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Abstract—In this paper we introduce the throughput capacity
of wireless ad hoc network utilizing Multi-Packet Reception
(MPR) such that every node in a network has a capability
of decoding packets simultaneously transmitted from the nodes
inside the receiver rangeR(n). It was shown in [1] that per
source-destination throughput capacity under the protocol model
with MPR has a tight upper and lower bounds of Θ(R(n)).
On the other hand, the throughput capacity under the physical
model using successive interference cancellation (SIC) [2] has a
tight upper and lower bounds of Θ(R(n)(1−2/α)/n

1
α ) where α is

the path loss parameter. Motivated by the discrepancy between
the two capacity results, we investigated the throughput capacity
with MPR utilizing Maximum Likelihood Decoding(MLD). To
estimate the throughput capacity under the physical model with
MLD capability of nodes in the network we assumed a random
wireless ad hoc networks withn nodes uniformly and randomly
distributed in a unit square area. Using this optimum decoding
strategy, we demonstrate for the first time, that physical and
protocol models render the same capacity when we utilize MLD
in the physical model. The per source-destination throughput
capacity is under the physical model similar to the results in
protocol model [1]. More specifically, we demonstrate that atight
upper and lower bounds ofΘ(R (n))can be achieved whereR(n)
is the receiver range in MPR model. It is also proved that this
capacity is achieved whenR(n) ≥ Θ

“

p

log n/n
”

.

I. I NTRODUCTION

The seminal work by Gupta and Kumar [3] showed that
the amount of information between each source-destination
pair with single-user decoding and forwarding of packets is
not scalable with increasing number of nodes in the wire-
less ad hoc networks. Particularly in their physical model
based on SINR(Signal to Interference plus Noise Ratio), it
is assumed that the successful communication between the
specific source-destination pair is mainly restricted by the
signals received from other nodes. Since the communication
between nearest neighbor maximizes the number of simultane-
ous transmissions, the optimal strategy is to utilize the multi-
hop routing. Thus there has been a lot of research to increase
the throughput capacity on a wireless ad hoc networks. In [4]
it is shown that per-user throughput capacity can be increased
dramatically when nodes are endowed with mobility. Another
line of research demonstrate that per node throughput capacity

is increased by spatially reusing wireless channel [5], [6]. In
addition to this increasing the available bandwidth [7], [8] and
various kind of cooperation technique [9] were researched to
increase the throughput capacity.

In this paper we demonstrate the throughput capacity uti-
lizing Multi-Packet Reception(MPR). The first framework on
many-to-one communication was introduced by Ghez et al.
[10], [11] and Tong et al. [12]. In extended research on MPR
there have been efforts to increase the throughput capacityby
allowing multiple nodes cooperate to transmit their packets
simultaneously to the same node based on directional antennas,
multiuser detection (MUD), multiple input multiple output
(MIMO) techniques [5], [6], [13] and successive interference
cancelation (SIC) to decode multiple packets [14]. Recently
in [1] it was shown that the throughput capacity with MPR is
tightly bounded byΘ (R(n)) under the protocol model. This
represents a minimum gain oflog n compared to the capac-
ity bounds obtained by Gupta and Kumar for point-to-point
communication under the protocol model. Furthermore it was
also shown in [2] that with the MPR based on SIC throughput
capacity was tightly bounded byΘ(R(n)(1−2/α)/n

1
α ) under

the physical model. The main contribution of this paper is
that we introduced the throughput capacity with MPR utilizing
Maximum Likelihood Decoding under the physical model.
Hence we find out the closer relationship between two different
capacity result on MPR under physical and protocol model.
In Section II we summarized the prior work on the capacity
of wireless ad hoc network. Section III presents the network
model we use to obtain the upper and lower bounds on the
throughput capacity of wireless networks with MPR, which
are derived in Section IV. We show thatΘ (R(n)) bits per
second constitutes a tight bound for the throughput capacity
per node in random wireless ad hoc networks, whereR(n) and
α are the MPR receiver range and channel path loss parameter,
respectively. WhenR(n) ≥ Θ

(

√

log n/n
)

, the throughput

capacity is tightly bounded byΘ
(

√

log n/n
)

. This is a gain

of log n compared to the boundΘ (1/
√

n) in [15] and [3].
The assumptions we use to obtain these results are similar to



those made by Gupta and Kumar [3], except that each node
is equipped with MPR capabilities.

