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ABSTRACT OF THE DISSERTATION

Improving Aircraft Endurance Through Extremum Seeking

by

James Paul Krieger

Doctor of Philosophy in Engineering Science (Aerospace Engineering)

University of California, San Diego, 2012

Professor Miroslav Krstic, Chair

The length of time a jet aircraft is capable of remaining airborne can be

maximized by flying at the speed that produces the least amount of drag. This

speed may be predicted based on wind tunnel models, but the optimal speed for

any aircraft in service differs somewhat from the calculated speed. Identifying the

optimal speed has the potential to realize fuel savings and improve endurance.

Extremum seeking is a non-model based form of real time nonlinear optimization

that is suitable for problems such as this; however, traditional extremum seeking

involves adding a small periodic perturbation to the control input. In this applica-

tion, this would mean perturbing the throttle, which could erase the fuel savings

otherwise achieved by the optimization process.

x



To address this problem, a modified form of extremum seeking is devel-

oped that uses atmospheric turbulence in place of throttle perturbations. Using

stochastic averaging, it is proven analytically that the extremum-seeking controller

stabilizes the speed of the aircraft to the minimum-drag speed, with an average

offset proportional to the third derivative of the drag curve and the variance of the

airspeed. Brief simulation results illustrate the performance of the basic algorithm.

Next, a new form of extremum seeking is introduced that extends a recent

development in extremum seeking (called Newton method extremum seeking) to

systems using stochastic perturbations. This work is parallel to the work on en-

durance optimization, but is relevant because the gradient estimator developed

herein correctly estimates a two-dimensional gradient with perturbations of differ-

ent amplitudes in the two dimensions.

This is used in a refinement of the basic endurance optimization algorithm

that involves a two-dimensional dependence; lift and drag are treated as functions

of not only angle of attack (as implicitly assumed to this point) but also Mach

number. Optimization proceeds along a line of constant lift in this two-dimensional

plane. Analysis proves similar convergence properties for the refined algorithm,

and the algorithm is tested in a high fidelity simulation lent by local industry.

Simulation results show improvement over the nominal loiter speed.
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Chapter 1

Introduction

In the past decade, a form of real time nonlinear optimization called ex-

tremum seeking has experienced a resurgence of academic interest. This has re-

sulted in a number of theoretical extensions and numerous applications. The re-

search contained in this dissertation is motivated by a particular application of

extremum seeking: maximizing the length of time for which an aircraft can remain

airborne, that is, maximizing aircraft endurance.

This introduction provides general background information on the subject

of extremum seeking. The later chapters describe how extremum seeking may be

used for the application in question. While the later chapters are designed to

stand alone, they are sorted in order of increasing complexity and may be best

understood on the foundation of the preceding chapters.

Extremum seeking in its most basic form consists of three components.

1. A periodic perturbation added to the control input of a given system.

2. A gradient estimator in which the output of the system is demodulated by

the periodic perturbation.

3. An adaptation law that slowly moves the average control input in a way that

drives the gradient estimate to zero.

These three components are shown schematically in Fig. 1.1. The periodic per-

turbation is sin(ωt). It is scaled by some constant a and then added to the input

1
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Figure 1.1: Extremum seeking in its most basic form.

to a generic dynamic system. The system is assumed stable (either naturally or

through a control system subsumed in the plant model). It is assumed that the

steady state output of the system can be minimized by appropriate selection of the

control input, and it is the goal of extremum seeking to find this optimal input.

To find this optimal input, the output of the system is measured and multi-

plied by the same sine wave used to generate the perturbation to the control input.

This forms a product which, if averaged over time, is very nearly proportional to

the slope of the steady state input-output map of the dynamic system. The nomi-

nal control input is then set by slowly integrating this slope estimate. The integral

gain is chosen as some number denoted by ε (which we all know is small) divided

by the amplitude of the perturbation. This division allows the adaptation rate to

be independent of the perturbation amplitude. If the gain ε is chosen sufficiently

small, then the dynamics of the system and the gradient estimator are time-scale

separated from the integrator. The results is something very much like a gradient

descent to the optimal point of the steady state input-output map. The scheme

shown in Fig. 1.1 finds a maximum (assuming ε and a are chosen positive), but

can be reconfigured to find a minimum by making the integral gain negative and

so can in general find an extremum (maximum or minimum) of the system output.

The form of extremum seeking shown in Fig. 1.1 is the most basic and is

sufficient for analytical proofs of stability, but the form shown in Fig. 1.2 signif-

icantly improves the achievable rate of convergence to the extremum. This is a
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Figure 1.2: Extremum seeking in standard form.

more standard form used in practice and for many simulations. High pass filtering

the output serves to extract the DC component of the signal, which greatly reduces

the oscillations seen in the gradient estimator. Having a smoother gradient esti-

mate allows the adaptation rate to be increased without causing instability. Note

that once the system has converged to the extremum, the control law will tend to

produce small oscillations in the estimate of the optimal input, oscillations that

remain as long as the extremum seeking algorithm is active. Low pass filtering

the gradient estimate serves to reduce the amplitude of these oscillations. For a

comprehensive review of extremum seeking, see the text [1] and the survey paper

[2].

One additional form of extremum seeking relevant to the following chapters

is a stochastic variant. Stochastic extremum seeking is quite similar to standard

extremum seeking, only letting the periodic perturbation be a stochastic signal

rather than a sinusoid or some other deterministic signal. Stochastic extremum

seeking is depicted in Fig. 1.3, which shows the sine wave replaced by the stochastic

signal η. Note that the stochastic signal is bounded, here explicitly so by a sat-

uration function. It is included because a bounded signal is necessary for certain

proofs of stability based on the stochastic averaging theory presented in [3].

While extremum seeking has traditionally employed an added perturbation

signal as a key component of the controller, nothing requires that the signal be

generated by the control system. Indeed, any additive disturbance with suitable

properties can be used as long as the disturbance is measurable. This concept
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Figure 1.3: Stochastic extremum seeking.

seems to have been first applied only recently in [4]. This is the starting point for

the following research.



Chapter 2

Extremum Seeking Based on

Atmospheric Turbulence for

Aircraft Endurance

Traditional extremum seeking depends on adding a perturbation to the

control input, but it is untenable to continuously perturb the throttle in a con-

troller meant to minimize fuel consumption. Inspired by a recent application of

extremum seeking to a fusion reactor where internal non-periodic perturbations

were employed in the seeking process, a novel variant of extremum seeking is

proposed that utilizes naturally occurring stochastic disturbances in lieu of the

traditionally-added perturbation signal. Relying on airspeed perturbations from

atmospheric turbulence to reveal the local slope of the drag curve, the scheme in-

duces a gradient descent to the minimum drag speed. Using stochastic averaging,

it is proven analytically that the extremum-seeking controller stabilizes airspeed to

the minimum-drag speed, with an average offset proportional to the third deriva-

tive of the drag curve and the variance of the airspeed. Brief simulation results

illustrate the performance of the algorithm.

2.1 Nomenclature

5
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A = Aspect ratio

a = Stochastic disturbance post-saturation scaling factor

B = Timescale-shifted and scaled Brownian motion

b = Engine thrust proportionality constant

C2, C4 = Averaging constants

CD = Coefficient of drag

CD0 = Zero-lift drag coefficient

CDi = Induced drag coefficient

CL = Coefficient of Lift

D = Drag

D̄ = Re-centered drag function

e = Oswald efficiency number

(also base of natural logarithm)

g = Acceleration due to gravity

J = Jacobian of a system

kES = Extremum-seeking gain

ki = Integral gain

kp = Proportional gain

L = Lift

Lu, Lv, Lw = Characteristic lengths of turbulence field

(longitudinal, lateral, vertical)

m = Mass of the aircraft

n0, n1, n2 = Coefficients of the assumed form of ve,aeq

q = Stochastic disturbance pre-saturation scaling factor

S = Reference area

t = Time

u = Throttle position

U0 = Nominal airspeed for turbulence model

V = Airspeed

VS = Stall speed

v = Ground speed
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v∗ = Minimum drag speed

v̂∗ = Estimate of minimum drag speed

W = Standard Brownian motion

ε = Turbulence time constant

η = Wind speed, pre-saturation

µ(dη) = Invariant distribution of η

ρ = Air density

σ = Integrator value

σu, σv, σw = Root mean square turbulence intensity

(longitudinal, lateral, and vertical components)

τH = Simulation high pass filter time constant

τL = Simulation low pass filter time constant

Φug ,Φvg ,Φwg = Turbulence spectra (longitudinal, lateral, vertical)

χ = Timescale-shifted wind speed

Ω = Spatial frequency

ω = Temporal frequency

Subscripts

eq = Equilibrium value

Superscripts

a = Average system variable

e = Error variable

2.2 Introduction

Extremum seeking is traditionally performed by adding a perturbation sig-

nal to the set-point of a system. The perturbation signal is usually a sinusoid

[1, 5, 6] but can also be non-sinusoidal [7] or stochastic [3, 8]. It is also possible

to use naturally occurring disturbances in lieu of an added perturbation signal

[4]. Here, this approach is taken to optimize the speed of an aircraft for maxi-
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mum endurance; that is, to maximize the length of time an aircraft can stay aloft.

Convergence to the optimum speed is proven analytically and shown in simulation.

Over the past decade, extremum seeking has been adapted to many differ-

ent applications, including anti-lock braking [9], particle beam matching [10], axial

compressors [11], lean premixed combustion [12, 13], flow control [14], bio-reactors

[15], tokamak fusion devices [16], and formation flight [17]. Extremum seeking may

also be applied to an aircraft optimizing airspeed for best possible endurance. Air-

craft wings have an optimal angle of attack that provides a maximum lift-to-drag

ratio. All other factors being equal, a jet aircraft flying at the speed that achieves

this angle of attack burns fuel more slowly than when flying either slower or faster

than this optimal speed. This optimal speed is calculated during the design of the

aircraft based on wind tunnel data; however, the optimal speed for any particu-

lar aircraft varies from the calculated value to some degree. The optimal speed

varies based on many factors, from manufacturing differences to the condition of

the wing. Accumulated bugs, nicks and dents can all change the optimal angle of

attack, which changes the airspeed for optimal endurance. Extremum seeking may

be used to find the optimal airspeed for the current condition of each individual

aircraft as it flies. A recent survey of extremum seeking is given in [2].

While traditional, perturbation-based extremum seeking is a possibility,

there are potential disadvantages to using this technique. The first is the pos-

sibility that the act of introducing the airspeed perturbation would decrease en-

durance. Periodically changing the commanded airspeed would cause the throttle

command to oscillate, which quite possibly would use more fuel than a more steady

throttle command. While finding the optimal airspeed would decrease drag and

improve endurance, an oscillating throttle command could use more fuel and hurt

endurance.

The second disadvantage to using traditional extremum seeking has less to

do with technical performance than aviation administration. It may be seen as

undesirable for the speed of an aircraft to be continuously varying. Traditional

extremum seeking alters the observable motion of the aircraft, which may act

as an impediment to its implementation. Utilized herein is a form of extremum
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seeking that relies on naturally occurring disturbances, rather than manually added

perturbations, to avoid these disadvantages.

Aircraft in flight on occasion encounter turbulence, which acts as a stochas-

tic disturbance in airspeed. By taking advantage of this, a turbulence-based

extremum-seeking algorithm can avoid the disadvantages of traditional extremum

seeking. If the throttle is used to control airspeed in response to turbulence, no

objection is raised; it is expected that airspeed will be controlled. Doing so does

not use any additional fuel. The second disadvantage can be answered similarly;

since the aircraft’s speed is only being perturbed by turbulence, the observable mo-

tion of the aircraft is not altered. These two reasons may make turbulence-based

extremum seeking a good fit for this application.

It should be mentioned that steady level flight is not necessarily optimal,

but is the only form of flight considered in this paper. Periodic flight consisting

of alternating higher-speed climbs and lower-speed glides can achieve endurance

superior to steady flight [18, 19, 20, 21]. Since such periodic flight would alter the

observable motion of the aircraft even more than traditional extremum seeking,

only the case of steady flight at a given altitude is considered.

This paper is organized as follows. First, the relevant aerodynamics are re-

viewed. Next, the dynamic aircraft model is developed and the extremum-seeking

control law is designed. An analysis of the stability of the system is then pre-

sented, followed by simulation results. A discussion is given and then lastly, some

concluding remarks.

2.3 Aerodynamics

This section presents the simplified aerodynamic model that is used in the

following analysis. Additional background can be found in [22]. Readers com-

fortable with aerodynamics and turbulence modeling may proceed to the control

design below, noting that for simplicity the vertical component of turbulence is

ignored.
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2.3.1 Lift and Drag

To begin, a discussion of lift and drag is presented. Lift is the force on an

aircraft perpendicular to the relative wind. The relative wind is the velocity of the

air relative to the aircraft. In straight and level flight, lift is the upward force on

the aircraft. Drag is the force on an aircraft parallel to the relative wind, acting

generally backwards on the aircraft.

Lift is a function of air density, airspeed, a coefficient of lift, and a reference

area. The expression for lift is

L = CL
1

2
ρV 2S . (2.1)

The coefficient of lift is a function of angle of attack, and is roughly linear for small

angles. The angle of attack is the angle that the aircraft makes with the relative

wind. The angle of attack is typically small during flight, less than five or ten

degrees. A typical lift curve is shown in Fig. 2.1.

Drag is calculated similarly, only using a drag coefficient CD. Drag is cal-

culated as

D = CD
1

2
ρV 2S . (2.2)

The coefficient of drag is commonly calculated as the sum of two parts: the zero-lift

drag coefficient and the induced drag coefficient.

CD = CD0 + CDi (2.3)

The zero-lift drag coefficient accounts for the part of drag that is the same re-

gardless of how much lift the aircraft is producing. The induced drag coefficient

accounts for drag that is created because of the lift the aircraft produces. So the

coefficient of drag is some constant CD0 plus some function of lift CDi.

Induced drag is commonly approximated as having a quadratic dependence

on the coefficient of lift [23]

CDi =
C2
L

πAe
. (2.4)

The aspect ratio of the wing and the Oswald efficiency number are constants

associated with the geometry of an aircraft
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2.3.2 Level Flight

Using these expressions for lift and drag, the case of level flight is analyzed.

To maintain a constant altitude, the lift produced by the aircraft must equal the

weight of the aircraft. For a given altitude and airspeed, this implies a required

value of CL. This value of CL is given by

CL =
mg

1
2
ρV 2S

. (2.5)

So, the CL required for level flight is a function of speed. From (2.3), and (2.4) it is

apparent that this implies a certain coefficient of drag. Substituting this coefficient

of drag into (2.2) gives the drag for level flight as a function of speed

D = CD0
1

2
ρV 2S +

(mg)2

πAe1
2
ρV 2S

. (2.6)

Here, the first term represents the zero-lift drag (also called parasite drag) and the

second term is the induced drag. These two terms are plotted along with the total

drag in Fig. 2.2.

Note also that because there is a maximum possible CL, as can be seen in

Fig. 2.1, there is a minimum speed necessary for level flight. This speed is referred

to as the stall speed. The stall speed is calculated as

VS =

√
2mg

(maxCL) ρS
. (2.7)

Because it is not possible to fly slower than VS, Fig. 2.2 does not show speeds

below VS.

2.3.3 Turbulence

Atmospheric turbulence is conventionally modeled as filtered gaussian white

noise. The three components of turbulence (i.e., longitudinal, lateral and vertical)

are modeled independently. The Dryden turbulence model is one commonly used

atmospheric turbulence model [24]. It specifies the spectra of the three components
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of turbulence as follows:

Φug(Ω) = σ2
u

2Lu
π

1

1 + (LuΩ)2
(2.8a)

Φvg(Ω) = σ2
v

Lv
π

1 + 3(LvΩ)2

[1 + (LvΩ)2]2
(2.8b)

Φwg(Ω) = σ2
w

Lw
π

1 + 3(LwΩ)2

[1 + (LwΩ)2]2
. (2.8c)

The spectra are given in terms of spatial frequency, which is converted to temporal

frequency ω by multiplying by the speed of the aircraft:

ω = ΩU0 . (2.9)

At medium to high altitudes (above 2,000 feet) the turbulence is assumed to be

isotropic. The characteristic lengths and the intensities in each direction are equal

to each other. A typical characteristic length is 1,750 feet. Intensities are charted

as a function of altitude. Moderate turbulence has a root mean square intensity

of about 10 ft/sec at 2,000 feet, decreasing roughly linearly to near zero at 60,000

feet.

Whereas lateral turbulence has little effect on the speed of an aircraft,

longitudinal turbulence has a direct effect on airspeed. Longitudinal turbulence

with a spectrum matching that given in (2.8a) can be obtained by passing white

noise through a filter of the form

σu

√
2Lu
U0

1
Lu
U0
s+ 1

. (2.10)

Vertical turbulence has an indirect effect on airspeed, but for this analysis it is

ignored.

2.4 Control Design

2.4.1 Dynamic Model

Based on the aerodynamic model presented above, a simple dynamic model

is considered: a scalar system perturbed by turbulence. The system is of the form
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m
dv

dt
= −D(V ) + bu (2.11a)

ε dη = −η dt+
√
εq dW . (2.11b)

The wind speed is defined as a headwind being positive, so that airspeed is the

sum of groundspeed and wind speed. More precisely, airspeed is considered to be

given by

V = v + a sat η , (2.12)

where a sat η is the wind speed. The saturation function

sat(η) =


η if −1 < η < 1

1 if η ≥ 1

−1 if η ≤ −1

(2.13)

is introduced for mathematical convenience. Its sole purpose is to ensure that the

wind speed is bounded, which is a requirement for the stochastic averaging results

used below. However, it is quite reasonable to bound the wind speed because

it is not physically possible for the wind speed to be unbounded. The effect of

the sat function can be made negligible by choosing q small with respect to one.

The constant a can then be chosen to give the desired wind amplitude. The wind

speed is modeled as filtered gaussian white noise, as per the Dryden longitudinal

turbulence model. The timescale of the turbulence (ε , Lu/U0) is taken to be a

constant, using an airspeed representative of the range of airspeeds expected to be

encountered.

Without loss of generality, the wind speed is taken as zero-mean. If there

were a steady-state component to the wind, then v would represent the ground

speed plus the steady-state wind component, but the dynamics of the system

would remain the same.

The rate of change of v is determined from total drag, engine thrust, and

the mass of the aircraft. Engine thrust is modeled as proportional to the control

input, namely throttle position. The drag function is taken as a general convex

map with a minimum at speed v∗.
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It is assumed that a proportional-integral control law is used to control

airspeed to a set-point v̂∗. The control law is written as

u = kp (v̂∗ − V ) + kiσ (2.14a)

dσ

dt
= v̂∗ − V . (2.14b)

Combining (2.11) and (2.14), the aircraft model is written as follows:

m
dv

dt
= −D(V ) + b [kp (v̂∗ − V ) + kiσ] (2.15a)

dσ

dt
= v̂∗ − V (2.15b)

ε dη = −η dt+
√
εq dW . (2.15c)

In this model, a, b, ki, kp, m, q, v̂∗, and ε are positive. The airspeed V can be

measured by a pitot-static system. It is considered that dv/dt, the acceleration of

the aircraft, can also be measured. Further, it is assumed that the thrust produced

by the engine (i.e., bu) and the mass of the aircraft are known. In the control design

below, this is utilized.

The aircraft model in (2.15) represents the quasi-steady dynamics of the air-

craft with altitude tightly controlled. The underlying assumptions of this model

are that altitude is being controlled with the elevator, and that the altitude re-

sponse is much faster than the airspeed response. The assumptions are chosen

to be consistent with a jet aircraft in slow flight. Using elevator to control the

airspeed of a jet in slow flight can result in substantial loss of altitude, so altitude

is maintained with elevator and throttle is used to control airspeed. The throttle

response of a jet aircraft, especially at a low throttle setting, is slow. Because of

this, the airspeed controller is assumed to have a much lower bandwidth than the

altitude controller.

2.4.2 Turbulence-Based Extremum Seeking

The goal is to optimize endurance. It is assumed that fuel consumption is

an increasing function of thrust and that the thrust vector is level with the flight

path. Then, optimizing endurance is equivalent to minimizing throttle position.
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That is, the cost to be minimized is the control input u. Normally, this would

require adding a perturbation to the set point of the system, v̂∗. By modulating

the cost with this perturbation signal, the rate of change of the cost with respect

to v̂∗ would be estimated. The set-point of the system would then be updated

using an integral control law with a gain proportional to the estimated gradient.

It is desired to do the same thing, but without adding a perturbation signal.

Observe that the goal of minimizing u is, more specifically, the goal of

minimizing u in steady flight. Note that in steady flight (2.11a) reduces to D(V ) =

bu, so minimizing u in steady flight is equivalent to minimizing D(V ). Also, in

steady flight (2.14b) reduces to v̂∗ = V . The goal can then be stated as choosing

v̂∗ such that D(v̂∗) is minimized.

While drag is not directly measurable, from (2.11a) it is seen that drag

is indirectly measureable. Using knowledge of vehicle acceleration, engine thrust,

and mass, drag D(V ) is calculated as

D(V ) = bu−mdv

dt
. (2.16)

It is desired to demodulate this signal with the perturbation velocity. If the air-

craft has a measurement of ground speed, say from an inertial navigation system,

and a measurement of airspeed, the difference of the two could serve as a mea-

surement of the perturbation. If the aircraft is not so equipped, it is possible to

obtain an approximation of the airspeed perturbation from the error signal feeding

the control law, (v̂∗ − V ). Here, the latter approach is taken. As in traditional

extremum seeking, an integral control law is used to update the system and a gain

proportional to this demodulated signal is chosen:

dv̂∗
dt

= kES [v̂∗ − V ]

(
bu−mdv

dt

)
. (2.17)

The system and extremum-seeking control law are shown in Fig. 2.3.

