
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test
Bed

Permalink
https://escholarship.org/uc/item/7cp597jf

Author
Wetter, Michael

Publication Date
2011-08-31

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7cp597jf
https://escholarship.org
http://www.cdlib.org/

Co-Simulation of Building Energy and Control Systems with
the Building Controls Virtual Test Bed

Michael Wetter

Lawrence Berkeley National Laboratory

August 2011

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is

believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of

the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,

or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,

process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of

the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those

of the United States Government or any agency thereof or the Regents of the University of California.

Published in Journal of Building Performance Simulation, 4(3):185-203, 2011.

Co-Simulation of Building Energy and Control Systems with

the Building Controls Virtual Test Bed

Michael Wetter
Lawrence Berkeley National Laboratory

Environmental Energy Technologies Division
Building Technologies Department

Berkeley, CA 94720

August 31, 2011

Abstract

This paper describes the implementation of the Building Controls Virtual Test
Bed (BCVTB). The BCVTB is a software environment that allows connecting dif-
ferent simulation programs to exchange data during the time integration, and that
allows conducting hardware in the loop simulation. The software architecture is a
modular design based on Ptolemy II, a software environment for design and analysis
of heterogeneous systems. Ptolemy II provides a graphical model building environ-
ment, synchronizes the exchanged data and visualizes the system evolution during
run-time. The BCVTB provides additions to Ptolemy II that allow the run-time
coupling of different simulation programs for data exchange, including EnergyPlus,
MATLAB, Simulink and the Modelica modeling and simulation environment Dy-
mola. The additions also allow executing system commands, such as a script that
executes a Radiance simulation.

In this paper, the software architecture is presented and the mathematical model
used to implement the co-simulation is discussed. The simulation program interface
that the BCVTB provides is explained. The paper concludes by presenting applica-
tions in which different state of the art simulation programs are linked for run-time
data exchange. This link allows the use of the simulation program that is best suited
for the particular problem to model building heat transfer, HVAC system dynamics
and control algorithms, and to compute a solution to the coupled problem using
co-simulation.

1

1 Introduction

This paper presents the Building Controls Virtual Test Bed (BCVTB), which is a software
environment for co-simulation and for real-time simulation. By co-simulation, we mean
applications in which at least two simulators, each solving an initial-value differential or
difference equation, are coupled to exchange data that depend on state variables. By
real-time simulation, we mean applications in which the simulation time is synchronized
to the wall clock time, and the simulator may be coupled to hardware.

The BCVTB is a modular, extensible open-source software platform available from
Lawrence Berkeley National Laboratory that allows designers, engineers and researchers
of building energy and control systems to interface different simulation programs with
each other. Interfaces to Building Automation Systems (BAS) are also available but will
not be discussed in this paper. The intention of the BCVTB is to give users the option
to use the simulation programs that are best suited to model various aspects of building
energy and control systems, or to use programs in which they already acquired signifi-
cant expertise. The BCVTB exchanges data between these programs as the simulation
progresses, for example to close feedback control loops or to solve coupled differential
equations. Typical applications in building controls include the performance assessment
of integrated building energy and control systems, either through co-simulation or real-
time simulation, the development of new control algorithms, the testing of control hard-
ware and software in an emulated environment, and the simulation-based verification
of control algorithms prior to deployment in a building. Applications in energy sys-
tems include the extension of the simulation capability of building simulation programs
such as EnergyPlus [Crawley et al., 2001] through the use of more modern languages
such as Modelica [Fritzson and Engelson, 1998] that allow rapid virtual prototyping of
new components and systems, integrating models from different domains such as elec-
trical systems, thermal systems and control systems and generation of code that can
be uploaded to control hardware [Wetter, 2009a; Elmqvist et al., 2009]. While the use
of co-simulation allows extending the capabilities of different domain-specific simulation
programs through the run-time coupling with other simulation programs, a direct imple-
mentation of all equations in one simulator may be favorable for reasons of computing
time and ease-of-use. This is particularly the case if the rate of change in the exchanged
data varies significantly during the simulation, i.e, if the coupled system of differential
equations is stiff. However, the work for such an implementation can be enormous and
may not be practical to do for an individual simulation project.

Different building energy analysis programs have also been coupled by several oth-
ers [Hensen, 1999; Lam et al., 2002; Trčka et al., 2006; Zhai and Chen, 2005; Trčka et al.,
2007]. In most cases, the coupling is done by a direct link between two simulators. The
software architecture of the BCVTB differs from the above approaches in that it uses a
modular middleware to couple any number of simulation programs, instead of coupling
two simulators directly. The coupling can be done either locally on one host computer,
or remotely over the internet, possibly using different operating systems. The middle-
ware allows users to couple simulators and control interfaces graphically, and it provides

2

a library so users can add their own system models directly within the middleware.
Such system models can be used to model control algorithms, physical systems (such
as HVAC systems) or communication networks, using different models of computation,
such as synchronous data flow, continuous time, discrete time and finite state machine.
It also provides models for data processing, such as output analysis, online visualization
and reporting. The middleware can simulate systems as fast as possible, synchronized
to real-time or at any speed in between. One of the design goals of the BCVTB was to
provide to users a platform that allows them to link their own simulation program or
control interface. This has been accomplished by providing libraries that can be used to
integrate other simulation programs.

The BCVTB does not attempt to solve the problems of data and process interop-
erability [Augenbroe et al., 2004; Bazjanac, 2004; Lam et al., 2004], but it provides a
modular software framework that can be used to interface different simulation tools and
BAS for run-time data exchange. Earlier work conducted by the Lawrence Berkeley
National Laboratory led to a prototype link between building control systems and Ener-
gyPlus, using SPARK models embedded in EnergyPlus to communicate with the control
system via digital/analog converters [Haves and Xu, 2007]. The BCVTB presented here
is a complete redesign with a different software architecture.

Significant work on using simulation to evaluate the performance of local loop and
supervisory control has been performed in the International Energy Agency (IEA) An-
nex 17 [Lebrun, 1992]. Control strategies were implemented in simulation and in real,
commercial, control hardware coupled via analog interfaces to building envelope and
system simulations [Haves et al., 1998, 1991; Kelly et al., 1991; Laitila et al., 1991; Vaezi-
Nejad et al., 1991; Wang et al., 1994; Decious et al., 1997; Wittwer et al., 2001]. The
techniques developed in the IEA Annex 17 were further developed in the ASHRAE Re-
search Project 825-RP and resulted in a simulation testbed for control algorithms [Haves
et al., 1996]. The US National Institute for Standards and Technology has been devel-
oping a Virtual Cybernetic Building Testbed (VCBT) that uses the Common Object
Request Broker Architecture (CORBA) and BACnet, to link computer models for build-
ing envelope, HVAC systems, fire and smoke propagation to control hardware [Bushby
et al., 2010].

Recently, a standardization effort was started to facilitate co-simulation, integration
of models into different simulation environments and execution of models on embedded
systems: In 2010, the MODELISAR consortium released a first specification of the Func-
tional Mock-up Interface for Model Exchange (FMI), which standardizes the interface of
models that contain differential, algebraic and discrete equations [MODELISAR]. Such
models can then be encapsulated into a Functional Mock-up Unit (FMU). An FMU may
be self-integrating if used for co-simulation, or may require the simulator to perform the
numerical integration. This effort is expected to further facilitate the development and
interoperability of tools for co-simulation. However, the BCVTB does not yet support
the FMI specification.

