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Significance

Intratumoral heterogeneity forms 
the basis for cancer evolution and 
fundamentally dictates the 
therapeutic response. Here, we 
carried out genome-wide 
chromatin accessibility (snATAC-
Seq) and transcription (snRNA-
seq) profiling at single-cell 
resolution using clinical specimens 
derived from isocitrate 
dehydrogenase wild-type (IDHwt) 
glioblastomas and grade 4 IDH 
mutant (IDHm) astrocytomas, the 
most common forms of adult 
brain cancer. The integrated 
analysis achieved resolution of 
intratumoral heterogeneity not 
previously possible, including 
structural delineation of 
extrachromosomal circular DNA. 
IDHm grade 4 astrocytoma and 
IDHwt glioblastoma cells in distinct 
cell states share a dependency on 
a nuclear factor IA/B-mediated 
core transcriptional program. 
These findings demonstrate the 
potential for integrated single-
nuclear platforms in addressing 
therapeutic challenges related to 
intratumoral heterogeneity.

This article is a PNAS Direct Submission. M.M.W. is a 
guest editor invited by the Editorial Board.

Copyright © 2023 the Author(s). Published by PNAS.  
This article is distributed under Creative Commons 
Attribution-NonCommercial-NoDerivatives License 4.0 
(CC BY-NC-ND).
1B.R. and C.C.C. contributed equally to this work.
2To whom correspondence may be addressed. Email:   
biren@health.ucsd.edu or ccchen@umn.edu.

This article contains supporting information online at 
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas. 
2210991120/-/DCSupplemental.

Published May 8, 2023.

MEDICAL SCIENCES

Integrated analysis of single-cell chromatin state and 
transcriptome identified common vulnerability despite 
glioblastoma heterogeneity
Ramya Ravirama, Anugraha Ramana, Sebastian Preisslb,c, Jiangfang Ningd , Shaoping Wud, Tomoyuki Kogad , Kai Zhanga , Cameron W. Brennane, 
Chenxu Zhua, Jens Luebeckf , Kinsey Van Deynzea , Jee Yun Hanb, Xiaomeng Houb, Zhen Yea, Anna K. Mischela , Yang Eric Lia , Rongxin Fanga , 
Tomas Babackg, Joshua Mugfordg, Claudia Z. Hanh, Christopher K. Glassh,i , Cathy L. Barrj,k,l , Paul S. Mischelm , Vineet Bafnaf, Laure Escoubetg, 
Bing Rena,b,h,1,2, and Clark C. Chend,1,2

Edited by Monte M. Winslow, Stanford University School of Medicine, Palo Alto, CA; received June 27, 2022; accepted March 9, 2023 by Editorial Board 
Member Anton Berns

In 2021, the World Health Organization reclassified glioblastoma, the most common 
form of adult brain cancer, into isocitrate dehydrogenase (IDH)-wild-type glioblastomas 
and grade IV IDH mutant (G4 IDHm) astrocytomas. For both tumor types, intratu-
moral heterogeneity is a key contributor to therapeutic failure. To better define this 
heterogeneity, genome-wide chromatin accessibility and transcription profiles of clinical 
samples of glioblastomas and G4 IDHm astrocytomas were analyzed at single-cell resolu-
tion. These profiles afforded resolution of intratumoral genetic heterogeneity , including 
delineation of cell-to-cell variations in distinct cell states, focal gene amplifications, as 
well as extrachromosomal circular DNAs. Despite differences in IDH mutation status 
and significant intratumoral heterogeneity, the profiled tumor cells shared a common 
chromatin structure defined by open regions enriched for nuclear factor 1 transcrip-
tion factors (NFIA and NFIB). Silencing of NFIA or NFIB suppressed in vitro and 
in vivo growths of patient-derived glioblastomas and G4 IDHm astrocytoma models. 
These findings suggest that despite distinct genotypes and cell states, glioblastoma/
G4 astrocytoma cells share dependency on core transcriptional programs, yielding an 
attractive platform for addressing therapeutic challenges associated with intratumoral 
heterogeneity.

single cell | glioblastoma | extrachromosomal DNA | amplicons

Glioblastoma, also known as World Health Organization (WHO) grade 4 (G4) astrocy-
toma, is the most common form of primary brain cancer in adults and remains one of 
the deadliest of human cancers. Histologically, glioblastoma is defined by marked hyper-
cellularity, nuclear atypia, pseudopalisading necrosis, and microvascular proliferation (1). 
Despite commonality in histologic appearance, molecular profiling of glioblastomas 
revealed significant intertumoral and intratumoral heterogeneity (2, 3). A key feature that 
defines intertumoral heterogeneity involves the isocitrate dehydrogenase genes (IDH)  
(4, 5). While histologically indistinguishable from wild-type IDH (IDHwt) glioblastomas, 
IDH mutant (IDHm) tumors affect younger patients, are associated with more favorable 
prognosis, and exhibit distinct responses to therapy (1, 6). In this context, the 2021 WHO 
classification recognized grade IV IDHm (G4 IDHm) astrocytomas and IDHwt glioblas-
tomas as two distinct entities (7).

Single-cell RNA-seq (scRNA-seq) analysis of both IDHwt glioblastomas and G4 IDHm 
astrocytomas further revealed significant intratumoral heterogeneity, with copresence of 
tumor cells harboring distinct progenitor-like and differentiated-like cell states (3), includ-
ing the neural progenitor cells (NPC-like), oligodendrocyte progenitor cells (OPC-like), 
astrocyte-like cells (AC-like), and mesenchymal-like (MES-like) cell states. This intratu-
moral heterogeneity poses significant challenges in therapeutic development, magnified 
by the dynamic transitions between cell states in response to therapy (8, 9). Meaningful 
therapeutic response requires the identification of effective agents that simultaneously 
target these distinct cell states or strategies that combine multiple therapeutic agents.

Single-cell sequencing technologies have been developed to study various features of 
chromatin such as open chromatin status (10, 11) and histone modifications (4, 12–15). 
Here, we analyzed clinical IDHwt glioblastoma and G4 IDHm astrocytoma specimens 
using single-nucleus ATAC-seq (snATAC-Seq), single-nucleus RNA-Seq (snRNA-seq), 
as well as a single-cell coassay of open chromatin and nuclear transcriptome (Paired-Seq) 
(16), with the goal of refining our understanding of intratumoral heterogeneity as well as 
to identify shared dependencies despite this heterogeneity.
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Results

Clustering of snATAC-Seq Data Reveals Tumor Subpopulations 
Based on Focal Amplifications. In this proof-of-principle study, 
we first performed snATAC-Seq (combinatorial barcoding strategy)  
(17) and snRNA-seq (10X Genomics) on two G4 IDHm astrocy-
tomas (RL1 and RL2) and three IDHwt glioblastomas (RL3, 4, 
and 5) (SI Appendix, Table S1 and Fig. S1 A and B). For two of the 
tumor specimens (RL1 and RL3), we examined multiple sections 
to characterize spatial heterogeneity within each tumor. We first 
performed clustering of snATAC-Seq profiles using SnapATAC 
(18) (binary counts in 5 kb bins) for each tumor individually and 
detected nine clusters in the RL1 tumor (Fig. 1A). Nonmalignant 
cell types (oligodendrocytes, myeloid, and neurons) were identified 
based on accessibility profiles on marker genes. We then performed 
CNV analysis (20 Mb bins) to confirm that the remaining six 
clusters are malignant evidenced by the amplification of a region 
on chromosome 11 in these cells (Fig. 1B).