2.5 Analysis

In this section, analysis of the closed loop system formed by combining the

aircraft model (2.15) with the extremum-seeking control law (2.17) is performed.
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Figure 2.3: Block diagram of system and extremum-seeking feedback. The al-
gorithm uses measurements of dv/dt, bu, m, and v + a sat η, but not of v and η
alone.
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For analysis, the expression (bu−m dv/dt) in the control law is written simply

as D(V ). The expression for V from (2.12) is also substituted throughout. This

produces the following set of equations.

m
dv

dt
= −D(v + a sat η) + b [kp (v̂∗ − (v + a sat η)) + kiσ] (2.18a)

dσ

dt
= v̂∗ − (v + a sat η) (2.18b)

dv̂∗
dt

= kES [v̂∗ − (v + a sat η)]D(v + a sat η) (2.18c)

ε dη = −η dt+
√
εq dW (2.18d)

Theorem 1. Consider system (2.18) comprised of the aircraft model (2.11)–(2.14)

and parameter update law (2.17), where D(·) is a convex map with a minimum at

v∗, all constants are positive, and KES ∈
(
0, bkp/mD∗

)
, where D∗ is a known upper

bound on minimum drag, D(v∗). Let constants C2 and C4 be defined by

C2(q) ,
q2

2
erf

1

q
− q√

π
e
− 1
q2 + 1− erf

1

q
(2.19a)

C4(q) ,
3

4
q4 erf

1

q
− q√

π
e
− 1
q2

(
1 +

3

2
q2

)
+ 1− erf

1

q
. (2.19b)

Suppose D(·) is three times differentiable at v∗. Then there exists a constant a∗

such that for any 0 < a < a∗ there exist constants r > 0, c > 0, γ > 0 and a

function T (ε) : (0, ε0) → N with the property limε→0 T (ε) = ∞ such that for any

initial condition |∆ε,a(0)| < r, and any δ > 0,

lim
ε→0

inf
{
t ≥ 0 : |∆ε,a(t)| > c|∆ε,a(0)|e−γt +O(a3) + δ

}
=∞, a.s. (2.20)

and

lim
ε→0

P
{
|∆ε,a(t)| ≤ c|∆ε,a(0)|e−γt +O(a3) + δ, ∀t ∈ [0, T (ε)]

}
= 1, (2.21)

where ∆ε,a(t) ,


v(t)

σ(t)

v̂∗(t)

−

v∗ − 1

6
D′′′(v∗)
D′′(v∗)

C4

C2
a2

D(v∗)
bki

+ D′′(v∗)
2

C2

bki
a2

v∗ − 1
6
D′′′(v∗)
D′′(v∗)

C4

C2
a2

.

Theorem 1 roughly states that choosing the gain KES as a small positive

number causes the average airspeed to converge (both almost surely and in prob-

ability) to the minimum drag speed, with a small bias. The conditions for this
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are that the turbulence amplitude is small and the initial state of the aircraft is

sufficiently close to the final average equilibrium. The remainder of this section is

dedicated to the proof of Theorem 1. These equations are transformed into error

variables that are expected to converge to near zero. Stochastic averaging is used

on this error system to find the average system. Then the equilibrium of the av-

erage system is found and the stability of the equilibrium is tested. Throughout

the analysis, drag is treated as a general convex map. No assumptions are made

about the exact nature of the nonlinearity.

2.5.1 Error Variables

Define the error variables

ve = v − v∗ (2.22a)

σe = σ − D(v∗)

bki
(2.22b)

v̂e∗ = v̂∗ − v . (2.22c)

The fraction D(v∗)/bki is the equilibrium value of the integrator when the aircraft

is flying at the minimum drag speed with no disturbances. Also define

χ(t) = η(εt) (2.23a)

B(t) =
1√
ε
W (εt) . (2.23b)
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Then the error system is

m
dve

dt
= −D

(
ve + v∗ + a satχ(t/ε)

)
+ b

[
kp (v̂e∗ − a satχ(t/ε)) + ki

(
σe +

D(v∗)

bki

)]
(2.24a)

dσe

dt
= v̂e∗ − a satχ(t/ε) (2.24b)

dv̂e∗
dt

=
dv̂∗
dt
− dv

dt

= kES [v̂e∗ − a satχ(t/ε)]D
(
ve + v∗ + a satχ(t/ε)

)
− 1

m

{
−D

(
ve + v∗ + a satχ(t/ε)

)
+ b

[
kp (v̂e∗ − a satχ(t/ε)) + ki

(
σe +

D(v∗)

bki

)]}
(2.24c)

dχ(t) = − χ(t)dt+ q dB(t) . (2.24d)

2.5.2 Stochastic Averaging

Using stochastic averaging [3], the average system is then

m
dve,a

dt
=

∫ ∞
−∞
−D(ve,a + v∗ + a sat η)µ(dη)

+ b

[
kp

(
v̂e,a∗ −

∫ ∞
−∞

a sat ηµ(dη)

)
+ ki

(
σe,a +

D(v∗)

bki

)]
(2.25a)

dσe,a

dt
= v̂e,a∗ −

∫ ∞
−∞

a sat ηµ(dη) (2.25b)

dv̂e,a∗
dt

=

∫ ∞
−∞

kES [v̂e,a∗ − a sat η]D(ve,a + v∗ + a sat η)µ(dη)

− 1

m

{∫ ∞
−∞
−D(ve,a + v∗ + a sat η)µ(dη)

+ b

[
kp

(
v̂e,a∗ −

∫ ∞
−∞

a sat ηµ(dη)

)
+ ki

(
σe,a +

D(v∗)

bki

)]}
(2.25c)

where the invariant distribution of η is given by

µ(dη) =
1√
πq
e
− η

2

q2 dη . (2.26)
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To simplify these equations, a function D̄(·) is introduced. This function is

the same as D(·), but recentered around the minimum drag point,

D̄ (ve,a + a sat η) ≡ D (ve,a + v∗ + a sat η)−D (v∗) . (2.27)

This new drag function is zero when its argument is zero,

D̄(0) = 0 . (2.28)

The average system (2.25) is simplified using D̄ and noting that∫ ∞
−∞

a sat ηµ(dη) = 0 . (2.29)

This can be seen since sat is an odd function and µ is an even function, making

the integrand odd; the integral from −∞ to 0 cancels the integral from 0 to ∞.

The average system becomes the following:

m
dve,a

dt
= −

∫ ∞
−∞

D̄ (ve,a + a sat η)µ(dη) + b [kpv̂
e,a
∗ + kiσ

e,a] (2.30a)

dσe,a

dt
= v̂e,a∗ (2.30b)

dv̂e,a∗
dt

=

∫ ∞
−∞

kES [v̂e,a∗ − a sat η]
[
D̄ (ve,a + a sat η) +D(v∗)

]
µ(dη)

− 1

m

{
−
∫ ∞
−∞

D̄ (ve,a + a sat η)µ(dη) + b [kpv̂
e,a
∗ + kiσ

e,a]

}
. (2.30c)

2.5.3 Equilibrium of the Average System

To find the equilibrium of the average system, first observe from (2.30b)

that the equilibrium value of v̂e,a∗ is zero, that is,

v̂e,a∗eq = 0 . (2.31)

Next, from (2.30c) it is seen that at equilibrium∫ ∞
−∞

kES
[
v̂e,a∗eq − a sat η

] [
D̄
(
ve,aeq + a sat η

)
+D(v∗)

]
µ(dη)−

(
dve,a

dt

)
eq

= 0 .

(2.32)
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Here it has been noted that the second term in (2.30c) is just (dve,a/dt)eq, which

must be zero at equilibrium. After simplification, which employs (2.31) and (2.29),

the expression (2.32) reduces to∫ ∞
−∞

sat η
[
D̄
(
ve,aeq + a sat η

)]
µ(dη) = 0 . (2.33)

To solve this equation for ve,aeq , the process is similar to the proof of stability for a

general nonlinear dynamic system presented in [3]. Two expansions are used: one

for ve,aeq in a and one for D̄ in ve,aeq . Take ve,aeq in the form

ve,aeq = n0 + n1a+ n2a
2 + n3a

3 +O(a4) . (2.34)

Also use an expansion of the drag function D̄ in terms of powers of its argument.

Center the expansion around n0.

D̄(v) = D̄(n0)+D̄′(n0)(v−n0)+
D̄′′(n0)

2!
(v−n0)2+

D̄′′′(n0)

3!
(v−n0)3+O

(
(v − n0)4

)
(2.35)
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Using these expansions for ve,aeq and D̄, the condition for equilibrium in (2.33)

becomes∫ ∞
−∞

sat η
[
D̄
(
ve,aeq + a sat η

)]
µ(dη)

=

∫ ∞
−∞

sat η
[
D̄
(
n0 + n1a+ n2a

2 + n3a
3 +O(a4) + a sat η

)]
µ(dη)

=

∫ ∞
−∞

sat η

[
D̄(n0)

+ D̄′(n0)
(
n1a+ n2a

2 + n3a
3 +O(a4) + a sat η

)
+
D̄′′(n0)

2!

(
n1a+ n2a

2 + n3a
3 +O(a4) + a sat η

)2

+
D̄′′′(n0)

3!

(
n1a+ n2a

2 + n3a
3 +O(a4) + a sat η

)3

+O
((
n1a+ n2a

2 + n3a
3 +O(a4) + a sat η

)4
)]

µ(dη)

=

∫ ∞
−∞

sat η

[
D̄(n0)

+ D̄′(n0)
(
(n3) a3 + (n2) a2 + (n1 + sat η) a

)
+
D̄′′(n0)

2!

(
(2n2 sat η + 2n1n2) a3

+
(
n2

1 + sat2 η + 2n1 sat η
)
a2
)

+
D̄′′′(n0)

3!

(
n3

1 + 3n2
1 sat η + 3n1 sat2 η + sat3 η

)
a3

]
µ(dη) +O(a4)

= D̄′(n0) ((C2) a)

+
D̄′′(n0)

2!

(
(2n2C2)a3 + (2n1C2)a2

)
+
D̄′′′(n0)

3!

(
3n2

1C2 + C4

)
a3 +O(a4) = 0 . (2.36)

Here the following integrals have been used:∫ ∞
−∞

sat2k+1 ηµ(dη) = 0, where k = 0, 1, 2, . . . (2.37a)∫ ∞
−∞

sat2 ηµ(dη) =
q2

2
erf

1

q
− q√

π
e
− 1
q2 + 1− erf

1

q
, C2(q) (2.37b)∫ ∞

−∞
sat4 ηµ(dη) =

3

4
q4 erf

1

q
− q√

π
e
− 1
q2

(
1 +

3

2
q2

)
+ 1− erf

1

q
, C4(q) . (2.37c)
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To help understand the expressions for C2 and C4, note that C2 and C4 can be

approximated by

C2(q) ≈ q2

2
(2.38a)

C4(q) ≈ 3

4
q4 (2.38b)

for small q. For q smaller than 0.5, the approximation for C2 is accurate to within

one percent and the approximation for C4 is accurate to within three percent.

Both C2 and C4 are zero when q is zero, and monotonically approach 1 as q grows

without bound.

Because the expression in (2.36) is a polynomial in a, and the polynomial is

equal to zero, each of the coefficients of a must be zero. This gives us the following

system of equations:

a1 : D̄′(n0)C2 = 0 (2.39a)

a2 : D̄′′(n0)n1C2 = 0 (2.39b)

a3 : D̄′′(n0)n2C2 +
D̄′′′(n0)

3!

(
3n2

1C2 + C4

)
= 0 . (2.39c)

Since D̄ is assumed convex, its first derivative can only be zero when evaluated at

a minimum point. Noting this, and that D̄ has been defined with its minimum at

zero, the solution to this set of equations is

n0 = 0 (2.40a)

n1 = 0 (2.40b)

n2 = − 1

6

D̄′′′(0)

D̄′′(0)

C4

C2

, (2.40c)

so an O(a3) expression for ve,aeq is

ve,aeq = −1

6

D̄′′′(0)

D̄′′(0)

C4(q)

C2(q)
a2 +O(a3) . (2.41)

Recalling (2.38), it is noted that, for small q, the following is obtained: ve,aeq =

−1
4
D̄′′′(0)

D̄′′(0)
q2a2.
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Next, using the expression (2.41) for ve,aeq , the equation (2.30a) is set equal

to zero and solved for σe,aeq . This time a lower order expansion for D̄ is used.

D̄(v) = D̄(0) + D̄′(0)v +
D̄′′(0)

2!
v2 +O(v3) (2.42)

The function D̄ has been defined so that it has a minimum at the origin, so the

first two terms of the expansion are zero and the expression is simplified to

D̄(v) =
D̄′′(0)

2!
v2 +O(v3) . (2.43)

Using these expressions for ve,aeq and D̄, the condition for equilibrium in (2.30a)

becomes∫ ∞
−∞
−D̄

(
ve,aeq + a sat η

)
µ(dη) + b

[
kpv̂

e,a
∗eq + kiσ

e,a
eq

]
=

∫ ∞
−∞
−D̄

(
n2a

2 +O(a3) + a sat η
)
µ(dη) + bkiσ

e,a
eq

=

∫ ∞
−∞
−D̄

′′(0)

2!

(
n2a

2 +O(a3) + a sat η
)2

+O
((
n2a

2 +O(a3) + a sat η
)3
)
µ(dη)

+ bkiσ
e,a
eq

=

∫ ∞
−∞
−D̄

′′(0)

2!

(
sat2 η

)
a2µ(dη) +O(a3) + bkiσ

e,a
eq

= − D̄′′(0)

2!
(C2)a2 +O(a3) + bkiσ

e,a
eq = 0 ,

(2.44)

which gives

σe,aeq =
D̄′′(0)

2

C2

bki
a2 +O(a3) . (2.45)

So an equilibrium of the average system in terms of the error variables has been

found. Collecting the expressions in (2.31), (2.41), and (2.45), the equilibrium is

expressed as the following:

ve,aeq = − 1

6

D̄′′′(0)

D̄′′(0)

C4

C2

a2 +O(a3) (2.46a)

σe,aeq =
D̄′′(0)

2

C2

bki
a2 +O(a3) (2.46b)

v̂e,a∗eq = 0 . (2.46c)
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Converting back to the original variables, the equilibrium of the average system is

the following:

vaeq = v∗ −
1

6

D′′′(v∗)

D′′(v∗)

C4

C2

a2 +O(a3) (2.47a)

σaeq =
D(v∗)

bki
+
D′′(v∗)

2

C2

bki
a2 +O(a3) (2.47b)

v̂a∗eq = vaeq . (2.47c)

For small disturbance magnitudes (i.e. small a) the average speed of the system

has an equilibrium point at the minimum drag speed, v∗. The deviation from the

minimum drag speed is proportional to the third derivative of the drag curve at

the minimum drag speed and decreases with a2. If the drag curve is asymmetric,

the speed bias is to the flatter side of the drag curve relative to the minimum-drag

point.

2.5.4 Stability of the Equilibrium

To determine the stability of the equilibrium, the average system (2.30)

is linearized around the equilibrium point and the linearized system is tested for

stability.

The Jacobian of the average system (2.30) at the equilibrium point in terms

of the error variables (ve,a, σe,a, v̂e,a∗ ) is

J =


J1,1

bki
m

bkp
m

0 0 1

J3,1 − bki
m

J3,3

 , (2.48a)

where J1,1, J3,1, and J3,3 are given by

J1,1 =
1

m

∫ ∞
−∞
−D̄′

(
ve,aeq + a sat η

)
µ(dη) (2.48b)

J3,1 =

∫ ∞
−∞

kES
[
v̂e,a∗eq − a sat η

] [
D̄′
(
ve,aeq + a sat η

)]
µ(dη)

− 1

m

∫ ∞
−∞
−D̄′

(
ve,aeq + a sat η

)
µ(dη) (2.48c)

J3,3 =

∫ ∞
−∞

kES
[
D̄
(
ve,aeq + a sat η

)
+D(v∗)

]
µ(dη)− bkp

m
. (2.48d)
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The characteristic equation of the system is given by det(sI − J) = 0, or∣∣∣∣∣∣∣∣
s− J1,1 − bki

m
− bkp

m

0 s −1

−J3,1
bki
m

s− J3,3

∣∣∣∣∣∣∣∣ = 0 . (2.49)

Writing this as a polynomial, the characteristic equation is as follows.

s3 − (J1,1 + J3,3) s2 +

(
J1,1J3,3 −

bkp
m
J3,1 +

bki
m

)
s− bki

m
(J1,1 + J3,1) = 0 (2.50)

By applying Routh’s criterion, it is seen that the system is stable if each of the

coefficients in the characteristic polynomial are positive and the product of the s2

and s1 coefficients is greater than the product of the s3 and s0 coefficients. To test

this expressions for J1,1, J3,1, and J3,3 are required. Expressions accurate to O(a3)

are found for each.

First, J1,1 is found. Using the expressions ve,aeq = n2a
2 +O(a3) and D̄′(v) =

D̄′′(0)v + D̄′′′(0)
2!

v2 +O(v3) the following is obtained:

J1,1 =
1

m

∫ ∞
−∞
−D̄′

(
ve,aeq + a sat η

)
µ(dη)

= − 1

m

∫ ∞
−∞

D̄′
(
n2a

2 +O(a3) + a sat η
)
µ(dη)

= − 1

m

∫ ∞
−∞

D̄′′(0)
(
n2a

2 +O(a3) + a sat η
)

+
D̄′′′(0)

2!

(
n2a

2 +O(a3) + a sat η
)2

+O
((
n2a

2 +O(a3) + a sat η
)3
)
µ(dη)

= − 1

m

∫ ∞
−∞

D̄′′(0)
(
n2a

2 + a sat η
)

+
D̄′′′(0)

2!

(
a2 sat2 η

)
µ(dη) +O(a3)

= − 1

m

[
D̄′′(0)n2 +

D̄′′′(0)

2!
C2

]
a2 +O(a3) . (2.51)

Next, using the same expressions for ve,aeq and D̄′(v) = D̄′′(0)v+O(v2) the expression

for J3,1 is found. Note that the second term in the original expression for J3,1 is
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the negative of J1,1.

J3,1 =

∫ ∞
−∞

kES
[
v̂e,a∗eq − a sat η

] [
D̄′
(
ve,aeq + a sat η

)]
µ(dη)

− 1

m

∫ ∞
−∞
−D̄′

(
ve,aeq + a sat η

)
µ(dη)

=

∫ ∞
−∞

kES [0− a sat η]
[
D̄′
(
ve,aeq + a sat η

)]
µ(dη)

− J1,1

= −
∫ ∞
−∞

kESa sat η

×
[
D̄′′(0)

(
n2a

2 +O(a3) + a sat η
)

+O
((
n2a

2 +O(a3) + a sat η
)2
)]

µ(dη)

− J1,1

= −
∫ ∞
−∞

kESa sat η
[
D̄′′(0)a sat η

]
µ(dη)

+O(a3)− J1,1

= − kESD̄′′(0)C2a
2 +O(a3)− J1,1

=

[
− kESD̄′′(0)C2 +

1

m

(
D̄′′(0)n2 +

D̄′′′(0)

2!
C2

)]
a2 +O(a3)

(2.52)

Finally, an expression for J3,3 is found. Here the approximations ve,aeq = 0 + O(a2)
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and D̄(v) = D̄′′(0)
2!

v2 +O(v3) are used. Then J3,3 can be expressed as

J3,3 =

∫ ∞
−∞

kES
[
D̄
(
ve,aeq + a sat η

)
+D(v∗)

]
µ(dη)− bkp

m

=

∫ ∞
−∞

kES

[
D̄
(
0 +O(a2) + a sat η

)
+D(v∗)

]
µ(dη)− bkp

m

=

∫ ∞
−∞

kES

[
D̄′′(0)

2!

(
O(a2) + a sat η

)2

+O
((
O(a2) + a sat η

)3
)

+D(v∗)

]
µ(dη)− bkp

m

=

∫ ∞
−∞

kES

[
D̄′′(0)

2!

(
a2 sat2 η

)
+D(v∗)

]
µ(dη) +O(a3)− bkp

m

= kES

[
D̄′′(0)

2!