II. RELATED WORK

The seminal work by Gupta and Kumar [3] on the capacity
of wireless ad-hoc networks introduced capacity result in the
network wheren static nodes are arbitrary and randomly
distributed under the protocol model and physical model
based on unicast routing scheme. In the extended research
by Franceschetti et al. [15], they proved that the gap between
lower and upper bound in the random wireless network can be
closed under the physical model utilizing percolation theory.
Thus they have the same throughput orderΘ (1/

√
n).

To improve the throughput capacity Grossglauser and
Tse [4] examined the per-session throughput for applications
with loose delay constraints allowing mobility in the wireless
networks. They proved that under this assumption a non
vanishing capacityΘ (1) can be achieved by exploiting node
mobility. Negi and Rajeswaran [7] showed that the capacity
of wireless network can be enhanced by assuming large band-
width such as ultra wide-band (UWB) technology, power and
rate adaptation. Thus they proved that the per node throughput
capacity is upper and lower bounded byO

(

(n log n)(α−1)/2
)

andΩ
(

n(α−1)/2

(log n)(α+1)/2

)

respectively. Zhang et al. [8] improved
the capacity bounds employing unlimited bandwidth resources
and closed the gap in [7]

In other lines of research Ozgur et al. [9] proposed hier-
archical cooperation and virtual MIMO(distributed multiple-
input multiple-output) to achieve the linear capacity in an
order of n. Collaboration-driven approach among nodes [16]
also showed that the throughput capacity can be enhanced at a
cost of increased processing complexity in the nodes. In recent
research result by [1] and [2], it was also proved that with
MPR based throughput capacity under the protocol model and
physical model with SIC can be increased byΘ

(√
log n

)

and

Θ
(

(log n)
α−2
2α

)

.

III. N ETWORK MODEL

We consider a random wireless dense network which con-
sists of n nodes distributed randomly and uniformly over a
unit square area with intensityn. In this network model, the
node density in the network goes to infinity as the number
of nodes increase. Since we assume AWGN channel and path
loss channel model, the received signal at the receiver nodej
is expressed as

Yj =
∑

i6=j

Xi ·
√

gij + nj, (1)

,whereXi, Yj and nj represent the transmitted signal from
node i, received signal at nodej and thermal noise at the
receiver nodej respectively, andgij = 1

rα
ij

is the path
loss channel gain between a pair of transmitting nodei and
receiving nodej. Thus the transmitted signal decays with
distancerij and path loss parameterα(α ≥ 2) as it propagates
through the channel. We further assume that the{Xi}m

i=1 and

nj are independent, and thatE[nj ] = 0, E[n2
j ] = N . Now

we have the well-knownm input Gaussian multiple access
channel model.

To analyze the throughput capacity in out network model,
we employ the physical model introduced by Gupta and
Kumar [3] as a successful communication condition.

Definition 3.1: Physical Model with Point to Point Commu-
nication:
In a dense random wireless network based on plain routing,
the successful communication between a pair of transmitting
nodei and receiving nodej occurs when the followingSINR
condition is satisfied based on the physical model.

SINRi→j =
Pgij

N +
∑n

k 6=i,k=1 Pgkj
≥ β, (2)

,where N is the ambient noise power at the receiver side
and concurrently transmitted signal fromXk (i 6= k) is sim-
ply regarded as interference. Let all nodes transmit to their
destination at a common transmission power levelP and
signal power decay based on the path loss channel model.
Then we haveCij = B log (1 + SINRi→j) bits/sec as capacity
between transmit nodei and receive nodej. According to the
physical model introduced by Gupta and Kumar [3], if the
SINRi→j ≥ β at the receiver side is satisfied, the constant
data rate W bits/second between the transmitter-receiver pair
is achieved forCij .

On the other hand, in the physical model of MPR, we allow
each receiving node decode concurrently transmitted signal
from all the nodes within the common transmission range
R(n) while signal from nodes outside theR(n) is considered
interference. In the previous research [2], it was proved that
based on SIC MPR can increase the throughput capacity of the
network although throughput capacity of the network allowing
SIC under the physical model does not correspond to the
capacity result with MPR under the protocol model [1].

In this paper we applied ML optimum decoding scheme
to analyze the throughput capacity in MPR to find out the
relationship between two different throughput capacity result
under the physical and protocol model respectively.

