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Abstract—In this paper we introduce the throughput capacity is increased by spatially reusing wireless channel [5], (6]
of wireless ad hoc network utilizing Multi-Packet Receptim  addition to this increasing the available bandwidth [7],48d

(MPR) such that every node in a network has a capability \qrioys kind of cooperation technique [9] were researcheed t
of decoding packets simultaneously transmitted from the ndes . .
increase the throughput capacity.

inside the receiver range R(n). It was shown in [1] that per
source-destination throughput capacity under the protocbmodel In this paper we demonstrate the throughput capacity uti-

with MPR has a tight upper and lower bounds of ©(R(n)). lizing Multi-Packet Reception(MPR). The first framework on
On the other hand, the throughput capacity under the physicd any to-one communication was introduced by Ghez et al.
model using successive interference cancellation (SIC)][Bas a [10], [11] and Tong et al. [12]. In extended research on MPR

tight upper and lower bounds of ©(R(n) %) /n=) where a is ) :
the path loss parameter. Motivated by the discrepancy betnen there have been efforts to increase the throughput capagity

the two capacity results, we investigated the throughput gaacity ~ allowing multiple nodes cooperate to transmit their pasket
with MPR utilizing Maximum Likelihood Decoding(MLD). To  simultaneously to the same node based on directional améenn

estimate the throughput capacity under the physical model Wth ~ myltiuser detection (MUD), multiple input multiple output
MLD capability of nodes in the network we assumed a random (MIMO) techniques [5], [6], [13] and successive interferen

wireless ad hoc networks withn nodes uniformly and randomly . .
distributed in a unit square area. Using this optimum decodhg ~Ccancelation (SIC) to decode multiple packets [14]. Regentl

strategy, we demonstrate for the first time, that physical ad in [1] it was shown that the throughput capacity with MPR is
protocol models render the same capacity when we utilize MLD tightly bounded by® (R(n)) under the protocol model. This
n the ph_ysmal model. The per SOUrcere.Stlnatlon throughpt represents a minimum gain dxﬁgn Compared to the capac-
capacity is under the physical model similar to the results i 1 nds obtained by Gupta and Kumar for point-to-point
protocol model [1]. More specifically, we demonstrate that aight L .
communication under the protocol model. Furthermore it was

upper and lower bounds of©(R (n))can be achieved whereR(n) - )
is the receiver range in MPR model. It is also proved that this also shown in [2] that with the MPR based on SIC throughput

capacity is achieved whenR(n) > © (\/W) capacity was tightly bounded b®(R(n)(1~2/®) /n=) under
the physical model. The main contribution of this paper is
|. INTRODUCTION that we introduced the throughput capacity with MPR utiligi
The seminal work by Gupta and Kumar [3] showed thaflaximum Likelihood Decoding under the physical model.
the amount of information between each source-destinatipnce we find out the closer relationship between two differe
pair with single-user decoding and forwarding of packets iapacity result on MPR under physical and protocol model.
not scalable with increasing number of nodes in the wirgn Section Il we summarized the prior work on the capacity
less ad hoc networks. Particularly in their physical modek wireless ad hoc network. Section Il presents the network
based on SINR(Signal to Interference plus Noise Ratio), riiodel we use to obtain the upper and lower bounds on the
is assumed that the successful communication between theughput capacity of wireless networks with MPR, which
specific source-destination pair is mainly restricted bg thare derived in Section IV. We show thét (R(n)) bits per
signals received from other nodes. Since the communicatiggcond constitutes a tight bound for the throughput capacit
between nearest neighbor maximizes the number of simultap@r node in random wireless ad hoc networks, whete) and
ous transmissions, the optimal strategy is to utilize thdtimu o are the MPR receiver range and channel path loss parameter,

hop routing. Thus there has been a lot of research to increasgyectively. Whenk(n) > O (+/loen/n). the throughput
the throughput capacity on a wireless ad hoc networks. In [4] P Y (n) 2 ( sn/ ) anp

it is shown that per-user throughput capacity can be inesas-apacity is tightly bounded b§ (\/ log ”/n)- This is a gain
dramatically when nodes are endowed with mobility. Anothef logn compared to the boun@ (1//n) in [15] and [3].
line of research demonstrate that per node throughput @gpadhe assumptions we use to obtain these results are similar to



those made by Gupta and Kumar [3], except that each nadeare independent, and th#[n;] = 0, E[n?] = N. Now

is equipped with MPR capabilities. we have the well-knownn input Gaussian multiple access
channel model.
Il. RELATED WORK To analyze the throughput capacity in out network model,

