, t) = wxx(x, t)− wx(0, t)l3 (x, x, w(0, t)) w(x, t)

−wx(0, t)
∫ x

0
lx3 (x, y, w(0, t)) w(y, t) dy (4.17)

wx(1, t) = wx(0, t)
∫ 1

0
l3 (1, y, w(0, t)) w(y, t) dy (4.18)

with (4.17) found by taking the partial derivative with-respect-to x of (4.7), and

(4.18) found by evaluating (4.7) at x = 1 with wt(1) = 0 from (4.8). Using (4.7)

and (4.17) to substitute for wt and wxt, (4.16) can be written as

V̇ (t) = 2
∫ 1

0
(1 + x)w

{
wx − wx(0)

∫ x

0
l3 (x, y, w(0)) w(y) dy

}
dx

+2
∫ 1

0
(1 + x)wx {wxx − wx(0)l3 (x, x, w(0)) w

−wx(0)
∫ x

0
lx3 (x, y, w(0)) w(y) dy

}
dx

= w2(1)− w2(0)− ‖w‖2 + w2
x(1)− w2

x(0)− ‖wx‖2

−2wx(0)
∫ 1

0
(1 + x)w(x)

∫ x

0
l3 (x, y, w(0)) w(y) dy dx

−2wx(0)
∫ 1

0
(1 + x)wx(x)l3 (x, x, w(0)) w(x) dx

−2wx(0)
∫ 1

0
(1 + x)wx(x)

∫ x

0
lx3 (x, y, w(0)) w(y) dy dx , (4.19)

where integration by parts was used to resolve the integrals
∫ 1
0 (1 + x)wwx dx and∫ 1

0 (1+x)wxwxx dx. Using (4.8) and (4.18) to substitute for w(1) and wx(1) and tak-

ing the absolute value of the sign-indefinite terms, equation (4.19) can be bounded
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by

V̇ (t) ≤ −w2(0)− w2
x(0)− ‖w‖2 − ‖wx‖2 (4.20a)

+2
(
wx(0)

∫ 1

0
l3 (1, y, w(0)) w(y) dy

)2

(4.20b)

+2
∣∣∣∣wx(0)

∫ 1

0
(1 + x)w(x)

∫ x

0
l3 (x, y, w(0)) w(y) dy dx

∣∣∣∣ (4.20c)

+2
∣∣∣∣wx(0)

∫ 1

0
(1 + x)l3 (x, x, w(0)) w(x)wx(x) dx

∣∣∣∣ (4.20d)

+2
∣∣∣∣wx(0)

∫ 1

0
(1 + x)wx(x)

∫ x

0
lx3 (x, y, w(0)) w(y) dy dx

∣∣∣∣ . (4.20e)

Given that b(·) and g(·) are piecewise continuous functions, the term in (4.20b)

can be bounded in the form

2
(
wx(0)

∫ 1

0
l3 (1, y, w(0)) w(y) dy

)2

≤ 2w2
x(0) [a1 + α1 (|w(0)|)]2 ‖w‖2 , (4.21)

the term in (4.20c) can be bounded in the form

2
∣∣∣∣wx(0)

∫ 1

0
(1 + x)w(x)

∫ x

0
l3 (x, y, w(0)) w(y) dy dx

∣∣∣∣
≤ 1

4
w2

x(0) + 16 [a1 + α1 (|w(0)|)]2 ‖w‖4 , (4.22)

the term in (4.20d) can be bounded in the form

2
∣∣∣∣wx(0)

∫ 1

0
(1 + x)l3 (x, x, w(0)) w(x)wx(x) dx

∣∣∣∣
≤ 1

4
w2

x(0) + 16 [a2 + α2 (|w(0)|)]2 ‖wx‖4 , (4.23)

and the term in (4.20e) can be bounded in the form

2
∣∣∣∣wx(0)

∫ 1

0
(1 + x)wx(x)

∫ x

0
lx3 (x, y, w(0)) w(y) dy dx

∣∣∣∣
≤ 1

4
w2

x(0) + 16 [a3 + α3 (|w(0)|)]2 ‖wx‖4 , (4.24)

where ai, i = 1, 2, 3, are constants defined as

a1 = |g′(0)| e|b(0)| + |g(0)| |b′(0)| e|b(0)|

a2 = |g′(0)|

a3 = |g′(0)| |b(0)| e|b(0)| + |g(0)| |b(0)| |b′(0)| e|b(0)| ,
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and αi(·) are class K∞ functions chosen as

α1(|w(0)|) ≥ |g′(w(0))| e|b(w(0))| + |g(w(0))| |b′(w(0))| e|b(w(0))| − a1

α2(|w(0)|) ≥ |g′(w(0))| − a2

α3(|w(0)|) ≥ |g′(w(0))| |b(w(0))| e|b(w(0))|

+ |g(w(0))| |b(w(0))| |b′(w(0))| e|b(w(0))| − a3 .

Using the bounds in (4.21)–(4.24), the Agmon inequality bound |w(0)| ≤ ‖wx‖ ≤√
V , and defining the class K∞ functions

β1

(√
V

)
=

[
a1 + α1

(√
V

)]2
V

β2

(√
V

)
=

{[
a2 + α2

(√
V

)]2
+

[
a3 + α3

(√
V

)]2
}

V ,

the inequality in (4.20) can be bounded by

V̇ (t) ≤ −w2(0)−
{

1

4
− 2β1

(√
V

)}
w2

x(0)

−
{
1− 16β1

(√
V

)}
‖w‖2 −

{
1− 16β2

(√
V

)}
‖wx‖2 . (4.25)

Then for

V0 ≤ V = min

{
β−1

1

(
1

8

)2

, β−1
1

(
1

32

)2

, β−1
2

(
1

32

)2
}

(4.25) can be bounded by

V̇ (t) ≤ −1

2

(
‖w‖2 + ‖wx‖2

)
≤ −1

4
V (t) . (4.26)

Lemmas 4.1 and 4.2 show the existence of transformations relating the closed-

loop system (4.1), (4.6) and the target system (4.7), (4.8). The transformations

will now be used to relate a Lyapunov function candidate to the norm of the target

system denoted by

Ψ(t) = ‖w(t)‖2 + ‖wx(t)‖2 , (4.27)

and to the norm of the closed-loop system (4.11).
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Lemma 4.4 The Lyapunov function (4.14) is upper and lower bounded by

Ψ(t) ≤ V (t) ≤ 2Ψ(t) . (4.28)

Proof: Consider the quantity (1+x) in (4.14). Setting x to zero (lower bound)

and one (upper bound) produces the bounds in (4.28).

Lemma 4.5 The equilibrium w ≡ 0 of the target system (4.7), (4.8) is locally ex-

ponentially stable.

Proof: Equation (4.26) in Lemma 4.3 gives

V (t) ≤ V0e
−t/4 , ∀t ≥ 0 . (4.29)

From Lemma 4.4 and (4.29), Ψ(t) ≤ V (t) ≤ V0e
−t/4 ≤ 2Ψ0e

−t/4 for Ψ0 ≤ V0, there-

fore the equilibrium w ≡ 0 of the target system (4.7), (4.8) is locally exponentially

stable.

Lemma 4.6 There exist class K∞ functions δ(·) and ρ(·) such that

Ψ(t) ≤ δ (Ω(t)) , (4.30)

and

Ω(t) ≤ ρ (Ψ(t)) . (4.31)

Proof: The inequality in (4.30) is established as follows. The terms ‖w‖2 and

‖wx‖2 can be bounded by

‖w‖2 ≤ ‖u‖2 + max
0≤y≤x≤1

|k (x, y, u(0))|2 ‖u‖2 , (4.32)

and

‖wx‖2 ≤ ‖ux‖2 + max
0≤x≤1]

|k (x, x, u(0))|2 ‖u‖2

+ max
0≤y≤x≤1

|kx (x, y, u(0))|2 ‖u‖2 . (4.33)
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Using (4.32) and (4.33), and given that b(·) and g(·) are piecewise continuous, (4.27)

can be bounded by

Ψ = ‖w‖2 + ‖wx‖2

≤
(
1 + max

0≤y≤x≤1
|k (x, y, u(0))|2 + max

0≤x≤1
|k (x, x, u(0))|2

+ max
0≤y≤x≤1

|kx (x, y, u(0))|2
)
‖u‖2 + ‖ux‖2

≤
(
1 + g2e2(|g|+|b|) + g2 + g2 (|g|+ |b|)2 e2(|g|+|b|)

)
‖u‖2 + ‖ux‖2

≤ (1 + a4 + α4 (|u(0)|)) ‖u‖2 + ‖ux‖2 , (4.34)

where the constant a4 is defined as

a4 = g(0)2e2(|g(0)|+|b(0)|) + g(0)2 + g(0)2 (|g(0)|+ |b(0)|)2 e2(|g(0)|+|b(0)|) , (4.35)

and α4(·) is a class K∞ function chosen as

α4 (|u(0)|) ≥ g(u(0))2e2(|g(u(0))|+|b(u(0))|) + g(u(0))2

+g(u(0))2 (|g(u(0))|+ |b(u(0))|)2 e2(|g(u(0))|+|b(u(0))|) − a4 . (4.36)

Then (4.34) can be bounded by

Ψ ≤ (1 + a4 + α4 (|u(0)|))
(
‖u‖2 + ‖ux‖2

)
≤

(
1 + a4 + α4

(√
Ω

))
Ω

= δ (Ω) . (4.37)

The inequality in (4.31) is established as follows. The terms ‖u‖2 and ‖ux‖2 can

be bounded by

‖u‖2 ≤ ‖w‖2 + max
0≤y≤x≤1

|l (x, y, w(0))|2 ‖w‖2 , (4.38)

and

‖ux‖2 ≤ ‖wx‖2 + max
0≤x≤1

|l (x, x, w(0))|2 ‖w‖2

+ max
0≤y≤x≤1

|lx (x, y, w(0))|2 ‖w‖2 . (4.39)
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Using (4.38) and (4.39), the bound u(0) = w(0) ≤ ‖wx‖, and given that b(·) and

g(·) are piecewise continuous functions, (4.11) can be bounded by

Ω = u(0)2 + ‖u‖2 + ‖ux‖2

≤ ‖wx‖2 +
(
1 + max

0≤y≤x≤1
|l (x, y, w(0))|2 + max

0≤x≤1
|l (x, x, w(0))|2

+ max
0≤y≤x≤1

|lx (x, y, w(0))|2
)
‖w‖2 + ‖wx‖2

≤
(
1 + g2e2|b| + g2 + g2b2e2|b|

)
‖w‖2 + 2 ‖wx‖2

≤ (1 + a5 + α5 (|w(0)|)) ‖w‖2 + 2 ‖wx‖2 , (4.40)

where the constant a5 is defined as

a5 = g(0)2e2|b(0)| + g(0)2 + g(0)2b(0)2e2|b(0)| , (4.41)

and α5(·) is a class K∞ function chosen as

α5 (|w(0)|) ≥ g(w(0))2e2|b(w(0))| + g(w(0))2

+g(w(0))2b(w(0))2e2|b(w(0))| − a5 . (4.42)

Then (4.40) can be bounded by

Ω ≤ (2 + a5 + α5 (|w(0)|))
(
‖w‖2 + ‖wx‖2

)
≤

(
2 + a5 + α5

(√
Ψ

))
Ψ

= ρ (Ψ) . (4.43)

The proof of Theorem 4.1 is completed next. Let

ω = δ−1
(V

2

)
. (4.44)

Restricting the plant initial condition to Ω0 ≤ ω implies that V0 ≤ 2Ψ0 ≤ 2δ (Ω0) ≤
V , and from Lemmas 4.3–4.6 the norm Ω(t) of the closed-loop system can be bounded
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as

Ω(t) ≤ ρ (Ψ(t))

≤ ρ(V (t))

≤ ρ
(
V0e

−t/4
)

≤ ρ
(
2Ψ0e

−t/4
)

≤ ρ
(
2δ (Ω0) e−t/4

)
. (4.45)

Given that ρ and δ are continuous and have a linear growth at the origin, an expo-

nential stability estimate in the form (4.10) for Ω(t) is achieved.