(
a2C2

)
+D(v∗)

]
+O(a3)− bkp

m

=

[
kESD(v∗)−

bkp
m

]
+

[
kES

D̄′′(0)

2!
C2

]
a2 +O(a3) . (2.53)

Now, using these expressions for the components of the Jacobian of the system, it

is possible to calculate the coefficients in the characteristic equation and test for

stability.

s2 :

− (J1,1 + J3,3)

= − J1,1 − J3,3

= −
(
− 1

m

[
D̄′′(0)n2 +

D̄′′′(0)

2!
C2

]
a2 +O(a3)

)
−
([

kESD(v∗)−
bkp
m

]
+

[
kES

D̄′′(0)

2!
C2

]
a2 +O(a3)

)
=

[
bkp
m
− kESD(v∗)

]
+

[
1

m

(
D̄′′(0)n2 +

D̄′′′(0)

2!
C2

)
− kES

D̄′′(0)

2!
C2

]
a2 +O(a3) (2.54)
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s1 :

J1,1J3,3 −
bkp
m
J3,1 +

bki
m

=

(
− 1

m

[
D̄′′(0)n2 +

D̄′′′(0)

2!
C2

]
a2 +O(a3)

)
×
([

kESD(v∗)−
bkp
m

]
+

[
kES

D̄′′(0)

2!
C2

]
a2 +O(a3)

)
− bkp

m

{[
− kESD̄′′(0)C2 +

1

m

(
D̄′′(0)n2 +

D̄′′′(0)

2!
C2

)]
a2 +O(a3)

}
+
bki
m

=

(
− 1

m

[
D̄′′(0)n2 +

D̄′′′(0)

2!
C2

]
a2

)([
kESD(v∗)−

bkp
m

])
− bkp

m

{[
− kESD̄′′(0)C2 +

1

m

(
D̄′′(0)n2 +

D̄′′′(0)

2!
C2

)]
a2

}
+
bki
m

+O(a3)

= − 1

m

(
kESD(v∗)−

bkp
m

)(
D̄′′(0)n2 +

D̄′′′(0)

2!
C2

)
a2

− bkp
m

[
− kESD̄′′(0)C2 +

1

m

(
D̄′′(0)n2 +

D̄′′′(0)

2!
C2

)]
a2 +

bki
m

+O(a3)

= − 1

m
kESD(v∗)

(
D̄′′(0)n2 +

D̄′′′(0)

2!
C2

)
a2 − bkp

m

[
−kESD̄′′(0)C2

]
a2 +

bki
m

+O(a3)

=
bki
m

+

[
− 1

m
kESD(v∗)

(
D̄′′(0)n2 +

D̄′′′(0)

2!
C2

)
− bkp

m

[
−kESD̄′′(0)C2

] ]
a2

+O(a3)

(2.55)

s0 :

− bki
m

(J1,1 + J3,1)

= − bki
m

(
− 1

m

[
D̄′′(0)n2 +

D̄′′′(0)

2!
C2

]
a2 +O(a3)

)
− bki

m

{[
− kESD̄′′(0)C2 +

1

m

(
D̄′′(0)n2 +

D̄′′′(0)

2!
C2

)]
a2 +O(a3)

}
=
bki
m

[
kESD̄

′′(0)C2

]
a2 +O(a3)

(2.56)
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So the characteristic equation of the average system can be written as

s3

+

{[
bkp
m
− kESD(v∗)

]
+

[
1

m

(
D̄′′(0)n2 +

D̄′′′(0)

2!
C2

)
− kES

D̄′′(0)

2!
C2

]
a2 +O(a3)

}
s2

+

{
bki
m

+

[
− 1

m
kESD(v∗)

(
D̄′′(0)n2 +

D̄′′′(0)

2!
C2

)
− bkp

m

[
−kESD̄′′(0)C2

] ]
a2 +O(a3)

}
s

+

{
bki
m

[
kESD̄

′′(0)C2

]
a2 +O(a3)

}
= 0

(2.57)

or, more simply, as

s3 +

{[
bkp
m
− kESD(v∗)

]
+O(a2)

}
s2 +

{
bki
m

+O(a2)

}
s

+

{
bki
m

[
kESD̄

′′(0)C2

]
a2 +O(a3)

}
= 0 . (2.58)

The first step in checking for stability is to ensure that all of the coefficients

of this polynomial are positive. Since all of the constants in this polynomial are

assumed positive, for small a the coefficients are all positive if

0 < kES <
bkp

mD(v∗)
. (2.59)

It must also be ensured that the product of the s2 and s1 coefficients is greater

than the product of the s3 and s0 coefficients.{[
bkp
m
− kESD(v∗)

]
+O(a2)

}{
bki
m

+O(a2)

}
>

{
bki
m

[
kESD̄

′′(0)C2

]
a2 +O(a3)

}
(2.60)

By making an O(a2) approximation, this reduces to

bki
m

(
bkp
m
− kESD(v∗)

)
> O(a2) , (2.61)

which is true for small a if (2.59) is satisfied. So, by Routh’s criterion, the linearized

average system is stable for small a if kES is chosen small enough to satisfy (2.59).
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The stability of the linearized average system implies stability of the non-

linear perturbed system. Because the linearized average system is stable, the non-

linear average system (2.30) is locally exponentially stable (Corollary 4.3 in [25]).

From the stochastic averaging results in [3], exponential stability of the average

system implies that the system is weakly exponentially stable under the random

perturbation. This result is formalized in Theorem 1. The stability analysis con-

cludes that turbulence-based extremum seeking stabilizes the aircraft to the the

speed for optimal endurance.

2.6 Simulations

A simulation run using Simulink is presented here. The simulation follows

(2.18) closely, with the addition of a high pass filter and a low pass filter. Although

not necessary for stability, the use of a high pass filter has been shown to improve

the rate of convergence in other extremum-seeking applications [3]. Here, the high

pass filter is applied to the drag signal in the extremum-seeking loop. A low pass

filter is also added to smooth the controller. The filters are shown in Fig. 2.4. The

parameters used in simulation are listed in Table 2.1. A plot of the simulation

results is shown in Fig. 2.5.

For a direct comparison with the above analysis, a simulation without the

high pass and low pass filters is also presented. The simulation parameters are the

same as in Table 2.1, except that the filter time constants are not applicable and

kES must be chosen much smaller. The stability limit for kES can be calculated

using Theorem 1 and the simulation parameters in Table 2.1. For the simulation

kES was chosen to be one-eighth of its stability limit. Numerical values for the

stability limit of kES and kES itself are shown in Table 2.2. Also shown in Table 2.2

are the predicted equilibrium point and Jacobian matrix of the average system,

corresponding to (2.47) and (2.48), respectively. The Jacobian elements J1,1 J3,1

and J3,3 are calculated using the O(a3) approximations given in (2.51) (2.52) and

(2.53).
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Figure 2.4: Block diagram of the control system as simulated, including added
filters.
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Table 2.1: Simulation parameters

Parameter Value Units
σu 3 ft/s
Lu 1750 ft
U0 142 ft/s
a 149 ft/s
q 0.0285 s−1/2

ε 12.30 s
mg 14300 lb
m 444 slugs
b 100 lbf/deg
kp 2.22 deg/(ft/s)
ki 0.0111 deg/[(ft/s) · s]
kES 1 [(ft/s)/s]/[(ft/s) · lbf]
τH 2 s
τL 5 s
D(V ) (5.17× 106)V 2 + (0.0126)/V 2 lbf (As in Fig. 2.2)
v∗ 142.2 ft/s

Table 2.2: Parameters for simulation without filters

Parameter Value Units
bkp/mD(v∗) 9.790× 10−4 [(ft/s)/s]/[(ft/s) · lbf]
kES 1.224× 10−4 [(ft/s)/s]/[(ft/s) · lbf]
vaeq 142.3 ft/s
σaeq 460.4 (ft/s) · s
v̂a∗eq 142.3 ft/s
J1,1 −2.640× 10−21 s−1

J1,2 0.0025 s−2

J1,3 0.5 s−1

J2,1 0 None
J2,2 0 s−1

J2,3 1 None
J3,1 −1.112× 10−4 s−1

J3,2 −0.0025 s−2

J3,3 −0.4374 s−1
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Figure 2.5: Simulation results of endurance speed optimization.



37

0 10 20 30 40 50 60 70 80 90
138

140

142

144

146

148

150

152

154
Endurance Speed Optimization

Time [hours]

S
pe

ed
 [f

ee
t /

 s
ec

]

 

 
airspeed
estimate of optimal speed
optimal speed

Figure 2.6: Simulation results without added filters. By comparison with Fig. 2.5
it is clear that convergence can be sped up by several orders of magnitude by the
addition of the filters.
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2.7 Discussion

The turbulence-based extremum-seeking algorithm successfully stabilizes

the aircraft model to the airspeed for optimal endurance, with an average bias

proportional to the third derivative of the drag curve and the square of turbulence

intensity. The extremum-seeking controller does this without adding a perturba-

tion to the set-point of the system. Simulations conducted using a quadratic drag

polar show little bias from the true minimum. The drag curve used in simulation

is the same shown in Fig. 2.2. Note that while a quadratic drag polar is used,

the drag curve is a non-polynomial function of airspeed and contains higher or-

der terms sufficient to investigate the bias of the estimated minimum drag speed

predicted by Theorem 1.

The simulation demonstrates performance in turbulence with a root-mean-

square amplitude of 3 ft/sec, which represents light to moderate turbulence at

most altitudes. This raises the question of how the controller will perform in other

turbulence intensities. As shown in analysis, the steady-state bias improves as the

turbulence intensity decreases. This is limited only by the fidelity of the accelerom-

eter reading and the accuracy of the thrust and weight estimates. However, for any

given kES the rate of convergence to the minimum drag speed also decreases with

the turbulence intensity. Because encounters with turbulence are typically fairly

short, on the order of minutes, it is desirable to increase the rate of convergence

as much as possible. This can be accomplished by increasing kES. Care should be

taken, though, not to increase kES too much. The analytical stability result from

Theorem 1 is stated in terms of the limiting case as a tends to zero. It is expected

that the upper stability bound on kES will decrease as a increases, implying that

kES should be chosen conservatively to prevent the system from becoming unstable

in severe turbulence.

The issue of rate of convergence also demonstrates the necessity of using

the high pass and low pass filters. The filters improve the rate of convergence by

orders of magnitude. Indeed without them, the control design is not practical.

The analysis above considers the simpler control design for improved clarity in the

analysis. Omitting the filters keeps the basic style of analysis and functionality of
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the controller from being lost in the details.

A limitation of this work is that vertical gusts have been ignored. The

results in [26], which show the potential robustness of extremum-seeking control

to stochastic disturbances, suggest that vertical gusts may be handled well by

this control scheme. Including vertical gusts in future analysis and simulations

would increase confidence that the turbulence-based extremum-seeking controller

will function as desired in real turbulence. A related limitation is that longitudinal

aircraft dynamics are not modeled in simulation. This prevents the simulation

from testing the validity of neglecting altitude dynamics.

The advantage of a turbulence-based approach, that it operates without

using a perturbation signal, is also its disadvantage. Particularly at higher alti-

tudes, an aircraft may not experience turbulence often. Furthermore, the optimal

airspeed varies with the weight of the aircraft, and possibly also with other flight

parameters. Because of this, the current optimal airspeed may not be the same as

the optimal airspeed found during the last encounter with turbulence. To address

these issues, an application of turbulence-based extremum seeking would need to

provide means of recording optimal speeds found during encounters with turbu-

lence and extrapolating the recorded speeds to the current flight condition.

Another facet of this application that may prove complicated involves the

varying curvature of the drag profile with altitude and weight. To achieve rapid

convergence to the optimal speed across the flight envelope would require schedul-

ing the extremum-seeking gain. Alternately, an extremum-seeking control law

could be developed that was insensitive to the curvature of the drag profile. Such

a method is developed in [27] for traditional sinusoidal-perturbation-based ex-

tremum seeking. Adapting this method for stochastic extremum-seeking schemes

is a subject of current research.

Finally, it is noted that while the assumptions made in this paper apply

to a jet aircraft, it may be possible to modify the controller for propeller aircraft.

For jet aircraft, flight at the best lift-to-drag ratio results in maximum endurance,

but for propeller aircraft maximum endurance is obtained at the minimum power

speed. An extremum-seeking controller for propeller aircraft may be created by
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substituting an estimate of required power for the estimated drag. This can be

accomplished by multiplying the drag estimate in the extremum-seeking controller

by the measured airspeed.

2.8 Conclusion

A turbulence-based form of extremum seeking has been developed for op-

timizing the speed of an aircraft for maximum endurance. The turbulence-based

approach allows extremum seeking to be performed without introducing an exter-

nal perturbation. Assuming longitudinal turbulence in level flight and a general

convex drag curve, analysis shows weak exponential stability to the minimum drag

speed. Simulations show similar behavior with high-pass and low-pass filters added

to the extremum-seeking loop.
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Chapter 3

Newton Method Stochastic

Extremum Seeking with

Unknown Dither Amplitude

Extremum seeking controllers have traditionally been composed of a gradi-

ent estimator and a simple gradient descent adaptation law. Recently, a new form

of extremum seeking has been developed that replaces the gradient descent law

with a Newton method optimization scheme. This paper presents a Newton-based

algorithm suitable for use where the dither signal is stochastic. A novel feature of

the controller is that it does not rely on exact a priori knowledge of the variance or

other properties of the stochastic perturbation. This allows for the basic design to

be readily extended to systems which rely on naturally occurring stochastic distur-

bances to excite the gradient/Hessian estimator. The controller is first presented,

analyzed, and simulated for the scalar optimization case; the work is then extended

to the multi-variable case. Stability of the minimum of a static quadratic map is

proven analytically for a map of arbitrarily large dimension. Simulations show

average convergence in a straight line towards the minimum of a two-dimensional

asymmetric quadratic map.

3.1 Nomenclature

41



42

a = Stochastic disturbance post-saturation scaling factor

C2, C4 = Averaging constants, scalar analysis

Cs2, Cv2, CM2, CM4 = Averaging constants, multi-dimensional analysis

C2i, C4i = Shorthand for C2(qi), C4(qi)

ei = Unit vector along i-th dimension

g = Gradient of map

H = Hessian of map

J = Jacobian of a system

kES = Extremum-seeking gain

k0, k1, k2 = Estimator gains

N = Constant diagonal matrix used in analysis

n = Dimensional of multi-dimensional map

Q = An integrand in multi-dimensional analysis

q = Stochastic disturbance pre-saturation scaling factor

t = Time

V1, V2 = Candidate Lyapunov functions

W = Standard Brownian motion

y = Output of static map

α = Net stochastic input to system

δ = Practical adaptation law constant

ε = Stochastic process time constant

η = Stochastic process, pre-saturation

θ = Input to static map

θ0 = Estimate of minimizing map input

µ = Constant diagonal matrix used in analysis

µ(dη) = Invariant distribution of η

ν = Constant vector used in multi-dimensional analysis

Subscripts

0 = Quantity evaluated at θ0

d = Diagonal elements of a matrix
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eq = Equilibrium value

od = Off-diagonal elements of a matrix

∗ = Pertaining to the minimum of the static map

Accents

Bar •̄ = Average system variable

Dot •̇ = Derivative with respect to t

Hat •̂ = Estimate

Prime •′ = Derivative with respect to θ

Tilde •̃ = Error variable

3.2 Introduction

In most control applications, the system is regulated to a known set-point;

but what if the set-point, or even the system itself, is unknown? Extremum seeking

is a form of non-model-based control that addresses this question. The extremum-

seeking controller seeks the minimum (or maximum) of a measurable system output

by adjusting the system input. The input is perturbed by a small dither signal,

traditionally a sine wave. In its simplest form, the output of the system is then

demodulated with the dither signal to form an estimate of the local slope of the

input-output map. A gradient descent is then performed to minimize the system

output. (See [1, 5, 2, 28].)

There have been a number of advancements in extremum seeking in recent

years (notably for this paper the development of stochastic extremum seeking

[3, 29]). Perhaps the most promising development is a change in the method

of optimization from gradient descent to an analog of Newton’s method [27, 30,

31]. This requires the controller to generate an estimate of the curvature of the

input-output map (in addition to its slope), but enables the system to converge to

the extremum at a user-assignable rate. In the case of a multi-dimensional map,

Newton-based extremum seeking enables the system to converge to the extremum

in a straight line. This is in contrast to traditional extremum seeking, in which the
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convergence in one dimension may be much slower than convergence in another.

One other recent development is disturbance-based extremum seeking [4].

In some applications, there exist naturally occurring additive disturbances that

can be used as the dither signal. Doing so can simplify the controller and reduce

control energy; however the nature (specifically, the amplitude) of the signal may

not be known at design time. The Newton-based algorithms from [27, 30] depend

on knowledge of the nature of the dither signal. Because the amplitude of the

dither signal directly affects the rate of system convergence, this can negate the

benefits of a Newton-based algorithm.

This paper presents a new form of extremum seeking in which the amplitude

of the dither signal has minimal affect on the rate of convergence towards the

extremum. By this feature, it can be readily extended for use with naturally

occurring disturbances whose properties may not be precisely known at design

time. This is done by using a slope (gradient) and curvature (Hessian) estimator

based on estimation error; the gradient and Hessian are estimated explicitly and

are used to produce an estimate of the system output from the system input – the

error in this estimate drives the estimator. This style is motivated by the way in

which a time-varying Kalman filter might be used to estimate the variables (as in

[31]) but the estimator is based on averaging, so it is of much lower order. There

may also be an analog in the parameter-estimation-based extremum seeking work

in [32, 33], in that the (quadratic) assumed form of the input-output map is made

explicit and its coefficients are estimated.

Intuitively, the proposed design is independent of the dither amplitude since

the estimation error becomes zero when the gradient and hessian estimates reach

the true values. When the estimation error is zero, the gradient and hessian esti-

mates freeze and so remain at their true value; the amplitude of the perturbations

is not a factor. In particular, it is not necessary to multiply or divide by the

amplitudes (as in [27, 30]) in order to form an accurate gradient or hessian esti-

mate. This makes the method suited for situations in which the amplitude of the

stochastic perturbation is unknown.

This paper is organized as follows:
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First, using the simplest relevant problem, a static quadratic map in one

dimension, the proposed controller is analyzed for stability. Simulations are also

presented. Initially unsuccessful, the simulations reveal the need for modifications

to the proposed controller. With these modifications in place, the simulations run

smoothly.

Next, a formulation for a multi-dimensional controller is presented and an-

alyzed for stability. This formulation is a higher-dimensional equivalent to the

controller described above. Simulation results show convergence in a straight line

to the minimum of two-dimensional quadratic map.

Finally, a discussion and a brief conclusion are given. The discussion high-

lights the advantages of the proposed controller as compared to more traditional

extremum-seeking methods.

3.3 Newton Method Stochastic Extremum Seek-

ing in One Dimension

3.3.1 Controller

The extremum-seeking controller in [27] consists of two pieces: a gradient

estimator and an adaptation law. The estimator relies on the perturbation signal

being a sinusoid. Because of this it is not suitable for use in stochastic extremum-

seeking. The adaptation law, though, can be used in a stochastic application with

no significant change. A top-level diagram of the proposed stochastic Newton

method controller is shown in Figure 3.1. The input to the system is a stochastic

process η, defined by

ε dη = −η dt+
√
εq dW , (3.1)

where W is white noise ε is a time constant and q is a scaling factor. A saturation

function

sat(η) =


η if −1 < η < 1

1 if η ≥ 1

−1 if η ≤ −1

(3.2)
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Figure 3.1: Top level structure of a Newton method extremum-seeking controller.

is used to bound η and the result is then scaled by a constant a to give the

perturbation quantity: a sat η.

The perturbation quantity is added to the current estimate of the minimiz-

ing argument of the static map θ0. This sum is designated θ, which is the current

input to the static map. The output of the static map evaluated at θ is denoted by

y. In this paper, a hat (•̂) indicates an estimate, a prime (•′) indicates a derivative

with respect to θ, and a subscript 0 (•0) indicates a quantity evaluated at θ0. So,

for example, ŷ′′0 indicates an estimate of the second derivative of y with respect to

θ, evaluated at θ0.

The gradient estimator uses the perturbation to determine the local slope

and curvature of the static map. The proposed gradient estimator is a third order

system described by (3.3).

˙̂y0 = k0 (y − ŷ) (3.3a)

˙̂y′0 = k1 (a sat η) (y − ŷ) (3.3b)

˙̂y′′0 = k2 (a sat η)2 (y − ŷ) , (3.3c)

where

ŷ , ŷ0 + ŷ′0 (a sat η) +
ŷ′′0
2

(a sat η)2 , (3.3d)

and k0 k1 and k2 are constants.

The adaptation law is essentially

θ̇0 = −kES
ŷ′0
ŷ′′0

. (3.4)
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Potential problems with the simpler form occur when the curvature is small or

negative, or the local gradient is large. As noted in [27], for practical reasons it

may be desirable to use an adaptation law such as

θ̇0 = −kES∆ , (3.5a)

where

∆ =


ŷ′0
ŷ′′0

if |ŷ′0| < δ sgn ŷ′′0

δ sgn ŷ′0 otherwise.
(3.5b)

This formulation ensures that θ0 will always descend towards a local minimum,

and at a rate bounded by |kESδ|.

3.3.2 Problem Analysis

Here, the simple case of a quadratic static map is analyzed. Under exami-

nation is whether the gradient estimator (3.3) and the adaptation law (3.4) cause

θ0 to converge to the minimizing argument of the system

y = y∗ +
y′′∗
2

(θ − θ∗)2 . (3.6)

Here, subscript asterisks (•∗) indicate a constant associated with the minimum of

the quadratic map: y∗ is the minimum value of the map, y′′∗ is the curvature of

the map at the minimum point, and θ∗ is the minimizing argument of the map.

[Note: In this problem the curvature of the map is constant, so the asterisk in y′′∗

is unnecessary. It is left in for clarity and for compatibility with future work where

the notation may be needed.]