The seminal work by Gupta and Kumar [3] on the capacitye employ the physical model introduced by Gupta and
of wireless ad-hoc networks introduced capacity resultig t Kumar [3] as a successful communication condition.
network wheren static nodes are arbitrary and randomly Definition 3.1: Physical Model with Point to Point Commu-
distributed under the protocol model and physical modsication:
based on unicast routing scheme. In the extended resedrtla dense random wireless network based on plain routing,
by Franceschetti et al. [15], they proved that the gap batwethe successful communication between a pair of transmittin
lower and upper bound in the random wireless network can bede: and receiving nodg occurs when the followingIN R
closed under the physical model utilizing percolation tiyeo condition is satisfied based on the physical model.
Thus they have the same throughput or@efl//n). Par
To improve the throughput capacity Grossglauser and SINR_,; = = 9ij
Tse [4] examined the per-session throughput for applioatio N+ Zk;ﬁi,k:l P
with loose delay constraints allowing mobility in the wigsk ,where N is the ambient noise power at the receiver side
networks. They proved that under this assumption a namd concurrently transmitted signal froiy (i # k) is sim-
vanishing capacity (1) can be achieved by exploiting nodeply regarded as interference. Let all nodes transmit tor thei
mobility. Negi and Rajeswaran [7] showed that the capacitjestination at a common transmission power leyeland
of wireless network can be enhanced by assuming large basidnal power decay based on the path loss channel model.
width such as ultra wide-band (UWB) technology, power antihen we have”;; = Blog (1 + SINR_.,) bits/sec as capacity
rate adaptation. Thus they proved that the per node thratighpetween transmit nodieand receive nodg. According to the
capacity is upper and lower bounded ©y((nlogn)@~1/2)  physical model introduced by Gupta and Kumar [3], if the

andQ (n“”;”“ respectively. Zhang et al. [8] improvedSINR—.; > 3 at the receiver side is satisfied, the constant

Tog n)(@TD/2 | ; .
the capacity bounds employing unlimited bandwidth resesircdat@ rate W bits/second between the transmitter-receaer p

and closed the gap in [7] is achieved forC;;. _
In other lines of research Ozgur et al. [9] proposed hier- ON the other hand, in the physical model of MPR, we allow

archical cooperation and virtual MIMO(distributed muléip each receiving node decode concurrently transmitted kigna

input multiple-output) to achieve the linear capacity in afom all the nodes within the common transmission range
order ofn. Collaboration-driven approach among nodes [18F(") While signal from nodes outside thé(n) is considered

also showed that the throughput capacity can be enhanced &tigrference. In the previous research [2], it was proveat th
cost of increased processing complexity in the nodes. lerec based on SIC MPR can increase the throughput capacity of the

research result by [1] and [2], it was also proved that witRetWork although throughput capacity of the network altogyi

MPR based throughput capacity under the protocol model ant- under the physical model does not correspond to the

physical model with SIC can be increased(b)(\/@) and Capacity result with MPR under the protocol model [1].
In this paper we applied ML optimum decoding scheme

© ((bgn)w) : to analyze the throughput capacity in MPR to find out the
relationship between two different throughput capacityute