Note that it is unmanageably hard to implement this opti-
mum decoding scheme in practice. First of all, every receiver
should have the massive storage device that store the precise
amplitudes of all received symbols and decoding table propor-
tional to the length of the code and the number of active users.
Second, ML decoding requires huge amount of computation
proportional to the number of users and code length.

Although this optimum decoding scheme seems to be im-
practical compared to the SIC, we expect that MPR with MLD
can reveal the closer relationship between protocol model and
physical model based on MPR.

The following proposition describes the encoding and de-
coding procedure for MPR allowing MLD at the receiver node.

Proposition 3.2:We consider a set ofm transmitters in the
receiver rangeR(n) andm code books for each transmitters.
If the ith transmitter sends data to the receiver node at a rate
of Ri, code book forith user has2nRi codewords of power



P . Each of them transmitters chooses an arbitrary codeword
from its own codebook and send these vectors simultaneously.
At the receiver end these codewords are added together with
the Gaussian noiseN and interference.

Proposition 3.3:The received signal at nodej from all
the nodes inside receiver rangeR(n) comprisesm symbols
and has(g1j , g2j, g3j ...gmj) for the actual channels form
symbols. If this channel vector is available to the decoder at
the receiver side, then the joint ML decoding scheme can be
executed by comparing the Euclidean distance between the
received codeword and the all possible codewords for them
transmitters in the receiver range. The codewords that makethe
vector sum closest to the received vector in Euclidean distance
is chosen to be the received codewords. With the capability of
the optimum ML decoding scheme, it is obvious from chapter
15 [17] that for a gaussian multiple access system withm
sources with power{Pg1j, P g2j, ..., P gmj} and ambient noise
of powerN , the total rate of information flow

∑m
i=1 Ri from

m sources to the receiver nodej at the center of the receiver
rangeR(n) is.

m
∑

i=1

Ri ≤
1

2
log2

(

1 +

m
∑

i=1

Pgij

N + I

)

, (3)

,where I denotes interference signal power received from
outside of the receiver rangeR(n) and N is the Gaussian
noise. In Eq. (3),

∑m
i=1 Pgij/ (N + I) implies the summation

of the individualSINRij between a pair of transmitting node
i and receiving nodej.

In contrast to the transmission ranger(n) defined in point-
to-point communication [3], the receiver rangeR(n) in the
MPR model defines the area where the receiver is capable of
decoding. We also assume half-duplex communication which
means that nodes in the MPR model can not transmit and
receive at the same time. The following definition shows the
SINR in MPR model with ML decoding capability at the
receiver node.

Definition 3.4: Physical Model with Multi-packet Recep-
tion:
In the physical model of random wireless dense networks [3],
the transmissions from all the nodes inside the receiver range
R(n) around a receiverj act as constructive signal while other
transmissions outsideR(n) considered as interference. Hence
in general the totalSINRi∈I(R(n))→j at the receiver nodej is

SINRi∈I(R(n))→j =

∑

i∈I(R(n)) Pgij

N +
∑

k/∈I(R(n)) Pgkj
, (4)

whereI(R(n)) is the set of nodes inside the receiver range
R(n).

Therefore by applying theSINRi∈I(R(n))→j to the Eq. (3)
instead of

∑m
i=1 Pgij/ (N + I), the following condition can

be achieved.

∑

i∈I(R(n))

Ri ≤ B log
(

1 + SINRi∈I(R(n))→j

)

= B log

(

1 +

∑

i∈I(R(n)) Pgij

N0 +
∑

k/∈I(R(n)) Pgkj

)

.(5)

,where Ri can beW or zero bits per second according to
physical model constraint [3].

Hence as long as the Eq. (5) is satisfied, having a total
throughput capacity

∑

i∈I(R(n)) Ri is feasible in a given
receiver rangeR(n).

We present the following definition from Gupta and Ku-
mar’s work [3] for completeness of the presentation.

Definition 3.5: Feasible throughput capacity of unicast:
“ A throughput ofλ(n) bits per second for each node is fea-
sible if there is a spatial and temporal scheme for scheduling
transmissions, such that by operating the network in a multihop
fashion and buffering at intermediate nodes when awaiting
transmission, every node can sendλ(n) bits per second on
average to its chosen destination nodes. That is, there is a
T < ∞ such that in every time interval[(i − 1)T, iT ] every
node can sendTλ(n) bits to its corresponding destination
node.”