In the analysis, difficulties involving (3.4) associated with dividing by zero

are ignored, noting that the more practical adaptation law (3.5) can alleviate

these difficulties. The latter never divides by zero and behaves like (3.4) near the

minimum of the quadratic map, where ŷ′0 is small.
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In the simplest form, the closed loop system is

˙̂y0 = k0 (y − ŷ) (3.7a)

˙̂y′0 = k1 (a sat η) (y − ŷ) (3.7b)

˙̂y′′0 = k2 (a sat η)2 (y − ŷ) (3.7c)

θ̇0 = − kES
ŷ′0
ŷ′′0

(3.7d)

ε dη = − η dt+
√
εq dW . (3.7e)

Plugging in the expressions for y and ŷ from (3.6) and (3.3d), and using θ =

θ0 + a sat η, the expression (y − ŷ) is expanded and is grouped by powers of η.

y − ŷ =

[
y∗ +

y′′∗
2

(θ0 + a sat η − θ∗)2

]
−
[
ŷ0 + ŷ′0 (a sat η) +

ŷ′′0
2

(a sat η)2

]
=

[
y′′∗ − ŷ′′0

2

]
(a sat η)2 +

[
y′′∗ (θ0 − θ∗)− ŷ′0

]
(a sat η)

+

[
y∗ +

y′′∗
2

(θ0 − θ∗)2 − ŷ0

]
(3.8)

From the definition of y in (3.6), note the following:

y∗ +
y′′∗
2

(θ0 − θ∗)2 , y0 (3.9a)

y′′∗ (θ0 − θ∗) , y′0 (3.9b)

y′′∗ , y′′0 (3.9c)

The expression for (y − ŷ) then simplifies to

y − ŷ =

[
y′′0 − ŷ′′0

2

]
(a sat η)2 +

[
y′0 − ŷ′0

]
(a sat η) +

[
y0 − ŷ0

]
. (3.10)
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Using this expression, the closed loop system is written

˙̂y0 = k0

([
y′′0 − ŷ′′0

2

]
(a sat η)2 +

[
y′0 − ŷ′0

]
(a sat η) +

[
y0 − ŷ0

])
(3.11a)

˙̂y′0 = k1

([
y′′0 − ŷ′′0

2

]
(a sat η)3 +

[
y′0 − ŷ′0

]
(a sat η)2 +

[
y0 − ŷ0

]
(a sat η)

)
(3.11b)

˙̂y′′0 = k2

([
y′′0 − ŷ′′0

2

]
(a sat η)4 +

[
y′0 − ŷ′0

]
(a sat η)3 +

[
y0 − ŷ0

]
(a sat η)2

)
(3.11c)

θ̇0 = − kES
ŷ′0
ŷ′′0

(3.11d)

ε dη = − η dt+
√
εq dW . (3.11e)

Averaging

Stochastic averaging is used to remove the η dynamics. Briefly, given a

system with state variable x and stochastic variable η, with dynamics ẋ = f(x, η),

the stochastic variable can be eliminated from the dynamic equations and a de-

terministic average system formed by integrating the dynamic equation f over the

distribution of a stochastic variable µ:

˙̄x =

∫
f(x̄, η)µ(dη) (3.12)

Variables of the average system are denoted by bars (•̄). As in [3] and [34], note

that the invariant distribution of η is given by

µ(dη) =
1√
πq
e
− η

2

q2 dη , (3.13)

and note the values of the following integrals:∫ ∞
−∞

sat2k+1 ηµ(dη) = 0, where k = 0, 1, 2, . . . (3.14a)∫ ∞
−∞

sat2 ηµ(dη) =
q2

2
erf

1

q
− q√

π
e
− 1
q2 + 1− erf

1

q
, C2(q) (3.14b)∫ ∞

−∞
sat4 ηµ(dη) =

3

4
q4 erf

1

q
− q√

π
e
− 1
q2

(
1 +

3

2
q2

)
+ 1− erf

1

q
, C4(q) . (3.14c)
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The average system then follows:1

˙̂̄y0 = k0

([
y′′0 − ¯̂y′′0

2

]
a2C2 +

[
y′0 − ¯̂y′0

]
0 +

[
y0 − ¯̂y0

])
(3.15a)

˙̂̄y′0 = k1

([
y′′0 − ¯̂y′′0

2

]
0 +

[
y′0 − ¯̂y′0

]
a2C2 +

[
y0 − ¯̂y0

]
0

)
(3.15b)

˙̂̄y′′0 = k2

([
y′′0 − ¯̂y′′0

2

]
a4C4 +

[
y′0 − ¯̂y′0

]
0 +

[
y0 − ¯̂y0

]
a2C2

)
(3.15c)

˙̄θ0 = − kES
¯̂y′0
¯̂y′′0

, (3.15d)

or simply

˙̂̄y0 = k0

([
y′′0 − ¯̂y′′0

2

]
a2C2 +

[
y0 − ¯̂y0

])
(3.16a)

˙̂̄y′0 = k1

[
y′0 − ¯̂y′0

]
a2C2 (3.16b)

˙̂̄y′′0 = k2

([
y′′0 − ¯̂y′′0

2

]
a4C4 +

[
y0 − ¯̂y0

]
a2C2

)
(3.16c)

˙̄θ0 = − kES
¯̂y′0
¯̂y′′0

. (3.16d)

Equilibrium

The estimator states are in equilibrium when they match the parameters

of the quadratic map which they reflect. Moreover, it is an isolated equilibrium

so long as (3.16a) and (3.16c) are independent, which is true under the condition

that
a4C4

a2C2

6= a2C2

1
, (3.17)

or simply that C4 6= C2
2 . It can be verified that this is true in general, but that

they approach equality as q becomes large. Typically q is chosen small to reduce

the effect of the saturation function. For q < 0.5, the approximations C2 ≈ q2/2

and C4 ≈ 3q4/4 are fairly accurate, so

C4 ≈ 3C2
2 . (3.18)

1A fine point on notation is that in average systems like (3.15) and (3.16), y0 no longer
represents the value of y at θ0, but rather the value of y at θ̄0. In order to avoid complicating the
notation, and because the meaning can be deduced from context, a new symbol is not introduced
to represent this difference.
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This confirms the independence of the dynamic equations of the estimator states,

and that they have a unique equilibrium. That is,
¯̂y0,eq

¯̂y′0,eq
¯̂y′′0,eq

 =


y0

y′0

y′′0

 . (3.19)

The adaptation law has an equilibrium when ¯̂y′0 is zero. Because ¯̂y′0 equals

y′0 at equilibrium and y′0 is only equal to zero at θ∗, the only equilibrium point of

θ̄0 is at θ∗. That is, the equilibrium of the average system is
¯̂y0,eq

¯̂y′0,eq
¯̂y′′0,eq

θ̄0,eq

 =


y∗

0

y′′∗

θ∗

 . (3.20)

The subscript eq (•eq) denotes an equilibrium value. In summary, the average

system has one equilibrium and it is located at the minimum of the quadratic

map.

Stability

Next, the average system is linearized around the equilibrium point and

checked for stability. The Jacobian of the average system (3.16) is

J
(
¯̂y0, ¯̂y′0,

¯̂y′′0 , θ̄0

)
=


−k0 0 −k0

a2C2

2
k0

(
y′′′0

a2C2

2
+ y′0

)
0 −k1a

2C2 0 k1y
′′
0a

2C2

−k2a
2C2 0 −k2

a4C4

2
k2

(
y′′′0

a4C4

2
+ y′0a

2C2

)
0 −kES

¯̂y′′0
kES

¯̂y′0

(¯̂y′′0 )
2 0

 .

(3.21)

Evaluating the Jacobian at the equilibrium point, and noting that for a quadratic

map y′∗ and y′′′∗ are zero, the Jacobian simplifies as follows:

J
(
¯̂y0,eq, ¯̂y′0,eq,

¯̂y′′0,eq, θ̄0,eq

)
=


−k0 0 −k0

a2C2

2
0

0 −k1a
2C2 0 k1y

′′
∗a

2C2

−k2a
2C2 0 −k2

a4C4

2
0

0 −kES
y′′∗

0 0

 . (3.22)
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By reordering the variables, the Jacobian becomes block diagonal and the charac-

teristic polynomial is easily found.

J
(
¯̂y0,eq, ¯̂y′′0,eq,

¯̂y′0,eq, θ̄0,eq

)
=


−k0 −k0

a2C2

2
0 0

−k2a
2C2 −k2

a4C4

2
0 0

0 0 −k1a
2C2 k1y

′′
∗a

2C2

0 0 −kES
y′′∗

0

 . (3.23)

|sI − J | =

∣∣∣∣∣∣∣∣∣∣∣

s+ k0 k0
a2C2

2
0 0

k2a
2C2 s+ k2

a4C4

2
0 0

0 0 s+ k1a
2C2 −k1y

′′
∗a

2C2

0 0 kES
y′′∗

s

∣∣∣∣∣∣∣∣∣∣∣
=

[
(s+ k0)

(
s+ k2

a4C4

2

)
−
(
k0
a2C2

2

)(
k2a

2C2

)]
×
[(
s+ k1a

2C2

)
(s)−

(
−k1y

′′
∗a

2C2

)(kES
y′′∗

)]
=

[
s2 +

(
k0 + k2

a4C4

2

)
s+

(
k0k2

a4 (C4 − C2
2)

2

)]
×
[
s2 + k1a

2C2s+ k1kESa
2C2

]
(3.24)

By the Routh-Hurwitz criterion, any second order polynomial has roots with neg-

ative real parts if it has positive coefficients. Since this fourth-order polynomial

factors into two second-order polynomials, it is evident that it is stable if all of the

gains are chosen positive, a is non-zero, and C4 is greater than C2
2 . It is shown

below that the latter is true for all q > 0.

It is shown that C4−C2
2 > 0 by using the integral definitions of C4 and C2.

This expression is

C4 − C2
2 =

∫ ∞
−∞

sat4 ηµ(dη)−
(∫ ∞
−∞

sat2 ηµ(dη)

)2

=

∫
<

sat4 xµ(dx)−
(∫
<

sat2 xµ(dx)

)(∫
<

sat2 yµ(dy)

)
, (3.25)

where the dummy variables x and y are introduced as variables of integration.
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Since
∫
< µ(dy) = 1 and combining the right two integrals,

C4 − C2
2 =

∫∫
<2

sat4 xµ(dx)µ(dy)−
∫∫
<2

sat2 x sat2 yµ(dx)µ(dy)

=

∫∫
<2

sat2 x
(
sat2 x− sat2 y

)
µ(dx)µ(dy)

,
∫∫
<2

Q . (3.26)

The shorthand Q is used in the following. By symmetry, it is possible to look at

only the first quadrant. Further, the integral is broken down into five segments.

1

4

(
C4 − C2

2

)
=

∫ ∞
y=0

∫ ∞
x=0

Q

=

∫ ∞
y=1

∫ ∞
x=1

Q

+

∫ 1

y=0

∫ 1

x=y

Q−
∫ 1

x=0

∫ 1

y=x

(−Q)

−
∫ 1

y=0

∫ ∞
x=1

(−Q) +

∫ 1

x=0

∫ ∞
y=1

Q (3.27)

Using the definition of the sat function, an expression for Q particular to each

integral is given.

1

4

(
C4 − C2

2

)
=

∫ ∞
y=1

∫ ∞
x=1

1 (1− 1)µ(dx)µ(dy)

+

∫ 1

y=0

∫ 1

x=y

x2
(
x2 − y2

)
µ(dx)µ(dy)−

∫ 1

x=0

∫ 1

y=x

x2
(
y2 − x2

)
µ(dy)µ(dx)

−
∫ 1

y=0

∫ ∞
x=1

(
y2 − 1

)
µ(dx)µ(dy) +

∫ 1

x=0

∫ ∞
y=1

x2
(
x2 − 1

)
µ(dy)µ(dx) (3.28)

The first integral is zero. The third integral can be combined with the second

integral by using the change of variables (x→ y, y → x). In a similar fashion, the
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fifth integral can be combined with the fourth.

1

4

(
C4 − C2

2

)
=

∫ 1

y=0

∫ 1

x=y

x2
(
x2 − y2

)
µ(dx)µ(dy)−

∫ 1

y=0

∫ 1

x=y

y2
(
x2 − y2

)
µ(dx)µ(dy)

−
∫ 1

y=0

∫ ∞
x=1

(
y2 − 1

)
µ(dx)µ(dy) +

∫ 1

y=0

∫ ∞
x=1

y2
(
y2 − 1

)
µ(dx)µ(dy)

=

∫ 1

y=0

∫ 1

x=y

(
x2 − y2

)2
µ(dx)µ(dy) +

∫ 1

y=0

∫ ∞
x=1

y2
(
y2 − 1

)2
µ(dx)µ(dy) (3.29)

So for q > 0 the integrands are positive. The desired result follows:

C4 > C2
2 ∀q > 0 . (3.30)

Therefore, for stability it suffices to choose

(k0, k1, k2, kES, q) > 0 (3.31)

a 6= 0 . (3.32)

3.3.3 Simulations

Initial simulations show some practical difficulties not revealed in the stabil-

ity analysis. While the equilibrium point is stable, convergence to the equilibrium

is characterized by large transients. In particular, the curvature estimate ŷ′′0 does

not stabilize to the true local value of the local curvature until after the minimum

is found. This difficulty is overcome by two additions to the controller.

The first addition is a set of simple switches which allow the ŷ0 and ŷ′0

estimates to converge before the the ŷ′′0 integrator is switched on. Similarly, a few

additional seconds are given to allow the ŷ′′0 estimator to converge before the θ̂0

integrator is switched on. This fix eliminates initial transients, but the ŷ′′0 estimator

still tends to diverge from the time the θ̂0 integrator is switched on to the time the

minimum is located.

To solve this problem, a second fix is implemented. The cause of the diver-

gence in the ŷ′′0 estimator seems to be a lag in the ŷ0 estimate that occurs when
˙̂
θ0 6= 0. To remove this lag, an estimate of the rate of change of y with respect
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to θ is added to the ŷ0 estimator. This is simply the current estimate of the local

slope ŷ′0 multiplied by the rate of change of the θ̂0 estimator. A similar estimate is

added to the ŷ′0 estimator. [The added terms are shown in square brackets below.]

These added terms propogate the state in the same way that a continuous-time

Kalman filter might in the absence of any estimation error.

˙̂y0 = k0 (y − ŷ) +
[
ŷ′0θ̇0

]
(3.33a)

˙̂y′0 = k1 (a sat η) (y − ŷ) +
[
ŷ′′0 θ̇0

]
(3.33b)

˙̂y′′0 = k2 (a sat η)2 (y − ŷ) (3.33c)

θ̇0 = − kES
ŷ′0
ŷ′′0

(3.33d)

ε dη = − η dt+
√
εq dW . (3.33e)

Using this form of the estimator, the simulations are successful. A forth-

order static map shown in Figure 3.2 was used for the simulations. The stochastic

disturbance a sat η is shown in Figure 3.3. The simulation results are shown in

Figure 3.4.

3.4 Newton Method Stochastic Extremum Seek-

ing in Multiple Dimensions

In this section the controller is extended to multiple dimensions. The anal-

ysis here parallels the one-dimensional case to the extent possible.

3.4.1 Controller

Let ĝ0 denote the estimate of the gradient at θ0 and Ĥ0 the estimate of the

Hessian at θ0. Let α represent the stochastic inputs to the system, where the i-th

component of α is defined as

αi = ai sat ηi . (3.34)
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Figure 3.2: Forth-order static map used in simulation.
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Figure 3.3: Stochastic noise signal a sat η used in simulation.
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Figure 3.4: Simulation showing convergence to the minimum of a map.
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Then the controller (3.33) can be extended to multiple dimensions as follows:

˙̂y0 = k0 (y − ŷ) +
[
ĝT

0 θ̇0

]
(3.35a)

˙̂g0 = k1α (y − ŷ) +
[
Ĥ0θ̇0

]
(3.35b)

˙̂
H0 = k2αα

T (y − ŷ) (3.35c)

θ̇0 = − kESĤ−1
0 ĝ0 (3.35d)

εi dηi = − ηi dt+
√
εiqi dWi , (3.35e)

where

ŷ , ŷ0 + αTĝ0 +
1

2
αTĤ0α . (3.35f)

The multi-dimensional method is susceptible to the case of negative curva-

ture, just as the scalar case. If Ĥ0 has a negative eigenvalue the controller will

actually seek a maximum rather than a minimum. This can be avoided by switch-

ing to a gradient descent algorithm when the smallest eigenvalue of Ĥ0 falls below

some threshold. Similar to (3.5), the adaptation law can be modified to

θ̇0 = −kES∆ , (3.36a)

where

∆ =

Ĥ
−1
0 ĝ0 if λmin > δ

(δI)−1 ĝ0 otherwise.
(3.36b)

with λmin representing the minimum eigenvalue of Ĥ0.

3.4.2 Problem Analysis

The analysis in this section parallels the scalar analysis performed above.

A multi-dimensional quadratic map is analyzed.

y = y∗ +
1

2
(θ − θ∗)T H∗ (θ − θ∗) (3.37)

As in the scalar case, difficulties associated with finding the inverse of the Hes-

sian when it becomes nearly singular are ignored, noting that the more practical

adaptation law (3.36) avoids these difficulties and behaves like (3.35d) near a local

minimum of sufficient curvature.
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For analysis, the simplest possible form of the controller is used:

˙̂y0 = k0 (y − ŷ) (3.38a)

˙̂g0 = k1α (y − ŷ) (3.38b)

˙̂
H0 = k2αα

T (y − ŷ) (3.38c)

θ̇0 = − kESĤ−1
0 ĝ0 (3.38d)

εi dηi = − ηi dt+
√
εiqi dWi . (3.38e)

Plugging in the expressions for y and ŷ from (3.37) and (3.35f), and using

θ = θ0 + α, the expression (y − ŷ) is expanded and grouped by power of α.

y − ŷ =

[
y∗ +

1

2
(θ0 + α− θ∗)TH∗ (θ0 + α− θ∗)

]
−
[
ŷ0 + αTĝ0 +

1

2
αTĤ0α

]
= αT

[
1

2

(
H∗ − Ĥ0

)]
α + αT

[
H∗ (θ0 − θ∗)− ĝ0

]
+

[
y∗ +

1

2
(θ0 − θ∗)T H∗ (θ0 − θ∗)− ŷ0

]
(3.39)

From the definition of y in (3.37), note the following:

y∗ +
1

2
(θ0 − θ∗)TH∗ (θ0 − θ∗) , y0 (3.40a)

H∗ (θ0 − θ∗) , g0 (3.40b)

H∗ , H0 (3.40c)

The expression for (y − ŷ) then simplifies to

y − ŷ = αT

[
1

2

(
H0 − Ĥ0

)]
α + αT

[
g0 − ĝ0

]
+

[
y0 − ŷ0

]
. (3.41)
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Using this expression, the closed loop system is written

˙̂y0 = k0

(
αT

[
1

2

(
H0 − Ĥ0

)]
α + αT

[
g0 − ĝ0

]
+

[
y0 − ŷ0

])
(3.42a)

˙̂g0 = k1

(
ααT

[
1

2

(
H0 − Ĥ0

)]
α + ααT

[
g0 − ĝ0

]
+ α

[
y0 − ŷ0

])
(3.42b)

˙̂
H0 = k2

(
ααTαT

[
1

2

(
H0 − Ĥ0

)]
α + ααTαT

[
g0 − ĝ0

]
+ ααT

[
y0 − ŷ0

])
(3.42c)

θ̇0 = − kESĤ−1
0 ĝ0 (3.42d)

εi dηi = − ηi dt+
√
εiqi dWi . (3.42e)

Averaging

Stochastic averaging is used to remove the η dynamics. The average of

certain vector and matrix products are needed to do so, so these are developed

first. In doing so, the following shorthand notation is used: C2i , C2 (qi) and

similarly for C4. Below, the notation s denotes a generic scalar, v a generic vector,

and M a generic matrix. Integrals are understood to be multiple integrals over
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each of the stochastic variables ηi. The following integrals are needed:∫
<n
αsµ(dη) = 0 (3.43a)∫

<n
ααTsµ(dη) , Cs2(s)

(Cs2(s))ij =

a2
iC2is i = j

0 i 6= j
(3.43b)

∫
<n
αTvµ(dη) = 0 (3.43c)∫

<n
ααTvµ(dη) , Cv2(v), (Cv2(v))i = a2

iC2ivi (3.43d)∫
<n
ααTαTvµ(dη) = 0 (3.43e)∫
<n
αTMαµ(dη) , CM2(M) =

∑
k

a2
kC2kMkk (3.43f)∫

<n
ααTMαµ(dη) = 0 (3.43g)∫

<n
ααTαTMαµ(dη) , CM4(M)

(CM4(M))ij =

a4
iC4iMij + a2

iC2i

∑
k 6=i a

2
kC2kMkk i = j

a2
i a

2
jC2iC2j (Mij +Mji) i 6= j

(3.43h)

Note that CM2(·) is scalar-valued, Cv2(·) is vector-valued, and CM4(·) and

Cs2(·) are matrix-valued functions. Also note that all are linear functions of their

arguments.

The average system is written2

˙̂̄y0 = k0

[
1

2
CM2

(
H0 − ¯̂

H0

)
+
(
y0 − ¯̂y0

)]
(3.44a)

˙̂̄g0 = k1

[
Cv2

(
g0 − ¯̂g0

)]
(3.44b)

˙̂̄
H0 = k2

[
1

2
CM4

(
H0 − ¯̂

H0

)
+ Cs2

(
y0 − ¯̂y0

)]
(3.44c)

˙̄θ0 = − kES ¯̂
H−1

0
¯̂g0 . (3.44d)

2The reader is reminded that CM2(·), Cv2(·), CM4(·), and Cs2(·) are functions: the quantities
following them in parentheses are their arguments, not terms they multiply.
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Equilibrium

The estimator states are in equilibrium when they match the parameters of

the quadratic map which they reflect.
¯̂y0,eq

¯̂g0,eq

¯̂
H0,eq

 =


y0

g0

H0

 (3.45)

To show that this is an isolated equilibrium, first observe that (Cv2(·))i is function of

only the i-th element of its argument. From (3.44b) it is evident that at equilibrium

every element of ¯̂g0 must equal the corresponding element of g0. The ˙̂̄y0 and
˙̂̄
H0

equations, however, are coupled so showing their elements to have an isolated

equilibrium is less straightforward.

Observe that (3.45) is an isolated equilibrium so long as the scalar equa-

tion (3.44a) is independent of at least one of the scalar equations represented by

the matrix equation (3.44c) at every point other than (3.45). This is true if the

condition

∃(i, j) such that
(CM4(M))ij
CM2(M)

6=
(Cs2(s))ij

s
(3.46)

holds for all (M, s) 6= 0.

For the off-diagonal (i 6= j) case the condition (3.46) expands to

a2
i a

2
jC2iC2j (Mij +Mji)∑

k a
2
kC2kMkk

6= 0

s
. (3.47)

This is satisfied for all symmetric matrices with a non-zero (i, j) element. Since

the Hessian being estimated is symmetric, this means that (3.46) is satisfied for

all non-diagonal M .

For the diagonal (i = j) entries, (3.46) expands to

a4
iC4iMii + a2

iC2i

∑
k 6=i a

2
kC2kMkk∑

k a
2
kC2kMkk

6= a2
iC2is

s
. (3.48)

The factors of s cancel, as do most of terms in the summations, and the equation

simplifies to

a2
i

(
C4i − C2

2i

)
Mii 6= 0 . (3.49)
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Since C4 > C2
2 , this means that (3.46) is satisfied for any M with a non-zero

diagonal element. Therefore, since (3.46) is satisfied for all non-diagonal M and

all M with a non-zero diagonal element, it is satisfied for all M 6= 0. The condition

s 6= 0 is implicit in the divided by s. So (3.46) is satisfied for all (M, s) 6= 0 and

the estimator equilibrium in (3.45) is indeed isolated.