Next, to classify the malignant cells into glioma cell states based 
on snATAC-Seq profiles, we analyzed the data with snRNA-seq 
profiles. Clustering of snRNA-seq profiles revealed nine clusters 
(Fig. 1C). Nonmalignant cells were identified based on the expres-
sion of marker genes (a small population of nonmalignant astro-
cytes was detected that was not found in the snATAC-Seq data). 
Due to data sparsity, malignant cells in snRNA-seq were deter-
mined based on cells that corresponded to malignant cells with 
CNVs upon integration of the two datasets, revealing five malig-
nant clusters (Fig. 1C). We classified each cluster based on the 
enrichment of gene module scores from previously defined glioma 
cell state signatures (SI Appendix, Fig. S1 C and D). Some clusters 
were a mixture of closely related cell states, and the low number 
of genes captured per cell limits the ability to distinguish between 
these cell states. For instance, we observed a cluster with enrich-
ment for the MES-like cell state from snRNA-seq data and cells 
in the AC-like cluster with enrichment for the MES-like signature 
in the snATAC-Seq data (Fig. 1 C and D).

Integration of snRNA-seq and snATAC-Seq revealed clustering 
that corresponded to the stem-like, OC-like, MES-like, or AC-like 
states (SI Appendix, Fig. S1D). We also calculated a module score 
based on ATAC-seq signal (±2 kb of the gene body) and observed 
similar patterns, though the clustering of MES-like state is less 
obvious (Fig. 1D). All the six clusters with malignant cells iden-
tified in snATAC-Seq contain cells that map to the stem/OC-like 
cell state from snRNA-seq data. A subset of malignant cells in 
snATAC-Seq defined cluster 2 additionally mapped to the 
snRNA-seq-defined AC/MES-like cell state (Fig. 1E). In aggre-
gate, our data demonstrate that snATAC-Seq can be used to iden-
tify malignant cells based on CNV profiles and classify them into 
certain cell states defined from snRNA-seq data.

Additional snATAC-Seq Clusters Correspond to Tumor Subpopu-
lations with Focal Amplifications. To identify the features that 
distinguish the snATACs-seq clusters, we performed differential 
analysis to identify cluster-specific peaks. First, we identified peaks 
across all malignant cells in RL1 and used the SnapATAC FindDAR 
function (18) to identify cluster-specific peaks. We observed that 
certain peaks specific to malignant clusters had a normalized count 
higher than that of most peaks (Fig. 2A). As this could represent copy 
number amplifications, we performed whole-genome sequencing 
(WGS) on section 3 of RL1 and indeed observed that these cluster-
specific peaks corresponded to focal amplifications (Fig. 2B).

To detect these focal amplifications from snATAC-Seq data, 
we adapted a previous method (19) to detect CNVs from bulk 
ATAC-seq data (SI Appendix, Fig. S2). To improve the resolution 
of gene amplification detection, we used the aggregate counts in 
each 50 kb-sized genomic bin from cells in each cluster. For each 
bin, we calculated a log2-ratio using astrocytes and oligodendrocyte 
progenitor cells from the nontumor brain sample and then applied 
the circular binary segmentation (CBS) algorithm (20) to define 
continuously amplified regions in the genome (Fig. 2B). We 
detected 12 out of 14 events from WGS data (SI Appendix, 
Table S2), suggesting high accuracy and specificity of our approach 
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and nine additional events in tumor sections for which we did not 
perform WGS. One focal amplification (~700 kb region on chr11 
containing the CCND1 oncogene) was detected across all malignant 
clusters, while the remaining were highly cluster specific (Fig. 2C). 
This approach allowed us to characterize heterogeneity within the 
tumor based on cell-to-cell variations in focal amplifications and 
enhanced the resolution of subclonal genetic heterogeneity.

As ecDNA is an important mechanism of focal oncogene ampli-
fication, we tested whether these amplifications could be the result of 
ecDNA or double-minute formation (21). Using AmpliconArchitect 
(22, 23), which can analyze amplifications to identify ecDNA struc-
tures, we found that four out of the fourteen focal amplifications 
detected from WGS data showed evidence of ecDNA structures 
(Fig. 2A). The amplification around the CCND1 oncogene region 
found across all malignant cells formed simple circular structures 
(Fig. 2A). We also detected a fusion amplification-based translocation 
of genomic segments involving the intragenic enhancer of EGFR 
(24), IRS2, and POU5F1 oncogenes that was highly specific to 
malignant cluster 4 (Fig. 2C). Additionally, we found cluster-specific 
amplifications on chromosome 15 that were not ecDNA.

Previous studies using mathematical modeling and fluorescence 
in situ hybridization (FISH) have observed that there is a great deal 
of cell-to-cell heterogeneity in ecDNA copy numbers as random seg-
regation occurs upon cell division. Here, using the snATAC-Seq signal 
within the amplified regions, we compared the cell-to-cell heteroge-
neity between regions that were identified as ecDNA versus chromo-
somal amplifications. Consistent with previous mathematical 
modeling, we observed a wider distribution in ecDNA compared to 
chromosomal amplifications (Fig. 2D).

To compare the ecDNA shown here to those previously 
reported, we compared the amplicons detected in our samples 
with those reported from a pan-cancer analysis (23). Based on 
snATAC-Seq and WGS data, we detected three ecDNAs and all 
three overlapped with ecDNAs reported across various cancers. 
In addition, we detected nine potential ecDNAs from snATAC-Seq 
(no corresponding WGS to confirm whether they are ecDNAs) 
and, of these, four overlapped with ecDNAs detected in different 
cancers (SI Appendix, Fig. S3).

To assess the expression of genes in the DNA exhibiting focal 
amplifications, we performed Paired-Seq (16), a single-cell multiomics 
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assay to jointly profile gene expression and chromatin accessibility 
from the same nucleus for section 3 of RL3 (Fig. 3A). We asked 
whether copy numbers correlated with gene expression at single-cell 
level. We classified the tumor cells with matched RNA and ATAC 
profiles (n = 1,963) into quartiles to group cells based on increasing 
copy number. Of the six genes on this amplified region, we observed 
that the expression of TPCN2 and CCND1 showed higher expression 
in cells with more copies based on the ATAC-seq inferred copy num-
ber (Fig. 3B).

We also examined the effect of focal amplifications without 
features of ecDNA, where we detected multiple events on chro-
mosome 15 in RL3. Due to the small number of cells harboring 
these amplifications, we assessed the gene expression at the cluster 
level instead of at the single-cell level. We observed that 15/19 
genes on these chromosome 15 amplifications had the highest 
expression in the amplified cluster compared to other clusters 
(Fig. 3 C and D). Several of the amplified genes such as RAB8B, 
LRRC28, RCN2, and APH1B are also highly expressed in bulk 
RNA-seq data from TCGA glioblastoma data compared to normal 
brain tissue (GTEx).

In aggregate, these results suggest that snATAC-Seq as a profil-
ing platform afforded resolution of a high degree of intratumoral 
genetic heterogeneity .

Distinct Subclonal Populations with Either EGFR or PDGFRA Ampli-
fications in IDH-Wild-Type Glioblastoma. We next characterized 
the intratumoral heterogeneity of EGFR and PDGRA, two receptor 
tyrosine kinases that play key roles in glioblastoma pathogenesis (2). 
To this end, we analyzed snATAC profile for the four sections of 
RL3, an EGFR-amplified IDH-wild-type glioblastoma that were 
taken from geographically distinct regions of the tumor (Fig.  4 

A  and  B). In addition to EGFR amplification, we observed an 
amplification of the region surrounding the PDGFRA oncogene 
(Fig. 4C). AmpliconArchitect analysis of RL3 WGS identified EGFR 
amplification as an ecDNA (Fig. 4D), while PDGFRA amplification 
was chromosomal. EGFR and PDGFRA focal amplification was 
mutually exclusive (Fig. 4 B, C, and E).