] ) ] under the physical and protocol model respectively.
We consider a random wireless dense network which con-Note that it is unmanageably hard to implement this opti-

sists ofn nodes distributed randomly and uniformly over gzum decoding scheme in practice. First of all, every regeive
unit square area with intensity. In this network model, the shoyld have the massive storage device that store the @recis
node density in the network goes to infinity as the numbgpjitudes of all received symbols and decoding table propo
of nodes increase. Since we assume AWGN channel and p@a| to the length of the code and the number of active users
!oss channel model, the received signal at the receiver fiod&econd, ML decoding requires huge amount of computation
is expressed as proportional to the number of users and code length.
Although this optimum decoding scheme seems to be im-
Y= Z Xi - V95 15, (1) practical %ompareg to the SIC, we %xpect that MPR with MLD
7 can reveal the closer relationship between protocol moae! a
,where X;, Y; andn; represent the transmitted signal fromphysical model based on MPR.
nodei, received signal at nodg¢ and thermal noise at the The following proposition describes the encoding and de-
receiver node;j respectively, andg;; = = is the path coding procedure for MPR allowing MLD at the receiver node.
loss channel gain between a pair of trans?nitting nocad Proposition 3.2:We consider a set af: transmitters in the
receiving nodej. Thus the transmitted signal decays withieceiver rangeR(n) andm code books for each transmitters.
distancer;; and path loss parametef« > 2) as it propagates If the ith transmitter sends data to the receiver node at a rate
through the channel. We further assume that{the}, and of R;, code book forith user ha" codewords of power

>, )

I1l. NETWORK MODEL



P. Each of them transmitters chooses an arbitrary codeword
from its own codebook and send these vectors simultaneously Z R
7

At the receiver end these codewords are added together with < Blog (1+ SINRe () ;)
the Gaussian nois& and interference. i€l(R(n)

Propositipn .3.3:The.received signal at.nodﬁ from all — Blog <1+ ZieI(R(n))Pgij >(5)
the nodes inside receiver rand&n) comprisesm symbols No + X g r(r(ny) PIri

and has(g1;, 924, 93i...9gm;) for the actual channels fom . .
symbols.(Ifjthisjchajnnel 'i/)ector is available to the decoder é(vhe_re R; can beW or zero bits per second according to
the receiver side, then the joint ML decoding scheme can Bgyswal model constraint [3]. . - .

executed by comparing the Euclidean distance between thdtence as long as the Eq. (5) IS satlsﬁed, -havmg.a total
received codeword and the all possible codewords forrthe t11OUGNPUL capacity) ",y Ri is feasible in a given
transmitters in the receiver range. The codewords that rtreke "€CEIVer rangei(n). _ -

vector sum closest to the received vector in Euclideanniista e Present the following definition from Gupta and Ku-
is chosen to be the received codewords. With the capability §2'S work [3] for completeness of the presentation.

the optimum ML decoding scheme, it is obvious from chapter D€finition 3.5: Feasible throughput capacity of unicast:

15 [17] that for a gaussian multiple access system with ! _A th_roughpl_Jt of)\(n)_blts per second for each node is fea_l—
sources with powef Py, Pgs;, ..., Pgm; } and ambient noise sible |f_the_zre is a spatial and temporal scheme fqr schegl_Jlln
of power N, the total rate of information floy"7" , R; from transmissions, such that by operating the network in a hmyti

m sources to the receiver nogeat the center of the receiverf@shion and buffering at intermediate nodes when awaiting
rangeR(n) is. transmission, every node can seith) bits per second on

average to its chosen destination nodes. That is, there is a
T < oo such that in every time intervd(: — 1)T,¢T] every
m 1 " Py node can send’A(n) bits to its corresponding destination
ZRi < 510g2 <1 + Z N+JI>’ ) node”
i=1 i=1 Definition 3.6: Order of throughput capacity: A\(n) is
said to be of orde©(f(n)) bits per second if there exist

,.where I denotes interference signal power received frojaterministic positive constantsand ¢’ such that
outside of the receiver rangB(n) and N is the Gaussian

noise. In Eq. (3)Y", Pgi;/ (N + I) implies the summation Jim  Prob(A(n) = cf(n) is feasiblg = 1
of the individualSINR; between a pair of transmitting node lim Prob (A(n) = ¢ f(n) is feasiblé < 1. (6)

