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Abstract. Solute transport in fractured porous media is typically “non-4

Fickian”, i.e. it is characterized by early breakthrough and long tailing, and5

by nonlinear growth of the Green function centered second moment. This6

behavior is due to the effects of (1) multi-rate diffusion occurring between7

the highly permeable fracture network and the low permeability rock ma-8

trix and (2) a wide range of advection rates in the fractures and, possibly,9

the matrix as well, (3) a range of path lengths. As a consequence prediction10

of solute transport processes at the macro scale represents a formidable chal-11

lenge. Classical dual porosity (or mobile-immobile) approaches in conjunc-12

tion with an advection dispersion equation and macroscopic dispersivity com-13

monly fail to predict breakthrough of fractured porous media accurately. It14

was recently demonstrated that the Continuous Time Random Walk (CTRW)15

method can be used as a generalized upscaling approach. Here we extend this16

work and use results from high-resolution finite element – finite volume based17

simulations of solute transport in an outcrop analogue of a naturally frac-18

tured reservoir to calibrate the CTRW method by extracting a distribution19

of retention times. This procedure allows us to predict breakthrough at other20

model locations accurately and gain significant insight into the nature of the21

fracture-matrix interaction in naturally fractured porous reservoirs with ge-22

ologically realistic fracture geometries.23
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1. Introduction

Fractured porous formations are often found in geological reservoirs. Yet, the accurate24

prediction of solute transport in fractured porous formations is very challenging because25

an exact description of the geometry and connectivity of the network of connected frac-26

tures in the subsurface remains elusive [Bonnet et al., 2001; Berkowitz, 2002]. Open27

and well-connected fractures comprise high-permeability pathways and are orders of mag-28

nitude more permeable than the porous rock matrix. Typically transport velocities in29

fractures and matrix vary over several orders of magnitude [Matthäi and Belayneh, 2004].30

Traditionally, fractured porous media are hence separated into two distinct flow domains:31

The high-permeability (mobile) domain, the network of connected fractures where solute32

transport occurs predominantly by advection, and the low-permeability (almost-immobile)33

domain, the rock matrix where solute transport is generally dominated by diffusion. The34

rock matrix also provides the storage capacity for solutes because its pore volume is35

significantly larger than the fracture volume. The presence of two flow domains causes36

steep concentration gradients between fractures and matrix because solute concentrations37

change more rapidly in the fractures compared to the rock matrix. This local disequilib-38

rium in solute concentration gives rise to dominantly diffusive exchange between fracture39

and matrix which, together with variable flow rates in the fractures and matrix them-40

selves, causes “non-Fickian” breakthrough curves characterized by early breakthrough41

and long tailing, and by nonlinear growth of the Green function centered second moment.42

Hence it must be accounted for and predicted accurately at the macro-scale (upscaled),43

that is at the scale of a groundwater aquifer or hydrocarbon reservoir. In this work, the44
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term “upscaling” is intended as a procedure aimed at extrapolating (over time and space)45

the evolution of the concentration over similar scales, under an assumption of stationar-46

ity for the structure of the heterogeneity field. As such, the use of “upscaling” in this47

work should not misconstrued with averaging procedures aimed at calculating effective48

transport properties such as porosity and/or permeability over several decades in scale.49

The classical upscaling approach to model fluid flow in fractured porous media at the50

reservoir scale is to invoke the so-called “dual-porosity” approach [Barenblatt et al., 1960;51

Warren and Root, 1963]. It assumes that fluid flow occurs only in the mobile fracture52

domain, for which an effective permeability must be computed. The matrix domain53

is immobile. Both domains are connected via a simple linear transfer function. The54

transfer function accounts for the exchange of fluid across the boundary of the two do-55

mains. The transfer function contains a shape factor that accounts for the geometry of56

this boundary. Extensions of the classical dual-porosity concept have been developed to57

model solute transport in fractured porous media. Solute transport in the mobile do-58

main is represented by an effective transport velocity and macro-dispersivity, whereas59

solute diffusion between the immobile and mobile regions is approximated with first-order60

transfer terms [Huyakorn et al., 1983a; Birkholzer and Rouve, 1994; McDermott et al.,61