3

2 Nomenclature

2.1 Conventions

1. Subscripts denote time steps in a time series.

2. Superscripts denote elements of vectors.

3. We denote by y = lims↑t x(s) the one-sided limit as s→ t with s < t.

2.2 Variables

C heat capacity
ṁw water mass flow rate

Q̇0 nominal heating power

Q̇s sensible heat flow rate

Q̇l latent heat flow rate
Tout outside temperature
Tset setpoint temperature
T room temperature
x state variable
Xw water vapor mass fraction
u input signal
y control signal
UA conductance times surface area
∆t time step
ϕ relative humidity of room air
ϕout relative humidity of outside air
γ control gain

2.3 Sets

R real numbers
N natural numbers

4

3 Intended Applications and Requirements

The BCVTB allows expert users of simulation to couple different simulation programs
to enable an integrated analysis of building systems that require the use of multiple
simulation programs because their functionalities complement each other. For example,
for a researcher who is interested in assessing the performance of new HVAC system
architectures, a typical use case would be to couple an EnergyPlus model of the building
envelope with a Modelica simulation environment such as Dymola [Brück et al., 2002]
that enables the researcher to modularly build a model of a new HVAC system using the
Modelica Buildings library [Wetter, 2009c,b] and to couple the two programs for data
exchange during run-time. A control engineer who needs to develop a new supervisory
control sequence, such as for an active facade of a naturally ventilated building, may
develop a control sequence in MATLAB/Simulink [Mathworks, 2010] and couple MAT-
LAB/Simulink with EnergyPlus through the BCVTB. When developing standard control
sequences for HVAC systems, such as the ones published by ASHRAE [ASHRAE, 2006],
a Modelica model of an HVAC system that allows detailed controls analysis may be cou-
pled to an EnergyPlus building model to assess and improve the performance of control
algorithms in order to reduce energy and increase comfort. If assessment of daylight avail-
ability and glare is of interest, such a system may also require the use of Radiance [Ward,
1994] in a feedback loop in which the input to Radiance may be a control signal for the
facade and the output from Radiance may be the illuminance measured by a photosensor
in the room. To verify that a supervisory control algorithm works as intended, a control
technician may couple a BACnet [ASHRAE, 2004] compliant BAS to a Modelica model,
which is then used as a virtual representation of the HVAC system that will be controlled
by the BAS. This may help reduce commissioning time and eliminate errors in the control
sequence. To conduct model-based fault detection and diagnostics (FDD), a simulation
model and an FDD algorithm may be coupled to a BAS through the BCVTB, which
may store data in a database.

Based on the above use cases and on interviews with stakeholders from industry, we
developed the BCVTB to support the following capabilities:

1. The BCVTB allows users to couple different new clients, i.e., a new simulation
program, with code modifications required only in the new client.

2. The computing time for data transfer between simulation programs should be small
compared to the computing time spent in the individual simulation programs when
performing a co-simulation for a whole building.

3. The BCVTB is modular and simulation tool independent so that different clients
can be coupled to it. Examples of clients are EnergyPlus, MATLAB, Simulink,
simulation environments for Modelica, visualization tools for the online plot of
variables, data bases and a BACnet compatible BAS.

4. The BCVTB allows communication with clients over the internet and across dif-
ferent operating systems.

5

5. The BCVTB runs on Microsoft Windows, Linux and Mac OS X.

6. The BCVTB can be run with a graphical user interface or as a console application
without user interaction.

4 Implementation

We implemented the BCVTB using a modular architecture in which a middleware links
the different clients. To simplify the discussion, client will refer to a simulation program
or a BAS. Using a middleware, as opposed to linking clients directly to each other, allows
the coupling of an arbitrary number of clients. It also provides a central point for starting
the simulation of all clients, establishing the communication channels, synchronizing the
simulation time and stopping the clients. Fig. 1 shows the architecture of the BCVTB.

The dotted line marks the middleware that is used to implement the BCVTB. The
middleware has a director that fires off each actor at the synchronization time step. The
director also organizes the data exchange between the actors. Each actor is responsible
for one simulation program. Prior to the simulation, the actor writes a configuration file
that specifies how the simulator can connect to the actor. Finally, it fires off a process
invocation to start the simulation. It also starts a server that uses the Berkeley Software
Distribution socket (BSD socket). The simulation program reads the configuration file
and connects to the actor through a BSD socket using TCP/IP. This socket is used to
exchange data between the simulator and the actor.

The following sections explain the implementation as follows: Sec. 4.1 explains the
middleware, Sec. 4.2 explains the additions to the middleware, Sec. 4.3 discusses the
mathematics of the implemented co-simulation, Sec. 4.4 explains the libraries that are
available to implement new clients. Sec. 4.5 provides a simple example and Sec. 4.6
discusses the sequence of data exchange. Sec. 4.7 explains the various interfaces that are
implemented in the BCVTB to couple different programs.

4.1 Middleware

To implement the middleware, we used the Ptolemy II software [Brooks et al., 2007].
Ptolemy II is a Java-based open-source software framework developed by the Univer-
sity of California at Berkeley to study modeling, simulation and design of concurrent
heterogeneous real-time systems. In Ptolemy II, models can be built by instantiating
actors. Actors encapsulate the action performed on input data to produce output data.
Ptolemy II wraps these data into so-called tokens, which can have various data types. In
the BCVTB, an actor may be a Java class, i.e., a group of Java methods and variables,
that communicates during run-time with a simulation program. Its input token may be
a control signal to be sent to an actuator in the simulation program, and an output token
may be a sensor value received from the simulation program. In Ptolemy II’s graphical
model editor, actors are encapsulated by graphical icons. To send output tokens to input
ports of another actor, a user can draw a connection line between the ports of the actors.

6

Figure 1: Architecture of the BCVTB with the middleware shown in the dotted box that connects
two clients.

The interactions between the actors are defined by a Model of Computation (MoC). The
MoC specifies the communication semantics among ports. Examples that are of particu-
lar interest for the BCVTB are Synchronous Data Flow (SDF) and Finite State Machines
(FSM). We use SDF to control the communication of actors that connect to simulation
programs. In SDF, each actor is fired when a fixed, pre-specified number of tokens is
available on each of its input ports. In the SDF domain, each actor produces a fixed,
pre-specified number of output tokens at each firing. Another MoC that is frequently
used in the BCVTB is the FSM domain. In FSM, entities are not actors but rather states,
and the connections among the entities represent transitions between states. FSM are
useful for expressing control logic in which different control laws are used depending on
the state of the system, such as sequencing control strategies for air-handling units [Seem
et al., 1999].

Ptolemy II has a modular extensible structure that allows the use of the BCVTB
for other research applications, such as analyzing the effect of lost packets or latency
in a communication network on the performance of a building control system, or the
integration of optimization algorithms for electricity demand response control.

4.2 Additions to Ptolemy II

To enable co-simulation, we added a new Java package to Ptolemy II. This package
contains the actors Simulator and SystemCommand. It also contains the classes Server

and XMLWriter. The class Simulator is an actor that starts a simulation program, sends
its input tokens to the simulation program, receives new values from the simulation
program and sends these values to its output port. The class Simulator makes an
instance of the class Server for the interprocess communication with the simulation
program, which is the client. The interprocess communication is implemented using the
Berkeley Software Distribution socket interface (BSD sockets). To connect to the server,

7

the client needs to know the number of the port on which it needs to connect. To pass
the port number from the server to the client, the class Simulator writes an XML file
using XMLWriter, which is then read by the client at program start.

This implementation allows the actor Simulator to use a system call to start any
executable (such as a batch file on Windows, a shell script in Mac OS X or Linux) or to
start directly any executable program that may have been compiled by the user.

The program that is started by the actor Simulator keeps running until the co-
simulation finishes. In contrast, the actor SystemCommand calls a user-specified system
command and waits until the command terminates. The system command can be any
executable. A typical application where one may prefer to use SystemCommand instead
of Simulator is the use of a program that does not have any state variables and whose
start-up time is small compared to its computing time. In this situation, it is sometimes
easier to implement the communication through command line arguments and text files
instead of integrating the socket interface into the simulation program, and the additional
overhead for file I/O may be negligible. The use of Radiance presents such a situation.

4.3 Mathematics of the Implemented Co-Simulation

In the BCVTB, data is exchanged between the different clients using a fixed synchroniza-
tion time step. There is no iteration between the clients. In the co-simulation literature,
this coupling scheme is referred to as quasi-dynamic coupling, loose coupling or ping-pong
coupling [Hensen, 1999; Zhai and Chen, 2005].