4.4 Application to a String PDE

This section presents only the application of the gain scheduling based PDE back-

stepping techniques of Section 4.2 to the control design for a string with Kelvin-Voigt

damping and boundary-displacement-dependent free-end nonlinearity. No theoreti-

cal results or stability analysis for a closed-loop system are presented here, but they

can be pursued using the tools developed in Section 4.3. Conditions under which the

results of this section would hold locally, proposed based on the results of Theorem

4.1, are summarized at the end of this section. The merits of the designs in this

section are illustrated by simulation in Section 4.5.

Consider the string model given by (3.1) with the boundary condition

ux(0, t) = f (u (0, t)) . (4.46)

The string is actuated at x = 1 through the force boundary input ux(1, t). The

boundary-displacement-dependent function f(·), representing a free-end nonlinear-

ity, is an arbitrary continuously differentiable function with f(0) = 0. Depending

on the sign of f ′ (u (0, t)) = df(u(0,t))
du(0,t)

the nonlinear force can have either positive

stiffness (f ′ > 0), or negative stiffness (f ′ < 0), i.e., “anti-stiffness,” which is desta-

bilizing. This work will consider systems with f ′ < 0 (at least locally), where

control is required to stabilize the equilibrium u ≡ 0 of the closed-loop system. A

gain scheduling based PDE backstepping design is chosen in hopes of improving
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on linearization based results, both in the transient response and in the range of

stability with respect to initial conditions.

Given that f(u(0, t)) is continuously differentiable and f (0) = 0, f(·) can be

written in the necessary LPV form f̄ (u(0, t)) u(0, t), where the nonlinearity can be

given explicitly, modeled, or approximated such that u(0, t) can be factored out.

The results in [41, Section 3] are for an undamped string (d = 0) with ε = 1, and

linear destabilizing force, i.e., constant f̄ . The presence of KV damping and non-

unity ε in this problem do not change the design compared to [41, Section 3]. The

gain scheduling based backstepping transformations are then (4.2), (4.3), where in

the present problem with f̄ (u(0, t)) the boundary-displacement-dependent gains are

given by

k (x, y, u(0, t)) =
[
f̄ (u(0, t))− c0

]
e−f̄(u(0,t))(x−y) (4.47)

l (x, y, w(0, t)) =
[
f̄ (w(0, t))− c0

]
e−c0(x−y) (4.48)

where w(x, t) is the state of the target system (3.3)–(3.5). Similar to [41] the bound-

ary controller is chosen as

ux(1, t) =
[
f̄ (u(0, t))− c0

]
u(1, t)− c1ut(1, t)

−f̄ (u(0, t))
[
f̄ (u(0, t))− c0

] ∫ 1

0
e−f̄(u(0,t))(1−y)u(y, t) dy

+c1

[
f̄ (u(0, t))− c0

] ∫ 1

0
e−f̄(u(0,t))(1−y)ut(y, t) dy . (4.49)

Here (4.47)–(4.49) were found by substituting f̄ = f̄(u(0, t)) into [41, Equations (6),

(7), (4)]
(
to be exact, − q ≡ f̄(u(0, t), c1 ≡ c0 and c2 ≡ c1

)
. When f̄ is constant,

the closed-loop system (3.1), (4.46), (4.49) is equivalent to the exponentially stable

target system (3.3)–(3.5). For general f̄ (·) the target system is

εwtt(x, t) = (1 + d∂t) wxx(x, t)− 2εwt(0, t)
∫ x

0
l3 (x, y, w(0, t)) wt(y, t) dy

−ε
∫ x

0

[
wt(0, t)

2l33 (x, y, w(0, t))

+wtt(0, t)l3 (x, y, w(0, t))] w(y, t) dy (4.50)

with boundary conditions (3.4), (3.5), where l3 (x, y, w(0, t)) denotes the partial

derivative of l(x, y, w(0, t)) with respect to w(0, t) and l33 (x, y, w(0, t)) denotes the
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second partial derivative of l(x, y, w(0, t)) with respect to w(0, t), which for this

particular problem are given by

l3 (x, y, w(0, t)) =
[
f̄ ′ (w(0, t))− c0

]
e−c0(x−y) (4.51)

l33 (x, y, w(0, t)) =
[
f̄ ′′ (w(0, t))− c0

]
e−c0(x−y) . (4.52)

The motion planning and tracking results of Chapter 3, which were developed

only for f̄ ≡ 0, can also be extended to (3.1), (4.46) using gain scheduling techniques.

The results for general f̄(·) are found following the design techniques in Chapter 3

but with transformations (4.2), (4.3), (4.47), (4.48). The motion planning reference

solution is

ur(x, t) = wr(x, t) +
[
f̄ (wr(0, t))− c0

] ∫ x

0
e−c0(x−y)wr(y, t) dy , (4.53)

where wr(x, t) is the reference solution for the target system (3.3), (3.4), which for

the sinusoidal tip displacement reference trajectory (3.14) is given by (3.16). The

slope/force boundary input for motion planning is

ur
x(1, t) = wr

x(1, t) +
[
f̄ (wr(0, t))− c0

]
wr(1, t)

−c0

[
f̄ (wr(0, t))− c0

] ∫ 1

0
e−c0(1−y)wr(y, t) dy , (4.54)

and the tracking boundary controller is

ux(1, t) =
[
f̄ (u(0, t))− c0

]
u(1, t)− c1ut(1, t)

−f̄ (u(0, t))
[
f̄ (u(0, t))− c0

] ∫ 1

0
e−f̄(u(0,t))(1−y)u(y, t) dy

+c1

[
f̄ (u(0, t))− c0

] ∫ 1

0
e−f̄(u(0,t))(1−y)ut(y, t) dy

+wr
x(1, t) + c1w

r
t (1, t) . (4.55)

The string boundary controllers (4.49) and (4.55) require slope/force actuation

at the base, but can also be written in a form that requires displacement actuation.

When combined with full state observers in [41, 42], the output-feedback controllers

require sensing of the free-end displacement and velocity.

Following the results of Theorem 4.1, the initial conditions u0(x), u̇0(x), u0(x)−
ur

0(x), and u̇0(x) − u̇r
0(x), along with the reference trajectory ur(0, t) should be
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Figure 4.1: Comparison of the nonlinearity f (u(0, t)) used in the string simulations,
and its linear approximation f ′(0)u(0, t).

sufficiently small in the appropriate norms for the nonlinear controllers (4.49), and

(4.55) to be exponentially stabilizing and for the reference solution (4.53) to hold.

Such restrictions would seem to confine the operation to a linear region of f(·).
Indeed, the advantage of using the nonlinear gain scheduled controls is impossible

to quantify using the conservative analysis tools of Section 4.3. The advantage

of gain scheduling based control over linearization based control is illustrated by

simulations.

4.5 Simulations for the String

Simulations are done for the string (3.1), (4.46) with the stabilizing boundary

controller (4.49) and tracking controller (4.55). The spatial and temporal step sizes

are ∆x = 1
100

and ∆t = 1
100

respectively, the string parameters are d = 0.08 and

ε = 5, and the controller parameters are c0 = 10 and c1 = 0.99
√

5. Figure 4.1

compares the softening nonlinearity f (u(0, t)) = −
[

1
200

u(0, t) + (2u(0, t))3
]

used in

simulations and its linear approximation f ′(0)u(0, t). The boundary-displacement-

dependent interaction force has a weak linear region near the origin, which is then

dominated by the cubic nonlinearity. The linear approximation about the origin

underestimates the interaction force, i.e., |f ′(0)u(0, t)| ≤ |f (u(0, t)) | for all u(0, t).

In fact, any linear approximation would eventually underestimate a superlinear non-

linearity, which tend to be the most difficult to compensate for.
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Figure 4.2: String simulation results for linearization based (dashed) and gain
scheduling based nonlinear (solid) boundary control, for varying initial tip displace-
ments. The plots compare (a) the energy, (b) the tip displacement, and (c) the
boundary control effort.

Figure 4.2 compares the ‘energy’ E(t) = ‖ut(x, t)‖2 + ‖ux(x, t)‖2, tip displace-

ment u(0, t), and boundary control effort ux(1, t) of the closed loop system for the

linearization based controller and the gain scheduling based nonlinear controller.

The string is initialized with zero initial velocity and the initial displacement profile
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u0(x) = u0(0) (1− x) for the initial tip displacements u0(0) = {0.1, 0.3, 0.347, 0.363}.
For sufficiently small initial conditions (u0(0) = 0.1), which lie in the linear region

of the interaction force, both cases perform equally well. For intermediate initial

conditions (u0(0) = 0.3) (not shown) both cases stabilize the string with the gain

scheduling based nonlinear controller achieving an improved transient response and

slightly quicker settling time. When u0(0) = 0.347, which is the largest initial

condition for which the linearization based controller stabilizes the origin, the gain

scheduling based nonlinear controller clearly outperforms the linearization based

controller in both transient response and settling time. When u0(0) = 0.363, which

is the largest initial condition for which the gain scheduling based nonlinear con-

troller stabilizes the origin, the linearization based controller can no longer stabilize

the origin while the gain scheduling based nonlinear controller must work hard to

keep the nonlinearity from pulling the tip away from the origin. The simulations

show that—for a nonlinearity where the linearization underestimates the force—the

gain scheduled based nonlinear controller outperforms the linearization based con-

troller when the tip begins to operate in a sufficiently strong region of the nonlinear

interaction force. The transient energy of the closed-loop system with gain schedul-

ing based nonlinear control tends to be higher because of the increased control effort

required for improved performance.