Definition 3.6: Order of throughput capacity: λ(n) is
said to be of orderΘ(f(n)) bits per second if there exist
deterministic positive constantsc andc′ such that







lim
n→∞

Prob (λ(n) = cf(n) is feasible) = 1

lim
n→∞

Prob (λ(n) = c′f(n) is feasible) < 1.
(6)

The distribution of nodes in random networks is uniform.
Therefore, if there aren nodes in a unit square, then the density
of nodes equalsn. Hence, if |S| denotes the area of space
region S, the expected number of the nodes,E(NS), in this
area is given byE(NS) = n|S|. Let Nj be a random variable
defining the number of nodes inSj . Then, for the family of
variablesNj , we have the following standard results known
as the Chernoff bound [18]:

Lemma 3.7:Chernoff bound

• For anyδ > 0, P [Nj > (1+ δ)n|Sj |] <
(

eδ

(1+δ)1+δ

)n|Sj|

• For any0 < δ < 1, P [Nj < (1 − δ)n|Sj |] < e−
1
2n|Sj|δ

2

Combining these two inequalities we have, for any0 < δ < 1:

P [|Nj − n|Sj|| > δn|Sj |] < e−θn|Sj|, (7)

whereθ = (1+ δ) ln(1+ δ)− δ in the case of the first bound,
andθ = 1

2δ2 in the case of the second bound.
Therefore, for anyθ > 0, there exist constants such that

deviations from the mean by more than these constants occur
with probability approaching zero asn → ∞. An event occurs
with high probability (w.h.p.) if its probability tends to one
as n → ∞. It follows that, w.h.p., we can get a very sharp
concentration on the number of nodes in an area, so we can
find the achievable lower bound w.h.p., provided that the upper
bound (mean) is given. In the next section, we first derive the



upper bound, and then use the Chernoff bound to prove the
achievable lower bound w.h.p..

IV. T HROUGHPUTCAPACITY WITH MPR

In this section we compute the upper and lower bounds of
throughput capacity for MPR with capability of MLD at the
receiver node. We will first introduce some definitions and
preliminary results, of which some results are studied in the
previous research result [1].

In a random wireless network on a unit square area, av-
erage distance between source and destination pair can be
normalized such that the per node throughput capacity of the
network is equivalent to transport capacity defined in [3]. Thus
this paper only consider bits per second unit of throughput
capacity.

To analyze the maximum throughput capacity, a cutΓ is
introduced to partition nodes in the wireless networks into
two sets. It is a well known fact that the maximum flow
in a network is restricted by its bottleneck such that the
amount of information packets flowing from one to the other
cannot be greater than the weakest set of links among any
two nodes connections. Similarly for the wireless networks,
we can use the concept ofsparsity cut, as defined by Liu et al.
[19], considering the differences between wired and wireless
links. Since we assumed nodes are uniformly and randomly
deployed on a unit square area, the sparsity cut is induced in
the middle of the network area such that it captures the traffic
bottleneck of these network on average. ThelΓ shown in Fig. 1
is defined as the length of the sparsity cutΓ. The sparsity-cut
capacity is upper bounded by deriving the maximum number
of simultaneous transmissions across this cut.

By defining R(n) as the radius of the receiver rangeA,
i.e., A = πR2(n) and assuming that nodes are equipped with
omni-antenna for broadcasting, receiver node can distinguish
the decode-able transmitter nodes withinR(n) from the in-
terference outsideR(n). In doing this, we can compute the
maximum number of simultaneous transmissions across this
cut. Note that each disk with radiusR(n) centered at any
receiver should be disjoint from the other disk sets centered
at the other receivers. If we allow overlapping of disks with
radiusR(n), some nodes in the overlapping area can transmit
data to more than one receiver node withW bits per seccond
at the same time. This contradicts the fact that the unicast
routing is assumed in this network. In addition to this, it will
be shown later that this assumption is required to guarantee
the physical model condition in Eq. (5) based on MPR and
MLD.

A. Upper Bound

Lemma 4.1:The asymptotic throughput capacity of a spar-
sity cut Γ for an unit square region is upper bounded by
πlΓnW

2
R2(n)
D(n) , whereR(n) andD(n) denote the receiver range

and division range in a dense random wireless network with
MPR respectively. Fig. 2 shows theR(n) andD(n) with Sxy

induced by a sparsity cutΓ.