Integrating the snATAC-Seq data with snRNA-seq, we next ask 
whether these cells with the amplifications are preferentially asso-
ciated with a particular transcriptional cell state. Clustering of 
snRNA-seq for RL3 detected two MES-like, one AC/MES-like, 
and one OPC/NPC-like clusters (Fig. 4F). The EGFR-amplified 
cells corresponded to both the AC/MES-like and NPC-like tumor 
clusters defined by snRNA-seq. In contrast, the PDGFRA-amplified 
cells primarily corresponded to the NPC-like cluster 
(Fig. 4G and SI Appendix, Fig. S4 A–C). By integration of 
snATAC-Seq and snRNA-seq, we demonstrate a higher resolution 
of the heterogeneity observed in the tumor based on focal ampli-
fication and the effect genetic aberrations have on the overall 
transcriptional cell state of the malignant cell. With larger sample 
cohorts, this approach can allow determination of the amplifica-
tion’s downstream effects.

Shared Dependency of Glioblastoma Cell States on NFIA and 
NFIB. Since active regulatory elements are characterized by 
open chromatin regions, we characterized the open chromatin 
regions in each tumor cluster as a function of their cell 
states. For each tumor, we performed differential accessibility 
analysis between malignant cluster and then performed motif 
enrichment analysis on the cluster-specific peaks (Fig. 5A). This 
analysis identified motifs for the bHLH family of transcription 
factors, such as NEUROG2/D1 and OLIG2, enriched in the 
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cells exhibiting OPC/NPC-like states. Enrichment analysis 
of peaks that were present in multiple cell states across each 
tumor revealed that NFI-halfsite motif representing the NFI 
transcription factor complex of NFIA, NFIB, NFIC, and NFIX 
is similarly enriched in both OPC/NPC-like and AC/MES-
like cell states. This motif was also found to be enriched in all 
TCGA subtypes based on single-cell ATAC-seq data (25). Such 
enrichment was observed in both IDHwt glioblastomas and 
G4 IDHm astrocytomas.

NFIA has been shown to play an important role in the initiation 
of gliogenesis during early neural stem cell development (26, 27). 
Previous scRNA-seq studies revealed that NFIA and NFIB expres-
sion is associated with a stemness signature (28). Moreover, NFIB 
expression is associated with the maintenance of NPC-like cell 
state (29). We used Gepia2 (30) to assess the expression of NFI 
complex members by comparing bulk TCGA RNA-Seq data to 
normal brain tissue samples from GTEx data and found that only 
NFIA and NFIB were up-regulated in glioblastoma tumor samples 
(SI Appendix, Fig. S5).

In our snRNA dataset, we reliably detected NFIA/IB expression 
in both RL1 (IDHm) and RL3 (IDHwt, SI Appendix, Fig. S6 A, 
B, D, and E). Similar levels of NFIA and NFIB were observed in 
all glioblastoma cell states (SI Appendix, Figs. S6 C and F and S7). 
Finally, using methods described by Zhang et al. (31), we per-
formed an integrative analysis of snATAC-Seq and snRNA-seq to 
identify a NFIA/NFIB-associated core-transcriptional program 
(Fig. 5B and SI Appendix, Table S3). Using network analysis and 
PageRank analysis, we show that this core-transcriptional program 
is highly active in all glioblastoma subtypes in RL3 (Fig. 5C) and 
RL1 (SI Appendix, Fig. S8 A and B). SPI1, a highly active tran-
scription factor in myeloid cells (32) that plays unknown role in 
glioma pathogenesis, is included as a control for our analysis. To 
further characterize the mechanism of how NFIA and NFIB 
impact glioma pathogenesis, we extracted their target genes from 
the network and applied Gene Set Enrichment Analysis 
(GSEA) (33). This analysis revealed that NFIA/IB potentially con-
tribute to the activation of Ras signaling as well as other 
cancer-related pathways (SI Appendix, Fig. S8C).
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To assess whether NFIA and NFIB are essential in IDHwt 
glioblastoma, we performed RNA interference experiments to 
knockdown both genes in a previously described PDX model. 
First, doxycycline-inducible lentivector-containing shRNA 
sequences for NFIA and NFIB or scrambled sequence were intro-
duced into the GBM83 PDX line (8), an IDHwt glioblastoma 
line enriched for gene expression signature observed in the 
AC/MES-like state. Induction of NFIA and NFIB silencing by 
siRNAs suppressed glioblastoma growth in vitro by more than 

50%, at 7 d after doxycycline treatment (SI Appendix, Fig. S9 A 
and B). To validate these effects in vivo, the GBM83 line harbor-
ing doxycycline-inducible lentivector against NFIA and NFIB was 
orthotopically injected into the brain of nude mice. The mice 
were then fed with doxycycline-containing or control water in a 
randomized experimental design. For both NFIA and NFIB exper-
iments, mice fed doxycycline-containing water (thereby silencing 
NFIA and NFIB) exhibited prolonged survival relative to those 
fed control water (Fig. 5C).
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We next tested whether NFIA and NFIB are essential for the 
tumorigenicity of CMK3 (8), an IDHwt glioblastoma PDX line 
enriched for gene expression signature observed in the NPC/ 
OPC-like cell state. Similar to that observed in GBM83, induction 
of NFIA and NFIB silencing in CMK3 inhibited growth in vivo 
(SI Appendix, Fig. S10). Finally, we tested the effects of NFIA and 
NFIB silencing in TS603, a G4 IDHm astrocytoma PDX model 
(34, 35). Induction of NFIA and NFIB silencing in TS603 inhib-
ited in vivo tumorigenicity (SI Appendix, Fig. S10). Taken 
together, the above observations suggest that IDHwt and IDHm 
G4 astrocytomas share dependency on a NFIA/B-mediated tran-
scriptional program.

Discussion

Here, we applied single-cell technologies to clinical samples to 
characterize the genetic and epigenetic heterogeneity within and 
between astrocytomas and glioblastomas. Previous studies using 
single-cell RNA-seq and single-cell ATAC-seq have identified 
tumor cells solely on the basis of gain or loss of whole chromosome 
or arm (28, 36). Deep profiling of the tumors using snATAC-Seq 
revealed the presence of focal amplifications and ecDNA in sub-
populations of the tumor that are also specific to spatial regions 
of the tumor. This allowed us to gain a more detailed view of the 
heterogeneity within each tumor and help us better map the evo-
lutionary trajectory of the tumor cell populations based on the 
genetic aberrations. We also leveraged the use of multiomics tech-
nologies to assess the expression of genes harbored on the ampli-
cons (Fig. 6). As the multiomics field is expanding to include 
more genomic features that can be measured in parallel for each 

cell, we will attain a more refined map of heterogeneity and 
inferred tumor evolution. Using a combination of molecular 
modalities can help us understand the effect of genetic aberrations, 
including point mutations on the transcriptional and epigenetic 
states of the tumor cells.

Our appreciation of the glioblastoma heterogeneity escalates 
with each generation of technology development, including that 
presented in this study. The notable subclonal representation 
between distinct regions of glioblastoma in this study calls into 
question the appropriateness of the clinical practice where limited 
biopsies are performed targeting a single region of glioblastomas. 
Even for resected samples, genomic profiling is typically performed 
only on limited histological sections. In the context of our finding, 
inadequate tumor sampling and incomplete catalog of clonal and 
subclonal representation likely contributed to the failure of tar-
geted therapy against glioblastomas (37–39). The complexity of 
glioblastoma heterogeneity revealed in this and other single-cell 
studies (25, 28, 29, 40–43) strongly suggests that a redesign of 
the paradigm for neurooncology surgical practices is warranted, 
including consideration for routine regional sampling and the 
need for clinical-grade, single-cell multiomic platforms.