2009], higher-order transfer terms [Bibby, 1981; Huyakorn et al., 1983b, c; Dykhuizen,62

1990; Zimmerman et al., 1990, 1993; Birkholzer and Rouve, 1994], multi-continuum mod-63

els [Lichtner and Kang, 2007], linear Boltzmann transport equation [Benke and Painter,64

2003; Painter and Cvetkovic, 2005], or by using a distribution of transfer rates [Haggerty65

and Gorelick, 1995; Feehley et al., 2000; Flach et al., 2004; Berkowitz et al., 2008].66
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However, there are some fundamental assumptions underlying dual-porosity models67

which are known to restrict their applicability to represent real fracture networks at the68

continuum scale. First, it is assumed that the fractures possess a well-defined repre-69

sentative elementary volume such that effective transport properties – most notably an70

effective permeability – can be computed for the mobile domain. However, this is usually71

only true for idealized geometries of fracture networks. Natural fractures patterns com-72

monly possess a representative elementary volume only at the scale of the entire reservoir73

because they are often poorly-connected, their length distribution follows a power-law74

behavior, and fracture aperture is positively correlated to fracture length [Bonnet et al.,75

2001; Berkowitz, 2002]. Hence flow rates in the fracture network itself are highly variable76

and can give rise to “non-Fickian” transport, even with limited or no solute exchange77

between fracture and matrix [Berkowitz and Scher, 1995, 1997, 1998; Berkowitz et al.,78

2001; Kosakowski et al., 2001]. Such breakthrough curves cannot be modeled with a79

single effective transport velocity and macro-dispersivity. Secondly, recent studies have80

demonstrated that the diffusive exchange between fracture and matrix is inherently of81

multi-rate nature and hence must be modeled by an adequate multi-rate mass transfer82

formulation because adequate calibration of a dual-porosity model cannot be achieved83

otherwise and simulated breakthrough curves will differ significantly from the ones mea-84

sured in the field [Haggerty et al., 2000; McKenna et al., 2001]. It was also shown that the85

advective transport component in more permeable matrix blocks (e.g., porous sandstones)86

results in additional solute transfer between fractures and matrix, which is not typically87

taken into account by dual porosity concepts [Cortis and Birkholzer, 2008].88
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The Continuous Time Random Walk (CTRW) method is an alternative to the classical89

dual-porosity models for modeling and upscaling flow and/or solute transport in frac-90

tured rock masses [Berkowitz and Scher, 1995, 1997, 1998; Noetinger and Estebenet, 2000;91

Berkowitz et al., 2001; Kosakowski et al., 2001; Noetinger et al., 2001a, b; Berkowitz et al.,92

2008; Cortis and Birkholzer, 2008]. Originally developed to describe electron hopping in93

heterogeneous physical systems [Scher and Lax, 1973a, b], the CTRW method has now be-94

come an efficient and accurate method to model solute transport in heterogeneous porous95

media Berkowitz et al. [2006], and a more insightful alternative to Monte Carlo approaches96

[Painter and Cvetkovic, 2005]. The multi-scale distribution of low- and high-permeability97

regions inherent to natural (fractured) porous media leads to local retardation and ac-98

celeration of solute transport, respectively, and “non-Fickian” (or anomalous) transport,99

which cannot be modeled with classical concepts of transport in homogeneous porous100

media [Cortis et al., 2004a]. The CTRW method has been applied to explain and model101

solute and heat transport in heterogeneous porous media. Applications range from the102

pore- [Bijeljic et al., 2004; Bijeljic and Blunt, 2006] and core-scale [Cortis and Berkowitz,103

2004] to the reservoir-scale [Di Donato et al., 2003; Rhodes et al., 2008, 2009] and include104

the flow and transport of emulsions [Cortis and Ghezzehei, 2007], bio-colloids [Cortis et al.,105