Fig. 1. For a receiver centered at(x, y), all the nodes in the shaded region
Sxy can send a message successfully and simultaneously.

Proof: The definition of sparsity cut introduced in Sec-
tion IV demonstrates that the cut capacity is upper bounded by
deriving the maximum number of simultaneous transmissions
across the cut. From Fig. 1 we can easily find out that all
the nodes on the shaded regionSxy can transmit their packets
to the receiver node centered at(x, y), such that simultaneous
transmissions across the cut is maximized when all nodes lying
on the left side of the cutΓ within an shaded areaSxy send
their packets to the right side of the cutΓ.

Since we assume that simultaneously transmitted signal
from nodes withinR(n) can be successfully decoded with
MLD at the node located on(x, y), we can compute the total
amount of edges crossing the cutΓ to find out the upper bound
of throughput capacity of the sparsity cut. Assuming that the
all transmitting nodes for the receiver node(x, y) are placed
on the shaded regionSxy illustrated in Fig. 1, it is obvious that
the average number of nodes onSxy is n×Sxy considering the
uniform distribution of the nodes. Then the average number
of simultaneously transmitting nodes are upper bounded as a
function of Sxy.

The area ofSxy is computed as

Sxy =
1

2
R2(n)(θ − sin θ). (8)

This area is maximized whenθ = π,

max
0≤θ≤π

[Sxy] =
1

2
πR2(n). (9)

which means that the total information capacityCj for one
receiverj at the right side of the cut is

Cj ≤
nπR2(n)/2
∑

i=1

Ri (10)



Note that the channel capacityRi defined between
a pair of transmitting nodei and receiving nodej is
B log (1 + SINRij), and B log (1 + SINRij) becomesW
bits per second if theSINRij ≥ β is satisfied otherwise
zero.

Then by replacingRi into B log (1 + SINRij) and con-
sidering thatSINRij ≥ β as a successful communication
condition for each source destination pair, the total information
capacityCj for a given receiver rangeR(n) is upper bounded
by

Cj ≤
nπR2(n)

2
∑

i=1

Ri ≤
1

2
πR2(n)nW

=

nπR2(n)
2
∑

i=1

B log (1 + β)

≤
nπR2(n)

2
∑

i=1

B log (1 + SINRij) (11)

It is obvious from Eq. (5) that Eq. (11) should satisfy the
Eq. (5) since we adopt ML decoding at the receiver side. Thus
by combining Eq. (5) and Eq. (11), we have the following
constraint for MPR with MLD.

nπR2(n)
2
∑

i=1

B log (1 + β) ≤ B log

(
∑

i∈I(R(n)) Pgij

N0 +
∑

k/∈I(R(n)) Pgkj

)

(12)
By replacing(1+β) into β′, Eq. (12) can be further reduced

to.

β′
nπR2(n)

2 ≤
∑

i∈I(R(n)) Pgij

N0 +
∑

k/∈I(R(n)) Pgkj
, (13)

As long as Eq. (13) is satisfied in a given receiver range
R(n), Cj = 1

2πnWR2(n) is achievable. In our MPR scheme
we assumed unicast routing in the network. Thus the circles
whose nodes are transmitting concurrently must be away from
each other at least forD(n) ≥ 2R(n) as shown in Fig. 2, such
that nodes can not transmit to multiple receivers in different
receiver disks. Therefore, the total throughput capacityC(n)
across the sparsity cut is

C(n) ≤
(⌊

lΓ
D(n)

⌋

+ 1

)

Cj <
πnWR2(n)(lΓ + D(n))

2D(n)
.

(14)
Since theD(n) and R(n) are decreasing functions ofn

which goes to zeros asn → ∞, lim (lΓ + D(n)) = lΓ
asymptotically. This proves the lemma.

Lemma 4.2:The per source-destination throughput of
MPR scheme in a 2-D random network is upper bounded by
O
(

R2(n)
D(n)

)

.