The complex glioblastoma heterogeneity shown in our study 
and by others (2, 3) highlights challenges associated with molec-
ularly targeted therapy. For instance, the functional redundancy 
between Receptor Tyrosine Kinases (RTKs) (44) and subpopula-
tions with mutually exclusive RTK amplifications renders thera-
peutic success unlikely with single RTK targeting. However, our 
finding that IDHwt glioblastoma and G4 IDHm astrocytoma 
cells in distinct cell states not only share open chromatin sites 
enriched for NFIA and NFIB motifs but also are dependent on 
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NFIA and NFIB for in vitro and in vivo proliferation offers one 
potential therapeutic strategy in this regard. These findings suggest 
dependency on NFIA/IB-mediated transcriptional programs 
shared by tumor cells in distinct genotypic and cell state that may 
be exploited for therapeutic purposes (Fig. 5). This common 
dependency may reflect properties shared by the cell of origin and 
lend insights into glioblastoma pathogenesis. Building on this 
proof-of-principle study, refined algorithmic motif analysis cou-
pled with snRNA-seq/snATAC-Seq profiling of survival-annotated 
glioblastoma specimens may unveil other shared vulnerabilities 
agnostic to intra- and inter-tumoral heterogeneity.

As a proof of principle, our results are limited in terms of mech-
anistic insight. While our analysis supports putative contribution 
of NFIA/IB chromatin association and transcriptional modulation 
in glioblastoma proliferation, we cannot exclude contributions 
from nontranscriptional roles of NFIA/IB (e.g., in replication). 
Moreover, multiple transcription factors in addition to NFIA/B 
likely contribute to tumorigenesis in different subclasses of glio-
blastomas. Finally, as is the case for many master regulatory tran-
scription factors (8, 45), including STAT3 and MYC, the 
relationship between expression level and biologic effect appears 
pleiotropic and nonlinear. While our study suggests that a thresh-
old level of NFIA/IB is necessary for tumorigenicity, others have 
reported that ectopic expression of NFIA/IB exerts the opposite 
effect of suppressing tumor proliferation (27, 46) or inducing 
differentiation (47, 48). These effects are likely influenced by the 
underlying molecular circuitry or cell state (46). Understanding 
the complexity of these interactions in astrocyte in distinct cell 
states is a prerequisite to clinical translation of NFIA/IB-targeting 
therapeutic strategies.

In summary, our proof-of-principle study demonstrated the 
potential for snATAC-Seq and multiomics approaches in profiling 
glioblastoma heterogeneity. Our results suggest that orthogonal 
intersection of these profiles yields insights into tumor evolution 
and offers potential for therapeutic discovery.

Materials and Methods

Glioblastoma Tumor Samples. Specimen collection was approved by the IRB 
at the University of California, San Diego Human Research Protections Program. 
Each patient was consented by a dedicated research coordinator prior to collection. 
Written consent was collected from each patient based on processes approved 
by the ethics committee. The specimens were collected under IRB 120345X. 
Pathological analysis of the specimens was performed to verify >80% tumor 
cell content by a board-certified neuropathologist. Samples were collected within 
2 h of surgical resection, frozen in liquid nitrogen, and subsequently stored at 
−80 °C. Tissue was pulverized using a mortar and pestle on liquid nitrogen.

Brain Tissue. Human dorsolateral prefrontal cortex and hippocampus tissue 
of a healthy 31-y-old male were obtained from the National Institute of Child 
Health and Human Development Brain Bank for Developmental Disorders 
(GSE140493–UMB4540) (49). Ethical approval was obtained from the University 
Health Network and The Hospital for Sick Children for use of the tissues.

Single-Nucleus ATAC-Seq (snATAC-Seq). Combinatorial barcoding single-nu-
cleus ATAC-seq was performed as described previously (17, 18) . Libraries were 
sequenced on a HiSeq2500 sequencer (Illumina) using custom sequencing 
primers and following read lengths: 50 + 43 + 37 + 50 (Read1 + Index1 + 
Index2 + Read2).

Analysis of snATAC-Seq Data.
Mapping, clustering, and visualization. Processing of snATAC-Seq data was 
performed using SnapATAC (18), and reads were aligned to the hg38 genome 
using bowtie2 with the following parameters: bowtie2 -X2000 –no-mixed –
no-discordant. PCR duplicates were removed using the MarkDuplicate function 
from Picard tools (http://broadinstitute.github.io/picard) for each cell. Cells with 
less than 1,000 reads and less than 20% of reads at promoters (GENCODE v29 

annotation) were filtered from downstream analysis. Clustering was performed 
using SnapATAC using 5 kb bins filtered for blacklist regions annotated by 
ENCODE. Clusters were determined using the Leiden algorithm and visualization 
using UMAP. For the merged clustering results, Harmony was used to correct for 
sample and batch effects (50). TDF files for visualizing the aggregate of cluster 
signal on IGV were generated using IGVtools (51).
Large-scale CNV analysis. To detect large CNVs, a CNV score was detected in 
20 MB bins across the genome as previously described in the study by Satpathy 
et al. (36). For each cell, the CNV score is the log2 ratio of the binary counts in 
each 20 MB bin to the mean of the nearest 50 bins based on GC content. For 
heatmap visualization, hierarchical clustering was performed for cells in each 
snATAC-Seq-defined cluster separately using fastcluster and parallelDist R pack-
ages using default parameters.
Focal amplification detection. Amplifications were detected for each cluster in 
each tumor sample individually. First, background reads in 50 kb bins (filtered 
for blacklist regions) were normalized to the total number of reads across all cells 
in that cluster and the mean of the nearest bins based on GC content. The same 
procedure was applied to astrocyte and oligodendrocyte progenitor cells from a 
nontumor sample to serve as a control. A log-ratio score was calculated for each 50 
kb bin between tumor cluster and the aggregate of the nontumor cells. This was 
used as the input to the circular binary segmentation algorithm (implemented 
in DNAcopy R package to determine contiguous segments in the genome). To 
determine amplified regions, we calculated a threshold cutoff based on the mean 
and three times the standard deviation of the segments.mean values. Segments 
with a mean value greater than the threshold were further filtered for regions 
of low mappability (score < 0.6) downloaded from ichorCNA (52) and having a 
score greater than the 50th percentile of normalized counts in the tumor cluster. 
Amplifications within 1 Mb were merged.
Clustering of CNV and focal amplification profiles. The top 10% of cells based 
on read count from each cluster were used for clustering analysis. For each cell, 
the CNV score for the chromosomes was determined based on the mean score 
across 20 MB windows in that chromosome. A z-score was used for the focal 
amplifications based on the normalized ATAC-seq in that region. Clustering was 
performed based on the chromosome and focal amplification profiles for each 
cell using the Manhattan distance and the complete-linkage clustering method.
Peak calling and differential analysis. Peaks were called for each individual 
cluster and then merged. MACS2 (53) was used for peak calling with the following 
parameters: macs2 callpeak -t sample -n sample -f BAM -g hs –nomodel –shift 
-100 –extsize 200 –slocal 1,000 –keep-dup all -B –SPMR –call-summits -q 1e-4. 
In order to account for the high signal in amplified regions, a local background 
was used for peak calling. Aggregate cluster peak counts in heatmaps based on 
counts in each peak normalized to the sum of reads in all 5kb bins for cells in each 
cluster. Differential analysis for the merged clustering was performed on peaks 
specific to the tumor clusters using Monocle2 (54) with clusterID as a variable. 
Significant peaks were determined based on q-value < 1e-20 and fold-change 
> 1.5 between each cluster and all other clusters (normalized counts in peaks). 
Motif analysis was performed on the cluster-specific peaks using Homer (55) 
(implemented in SnapATAC (18)).