2006], and heat transfer [Emmanuel and Berkowitz, 2007; Geiger and Emmanuel, 2010].106

Mathematically, (dual-porosity) models with multi-rate mass transfer between mobile107

and immobile regions are equivalent to the CTRW method [Dentz and Berkowitz, 2003;108

Berkowitz et al., 2008], but the latter can also account for advection in the matrix [Cortis109

and Birkholzer, 2008].110

D R A F T June 4, 2010, 9:43am D R A F T



GEIGER ET AL.: UPSCALING TRANSPORT IN FRACTURED ROCK WITH CTRW X - 7

A third approach are discrete-fracture-and-matrix (DFM) models. They can be used111

to simulate single- and multiphase transport in fractured porous media while explicitly112

accounting for the geometry of geometrically complex and non-orthogonally intersecting113

fractures. Hence the contribution of each individual fracture to fluid flow, including flow at114

fracture intersections and fracture terminations, is captured in the numerical model. This115

is usually achieved by a finite element or finite volume methods, or a combination of both.116

The dimensionality of the fractures is reduced from d to d−1, that is the fractures are lines117

in two-dimensional models or two-dimensional surfaces in three-dimensional models. Each118

lower-dimensional finite element/finite volume representing a fracture comprises its own119

permeability and transmissibility that corresponds to the prescribed fracture aperture120

[Kim and Deo, 2000; Juanes et al., 2002; Karimi-Fard and Firoozabadi, 2003; Geiger121

et al., 2004; Karimi-Fard et al., 2004; Monteagudo and Firoozabadi, 2004; Hoteit and122

Firoozabadi, 2005; Niessner et al., 2005; Reichenberger et al., 2006; Matthäi et al., 2007;123

Paluszny et al., 2007; Hoteit and Firoozabadi, 2008a, b; Haegland et al., 2009]. Since the124

contribution of each individual fractures to fluid flow and solute transport is accounted for125

directly, effective permeabilities, macro-dispersivities, and transfer functions for the entire126

fracture network do not need to be computed. However, the method is computationally127

not as efficient as a dual-porosity model or the CTRW method because fractures with128

very high flow rates must be discretized individually, which is a significant challenge129

in 3D and can lead to high computational costs. Although the DFM is powerful in130

analyzing the emergent behavior of transport in fractured porous media, their calibration131

to breakthrough curves measured in the field is still difficult. Since the exact description of132

the fracture geometry and connectivity is impossible from limited subsurface data [Bonnet133
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et al., 2001; Berkowitz, 2002], fracture networks must to be generated statistically until134

the breakthrough curves simulated with the DFM approach match the ones observed in135

the field. However, the statistical generation of a three-dimensional fracture network also136

requires the remeshing of the discrete fractures and matrix, which is a time-consuming137

process [Assteerawatt, 2008].138

In this paper we evaluate the applicability of the CTRW method for upscaling solute139

transport in geologically realistic fractured porous media, including the accurate repre-140

sentation of the solute exchange between the mobile fracture and immobile matrix re-141

gion. The work extends the earlier studies by Cortis and Birkholzer [2008] where the142

CTRW method was used to analyse solute transport and tracer breakthrough for ide-143

alized fracture-matrix geometries. Here we employ a state-of-the-art DFM simulation144

technique [Geiger et al., 2004; Paluszny et al., 2007; Matthäi et al., 2010] to simulate145

the transport of an inert chemical solute in a highly-detailed representation of fracture146

geometries mapped in the Bristol Channel, U. K. [Belayneh, 2004], a unique analogue147

for naturally fractured reservoirs. These simulations are used as surrogates to generate148