The adaptation law has an equilibrium when ¯̂g0 is zero. Because ¯̂g0 equals

g0 at equilibrium and g0 is only equal to zero at θ∗, the only equilibrium point of

θ̄0 is at θ∗. That is, the equilibrium of the average system is
¯̂y0,eq

¯̂g0,eq

¯̂
H0,eq

θ̄0,eq

 =


y∗

0

H∗

θ∗

 . (3.50)

In summary, the average system has one equilibrium and it is located at the min-

imum of the quadratic map.

Stability

To test stability, expand the vector and matrix differential equations and

stack the resulting scalar equations together. Because of their similarity, all of the

diagonal elements of
¯̂
H0 are stacked together and all of the off-diagonal elements

are stacked together. Also, because
¯̂
H0 is symmetric, the elements below the

main diagonal are discarded. Let the dimension of the map be n. The complete

expanded system is then

˙̂̄y0 = k0

[
1

2

∑
k

a2
kC2k

(
H0 − ¯̂

H0

)
kk

+
(
y0 − ¯̂y0

)]
(3.51a)

(
˙̂̄g0

)
1

= k1

[
a2

1C21

(
g0 − ¯̂g0

)
1

]
(3.51b)

... =
...(

˙̂̄g0

)
n

= k1

[
a2
nC2n

(
g0 − ¯̂g0

)
n

]
(3.51c)
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(
˙̂̄
H0

)
11

= k2

[
1

2

(
a4

1C41

(
H0 − ¯̂

H0

)
11

+ a2
1C21

∑
k 6=1

a2
kC2k

(
H0 − ¯̂

H0

)
kk

)

+ a2
1C21

(
y0 − ¯̂y0

) ]
(3.51d)

... =
...(

˙̂̄
H0

)
nn

= k2

[
1

2

(
a4
nC4n

(
H0 − ¯̂

H0

)
nn

+ a2
nC2n

∑
k 6=n

a2
kC2k

(
H0 − ¯̂

H0

)
kk

)

+ a2
nC2n

(
y0 − ¯̂y0

) ]
(3.51e)

(
˙̂̄
H0

)
12

= k2

[
a2

1a
2
2C21C22

(
H0 − ¯̂

H0

)
12

]
(3.51f)

... =
...(

˙̂̄
H0

)
(n−1)n

= k2

[
a2

(n−1)a
2
nC2(n−1)C2n

(
H0 − ¯̂

H0

)
(n−1)n

]
(3.51g)

(
˙̄θ0

)
1

= − kES
(

¯̂
H−1

0
¯̂g0

)
1

(3.51h)

... =
...(

˙̄θ0

)
n

= − kES
(

¯̂
H−1

0
¯̂g0

)
n

(3.51i)

By analogy with the scalar case, the Jacobian evaluated at the equilibrium point

is likely to be sparse. The non-zero components of the Jacobian at the equilibrium

are as follows:

∂ ˙̂̄y0

∂ ¯̂y0

= − k0 (3.52a)

∂ ˙̂̄y0

∂
(

¯̂
H0

)
11

= − k0

2
a2

1C21 (3.52b)

∂ ˙̂̄y0

∂
(

¯̂
H0

)
nn

= − k0

2
a2
nC2n (3.52c)
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∂
(

˙̂̄g0

)
1

∂
(
¯̂g0

)
1

= − k1a
2
1C21 (3.52d)

∂
(

˙̂̄g0

)
1

∂
(
θ̄0

)
1

= k1a
2
1C21 (H∗)11 (3.52e)

∂
(

˙̂̄g0

)
1

∂
(
θ̄0

)
n

= k1a
2
1C21 (H∗)1n (3.52f)

∂
(

˙̂̄g0

)
n

∂
(
¯̂g0

)
n

= − k1a
2
nC2n (3.52g)

∂
(

˙̂̄g0

)
n

∂
(
θ̄0

)
1

= k1a
2
nC2n (H∗)n1 (3.52h)

∂
(

˙̂̄g0

)
n

∂
(
θ̄0

)
n

= k1a
2
nC2n (H∗)nn (3.52i)

∂

(
˙̂̄
H0

)
11

∂ ¯̂y0

= − k2a
2
1C21 (3.52j)

∂

(
˙̂̄
H0

)
11

∂
(

¯̂
H0

)
11

= − k2

2
a4

1C41 (3.52k)

∂

(
˙̂̄
H0

)
11

∂
(

¯̂
H0

)
nn

= − k2

2
a2

1a
2
nC21C2n (3.52l)

∂

(
˙̂̄
H0

)
nn

∂ ¯̂y0

= − k2a
2
nC2n (3.52m)

∂

(
˙̂̄
H0

)
nn

∂
(

¯̂
H0

)
11

= − k2

2
a2
na

2
1C2nC21 (3.52n)

∂

(
˙̂̄
H0

)
nn

∂
(

¯̂
H0

)
nn

= − k2

2
a4
nC4n (3.52o)
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∂

(
˙̂̄
H0

)
12

∂
(

¯̂
H0

)
12

= − k2a
2
1a

2
2C21C22 (3.52p)

∂

(
˙̂̄
H0

)
(n−1)n

∂
(

¯̂
H0

)
(n−1)n

= − k2a
2
(n−1)a

2
nC2(n−1)C2n (3.52q)

∂
(

˙̄θ0

)
1

∂
(
¯̂g0

)
1

= − kES
(
H−1
∗
)

11
(3.52r)

∂
(

˙̄θ0

)
1

∂
(
¯̂g0

)
n

= − kES
(
H−1
∗
)

1n
(3.52s)

∂
(

˙̄θ0

)
n

∂
(
¯̂g0

)
1

= − kES
(
H−1
∗
)
n1

(3.52t)

∂
(

˙̄θ0

)
n

∂
(
¯̂g0

)
n

= − kES
(
H−1
∗
)
nn

(3.52u)

Note that by assumption the Hessian is a constant so that H0 does not

change with θ0. Also, note that calculating some of the partial derivatives involves

taking derivatives of the elements of matrix inverse with respect to elements of

the original matrix; for instance, ∂
(

˙̄θ0

)
1
/∂
(

¯̂
H0

)
11

. These can be computed using

the matrix inversion lemma [35]. However, the gradient appears as a factor in

such partial derivatives, and at the equilibrium point the gradient is zero. Because

of this such partial derivatives, when evaluated at the equilibrium point, become

zero.

Because of the sparsity structure of the Jacobian, the linearized system de-

couples into three subsystems: one containing ¯̂y0 and the diagonal elements of
¯̂
H0,

one containing ¯̂g and θ̄0, and one containing only the off-diagonal elements of
¯̂
H0.

To find conditions for stability, each of the subsystems are analyzed separately.

Unlike the one-dimensional case, the Routh-Hurwitz criterion cannot be used be-

cause its calculation involves a recursive formula, which poses problems for general

analysis of an n-dimensional case. Instead, a Lyapunov analysis is used.
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For this analysis, the following error variables are introduced:

ỹ = ¯̂y0 − y∗ (3.53a)

H̃d =


¯̂
H11 − (H∗)11

...
¯̂
Hnn − (H∗)nn

 (3.53b)

g̃ =


(
¯̂g0

)
1
− 0

...(
¯̂g0

)
n
− 0

 (3.53c)

θ̃ =


(
θ̄0

)
1
− (θ∗)1
...(

θ̄0

)
n
− (θ∗)n

 (3.53d)

H̃od =


(

¯̂
H0

)
12
− (H∗)12

...(
¯̂
H0

)
(n−1)n

− (H∗)(n−1)n

 , (3.53e)

the constant vector ν

νi , a2
iC2i , (3.54a)

the constant diagonal matrix N

(N)ij ,

a2
iC2i i = j

0 i 6= j ,
(3.54b)

and the constant diagonal matrix µ

(µ)ij =

a4
i (C4i − C2

2i) i = j

0 i 6= j .
(3.54c)

Then the (ỹ, H̃d) and (g̃, θ̃) linearized subsystems are

˙̃y = − k0ỹ −
k0

2
νTH̃d (3.55a)

˙̃Hd = − k2νỹ −
k2

2

(
ννT + µ

)
H̃d (3.55b)
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and

˙̃g = − k1Ng̃ + k1NH∗θ̃ (3.56a)

˙̃θ = − kESH−1
∗ g̃ . (3.56b)

The H̃od subsystem is actually a set of decoupled equations. Although H̃od is a

vector, it is derived from the off-diagonal entries of a matrix, so a double-index

notation is used to denote its elements. For example,
(
H̃od

)
12

refers to the first

element of H̃od as shown in (3.53e). Then the elements of the H̃od subsystem are

written (
˙̃Hod

)
ij

= −k2ν1ν2

(
H̃od

)
ij

. (3.57)

The subsystems (3.55) (3.56) and (3.57) are analyzed in turn for stability.

To analyze (3.55) the following candidate Lyapunov function is used:

V1 =
1

2k0

ỹ2 +
1

4k2

H̃T
d H̃d , (3.58)

This function is positive definite if k0 and k2 are greater than zero. Then the time

derivative of V1 is

V̇1 =
1

k0

ỹ ˙̃y +
1

2k2

H̃T
d

˙̃Hd

=
1

k0

ỹ

(
−k0ỹ −

k0

2
νTH̃d

)
+

1

2k2

H̃T
d

(
−k2νỹ −

k2

2

(
ννT + µ

)
H̃d

)
= − ỹ2 − 1

2
ỹνTH̃d −

1

2
H̃T
d νỹ −

1

4
H̃T
d

(
ννT + µ

)
H̃d

= − ỹ2 −
(
H̃T
d ν
)
ỹ − 1

4
H̃T
d νν

TH̃d −
1

4
H̃T
d µH̃d

= −
(
ỹ2 +

1

2
H̃T
d ν

)2

− 1

4
H̃T
d µH̃d , (3.59)

which is negative definite if µ is positive definite. Since C4 is greater than C2
2 when

q is positive, µ is positive definite when all qi are positive. Therefore, (3.55) has

a stable equilibrium at the origin if k0 and k2 are chosen positive and all qi are

positive.

The analysis (3.56) proceeds in a similar fashion. Define the candidate

Lyapunov function

V2 =
1

2k1

g̃TN−1g̃ +
1

2kES
θ̃TH∗H∗θ̃ (3.60)
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which is positive definite is k1 and kES are greater than zero. The time derivative

of V2 is

V̇2 =
1

k1

g̃TN−1 ˙̃g +
1

kES
θ̃TH∗H∗

˙̃θ

=
1

k1

g̃TN−1
(
−k1Ng̃ + k1NH∗θ̃

)
+

1

kES
θ̃TH∗H∗

(
−kESH−1

∗ g̃
)

= g̃TN−1
(
−Ng̃ +NH∗θ̃

)
+ θ̃TH∗H∗

(
−H−1

∗ g̃
)

= − g̃TN−1Ng̃ + g̃TN−1NH∗θ̃ − θ̃TH∗H∗H
−1
∗ g̃

= − g̃Tg̃ + g̃TH∗θ̃ − θ̃TH∗g̃

= − g̃Tg̃ , (3.61)

which is negative if g̃ 6= 0. Moreover, by inspection of (3.56a), if g̃ is stable at

zero θ̃ must also be zero. Therefore, by LaSalle’s invariance principle, (3.56) has a

stable equilibrium at the origin if k1 and kES are chosen positive.

To analyze (3.57) simply note that each of the decoupled equations are

stable first order systems when k2 is chosen positive.

Having analyzed (3.55) (3.56) and (3.57), the assumptions necessary for

stability are here collected. As in the scalar case, it suffices to choose positive

parameters and non-zero scaling factors:

(k0, k1, k2, kES) > 0 (3.62a)

qi > 0 ∀i (3.62b)

ai 6= 0 ∀i . (3.62c)

Under the conditions (3.62) each of the three independent subsystems (3.55)

(3.56) and (3.57) are stable. These subsystems are the components of the linearized

average system (3.44) about the point (3.50), implying local exponential stability

equilibrium point of the average system. By Theorem 2 in [3] this implies weak

exponential stability of the original stochastically perturbed system (3.42).

3.4.3 Simulations

Simulation results using the multi-dimensional controller are shown in Fig-

ure 3.5 and Figure 3.6. The simulations use a parabolic map with a minimum at
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start →

← end

Stochastic Newton−Method Extremum Seeking

−2.5 −2 −1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

2

2.5

Figure 3.5: Straight line descent of θ towards minimum of map.

the origin. Note the straight line made towards the minimum in Figure 3.5, where

the direction of descent is at a clear angle to the gradient. To emphasize this, a

theoretical gradient descent from the same starting point is also plotted.

3.5 Discussion

3.5.1 Newton Method Extremum Seeking

The primary motivation for developing a Newton method version of ex-

tremum seeking is to allow a straight-line descent towards the minimum of a

multi-dimensional map. The common gradient-descent approach can yield fast

convergence in one dimension and slow convergence in another. By contrast the

Newton method version of extremum seeking converges at a similar rate in all

dimensions. This capability is realized and demonstrated through simulation.
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Figure 3.6: Convergence of estimator and adaptation law states.
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3.5.2 Extremum Seeking Based on Estimation Error

In a departure from the norm, the presented form of extremum seeking

depends on the difference between the measured variable y and its estimate ŷ.

Usually, the dependence is upon y itself. In this respect it aligns with formulations

typically seen in optimal linear estimation. This yields certain advantages.

One advantage is the removal of the need for high-pass and low-pass filters.

Although not necessary for proofs of stability, in extremum seeking it is often

necessary to place a high-pass filter on the measured variable and a low-pass filter

on the adaptation law for the sake of performance. As shown by the simulation

results, it is not necessary to use additional filters when using a dependence on

(y − ŷ), instead of y alone. The dynamic equation for ŷ0, combined with the

calculation of ŷ effectively removes the steady-state component of y, fulfilling the

role of the high-pass filter. The need for a low-pass filter is similarly removed:

because the estimator equations are based on the difference between the measured

variable and its estimate, when the estimate becomes accurate, the adaptation rate

becomes smooth.

A related advantage is that local value, gradient, and Hessian are explicit

states. This adds to an intuitive understanding of the estimator. This, in turn,

facilitates design and extension of the control system.

3.5.3 Knowledge of the Nature of the Stochastic Signals

The extremum-seeking algorithm requires a measurement of the stochastic

signals; however, very little about the nature of the stochastic signals is assumed.

They are assumed to be bounded and zero-mean, but the control design does not

rely upon knowledge of the amplitude of the signals or any of their higher moments.

This is done intentionally with an eye towards possible future applications where

such information may not be known. In applications where the perturbation signal

is not manually generated, but rather is a naturally occurring disturbance that can

only be measured, the amplitude of the signal may not be known ahead of time. It

may even change with time. This would prevent implementation of any algorithm

that relied upon knowledge of the nature of the stochastic signals.
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3.6 Conclusion

The benefits of deterministic Newton method extremum seeking have been

transferred to stochastic extremum seeking. Analysis proves weak local exponential

stability of the minimum of a static n-dimensional quadratic map. Simulations

confirm straight line convergence to the minimum of a two-dimensional quadratic

map.

Rather than depending directly upon the measured variable, the extremum-

seeking controller depends upon the estimation error of the measured variable. This

produces a controller that does not require additional filtering for practical imple-

mentation. The controller also has no dependence on the nature of the stochastic

perturbations used, allowing it to be used even when such information is unknown.
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Chapter 4

Aircraft Endurance Maximization

at Medium Mach Numbers by

Extremum Seeking

Aircraft endurance is maximized by optimizing the lift to drag ratio over a

two-dimensional space spanned by angle of attack and Mach number, constrained

to a one-dimensional curve on which lift equals the weight of the aircraft. The

gradient estimator used in the optimization is excited by atmospheric turbulence

in the vertical and longitudinal directions. This new form of extremum seeking

requires a reformulation of the standard gradient estimator used in extremum

seeking to provide gradient estimates that are independent of the amplitude of the

dither signal. A new gradient estimator based on an estimation error approach

is presented to this end. Through stochastic averaging analysis, the estimator is

shown to stabilize the aircraft to the optimal endurance speed, with a bias that

is proportional to the square of the turbulence amplitude and thus is small when

turbulence is light. The controller is tested in a high fidelity six degree of freedom

simulation provided by local industry. Simulation results show maximization of

aircraft endurance and even a slight improvement compared to flight at the nominal

loiter speed of the aircraft being simulated.
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4.1 Nomenclature

A = Aspect ratio

a = Speed of sound

a1, a2 = Stochastic disturbance post-saturation scaling factors

ax, az = Component of acceleration in the x or z body axis directions

C2, C4 = Averaging constants

CD = Coefficient of drag

CD0 = Zero-lift drag coefficient

CL = Coefficient of Lift

D = Drag

e = Oswald efficiency number

f = Lift to drag ratio

f̂ = The estimator’s prediction of f

g = Acceleration due to gravity

gx, gz = Component of g in the x or z body axis directions

J = Jacobian of a system

kES = Extremum seeking gain

k1, k2, k3 = Estimator gains

L = Lift

Lu, Lv, Lw = Characteristic lengths of turbulence field

(longitudinal, lateral, vertical)

M = Mach number

m = Mass of the aircraft

n0, n1, n2, . . . = Coefficients of the Taylor expansion of v

q1, q2 = Stochastic disturbance pre-saturation scaling factors

S = Reference area

s = Laplace variable

s1 = Estimator state ≈ f

s2 = Estimator state ≈ fU

s3 = Estimator state ≈ fV

T = Thrust
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t = Time

U0 = Nominal airspeed for turbulence model

U = Equivalent steady state airspeed

V = Airspeed

Vcmd = Commanded airspeed

V∗ = Optimal endurance speed

v = Zero-wind airspeed (roughly ground speed)

veq = Equilibrium airspeed of the average system

W1,W2 = Instances of standard Brownian motion

α = Angle of attack

ε1, ε2 = Turbulence time constants

η1, η2 = Vertical and longitudinal wind speeds, pre-saturation

λ = Thrust angle

µ(dη) = Invariant distribution of η

ρ = Air density

σ2, σ3 = Control law design parameters

σu, σv, σw = Root mean square turbulence intensity

(longitudinal, lateral, and vertical components)

τ = Airspeed control time constant

Φug ,Φvg ,Φwg = Turbulence spectra (longitudinal, lateral, vertical)

Ω = Spatial frequency

ω = Temporal frequency

Subscripts

eq = Evalutated at the equilibrium point (U = V = veq)

U = Partial derivative with respect to U

V = Partial derivative with respect to V

v = Evaluated at an arbitrary airspeed (U = V = v)

0 = Evaluated at the center of the Taylor expansion

(U = V = n0)

∗ = Evaluated at the optimal endurance speed (U = V = V∗)
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4.2 Introduction

This paper is a continuation of the research effort begun in [34], in which

the authors present a control algorithm for finding the speed for maximum en-

durance for a jet aircraft. Flight at the speed for maximum endurance produces

the minimum fuel burn rate, allowing the longest duration of flight. The control

algorithm in [34] is a novel form of extremum-seeking control in which atmospheric

turbulence is used as the dither signal. The present work expands the basic prin-

ciple developed in [34] by introducing a new algorithm capable of functioning at

speeds in which compressibility becomes a factor. The algorithm is tested using a

high-fidelity, flight-test validated aircraft simulation program.

Extremum seeking traditionally involves adding a small perturbation, called

a dither signal, to the input to a system. The resulting change in the output

from the system is then used to determine whether the input should be increased

or decreased to drive the output towards its minimum (or maximum) possible

value. The dither signal is traditionally chosen to be sinusoidal [1, 5, 6, 36, 33],

but can also be chosen to be non-sinusoidal [7] or stochastic [3, 8]. Recently the

need for adding a dither signal has been removed by utilizing naturally occurring

disturbances in their stead [4]. The general applicability of extremum seeking

has encouraged its use for a large variety of applications, including axial flow

compressors [11], lean pre-mixed combustion [13, 27, 12], flow control [14, 37],

wind turbine energy capture [38], the minimization of drag in formation flight [17],

and many other applications in which the process dynamics may not be well known

[26, 39, 9, 10, 15, 16, 40, 41, 29, 42, 43, 44].

The authors’ previous work [34] introduces a novel variant of extremum

seeking intended to optimize the speed of a jet aircraft for optimal endurance.

The primary assumptions in [34], which are here removed, are:

1. The pitch and altitude dynamics of the aircraft can be considered quasi-

steady.

2. The vertical component of turbulence is negligible.

3. The effect of compressibility is negligible.
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The first assumption is removed by optimizing the lift to drag ratio over the (two-

dimensional) Mach vs. angle of attack plane, rather than optimizing drag itself

over airspeed in one dimension only. Pitch and altitude dynamics can significantly

affect the drag of an aircraft, so an algorithm based on an estimate of rate of

change of drag with respect to airspeed can only function on a timescale much

slower than the aircraft dynamics. Conversely, the lift to drag ratio is very nearly

a static map in the Mach vs. angle of attack plane; an approximation of such a

map is not significantly restricted by the timescale of the aircraft dynamics.

The second assumption can (and actually must) be removed because the

optimization is performed over a two-dimensional map, and as such two inde-

pendent dither signals are required: the longitudinal and vertical components of

atmospheric turbulence. (As explained below and in [24], a standard assump-

tion in turbulence modeling is that the components of turbulence are independent

stochastic processes.)

The third assumption is addressed explicitly by letting the lift to drag ratio

be a function of Mach number, as already mentioned.