Single-Nucleus RNA-Seq (snRNA-Seq). Frozen tissue was ground in liquid 
nitrogen using a mortar and pestle. Approximately 30 mg of ground tissue was 
incubated with 500 µL nuclei isolation buffer [2% BSA, 0.1% Triton-X cOmplete 
(Roche), 1 mM DTT, 0.2 U/µL RNAsin (Promega) in PBS] for 10 min at 4 °C. After 
centrifugation with 500 × g for 5 min, the nuclei were resuspended in sort buffer 
[2 % BSA, 1 mM EDTA, 0.2 U/µL RNAsin (Promega) in PBS]. Nuclei suspension 
was filtered and sorted using a SH800 sorter (Sony) after staining with the DNA-
dye DRAQ7 (3 µM, Cell Signaling Technologies). The sorted nuclei were pelleted 
(15 min, 1,000 × g) and resuspended in PBS containing 1 % BSA and 0.2 U/
µL RNAsin (Promega), at a concentration of 1,000 nuclei/µL. snRNA-Seq librar-
ies were constructed using the Chromium™ Single Cell 3′ v2 Library kit (10× 
Genomics, PN-120237) according to manufacturer’s descriptions. Reverse tran-
scription and other amplification steps were carried out on a T100 thermal cycler 
(Bio-Rad). After reverse transcription, GEMs (gel beads in emulsion) were lysed 
and cDNA was cleaned up with MyOne Silane Beads (Thermo Fisher Scientific). 
Next, single stranded cDNA was PCR-amplified for 14 cycles and purified using 
SPRIselect Reagent Kit (Beckman Coulter). CDNA was enzymatically fragmented 
followed by double size selection with SPRIselect Reagent Kit (200 to 700 bp, 
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0.6× and 0.8×, Beckman Coulter). Subsequently, adaptors were ligated and 
libraries were constructed by PCR. Another round of double size selection was 
performed using SPRIselect Reagent Kit (200 to 700 bp, Beckman Coulter). 
Final libraries were quantified using Qubit® dsDNA HS Assay Kit (Thermo Fisher 
Scientific), and size distribution was measured using TapeStation (High Sensitivity 
D1000, Agilent). The average fragment size of successful libraries was 500 bp. 
The libraries were loaded at a concentration of 13 pM and sequenced on a HiSeq 
2500 sequencer (Illumina) with the following parameters: Read 1 26 cycles; Index 
1 8 cycles; Read 2 98 cycles.

Analysis of snRNA-Seq.
snRNA-Seq alignment, clustering, & marker gene identification. Samples were 
mapped using the STAR aligner (56) to the GENCODE version 27 (GRCh38.p10) 
genome. For downstream analysis, to identify cell types and merge samples, we 
used the Seurat version 3 package (57). We first filtered out cells that had less 
than 200 expressed genes and all genes that were expressed in ten or fewer cells. 
In order to filter out potential doublets, we used a filter on the ratio of unique 
molecular identifier (UMI)/genes in all cells. This ratio showed a bimodal distri-
bution. Cells with a higher ratio of UMI/gene were filtered out. We scaled each 
gene UMI count by 1e4, normalized and log transformed the expression values in 
each cell (16), and then scaled to z scores for each gene across all cells. For cluster 
identification, we used the FindClusters function in the Seurat package, and then 
used FindMarkers function to identify genes that were significantly up-regulated 
in the cells in one cluster versus all other cells.

WGS. WGS was performed using the TruSeq DNA PCR-free low-throughput library 
prep kit (Cat: 20015962). Paired-end 100 bp reads were generated for RL3-section 3, 
and paired-end 50 bp reads were generated for RL1-section 2. Data were analyzed 
using the AmpliconArchitect (22) and PrepareAA (github.com/jluebeck/PrepareAA) 
using the hg19 genome and default settings. For RL3, additional filtering of reads 
was performed to remove everted read pairs. Amplicon intervals with copy number 
greater than 5 were converted to hg38 coordinates using the UCSC liftOver tool (58), 
and any amplicons with an average mappability score less than 0.6 (50 kb bins from 
ichorCNA) and duplicated regions in hg38 were removed.

WGS data were also mapped to the hg38 genome using bowtie2 (59) 
(options: –no-mixed –no-discordant), and reads were further filtered using 
SAMtools (60) (options: -F 1804 –q 30). TDF files were generated for visuali-
zation using IGVtools (51).

Paired-Seq. Paired-Seq data for RL3 were generated as previously described with 
minor modifications. Tumor dissections were ground and incubated in 1 mL NPB 
[5% BSA (Sigma, A7906), 0.2% IGEPAL-CA630 (Sigma, I8896), 1 mM DTT (Sigma, 
D9779) in PBS] supplemented with 1× cOmplete EDTA-free protease inhibitor 
(Roche, 05056489001), 0.4 U/μL RNase OUT (Invitrogen, 10777-019), and 0.4 U/
μL SUPERase In (Invitrogen, AM2694) at 4 °C for 10 min. Single-nuclei suspensions 
were then filtered with 30 µM Cell-Tric (Sysmex) and counted with Bio-Rad TC20 
cell counter. A total of 500,000 nuclei were split into five tubes for tagmentation, 
followed by reverse transcription with tube-specific T15 and N6 barcoded primers. 
Two rounds of ligation-based combinatorial barcoding were then carried out to label 
the nuclei (16, 61). The nuclei were then lyzed, and DNA and cDNA were cleaned up 
with SPRI beads (Beckman coulter, B23319). Library construction was carried out as 
previously described (16). Briefly, preamplification, endonuclease digestion, and 
2nd adaptor tagging were sequentially performed, followed by sequencing with 
Illumina HiSeq 4000 with the following read lengths: PE 100 + 7 + 100 (read1 + 
index 1 + read2). Cellular barcode sequences were first extracted from Read2 of both 
DNA and RNA libraries of Paired-Seq experiments and then mapped to all possible 
barcode combinations with no more than 1 mismatch. Barcode-collision rate was 
estimated as 4.3% according to the species-mixing experiment parallelly performed.

RNA reads were mapped to reference genome (GRCh38 with annotation 
GENCODE v29) using STAR (56) with default parameters. PCR duplicates were 
removed according to the genomic position of mapped reads, cellular barcodes, 
and UMI. Cell-to-gene count matrix was generated for the RNA data and processed 
using Seurat to obtain normalized gene counts per cell. DNA reads were mapped 
to reference genome (GRCh38) using bowtie2 (59) and processed similarly to 
snATAC-Seq data. The Paired-Seq:ATAC reads were combined with the snATAC-Seq 
data for RL1-section 3 sample using SnapATAC (18), and Harmony was used to 
merge the samples. Clustering was performed on the merged sample using 
Leiden clustering (50).