The algorithm for exchanging data between clients is as follows: Suppose we have
a system with two clients, where each client solves an initial value ordinary differential
equation that is coupled to the ordinary differential equation of the other client. Let
N ∈ N denote the number of time steps and let k ∈ {0, . . . , N} denote the time steps.
For some n1, n2 ∈ N, let f1 : Rn1 × Rn2 → Rn1 and f2 : Rn2 × Rn1 → Rn2 denote the
functions that compute the next value of the state variables in simulator 1 and 2. Note
that these functions are defined by the sequence of code instructions executed in the
respective simulator. The simulator 1 computes, for k ∈ {0, . . . , N − 1}, the sequence

x1(k + 1) = f1(x1(k), x2(k)) (1)

and, similarly, the simulator 2 computes the sequence

x2(k + 1) = f2(x2(k), x1(k)) (2)

with initial conditions x1(0) = x1,0 and x2(0) = x2,0. An implementation difficulty is
presented by the situation that f1(·, ·) and f2(·, ·) need to know the initial value of the
other simulator. Thus, at k = 0, both simulators exchange their initial value x1,0 and
x2,0. To advance from time k to k + 1, each simulator uses its own time integration
algorithm. At the end of the time step, the simulator 1 sends the new state x1(k+ 1) to
the BCVTB and it receives the state x2(k+ 1) from the BCVTB. The same procedure is
done by the simulator 2. The BCVTB synchronizes the data in such a way that it does
not matter which of the two simulators is called first.

8

In terms of numerical methods for ordinary differential equations, this scheme is iden-
tical to an explicit Euler integration, which is an integration algorithm for a differential
equation

ẋ = h(x), (3)

x(0) = x0, (4)

where h : Rn → Rn for some n ∈ N. On the time interval t ∈ [0, 1], the explicit Euler
integration algorithm leads to the following sequence:

9

Algorithm 4.1
Step 0: Initialize counter k = 0 and number of steps N ∈ N.

Set initial state x(k) = x0 and set time step ∆t = 1/N .
Step 1: Compute new state x(k + 1) = x(k) + h(x(k)) ∆t.

Replace k by k + 1.
Step 2: If k = N stop, else go to Step 1.

In the situation where equation (3) is integrated over time using co-simulation, the
above algorithm becomes:

Algorithm 4.2
Step 0: Initialize counter k = 0 and number of steps N ∈ N.

Set initial states x1(k) = x1,0 and x2(k) = x2,0.
Set time step ∆t = 1/N .

Step 1: Compute new states
x1(k + 1) = x1(k) + f1(x1(k), x2(k)) ∆t, and
x2(k + 1) = x2(k) + f2(x2(k), x1(k)) ∆t.

Replace k by k + 1.
Step 2: If k = N stop, else go to Step 1.

This algorithm is implemented in the BCVTB. It does not require an iteration between
the two simulators. However, one needs to be aware of the sequence of data that is being
exchanged, as surprising effects can occur if done incorrectly. The following example
illustrates such a situation.

Example 4.3 Let simulator 1 be the EnergyPlus building simulation program, and let
simulator 2 be MATLAB. Suppose we compute in MATLAB a control signal for the slat
angle of a window blind y2(k), send this control signal to EnergyPlus, and send from
EnergyPlus to MATLAB the current slat angle y1(k). Since the slat angle in EnergyPlus
is adjusted instantaneously, EnergyPlus computes

y1(k + 1) = y2(k). (5)

Suppose the slat angle in MATLAB is computed as

y2(k + 1) = y1(k) + γ e(k), (6)

where γ > 0 is a gain that corrects for the control error e(k). Suppose that γ is small
enough so that we can use the approximate equations

y1(k + 1) = y2(k), (7)

y2(k + 1) = y1(k). (8)

Then, the slat angle will oscillate according to the sequence shown in Tab. 1. To avoid
this situation, equation (6) can be implemented as

y2(k + 1) = y2(k) + γ e(k), (9)

i.e., the simulator 2 stores the value of y2(·) from one time step to the next, and uses
this value to compute the new slat angle.

10

k y1(k) y2(k)

0 y1,0 y2,0
1 y2,0 y1,0
2 y1,0 y2,0
3 y2,0 y1,0

Table 1: Sequence of exchanged actuator positions.

We note that other data synchronizations may be possible. For example, in strong
coupling, within each time step, simulators exchange data until a convergence criteria
is satisfied. This implementation requires the numerical solution of a nonlinear system
of equations in which the termination criteria is a function of the state variables of the
coupled simulators. However, many building simulation programs contain solvers that
compute with relatively coarse precision. This can introduce significant numerical noise
which may cause convergence problems for the co-simulation. The computing time of
strong coupling vs. loose coupling of EnergyPlus and TRNSYS [Klein et al., 1976] was
compared by Trčka et al. [2007]. Although loose coupling required shorter synchroniza-
tion time steps, the work per time step was smaller (as no iterations were needed) which
caused loose coupling to compute faster than strong coupling. An additional implemen-
tation benefit of loose coupling is that state variables need not be reset to previous values.
Thus, loose coupling is easier to implement, is numerically more robust and it computed
faster in the experiments reported by Trčka et al. [2007]. A potentially interesting ap-
proach would be the use of an adaptive synchronization time step, but we have not yet
explored this experimentally. An implementation would require resetting state variables,
which is hard to accomplish in tools like EnergyPlus that contain half a million lines of
code and that do not have a data structure that allows storing and resetting all state
variables.

4.4 Library for Clients

We implemented a C library with functions that can be used by developers to implement
an interface in their client program to connect to and to communicate with the BCVTB.
The library provides functions for parsing XML files using search commands in the XPath
language, and it can be used to establish the BSD socket connection, to exchange data
through the BSD socket and to close the connection. In the next section, we will show an
example that explains how these functions can be used to add new clients to the BCVTB.

For developers, the BCVTB contains configuration files that allow compiling the code
using Apache Ant [Foundation, 2010], which is a cross platform build tool. The operating
systems that are currently supported are Windows, Mac OS X and Linux.

11

Figure 2: System diagram that couples the simulation program for the rooms and the controller
in Ptolemy II.

4.5 Example to Illustrate how to Connect a Client to the BCVTB

We will now show an example to illustrate how to connect a client program to the
BCVTB. We will consider a system with two rooms, each with a heater that is controlled
by a proportional controller. We will implement the simulation program for the two
rooms in a C program and the controller in Ptolemy II.

Let k ∈ {0, 1, 2, . . .} denote equally spaced time steps and let i ∈ {1, 2} denote the
number of the room. For the k-th time step and the room number i, let T i(k) denote
the room temperature and let ui(k) denote the control signal for the heater. The room
temperature is governed by

T i(k + 1) = T i(k) +
∆t

Ci
(UA)i (Tout − T i(k)) +

∆t

Ci
Qi

0 u
i(k), (10)

T i(0) = T i
0, (11)

where ∆t is the time interval, Ci is the room thermal capacity, (UA)i is the room heat
loss coefficient, Tout is the outside temperature, Qi

0 is the nominal capacity of the heater
and T i

0 is the initial temperature. In (10) and (11), we assumed that the communication
time step is small enough to be used as the integration time step. If this is not the case,
we could use a different integration time step and synchronize the integration time step
with the communication time step. The governing equation for the control signal is

ui(k + 1) = min
(
1, max

(
0, γi (T i

set − T i(k))
))
, (12)

where γi > 0 is the proportional gain, T i
set is the set point temperature and the min(·, ·)

and max(·, ·) functions limit the control signal between 0 and 1.