Figure 4.3 compares the performance of the linearization based controller and

gain scheduling based nonlinear controller, when the goal is to generate and track

the reference trajectory ur(0, t) = 0.3 sin πt. The string is initialized with zero initial

conditions. The gain scheduling based nonlinear controller is able to generate and

track the sinusoid, with a small negative error in the mean. The negative error in the

mean is caused by u(0, t) interacting most with the nonlinearity through a negative

peak of the sinusoid first. This is confirmed by simulations with ur(0, t) = −0.3 sin πt

where the tip displacement interacts most with the nonlinearity through a positive

peak of the sinusoid first, and the resulting error in the mean is positive. The

negative mean causes a stronger interaction force for the negative peaks, which in

turn causes phase tracking errors between them and the positive peaks. Conversely,

the negative mean causes a weaker interaction force for the positive peaks, which
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Figure 4.3: String simulation results comparing the tip displacement u(0, t) and
reference trajectory ur(0, t) when boundary control is applied with linearization
based control and gain scheduling based nonlinear control.

allows for better tracking from positive to negative peaks. The plot also shows

how the linearization based controller begins to generate and track the reference

trajectory with the same error in the mean, but ultimately cannot compensate

for the destabilizing force caused by increased interaction with the negative peaks.

As with the stabilization simulations, the controllers have comparable performance

for small reference amplitudes and the gain scheduled controller outperforms the

linearization based controller when the amplitude increases, and neither controller

can stabilize the reference trajectory when the reference amplitude is too large.

4.6 Application to the Shear Beam PDE

This section presents only the application of the gain scheduling based PDE

backstepping techniques of Section 4.2 to the control design for the shear beam with

Kelvin-Voigt damping and boundary-displacement-dependent free-end nonlinearity.

No theoretical results or stability analysis for a closed-loop system are presented

here, but they can be pursued using the tools developed in Section 4.3. Conditions

under which the results of this section would hold locally, proposed based on the

results of Theorem 4.1, are summarized at the end of the section. The merits of the

results of this section are illustrated by simulation in Section 4.7.
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Consider the Timoshenko beam model with Kelvin-Voigt damping and boundary-

displacement-dependent free-end nonlinearity given as the coupled wave equations

(2.21), (2.22) with free-end boundary conditions

ux(0, t) = α(0, t) + f (u (0, t)) (4.56)

and (2.24). The x = 0 boundary conditions (4.56), (2.24) represent a free-end with

nonlinear interaction force, and the beam is actuated at the end x = 1 through the

boundary inputs ux(1, t) and α(1, t).

The shear beam model is written as a singular perturbation (µ = 0) of the

Timoshenko beam model, and is given by (2.21), (3.6) with boundary conditions

(4.56), (2.24), and boundary inputs ux(1, t), α(1, t). As with the string, f(·) is

considered to be destabilizing, and a gain scheduling based PDE backstepping design

is chosen to stabilize u ≡ 0, α ≡ 0.

The results in [40, Section 3] are for an undamped (d = 0) shear beam with

linear destabilizing force, i.e., constant f̄ . The presence of KV damping in this

problem does not change the design, and the gain scheduling based backstepping

transformations are (4.2), (4.3), where for the present problem with f̄(u(0, t)) the

boundary-displacement-dependent gains satisfy the partial integro-differential equa-

tions (PIDEs)

kxx (x, y, u(0, t)) = kyy (x, y, u(0, t)) + b2k (x, y, u(0, t))− b3 sinh (b (x− y))

+b3
∫ x

y
k (x, ξ, u(0, t)) sinh (b (ξ − y)) dξ (4.57)

k (x, x, u(0, t)) = −b2

2
x + f̄ (u(0, t))− c0 (4.58)

ky (x, 0, u(0, t)) = −b2 cosh (bx) + b2
∫ x

0
k (x, y, u(0, t)) cosh (by) dy

+f̄ (u(0, t)) k (x, 0, u(0, t)) , (4.59)

and

lxx (x, y, w(0, t)) = lyy (x, y, w(0, t))− b2l (x, y, w(0, t))− b3 sinh (b (x− y))

−b3
∫ x

y
l (x, ξ, w(0, t)) sinh (b (ξ − y)) dξ (4.60)

l (x, x, w(0, t)) = −b2

2
x + f̄ (w(0, t))− c0 (4.61)

ly (x, 0, w(0, t)) = −b2 cosh (bx) + c0l (x, 0, w(0, t)) . (4.62)
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Here (4.57)–(4.59) were found by substituting −q ≡ f̄(·) in [40, Equation (3.9)],

while (4.60)–(4.62) were found using gain scheduling based PDE backstepping tech-

niques. Note that (4.57)–(4.59), (4.60)–(4.62) are families of PIDEs in indepen-

dent variables (x, y), and parameterized by u(0, t), w(0, t). For each measured

u(0, t), w(0, t) the PIDEs are solved and their solutions substituted appropriately.

Given that k(x, y, u(0, t)) and l(x, y, w(0, t)) are implemented ‘continuously,’ then

an alternative to numerically solving their respective PIDEs is to approximate the

functions by the explicit first step of a symbolic recursion [40]. The first step of

the recursion for the shear beam gains gives k0 (x, y, u(0, t)) = Π(x, y, u(0, t)) and

l0 (x, y, w(0, t)) = Π(x, y, w(0, t)), where

Π(x, y, n) = − b

2
[− sinh (b(x− y)) + by cosh (b(x− y))] + f̄ (n)− c0 .

Similar to [40, Section 3] the locally stabilizing boundary controllers are chosen as

ux(1, t) = k (1, 1, u(0, t)) u(1, t) +
∫ 1

0
kx (1, y, u(0, t)) u(y, t) dy

−c1ut(1, t) + c1

∫ 1

0
k (1, y, u(0, t)) ut(y, t) dy (4.63)

α(1, t) = b sinh(b)u(0, t)− b2
∫ 1

0
cosh (b(1− y)) u(y, t) dy . (4.64)

The boundary controller (4.63) was found by making substitutions, similar to those

made for the string, into [40, Equation 3.7], while (4.64) is carried over from [40,

39, 43, 44]. Numerical results in [44] show comparable performance of the boundary

controllers when applied with the first step approximation k0 (x, y, u(0, t)) or with

the numerical solution of (4.57)–(4.59). Similar to the string, when f̄ is constant

the closed-loop system (2.21), (3.6), (4.56), (2.24), (4.63), (4.64) is equivalent to

the exponentially stable target system (3.3)–(3.5), and for general f̄(·) the target

system is (4.50), (3.4), (3.5) with l(x, y, w(0, t)) given by the numerical solution of

(4.60)–(4.62), or approximated by l0 (x, y, w(0, t)).

The motion planning and tracking results of Chapter 3 can also be extended to

(2.21), (3.6), (4.56), (2.24) using gain scheduling techniques. As with the string,

motion planning and tracking results in Chapter 3 were developed only for f̄ ≡ 0.

Results for general f̄(·) are found following the techniques in Chapter 3 but with
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the transformations (4.2), (4.3), (4.57)–(4.59), (4.60)–(4.62). The gain scheduling

based backstepping transformations for motion planning and tracking are

w(x, t) = u(x, t) + r(x, t)−
∫ x

0
k(x, y, u(0, t))u(y, t) dy (4.65)

u(x, t) = w(x, t)− r(x, t) +
∫ x

0
l(x, y, w(0, t)) [w(y, t)− r(y, t)] dy (4.66)

where k(x, y, u(0, t)) and l(x, y, w(0, t)) are given by (4.57)–(4.59), (4.60)–(4.62),

and r(x, t) is the state of the auxiliary system (3.39)–(3.41). The motion planning

reference solutions are

ur(x, t) = wr(x, t)− r(x, t) +
∫ x

0
l (x, y, wr(0, t)) [wr(y, t)− r(y, t)] dy (4.67)

and (3.36), where for the sinusoidal tip displacement and deflection angle reference

trajectories (3.7) and (3.45) wr(x, t) is given by (3.16), and r(x, t) is given by (3.55).

The boundary inputs for motion planning are

ur
x(1, t) = wr

x(1, t)− rx(1, t) + l (1, 1, wr(0, t)) [wr(1, t)− r(1, t)]

+
∫ 1

0
lx (1, y, wr(0, t)) [wr(y, t)− r(y, t)] dy (4.68)

αr(1, t) = cosh(b)αr(0, t) + b sinh(b)ur(0, t)

−b2
∫ 1

0
cosh (b(1− y)) ur(y, t) dy , (4.69)

and the tracking boundary controllers are

ux(1, t) = k (1, 1, u(0, t)) u(1, t) +
∫ 1

0
kx (1, y, u(0, t)) u(y, t) dy

−c1ut(1, t) + c1

∫ 1

0
k (1, y, u(0, t)) ut(y, t) dy

+wr
x(1, t) + c1w

r
t (1, t)− rx(1, t)− c1rt(1, t) (4.70)

α(1, t) = cosh(b)αr(0, t) + b sinh(b)u(0, t)

−b2
∫ 1

0
cosh (b(1− y)) u(y, t) dy . (4.71)

The beam boundary controllers (4.63), (4.64) and (4.70), (4.71) require actuation

of the slope (or displacement) and bending moment at the base. When combined

with full state observers in [39, 40, 43, 44], the output-feedback controllers require

sensing of the free-end displacement and velocity.



73

Based on the results of Theorem 4.1, the initial conditions u0(x), u̇0(x), u0(x)−
ur

0(x), and u̇0(x) − u̇r
0(x), along with the reference trajectory ur(0, t) should be

sufficiently small in the appropriate norms for the nonlinear controllers (4.63), (4.64)

and (4.70), (4.71) to be exponentially stabilizing and for the reference solutions

(4.67), (3.36) to hold. Such restrictions would seem to confine the operation to a

linear region of f(·). Since the advantage of using the nonlinear gain scheduled

controls is impossible to quantify using the conservative analysis tools of Section

4.3, then the advantage of gain scheduling based control over linearization based

control is illustrated by simulations in Section 4.7.

4.7 Simulations for the Timoshenko Beam

The Timoshenko beam control design in [43, 44] is done using a singular pertur-

bation approach to reduce it to the shear beam model, with the rest of the design

being analogous to the shear beam results in [39, 40]. All results for the shear beam

apply approximately to the Timoshenko beam, therefore the gain scheduling based

designs for the shear beam also apply approximately to the Timoshenko beam.