So the removal of the assumptions listed above is achieved by optimizing the

lift to drag ratio over a two-dimensional space. Atmospheric turbulence, having

independent longitudinal and vertical components, provides excitation over the

two-dimensional space. This is used to produce an estimate of the local two-

dimensional gradient, that is, to produce an estimate of the slope of the lift to

drag ratio with respect to Mach number and an estimate of the slope with respect

to angle of attack. In a typical multi-dimensional application, extremum seeking

is then used to find the maximizing point in the two-dimensional space; however,

the aircraft cannot move freely in two dimensions. Rather, to achieve level flight it

must fly at a combination of Mach number and angle of attack that produces lift

equal to the weight of the aircraft: a one-dimensional curve in a two-dimensional

space.

Optimization over this curve is achieved by calculating the inner product

of the gradient estimate with a vector locally tangent to the curve. This inner

product gives the slope of the lift to drag ratio along the curve, which indicates



80

whether a faster or slower airspeed would improve the lift to drag ratio. Here

the standard extremum seeking algorithm fails: it produces an estimate of the

gradient vector that points in the wrong direction. (An explanation now follows.)

The standard multi-dimensional gradient estimator operates by demodulating the

output with the two independent dither signals. This produces an estimate of the

gradient in which each component is scaled by the variance of its respective dither

signal. (This is acceptable because at the maximum of a two dimensional map,

the gradient is zero, and the zero vector is zero no matter how its components

are scaled.) At the optimal point along the curve of constant lift, the gradient

should be perpendicular to the curve, but it should not in general be zero. If the

components of the gradient are unequally scaled, the direction of the gradient will

be incorrect and the calculated inner product will be incorrect. This causes the

optimization to fail. Of course this can be corrected if the relative amplitudes of the

dither signals are known, but in an application that uses atmospheric turbulence

to provide the dither signals, the relative amplitude of the dither signals is not

known.

This difficulty motivates the development of a new form of the gradient

estimator, one based on estimation error rather than simple demodulation. A

three-state gradient estimator is developed that creates an estimate of the lift to

drag ratio based on the measured Mach number and angle of attack. The states

represent 1) the lift to drag ratio at the current average Mach number and angle

of attack, 2) the slope with angle of attack, and 3) the slope with Mach number.

The difference between the estimated and the measured lift to drag ratio is used

as feedback for the gradient estimator. As the states converge the estimation error

approaches zero. The critical feature of this design is that the equilibrium value of

the gradient estimate does not depend on the amplitudes of the dither signals. The

gradient estimate can be used to accurately determine the slope along the curve

of constant lift. With this estimate of the slope, the optimal endurance speed can

be accurately found.

The paper begins with an overview of relevant aerodynamics. An extremum

seeking algorithm is then developed that finds the optimal endurance speed. (The
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new form of the gradient estimator is developed at this point.) Convergence to

the optimal airspeed is then shown through analysis and the algorithm is tested in

simulation.

4.3 Aerodynamics

This section presents background aerodynamic information relevant to the

following control development. Additional background can be found in [22].

4.3.1 Optimal Endurance

Endurance is the length of time an aircraft can remain airborne. For jet

aircraft, endurance in level flight may be optimized by flying at an airspeed that

minimizes drag, or equivalently that maximizes the lift to drag ratio. The lift to

drag ratio is a function of several variables, the most important, perhaps, being

angle of attack. In compressible flows, Mach number also has a significant effect.

As a function of angle of attack and Mach number, the optimal lift to drag ratio

is found at a point in a two-dimensional space; however, to maintain level flight

the aircraft must fly at a combination of Mach number and angle of attack that

produces lift equal to the weight of the aircraft. That is, in level flight an aircraft

is constrained to a curve of constant lift in a two-dimensional (Mach number, angle

of attack) space. The optimal endurance speed corresponds to the point on this

curve that produces the highest lift to drag ratio.

The optimal endurance speed generally varies with aircraft weight and alti-

tude. However, under certain common assumptions, it can be shown that optimal

endurance occurs at the same coefficient of lift. Assume that the coefficient of

lift increases with Mach number as 1/
√

1−M2 according to the Prandtl-Glauert

rule. Assume a quadratic drag polar that does not change with Mach number.

(Accounting for compressibility effects in this manner is valid for Mach numbers
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less than about 0.75 [45].) These two assumptions are expressed as

CL =
CL|M=0√
1−M2

(4.1)

CD = CD0 +
(CL|M=0)2

πAe
(4.2)

The lift to drag ratio is then

f =
L

D
=
CL

1
2
ρV 2S

CD
1
2
ρV 2S

=
CL
CD

=
CL

CD0 +
(CL|M=0)

2

πAe

=
CL

CD0 +
C2
L

πAe
(1−M2)

(4.3)

Mach number can be expressed in terms of lift and CL as

M =
V

a
=

1

a

√
L

CL
1
2
ρS

=

√
L

CL
1
2
ρa2S

(4.4)

so the lift to drag ratio can be written as a function of lift and CL

f(CL, L) =
CL

CD0 +
C2
L

πAe

(
1− L

CL
1
2
ρa2S

) =
CL

CD0 − CLL
πAe 1

2
ρa2S

+
C2
L

πAe

(4.5)

The lift to drag ratio at any given value of lift is maximized when the partial

derivative with respect to CL is zero. The partial derivative is

∂f(CL, L)

∂CL
=

CD0 −
C2
L

πAe(
CD0 − CLL

πAe 1
2
ρa2S

+
C2
L

πAe

)2 (4.6)

Setting this equal to zero and solving for the coefficient of lift gives

CL =
√
CD0πAe (4.7)

This optimal CL is a constant depending only on the parameters of the quadratic

drag polar. It does not vary with density or lift. Under the assumption of a

quadratic drag polar and the Prandtl-Glauert rule, the optimal airspeed for a

certain flight condition can be related to the optimal airspeed at another altitude

or aircraft weight by equating coefficients of lift.
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4.3.2 Measurement of Lift and Drag

Although lift and drag are not directly measurable, they can be computed

based on other quantities which may be more readily available. They can be cal-

culated based on longitudinal and vertical body axis accelerometer measurements

((ax − gx) and (az − gz), respectively) and estimates of aircraft mass (m), engine

thrust (T ), and the thrust angle (λ). Using a free body diagram like the one shown

in Fig. 4.1, lift can be calculated from the measured and estimated variables as

L = sinα [−T cosλ+m (ax − gx)] + cosα [−T sinλ+m (az − gz)] (4.8)

and drag can be calculated as

D = − cosα [−T cosλ+m (ax − gx)] + sinα [−T sinλ+m (az − gz)] . (4.9)

Equivalent small angle expressions are

L = m [α (ax − gx) + (az − gz)]− T (α + λ) (4.10)

and

D = T −m [(ax − gx)− α (az − gz)] , (4.11)

where angles are in radians.

4.3.3 Turbulence

Atmospheric turbulence is conventionally modeled as filtered gaussian white

noise. The longitudinal, lateral and vertical components are modeled indepen-

dently. The Dryden turbulence model is one commonly used atmospheric tur-

bulence model [24]. It specifies the spectra of the three components as follows:

Φug(Ω) = σ2
u

2Lu
π

1

1 + (LuΩ)2
(4.12a)

Φvg(Ω) = σ2
v

Lv
π

1 + 3(LvΩ)2

[1 + (LvΩ)2]2
(4.12b)

Φwg(Ω) = σ2
w

Lw
π

1 + 3(LwΩ)2

[1 + (LwΩ)2]2
. (4.12c)
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Figure 4.1: Aerodynamic forces and angles.

The spectra are given in terms of spatial frequency, which is converted to temporal

frequency ω by multiplying by the speed of the aircraft:

ω = ΩU0 . (4.13)

At medium to high altitudes (above 2,000 feet) the turbulence is assumed to be

isotropic. The characteristic lengths and the intensities in each direction are equal

to each other. A typical characteristic length is 1,750 feet. Intensities are charted

as a function of altitude. Moderate turbulence has a root mean square intensity

of about 10 ft/sec at 2,000 feet, decreasing roughly linearly to near zero at 60,000

feet.

Whereas lateral turbulence has little effect on the speed of an aircraft,

longitudinal turbulence has a direct effect on airspeed. Longitudinal turbulence

with a spectrum matching that given in (4.12a) can be obtained by passing white

noise through a filter of the form

σu

√
2Lu
U0

1
Lu
U0
s+ 1

. (4.14)

Vertical turbulence could be simulated by passing white noise through a filter of
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the form

σw

√
Lw
U0

1 +
√

3Lw
U0
s(

1 + Lw
U0
s
)2 (4.15)

but for simplicity this can be approximated as

σw

√
Lw
U0

1

1 + Lw
U0
s

(4.16)

4.4 Control Law

The equations required to implement the extremum seeking control law are

as follows:

f̂ , s1 + s2 (U − Vcmd) + s3 (V − Vcmd) (4.17a)

ṡ1 = k1

(
f − f̂

)
+ (s2 + s3) V̇cmd (4.17b)

ṡ2 = k2 (U − Vcmd)
(
f − f̂

)
+ σ2V̇cmd (4.17c)

ṡ3 = k3 (V − Vcmd)
(
f − f̂

)
+ σ3V̇cmd (4.17d)

V̇cmd = kES (s2 + s3) (4.17e)

where

f ,
L

D
≈ m [α (ax − gx) + (az − gz)]− T (α + λ)

T −m [(ax − gx)− α (az − gz)]
(4.18a)

U , V

√
mg

L
≈ V

√
mg

m [α (ax − gx) + (az − gz)]− T (α + λ)
(4.18b)

Details and motivations will be provided over the next several paragraphs.

The control law is a four-state nonlinear controller that provides as its

output an airspeed command (Vcmd) to an inner-loop airspeed controller (which is

assumed to already be in place). The inputs to the control law are the lift to drag

ratio (f), airspeed (V ), and equivalent steady state airspeed (U). These inputs

can be calculated from the following measured or approximated quantities: angle

of attack (α), engine thrust (T ), aircraft mass (m), longitudinal and vertical body

axis accelerometer readings ((ax−gx) and (az−gz)), thrust angle (λ), acceleration

due to gravity (g), and airspeed (V ). Small angle approximations of f and U in
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terms of these quantities are given in (4.18). The control law design parameters

are k1, k2, k3, kES, σ2, and σ3. [Note that σ2 and σ3 have no relation to the RMS

turbulence intensities σu, σv, and σw.]

Loosely speaking, the control law operates by determining a measurement of

the lift to drag ratio, determining if the lift to drag ratio improves with increasing or

decreasing airspeed, and adjusting the airspeed command until the highest possible

lift to drag ratio is achieved. Conceptually, an estimator, excited by transients in

Mach number and angle of attack, then approximates the gradient of the lift to drag

ratio. In level flight, a change in Mach number is always accompanied by a change

in angle of attack, so it is not possible to independently control both airspeed and

angle of attack. The optimal speed is that which provides the maximum lift to

drag ratio possible along a curve of constant lift in the angle of attack versus Mach

number plane. A gradient ascent is performed to the optimal point.

Seeking to implement such a control law, though, a number of difficulties

arise (not the least of which is that the non-linear relationship between angle of

attack and airspeed can destabilize the control system.) It is advantageous to

reformulate the lift to drag ratio as a function of two variables other than angle

of attack and Mach number. As a basis for the function, airspeed V is used in

place of Mach number. In place of angle of attack is used equivalent steady state

airspeed U , defined as the airspeed required to produce an amount of lift equal

to the weight of the aircraft while in flight at the current coefficient of lift and

altitude. The estimator approximates the gradient of the lift to drag ratio in the

(U, V ) plane. When the lift produced by the aircraft is equal to its weight, U is

equal to V , so in the (U, V ) plane, the curve of constant lift is simply U = V .

Based on the estimated gradient, the control law performs a gradient ascent along

this line towards the speed at which the maximum lift to drag ratio is achieved.

The extremum seeking algorithm is designed to use naturally occurring

disturbances such as atmospheric turbulence to provide sufficient excitation to

the estimator. The intensity of the turbulence is of course not known or constant;

neither are the relative intensities of the vertical component of turbulence (affecting

U) and the horizontal component (affecting V ). In such a situation, a standard
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extremum seeking algorithm (which estimates slope by demodulating the lift to

drag ratio with U and V ) produces slope estimates that are proportional to the

true slope, but the estimates are scaled by the square of the amplitudes of the

vertical and horizontal components of turbulence, respectively. If the two slope

estimates are scaled differently, the estimated slope along the line of constant lift

cannot be determined. Because of this, the control algorithm uses a gradient

estimator that is different from those commonly used in extremum seeking.

The gradient estimator is based on an estimate of the lift to drag ratio at

the current U and V . The estimate is linear in the three estimator states, with

the first state s1 representing the lift to drag ratio at the commanded airspeed in

steady flight, the second state s2 representing the slope of the lift to drag ratio

with U , and the third state s3 representing the slope with respect to V . The

states are updated based on the difference between the measured and estimated

lift to drag ratios (f and f̂). The slope of the lift to drag ratio along the line of

constant lift is the sum of the second and third estimator states (s2 and s3) and the

airspeed command is changed at a rate proportional to this slope. [The simplicity

seen in this calculation of the slope along the line of constant lift is part of the

motivation for reformulating f as a function of U and V . Calculating the slope

along the curve of constant lift in the angle of attack versus Mach number plane

is less than straightforward; the direction of a line tangent to the curve cannot be

found without assuming knowledge of the rate of change of CL with α, and the

fundamental goal of extremum seeking is to perform optimization without making

assumptions about aerodynamic characteristics of the aircraft.]

Note that several terms not related to estimation error appear in the estima-

tor equations. These terms (the last terms in (4.17b) (4.17c) and (4.17d)) improve

transient performance by providing an estimate of how the estimator states are

expected to change based on the rate of change of the airspeed command. As is

shown in the following analysis, this also has a positive effect on stability of the

algorithm. These terms are motivated by the expected change in the estimator

states given a change in Vcmd. For example, [(s2 + s3)V̇cmd] can be thought of as

[(fU+fV )V̇cmd] or [(df/dVcmd)V̇cmd], which is ḟ . This provides a sort of feedforward
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to s1 (which is the estimate of f) when Vcmd changes. The terms in the ṡ2 and ṡ3

equations are similarly motivated. In this way, the design parameters σ2 and σ3

can be thought of as a priori estimates of dfU/dVcmd and dfV /dVcmd, respectively.

Finally, a note about the order of the controller may be appropriate. The

controller estimates a gradient in two dimensions for what is essentially a one-

dimensional optimization. It is tempting to reformulate the problem as a one-

dimensional optimization in one dimension so that the order of the gradient esti-

mator can be reduced. Specifically, the gradient estimator could replace the two

states s2 and s3 (which estimate fU and fV respectively) with one state (say s2+3)

which directly estimates the sum fU + fV . Such a controller could be derived by

defining s2+3 , s2 + s3 and s2−3 , s2 − s3, rewriting the controller in terms of

these new variables, and dropping all terms containing s2−3. This would be pos-

sible because the new update law (V̇cmd = kES s2+3) would not depend on s2−3.

Furthermore, the expectation would be that disturbances accounted for by s2−3 in

the estimate of the lift to drag ratio f̂ would average to zero and could be ignored.

The problem is that disturbances in (U +V ) are likely to be strongly corre-

lated with disturbances in (U −V ). This is the case even if it is assumed that U is

not correlated with V because the amplitudes of the disturbances in U and V are

not the same size; in general, disturbances in U are larger than disturbances in V ,

even in isotropic turbulence (and given two uncorrelated random variables, their

sum is correlated with their difference unless their variances are equal). Although

not presented in this paper, it can be shown through analysis that this correla-

tion causes a bias in the estimate of the optimal endurance speed. Estimating the

gradient in two dimensions, rather than one, removes this source of bias.

4.5 Analysis

For the analysis, assume that measurements of f , U , and V are available and

implement the control law given in (4.17). Let f be a static map in two dimensions.

Assume that along the curve where lift equals the weight of the aircraft, the map

is convex. Assume stochastic perturbations in U and V that are each represented
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by filtered white noise. These stochastic perturbations approximate longitudinal

and vertical components of turbulence. Under these assumptions, U and V are

ε1 dη1 = −η1 dt+
√
ε1q1 dW1 (4.19a)

∆U = a1 sat η1 (4.19b)

U = v + ∆U (4.19c)

ε2 dη2 = −η2 dt+
√
ε2q2 dW2 (4.20a)

∆V = a2 sat η2 (4.20b)

V = v + ∆V (4.20c)

The saturation function is defined as

sat(η) =


η if −1 < η < 1

1 if η ≥ 1

−1 if η ≤ −1

(4.21)

It is included primarily for mathematical convenience, but also conveys the fact

that real turbulence has a finite amplitude. Approximate the aircraft’s control over

airspeed using simple first order dynamics:

v̇ =
1

τ
(Vcmd − V ) (4.22)

This simple aircraft model is used to limit the order of the system being analyzed;

other aircraft dynamics are subsumed in the stochastic perturbations to U and

V . The time constant involved in the aircraft’s control over airspeed is explicitly

modeled because the analysis in [34] shows it to have possible implications for

stability.
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With these models the closed loop system is

v̇ =
1

τ
(Vcmd − v − a2 sat η2) (4.23a)

ṡ1 = k1 (f − s1 − s2 (v + a1 sat η1 − Vcmd)− s3 (v + a2 sat η2 − Vcmd))

+ (s2 + s3) V̇cmd (4.23b)

ṡ2 = k2 (v + a1 sat η1 − Vcmd)

× (f − s1 − s2 (v + a1 sat η1 − Vcmd)− s3 (v + a2 sat η2 − Vcmd))

+ σ2V̇cmd (4.23c)

ṡ3 = k3 (v + a2 sat η2 − Vcmd)

× (f − s1 − s2 (v + a1 sat η1 − Vcmd)− s3 (v + a2 sat η2 − Vcmd))

+ σ3V̇cmd (4.23d)

V̇cmd = kES (s2 + s3) (4.23e)

ε1 dη1 = − η1 dt+
√
ε1q1 dW1 (4.23f)

ε2 dη2 = − η2 dt+
√
ε2q2 dW2 (4.23g)

It is this closed loop system that is considered in the following analysis.

Theorem 2. Consider system (4.23) where f = f(U, V ) = f(v + a1 sat η1, v +

a2 sat η2) is a two-dimensional map that, along the line V = U , is convex with a

maximum at (V∗, V∗). Assume all constants are positive, with the exception of σ2

and σ3, which are chosen so that σ3 <
1
2

(fV V ∗ − fUU∗) and σ2 <
1
2

(fUU∗ − fV V ∗).

Let constants C2 and C4 be defined by

C2(qi) ,
q2
i

2
erf

1

qi
− qi√

π
e
− 1

q2
i + 1− erf

1

qi
(4.24a)

C4(qi) ,
3

4
q4
i erf

1

qi
− qi√

π
e
− 1

q2
i

(
1 +

3

2
q2
i

)
+ 1− erf

1

qi
. (4.24b)

Suppose f(U, V ) is three times differentiable at (V∗, V∗). Then there exists a con-

stant a∗ such that for any 0 < (a1, a2) < a∗ there exist constants r > 0, c > 0, γ > 0

and a function T (ε1, ε2) : (0, ε0)×(0, ε0)→ N with the property limε1,ε2→0 T (ε1, ε2) =
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∞ such that for any initial condition |∆ε,a(0)| < r, and any δ > 0,

lim
ε1,ε2→0

inf
{
t ≥ 0 : |∆ε,a(t)| > c|∆ε,a(0)|e−γt +O(a4

1a
−1
2 ) +O(a3

1)

+O(a2
1a2) +O(a1a

2
2) +O(a3

2) +O(a−1
1 a4

2) + δ
}

=∞, a.s. (4.25)

and

lim
ε1,ε2→0

P
{
|∆ε,a(t)| ≤ c|∆ε,a(0)|e−γt +O(a4

1a
−1
2 ) +O(a3

1) +O(a2
1a2)

+O(a1a
2
2) +O(a3

2) +O(a−1
1 a4

2) + δ, ∀t ∈ [0, T (ε1, ε2)]
}

= 1, (4.26)
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where ∆ε,a(t) ,



v(t)

s1(t)

s2(t)

s3(t)

Vcmd(t)


−



v̄

s̄1

s̄2

s̄3

V̄cmd


and

v̄ = V∗ −
fUUU∗C4(q1) + 3fUUV ∗ (C2(q1))2

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q1)
a2

1 (4.27a)

− 3fUV V ∗ (C2(q2))2 + fV V V ∗C4(q2)

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q2)
a2

2 (4.27b)

s̄1 = f∗ +
1

2

[
fUU∗a

2
1C2(q1) + fV V ∗a

2
2C2(q2)

]
(4.27c)

s̄2 = fU∗ − (fUU∗ + fUV ∗)

×

[
fUUU∗C4(q1) + 3fUUV ∗ (C2(q1))2

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q1)
a2

1

+
3fUV V ∗ (C2(q2))2 + fV V V ∗C4(q2)

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q2)
a2

2

]

+
1

6
fUUU∗a

2
1

C4(q1)

C2(q1)
+

1

2
fUV V ∗a

2
2C2(q2) (4.27d)

s̄3 = fV ∗ − (fUV ∗ + fV V ∗)

×

[
fUUU∗C4(q1) + 3fUUV ∗ (C2(q1))2

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q1)
a2

1

+
3fUV V ∗ (C2(q2))2 + fV V V ∗C4(q2)

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q2)
a2

2

]

+
1

2
fUUV ∗a

2
1C2(q1) +

1

6
fV V V ∗a

2
2

C4(q2)

C2(q2)
(4.27e)

V̄cmd = V∗ −
fUUU∗C4(q1) + 3fUUV ∗ (C2(q1))2

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q1)
a2

1 (4.27f)

− 3fUV V ∗ (C2(q2))2 + fV V V ∗C4(q2)

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q2)
a2

2 (4.27g)

Theorem 2 roughly states that the stochastic system converges on aver-

age to the airspeed for optimal endurance, with a bias that is proportional to

the square of the turbulence intensity and the third partial derivatives of the lift

to drag ratio map. (Mathematically speaking, the system converges both almost
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surely and in probability.) The theorem concerns system behavior for small turbu-

lence intensities and for timescales that are long compared to the turbulence time

constants.