¢ and receiving nodg. n—00

In contrast to the transmission rangg) defined in point-  The distribution of nodes in random networks is uniform.
to-point communication [3], the receiver rand&n) in the Therefore, if there are nodes in a unit square, then the density
MPR model defines the area where the receiver is capableoffnodes equals:.. Hence, if S| denotes the area of space
decoding. We also assume half-duplex communication whigégion S, the expected number of the nod€éNs), in this
means that nodes in the MPR model can not transmit aarba is given byt(Ngs) = n|S|. Let N; be a random variable
receive at the same time. The following definition shows théefining the number of nodes ii; . Then, for the family of
SINR in MPR model with ML decoding capability at thevariablesN;, we have the following standard results known

receiver node. as the Chernoff bound [18]:
Definition 3.4: Physical Model with Multi-packet Recep- Lemma 3.7:Chernoff bound -
tion: @\
o Foranyd >0, P[N; > (1+0)n[S;|] < ( a5
In the physical model of random wireless dense networks [3], Y N > Il ((1”) B )

1 2
the transmissions from all the nodes inside the receiveyean * FOr any0 <4 <1, P[N; < (1= 48)n|S;[] < e~z"1%10
R(n) around a receivef act as constructive signal while othefCombining these two inequalities we have, for @ny ¢ < 1:
transmissions outsid&(n) considered as interference. Hence —onlS.
in general the totaSINR¢;(g(n))—; at the receiver nodg is PlIN; = nlSjl[ > on| S]] < e =, (7)

wheref = (1+49)In(1+6) — § in the case of the first bound,
ZieI(R(n)) Pgi; andf = 142 in the case of the secon_d bound.
Nt> P’ 4 Therefore, for anyd > 0, there exist constants such that
KEI(R(n)) = Ik deviations from the mean by more than these constants occur
with probability approaching zero as— oco. An event occurs
where I(R(n)) is the set of nodes inside the receiver ranggith high probability (w.h.p.) if its probability tends tone
R(n). asn — oo. It follows that, w.h.p., we can get a very sharp
Therefore by applying th&INR¢;(r(n))—; to the Eq. (3) concentration on the number of nodes in an area, so we can
instead of)_" | Pg;;/ (N + I), the following condition can find the achievable lower bound w.h.p., provided that thesupp
be achieved. bound (mean) is given. In the next section, we first derive the

SINRer(R(n)—j =



upper bound, and then use the Chernoff bound to prove the I |
achievable lower bound w.h.p..

Information flow Dgirection
IV. THROUGHPUTCAPACITY WITH MPR

In this section we compute the upper and lower bounds of
throughput capacity for MPR with capability of MLD at the
receiver node. We will first introduce some definitions and
preliminary results, of which some results are studied & th
previous research result [1].

In a random wireless network on a unit square area, av- S
erage distance between source and destination pair can be
normalized such that the per node throughput capacity of the
network is equivalent to transport capacity defined in [3jus
this paper only consider bits per second unit of throughput
capacity.

To analyze the maximum throughput capacity, a Euis
introduced to partition nodes in the wireless networks into
two sets. It is a well known fact that the maximum flow
in a network is restricted by its bottleneck such that they 1. For a receiver centered t, y), all the nodes in the shaded region
amount of information packets flowing from one to the othef., can send a message successfully and simultaneously.
cannot be greater than the weakest set of links among any
two nodes connections. Similarly for the wireless netwprks
we can use the concept sparsity cut as defined by Liu et al. Proof: The definition of sparsity cut introduced in Sec-
[19], considering the differences between wired and wagletion IV demonstrates that the cut capacity is upper bounged b
links. Since we assumed nodes are uniformly and randonggriving the maximum number of simultaneous transmissions
deployed on a unit square area, the sparsity cut is inducedaigross the cut. From Fig. 1 we can easily find out that all
the middle of the network area such that it captures the ¢raffhe nodes on the shaded regiSp, can transmit their packets
bottleneck of these network on average. Thehown in Fig. 1 to the receiver node centered(at y), such that simultaneous
is defined as the length of the sparsity €utThe sparsity-cut transmissions across the cut is maximized when all nodeg lyi
capacity is upper bounded by deriving the maximum numben the left side of the cul' within an shaded are&,, send
of simultaneous transmissions across this cut. their packets to the right side of the ciit