Construct a Transcription Factor Regulatory Network.
Link cCREs to genes. We analyzed single-cell ATAC-seq data to link cCREs to 
gene promoters. We first clustered and aggregated the cells into pseudocells 
using the Leiden algorithm (62) such that each pseudocell contains at least 
25 cells. Following this, we generated two matrices: one illustrating the read 
counts for each peak in every pseudocell, and another representing the gene 
activity within each pseudocell. The gene activity is determined by the aver-
age chromatin accessibility of the gene promoter plus the gene body in the 
pseudocell. The initial cCRE–gene links were created by linking cCREs to nearby 
gene promoters (±5 Mb within gene's TSS). To refine these connections, an 
elastic net model was employed, which predicted gene activity based on the 
read counts of linked cCREs. Only the connections with nonzero coefficients 
were retained for further analysis.
Link transcription factor motifs to genes. We searched for the binding sites 
of 1,165 distinct TF motifs from the cisBP database in cCREs using the FIMO 
algorithm (63) with P-value cutoff of 1e-5. A motif is linked to a gene if a cCRE 
containing the motif is also linked to the same gene.
Refine the TF–gene links using single-cell RNA-seq data. We used single-cell 
RNA-seq data to refine the TF–gene links. We first clustered and aggregated the 
cells into pseudocells using the Leiden algorithm as described above. Then, we 
trained an elastic net model to predict the gene expression from the linked TFs. 
We kept the links with nonzero coefficients.
Perform GSEA of NFIA’s target genes. We identified the target genes of NFIA 
from the TF regulatory network constructed above, weighted by their regression 
coefficients. The weights of target genes from multiple sample (RL1 and RL3) were 
averaged. The final gene list and weights were input into the GSEA preranked 
method (64) to identify the statistically significant enriched pathways using the 
“KEGG_2021_Human” gene set from the Enrichr website (65).
Perform PageRank analysis of the TF regulatory network. Using the 
approach outlined above, we constructed cell type-specific networks where 
edges connect transcription factors (TFs) to their target genes, with edge weights 
determined by the coefficients of the regression models. To calculate the relative 
contributions of TFs to the expression levels of target genes, we first determined 
the standardized expression levels of the parent nodes (TFs linked to the gene) 
for each gene in the network. Next, we multiplied the standardized TF expres-
sion level by the corresponding regression coefficient for each edge. This product 
represents the rate of change in gene expression, and we used these values as 
the updated edge weights in the network. Finally, we performed the PageRank 
analysis as described in ref. 66 on networks from each cell state to determine 
the ranking scores of TFs.

Inducible Knockdown of NFIA and NFIB in Glioblastoma and Grade 4 
Astrocytoma Cells. ShRNA sequences against NFIA and NFIB or scrambled 
shRNA (control) listed below were synthesized (University of Minnesota Genomics 
Center) and cloned into inducible lentivector Tet-pLKO-puro (Addgene) according 
to the manufacturer’s instructions.

NFIA-forward: 5′-CCGGTTCCCGACATCACCCATTATCCTCGAGGATAATGGGTGATG 
TCGGGAATTTTT-3′,

NFIA-reverse: 5′- AATTAAAAATTCCCGACATCACCCATTATCCTCGAGGATAATGGGT 
GATGTCGGGAA-3′,

NFIB-forward: 5′-CCGGGCAGCACTTACAATCACTAATCTCGAGATTAGTGATTGTAA 
GTGCTGCTTTTT-3′,

NFIB-reverse: 5′-AATTAAAAAGCAGCACTTACAATCACTAATCTCGAGATTAGTGATT 
GTAAGTGCTGC-3′,

Scrambled-forward: 5′-CCGGGCTTCGCGCCGTAGTCTTACTCGAGTAAGACT 
ACGGCGCGAAGCTTTTT-3′,

Scrambled-reverse: 5′- AATTAAAAAGCTTCGCGCCGTAGTCTTACTCGAGTAAGACT 
ACGGCGCGAAGC-3′.

293T cells were transfected with packaging plasmid (psPAX2), envelope 
plasmid (pCMV-VSV-G), and shRNA-cloned Tet-pLKO-puro using FuGENE HD 
Transfection Reagent (Promega). Lentivirus was harvested at 48h after trans-
fection and used to infect glioblastoma PDX cells, followed by selection with 
puromycin (0.3 to 0.6 μg/mL, Sigma) for 7 to 10  d. Cells were induced with 
doxycycline (Sigma; 1 μg/mL) for 4 d, and silencing was assessed by western 
blot and/or qRT-PCR. Cells with NFIA or NFIB knockdown were further selected 
by single-cell cloning under puromycin and confirmed by western blot analysis. 
ShRNA sequences are listed above.
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Western Blotting. Protein (10 μg/lane) was electrophoresed in 4 to 15% SDS-
PAGE gel (Bio-Rad) and transferred to PVDF membranes (Bio-Rad) by electroblot-
ting. Membranes were blocked with 5% nonfat dry milk or 5% bovine serum 
albumin (BSA, sigma) for 1 h at room temperature and then incubated with pri-
mary antibodies against NFIA (Active Motif) and NFIB (NSJ Bioreagents) at 4 °C 
overnight. Membranes were then washed in washing buffer TBST (20 mM Tris 
pH7.5, 150 mM NaCl, 0.1% Tween20) and incubated with peroxidase-conjugated 
secondary antibodies (Cell Signaling Technology) for 1h at room temperature. 
Signals were visualized with an ECL kit (BioRad).

Quantitative Reverse Transcription-PCR. Cells with or without shRNA against 
NFIA or NFIB, or control shRNA, were treated with Dox (1 μg/mL) for 4 d, and then 
harvested for RNA extraction with QIAGEN RNeasy Mini Kit according to the manufac-
turer’s protocol. High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) 
was applied to perform reverse transcription reaction, followed by SYBR Green-
Based Quantitative PCR (Bio-Rad). mRNA levels were normalized to GAPDH (dCt = Ct 
of the gene of interest – Ct of the GAPDH) and reported as relative mRNA expression 
[ddCt = 2^-(dCt sample – dCt control)] in fold change. The primers listed below were used.

NFIA-forward: 5′- AGCTCATGGAGCGGCAATAG-3′,
NFIA-reverse: 5′- ATTCATCCTGGGTGAGACAGAG-3′,
NFIB-forward: 5′- GGAAATCTAGCACGCCGAGT-3′,
NFIB-reverse: 5′- ATTCATCCTGAGTGAGACAGATGG-3′.

Animal Study. Glioblastoma cells were dissociated or trypsinized into single cells and 
stereotactically implanted intracerebrally (right striatum, 2.5-mm lateral from bregma 
and 2.5-mm deep) in 7 to 8-wk-old female athymic mice (Charles River Laboratories). 
To induce NFIA or NFIB knockdown in vivo, doxycycline (1 mg/mL) was administrated 
through drinking water at day 7 after implantation. All in vivo procedures were approved 
by the Institutional Animal Care and Use Committee at the University of Minnesota.

Cell Lines. The human astrocyte line was purchased from ScienCell Research 
Laboratories. Patient-derived glioblastoma cell lines, GBM83, CMK3 (8), and 
TS603 (35), were propagated under neurosphere conditions in NeuroCult medium 
(Stem Cell Technology) supplemented with B27, GlutaMAX, epidermal growth factor, 
fibroblast growth factor, and heparin according to the manufacturer’s instructions.

Data, Materials, and Software Availability. Code for CNV analysis and focal 
amplification detection from snATAC-Seq data can be found on github: https://
github.com/rr1859/AAmpD (67). Processed data have been deposited in GEO 

(GSE165037) (68). All study data are included in the article and/or supporting 
information.

ACKNOWLEDGMENTS. We thank the members of the Ren lab, Bojing Jia, Elise 
Vu, Sihan Wu, Shunichiro Miki, and Jeremy Rich, and members of his lab at UCSD 
for their input and discussion on this project. We also thank Federico Gaiti for 
comments on the manuscript. This work was supported by the Ludwig Institute 
for Cancer Research to B.R., NIH NS097649-01 and CA240953-01 to C.C.C, and 
the Ruth L. Kirschstein National Research Service Award NIH/NCI T32 CA009523 
to R.R. Funding was also provided by Bristol Myers Squibb (Celgene). V.B. was 
supported in part by grants from the NIH (R01GM114362 and U24CA264379). 
P.S.M. and V.B. are part of the eDyNAmiC team supported by the Cancer 
Grand Challenges partnership funded by Cancer Research UK (CRUK) (P.S.M., 
CGCATF-2021/100012; V.B. CGCATF-2021/100025) and the National Cancer 
Institute (P.S.M. OT2CA278688; V.B. OT2CA278635).