4.5.1 Proof of Theorem

The average system is formed by performing stochastic averaging over the

invariant distributions of η1 and η2. The distributions of the stochastic variables

are given by

µ(dη) =
1√
πq
e
− η

2

q2 dη (4.28)

where the appropriate subscript is to be appended to η and q. Note that∫ ∞
−∞

µ(dη) = 1 (4.29)∫ ∞
−∞

(sat η)kµ(dη) = 0 for k = 1,3,5,. . . (4.30)∫ ∞
−∞

(sat η)2µ(dη) = C2(q) (4.31)∫ ∞
−∞

(sat η)4µ(dη) = C4(q) (4.32)

Taking v̇ as an example, averaging over both stochastic variables gives

v̇ =

∫ ∞
−∞

∫ ∞
−∞

1

τ
(Vcmd − v − a2 sat η2)µ(dη1)µ(dη2)

=

∫ ∞
−∞

1

τ
(Vcmd − v − a2 sat η2)µ(dη2)

=
1

τ
(Vcmd − v) (4.33)

After performing similar averaging on all dynamic equations, the average system
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is

v̇ =
1

τ
(Vcmd − v) (4.34a)

ṡ1 = k1

(∫ ∞
−∞

∫ ∞
−∞

fµ(dη1)µ(dη2)− s1 − s2 (v − Vcmd)− s3 (v − Vcmd)
)

+ (s2 + s3) V̇cmd (4.34b)

ṡ2 = k2 (v − Vcmd)

×
(∫ ∞
−∞

∫ ∞
−∞

fµ(dη1)µ(dη2)− s1 − s2 (v − Vcmd)− s3 (v − Vcmd)
)

+ k2

(∫ ∞
−∞

∫ ∞
−∞

a1 sat η1fµ(dη1)µ(dη2)− s2a
2
1C2(q1)

)
+ σ2V̇cmd (4.34c)

ṡ3 = k3 (v − Vcmd)

×
(∫ ∞
−∞

∫ ∞
−∞

fµ(dη1)µ(dη2)− s1 − s2 (v − Vcmd)− s3 (v − Vcmd)
)

+ k3

(∫ ∞
−∞

∫ ∞
−∞

a2 sat η2fµ(dη1)µ(dη2)− s3a
2
2C2(q2)

)
+ σ3V̇cmd (4.34d)

V̇cmd = kES (s2 + s3) (4.34e)

At equilibrium, setting the time derivatives to zero and assuming non-zero

constants, the system of equations reduces to

0 = Vcmd − v (4.35a)

0 =

∫ ∞
−∞

∫ ∞
−∞

fµ(dη1)µ(dη2)− s1 (4.35b)

0 =

∫ ∞
−∞

∫ ∞
−∞

a1 sat η1fµ(dη1)µ(dη2)− s2a
2
1C2(q1) (4.35c)

0 =

∫ ∞
−∞

∫ ∞
−∞

a2 sat η2fµ(dη1)µ(dη2)− s3a
2
2C2(q2) (4.35d)

0 = s2 + s3 (4.35e)

To evaluate the integrals in questions, take a two-dimensional Taylor expansion of
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v in a1 and a2:

v = n0 + [n1a1 + n2a2] +
[
n11a

2
1 + n12a1a2 + n22a

2
2

]
+
[
n111a

3
1 + n112a

2
1a2 + n122a1a

2
2 + n222a

3
2

]
+O(a4

1) +O(a3
1a2) +O(a2

1a
2
2) +O(a1a

3
2) +O(a4

2) (4.36)

Note that U and V can be expressed in terms of v:

U = v + a1 sat η1 (4.37a)

V = v + a2 sat η2 (4.37b)

Then

U = n0 + [n1a1 + n2a2] +
[
n11a

2
1 + n12a1a2 + n22a

2
2

]
+
[
n111a

3
1 + n112a

2
1a2 + n122a1a

2
2 + n222a

3
2

]
+ a1 sat η1 +O(a4

1) +O(a3
1a2) +O(a2

1a
2
2) +O(a1a

3
2) +O(a4

2) (4.38)

V = n0 + [n1a1 + n2a2] +
[
n11a

2
1 + n12a1a2 + n22a

2
2

]
+
[
n111a

3
1 + n112a

2
1a2 + n122a1a

2
2 + n222a

3
2

]
+ a2 sat η2 +O(a4

1) +O(a3
1a2) +O(a2

1a
2
2) +O(a1a

3
2) +O(a4

2) (4.39)

Use these expressions in a two-dimensional Taylor expansion of f , which is a func-

tion of U and V . Let the expansion be centered at the point (n0, n0). The notation

f0 is used to mean the value of the lift to drag ratio at this point. Similarly, fU0

is used to mean the partial derivative of the lift to drag ratio with respect to U at

the same point; fV 0 is the partial derivative with respect to V ; fUV 0 and similar
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denote higher partial derivatives. The expansion of f is

f = f0 + [fU0 (U − n0) + fV 0 (V − n0)]

+
1

2

[
fUU0 (U − n0)2 + 2fUV 0 (U − n0) (V − n0) + fV V 0 (V − n0)2]

+
1

3!

[
fUUU0 (U − n0)3 + 3fUUV 0 (U − n0)2 (V − n0)

+ 3fUV V 0 (U − n0) (V − n0)2 + fV V V 0 (V − n0)3
]

+O
(
(U − n0)4)

+O
(
(U − n0)3 (V − n0)

)
+O

(
(U − n0)2 (V − n0)2)

+O
(
(U − n0) (V − n0)3)

+O
(
(V − n0)4) (4.40)

The expression (U − n0) simplifies by the cancellation of the n0 terms to the

following:

U − n0 = [n1a1 + n2a2] +
[
n11a

2
1 + n12a1a2 + n22a

2
2

]
+
[
n111a

3
1 + n112a

2
1a2 + n122a1a

2
2 + n222a

3
2

]
+ a1 sat η1 +O(a4

1) +O(a3
1a2) +O(a2

1a
2
2) +O(a1a

3
2) +O(a4

2) (4.41)

Note that

O (U − n0) = O(a1) +O(a2) (4.42)

Similarly

V − n0 = [n1a1 + n2a2] +
[
n11a

2
1 + n12a1a2 + n22a

2
2

]
+
[
n111a

3
1 + n112a

2
1a2 + n122a1a

2
2 + n222a

3
2

]
+ a2 sat η2 +O(a4

1) +O(a3
1a2) +O(a2

1a
2
2) +O(a1a

3
2) +O(a4

2) (4.43)

and

O (V − n0) = O(a1) +O(a2) (4.44)
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Substituting the Taylor expansions of U and V into the expansion of f and

simplifying gives

f = f0

+

[
fU0

(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

]
+
[
n111a

3
1 + n112a

2
1a2 + n122a1a

2
2 + n222a

3
2

]
+ a1 sat η1

)
+ fV 0

(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

]
+
[
n111a

3
1 + n112a

2
1a2 + n122a1a

2
2 + n222a

3
2

]
+ a2 sat η2

)]
+

1

2

[
fUU0

(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

]
+ a1 sat η1

)2

+ 2fUV 0

(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

]
+ a1 sat η1

)
×
(

[n1a1 + n2a2] +
[
n11a

2
1 + n12a1a2 + n22a

2
2

]
+ a2 sat η2

)
+ fV V 0

(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

]
+ a2 sat η2)

)2
]

+
1

3!

[
fUUU0

(
[n1a1 + n2a2] + a1 sat η1

)3

+ 3fUUV 0

(
[n1a1 + n2a2] + a1 sat η1

)2(
[n1a1 + n2a2] + a2 sat η2

)
+ 3fUV V 0

(
[n1a1 + n2a2] + a1 sat η1

)(
[n1a1 + n2a2] + a2 sat η2

)2

+ fV V V 0

(
[n1a1 + n2a2] + a2 sat η2

)3
]

+O(a4
1) +O(a3

1a2) +O(a2
1a

2
2) +O(a1a

3
2) +O(a4

2) (4.45)
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The integrals in (4.35) are then∫ ∞
−∞

∫ ∞
−∞

fµ(dη1)µ(dη2) = f0

+

[
fU0

(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

]
+
[
n111a

3
1 + n112a

2
1a2 + n122a1a

2
2 + n222a

3
2

] )
+ fV 0

(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

]
+
[
n111a

3
1 + n112a

2
1a2 + n122a1a

2
2 + n222a

3
2

] )]
+

1

2

[
fUU0

( (
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

])2
+ a2

1C2(q1)
)

+ 2fUV 0

(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

] )
×
(

[n1a1 + n2a2] +
[
n11a

2
1 + n12a1a2 + n22a

2
2

] )
+ fV V 0

( (
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

])2
+ a2

2C2(q2)
)]

+
1

3!

[
fUUU0

(
[n1a1 + n2a2]3 + 3 [n1a1 + n2a2] a2

1C2(q1)
)

+ 3fUUV 0

(
[n1a1 + n2a2]2 + a2

1C2(q1)
)(

[n1a1 + n2a2]
)

+ 3fUV V 0

(
[n1a1 + n2a2]

)(
[n1a1 + n2a2] + a2

2C2(q2)
)

+ fV V V 0

(
[n1a1 + n2a2]3 + 3 [n1a1 + n2a2] a2

2C2(q2)
)]

+O(a4
1) +O(a3

1a2) +O(a2
1a

2
2) +O(a1a

3
2) +O(a4

2) (4.46)
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∫ ∞
−∞

∫ ∞
−∞

a1 sat η1fµ(dη1)µ(dη2) =[
fU0a

2
1C2(q1)

]
+

1

2

[
fUU0

(
2a2

1C2(q1)
(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

]) )
+ 2fUV 0

(
a2

1C2(q1)
)(

[n1a1 + n2a2] +
[
n11a

2
1 + n12a1a2 + n22a

2
2

] )]
+

1

3!

[
fUUU0

(
[n1a1 + n2a2]2 a2

1C2(q1) + a4
1C4(q1)

)
+ 3fUUV 0

(
2a2

1C2(q1) [n1a1 + n2a2]
)(

[n1a1 + n2a2]
)

+ 3fUV V 0

(
a2

1C2(q1)
)(

[n1a1 + n2a2]2 + a2
2C2(q2)

)]
+O(a5

1) +O(a4
1a2) +O(a3

1a
2
2) +O(a2

1a
3
2) +O(a1a

4
2)

= fU0a
2
1C2(q1)

+ fUU0a
2
1C2(q1)

(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

])
+ fUV 0a

2
1C2(q1)

(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

])
+

1

6
fUUU0

(
[n1a1 + n2a2]2 a2

1C2(q1) + a4
1C4(q1)

)
+ fUUV 0a

2
1C2(q1) [n1a1 + n2a2]2

+
1

2
fUV V 0a

2
1C2(q1)

(
[n1a1 + n2a2]2 + a2

2C2(q2)
)

+O(a5
1) +O(a4

1a2) +O(a3
1a

2
2) +O(a2

1a
3
2) +O(a1a

4
2) (4.47)
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∫ ∞
−∞

∫ ∞
−∞

a2 sat η2fµ(dη1)µ(dη2) =[
fV 0a

2
2C2(q2)

]
+

1

2

[
2fUV 0

(
a2

2C2(q2)
)(

[n1a1 + n2a2] +
[
n11a

2
1 + n12a1a2 + n22a

2
2

]
+ fV V 0

(
2a2

2C2(q2)
(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

]) ))]
+

1

3!

[
3fUUV 0

(
a2

2C2(q2)
)(

[n1a1 + n2a2]2 + a2
1C2(q1)

)
+ 3fUV V 0

(
2a2

2C2(q2) [n1a1 + n2a2]
)(

[n1a1 + n2a2]
)

+ fV V V 0

(
[n1a1 + n2a2]2 a2

2C2(q2) + a4
2C4(q2)

)]
+O(a4

1a2) +O(a3
1a

2
2) +O(a2

1a
3
2) +O(a1a

4
2) +O(a5

2)

= fV 0a
2
2C2(q2)

+ fUV 0a
2
2C2(q2)

(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

])
+ fV V 0a

2
2C2(q2)

(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

])
+

1

2
fUUV 0a

2
2C2(q2)

(
[n1a1 + n2a2]2 + a2

1C2(q1)
)

+ fUV V 0a
2
2C2(q2) [n1a1 + n2a2]2

+
1

6
fV V V 0

(
[n1a1 + n2a2]2 a2

2C2(q2) + a4
2C4(q2)

)
+O(a4

1a2) +O(a3
1a

2
2) +O(a2

1a
3
2) +O(a1a

4
2) +O(a5

2) (4.48)
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Solving (4.35c) and (4.35d) for s2 and s3 gives

s2 = fU0

+ fUU0

(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

])
+ fUV 0

(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

])
+

1

6
fUUU0

(
[n1a1 + n2a2]2 + a2

1

C4(q1)

C2(q1)

)
+ fUUV 0 [n1a1 + n2a2]2

+
1

2
fUV V 0

(
[n1a1 + n2a2]2 + a2

2C2(q2)
)

+O(a3
1) +O(a2

1a2) +O(a1a
2
2) +O(a3

2) +O(a−1
1 a4

2) (4.49)

s3 = fV 0

+ fUV 0

(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

])
+ fV V 0

(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

])
+

1

2
fUUV 0

(
[n1a1 + n2a2]2 + a2

1C2(q1)
)

+ fUV V 0 [n1a1 + n2a2]2

+
1

6
fV V V 0

(
[n1a1 + n2a2]2 + a2

2

C4(q2)

C2(q2)

)
+O(a4

1a
−1
2 ) +O(a3

1) +O(a2
1a2) +O(a1a

2
2) +O(a3

2) (4.50)

Substituting these expressions into (4.35e) gives

0 = fU0 + fV 0

+ (fUU0 + 2fUV 0 + fV V 0)
(
[n1a1 + n2a2] +

[
n11a

2
1 + n12a1a2 + n22a

2
2

])
+

1

6
fUUU0

(
[n1a1 + n2a2]2 + a2

1

C4(q1)

C2(q1)

)
+

1

2
fUUV 0

(
3 [n1a1 + n2a2]2 + a2

1C2(q1)
)

+
1

2
fUV V 0

(
3 [n1a1 + n2a2]2 + a2

2C2(q2)
)

+
1

6
fV V V 0

(
[n1a1 + n2a2]2 + a2

2

C4(q2)

C2(q2)

)
+O(a4

1a
−1
2 ) +O(a3

1) +O(a2
1a2) +O(a1a

2
2) +O(a3

2) +O(a−1
1 a4

2) (4.51)
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This equation is a polynomial in a1 and a2, so for the expression to be equal to

zero the coefficients of each power of a must each be zero. Equating coefficients

gives

a0 : 0 = fU0 + fV 0 (4.52a)

a1
1 : 0 = (fUU0 + 2fUV 0 + fV V 0)n1 (4.52b)

a1
2 : 0 = (fUU0 + 2fUV 0 + fV V 0)n2 (4.52c)

a2
1 : 0 = (fUU0 + 2fUV 0 + fV V 0)n11

+
1

6
fUUU0

(
n2

1 +
C4(q1)

C2(q1)

)
+

1

2
fUUV 0

(
3n2

1 + C2(q1)
)

+
1

2
fUV V 0

(
3n2

1

)
+

1

6
fV V V 0

(
n2

1

)
(4.52d)

a1a2 : 0 = (fUU0 + 2fUV 0 + fV V 0)n12

+
1

6
fUUU0 (2n1n2) +

1

2
fUUV 0 (6n1n2)

+
1

2
fUV V 0 (6n1n2) +

1

6
fV V V 0 (2n1n2) (4.52e)

a2
2 : 0 = (fUU0 + 2fUV 0 + fV V 0)n22

+
1

6
fUUU0

(
n2

2

)
+

1

2
fUUV 0

(
3n2

2

)
+

1

2
fUV V 0

(
3n2

2 + C2(q2)
)

+
1

6
fV V V 0

(
n2

2 +
C4(q2)

C2(q2)

)
(4.52f)

At this point consider the nature of the map. In steady flight, the aircraft is

confined to the line U = V . Therefore, the optimal airspeed, which we will denote

by V∗, is that point at which the component of the gradient in the direction of that

line is zero. That is

∂f

∂U

∣∣∣∣
V∗

+
∂f

∂V

∣∣∣∣
V∗

= fU∗ + fV ∗ = 0 (4.53)

Recall that the f0 notation concerns the lift to drag ratio at the point (n0, n0).

Assuming that along the line U = V the map has a unique maximum, the a0

equation requires that

n0 = V∗ (4.54)
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If the maximum is unique, then the curvature at that point along the line U = V

is non zero (specifically, negative). The curvature along this line is

∂

∂U

[
∂f

∂U
+
∂f

∂V

]∣∣∣∣
V∗

+
∂

∂V

[
∂f

∂U
+
∂f

∂V

]∣∣∣∣
V∗

=
∂2f

(∂U)2

∣∣∣∣
V∗

+ 2
∂2f

∂U∂V

∣∣∣∣
V∗

+
∂2f

(∂V )2

∣∣∣∣
V∗

= fUU∗ + 2fUV ∗ + fV V ∗ < 0 (4.55)

Since n0 = V∗, this means that f0 is the same as f∗, and all derivatives are the

same as well. Since the quantity in (4.55) is negative and therefore non-zero, it

can be divided out of (4.52b) and (4.52c) to give

n1 = 0 (4.56)

n2 = 0 (4.57)

This simplifies the remaining equations in (4.52). They become

a2
1 : 0 = (fUU∗ + 2fUV ∗ + fV V ∗)n11 +

1

6
fUUU∗

C4(q1)

C2(q1)
+

1

2
fUUV ∗C2(q1) (4.58a)

a1a2 : 0 = (fUU∗ + 2fUV ∗ + fV V ∗)n12 (4.58b)

a2
2 : 0 = (fUU∗ + 2fUV ∗ + fV V ∗)n22 +

1

2
fUV V ∗C2(q2) +

1

6
fV V V ∗

C4(q2)

C2(q2)
(4.58c)

which gives

n11 = −fUUU∗C4(q1) + 3fUUV ∗ (C2(q1))2

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q1)
(4.59)

n12 = 0 (4.60)

n22 = −3fUV V ∗ (C2(q2))2 + fV V V ∗C4(q2)

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q2)
(4.61)

Substituting the obtained values of that n0 n1 n2 n11 n12 and n22 back into the

original Taylor expansion (4.36) gives a second order expression for the equilibrium

value of v:

v = V∗ −
fUUU∗C4(q1) + 3fUUV ∗ (C2(q1))2

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q1)
a2

1 −
3fUV V ∗ (C2(q2))2 + fV V V ∗C4(q2)

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q2)
a2

2

+O(a3
1) +O(a2

1a2) +O(a1a
2
2) +O(a3

2) (4.62)
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Using the coefficients in (4.49) and (4.50) gives the equilibrium values of s2 and s3

as

s2 = fU∗

− (fUU∗ + fUV ∗)

[
fUUU∗C4(q1) + 3fUUV ∗ (C2(q1))2

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q1)
a2

1

+
3fUV V ∗ (C2(q2))2 + fV V V ∗C4(q2)

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q2)
a2

2

]

+
1

6
fUUU∗a

2
1

C4(q1)

C2(q1)
+

1

2
fUV V ∗a

2
2C2(q2)

+O(a3
1) +O(a2

1a2) +O(a1a
2
2) +O(a3

2) +O(a−1
1 a4

2) (4.63)

s3 = fV ∗

− (fUV ∗ + fV V ∗)

[
fUUU∗C4(q1) + 3fUUV ∗ (C2(q1))2

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q1)
a2

1

+
3fUV V ∗ (C2(q2))2 + fV V V ∗C4(q2)

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q2)
a2

2

]

+
1

2
fUUV ∗a

2
1C2(q1) +

1

6
fV V V ∗a

2
2

C4(q2)

C2(q2)

+O(a4
1a
−1
2 ) +O(a3

1) +O(a2
1a2) +O(a1a

2
2) +O(a3

2) (4.64)

Using (4.53) the equilibrium value of s1 is

s1 = f +
1

2

[
fUU∗a

2
1C2(q1) + fV V ∗a

2
2C2(q2)

]
+O(a3

1) +O(a2
1a2) +O(a1a

2
2) +O(a3

2)

(4.65)
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So the average system has an equilibrium point at

v = V∗ −
fUUU∗C4(q1) + 3fUUV ∗ (C2(q1))2

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q1)
a2

1

− 3fUV V ∗ (C2(q2))2 + fV V V ∗C4(q2)

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q2)
a2

2

+O(a3
1) +O(a2

1a2) +O(a1a
2
2) +O(a3

2) (4.66a)

s1 = f∗ +
1

2

[
fUU∗a

2
1C2(q1) + fV V ∗a

2
2C2(q2)

]
+O(a3

1) +O(a2
1a2) +O(a1a

2
2) +O(a3

2) (4.66b)

s2 = fU∗ − (fUU∗ + fUV ∗)

[
fUUU∗C4(q1) + 3fUUV ∗ (C2(q1))2

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q1)
a2

1

+
3fUV V ∗ (C2(q2))2 + fV V V ∗C4(q2)

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q2)
a2

2

]

+
1

6
fUUU∗a

2
1

C4(q1)

C2(q1)
+

1

2
fUV V ∗a

2
2C2(q2)

+O(a3
1) +O(a2

1a2) +O(a1a
2
2) +O(a3

2) +O(a−1
1 a4

2) (4.66c)

s3 = fV ∗ − (fUV ∗ + fV V ∗)

[
fUUU∗C4(q1) + 3fUUV ∗ (C2(q1))2

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q1)
a2

1

+
3fUV V ∗ (C2(q2))2 + fV V V ∗C4(q2)

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q2)
a2

2

]