Proof: From lemma 4.1, there arelΓ/D(n) different cir-
cles of radiusR(n) each of them havingΘ(nR2(n)) nodes on

Fig. 2. Upper bound design of the network

average. Therefore, the average per node throughput capacity
can be derived as

λ(n) =
C(n)

n
= O

(

R2(n)

D(n)

)

. (15)

To derive an upper bound for the throughput capacity, we
need to obtain a minimumD(n), such that it guaranteesCj =
1
2πnWR2(n).

max

SINRi∈I(R(n))→j≥β′
nπR2(n)

2

λ(n)

= max

SINRi∈I(R(n))→j≥β′
nπR2(n)

2

R2(n)

D(n)
(16)

Note that the throughput capacity is maximized by mini-
mizing D(n), while if this value is too small, then Eq. (13)
will not be satisfied. Our aim is to find the optimum value for
D(n) such that Eq. (13) is satisfied. The following theorem
establishes the optimum value that will satisfy Eq. (13).

Theorem 4.3:The per source-destination throughput of
MPR scheme in a 2-D random network is upper bounded by
O (R(n)).

Proof: First in order to find out the upper bound
of the throughput capacity, we derive the upper bound of
SINRi∈I(R(n))→j at the receiver nodej. For the node that is in
a circle close to the edge of the network, let all the interfering
nodes placed at Euclidean distances of(iD(n) + R(n)) from
the receiver node. Then the minimum interference signal



power at the receiver node is computed as

∑

k/∈I(R(n))

Pgkj ≥
lΓ/D(n)
∑

i=1

π
2 nR2(n)P

(iD(n) + R(n))α

≥ πnR2(n)P

2D(n)α

lΓ/D(n)
∑

i=1

1
(

i + 1
2

)α , (17)

The second inequality of Eq. (17) stems from the fact that
R(n)
D(n) ≤ 1

2 . Since lΓ/D(n) goes to infinity asn increases,

the summation
∑lΓ/D(n)

i=1
1

(i+ 1
2 )α is bounded by two constant

valuesc1 andc2 such that

c1 ≤
lΓ/D(n)
∑

i=1

1

(i + 1
2 )α

≤
lΓ/D(n)
∑

i=1

1

(i)α
≤ c2. (18)

Consequently, we have the following minimum interference
signal power at the receiver side.

Imin =
πnR2(n)P

2D(n)α
c1, (19)

We next compute the received signal power from the nodes
inside of the receiver rangeR(n). It is known in [9] that for
any positive valueǫ , the minimum distance between any two
nodes in the network is larger than1n1+ǫ with high probability
for large values ofn. Equivalently, we say that there are
no other nodes inside a circle of radius1n1+ǫ . Thus we can
conclude that nodes are uniformly distributed in the range of
[ 1
n1+ǫ , R(n)].
Next, based on the work by [20], the received signal power

at nodej from all nodes outside of circle of radiusr0 is given
by

Pr(x0, y0, r0) =
2πδPn

(α − 2) r
(α−2)
0

[

1 − r
(α−2)
0

2π
C(x0, y0)

]

,

(20)
,whereC(x0, y0) is the constant value related to the receiver
location (x0, y0).

Then the received signal power from the shaded region in
Fig. 2 is approximated as

∑

i∈I(R(n))

Pgij =
Pr(x0, y0,

1
n1+ǫ ) − Pr(x0, y0, R0)

2
(21)

=
πδPn

(α − 2)

(

n(1+ǫ)(α−2) − 1

R(n)(α−2)

)

,

Using Eq. (21) and Eq. (19), the upper bound of the
SINRi∈I(R(n))→j is represented as

SINRi∈I(R(n))→j ≤
∑

i∈I(R(n)) Pgij

N0 + min
∑

k/∈I(R(n)) Pgkj
(22)

≤
πδPn
(α−2)

(

n(1+ǫ)(α−2) − 1
R(n)(α−2)

)

N0 + πnR2(n)P
2D(n)α c1

.

From the fact that the upper bound of the throughput
capacityCj can be achieved when the Eq. (13) is satisfied,
we can set up the following constraint by combining Eq. (13)
and Eq. (22).