Simulations are done for the Timoshenko beam (2.21), (2.22), (4.56), (2.24) with

the stabilizing boundary controllers (4.63), (4.64) and tracking controllers (4.70),

(4.71) using the numerical solution to the gain PIDE (4.57)–(4.59). The spatial and

temporal step sizes are ∆x = 1
100

and ∆t = 1
50

respectively, the beam parameters

are a = 5, d = 0.1, ε = 10, and µ = 0.02, and the controller parameters are c0 = 10

and c1 = 0.99
√

10. String simulations were done with a superlinear nonlinearity

which required a more aggressive control action. Beam simulations are done with

a sublinear nonlinearity which requires a less aggressive control action. Figure 4.4

compares the nonlinearity f (u(0, t)) = −Fu(0,t)

1+(3u(0,t))2
for F = 1, where F is the linear

strength of the force, and its linear approximation about the origin. The boundary-

displacement-dependent interaction force has a linear region about the origin, which

is then dominated by the quadratic nonlinearity in the denominator. The linear

approximation overestimates the interaction force, i.e. |f ′(0)u(0, t)| ≥ |f (u(0, t)) |
for all u(0, t). This sublinear nonlinearity is easier to compensate for compared
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Figure 4.4: Comparison of the nonlinearity f (u(0, t)) used for the beam simulations,
and its linear approximation f ′(0)u(0, t), for F = 1.

to superlinear nonlinearity used for the string since, though it may destabilize the

origin, its strength decreases far from the origin and it can add two new stable

equilibria at |u(0, t)| > 0.

Figure 4.5 compares the energy E(t), tip displacement u(0, t), and boundary

control effort ux(1, t) of the closed loop system for the linearization based con-

troller and the gain scheduling based nonlinear controller. The beam is initialized

with zero initial velocity and the initial displacement and deflection angle profiles

u0(x) = 3
10

(1− x)2 and α0(x) = −3
5
(1− x), and the nonlinearity strength is varied

as F = {0.1, 0.3, 0.53, 2, 2.8}. The goal of these simulations is to compare the two

control implementations, as opposed to finding the best control parameters c0 and

c1 for a particular F , therefore the same c0 and c1 were used for all values of F .

For a very weak force (F = 0.1, not shown), the controllers have similar perfor-

mance. As the strength of the force increases (F = 0.3 to F = 0.53) the nonlinear

controller consistently performs well. Conversely, performance of the linearization

based controller begins to degrade as the overestimating nature of the gain induces

oscillation and the origin transitions from stable, to marginally stable, to unstable.

For a strong force (F = 2) the nonlinear controller is still able to stabilize the origin.

The gain scheduled controller extends the range of stability to F = 2.8 (not shown),

which is the largest value for which the nonlinear controller (with c0 = 10) preserves

stability of the origin. Simulations with F = 2.8 show that increasing the value

of c0 improves performance, suggesting that c0 should be increased proportional to
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Figure 4.5: Beam simulation results for linearization based (dashed) and gain
scheduling based nonlinear (solid) boundary control for various nonlinearity
strengths. The plots compare the (a) energy, (b) tip displacement, and (c) boundary
control effort.

F , though ultimately the gain scheduling based nonlinear controller cannot stabilize

the origin for very large F . The simulations show that—for a nonlinearity where the

linearization overestimates the force—the nonlinear controller outperforms the lin-

earization based controller when the nonlinear interaction force becomes sufficiently

strong, and it extends the range of stability.

Figure 4.6 compares the performance of the linearization based controller and

gain scheduling based nonlinear controller when the goal is to generate and track the

reference trajectory ur(0, t) = 0.5 sin (πt/3), αr(0, t) = 0. The beam is initialized

with zero initial conditions. The plot shows how the linearization based controller
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Figure 4.6: Beam simulation results comparing the tip displacement and reference
trajectory when boundary control is applied with linearization based control and
gain scheduling based nonlinear control.

begins to generate the reference trajectory, but in overestimating the nonlinearity it

applies an excess of control effort producing large amplitude and phase errors, and

cannot compensate for the harmonics caused by interaction with the nonlinearity.

The linearization based controller eventually destabilizes the system for larger time.

The gain scheduling based nonlinear controller is able to generate and track the sinu-

soid with very small errors in amplitude and phase, part of which can be attributed

to the approximate nature of the shear beam results applied to the Timoshenko

beam [69, 70]. The controllers have comparable performance for small reference

amplitudes and force strengths, the gain scheduled controller outperforms the lin-

earization based controller when the reference amplitude or force strength increases,

and neither controller can stabilize the reference trajectory when the strength of the

force is too large.

4.8 Conclusions

A control design for nonlinear PDEs inspired by gain scheduling and based on

the backstepping theory for linear PDEs has been introduced. Control designs

were presented for a benchmark first-order hyperbolic PDE with boundary-value-

dependent in-domain nonlinearity, and for the string and shear beam with Kelvin-
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Voigt damping and boundary-displacement-dependent free-end nonlinearities. The

benchmark system was used to illustrate how one can perform a stability analysis

of a nonlinear PDE system with gain scheduling based nonlinear control. Stability

analysis showed that the equilibrium u ≡ 0 of the closed-loop system was locally

exponentially stable. String and Timoshenko beam simulations were presented to

show the performance of the gain scheduling based nonlinear controllers, which

outperformed simple linearization based controllers.

Gain scheduling based PDE boundary backstepping methods provide a simple

and effective solution to the difficult problem of nonlinear control design for infinite

dimensional nonlinear systems. While not as powerful as a full nonlinear design,

gain scheduling based PDE backstepping theory produces tractable results that

outperform simple linearization based design.

This chapter is in full an adaptation of material as it appears in: A. A. Sira-

nosian, M. Krstic, A. Smyshlyaev, and M. Bement “Gain Scheduling-Inspired Con-

trol for Nonlinear PDEs,” submitted to the ASME Journal of Dynamic Systems,

Measurement and Control.

The dissertation author was the primary investigator and author of this paper.
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Extremum Seeking Tuned

Positive-Position-Feedback

Compensators

This chapter presents work done to design an extremum seeking based tuning

algorithm for optimizing the performance of a positive position feedback (PPF)

compensator. An analysis of a closed-loop system consisting of a second order

plant (spring-mass-damper) and the PPF compensator is done to find conditions

under which the compensator preserves stability of the origin. The compensator

parameters are redefined in order to satisfy the necessary condition for stability

and to simplify the problem from tuning three compensator parameters to tuning

only one. The ES based tuning algorithm is then presented for a PPF compensator

applied to the linear second-order system.

5.1 Introduction

The positive position feedback (PPF) compensator [25, 30, 31, 84], first reported

in [31] as a more appealing alternative to velocity feedback, has been studied as a

viable option for non-model based collocated control of flexible structures since it

is insensitive to the uncertain internal damping of a structure [31], and to spillover

78
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caused by unmodeled higher modes [30, 84]. Also, the closed-loop system is not

destabilized by finite actuator dynamics, and its stability properties depend only

on the structures natural frequency [30]. Assuming a PPF compensator is used

to attenuate vibrations at a structure’s natural frequency, then the compensator is

usually tuned to resonate at that same frequency to add damping [84].

In cases where the plant dynamics are uncertain or possibly time varying, or

there exists a disturbance of varying frequency, then it would be advantageous for

a compensator such as PPF, which relies on focusing its energy around a particular

frequency, to adjust accordingly. There can also be cases where a PPF compensator

is not applied as collocated control, where the compensator suppresses vibrations at

the same location it is sensing them, in which case it would be advantageous to tune

the PPF compensator of optimal performance. One such method for achieving this

is extremum seeking (ES), which continuously probes a system and tunes parameters

such that optimal performance achieved.

This work considers the application of a PPF compensator to suppress a single

sinusoidal disturbance to a plant. The plant model is chosen as a second order sys-

tem, as opposed to an infinite dimensional system, for simplicity. A stability analysis

of the closed-loop system is first done to ensure that the PPF will not destabilize

the origin. The compensator gain is then redefined, in terms of the compensator

natural frequency, in order to satisfy the necessary condition for stability, which

requires only knowledge of the plant gain and natural frequency. The compensator

damping is also redefined in terms of natural frequency of the compensator in order

to simplify the problem from tuning three parameters, to tuning one. Then an ES

based tuning algorithm is designed to tune the PPF compensator natural frequency

to optimize the performance of the compensator applied to the linear plant.

The chapter is organized as follows. Section 5.2 presents a general single param-

eter extremum seeking scheme, which will be used for the tuned PPF compensators.

Section 5.3 presents the PPF compensator with stability analysis of a second order

system in feedback with the compensator, and the extremum seeking based tuning

design. Section 5.4 presents simulation results.
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Figure 5.1: Block diagram of general single parameter extremum seeking scheme.

5.2 General Single Parameter Extremum Seeking

Figure 5.1 shows the block diagram of a general single parameter extremum

seeking (ES) scheme [2]. ES tunes the signal θ̂ such that it approaches the optimal

value θ∗, which corresponds to a local extrema f ∗ of the unknown nonlinear map

f (θ). The method does so by employing a sinusoidal perturbation (p sin ωt) to con-

tinuously probe the map. It extracts the map’s local gradient information using the

demodulated signal J sin ωt, and then tunes θ̂ using the integrator with adaptation

gain c.

Some general comments can be made about the performance and stability of the

scheme shown in Figure 5.1. Consider a nonlinear map of the form

f (θ) = f ∗ +
f ′′

2
(θ − θ∗)2 , (5.1)

which locally approximates any twice-continuously-differentiable (C2) function. The

constant f ′′ > 0 corresponds to θ∗ being the location of a minimum, while f ′′ < 0

corresponds to θ∗ being the location of a maximum. For cf ′′ > 0, this scheme is

locally exponentially stable to an O (p2 + 1/ω2) neighborhood of θ∗. This suggests

that the sign of c must be chosen based on some knowledge of the map (whether

it is to be minimized or maximized), and the perturbation frequency ω should be

sufficiently large and the perturbation amplitude p should be sufficiently small, in

order for the ES tuning to perform well. Note that the location of the maximum

θ∗ can be a function of time, in which case the perturbation frequency should be

sufficiently fast compared to θ̇∗.
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Figure 5.2: Positive feedback interconnection of plant G(s) and compensator C(s).

5.3 Tuned PPF Compensator

Consider the spring-mass-damper system given by a transfer function G(s) of

the form

G(s) =
Y (s)

D(s)
=

b

s2 + a1s + a0

(5.2)

in feedback with the positive-position-feedback (PPF) [31] compensator given by a

transfer function C(s) of the form

C(s) =
U(s)

Y (s)
=

k

s2 + q1s + q0

, (5.3)

where D(s) is a disturbance entering the plant, U(s) is the control effort, and Y (s)

is the position output of the plant. The strictly positive constants a0, a1, and b are

plant parameters and k, q0, and q1 are the compensator parameters to be tuned.

Figure 5.2 shows the feedback interconnection of the plant and compensator.