Fig. 3 shows a source code snippet of the implemented client. Three functions interface
the client with the BCVTB: On line 2, the function establishclientsocket establishes

12

1 // Es tab l i sh the c l i e n t socke t
2 const int sock fd = e s t a b l i s h c l i e n t s o c k e t (” socket . c f g ”) ;
3 i f (sock fd < 0){
4 f p r i n t f (s tde r r , ” Error : Fa i l ed to obta in socket f i l e d e s c r i p t o r .\n”) ;
5 e x i t ((sock fd)+100); }
6 // Simulat ion loop
7 while (1){
8 // a s s i g n va lue s to be exchanged
9 for (i =0; i < nDblWri ; i++) dblValWri [i]=TRoo [i] ;

10 // Exchange va lue s
11 retVal = exchangedoubleswithsocket (&sockfd , &flaWri , &flaRea ,
12 &nDblWri , &nDblRea ,
13 &simTimWri , dblValWri ,
14 &simTimRea , dblValRea) ;
15 // ///
16 // Check f l a g s
17 i f (re tVal < 0){
18 sendc l i en tmes sage (&sockfd , &c l i E r r F l a) ;
19 p r i n t f (” Simulator r e c e i v e d value %d from socket .\n” , re tVal) ;
20 c l o s e i p c (&sock fd) ; e x i t ((retVal)+100); }
21 i f (f laRea == 1){
22 p r i n t f (” Simulator r e c e i v e d end o f s imu la t i on s i g n a l .\n”) ;
23 c l o s e i p c (&sock fd) ; e x i t (0) ; }
24 i f (f laRea != 0){
25 p r i n t f (” Simulator r e c e i v e d f l a g = %d . Exit s imu la t i on .\n” , f laRea) ;
26 c l o s e i p c (&sock fd) ; e x i t (1) ; }
27 // ///
28 // No f l a g s found that r e q u i r e the s imu la t i on to terminate .
29 // Assign exchanged v a r i a b l e s
30 for (i =0; i < nRoo ; i++)
31 u [i] = dblValRea [i] ;
32 // ///
33 // Having obta ined u k , we compute the new s t a t e x k+1 = f (u k) .
34 // This i s the ac tua l s imu la t i on time step o f the c l i e n t
35 for (i =0; i < nRoo ; i++)
36 TRoo [i] = TRoo [i] + delTim/C[i] ∗ (UA ∗ (TOut−TRoo [i])
37 + Q0Hea ∗ u [i]) ;
38 simTimWri += delTim ; // advance s imu la t i on time
39 } // end o f s imu la t i on loop

Figure 3: Code snippet that shows the integration of a simple simulator in the BCVTB.

the socket connection from the client to the middleware. The return value is an integer
that references the socket. This descriptor is then used on line 11 as an argument to the
function call exchangedoubleswithsocket. This function writes data to the socket and
reads data from the socket. Its arguments are the socket file descriptor, a flag to send a
signal to the middleware (a non-zero value means that the client will stop its simulation)
and a flag received from the middleware (a non-zero value indicates that no further values
will be written to or read from the socket by the client). The remaining arguments are
the array lengths and the array data to be written to and read from the middleware.

13

After the call to exchangedoubleswithsocket follows error handling. The test retVal

< 0 checks for errors during the communication. If there was an error, then a message
is sent to the server to indicate that the client will terminate the co-simulation. Finally,
the socket connection is closed by calling closeipc.

To simulate this example, we implemented the controller directly in the middleware,
using actors from the Ptolemy II library. However, the controller could as well be imple-
mented in Modelica, MATLAB, Simulink or in a user written program that communicates
through a BSD socket similarly to the C client above. Fig. 2 shows the system diagram
with the actor for the controller and the actor that interfaces the simulation program.

4.6 Sequence of Data Exchange

In Fig. 4 we show the sequence of data exchange between the clients and Ptolemy II.
In this schematic, we assumed two clients, but more clients are possible if needed. The
figure shows the data exchange between the clients and Ptolemy II (dashed arrows),
the data exchange inside Ptolemy II (dotted arrows) and the simulation time in the
clients and in Ptolemy II. Once a client has initialized its data, it calls the function
exchangedoubleswithsocket to write its initial values to Ptolemy II, as indicated by
the arrow x1(0) for client 1. Ptolemy II will send these initial values to the other
Ptolemy II actors, which may include client 2. This exchange within Ptolemy II is
indicated by the dotted arrows. Then, the time integration starts: Ptolemy II sends
data that include initial conditions of other clients to the sockets, and the clients re-
ceive them. This is illustrated by the arrow labeled x2(0) where data is sent to client
1 which still waits until its first call to exchangedoubleswithsocket returns. Now,
client 1 computes x1(1) = x1(0) +

∫ t1
t0
f1(x1(0), x2(0)) ds. Next, client 1 may call its

output report routines and then call exchangedoubleswithsockets to write x1(1) to
Ptolemy II and to receive x2(1) from Ptolemy II. After client 1 receives x2(1), it com-
putes x1(2) = x1(1) +

∫ t2
t1
f1(x1(1), x2(1)) ds and the procedure is repeated. This ex-

change scheme continues until Ptolemy II reaches its final time. Then, Ptolemy II writes
a flag with a value of 1 to the client to indicate that the last time step has been reached
and, hence, that the client won’t receive any further data.

4.7 Interfaces to Simulation Programs

This section describes the interfaces that we implemented in various simulation programs
to allow exchanging data between these programs and the BCVTB. All interfaces use the
routines described in the previous section.

4.7.1 EnergyPlus Interface

To interface EnergyPlus with the BCVTB, we added a module called ExternalInterface

to EnergyPlus version 5.0. This interface allows overwriting certain EnergyPlus variables
during each EnergyPlus zone time step with data received from Ptolemy II and retrieving
data from EnergyPlus to be sent to Ptolemy II. In particular, the EnergyPlus interface
adds new objects to EnergyPlus that are similar to the existing objects

14

Initialization k=0 k=1 k=2 k=3

Initialization k=0 k=1 k=2 k=3

x1(0)

x2(0)

x2(0)

x1(0)

x1(1)

x2(1)
x1(1)

x2(1)
x1(2)

x2(2)
x1(2)

x2(2)
x1(3)

x2(3)

Time steps
in client 1

Time steps
in client 2

Time steps
in Ptolemy II

Initialization k=0 k=1 k=2 k=3

Legend

Call to a Ptolemy II Simulator actor.
Exchange of data between two Ptolemy II Simulator actors.
Exchange of data between a Ptolemy II Simulator actor and a simulation program.
Initialization step in Ptolemy II, and in simulation programs.
Time step in Ptolemy II, and in simulation programs.
Variable x of simulator 1 at time step 3.x1(3)

Figure 4: Data synchronization and function calls between the Ptolemy II middleware and two
simulation programs.

• Schedule:Compact,

• EnergyManagementSystem:Actuator, and

• EnergyManagementSystem:GlobalVariable.

The corresponding BCVTB objects are called

• ExternalInterface:Schedule,

• ExternalInterface:Actuator, and

• ExternalInterface:Variable.

These objects allow writing to EnergyPlus schedules, Energy Management System
(EMS) actuator objects and EMS variables at each EnergyPlus zone time step. Sched-
ules can, for example, be used to add sensible or latent heat to rooms or to change

15

setpoints. EMS actuators allow additional capability to overwrite setpoints and to con-
trol equipment. EMS variables can be used within the EnergyPlus Runtime Language
to implement custom control functions.

The BCVTB interface also allows to send any variables of type Output:Variable and
EnergyManagementSystem:OutputVariable from EnergyPlus to the BCVTB at the end
of each zone time step.

Prior to simulating the run period that is specified in the EnergyPlus input file,
EnergyPlus simulates a warm-up period (to compute its initial values) and possibly
does a system sizing calculation. During these periods, no data are exchanged be-
tween the BCVTB and EnergyPlus. The values of ExternalInterface:Schedule and
ExternalInterface:Variable will be fixed at their initial value, which is a mandatory
argument. However, for the object ExternalInterface:Actuator, specification of an
initial value is optional. If an initial value is specified, it is used during warm-up and
system sizing. If it is not specified, then the actuator only overwrites the actuated com-
ponent after the warm-up and system sizing. Since actuators always overwrite other
objects (such as a schedule), all these objects have values that are defined during the
warm-up and the system sizing even if no initial value is specified.

Thus, suppose we have an EnergyPlus input data file that contains an instance of
ExternalInterface:Actuator that overwrites a Schedule:Compact. Then, there are
the following options:

1. ExternalInterface:Actuator specifies an initial value: In this situation, during
the warm-up period and the system sizing, the value of Schedule:Compact will be
set to the initial value specified by the instance of ExternalInterface:Actuator.