β′nπR2(n)
2 ≤

πδPn
(α−2)

(

n(1+ǫ)(α−2) − 1
R(n)(α−2)

)

N0 + πnR2(n)P
2D(n)α c1

, (23)

In wireless ad hoc networks, interference is usually the dom-
inant factor and if noise in negligible in the above equation,
then it can be rewritten as

(

(α − 2)c1

2δ

R(n)αβ′nπR2(n)
2

R(n)(α−2)n(1+ǫ)(α−2) − 1

)

1
α

≤ D(n), (24)

Since nodes are randomly distributed on the plain,R(n)
should be larger thann− 1

2 to maintain non zero nodes on
average inside the circles, such that by neglecting minus one
in the denominator Eq. (24) can be approximated into

(

(α − 2)c1

2δ

R(n)2β′nπR2(n)
2

n(1+ǫ)(α−2)

)

1
α

≤ D(n), (25)

The another inequality betweenD(n) and R(n) derived
from Fig.2 is2R(n) ≤ D(n). However with respect to scaling
law, constant gain does not change the result. Thus in general
[(1 + ∆)R(n) + R(n)] ≤ D(n), where∆ is constant greater
than or equal to 1, is possible for another condition forD(n).
Therefore the minimum value ofD(n) is

min D(n)

= min






(2 + ∆)R(n),

(

(α − 2)c1

2δ

R(n)2β′nπR2(n)
2

n(1+ǫ)(α−2)

)

1
α







Note that from Lemma 4.2 and the fact that we do not allow
overlapping of any two communicating circles the maximum
upper bound of the total throughput capacity through the cut
is achieved by selecting minimum value ofD(n) which is
(1 + ∆)R(n).

Thus in order to adopt(2+∆)R(n) as a minimum separable
distance between any two circles, we can set up the following
inequality.

(

(α − 2)c1

2δ

R(n)2(β′)
π
2 R(n)2n

n(2+δ)(α−2)

)
1
α

≤ (2 + ∆)R(n) ≤ D(n),

(26)
After simple manipulation of Eq. (26), it can be rewritten

as

(β′)
π
2α R(n)2n ≤

(

2δ

(α − 2)c1

)1/α

n(1+ǫ)(1− 2
α )(2+∆)R1− 2

α (n),

(27)



Next by applying log2 operation to both sides of the
equation, then we have

π

2α
R(n)2n log2 β′ ≤ 1

α
log2

(

2δ

(α − 2)c1

)

+ (1 + ǫ)(1 − 2

α
) log2 n + log2 (2 + ∆)

+

(

1 − 2

α

)

log2 R(n), (28)

For the simplicity, Eq. (28) can be further reduced into

R(n) ≤ c3 ·
√

log2 n + c4 + c5 log2 R(n)

n
(29)

,where c3,c4 and c5 indicates
√

(1+ǫ)(α−2)
π
2 ·log2β′ ,

α log2 (2+∆)+log2[2δ/{(α−2)c1}]
(1+ǫ)(α−2) and 1

1+ǫ respectively.
As long as the receiver rangeR(n) satisfy Eq. (28), the

minimum D(n) is

minD(n) = (2 + ∆)R(n), (30)

Therefore applying the minimum receiver rangeD(n) lead us
to the maximum per node throughput capacity which is

λ(n) = O (R(n)) , (31)

In the next section we will show that this upper bound
capacity is also an achievable lower bound.

B. Lower Bound

In order to derive the lower bound, it is necessary to
compute the number of nodes that transmit simultaneously
from each communication circle.

For the purpose of finding the number of nodes in a
communication circle, we will use the same approach based
on Chernoff bound used in [2], such that we can prove that
in a randomly distributed network the number of edges across
the cut is sharply concentrated on its mean, and the actual
number of edges across the sparsity cut is indeedΘ (R(n))
w.h.p..

The following theorem demonstrate that, whenn nodes
are distributed uniformly over a unit square area, there exit
simultaneously at leastlΓD(n) circular regions (see fig. 2), each
one containingΘ(nR2(n)) nodes w.h.p...

Theorem 4.4:Each areaAj with circular shape of radius
R(n) containsΘ(nR2(n)) nodes w.h.p. and uniformly for all
values ofj, 1 ≤ j ≤ lΓ

D(n) under the condition thatR(n) ≥

Θ

(

√

log n
n

)

. Equivalently, this can be expressed as

lim
n→∞

P





lΓ/D(n)
⋂

j=1

|Nj − E(Nj)| < δE(Nj)



 = 1, (32)

whereδ is a positive arbitrarily small value close to zero.