The characteristic equation for the closed loop system, which for positive feedback

is given by 1−G(s)C(s) = 0, is

s4 + (a1 + q1) s3 + (a0 + q0 + a1q1) s2 + (a1q0 + a0q1) s + (a0q0 − bk) = 0 . (5.4)

The necessary condition for stability, which states that all coefficients of (5.4) be

strictly positive, is satisfied by all the coefficients except a0q0 − bk. Assuming the

plant gain, b, and natural frequency,
√

a0, are known, or can be found, then k can

be parameterized as

k = (1− c0)
a0q0

b
, (5.5)
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which reduces the s0 coefficient to a0q0− bk = c0a0q0 > 0 and satisfies the necessary

condition for stability for any c0 > 0. Since c0 = 1 makes k = 0, which is equivalent

to having no control, and values of c0 > 1 change the compensator from positive

to negative feedback, c0 is bounded between zero and one (0 < c0 < 1). A further

simplification is made by parameterizing q1 as

q1 = c1q0 , c1 > 0 . (5.6)

Using the parameterizations in (5.5) and (5.6), the characteristic equation sim-

plifies to

s4 + (a1 + c1q0) s3 + (a0 + q0 + c1a1q0) s2 + (a1q0 + c1a0q0) s + c0a0q0 = 0 , (5.7)

which can be written as

1 + q0
c1s

3 + (1 + c1a1) s2 + (a1 + c1a0) s + c0a0

s2 (s2 + a1s + a0)
= 0 , (5.8)

or in the root locus form 1 + K b(s)
a(s)

= 0 as

1 + c1q0

s3 +
(

1
c1

+ a1

)
s2 +

(
a1

c1
+ a0

)
s + c0a0

c1

s2 (s2 + a1s + a0)
= 0 , (5.9)

where a(s) and b(s) are monic polynomials, and q0 is the parameter to be tuned

by extremum seeking. Equations (5.8) and (5.9) show that there are two real poles

that begin at the origin, and two complex conjugate poles that begin at the poles of

the plant. For very small c1 the polynomial b(s) reduces to s2 +a1s+ c0a0, therefore

two of the poles move toward a pair of zeros that resemble the plant poles but

with slightly lower natural frequency and slightly higher damping ratio, while the

other two poles move to asymptotes with angles ±π
2

centered near the imaginary

axis. For very large c1 the polynomial b(s) reduces to s (s2 + a1s + a0), causing an

approximate pole-zero cancelation and leaving b(s)
a(s)

as an integrator.

Figure 5.3 shows the block diagram of the plant in closed-loop with the PPF com-

pensator (with simplifications (5.5) and (5.6)) along with the extremum seeking algo-

rithm. The plant is excited by the disturbance d(t) = ad sin ωdt, and ES tunes f0(t),

where q0 = (2πf0)
2, in order to minimize the nonlinear map J(y) =

∫ t
t−T y2(τ) dτ ,
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d(t)

u(t)

y(t)+
G(s)

C(s)

− c

s

s

s + h

q0(t)

a sinωt sinωt

+

∫ t

t−T
y2(τ) dτ

f0(t)
(2πf0)

2

Figure 5.3: Block diagram of closed-loop system with extremum seeking tuning of
the compensator parameter.

where T is size of the window used for integration. Extremum seeking perturbs

f0(t) with a sin ωt. The perturbed map output is passed through a washout filter

with cut-off frequency h, and then demodulated with sin ωt. Tuning is achieved by

integrating the demodulated signal. The parameter c is the tuning gain. The win-

dow size T must be chosen large enough to capture a sufficient number of periods of

the output, which depends on the frequency of the disturbance. The perturbation

frequency ω should then be chosen slower then the period of the window, in order

for the cost function not to attenuate its effects.

5.4 Simulation Results

Figure 5.4 shows simulation results. Tuning was kept off until t = 50. The plant

parameters are a0 = (8π)2, a1 = 2
√

a0

10
, and b = a0. The compensator constants are

c0 = 4
5

and c1 = 1
100

, and the compensator is initialized with f0o = 1.5 (q0o = (3π)2).

The closed loop system is forced by a sinusoid of amplitude ad = 1, and frequency

ωd =
√

a0. The ES parameters are T = 1
2
, a = 0.1, ω = π, c = 4

5
, and h = π.

Figure 5.4(a) shows the cost function J(y) as a function of time. Figure 5.4(b)

shows the cost function as ES tunes f0(t), compared to the the dashed curve that

was pre-generated by selecting values of f0 and evaluating the corresponding J(y)

at steady state. Figure 5.4(c) shows the normalized plant output, and highlights
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Figure 5.4: Simulation results showing the (a) evolution of the cost as a function
of time, (b) evolution of the cost as a function of the compensator frequency, (c)
normalized plant output, and (d) normalized compensator natural frequency.

the performance of the tuning scheme. Figure 5.4(d) plots the normalized natural

frequency

√
q0(t)

ωd
, and shows how ES tunes the compensator natural frequency to be

near that of disturbance.

5.5 Conclusions

This chapter has presented an extremum seeking based design for tuning the

natural frequency of a positive position feedback (PPF) compensator to improve

vibration suppression in the presence of a persistent sinusoidal disturbance. A brief

discussion of positive position feedback compensators was presented, with a stability

analysis of the PPF compensator applied to a second-order system. The analysis
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was used to parameterize the compensator gain and damping in terms of the natural

frequency of a system. Then an extremum seeking based tuning algorithm was

designed to optimize the performance of the PPF compensator for a linear second-

order system. The extremum seeking scheme was able to tune the compensator to

suppress vibrations at the frequency of the disturbance.



6

Extremum Seeking Tuned

Controllers for Generating and

Tracking Sinusoids for Shake

Table Control

This chapter presents the design and implementation of an extremum seeking

(ES) based shake table controller when the goal is to generate and track a sinusoid

of given amplitude, frequency, and phase at the output of the shake table, or at

some point on a specimen mounted to the table. Assuming a stable linear plant,

given a sinusoidal input its output, ignoring transients, will also be sinusoidal but

possibly of different amplitude and phase. The design of the extremum seeking based

motion planning and tracking controller begins by using the sinusoidal plant output

to generate amplitude and relative phase (with respect to the input) estimates.

Two independent ES tuning loops are then designed to adjust the amplitude and

phase of the sinusoidal shake table input, based on those estimates. Simulations

and experimental results are used to demonstrate the effectiveness of the controller.

86
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6.1 Introduction

The basic principle of a shake table is to generate a desired table motion in order

to study the response of a specimen mounted to it. Its fidelity is highly dependent

on characteristics of the table and its actuators, the specimen, and their overall

interaction. Fidelity will also depend on the amplitude and frequency content of

the desired motion. A good controller must account for the overall dynamics of the

shaker-specimen system, while being able to operate with a variety of specimens

whose dynamics might exhibit nonlinear or time varying behavior.

Traditional shake table control strategies are based on the implementation of an

inverse kinematic solver to convert desired table displacement into control signals,

and a linear feedback composed of the weighted sum of the position, velocity and

acceleration [86]. Transfer function based control methods [12] use an experimentally

identified plant model, then pre-filter the desired table motion with the inverse

transfer function and apply the resulting control signal in open-loop. A proportional-

integral-derivative (PID) controller can also be used to close the loop for improved

performance [12, 85]. More advanced tools, such as linear optimal control [47],

employ off-line computations of an optimal control signal to compensate for shaker-

specimen interactions and actuator dynamics, then use an optimal controller to

match the desired table trajectory in the presence of unmodeled dynamics and

noise.

In all the aforementioned cases, the controller performance is highly dependent

on the availability of a good plant model, found by system identification, and per-

formance tends to degrade when modeling errors exist. In general, the system

identification process requires many off-line iterations to find a satisfactory model

before testing can even begin. Even so, in some cases the controllers will not be able

to compensate for strong nonlinearities or changes in the dynamics [18].

Nonlinear optimal control strategies proposed in [19] implement non-quadratic

cost functions and tensor based techniques to find an optimal control signal. The

Kalman filter based control technique [57] produces an open-loop optimal control

signal for a nonlinear system. The nonlinear system is linearized about the open-loop

trajectory, and then a compensator is designed based on linear control theory. This
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method requires on-line computation of a state-dependent Riccati equation. Once

again, these methods are sensitive to the quality of the plant model found by system

identification. Adaptive filter compensation [23] employs iterative identification of

the transfer function governing the error between a desired and actual system system

output, and adaptively tunes the error transfer function to pre-filter the shake table

input with the inverse of the error transfer function. The method is effective in

compensating for reaction forces caused by a mildly nonlinear specimen, but its

performance is sensitive to sensor noise. The minimal control synthesis [72], based on

model reference adaptive control, is yet another adaptive control tool implemented

on shake tables. The method treats the plant and reference model as linear systems,

where the reference model is chosen to have some ideal closed-loop performance

characteristics. A PID-like controller, with adaptive gains, is then applied so that

the error between the plant and the reference model is minimized.

Motivation for this work comes from the experimental shake table-testbed in-

troduced in Chapter 2. The sinusoid generating and tracking controller is based on

single parameter extremum seeking, as presented in Section 5.2, used to tune the

amplitude and phase of a sinusoidal input to the shaker in order to generate and

track a sinusoidal reference trajectory at the output. ES is chosen because it is a

non-model based approach, has low computational complexity, and is robust with

respect to possible plant nonlinearities and time varying dynamics. This implemen-

tation uses one physical measurement, the testbed output chosen as the acceleration

at some point along the beam, to generate amplitude and relative phase estimates.

Then ES techniques are used to tune the amplitude and phase of the control signal

based on those estimates. Results are investigated numerically, and experimentally.

This chapter is organized as follows. Section 6.2 presents the methods used

for generating output amplitude and relative phase estimates, and the extremum

seeking based controller design. Section 6.3 presents numerical and experimental

results. Section 6.4 discusses attempted extensions of the designs in Section 6.2.
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Figure 6.1: Block diagram of the method used to generate amplitude estimates.

6.2 Design

6.2.1 Generating Amplitude and Relative Phase Estimates

Figure 6.1 shows the block diagram of the method used to generate the ampli-

tude estimate. A similar method for generating amplitude measurements is used in

Chapter 6 of [2]. Consider a stable, linear plant G (s) whose input u is of the form

ai sin (ωt). The plant dynamics are unknown, but when forced by a sinusoidal input

its output, ignoring transients, will also be a sinusoid a sin (ωt + φ) at the same

frequency with some modulated amplitude a, and phase shift φ. The trigonometric

identity

2 (a sin x)2 = a2 (1− cos (2x)) , (6.1)

applied to the plant output generates a signal of the form a2 − a2 cos (2ωt + 2φ),

where the non-zero-mean term a2 contains an estimate of the output amplitude.

The sinusoidal term a2 cos (2ωt + 2φ) can be attenuated using a low-pass filter with

roll-off frequency is l � 2ω. Taking a square-root of the filtered signal produces the

amplitude estimate a. The roll-off frequency of the low-pass filter used in estimating

the output amplitude must be sufficiently small to adequately attenuate the term

a2 cos (2ωt + 2φ).

Figure 6.2 shows a diagram of the concept used to estimate the relative phase ∆φ

between a reference signal sin (ωt + φr) of desired phase φr, and the plant output

a sin (ωt + φ). The relative phase between the two signals is directly proportional

to the elapsed time between zero-crossings of the reference signal and plant output.