2. ExternalInterface:Actuator does not specify an initial value: In this situation,
during the warm-up period and the system sizing, the value of Schedule:Compact
will be as defined by this schedule, i.e., it can change over time. Once the time step-
ping starts, the value of Schedule:Compact will be overwritten by the numerical
value that ExternalInterface:Actuator receives from the BCVTB.

4.7.2 Modelica Interface

To interface Modelica with the BCVTB, we implemented in the Modelica Buildings
library [Wetter, 2009c,b] a block that exchanges data with the BCVTB. This Modelica
block receives from the BCVTB a vector of double values y(t) which become output of
the Modelica block. The input of this Modelica block is a vector of double values u(t)
that is computed by other Modelica components and that will be sent to the BCVTB.
Since the data exchange is conducted at a fixed sampling interval, the output of the block
is y(t) = y(tk) for t ∈ [tk, tk+1). For the input that is sent to the BCVTB, there are three
configurations possible: Let ui(t) be the i-th element of u(t), let k ∈ {1, 2, . . .} denote
the time step, and let uik be the i-th element of the vector that is sent from Modelica to
the BCVTB at time step k. Then, the user can select to send

• the instantaneous value uik = lims↑tk u
i(s),

16

Figure 5: System decomposition for interfacing an HVAC system that is modeled in Modelica with
a building that is modeled in EnergyPlus.

• the average value over the sampling interval uik = 1/(tk − tk−1)
∫ tk
tk−1

ui(s) ds, or

• the integral over the sampling interval uik =
∫ tk
tk−1

ui(s) ds.

For state variables, one may typically want to send the instantaneous value, where as
for flow variables, the average or integrated value may be more appropriate. Note that
for the instantaneous value, the limit from below is used to avoid an iteration across the
BCVTB interface.

We also implemented a Modelica model that allows interfacing an air-conditioning
system to the BCVTB. The model takes as input signals the temperature and water
vapor concentration and, optionally, a bulk mass flow rate into or out of the system
boundary. The state of the air that flows out of this model will be at this temperature
and water vapor concentration. The output of this model is the sensible and latent heat
exchanged across the system boundary. When used with the BCVTB, a building simu-
lation program such as EnergyPlus may compute the room air temperatures and room
air humidity rate, which is then used as an input to this model. The sensible and latent
heat flow rates may be sent to EnergyPlus to couple the air-conditioning system to the
energy balance of the building model.

We will now illustrate the use of this model. We take a simple HVAC system that
consists of a supply fan with constant volume flow rate, a heater and a humidifier that
serves a single thermal zone. The heater adds heat to the supply air in the amount
Q̇ = yh Q̇0 and the humidifier adds water vapor in the amount ṁw = yw ṁw,0, where
yh and yw are the output signals of controllers that track the return air temperature
and water vapor concentration (which, in the simulation model, is equal to the room air
temperature and water vapor concentration as received from EnergyPlus), and Q̇0 and
ṁw,0 are the nominal heating and humidification capacities. We partitioned the system
model as shown in Fig. 5, where the dotted line indicates the system boundary. On
the left is the HVAC model that was implemented in Modelica, and on the right is the
thermal zone and the building envelope model that was implemented in EnergyPlus. The

17

Figure 6: Modelica implementation of HVAC model with interface to the BCVTB.

Modelica implementation of the HVAC model is shown in Fig. 6. The dotted lines are
signals that are exchanged with the BCVTB.

To couple the two models, we set, in the time interval t ∈ [tk, tk+1), the boundary
condition for the HVAC system model to the room air temperature T (t) = Tk, to the
room relative humidity ϕ(t) = ϕk, to the outside air temperature Tout(t) = Tout,k and to
the outside air relative humidity ϕout(t) = ϕout,k. Thus, the vector sent from EnergyPlus
to Modelica is yk = (Tk, ϕk, Tout,k, ϕout,k). In the HVAC model, we computed the sensible
and latent heat Q̇s(t) and Q̇l(t) that is exchanged if the HVAC system serves a room at
temperature Tk and relative humidity ϕk. Thus, we sent from Modelica to EnergyPlus
the vector u0 = (0, 0)T and, for k > 0,

uk =
1

(tk − tk−1)

∫ tk

tk−1

(
Q̇s(s)

Q̇l(s)

)
ds, (13)

which become the boundary conditions for EnergyPlus. In particular, the sensible
and latent heat input was added to the room energy balance of EnergyPlus by us-
ing an instance of an EnergyPlus object of type OtherEquipment, and setting its ca-
pacity to a schedule value that was overwritten by the BCVTB using an instance of
ExternalInterface:Schedule.

4.7.3 MATLAB Interface

We implemented a MATLAB library that provides functions that allow MATLAB to be
interfaced to the BCVTB. Fig. 7 shows a code section that illustrates how a MATLAB
simulation model can be interfaced with the BCVTB for data exchange at each time step.
For brevity, some data initialization and error handling have been omitted. The code

18

1 % I n i t i a l i z e model v a r i a b l e s
2 [. . . omitted for brev i ty]
3 % Estab l i sh the socket connect ion with the BCVTB
4 sock fd = e s t a b l i s h C l i e n t S o c k e t (’ socke t . c f g ’) ;
5 % Loop f o r s imu la t i on time s t ep s .
6 s imulate=true ;
7 while (s imulate)
8 % Assign va lue s to be exchanged .
9 [retVal , f laRea , simTimRea , u] = . . .

10 exchangeDoublesWithSocket (sockfd , f laWri , . . .
11 length (u) , simTimWri , TRoo) ;
12 % Check re turn f l a g s
13 i f (f laRea ˜= 0) % Error during communication or f i n a l time reached .
14 closeIPC (sock fd) ;
15 s imulate=f a l s e ;
16 end
17 % Having obtained u k , we compute the new s t a t e x k+1 = f (u k)
18 i f (s imulate)
19 for i =1:2
20 TRoo(i) = TRoo(i) + . . .
21 delTim / C(i) ∗ (UA ∗ (TOut−TRoo(i)) + Q0Hea ∗ u(i)) ;
22 end
23 % Advance s imu la t i on time
24 simTimWri = simTimWri + delTim ;
25 end
26 end
27 e x i t

Figure 7: Code snippet that illustrates integration of a MATLAB model with the BCVTB.

is from an implementation of the room model described in (10) and (11). (A complete
implementation is provided with the BCVTB installation.) On line 4, a function call is
made to establish a BSD socket connection between MATLAB and the BCVTB. On line
9 to 11 is the data exchange with the BCVTB where the current room temperature Tk
is sent from MATLAB to the BCVTB, and the control signal uk is received from the
BCVTB. On line 14, the communication is terminated.

4.7.4 Simulink Interface

There is also a Simulink block that allows data to be exchanged with the BCVTB at each
Simulink sampling time step. Fig. 8 shows how a Simulink controller model (block labeled
“controller” in the figure) is linked with a model that handles the interface with the
BCVTB (block labeled socketIO). Inputs to the block socketIO are a vector containing
the control signals, such as setpoints and actuator values, and a trigger signal. If the
trigger signal is 0, then the block will not be called during the simulation. This enables a
model builder to test and debug the control algorithm in isolation from the model of the
plant. Output of the block socketIO is a vector of sensor values that has been received
from Ptolemy II. The code generation tool of MATLAB, which is used to interface the

19

Figure 8: Simulink model that interfaces a Simulink controller model (left grey box) with a model
that interfaces Ptolemy II (right grey box).

C socket library, requires MATLAB function outputs to have a fixed array size. This
causes the output vector of socketIO to typically have more elements than required. The
block selector is used to select the subset of elements needed by the controller. If more
elements are needed than are currently allocated in the socketIO interface, a user can
increase the value in a MATLAB script and recompile the MATLAB/Simulink socket
library using a script that is part of the BCVTB.