By defining R(n) as the radius of the receiver rangg Since we assume that simultaneously transmitted signal
i.e., A =mR?(n) and assuming that nodes are equipped wifrom nodes withinR(n) can be successfully decoded with
omni-antenna for broadcasting, receiver node can disishguMLD at the node located ofw, y), we can compute the total
the decode-able transmitter nodes withiin) from the in- amount of edges crossing the ¢uto find out the upper bound
terference outside?(n). In doing this, we can compute theof throughput capacity of the sparsity cut. Assuming that th
maximum number of simultaneous transmissions across this transmitting nodes for the receiver node, y) are placed
cut. Note that each disk with radiuB(n) centered at any on the shaded regia$i,, illustrated in Fig. 1, it is obvious that
receiver should be disjoint from the other disk sets cedterée average number of nodes 6p, is n x S, considering the
at the other receivers. If we allow overlapping of disks withiniform distribution of the nodes. Then the average number
radiusR(n), some nodes in the overlapping area can transnoit simultaneously transmitting nodes are upper bounded as a
data to more than one receiver node with bits per seccond function of S,,,.
at the same time. This contradicts the fact that the unicastThe area ofS,, is computed as
routing is assumed in this network. In addition to this, itlwi

Tranamitiing

be shown later that this assumption is required to guarantee Spy = 132(71)(9 —sinf). (8)
the physical model condition in Eq. (5) based on MPR and 2
MLD. This area is maximized wheth= T,
1
A U Bound _ 1 p2
pper Boun Ogggﬂ[szy] 27rR (n). 9)

Lemma 4.1:The asymptotic throughput capacity of a spar-

sity cut T' for an unit square region is upper bounded byhich means that the total information capacity for one
ﬂzF;W 1;2((71))’ whereR(n) and D(n) denote the receiver rangerecelverj at the right side of the cut is

and division range in a dense random wireless network with nwR*(n)/2

MPR respectively. F_ig. 2 shows the(n) and D(n) with S, C; < Z R; (10)
induced by a sparsity cut. =




Note that the channel capacity®; defined between F:

a pair of transmitting nodei and receiving nodej is Information flow direction
Blog (14 SINR;;), and Blog(1+ SINR;;) becomesw | = D
bits per second if theSINR;; > [ is satisfied otherwise \
zero. Rl it
Then by replacingR; into Blog(1+ SINR;;) and con- 4
sidering thatSINR;; > ( as a successful communication |
condition for each source destination pair, the total infation D(n) :;
capacityC; for a given receiver rang&(n) is upper bounded
——— e -
nmR2(n)
c;, < ; Ri < SxR2(n)nW F
i< ; i < gmR(n)n D(n) ;
nmR2(n)
2
= Y Blog(1+p) i —— B
i=1
er;(n)
< Y Blog(1+SINR;)) (11)

i— Fig. 2. Upper bound design of the network

It is obvious from Eg. (5) that Eq. (11) should satisfy the

Eq. (5) since we adopt ML decoding at the receiver side. Thus .
by combining Eq. (5) and Eq. (11), we have the foIIowinﬁ“’erage' Therefore, the average per node throughput ¢gpaci

constraint for MPR with MLD. can be derived as

2
e 2 () A(n) = ) _ o (MY (15)
22: Blog (1+ ) < Bl < Yier(rn) i " D(n)
og(1+ ) < Blog
i=1 No + 2 kg 1(rn)) P9ri .

To derive an upper bound for the throughput capacity, we
need to obtain a minimur®(n), such that it guarante€s; =
smnWR%(n).