A zero-crossing, in general, refers to whenever a signal changes signs whether it be

increasing or decreasing. This work only considers zero-crossings in one direction,

in order to estimate relative phase up to π radians. The ‘start’ and ‘stop’ signals
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a sin (ωt + φ)sin (ωt + φr)

∆φ

Figure 6.2: Diagram showing the concept used to generate relative phase estimates.

used to estimate the relative phase are implemented two ways. One way uses the

reference signal to start, and the plant output to stop the count. The second uses

the plant output to start, and the reference signal to stop the count. This generates

two relative phase estimates, which can be thought of as lead and lag respectively.

The smaller, in magnitude, of the two estimates is then used in the ES tuning loop.

It would be sufficient to measure and tune based on one relative phase measurement,

however choosing the smaller of the two forces ES to tune in the direction of least

relative phase. Calibration would be necessary to relate the elapsed time measure-

ment, given in seconds or running count, to the actual relative phase in radians, but

that is not necessary for this design.

6.2.2 Extremum Seeking for Tuning Amplitude and Phase

Tuning of the amplitude and phase of a sinusoidal input, in order to track a de-

sired sinusoid at the output, requires combining the previously discussed techniques

for generating amplitude and relative phase estimates with the basic building blocks

of ES—perturbation, demodulation, nonlinear map and integrator—as discussed in

Section 5.2. Since only one plant output is measured and used to generate estimates

for the amplitude and relative phase, then ES tuning can be done separately for

the input amplitude and phase. This reduces the problem from tracking a time

varying nonlinear map as a function of the desired reference trajectory, to set-point
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regulation of the amplitude and relative phase using static maps.

The desired reference trajectory to be generated and tracked at the output of a

stable linear plant G(s) is

yr = ar sin (ωrt + φr) , (6.2)

where ar, ωr and φr are the desired amplitude, frequency and phase of the reference

signal. Ignoring transients, the motion planning reference solution must have the

form

u = (a0 + ua) sin (ωrt + uφ + φ0) , (6.3)

where a0 and φ0 are constants, which could be chosen to exactly satisfy motion

planning assuming perfect knowledge of the plant. The parameters ua and uφ are

tuned in order to compensate for errors between the desired reference trajectory 6.2

and the actual steady state plant output

y = A sin (ωrt + φ) , (6.4)

where A, and φ are the amplitude and phase of the output.

Figure 6.3 shows the block diagram of the ES based amplitude and phase tun-

ing design. The scalar plant output (6.4) is used to generate the amplitude and

relative phase estimates a and ∆φ using the methods discussed in Section 6.2.1.

These signals are perturbed with sinusoids of amplitude pa and pφ and frequencies

ωa and ωφ respectively. This system does not have an implicit nonlinear map to

be optimized, which allows for the choice of nonlinear maps for each tuning loop.

Unlike typical applications of ES, and the general scheme discussed in Section 5.2,

the maps are directly perturbed as opposed to the tuned parameters ua and uφ

being perturbed. The advantage of such an implementation is that the plant will

not exhibit perturbed steady-state behavior. The nonlinear maps, which take the

perturbed signals ap and φp, are chosen such that they are convex, with unique

global minima. The map used in the amplitude tuning loop is shifted by the desired

amplitude ar in order to have ES tune ua such that a → ar. The map used in the

the phase tuning loop is minimized at ∆φ = φ − φr → 0. The map outputs, Ja

and Jφ, are demodulated by sinusoids of frequencies ωa and ωφ respectively. Those
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Figure 6.3: Block diagram of ES applied to tune the amplitude and phase of the
input u, to track a reference trajectory at y.

signals are low-pass filtered at frequencies la << ωa and lφ << ωφ to remove har-

monics introduced by the perturbations, nonlinear maps and demodulation. The

tuned signals, ua and uφ, are generated by passing the filtered demodulated signals

through integrators with gains ca > 0 and cφ > 0.

The expressions for the tuned signals, ua and uφ, are

ua = −ca

s

la
s + la

[Ja sin ωat] (6.5)

uφ = −cφ

s

lφ
s + lφ

[Jφ sin ωφt] . (6.6)

The control input to the plant is then (6.3), with (6.5) and (6.6). Note that the

perturbations pa sin ωat and pφ sin ωφt do not appear additively in either of the tuned

signals, and therefore do not appear in the control signal u.
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6.3 Results

The ES based amplitude and phase tuning design has been applied in simulation,

and experimentally on the testbed. Section 6.3.1 presents simulation results for the

controller applied to a static plant. Section 6.3.2 presents experimental results for

the controller applied to the testbed.

Note that while Figures 6.1 and 6.3 use first-order low-pass filters, second-order

filters with damping ratios of 0.5 are used in simulation and experimentation for

better attenuation. Also, while not shown in Figure 6.3, a high-pass filter is employed

before demodulation in the amplitude tuning loop.

6.3.1 Simulations

Simulation results are presented for the case where no plant knowledge is as-

sumed, hence a0 = φ0 = 0. Without loss of complexity, a static plant G (s) = g > 0

is chosen, along with ar > 0, φr = π, and ES will have to tune ua and uφ to overcome

the maximum possible amplitude and phase errors of ar and π respectively. The

parameters used in simulation are ar = 1, ca = 2, cφ = 1.5, pa = 1/7, pφ = 1/5,

l = 0.2π, la = lφ = π, g = 1/2, φr = π rad, ωr = π rad/s, and ωa = ωφ = 10π rad/s.

Figure 6.4(a) compares the plant output and the desired reference trajectory.

The time scale has been truncated to highlight transient performance. The plot

shows how ES simultaneously tunes ua and uφ to force the plant output to grow

in amplitude and shift in phase. In an implementation of traditional ES the plant

output would on average look similar to that shown in Figure 6.4(a), but it would

also have higher frequency content in the amplitude and phase due to the pertur-

bations. Figure 6.4(d) shows the amplitude and phase tuning signals, ua and uφ

respectively, generated by ES. Figure 6.4(c) shows the amplitude estimate a of the

plant output with respect to the reference amplitude ar. The small amplitude os-

cillation visible in the steady-state of a is a byproduct of the amplitude estimating

scheme. A better choice of the low-pass filter pole l would help to remove those

oscillations, but it would also slow the amplitude generation scheme. Figure 6.4(d)

shows the relative phase estimate ∆φ. The signal is initially held at zero, since there
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Figure 6.4: Simulation results comparing the (a) plant output and desired reference
trajectory, (b) the tuned signals, (c) plant output amplitude with respect to the
desired amplitude, and (d) plant output relative phase with respect to the desired
relative phase.

exits a restriction that relative phase estimates cannot be generated until the plant

output amplitude has grown sufficiently large. Once the measurement is generated

ES tunes uφ to force the relative phase to zero. The relative phase estimates have a

zero-hold nature since an estimate can only be produced at the end of each timing

window, which occurs once every period T = 2π
ωr

.

Figure 6.5 shows the map outputs Ja and Jφ. The time scale has been truncated

to highlight their transient behavior. The effects of the perturbations can be clearly

seen in the outputs of the nonlinear maps. The effects of the perturbations on the

tuned signals are negated by the low-pass filters used after demodulation.
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Figure 6.5: Plots showing the outputs of (a) the amplitude tuning map Ja, and (b)
the phase tuning map Jφ.

6.3.2 Experiments

The experimental set-up is composed of the cantilevered beam testbed presented

in Chapter 2. The accelerometer is mounted at the beam’s free end.

Using Knowledge of the Plant

Results are presented for the case in which limited knowledge of the plant is

used to initialize the input with some a0 > 0 and |φ0| > 0. The parameters used

in experimentation are ar = 0.02 V, ca = 25, cφ = 15, pa = 1/4, pφ = 1/5, l = 2π,

la = lφ = 10π, φr = 0, ωr = 30π rad/s, and ωa = ωφ = 300π rad/s.

The reference trajectory parameters are ar = 0.02 V, ωr = 30π rad/s, and φr =

0◦. To illustrate how some plant knowledge helps in choosing values for a0 and

φ0, an experiment was first run to identify the plant’s characteristics—amplitude

and phase modulation—at the desired frequency. In this case, a sinusoid of unit

amplitude and desired frequency was used as the input, and the corresponding

output was measured for comparison. Other methods, such as experimental or

analytical Bode plots or simulations, could also be used to gain some insight of the

plant’s amplitude and phase modulation characteristics. Figure 6.6 compares the

testbed input and output (magnified ten times), for an input u = sin (30πt) V. The

plot shows that the plant’s output is attenuated about thirty times, with a relative

phase modulation of approximately π rad. Based on this limited knowledge, the
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Figure 6.6: Plot comparing the testbed input, and output magnified ten times.

plant input is initialized with a0 = 30ar V and φ0 = −π rad.

Figure 6.7(a) compares the reference trajectory to the plant output, when the

input is u = a0 sin (ωrt + φ0). The comparison is being made with the amplitude

and phase tuning turned off. The plot shows that the choices of a0 and φ0 help the

controller begin closer to the desired trajectory. Figure 6.7(b) shows a snap-shot of

the experiment after the controller has reached steady state. The plot compares the

reference signal with the testbed output, and shows how ES has tuned ua and uφ

such that the testbed output matches the reference signal to within the order of the

sensor noise.

Modularity to Different Plants

Modularity to different plants was quantified by attaching a mass of 0.10 lb

(46 g) at various locations on the cantilevered beam. Figures 6.8(a) and (b) show

the output amplitude and relative phase for the comparing the nominal case of no

mass, and mass placed at the tip, half-way between the tip and the shaker, and near

the shaker. The figure shows how changing the plant effects the performance of

the amplitude tuning controller. Performance in the “half-way” and “shaker” cases

is still acceptable, while performance in the “tip” case is greatly degraded. This

would be addressed by increasing the tuning gain ca. Adding mass does not degrade

performance of the phase tuning as much as it does the amplitude tuning.
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Figure 6.7: Experimental results comparing the reference trajectory and testbed
output, when (a) a0 = 0.06 V and φ0 = −π rad and tuning is turned off, and (b)
when tuning is turned on.

6.4 Extending Applicability of the Scheme

Work was done to extend the motion planning and tracking results for sinusoidal

reference trajectories to reference trajectories composed of a small number sinusoids

with well spaced frequencies, sinusoidal reference trajectory with slowly varying

frequency, for a single sinusoid when the beam tip interacts with nonlinearities, and

for general reference trajectories.

Small Number of Sinusoids with Well Spaced Frequencies

This was attempted by using band-pass filters to pick-off each frequency in the

plant output, then use a amplitude and relative phase estimate and tuning loop for

each sinusoid. The use of the filters dictated the need for the frequency of each

sinusoid to be well spaced, otherwise the signals would contaminate each other’s

tuning loops. The scheme worked for generating the desired amplitudes, but the

relative phase estimation scheme was unable to operate properly with even the

slightest cross-contamination and phase tuning could not be done.
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Figure 6.8: Experimental results showing (a) the plant output amplitude, and (b)
the plant output relative phase, when a 0.10 lb (46 g) mass is placed at various
locations along the beam.