4.8 Interface to a System Call

In some situations, one may want to call at each time step an external program and
retrieve its output after it terminates. A use case is to call, at each time step, a lighting
simulation in Radiance to compute the illuminance that would be measured by a photo-
sensor for a given control signal of an active facade. Another use case is to develop and
test a controller, that is implemented in the C language, in a simulation environment that
couples the controller to a model of the plant that it will control. For such a situation,
we added an actor called SystemCommand. This actor allows, for example, to call a batch
file (on Windows), a shell script (on Mac or Linux), or any other executable program.
The input to this program can be done either through program flags, or by writing an
input file from Ptolemy II, using actors from Ptolemy II’s library.

For illustration, we will show how to call a program that implements a simple con-
troller for a room with closed loop control. The program is implemented in the C language
and simulates a proportional controller with output limitation. The command line argu-
ments of the program are the control error e and the proportional gain kP. The program
writes the control signal to a text file, which will then be parsed by Ptolemy II.

Such a program can be called by making an instance of the SystemCommand actor.
Fig. 9 shows this actor as part of the example that is discussed here. Next, two input

20

Figure 9: System model to illustrate the implementation of the SystemCommand actor that calls
an external program that implements the control function.

ports can be added to this actor. Ptolemy II allows giving a name to each input port,
which we called e and kP. The actor also allows specifying a program name and any
number of command line arguments, which we set to pcontroller (which is the name of
the executable) and to $e and $kP, respectively. During the simulation, the text strings
$e and $kP in the command line arguments will be replaced by the current value of the
input token of port e and port kP.1 For example, suppose that at some time step, the
input ports have the values e = 1 and kP = 2. Then the BCVTB will fire the command

pcontroller 1 2

The SystemCommand actor has three output ports: The port exitValue outputs the
exit value of the program. The port output contains the standard output stream of the
program, and the port error contains the standard error stream of the program.

Upon successful termination, the port exitValue will have the token 0. This token
can be used to trigger the actor OutputFileParser. If this actor receives 0 on its input
port, then it will read the output file that was written by the program pcontroller and
send the output to a plotter. If it receives a non-zero value, it will stop the BCVTB with
an error message. The text streams of the ports output and error are sent to a display
to show to the user the program’s standard output and standard error stream.

5 Examples using Whole Building Simulation Programs

In this section, we will present examples that use the EnergyPlus whole building sim-
ulation program which is linked to Simulink, to Modelica and to a controller that is
implemented in Ptolemy II.

1There are also two built-in variables called $time, which is the current simulation time, and
$iteration which is the current iteration step of Ptolemy. For these two variables, no port needs to
be defined.

21

5.1 Use of Modelica and EnergyPlus to Test Control Sequence of a
VAV System

This example illustrates how an HVAC system and its supervisory and local loop control
can be modeled in the equation-based object-oriented Modelica language and linked to
EnergyPlus through the BCVTB. Modelica is used to implement the HVAC system and
the control. The building heat transfer and the temperature and humidity concentration
of the thermal zones are implemented in EnergyPlus. The use of co-simulation allowed
to use Modelica for its rapid prototyping and flexible modeling capabilities, and for its
capability to model and simulate local loop control and supervisory control sequences,
pressure-dependent flow distribution in the duct network and the dynamics of HVAC
components, which are not possible to model in EnergyPlus. It also allowed to use models
from EnergyPlus for the coupled simulation of the building envelope heat transfer, solar
gains, detailed fenestration performance and daylight availability, for which Modelica
models do not yet exist.

The HVAC system as implemented in Modelica is shown in Fig. 10. It is a variable
air volume (VAV) flow system with economizer and a heating and cooling coil in the air
handler unit. There is also a reheat coil and an air damper in each of the five zone inlet
branches. The control is an implementation of the control sequence VAV 2A2-21232
of the Sequences of Operation for Common HVAC Systems [ASHRAE, 2006]. In this
control sequence, the supply fan speed is regulated based on the duct static pressure.
The return fan controller tracks the supply fan air flow rate reduced by a fixed offset.
The duct static pressure is adjusted so that at least one VAV damper is 90% open.
The economizer dampers are modulated to track the setpoint for the mixed air dry bulb
temperature. Priority is given to maintain a minimum outside air volume flow rate. There
is also an override that keeps the mixed air temperature above 3◦C to prevent freezing of
coils. In each zone, the VAV damper is adjusted to meet the room temperature setpoint
for cooling, or fully opened during heating. The room temperature setpoint for heating
is tracked by varying the water flow rate through the reheat coil. There is also a finite
state machine that transitions the mode of operation of the HVAC system between the
modes “occupied,” “unoccupied off,” “unoccupied night set back,” “unoccupied warm-
up” and “unoccupied pre-cool.” In the VAV model, all air flows are computed based on
the duct static pressure distribution and the performance curves of the fans. Local loop
control is implemented using proportional and proportional-integral controllers, while the
supervisory control is implemented using a finite state machine. There is also pressure-
driven air leakage through the building envelope. The total system model contained
800 components that led to a differential algebraic equation system with 3,700 scalar
equations and 75 state variables.

To model the building envelope, the new construction medium office building for
Chicago, IL, was selected from the set of DOE Commercial Building Benchmarks [Deru
et al., 2009]. The building is an office building with three floors. Each floor has four
perimeter zones and a core zone. The envelope thermal properties meet ASHRAE Stan-
dard 90.1-2004. We modified the original input file by removing the HVAC system for
the middle floor as this system was modeled in Modelica. We also reduced the time step

22

(a) Partial view of the model of the central HVAC system that serves five thermal zones.

(b) Model of one thermal zone that is encapsulated in the com-
ponents shown in the right hand side of subfigure (a).

Figure 10: Modelica model of HVAC system.

in EnergyPlus and changed the numerical method that computes heat conduction from
conduction transfer functions to finite differences as the conduction transfer function
algorithm is not applicable for small time steps.

The coupling between Modelica and EnergyPlus is done through the BCVTB. The
inputs to Modelica are the air temperatures and relative humidities for the outside and
the five zones of the middle floor. The inputs to EnergyPlus are the sensible and latent

23

0 2 4 6 8 10 12 14 16 18 20 22 24
20
10

0
10
20

T
[°C

]

Temperatures

0 2 4 6 8 10 12 14 16 18 20 22 24
10
15
20
25

T
[°C

]

Room air temperatures

0 2 4 6 8 10 12 14 16 18 20 22 24
10
20
30
40
50

T
[°C

]

Zone supply air temperatures

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.5

1

y
[

]

VAV damper control signals

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.5

1

y
[

]

Fan and economizer control signals

outside
mixed air
supply air

core
south
east
north
west

core
south
east
north
west

core
south
east
north
west

supply fan
return fan
economizer

Figure 11: Temperatures and control signals for a winter day.

heat exchanged with the room air. Data are exchanged between the two programs every
one minute of simulation time.

Fig. 11 shows the air temperatures and control signals for a winter day. After 9 am,
the south facing room has the highest temperature, which causes its reheat coil to shut
off around 10:30 am. Earlier in the morning, this zone used reheat and opened its VAV
damper to increase the air flow rate. Between noon and 4 pm, the VAV damper of the
south zone opens up to about 35% because the room temperature approaches the cooling
set point temperature and an increase in air flow rate cools the room. The VAV damper
and the supply air temperature of the core zone are close to their minimum since this
zone has little heating demand. During day-time, there is a slight variation in fan speed
to track the duct static pressure setpoint as the VAV dampers change their positions.

5.2 Use of EnergyPlus and Simulink to Test Control of a Naturally
Ventilated Building

We will now present an example in which we linked EnergyPlus and MATLAB/Simulink
to the BCVTB. EnergyPlus simulates the building including its natural ventilation, and

24

(a) 5 days plot during summer (b) 45 minutes magnification during night

Figure 12: Ptolemy II’s online plot showing the outside air temperature (red), the room air
temperatures (blue and green), the room set point temperature (black) and the window openings
(the upper lines indicate open and the lower lines indicate closed windows) during five summer
days (subfigure a) and during 45 minutes at night (subfigure b).

MATLAB/Simulink simulates a controller that determines the window opening positions.
The use of co-simulation allowed to use EnergyPlus for modeling the physics, and to use
MATLAB/Simulink for its support for control algorithm development.