Author affiliations: aLudwig Institute for Cancer Research, University of California San Diego, 
La Jolla, CA 92093; bCenter for Epigenomics, University of California San Diego, La Jolla, 
CA 92093; cInstitute of Experimental and Clinical Pharmacology and Toxicology, Faculty 
of Medicine, University of Freiburg, Freiburg, Germany; dDepartment of Neurosurgery, 
University of Minnesota, Minneapolis, MN 55455; eDepartment of Neurosurgery, 
Memorial Sloan Kettering Cancer Center, New York, NY 10065; fDepartment of Computer 
Science and Engineering, Halicioglu Data Science Institute, University of California San 
Diego, La Jolla, CA 92093; gDepartment of Computer Science and Engineering, Biomedical 
Sciences Graduate Program, San Diego, CA 92121; hDepartment of Cellular and Molecular 
Medicine, University of California San Diego, La Jolla, CA 92093; iDepartment of Medicine, 
University of California San Diego, La Jolla, CA 92093; jProgram in Neurosciences and 
Mental Health, Hospital for Sick Children, Division of Experimental & Translational 
Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON M5T 
0S8, Canada; kDepartment of Psychiatry, University of Toronto, Toronto, ON M5T 0S8, 
Canada; lDepartment of Physiology, University of Toronto, Toronto, ON M5T 0S8, Canada; 
and mDepartment of Pathology, Stanford University, Stanford, CA 94305

Author contributions: B.R. and C.C.C. designed research; R.R., S.P., J.N., S.W., C.Z., J.Y.H., 
X.H., Z.Y., and A.K.M. performed research; R.R., A.R., K.V.D., Y.E.L., R.F., and B.R. analyzed 
data; and R.R., T.K., K.Z., C.W.B., J.L., T.B., J.M., C.Z.H., C.K.G., C.L.B., P.S.M., V.B., L.E., B.R. 
and C.C.C. wrote the paper.

Competing interest statement: B.R. is a cofounder of Arima Genomics Inc and Epigenome 
Technologies, Inc. P.S.M. is a cofounder of Boundless Bio, Inc. He has equity in the 
company and chairs the Scientific Advisory Board, for which he is compensated. V.B. 
is a cofounder, consultant, and SAB member and has equity interest in Boundless Bio, 
Inc. (BB) and Digital Proteomics, LLC (DP), and receives income from DP. The terms of 
this arrangement have been reviewed and approved by the University of California, San 
Diego, in accordance with its conflicts of interest policies.

1. P. Y. Wen, S. Kesari, Malignant gliomas in adults. N. Engl. J. Med. 359, 492–507 (2008).
2. C. W. Brennan et al., The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).
3. C. Neftel et al., An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 

178, 835–849.e21 (2019).
4. H. Noushmehr et al., Identification of a CpG island methylator phenotype that defines a distinct 

subgroup of glioma. Cancer Cell 17, 510–522 (2010).
5. D. W. Parsons et al., An integrated genomic analysis of human glioblastoma multiforme. Science 

321, 1807–1812 (2008).
6. R. G. Verhaak et al., Integrated genomic analysis identifies clinically relevant subtypes of 

glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 
98–110 (2010).

7. D. N. Louis et al., The 2021 WHO classification of tumors of the central nervous system: A summary. 
Neuro-Oncol. 23, 1231–1251 (2021).

8. D. Kozono et al., Dynamic epigenetic regulation of glioblastoma tumorigenicity through LSD1 
modulation of MYC expression. Proc. Natl. Acad. Sci. U.S.A. 112, E4055–E4064 (2015).

9. M. L. Suvà et al., Reconstructing and reprogramming the tumor-propagating potential of 
glioblastoma stem-like cells. Cell 157, 580–594 (2014).

10. J. D. Buenrostro et al., Single-cell chromatin accessibility reveals principles of regulatory variation. 
Nature 523, 486–490 (2015).

11. D. A. Cusanovich et al., Multiplex single cell profiling of chromatin accessibility by combinatorial 
cellular indexing. Science 348, 910–914 (2015).

12. D. Gomez, L. S. Shankman, A. T. Nguyen, G. K. Owens, Detection of histone modifications at specific 
gene loci in single cells in histological sections. Nat. Methods 10, 171–177 (2013).

13. H. S. Kaya-Okur et al., CUT&Tag for efficient epigenomic profiling of small samples and single cells. 
Nat. Commun. 10, 1930 (2019).

14. A. Rotem et al., Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat. 
Biotechnol. 33, 1165–1172 (2015).

15. S. Turcan et al., IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. 
Nature 483, 479–483 (2012).

16. C. Zhu et al., An ultra high-throughput method for single-cell joint analysis of open chromatin and 
transcriptome. Nat. Struct. Mol. Biol. 26, 1063–1070 (2019).

17. S. Preissl et al., Single-nucleus analysis of accessible chromatin in developing mouse forebrain 
reveals cell-type-specific transcriptional regulation. Nat. Neurosci. 21, 432–439 (2018).

18. R. Fang et al., Comprehensive analysis of single cell ATAC-seq data with SnapATAC. Nat. Commun. 
12, 1–15 (2021).

19. M. R. Corces et al., The chromatin accessibility landscape of primary human cancers. Science 362, 
eaav1898 (2018).

20. A. B. Olshen, E. S. Venkatraman, R. Lucito, M. Wigler, Circular binary segmentation for the analysis of 
array-based DNA copy number data. Biostatistics 5, 557–572 (2004).

21. R. G. W. Verhaak, V. Bafna, P. S. Mischel, Extrachromosomal oncogene amplification in tumour 
pathogenesis and evolution. Nat. Rev. Cancer 19, 283–288 (2019).

22. V. Deshpande et al., Exploring the landscape of focal amplifications in cancer using 
AmpliconArchitect. Nat. Commun. 10, 392 (2019).

23. H. Kim et al., Extrachromosomal DNA is associated with oncogene amplification and poor outcome 
across multiple cancers. Nat. Genet. 52, 891–897 (2020).

24. N. M. Jameson et al., Intron 1-mediated regulation of EGFR expression in EGFR-dependent 
malignancies is mediated by AP-1 and BET proteins. Mol. Cancer Res. 17, 2208–2220 (2019).

25. L. Wang et al., The phenotypes of proliferating glioblastoma cells reside on a single axis of variation. 
Cancer Discov. 9, 1708–1719 (2019).

26. B. Deneen et al., The transcription factor NFIA controls the onset of gliogenesis in the developing 
spinal cord. Neuron 52, 953–968 (2006).

27. H.-R. Song et al., Nuclear factor IA is expressed in astrocytomas and is associated with improved 
survival. Neuro. Oncol. 12, 122–132 (2010).

28. A. P. Patel et al., Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. 
Science 344, 1396–1401 (2014).

29. C. Neftel et al., An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 
178, 835–849 e821 (2019).

30. Z. Tang, B. Kang, C. Li, T. Chen, Z. Zhang, GEPIA2: An enhanced web server for large-scale expression 
profiling and interactive analysis. Nucleic Acids Res. 47, W556–W560 (2019).

31. K. Zhang, M. Wang, Y. Zhao, W. Wang, Taiji: System-level identification of key transcription 
factors reveals transcriptional waves in mouse embryonic development. Sci. Adv. 5, eaav3262 
(2019).

32. K. K. Resendes, A. G. Rosmarin, Sp1 control of gene expression in myeloid cells. Crit Rev. Eukaryot 
Gene Expr. 14, 171–181 (2004).