Time Varying Frequency

Experiments were conducted for reference trajectories where the frequency ωr is

a slowly varying linear function of time. Figure 6.9 shows experimental results for

frequency sweeps up and down through the first natural frequency of the testbed.

Figure 6.9(a) shows how extremum seeking is able to tune the input amplitude

such that the amplitude of the output stays near the reference amplitude. Figure

6.9(b) shows how extremum seeking is able to tune the input phase such that the

relative phase at the output stays near zero. The amplitude and phase tuning signals

essentially produce ‘inverse’ Bode plots.

Testbed with Nonlinearities

Experiments with a sinusoid with slowly varying frequency were also used to test

the ES tuning scheme on the testbed with nonlinear interaction forces at the tip of

the beam. The extremum seeking based tracking portion of the scheme performed

as expected. It was able to tune the input amplitude and phase to track the desired

amplitude and phase. Where the method failed was in the motion planning solution,

which was chosen as a sinusoid. Strong enough interactions with the nonlinearity

produced harmonics, which this scheme could not account for.
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Figure 6.9: Experimental results showing (a) the output amplitude estimates and
amplitude tuning signals, and (b) the relative phase estimates and phase tuning
signals for generating and tracking a sinusoid when the frequency is slowly swept
up and down through resonance.

6.5 Conclusions

The design and implementation of an adaptive shake table controller for the

generation and tracking of single sinusoids has been presented. The assumed form

of a motion planning reference solution was first found. The sinusoidal plant output

was used to generate amplitude and relative phase estimates. Then ES was applied

to separately tune the amplitude and phase of the reference solution.

Simulation results showed good performance of the controller when applied with

zero knowledge of the plant. The worst-case-scenario simulations, where the con-

troller was initialized with zero amplitude and completely out of phase, showed how

the method adaptively tuned the control input to match the reference trajectory.

Experimental results showed good performance of the controller when applied with

limited knowledge of the plant, and when the plant dynamics changed.

This chapter is in full an adaptation of material as it appears in: A. A. Sira-

nosian, M. Krstic and M. Bement, “Generation and Tracking of Sinusoids for Shake

Table Control via Extremum Seeking,” Proc. of the ASME International Mechanical

Engineering Congress and Exposition, 2007.

The dissertation author was the primary investigator and author of this paper.
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Conclusions

Vibration suppression, stabilization, motion planning and tracking for flexible

beams are important control problems for many practical mechanical systems. This

work has approached those problems using two control design methods, backstepping

for partial differential equations (PDEs), and extremum seeking.

PDE backstepping theory provides a means for finding boundary controllers

for infinite dimensional systems, without discretization or truncation of the system

models. Key to the success of PDE backstepping are the infinite dimensional state

transformations, relating plants and their target systems. Explicit motion planning

reference solutions for the string, target system and shear beam models with Kelvin-

Voigt damping were found by leveraging those transformations. The displacement

reference solution for the string was found using established motion planning tech-

niques. The displacement reference solution for the target system was found using

a PDE backstepping transformation relating the target system to the the string.

Motion planning for the deflection angle for the shear beam was done by modify-

ing standard PDE backstepping techniques to satisfy the deflection angle reference

trajectory. Then the displacement reference solution for the shear beam was found

using a PDE backstepping transformation relating the beam to the target system.

PDE backstepping techniques provided a means for finding motion planning refer-

ence solutions for the shear beam, described by a PDE coupled with an ODE, using

the reference solution for the much simpler string system.

A combination of PDE backstepping and gain scheduling was then used to
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find nonlinear controllers to stabilize a benchmark first-order hyperbolic PDE with

boundary-value-dependent in-domain nonlinearity, and the string and shear beam

with Kelvin-Voigt damping and boundary-displacement dependent free-end nonlin-

earity. Gain scheduling combined with PDE backstepping for linear systems provides

a means of nonlinear control design for infinite dimensional systems that is more

simple and manageable than a full nonlinear design. The benchmark problem was

used to present the design methods, and a stability analysis of the origin of the

closed-loop system. String and beam simulations were used to highlight the perfor-

mance of their designs, which outperformed simple linearization based controllers.

Extremum seeking based designs were presented for the tuning of compensator

parameters to improve the vibration suppression characteristics of positive position

feedback compensators, and for the generation and tracking of sinusoids. The tuning

of positive position feedback compensators was done based on traditional single

parameter extremum seeking concepts. The design was able to tune the natural

frequency of the compensator to suppress vibrations of a second order system forced

by a sinusoidal disturbance.

The extremum seeking based sinusoid generating and tracking controller also

used single parameter extremum seeking techniques. This design relied on amplitude

and relative phase estimates of the output of a stable linear system, which were used

by ES to tune the amplitude and phase of a sinusoidal input. This design varied

from traditional extremum seeking, in that it perturbed the amplitude and relative

phase estimates as opposed to the amplitude and phase of the input signal.



Appendix A

Extremum Seeking for a Point

Mass for Target Tracking Without

Position Measurements

This appendix presents work done with extremum seeking for the tuning of the

velocity of a two-dimensional point mass to find the maximum of a signal, which

decays away from the source. This work proved to be a valuable learning experience

for extremum seeking techniques.

A.1 Introduction

Recent advances in extremum seeking have been followed by several exciting ap-

plications in non-model based control and optimization [5, 59, 61, 51, 20]. However,

extremum seeking has so far been developed only for plants that are open loop sta-

ble [2], with poles that are sufficiently well damped. In this paper we introduce a

new idea how to extend the applicability of extremum seeking to marginally stable

systems and moderately unstable systems. While the later extension is of general

interest, the former comes from an application.

Control of autonomous vehicles is an immensely active area. Typically au-

tonomous agents are allowed information sharing and are supplied with at least

102



103

their position measurements. In this paper we use extremum seeking to address

a problem with complete autonomy—a vehicle, without any position or velocity

information, tracks the source of a scalar valued “concentration”-type signal (for

example, the concentration of a chemical agent, or the strength of an acoustic, or

an electromagnetic signal). The concentration field is not known, however, it is

assumed to be the strongest at the source and to decay away from it. Therefore, the

non-model based extremum seeking method is appropriate to approach this problem.

The classical extremum seeking scheme is modified for the stated task by ob-

serving that the integrator, a key adaptation element, is already present in vehicle

models where the primary forces or moments acting on the vehicle are those that

provide thrust/propulsion, i.e., for vehicles that act primarily in the m~̈x = F man-

ner, where F is the motion-generating input and ~̈x is the acceleration vector. In this

paper we present results for a point mass model in the plane. An extension to 3D for

a fully actuated vehicle is trivial, except that one employs separate probing frequen-

cies in the ES algorithm for the individual axes of motion. The extension to point

mass models with extensive losses (due for example to drag) is straightforward by

noting that the input-output relationship drops in relative degree, making the prob-

lem actually easier. Drift-inducing forces like gravity or buoyancy are automatically

accommodated by extremum seeking which auto-tunes the input to compensate for

such constant disturbances.

An extension to underactuated or nonholonomic vehicles is not straightforward

and is the subject of [89] an our other follow up research.

The stability results we prove are local. The techniques introduced by Tan,

Nesic, and Mareels [73] can be used to achieve semi-global versions of our results.

A.2 A Velocity-Actuated Point Mass (Single In-

tegrators)

In the plane, an autonomous vehicle is modeled as a point mass:

ẋ = vx , ẏ = vy , (A.1)
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Figure A.1: Extremum seeking for velocity-actuated point mass.

where [x, y] is the position of the point mass and vx, vy are the velocity inputs.

Our method is extended later in the paper to the case where the inputs are forces,

however for clarity in introducing the new concept, we consider the simplest case of

a velocity-actuated point mass first.

A block diagram of extremum seeking is shown in Fig. A.1. The nonlinear map

represents the distribution of the signal being tracked, whose strength will typically

decay away from the origin, thus we assume that the nonlinear map J = f(x, y)

has a local maximum and pursue local tracking of that maximum. For clarity we

assume that the nonlinear map is quadratic and that its Hessian is diagonal, viz.,

J = f(x, y) = f ∗ − qx(x− x∗)2 − qy(y − y∗)2, (A.2)

where (x∗, y∗) is the unknown maximizer, f ∗ = f(x∗, y∗) is the unknown maximum,

and qx, qy are some unknown positive constants. General non-quadratic maps with

non-diagonal Hessians are equally amenable to analysis, using the same technique

as in [2, 38]. We show next that extremum seeking drives the autonomous vehicle

to (x∗, y∗) without employing any knowledge of f(x, y) or the measurements of
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(x, y), only the measurement of the output J of the nonlinear map f(x, y). This

corresponds to the problem of source localization in an unknown concentration field.

The designer chooses the parameters α, ω, h, cx, cy in the block diagram (Fig. A.1),

whereas the extremum seeking automatically tunes vx, vy to lead the vehicle to the

peak of f(x, y).

The analysis that follows employs the averaging method. Let

e =
h

s + h
[J ]− f ∗, (A.3)

then the signal after the washout filter can be expressed as s
s+h

[J ] = J − h
s+h

[J ] =

J − f ∗ − e. Now, let us introduce the new coordinates

x̃ = x− x∗ − α sin(ωt), (A.4)

ỹ = y − y∗ + α cos(ωt). (A.5)

Then, in the time scale τ = ωt, we define:

∆ = (J − f ∗ − e) = −
[
qx(x̃ + α sin τ)2 + qy(ỹ − α cos τ)2 + e

]
. (A.6)

So we summarize the system in Fig. A.1 as

dx̃

dτ
= +

1

ω
cx∆ sin τ (A.7)

dỹ

dτ
= − 1

ω
cy∆ cos τ (A.8)

de

dτ
= +

h

ω
∆. (A.9)

The system (A.7)–(A.9) is in the form to which the averaging method is applicable,

provided 1/ω is small, i.e., provided ω is large (relative to the other parameters in

the extremum seeking scheme and relative to the parameters in the nonlinear map).

The average model of (A.7)–(A.9) is

dx̃avg

dτ
= − 1

ω
αcxqxx̃avg (A.10)

dỹavg

dτ
= − 1

ω
αcyqyỹavg (A.11)

deavg

dτ
= − 1

ω
h

[
qxx̃

2
avg + qyỹ

2
avg + eavg +

α2

2
(qx + qy)

]
. (A.12)
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Then the equilibrium of the average model (A.10)–(A.12) is

x̃e
avg = 0, ỹe

avg = 0, ee
avg = −α2

2
(qx + qy). (A.13)

The Jacobian of (A.10)–(A.12) at (x̃e
avg, ỹ

e
avg, e

e
avg) is

Javg =
1

ω


−αcxqx 0 0

0 −αcyqy 0

0 0 −h

 . (A.14)

Given the knowledge that the extremum is a maximum, it follows that qx, qy are

known to be positive, though their actual values are unknown. Therefore, if we

choose α > 0, cx > 0, cy > 0 and h > 0, the Jacobian (A.14) is Hurwitz and

the equilibrium (A.10)–(A.13) of the average system (A.12) is locally exponentially

stable. Then according to the averaging theorem [35], we have the following result.