Both programs exchange data via the BCVTB every 1 minute of simulation time.
In EnergyPlus, we use two report variables for the room air temperatures of two rooms
through which cross ventilation occurs, and we use a report variable for the outside
dry-bulb temperature. These three temperatures are input into the Simulink controller,
together with the current clock time. The controller determines the room air setpoint
temperature, using different values for day and night and a 2 Kelvin dead-band between
opening and closing the windows. The control logic is as follows: For some time step
k ∈ N, let Ts(k) denote the setpoint temperature, let Tr(k) denote the larger of the two
room temperatures and let To(k) denote the outside dry-bulb temperature. If Tr(k) >
max(Ts(k), To(k)), then windows are allowed to be open. Otherwise they are closed.
There are three opening positions for the windows: For a constant gain γ = 0.5, the
controller computes the control signal y(k) = γ (Tr(k) − Ts(k)). For 0 ≤ y(k) ≤ 1, one
window group is open, for 1 < y(k) ≤ 2 two window groups are open and for 2 < y(k)
all windows are open. This control logic is implemented in a Simulink block similar to
the block labeled controller in Fig. 8.

Fig. 12 shows the temperature trajectories and the window positions. In the first few
days, there is significant chattering, with the window opening and closing in a 15 minute
long limit cycle (lower graph). This would be unacceptable for building occupants and
would wear out the actuators. Hence, a more sophisticated control algorithm should be
used as was implemented in the actual building [da Graca et al., 2004]. A better control
algorithm may involve modulating the window opening to avoid the limit cycle.

25

5.3 Use of Ptolemy II and EnergyPlus to Implement a Shading Con-
troller

This example illustrates how Ptolemy II can be used to model a controller of a shading
device that is linked to an EnergyPlus model of a building. This co-simulation setup
allowed to use EnergyPlus to model the physics, and to use the graphical, freely pro-
grammable Ptolemy II environment to implement a controller of a shading device using
a finite state machine.

The finite state machine switches between the states “night shade deployed,” “no
shade,” and “day shade deployed.” The criteria for switching the state of the shading
device are the exterior solar irradiation on the window and the room air temperature.
These quantities are computed in EnergyPlus. Every 10 minutes of simulation time,
EnergyPlus sends the solar irradiation, the room air temperature and the outside air
temperature to the BCVTB. In the BCVTB, the finite state machine determines the new
desired state of the shading device and sends the control signal to EnergyPlus. Fig. 13(a)
shows the implementation of the Ptolemy II model that links an actor for the controller,
labeled “shadingController” with the actor labeled “Simulator” that communicates with
EnergyPlus. Fig. 13(b) shows the finite state machine that is inside the actor called
“shadingController.” Each transition of the finite state machine has a guard, which is a
test on the solar irradiation and room air temperature in our example. If the guard is
true, then the state changes and a new value is assigned to the output signal. Fig. 13(c)
shows how the controller state changes with solar irradiation and room air temperature
for four days of simulation. A value of y = 0 indicates no shade, y = 1 indicates day
shade deployed and y = 2 indicates night shade deployed. The second and fourth day of
simulation have large solar radiation and high room air temperatures, which cause the
shade to be deployed in the middle of the day.

6 Conclusions

Using the Ptolemy II modeling and simulation environment as a middleware for the
BCVTB allowed the creation of a modular open-source environment to which different
simulation programs or building control systems can be coupled. It also offers users
the possibility of implementing system models directly in Ptolemy II, for example, to
model physical systems or control systems using different models of computation, such
as continuous time, synchronous data flow or finite state machines. Ptolemy II also
contains libraries of component models that can be used for data processing; example
applications include visualization or transformation of data that are exchanged between
different clients.

The interface for simulation clients that we added in the form of a Ptolemy II model
allowed EnergyPlus, Dymola, MATLAB, Simulink and some custom programs to be
coupled to each other. The interface also allows users to add additional simulation
programs to the BCVTB. In addition, any executable program can be called from an
actor, which allows, for example, Radiance to be coupled to models of facade and light
controllers, as well as to models that quantify energy implications of different facades.

26

(a) Ptolemy II system model that links the controller, EnergyPlus and a plotter.

(b) Implementation of controller for shading device that is encapsulated in the
actor “shadingController” in subfigure (a).

(c) Ptolemy II’s online plot showing the main simulation results.

Figure 13: Ptolemy II model that links a shading controller to EnergyPlus and that shows the
results in an online plotter as the simulation progresses.

27

7 Acknowledgment

This research was supported by the Assistant Secretary for Energy Efficiency and Re-
newable Energy, Office of Building Technologies of the U.S. Department of Energy, under
Contract No. DE-AC02-05CH11231. We thank Philip Haves from Lawrence Berkeley Na-
tional Laboratory for his feedback and guidance during the development of this software.
Special thanks go to Prof. Edward A. Lee and Christopher Brooks from the University
of California at Berkeley for their support in integrating the BCVTB functionality into
the Ptolemy II software. We thank Gregor Henze, Charles Corbin, Anthony Florita and
Peter May-Ostendorp from the University of Colorado at Boulder for their contributions
to the MATLAB interface and the EnergyPlus 3.0 upgrade. We thank Rui Zhang from
Carnegie Mellon for her contributions to the Windows configuration and the EnergyPlus
3.1 upgrade.

References

ASHRAE. ANSI/ASHRAE Standard 135-2004, BACnet, a data communication protocol
for building automation and control networks, 2004. ISSN 1041-2336.

ASHRAE. Sequences of Operation for Common HVAC Systems. ASHRAE, Atlanta, GA,
2006.

Godfried Augenbroe, Pieter de Wilde, Hyeun Jun Moon, and Ali Malkawi. An inter-
operability workbench for design analysis integration. Energy and Buildings, 36(8):
737–748, August 2004. doi: 10.1016/j.enbuild.2004.01.049.

Vladimir Bazjanac. Building energy performance simulation as part of interoperable
software environments. Energy and Buildings, 39(8):879–883, August 2004. doi:
10.1016/j.buildenv.2004.01.012.

Christopher Brooks, Edward A. Lee, Xiaojun Liu, Steve Neuendorffer, Yang Zhao, and
Haiyang Zheng. Ptolemy II – heterogeneous concurrent modeling and design in
Java. Technical Report No. UCB/EECS-2007-7, University of California at Berkeley,
Berkeley, CA, January 2007.

Dag Brück, Hilding Elmqvist, Sven Erik Mattsson, and Hans Olsson. Dymola for multi-
engineering modeling and simulation. In Martin Otter, editor, Proceedings of the
2nd Modelica conference, pages 55–1 – 55–8, Oberpfaffenhofen, Germany, March
2002. Modelica Association and Deutsches Zentrum fur Luft- und Raumfahrt. URL
http://www.modelica.org/events/Conference2002.

Steven T. Bushby, Michael A. Galler, Natascha Milesi Ferretti, and Cheol Park. The
virtual cybernetic building testbed – a building emulator. ASHRAE Transactions,
116(1):37–44, 2010.

28

http://www.modelica.org/events/Conference2002

Drury B. Crawley, Linda K. Lawrie, Frederick C. Winkelmann, Walter F. Buhl, Y. Joe
Huang, Curtis O. Pedersen, Richard K. Strand, Richard J. Liesen, Daniel E. Fisher,
Michael J. Witte, and Jason Glazer. EnergyPlus: creating a new-generation building
energy simulation program. Energy and Buildings, 33(4):443–457, 2001.

G Carrilho da Graca, P. F. Linden, and P. Haves. Design and testing of a control strategy
for a large, naturally ventilated office building. Building Service Engineering, 25(3):
223–239, 2004. doi: 10.1191/0143624404bt107oa.

Gaylon M. Decious, Cheol Park, and George E. Kelly. A low cost building/hvac emulator.
HPAC Heating/Piping/AirConditioning, pages 188–193, January 1997.