By replacing(1+0) into ', Eq. (12) can be further reduced
to.

e Dicn(am) i
= No+ Y kgr(reny) Pori’

As long as Eq. (13) is satisfied in a given receiver range
R(n), C; = ixnW R?(n) is achievable. In our MPR scheme 5
we assumed unicast routing in the network. Thus the circles — max R*(n)
whose nodes are transmitting concurrently must be away from SINF%g(R(n))ﬂZW%% D(n)
each other at least fdP(n) > 2R(n) as shown in Fig. 2, such
that nodes can not transmit to multiple receivers in différe
receiver disks. Therefore, the total throughput capa€ity.)
across the sparsity cut is

(13)

max A(n)
nrR2(n)
SINRer(R(n))—; 2B~ 2

(16)

Note that the throughput capacity is maximized by mini-
mizing D(n), while if this value is too small, then Eq. (13)
will not be satisfied. Our aim is to find the optimum value for

Ir anW R%(n)(Ir + D(n)) D(n) such that Eq. (13) is satisfied. The following theorem
Cn) < ({D(n)J + 1) Cj < 2D(n) : establishes the optimum value that will satisfy Eq. (13).
(14)  Theorem 4.3:The per source-destination throughput of

Since theD(n) and R(n) are decreasing functions of MPR scheme in a 2-D random network is upper bounded by
which goes to zeros as — oo, lim(lr + D(n)) = Ir  O(R(n)).
asymptotically. This proves the lemma. u Proof: First in order to find out the upper bound

Lemma 4.2:The per source-destination throughput of ot the throughput capacity, we derive the upper bound of
MPstcheme in a 2-D random network is upper bounded @NREI(R(n))—U’ at the receiver nodg For the node that is in
0 (};((:)) : a circle close to the edge of the network, let all the inténfgr

Proof: From lemma 4.1, there adg /D(n) different cir- nodes placed at Euclidean distancegid®(n) + R(n)) from
cles of radiusi(n) each of them havin@(nR?(n)) nodes on the receiver node. Then the minimum interference signal




power at the receiver node is computed as From the fact that the upper bound of the throughput
capacityC; can be achieved when the Eq. (13) is satisfied,

in/D(n)  x - . . o
Z Pgy; > FZ ' Fnit®(n)P _ we can set up the following constraint by combining Eq. (13)
k¢ I(R(n)) ~ (iD(n) + R(n)) and Eq. (22).
lr/D(n)
mR*(n)P 1 3P 1 -2 1
> — Y ——, (17 T = B e e e
2D(7’L) =1 (Z + %) 6/ 2 S ( 7nR2(n)P ) ) ’ (23)

N + =5—=a—°C
The second inequality of Eq. (17) stems from the fact that 0T 2D

B(n) —~ 1 gGince Ir/D(n) goes to infinity asn increases, Inwireless ad hoc networks, interference is usually the-dom

D(n) = 2 . 10C Netw! terfere |
i - t factor and if noise in negligible in the above equation
the summatiory '™/ __1__is bounded by two constant & .
o (t+2) Y then it can be rewritten as

valuesc; andcsy such that

Ir/D(n) 1 nmR2(n)

1 -
< — < — < co. 18 a—2)c R(n)*p' 2
c1 ; i+ %)a ; (i)™ C2 (18) <( 25) 1 R(n)(a(Q))n(lJrE)(a?) — 1) < D(n), (24)

Consequently, we have the following minimum interference

. ) . Since nodes are randomly distributed on the pl
signal power at the receiver side. y plditin)

should be larger tham—z to maintain non zero nodes on
mnR2(n)P average inside the circles, such that by neglecting mings on
Imin = D) " (19) in the denominator Eq. (24) can be approximated into

nrR2(n)

inside of the receiver rang&(n). It is known in [9] that for (@ —2)ar R(n)*F" ) < D(n) (25)

any positive value , the minimum distance between any two 20 n(i+9@=2) B ’

nodes in the network is larger thapt= with high probability  The another inequality betweeR(n) and R(n) derived

for large values ofn. Equivalently, we say that there areqom Fig 2 is2R(n) < D(n). However with respect to scaling
no other nodes inside a circle of radiggy. Thus we can law, constant gain does not change the result. Thus in genera

conclude that nodes are uniformly distributed in the ranfye 81 + A)R(n) + R(n)] < D(n), whereA is constant greater