Proof: The proof follows the same procedure in [2].
Hence the key constraint ofR(n) to satisfy theorem is given
as

R(n) ≥ Θ

(

√

log n

n

)

. (33)

This theorem shows that w.h.p., there are indeedΘ(nR2(n))
nodes in each communication region with the constraint in
(33). The achievable capacity is only feasible when the re-
ceiver range of each node in MPR scheme is at least equal
to the connectivity criterion of transmission range in point-
to-point communication [3]. Combining the result of Eq. (31)
in Theorem 4.3 and (33) in Theorem 4.4, we can state the
following theorem for the lower bound of throughput capacity,
which implies the lower bound order capacity achieves the
upper bound.

Theorem 4.5:The per source-destination throughput capac-
ity of MPR scheme in a 2-D static wireless ad hoc net-
work is lower bounded byΩ (R(n)) provided thatR(n) ≥
Θ

(

√

log n
n

)

, which means the tight bound is at least

Θ

(

√

log n
n

)

for α > 2.

Proof: We first prove that Eq. (31) is an achievable bound
and then by applying the minimum receiver range constraint
in Eq. (33), we derive the lower bound for this theorem. In
order to compute the achievable lower bound, we derive the
following inequality

β′
nπR2(n)

2 ≤
∑

i∈I(R(n)) Pgij

N0 + max
∑

k/∈I(R(n)) Pgkj
, (34)

The maximum interference is experienced by receiver node
when the interfering nodes have the closest distance to the
receiver Then the maximum interference is computed as

∑

k/∈I(R(n))

Pgkj ≤
lΓ/D(n)
∑

i=1

π
2 nR2(n)P

(iD(n) − R(n))α
(35)

≤ πnR2(n)P

2D(n)α

lΓ/D(n)
∑

i=1

1
(

i − 1
2

)α , (36)

Now we can prove that
∑lΓ/D(n)

i=1
1

(i− 1
2 )

α converge to the

constant value.

c6 ≤
lΓ/D(n)
∑

i=1

1

(i + 1
2 )α

≤
lΓ/D(n)
∑

i=1

1

(i − 1
2 )α

(37)

≤
lΓ/D(n)
∑

i=1

i

(i − 1
2 )α

≤ c7. (38)

Hence the maximum interference signal power at the re-
ceiver side is

Imax =
πnR2(n)P

2D(n)α
c7, (39)



Combining all the results derived so far, the minimum SINR
for MPR can be computed as

∑

i∈I(R(n)) Pgij

N0 + max
∑

k/∈I(R(n)) Pgkj

=

πδPn
(α−2)

(

n(1+δ)(α−2) − 1
R(n)(α−2)

)

N0 + πR(n)2nP
2D(n)α · c7

,

By applying the same condition forD(n) and R(n) com-
puted in the upper bound analysis, we arrive at

c1

c7
(β′)

πR(n)2n
2 ≤

∑

i∈I(R(n)) Pgij

N0 + max
∑

k/∈I(R(n)) Pgkj
(40)

=

πδPn
(α−2)

(

n(1+δ)(α−2) − 1
R(n)(α−2)

)

N0 + πR(n)2nP
2D(n)α · c7

,

Using simple manipulations, we can compute the lower
bound of throughput capacity asλ(n) = Ω (R(n))

The above theorem demonstrates that a gain of at least
Θ
(

(log n)
1
2

)

can be achieved compared with the results by
Gupta and Kumar [3] and Franceschetti et al. [15]. Combining
Theorems 4.3 and 4.5, we arrive at our first major contribution
of this paper.

Theorem 4.6:The per source-destination throughput capac-
ity of MPR scheme in a 2-D static wireless ad hoc network
is tight bounded asΘ (R(n)). The minimum receiver range

is lower bounded asR(n) ≥ Θ

(

√

log n
n

)

, which implies a

lower tight bound ofΘ

(

√

log n
n

)

.

Note that this result shows that we can close the gap in the
physical model similar to the results derived by Franceschetti
et al. [15] but achieving higher throughput capacity with MPR.

V. CONCLUSION

This paper shows that the use of MPR can close the gap
for the transport (throughput) capacity in random wirelessad
hoc networks under the physical model, while achieving much
higher capacity gain than that of [15]. The tight bound is
Θ (R(n)) whereR(n) is the receiver range in MPR model.
For the minimum value ofR(n), a gain of Θ

(√
log n

)

is
achievable in MPR scheme.
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