M. Deru, K. Field, D. Studer, K. Benne, B. Griffith, P Torcellini, M. Halverson,
D. Winiarski, B. Liu, M. Rosenberg, J. Huang, M. Yazdanian, and D. Crawley.
Doe commercial building research benchmarks for commercial buildings. Technical
report, U.S. Department of Energy, Energy Efficiency and Renewable Energy, Office
of Building Technologies, Washington, DC, 2009.

Hilding Elmqvist, Martin Otter, Dan Henriksson, Bernhard Thiele, and Sven Erik Matts-
son. Modelica for embedded systems. In Francesco Casella, editor, Proc. of the 7-th
International Modelica Conference, pages 354–363, Como, Italy, September 2009.
Modelica Association. doi: 10.3384/ecp09430096.

Apache Software Foundation. Apache ant 1.8.0 manual. http://ant.apache.org/, 2010.

Peter Fritzson and Vadim Engelson. Modelica – A unified object-oriented language for
system modeling and simulation. Lecture Notes in Computer Science, 1445:67–90,
1998. URL http://citeseer.ist.psu.edu/fritzson98modelica.html.

P. Haves, A. L. Dexter, D. R. Jorgensen, K. V. King, and G. Geng. Use of a building
emulator to develop techniques for improved commissioning and control of HVAC
systems. ASHRAE Transactions, 97(1):684–688, 1991.

P. Haves, L. K. Norford, M. DeSimone, and L. Mei. A standard simulation testbed for
the evaluation of control algorithms & strategies. Final Report 825-RP, ASHRAE,
Atlanta, GA, 1996.

Philip Haves and Peng Xu. The building controls virtual test bed a simulation environ-
ment for developing and testing control algorithms, strategies and systems. In Jiang
Yi, Zhu Yingxin, Yang Xudong, and Li Xianting, editors, Proc. of the 10-th IBPSA
Conference, pages 1440–1446. International Building Performance Simulation Asso-
ciation and Tsinghua University, 2007. URL http://www.ibpsa.org/.

Philip Haves, Leslie K. Norford, and M. DeSimone. A standard simulation testbed for
the evaluation of control algorithms & strategies. ASHRAE Transactions, 104(1),
1998.

29

http://ant.apache.org/
http://citeseer.ist.psu.edu/fritzson98modelica.html
http://www.ibpsa.org/

Jan L. M. Hensen. A comparison of coupled and de-coupled solutions for temperature
and air flow in a building. ASHRAE Transactions, 105(2):962–969, 1999.

G. E. Kelly, C. Park, and J. P. Barnett. Using emulators/testers for commissioning
EMCS software, operator training, algorithm development, and tuning local control
loops. ASHRAE Transactions, 97(1), 1991.

S. A. Klein, J. A. Duffie, and W. A. Beckman. TRNSYS – A transient simulation
program. ASHRAE Transactions, 82(1):623–633, 1976.

P. K. Laitila, R. O. Kohonen, K. I. Katajisto, and G. K. Piira. An emulator for testing
hvac systems and their control and energy management systems. ASHRAE Trans-
actions, 97(1):679–683, 1991.

K. P. Lam, A. Mahdavi, S. Gupta, N. H. Wong, R. Brahme, and Z. Kang. Inte-
grated and distributed computational support for building performance evaluation.
Advances in Engineering Software, 33(4):199–206, 2002. ISSN 0965-9978. doi:
10.1016/S0965-9978(02)00009-1.

K. P. Lam, N. H. Wong, A. Mahdavi, K. K. Chan, Z. Kang, and S. Gupta. SEMPER-
II: an internet-based multi-domain building performance simulation environment for
early design support. Automation in Construction, 13(5):651–663, September 2004.
doi: 10.1016/j.autcon.2003.12.003.

Jean Lebrun. Annex 17. Final report, International Energy Agency, 1992.

Mathworks. Matlab/simulink. http://www.mathworks.com/, 2010.

MODELISAR. Functional Mock-up Interface for Model Exchange. MODELISAR Con-
sortium, first edition, jan 2010. URL http://functional-mockup-interface.org.

John E. Seem, Cheol Park, and John M. House. A new sequencing control strategy for
air-handling units. HVAC&R Research, 5(1):35–59, January 1999.

M. Trčka, J. L. M. Hensen, and A. J. Th. M. Wijsman. Distributed building perfor-
mance simulation - a novel approach to overcome legacy code limitations. ASHRAE
HVAC&R, 12(3a):621–640, 2006.

Marija Trčka, Michael Wetter, and Jan Hensen. Comparison of co-simulation approaches
for building and HVAC/R simulation. In Jiang Yi, Zhu Yingxin, Yang Xudong,
and Li Xianting, editors, Proc. of the 10-th IBPSA Conference, pages 1418–1425.
International Building Performance Simulation Association and Tsinghua University,
2007. URL http://www.ibpsa.org/.

H. Vaezi-Nejad, E. Hutter, P. Haves, A. L. Dexter, G. Kelly, P. Nusgens, and S. Wang.
Use of building emulators to evaluate the performance of building energy and man-
agement systems. In J. A. Clarke, J. W. Mitchell, and R. C. Van de Perre, editors,
Proc. of the IBPSA Conference, pages 209–213, Nice, France, August 1991. URL
http://www.ibpsa.org/conferences.htm.

30

http://www.mathworks.com/
http://functional-mockup-interface.org
http://www.ibpsa.org/
http://www.ibpsa.org/conferences.htm

S. W. Wang, P. Haves, and P. Nusgens. Design, construction and commissioning of
building emulators for emcs applications. ASHRAE Transactions, 100(1):1465–1473,
1994.

Gregory J. Ward. The radiance lighting simulation and rendering system. In Proceed-
ings of SIGGRAPH 94, Computer Graphics Proceedings, Annual Conference Se-
ries, pages 459–472, July 1994. URL http://radsite.lbl.gov/radiance/papers/

sg94.1/paper.html.

Michael Wetter. Modelica-based modeling and simulation to support research and de-
velopment in building energy and control systems. Journal of Building Performance
Simulation, 2(2):143–161, June 2009a. doi: 10.1080/19401490902818259.

Michael Wetter. Modelica library for building heating, ventilation and air-conditioning
systems. In Francesco Casella, editor, Proc. of the 7-th International Modelica Con-
ference, pages 393–402, Como, Italy, September 2009b. Modelica Association. doi:
10.3384/ecp0943.

Michael Wetter. A modelica-based model library for building energy and control systems.
In Paul A. Strachan, Nick J. Kelly, and Michäel Kummert, editors, Proc. of the 11-th
IBPSA Conference, pages 652–659. International Building Performance Simulation
Association and University of Strathclyde, 2009c. URL http://www.ibpsa.org/.

Christof Wittwer, Werner Hube, Peter Schossig, Andreas Wagner, Christiane Kettner,
Max Mertins, and Klaus Rittenhofer. ColSim - a new simulation environment for
complex system analysis and controllers. In R. Lamberts, C. O. R. Negrão, and
J. Hensen, editors, Proc. of the 7-th IBPSA Conference, volume I, pages 237–244,
Rio de Janeiro, Brazil, August 2001.

Zhiqiang John Zhai and Qingyan Yan Chen. Performance of coupled building energy and
cfd simulations. Energy and Buildings, 37(4):333–344, April 2005. doi: 10.1016/j.
enbuild.2004.07.001.

31

http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html
http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html
http://www.ibpsa.org/

	Introduction
	Nomenclature
	Conventions
	Variables
	Sets

	Intended Applications and Requirements
	Implementation
	Middleware
	Additions to Ptolemy II
	Mathematics of the Implemented Co-Simulation
	Library for Clients
	Example to Illustrate how to Connect a Client to the BCVTB
	Sequence of Data Exchange
	Interfaces to Simulation Programs
	EnergyPlus Interface
	Modelica Interface
	MATLAB Interface
	Simulink Interface

	Interface to a System Call

	Examples using Whole Building Simulation Programs
	Use of Modelica and EnergyPlus to Test Control Sequence of a VAV System
	Use of EnergyPlus and Simulink to Test Control of a Naturally Ventilated Building
	Use of Ptolemy II and EnergyPlus to Implement a Shading Controller

	Conclusions
	Acknowledgment