[+ R(n)). . , than or equal to 1, is possible for another condition ffn).
Next, based on the work by [20], the received signal powg,arefore the minimum value ab(n) is

at nodej from all nodes outside of circle of radiug is given

We next compute the received signal power from the nodes <

by
min D(n)
275 P (a—2) ( ) ( )Q/B/nﬂR2(n) =
mormn r —2)c1 R(n)=p'—=
P.(zo,y0,70) = 1--2 C(xg, , — ; « L
(0, Y0, 70) (0—2) @ [ o (zo yo)] min | (24 A)R(n), < 55 (T 9(a=2) )
(20)
whereC(zo, yo) is the constant value related to the receiver Note that from Lemma 4.2 and the fact that we do not allow
location (zo, o). _ . ~overlapping of any two communicating circles the maximum
“Then the received signal power from the shaded region ifyper bound of the total throughput capacity through the cut
Fig. 2 is approximated as is achieved by selecting minimum value &f(n) which is
(1+ A)R(n).
p _ Pu(20,Y0, 715) — Pr(20, 0, Ro) 01 Thus in order to adop2+A)R(n) as a minimum separable
Z Gij = 2 (21)  distance between any two circles, we can set up the following
€I(R(n)) inequality.
— moPn p+e(a—2) _ 1
(a—2)

Using Egq. (2.1) and Eq. (19), the upper bound of th 25 oy o e
SINRe (R(n))—; IS represented as

W ’ 2(4\ER(n)*n \ @
{(Q_Q)cl R(n)*(8) 2R ) < (2+ A)R(n) < D(n),

(26)
After simple manipulation of Eq. (26), it can be rewritten

_ Py,
ZzEI(R(n)) 9ij 22) as

NO + min Zk%I(R(n)) ngj

zira (n<1+e><a72> _

SINRer(r(n))—i <

S ) /5= R(n)?n 20 e (14€)(1-2) 1-2
R(n)(@=2) (B)2e < m n ) (2+A)R = (n),
mnR2(n ’

NO+ 25(7(1)())41301 (27)

IN



Next by applyinglog, operation to both sides of the Proof: The proof follows the same procedure in [2].

equation, then we have Hence the key constraint di(n) to satisfy theorem is given
as
T 9 , 1 20 R logn
— 1 < =1 - (n) >0 : (33)
2aR(n) n OgQB = o 082 <(C¥-2)Cl> n
2
+ (1+6)(1—=)logyn+log, (2+ A) _ _ u
@ This theorem shows that w.h.p., there are inde¢dR?(n))
+ <1 — 2) log, R(n), (28) hodes in eacr_l communicatipn_region With.the constraint in
o (33). The achievable capacity is only feasible when the re-

For the simplicity, Eq. (28) can be further reduced into ceiver range of each node in MPR scheme is at least equal
to the connectivity criterion of transmission range in gein

to-point communication [3]. Combining the result of Eq. 31
R(n) < c3 - \/10g2”+c4 + ¢ log, R(n) (29) in Theorem 4.3 and (33) in Theorem 4.4, we can state the
n following theorem for the lower bound of throughput capgcit

where  cs.c4 and ¢ indicates /(ire(a—2) which implies the lower bound order capacity achieves the
' ' 3leg28” " ypper bound.

alog, (24+A)+log,[26/{(a—2)c1 . i i

S ()115)32(![—2/){( ) - and - respectlvely. Theorem 4.5:The per source-destination throughput capac-

As long as the receiver rangB(n) satisfy Eq. (28), the ity of MPR scheme in a 2-D static wireless ad hoc net-
minimum D(n) is work is lower bounded by (R(n)) provided thatR(n) >

logn . . .
minD(n) = (2 + A)R(n), (30) = ) which means the tight bound is at least
Therefore applying the minimum receiver ranbén) lead us © < 10%) for a > 2.
to the maximum per node throughput capacity which is Proof: We first prove that Eq. (31) is an achievable bound
and then by applying the minimum receiver range constraint
A(n) = O (R(n)), COR Eq. (33), we derive the lower bound for this theorem. In

order to compute the achievable lower bound, we derive the

[ ]
In the next section we will show that this upper bounéPllowing inequality

capacity is also an achievable lower bound.
nrR%(n) < ZieI(R(n)) Pgi;