33. A. Subramanian et al., Gene set enrichment analysis: A knowledge-based approach for interpreting 
genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545–15550 (2005).

34. S. Turcan et al., Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma 
cells by the DNMT Inhibitor Decitabine. Oncotarget 4, 1729 (2013).

35. D. Rohle et al., An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma 
cells. Science 340, 626–630 (2013).

https://github.com/rr1859/AAmpD
https://github.com/rr1859/AAmpD
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165037
http://www.pnas.org/lookup/doi/10.1073/pnas.2210991120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210991120#supplementary-materials


PNAS  2023  Vol. 120  No. 20  e2210991120 https://doi.org/10.1073/pnas.2210991120   11 of 11

36. A. T. Satpathy et al., Massively parallel single-cell chromatin landscapes of human immune cell 
development and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019).

37. A. Sottoriva et al., Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary 
dynamics. Proc. Natl. Acad. Sci. U.S.A. 110, 4009–4014 (2013).

38. N. R. Parker, P. Khong, J. F. Parkinson, V. M. Howell, H. R. Wheeler, Molecular heterogeneity in 
glioblastoma: Potential clinical implications. Front. Oncol. 5, 55 (2015).

39. H. Kim et al., Whole-genome and multisector exome sequencing of primary and post-treatment 
glioblastoma reveals patterns of tumor evolution. Genome Res. 25, 316–327 (2015).

40. S. Darmanis et al., Single-cell RNA-seq analysis of infiltrating neoplastic cells at the migrating front 
of human glioblastoma. Cell Rep. 21, 1399–1410 (2017).

41. P. Guilhamon et al., Single-cell chromatin accessibility profiling of glioblastoma identifies an 
invasive cancer stem cell population associated with lower survival. eLife 10, 364090 (2021).

42. A. Bhaduri et al., Outer radial Glia-like cancer stem cells contribute to heterogeneity of glioblastoma. 
Cell Stem Cell 26, 48–63.e6 (2020).

43. C. P. Couturier et al., Single-cell RNA-seq reveals that glioblastoma recapitulates a normal 
neurodevelopmental hierarchy. Nat. Commun. 11, 3406 (2020).

44. J. M. Stommel et al., Coactivation of receptor tyrosine kinases affects the response of tumor cells to 
targeted therapies. Science 318, 287–290 (2007).

45. L. Avalle et al., MicroRNAs-143 and-145 induce epithelial to mesenchymal transition and modulate 
the expression of junction proteins. Cell Death Differ. 24, 1750–1760 (2017).

46. B. W. Stringer et al., Nuclear factor one B (NFIB) encodes a subtype-specific tumour suppressor in 
glioblastoma. Oncotarget 7, 29306 (2016).

47. M. Piper et al., NFIB-mediated repression of the epigenetic factor Ezh2 regulates cortical 
development. J. Neurosci. 34, 2921–2930 (2014).

48. G. Steele-Perkins et al., The transcription factor gene Nfib is essential for both lung maturation and 
brain development. Mol. Cell Biol. 25, 685–698 (2005).

49. C. Luo et al., Single nucleus multi-omics identifies human cortical cell regulatory genome diversity. 
Cell Genom. 2, 100107 (2022).

50. I. Korsunsky et al., Fast, sensitive and accurate integration of single-cell data with Harmony. Nature 
Methods 16, 1289–1296 (2019).

51. J. T. Robinson et al., Integrative genomics viewer. Nature Biotechnology 29, 24–26 (2011).
52. V. A. Adalsteinsson et al., Scalable whole-exome sequencing of cell-free DNA reveals high 

concordance with metastatic tumors. Nat. Commun. 8, 1324 (2017).

53. T. Liu, Use model-based analysis of ChIP-Seq (MACS) to analyze short reads generated by 
sequencing protein-DNA interactions in embryonic stem cells. Methods Mol. Biol. 1150, 81–95 
(2014).

54. X. Qiu et al., Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 
979–982 (2017).

55. S. Heinz et al., Simple combinations of lineage-determining transcription factors prime cis-
regulatory elements required for macrophage and B cell identities. Molecular Cell 38, 576-589 
(2010).

56. A. Dobin et al., STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
57. T. Stuart et al., Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
58. C. Tyner et al., The UCSC Genome Browser database: 2017 update. Nucleic Acids Research 45, 

D626–D634 (2017).
59. B. Langmead, S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 

357–359 (2012).
60. H. Li et al., The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 

(2009).
61. A. B. Rosenberg et al., Single-cell profiling of the developing mouse brain and spinal cord with 

split-pool barcoding. Science 360, 176–182 (2018).
62. V. A. Traag, L. Waltman, N. J. v. Eck, From Louvain to Leiden: Guaranteeing well-connected 

communities. Sci. Rep. 9, 1–12 (2019).
63. T. L. Bailey et al., MEME Suite: Tools for motif discovery and searching. Nucleic Acids Res. 37, 

202–208 (2009).
64. A. Subramanian et al., Gene set enrichment analysis. Proc. Natl. Acad. Sci. U.S.A. 102, 15545–15550 

(2005).
65. E. Y. Chen et al., Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. 

BMC Bioinformatics 14, 128–128 (2013).
66. K. Zhang, M. Wang, Y. Zhao, W. Wang, Taiji: System-level identification of key transcription factors 

reveals transcriptional waves in mouse embryonic development. Sci. Adv. 5, eaav3262 (2019).
67. R. Raviram, Workflow to detect ecDNA from snATAC-Seq data. Github. https://github.com/rr1859/

AAmpD. Deposited 30 January 2021.
68. R. Raviram et al., snATAC-Seq and snRNA-Seq data of gliomas. NCBI Gene Expression Omnibus. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165037. Deposited 19 January 
2021.

https://github.com/rr1859/AAmpD
https://github.com/rr1859/AAmpD
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165037

	Integrated analysis of single-cell chromatin state and transcriptome identified common vulnerability despite glioblastoma heterogeneity
	Significance
	Results
	Clustering of snATAC-Seq Data Reveals Tumor Subpopulations Based on Focal Amplifications.
	Additional snATAC-Seq Clusters Correspond to Tumor Subpopulations with Focal Amplifications.
	Distinct Subclonal Populations with Either EGFR or PDGFRA Amplifications in IDH-Wild-Type Glioblastoma.
	Shared Dependency of Glioblastoma Cell States on NFIA and NFIB.

	Discussion
	Materials and Methods
	Glioblastoma Tumor Samples.
	Brain Tissue.
	Single-Nucleus ATAC-Seq (snATAC-Seq).
	Analysis of snATAC-Seq Data.
	Mapping, clustering, and visualization.
	Large-scale CNV analysis.
	Focal amplification detection.
	Clustering of CNV and focal amplification profiles.
	Peak calling and differential analysis.

	Single-Nucleus RNA-Seq (snRNA-Seq).
	Analysis of snRNA-Seq.
	snRNA-Seq alignment, clustering, & marker gene identification.

	WGS.
	Paired-Seq.
	Construct a Transcription Factor Regulatory Network.
	Link cCREs to genes.
	Link transcription factor motifs to genes.

	Refine the TF–gene links using single-cell RNA-seq data.
	Perform GSEA of NFIA’s target genes.
	Perform PageRank analysis of the TF regulatory network.
	Inducible Knockdown of NFIA and NFIB in Glioblastoma and Grade 4 Astrocytoma Cells.
	Western Blotting.
	Quantitative Reverse Transcription-PCR.
	Animal Study.
	Cell Lines.

	Data, Materials, and Software Availability
	ACKNOWLEDGMENTS
	Supporting Information
	Anchor 45