+
1

2
fUUV ∗a

2
1C2(q1) +

1

6
fV V V ∗a

2
2

C4(q2)

C2(q2)

+O(a4
1a
−1
2 ) +O(a3

1) +O(a2
1a2) +O(a1a

2
2) +O(a3

2) (4.66d)

Vcmd = V∗ −
fUUU∗C4(q1) + 3fUUV ∗ (C2(q1))2

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q1)
a2

1

− 3fUV V ∗ (C2(q2))2 + fV V V ∗C4(q2)

6 (fUU∗ + 2fUV ∗ + fV V ∗)C2(q2)
a2

2

+O(a3
1) +O(a2

1a2) +O(a1a
2
2) +O(a3

2) (4.66e)

To aid understanding, a lower order approximation of the equilibrium point is
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given below.

v = V∗ +O(a2
1) +O(a1a2) +O(a2

2) (4.67a)

s1 = f∗ +O(a2
1) +O(a1a2) +O(a2

2) (4.67b)

s2 = fU∗ +O(a2
1) +O(a1a2) +O(a2

2) +O(a−1
1 a3

2) (4.67c)

s3 = fV ∗ +O(a3
1a
−1
2 ) +O(a2

1) +O(a1a2) +O(a2
2) (4.67d)

Vcmd = V∗ +O(a2
1) +O(a1a2) +O(a2

2) (4.67e)

Next, the stability of the equilibrium point is tested. The Jacobian of

the average system in terms of the variables (v, s1, s2, s3, Vcmd), evaluated at the

equilibrium point (veq, veq), is

J =



− 1
τ

0 0 0 1
τ

J2,1 −k1 0 0 0

J3,1 0 −k2a
2
1C2(q1) + σ2kES σ2kES 0

J4,1 0 σ3kES −k3a
2
2C2(q2) + σ3kES 0

0 0 kES kES 0


(4.68)

The expresssions for the remaining elements are

J2,1 = k1
∂

∂v

[∫ ∞
−∞

∫ ∞
−∞

fµ(dη1)µ(dη2)

]∣∣∣∣
v=veq

(4.69)

J3,1 = k2
∂

∂v

[∫ ∞
−∞

∫ ∞
−∞

a1 sat η1fµ(dη1)µ(dη2)

]∣∣∣∣
v=veq

(4.70)

J4,1 = k3
∂

∂v

[∫ ∞
−∞

∫ ∞
−∞

a2 sat η2fµ(dη1)µ(dη2)

]∣∣∣∣
v=veq

(4.71)

where the partial derivatives are evaluated at the equilibrium point. The charac-



107

teristic polynomial is

det(sI − J)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s+ 1
τ

0 0 0 − 1
τ

−J2,1 s+ k1 0 0 0

−J3,1 0 s+ k2a
2
1C2(q1)− σ2kES −σ2kES 0

−J4,1 0 −σ3kES s+ k3a
2
2C2(q2)− σ3kES 0

0 0 −kES −kES s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (s+ k1)

{
s4

+

[
k2a

2
1C2(q1) + k3a

2
2C2(q2)− kES (σ3 + σ2) +

1

τ

]
s3

+

[
k2k3a

2
1a

2
2C2(q1)C2(q2)− kES

(
σ2k3a

2
2C2(q2) + σ3k2a

2
1C2(q1)

)
+

1

τ

(
k2a

2
1C2(q1) + k3a

2
2C2(q2)− kES (σ3 + σ2)

) ]
s2

+

[
1

τ

(
k2k3a

2
1a

2
2C2(q1)C2(q2)

− kES
(
σ2k3a

2
2C2(q2) + σ3k2a

2
1C2(q1) + J3,1 + J4,1

) )]
s

+

[
−1

τ
kES

(
J4,1k2a

2
1C2(q1) + J3,1k3a

2
2C2(q2)

)]}
(4.72)

The ṡ1 dynamics decouple from the rest of the system, leaving a fourth order

polynomial. (The ṡ1 dynamics are stable for any positive k1.) The coefficients of

the remaining fourth order polynomial must all be positive for the system to be

stable. In addition, using the Routh-Hurwitz criteria to examine a polynomial of

the form s4 + bs3 + cs2 +ds+e it can be shown that if the inequality bcd > b2e+d2

holds, then the system is stable.

The s3 and s2 coefficients are positive if the gains k2 k3 and kES are chosen

positive and the parameters σ2 and σ3 are chosen negative, but the remaining

stability conditions depend on J3,1 and J4,1. In order to keep the analysis applicable

to a general map, approximations are sought that are valid for small turbulence

intensities.
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Now the lift to drag ratio f is a function of U and V , but both U and V can

be written as functions of v (see (4.37)). The lift to drag ratio can be approximated

using a Taylor expansion around an arbitrary point (v, v):

f = fv + [fUv (U − v) + fV v (V − v)]

+
1

2

[
fUUv (U − v)2 + 2fUV v (U − v) (V − v) + fV V v (V − v)2]

+O
(
(U − v)3)

+O
(
(U − v)2 (V − v)

)
+O

(
(U − v) (V − v)2)

+O
(
(V − v)3) (4.73)

Here, the notation fv is used to refer to the value of f at the arbitrary point (v, v)

as f0 was used to refer to the value of f at the point (n0, n0) above; it does not

denote a derivative with respect to v. Substituting (4.37) into (4.73) gives

f = fv + [fUv (a1 sat η1) + fV v (a2 sat η2)]

+
1

2

[
fUUv (a1 sat η1)2 + 2fUV v (a1 sat η1) (a2 sat η2) + fV V v (a2 sat η2)2]

+O
(
(a1 sat η1)3)

+O
(
(a1 sat η1)2 a2 sat η2

)
+O

(
a1 sat η1 (a2 sat η2)2)

+O
(
(a2 sat η2)3) (4.74)

Using this expression for f , the integrals in (4.70) and (4.71) can be evaluated.

After simplification they reduce to∫ ∞
−∞

∫ ∞
−∞

a1 sat η1fµ(dη1)µ(dη2) = fUva
2
1C2(q1)

+O
(
a4

1

)
+O

(
a3

1a2

)
+O

(
a2

1a
2
2

)
+O

(
a1a

3
2

)
(4.75)∫ ∞

−∞

∫ ∞
−∞

a2 sat η2fµ(dη1)µ(dη2) = fV va
2
2C2(q2)

+O
(
a3

1a2

)
+O

(
a2

1a
2
2

)
+O

(
a1a

3
2

)
+O

(
a4

2

)
(4.76)
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Now since U and V both vary directly with v, the partial derivative with respect

to v can be expressed as the sum of the partial derivatives with respect to U and

V :

∂

∂v
=

∂

∂U

∂U

∂v
+

∂

∂V

∂V

∂v
=

∂

∂U
+

∂

∂V
(4.77)

Taking these partial derivatives of the integrals (4.75) and (4.76) and evaluating

at the equilibrium point (veq, veq) gives

J3,1 = k2
∂

∂v

[∫ ∞
−∞

∫ ∞
−∞

a1 sat η1fµ(dη1)µ(dη2)

]∣∣∣∣
v=veq

= k2

(
∂

∂U
[fUv] +

∂

∂V
[fUv]

)∣∣∣∣
v=veq

a2
1C2(q1)

+O
(
a4

1

)
+O

(
a3

1a2

)
+O

(
a2

1a
2
2

)
+O

(
a1a

3
2

)
= k2 (fUUeq + fUV eq) a2

1C2(q1) +O
(
a4

1

)
+O

(
a3

1a2

)
+O

(
a2

1a
2
2

)
+O

(
a1a

3
2

)
(4.78a)

and similarly

J4,1 = k3 (fUV eq + fV V eq) a2
2C2(q2) +O

(
a3

1a2

)
+O

(
a2

1a
2
2

)
+O

(
a1a

3
2

)
+O

(
a4

2

)
(4.78b)

Since these are already small a1, a2 approximation, note that the above expres-

sions can be equivalently stated in terms of the second partial derivatives at the

maximum of the map, since for small a1, a2 the equilibrium point approaches the

maximum of the map. That is, since

veq = V∗ +O(a2
1) +O(a1a2) +O(a2

2) (4.79)

we can say

fUUeq = fUU∗ +O(a2
1) +O(a1a2) +O(a2

2) (4.80)

and similarly with other derivatives. Then

J3,1 = k2 (fUU∗ + fUV ∗) a
2
1C2(q1) +O

(
a4

1

)
+O

(
a3

1a2

)
+O

(
a2

1a
2
2

)
+O

(
a1a

3
2

)
(4.81a)

J4,1 = k3 (fUV ∗ + fV V ∗) a
2
2C2(q2) +O

(
a3

1a2

)
+O

(
a2

1a
2
2

)
+O

(
a1a

3
2

)
+O

(
a4

2

)
(4.81b)
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With these approximations, the characteristic polynomial can be written for small

a1, a2 as

(s+ k1)

{
s4

+

[
−kES (σ3 + σ2) +

1

τ
+O

(
a2

1

)
+O

(
a2

2

)]
s3

+

[
−kES

τ
(σ3 + σ2) +O

(
a2

1

)
+O

(
a2

2

) ]
s2

+

[
−kES

τ

(
k2 (fUU∗ + fUV ∗ + σ3) a2

1C2(q1) + k3 (fUV ∗ + fV V ∗ + σ2) a2
2C2(q2)

)
+O

(
a4

1

)
+O

(
a3

1a2

)
+O

(
a2

1a
2
2

)
+O

(
a1a

3
2

)
+O

(
a4

2

) ]
s

+

[
−1

τ
kESk2k3a

2
1a

2
2C2(q1)C2(q2) (fUU∗ + 2fUV ∗ + fV V ∗)

+O
(
a5

1a2

)
+O

(
a4

1a
2
2

)
+O

(
a3

1a
3
2

)
+O

(
a2

1a
4
2

)
+O

(
a1a

5
2

) ]}
(4.82)

Now the stability criteria can be tested. Again, k1 must be positive:

k1 > 0 (4.83a)

For small a1, a2, the s3 and s2 coefficients are positive provided kES is positive and

the sum (σ3 + σ2) is negative:

kES > 0 (4.83b)

(σ3 + σ2) < 0 (4.83c)

Similarly, the s1 coefficient is positive provided that (in addition to kES being

chosen positive) k2 and k3 are positive and σ2, σ3 are chosen sufficiently negative.

Specifically, if

k2 > 0 (4.83d)

k3 > 0 (4.83e)

and

σ3 < − (fUU∗ + fUV ∗) (4.83f)

σ2 < − (fUV ∗ + fV V ∗) (4.83g)
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Note that the s1 coefficient cannot be made positive by choosing kES small, since

kES multiplies the entire coefficient (for the small a1, a2 approximation, at least).

Finally, for small a1, a2, the s0 coefficient is positive provided that kES, k2, and k3

are chosen positive. [Recall from (4.55) that since we assume a unique maximum

point along the line U = V , it follows that fUU∗ + 2fUV ∗ + fV V ∗ < 0.]

So in the analysis of the characteristic polynomial, the conditions under

which all of the coefficients are positive have been found. For stability, it remains

to be shown that (in terms of a polynomial of the form s4 + bs3 + cs2 + ds+ e) the

inequality bcd > b2e+ d2 holds. The stability criterion simplifies to[
−kES (σ3 + σ2) +

1

τ

]
×
[

1

τ
(−kES (σ3 + σ2))

]
×
[
−kES

τ

(
k2 (fUU∗ + fUV ∗ + σ3) a2

1C2(q1)

+ k3 (fUV ∗ + fV V ∗ + σ2) a2
2C2(q2)

)]
>

0 +O
(
a4

1

)
+O

(
a3

1a2

)
+O

(
a2

1a
2
2

)
+O

(
a1a

3
2

)
+O

(
a4

2

)
(4.84)

This criterion is satisfied for small a1, a2 under the criteria already required to en-

sure the coefficients of the characteristic polynomial are positive. The equilibrium

(4.66) of the closed loop system (4.23) is stable for small a1, a2 under the conditions

(4.83).

The conditions on σ2, σ3 can be simplified somewhat. Given from (4.55)

that fUU∗ + 2fUV ∗ + fV V ∗ < 0, the following inequalities hold:

1

2
(fV V ∗ − fUU∗) < − (fUU∗ + fUV ∗) (4.85a)

1

2
(fUU∗ − fV V ∗) < − (fUV ∗ + fV V ∗) (4.85b)

If the parameters σ2 and σ3 are chosen according to

σ3 <
1

2
(fV V ∗ − fUU∗) (4.86a)

σ2 <
1

2
(fUU∗ − fV V ∗) (4.86b)

then (4.83c), (4.83f), and (4.83g) are satisfied.
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This concludes the bulk of the analysis. The average system has a stable

equilibrium at the point given in (4.66) which is within an O(a2
1)+O(a1a2)+O(a2

2)

neighborhood of the optimal endurance speed. The linearized average system is

stable if the turbulence intensities a1 and a2 are small but non-zero, the gains

k1, k2, k3, kES are chosen positive, and the design parameters σ2, σ3 are chosen to

satisfy the criteria given in (4.86). Stability of the linearized average system proves

local exponential stability of the average system (4.34) by Corollary 4.3 in [25].

Stability of the average system proves weak stability of the closed loop system

(4.23) under the stochastic perturbations η1 and η2, by the stochastic averaging

results in [3]. This result is expressed in Theorem 2.

4.6 Simulations

4.6.1 Simple Simulation

Before proceeding to the high fidelity simulations, the results of a simpler

simulation are presented. This simulation follows (4.23) closely. The parameters

of the simulation are listed in Table 4.1. They are chosen roughly to represent a

U-2 flying at maximum takeoff weight at 36,000 feet. The turbulence parameters

are chosen to model isotropic turbulence with a root mean square intensity of 3

ft/s and a characteristic length of 1,750 feet. To align with the assumptions of the

analysis, the turbulence is bounded to less than 100 ft/s. The lift to drag ratio

is modeled assuming a quadratic drag polar and using the Prandtl-Glauert rule.

Written as a function of equivalent steady state airspeed and airspeed, the lift to

drag ratio is

f(U, V ) =

2mg
U2ρS

CD0 + 1
πAe

(
2mg
U2ρS

)2 (
1−

(
V
a

)2
) (4.87)

The constants in this formula are given Table 4.1. The controller gains and design

parameters are also listed. The results of this simple simulation are shown in

Fig. 4.2.
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Table 4.1: Simulation parameters

Parameter Value Units
a1 100 ft/s
a2 100 ft/s
ε1 4.00 s
ε2 4.00 s
q1 0.225 s1/2

q2 0.0424 s1/2

mg 40000 lbf
CD0 0.0106 -
A 10.6 -
e 1 -
S 1000 ft2

ρ 0.00070449 slug/ft3

a 968.08 ft/s
τ 5 s
k1 0.200 1/s
k2 1.98e-4 s/ft2

k3 0.00556 s/ft2

kES 22.9 ft2/s3

σ2 -6.53e-4 s2/ft2

σ3 0.00 s2/ft2
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Figure 4.2: Results of a simulation closely following (4.23).
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4.6.2 High-Fidelity Simulation Description

The software used for the following simulations is a six degree of freedom

simulation routine developed by local industry. Because of the proprietary nature

of the simulation, the simulation cannot be described in detail, but the simulation

is highly realistic and has been validated by flight test data. It order to prevent dis-

closure of proprietary aircraft performance data, the numbers have been removed

from all axes of figures showing high-fidelity simulation results.

4.6.3 Experiment Design

Two experiments are performed using the high-fidelity simulation software.

The first is designed to test the extremum seeking algorithm. The simulation begins

with the aircraft flying straight and level at its nominal loiter speed. The aircraft

then encounters turbulence and the extremum seeking algorithm is activated; the

aircraft adjusts its airspeed to the estimate of the optimal airspeed found by the

algorithm. The turbulence encounter then ends and the extremum seeking control

law is disengaged. From this point on, the airspeed command is set to maintain

the same coefficient of lift as found by the extremum seeking algorithm. The

simulation is then allowed to run for a short time to allow transients to settle. For

comparison, the simulation is repeated without activating the extremum seeking

algorithm. The steady fuel flow rate achieved by the extremum seeking algorithm

is then compared to the steady fuel flow rate at the nominal loiter speed. A lower

fuel flow rate corresponds to higher endurance.

The second experiment is designed to test the effectiveness of holding a

constant coefficient of lift after the turbulence encounter ends. The experiment is

similar to the first, with the following changes. The experiment runs for a much

longer period of time, during which significant changes in aircraft weight occur,

due to fuel being burned. The experiment is also run using settings of higher

realism in the simulation software, which make for a good experiment but poor

graphs, and as such are not used in the first experiment. Like the first experiment,

the second experiment consists of two simulations that are identical, except that

in one extremum seeking is active and in the other the aircraft remains at the
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nominal loiter speed. The aircraft weight decreases in both simulations as fuel is

burned. The difference between the aircraft weights indicates the net fuel savings

from extremum seeking.

Note that because this is a computer simulation, the nominal loiter speed is

expected to be at or very near the optimal endurance speed. The primary benefit

of extremum seeking is that it is able to adapt to differences from the aerodynamic

model that may exist in real flight. These simulations do not introduce any such

differences, so the level of endurance achieved by extremum seeking is expected to

be only as good as that achieved by the nominal loiter speed. The simulations test

the ability of extremum seeking to achieve a level of endurance on par with that

achieved by the nominal loiter speed in simulation, which provides a measure of

confidence in the ability of the algorithm to find the true optimal endurance speed

in real flight.

4.6.4 High-Fidelity Simulation Results

The results of the first experiment are shown in Fig. 4.3, Fig. 4.4, and

Fig. 4.5. In these figures, results using the extremum seeking algorithm are shown

in black; the results not using extremum seeking are shown in the background in

gray. The small region boxed in Fig. 4.4 is shown enlarged in Fig. 4.5.

The results of the second experiment are shown in Fig. 4.6. The aircraft

weight over the course of the simulations is plotted against the left axis, again in

black for the results using extremum seeking and gray for the results not using

extremum seeking. Because the curves overlap almost identically, the difference

between the two curves is plotted in the same figure against the right axis, as a

dashed line, on a much larger scale. Note that the difference is initially zero and

becomes positive, indicating that weight of the aircraft using extremum seeking is

greater than that of the aircraft at the nominal loiter speed.
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Figure 4.6: Net fuel savings over a long flight achieved by flying a constant CL
after exiting turbulence.

4.7 Discussion

The simulation results show that the extremum seeking algorithm matches

the fuel economy of flight at the nominal loiter speed in simulation, without knowl-

edge of the performance characteristics of the aircraft (see Fig. 4.4). The algorithm

slightly exceeds the performance achieved at the nominal loiter speed; the differ-

ence is small but noticeable (Fig. 4.5). In simulations based on wind tunnel data,

the nominal loiter speed should be close to the optimal endurance speed; the fact

that the simulations show convergence to near the nominal loiter speed (with actu-

ally even slightly better performance) gives some confidence that the optimal speed

may be found regardless of the aerodynamic characteristics of the aircraft. The

benefit of the algorithm is not primarily in the slight performance improvements

shown in these figures. Rather, the benefit is in the potentially more significant

improvements that might be achieved in actual flight where the aerodynamic char-

acteristics of the aircraft may differ from the wind tunnel data. Such differences

may appear over time due to accumulated minor damage to the plane or due to

environmental conditions such as structural icing. In such situations the endurance

benefits from extremum seeking may become significant.

As shown in Fig. 4.6, the performance obtained by extremum seeking is

maintained after exiting turbulence by adjusting the airspeed to fly a constant

coefficient of lift. The difference between the aircraft weight in the simulation using



119

extremum seeking and the aircraft weight in the simulation at the nominal loiter

speed, shown as the dashed line in Fig. 4.6, consistantly increases throughout the

simulation. This indicates that the aircraft using extremum seeking continues to

burn fuel at a slower rate than the aircraft at the nominal loiter speed throughout

the flight, even though extremum seeking is only active for a short period of time

at the beginning of the flight.

The simulation results also confirm the stability analysis performed above.

This may lend some creedence to the modeling assumptions used in the analysis.

A limitation of the result in Theorem 2 is that it speaks to the limiting case as the

turbulence timescales (ε1 and ε2) approach zero. Stated another way, the theorem

describes the behavior of the system when all timescales are slow compared to the

turbulence timescales. As such the theorem does not make any claim regarding

the behaviour of the system on timescales comparable to the turbulence. Since the

high-fidelity simulation results are presented without units, the simple simulation

results shown in Fig. 4.2 are presented to speak to the rate of convergence of the

algorithm. (Again, to avoid inadvertently revealing any aircraft performance data,

the parameters used in the simple simulations are not the same as those used in

the high-fidelity simulations.)

Another limitation of the result in Theorem 2 is that it applies only when

turbulence is small but non-zero. The controller cannot function in calm air and

it is also possible that the controller could become unstable in unexpectedly heavy

turbulence. While the intensity of turbulence can never be controlled, the de-

sign parameters can be adjusted to ensure stability in a worst-case turbulence

encounter.

One area that remains to be addressed is operation in turning flight. The

analysis and simulations above all assume straight and level flight, but loitering

is commonly performed in a holding pattern, which involves portions of turning

flight and portions of straight flight. The algorithm may require modification to

be applicable to turning flight.
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4.8 Conclusions

The extremum seeking algorithm stabilizes the aircraft to near the optimal

endurance speed, accounting for both angle of attack and compressibility effects,

using the excitation provided by atmospheric turbulence. Simulation results using

a high-fidelity aircraft simulation routine show that the algorithm achieves a level of

endurance slightly greater than that at the nominal loiter speed of the aircraft. This

provides confidence that the optimal airspeed may be achieved in real flight where

the aerodynamic characteristics of the aircraft are not known. The results validate

the performance of the new form of gradient estimator used in the extremum

seeking algorithm. After a turbulence encounter has ended, flying a constant

coefficient of lift is an adequate means of maintaining the optimal airspeed as

aircraft weight decreases.
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