< ) (34)
No +max} a1 (peny) Pk

6/

B. Lower Bound

In order to derive the lower bound, it is necessary to . . . . :
oo The maximum interference is experienced by receiver node
compute the number of nodes that transmit simultaneousl|

s . X .
- : When the interfering nodes have the closest distance to the
from each communication circle. . . . )
— . receiver Then the maximum interference is computed as
For the purpose of finding the number of nodes in a

communication circle, we will use the same approach based lr/D(n) TnR%(n)P
on Chernoff bound used in [2], such that we can prove that Z Pgr; < Z 2 - (35)
in a randomly distributed network the number of edges across r¢1(r(n)) = (iD(n) = R(n))
the cut is sharply concentrated on its mean, and the actual R Plp/D(n) 1
number of edges across the sparsity cut is ind@dd?(n)) ™R (n) =, (36)
w.h.p.. - 2D(n)e i=1 (Z - %)
The following theorem demonstrate that, whennodes Ir/D(n) 1
are distributed uniformly over a unit square area, thera exi NOW we can prove thap ;” (1)~ converge to the

simultaneously at Ieasjg% circular regions (see fig. 2), eachconstant value.
one containingd(nR?(n)) nodes w.h.p...

Theorem 4.4:Each aread; with circular shape of radius Ir/D(n) 1 Ir/D(n) 1
R(n) contains®(nRk?(n)) nodes w.h.p. and uniformly for all s < Z < Z — (37)
values ofj,1 < j < Dl(Fn) under the condition thaR(n) > —~ (i+3)" —~ (i-3)
. . Ir/D(n)
logn
(€] (w/ 5 ) Equivalently, this can be expressed as < Z <en (38)

i=1 (Z - %)a B
Ir/D(n)

lim P ﬂ IN; — E(N;)| < 6E(N;)| =1, (32) Henc_e thg maximum interference signal power at the re-
1 ' ' ceiver side is
/ mnR%(n)P

where¢ is a positive arbitrarily small value close to zero. Inaz = 2D (n)™ 7, (39)

n—oo



Combining all the results derived so far, the minimum SINR5]
for MPR can be computed as

[6]
Yici(R(n)) P9ii
No +max } o r(pen)) Pk

(n<1+5><a—2) _ ;)

(7]

wdPn
(a—2) R(n)(@=2)

mR(n)2n ’
No + % S 7

(8]

By applying the same condition faP(n) and R(n) com-  [€]

puted in the upper bound analysis, we arrive at

[10]
1 ﬁ/)@ ZieI(R(n)) Pgi; (40)
wdPn (146)(a—2) _ 1
_ (0‘72 (n R(n)(o"”) [12]
No + % - C7

Using simple manipulations, we can compute the low 4}

bound of throughput capacity agn) = 2 (R(n))
[ |

The above theorem demonstrates that a gain of at leHst
(€] ((log n)éz can be achieved compared with the results by
Gupta and Kumar [3] and Franceschetti et al. [15]. Combini(r)f%]
Theorems 4.3 and 4.5, we arrive at our first major contrilyuti
of this paper.

Theorem 4.6:The per source-destination throughput capa 7
ity of MPR scheme in a 2-D static wireless ad hoc netwo
is tight bounded a® (R(n)). The minimum receiver range [18]

is lower bounded as(n) > © \/1"%), which implies a [19]

lower tight bound of® ( /&% 20]

Note that this result shows that we can close the gap in the
physical model similar to the results derived by Francedche
et al. [15] but achieving higher throughput capacity with R1IP

V. CONCLUSION

This paper shows that the use of MPR can close the gap
for the transport (throughput) capacity in random wirelads
hoc networks under the physical model, while achieving much
higher capacity gain than that of [15]. The tight bound is
O (R(n)) where R(n) is the receiver range in MPR model.
For the minimum value ofR(n), a gain of © (vlogn) is
achievable in MPR scheme.
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