Theorem A.1 There exists ω̄ such that for all 1
ω
∈ (0, 1

ω̄
) the system in the Fig. A.1

with the nonlinear map of the form (A.2) has a unique exponentially stable periodic

solution (x̃2π/ω, ỹ2π/ω, e2π/ω) of period 2π
ω

and this solution satisfies∥∥∥∥∥∥∥∥∥∥


x̃2π/ω

ỹ2π/ω

e2π/ω + α2

2
(qx + qy)


∥∥∥∥∥∥∥∥∥∥
≤ O(1/ω), ∀τ ≥ 0. (A.15)

Since x− x∗ = x̃ + α sin(ωt) =
(
x̃− x̃2π/ω

)
+

(
x̃2π/ω − 0

)
+ α sin τ, the theorem

implies that the first term converges to zero, the second term is O(1/ω), and the

third term is O(α). Thus lim supτ→∞ |x−x∗| = O(α+1/ω). Similiary, we can obtain

lim supτ→∞ |y − y∗| = O(α + 1/ω). Hence, we get

lim sup
τ→∞

|f − f ∗| = O
(
α2 + (1/ω)2

)
, (A.16)

which characterizes the asymptotic performance of the extremum seeking loop in

Fig. A.1. Since we choose α as small and ω as large, the tracking error is very small.

Extremum seeking can be used for tracking of slowly varying trajectories, i.e.,

for tracking moving signal sources. When the trajectories are periodic our stability

proof extends with very minor modifications which we don’t present here in the
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interest of space. For example, consider a target motion is in the shape of the

number eight (8),

x∗ = am sin(ωmt) (A.17)

y∗ = am cos(2ωmt + φm) , (A.18)

where ωm � ω. If ω and ωm are commensurate, i.e., if there exist natural numbers

N and Nm such that ω/ωm = N/Nm, then our proof extends, with averaging applied

over a period of 2πN in the τ -time scale to account for the presence of an additional

periodic terms on the right hand sides of (A.7) and (A.8). If, however, ω and ωm

are incommensurate (for example, ω = 4πωm or ω = 3
√

23ωm), the technique of

general averaging for ‘almost periodic’ systems [35, Section 10.6] leads to the same

stability conclusions.

We first illustrate the simulation results of seeking a stationary target. The

point mass model (A.1) and the quadratic map (A.2) are used in the simulation.

We set the parameters of the target as (x∗, y∗) = (−1,−1), f∗ = 1, qx = 1 and

qy = 0.5. The parameters of the extremum seeking loop are chosen as ω = 30, α =

0.08, cx = cy = 10 and h = 1. The starting position of the autonomous vehicle is

(x(0), y(0)) = (1, 1). As shown in Fig. A.2 (b), the autonomous vehicle starts at (1, 1)

by probing around to climb the gradient of the unknown map, eventually circling

very closely around the maximizer (−1,−1), the output of the unknown signal J

is shown in Fig. A.2 (a), while the control inputs are shown in Fig. A.2 (c) and

(d). Note that the simulation results given in Fig. A.2 are not for parameter values

that are tuned to exhibit the best possible results. On the contrary, they illustrate

the performance one would achieve for particularly poorly chosen parameter of the

extremum seeking scheme. The point of showing the “worst case” performance is

because the map being optimized is unknown, therefore it makes sense to ask a

question about the performance with poorly chosen parameters.

For the slow time varying target (A.17)–(A.18), the simulation results are shown

in Fig. A.3, where we let am = 1, ωm = 0.1, φm = 3, f∗ = 1, qx = 1, qy = 0.5, and

ω = 30, α = 0.05, cx = cy = 15, h = 1. The starting position of the autonomous

vehicle is still (x(0), y(0)) = (1, 1). The autonomous vehicle catches up with the

target and then follows it quite closely in its number eight motion.
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(a) (c)

(b) (d)

Figure A.2: Extremum seeking for velocity-actuated point mass, stationary case.
(a) output; (b) vehicle trajectory starts from (1,1); (c) control input of x-axis; (d)
control input of y-axis.

This appendix contains a partial reprint of material as it appears in: C. Zhang, A.

A. Siranosian, and M. Krstic, “Extremum Seeking for Moderately Unstable Systems

and for Autonomous Vehicle Target Tracking Without Position Measurements,”

Automatica, vol. 43, pp. 1832-1839, 2007.

The dissertation author was the primary investigator of the excerpts from this

paper.
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(a) (c)

(b) (d)

Figure A.3: Extremum seeking for velocity-actuated point mass, slowly time-varying
case. (a) output; (b) vehicle trajectory starts from (1,1) and source trajectory starts
from (0,0); (c) control input of x-axis; (d) control input of y-axis.



Appendix B

Experimental Vibration

Suppression Results

This Appendix presents work done for virtual vibration absorbers (VVAs) with

extremum seeking tuned parameters, for suppressing vibrations on the testbed. Ex-

periments were conducted for the testbed without nonlinearities, with no mass,

magnets, and steel plates attached to the tip of the beam. They were then con-

ducted for the testbed with locally hardening and softening nonlinearities (magnets

or steel plates attached to the free-end, and magnets attached arranged around the

free-end of the beam).

Since the goal of this work was to implement a vibration suppression controller

on the testbed, the focus of this Appendix is the performance of the controllers as

opposed to the ES scheme and its performance.

B.1 Introduction

Vibration absorbers, ex. [29, 22, 33, 87], can be either passive mechanical elements—

spring-mass-damper—attached to a system, or active systems (virtual vibration

absorbers)—compensators emulating the passive system. Conceptually, a vibration

absorber reduces vibrations of a mechanical system it is attached to by resonating

near the frequency to be suppressed. Whether passive or active, vibration absorbers
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have traditionally been implemented as collocated controllers, where the absorber is

used to suppress vibrations at the same location it is attached to. A virtual vibration

absorber (VVA) was chosen for this application since it has exhibited satisfactory

performance in application, and is readily applicable to systems with acceleration

feedback. While a VVA might be sufficient to damp oscillations on both the linear

and nonlinear testbed, polynomial weighting (PW) of the testbed output will be

used in an attempt to improve performance when applied to the nonlinear testbed.

Extremum seeking was chosen to try to iteratively tune the VVA and PW pa-

rameters based on its successful application in [36], and because it could be used to

tune the compensator parameters for noncollocated applications where the shaker

on the testbed would act like a VVA to reduce vibrations anywhere along the beam.

B.2 The Virtual Vibration Absorber and Polyno-

mial Weighting

The form of the VVA compensator using acceleration feedback, for the testbed

without nonlinearities, is [6]

Cvva(s) =
U(s)

Y (s)
= ma

2ζωns + ω2
n

s2 + 2ζωns + ω2
n

, (B.1)

where Y (s) is the testbed output, U(s) is the control signal, and ma represents the

mass, ζ the damping ratio, and ωn is the natural frequency of the virtual spring-mass-

damper system. When applied to the nonlinear testbed the form of the controller

u(t) with PW is

u(t) = Cvva(s)
[
w1y(t) + w2y

2(t) + w3y
3(t)

]
. (B.2)

Iterative extremum seeking, which is similar to ES discussed in Chapter 5 in that

the it uses sinusoidal perturbation to probe a nonlinear map and an integrator to

tune a parameter based on a demodulated map output, will be used to tune ma, ζ

and ωn and w1, w2, w3. Unlike the tuning schemes in Chapter 5 this implementation

works iteratively to tune the parameters. First, an iteration of vibration suppression

experiments—consisting of deflecting and holding the tip of the beam away from
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Table B.1: Experimental results showing the (a) VVA parameters, and (b) two-
percent settling time for the linear testbeds.

No Mass Magnets Steel Plates
ma 0.735 1.08 1.81
ζ 0.2 0.3 0.35
ωn 111.37 63.12 59.62

(a)

Settling Time, t2% (s)
No Mass Magnets Steel Plates

disconnected 7.130± 0.250 11.920± 1.202 16.290± 1.629
passive 0.492± 0.014 2.407± 0.151 2.620± 0.169
Cvva 0.368± 0.011 0.944± 0.036 1.251± 0.072

(b)

equilibrium, then releasing it and collecting the data from the accelerometer—were

conducted. Then an iteration of ES was completed, which consisted of computing

the two-percent settling time (cost function), demodulating the cost function, imple-

menting a discrete time integrator, and perturbing the parameter. This process was

repeated until parameter convergence was achieved. Details of iterative/discrete ES

can be found in [3, 36].

B.3 Experimental Results

Experiments were first conducted for the testbed without nonlinearities. The

VVA damping ratio and mass were initialized as ζ = 0.5, and ma = 3 (the mass is di-

mensionless since the accelerometer voltage signal was used). The natural frequency,

initialized near the first mode of the testbed, was chosen as ωn = {130 , 70 , 30} rad/s

for the testbed without mass attached, with magnets attached at the free-end, and

with steel plates attached at the free-end. Table B.1(a) tabulates the parameters

found for each testbed set-up, and highlights the performance of the tuned VVA.

The ES tuning did not perform as expected—the first step of tuning produced large

jumps in the mass and damping ratio (which would saturate a lower bound), then

little tuning afterwards—however the method did manage to find sets of parame-
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Table B.2: Results for (a) the polynomial weighting coefficients, and (b) two-percent
settling times for the nonlinear testbeds.

hardening softening
w1 0.823 0.860
w2 2.656 3.777
w3 3983 3553

(a)

Settling Time, t2% (s)
hardening softening

disconnected 18.017± 1.802 14.640± 2.235
passive 3.013± 0.117 2.780± 0.132
Cvva 1.016± 0.022 1.268± 0.053

Cvva w/ PW 0.780± 0.028 1.060± 0.011
(b)

ters that perform well. Table B.1(b) highlights the performance of the tuned VVA,

comparing its performance to the cases where the shaker was disconnected, and the

shaker was connected and used a passive vibration absorber. Three experiments

were conducted per iteration, therefore the values are presented as the mean plus

or minus one standard deviation.

Next, the parameter values in Table B.1(a) were used for the VVA portion of the

nonlinear controller (B.2), and ES tuned only the PW parameters for the testbed

with hardening and softening set-ups (as described in Section 2.2.4). The PW

parameters were were initialized as a linear controller, i.e. w1 = 1 and w2 = w3 ≈ 0.

ES tuning performed well, and found combinations of the parameters which reduced

the settling times for both the hardening and softening testbeds. Table B.2(a) shows

the parameters found by ES. The accelerometer output voltage y(t) was on the order

of tenths, therefore in terms of orders of magnitude of y(t), y2(t) and y3(t), w1 and w2

tend to be comparable, and w3 an order of magnitude above them. This is expected

with the magnets behaving as cubic nonlinearities. Table B.2(b) highlights the

performance of the VVA with tuned PW, comparing its performance for each set-up

to the cases with the shaker disconnected, the shaker used as a passive damper, and

the VVA without PW.
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