“correct” breakthrough curves from which we extract a residence time distribution with149

a non-parametric inversion best fit solution of the CTRW method [Cortis, 2007]. This150

residence time distribution is equivalent to the upscaling information and allows us to151

forecast the breakthrough curves at other locations in the model accurately.152

The paper is organized as follows: In the next section we describe the geological model153

and the simulation at the continuum scale. This is followed by a description of the resulting154

breakthrough curves and concentration distributions. We then discuss the analysis of the155

breakthrough curves using the CTRW method and how this approach can be used in an156
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upscaling approach. We close by discussing our results in the wider context of upscaling157

solute transport in fractured porous media.158

2. Continuum-Scale Modeling

2.1. Outcrop Analogue and Model Setup

The model geometry for our simulations utilizes the Triassic limestones fracture patterns159

exposed at the southern margin of the Bristol Channel coast in the U.K. (Figure 1a).160

While a limited number outcrops of the Bristol Channel exhibit mineralized fractures,161

that is the fractures have lower permeability than the rock matrix and are probably162

baffles to flow, we specifically focus on those outcrops were fractures are open and have163

significantly higher (usually by orders of magnitude) permeabilities than the rock matrix164

and are hence flow conduits. Because the fractures in this outcrop are bound to individual165

beds, usually only several tens of centimeters high, a two-dimensional plane-view geometry166

is used, that is gravity is neglected in the simulations. Model dimensions are 18 × 8 m2.167

The fracture patterns from the Bristol Channel have been used previously for numerical168

analysis of single- and multi-phase flow in fractured reservoir analogues [Matthäi and169

Belayneh, 2004; Belayneh et al., 2006; Geiger et al., 2009; Matthäi et al., 2010; Geiger170

and Emmanuel, 2010].171

The model specifications and properties are given in Table 1. Unlike the fracture ge-172

ometry, these are not based on field data but chosen to explore a wide parameter range173

for a geologically realistic fracture-matrix pattern. Fixed pressures of 10.01 and 10 bar,174

respectively, are applied to the inflow (left) and outflow (right) model boundaries, whereas175

a no-flow boundary condition is imposed on the lateral boundaries. This results in a het-176

erogeneous pressure gradient decreasing from the left to the right model boundary and177
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hence solute transport is from left to right (Figure 1b). The concentration is held fixed at178

1 kg cm−3 along the inflow model boundary. The concentration gradient at the outflow179

boundary and the two horizontal boundaries is set to ∂c/∂x = 0, respectively ∂c/∂y = 0.180

Two cases are considered for the fracture aperture: (1) The fracture aperture varies be-181

tween 0.1 and 1.2 mm, giving rise to spatially varying fracture permeabilities, kf . (2)182

The fracture aperture is uniform at 1 mm, giving rise to a uniform fracture permeability183

and less heterogeneity in fracture flow. The matrix permeability km is uniform in space184

and time but different values are used in different simulations. Matrix permeabilities are185

10−11, 10−13, 10−15, and 10−17 m2 (Table 1), which encompasses permeable sedimentary186

rocks to impermeable crystalline rocks. The porosity is 1 in the fractures and 0.25 in the187

matrix. The longitudinal and transversal dispersivities are αL = 0.01 m and αT = 0.001188

m, respectively. They are constant and uniform in the model and model dispersion oc-189

curring at the scale below the resolution of a single finite element. We tested if different190

dispersivity coefficients in the fracture and matrix influence the breakthrough curves but191

found that this only is a secondary effect. The pore diffusivity D is constant and uni-192

form in the model at 10−9 m s−2. Dispersivities and pore diffusivity combine to form the193

dispersion tensor D (Equation 4).194

The breakthrough curves were measured as the flux-weighted concentrations along four195

vertical profiles at the non-dimensional distances χ = 0.25 and, 0.5, 0.75, and 0.999.196

Here the horizontal distance from the left inflow boundary x was normalized by the total197

length of the domain L, i.e. χ = x/L. We also define the following parameters: The non-198

dimensional time τ = L/(v̂φ̂) where v̂ is the volume averaged horizontal flow rate through199

the model measured by the finite volume method and φ̂ is the averaged model porosity200
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given by the harmonic mean of the porosity in each finite element and the area of the201

finite element; k̂ is the averaged horizontal model permeability given by k̂ = (v̂µ)(L/∆P )202

where µ is the fluid viscosity and ∆P the horizontal pressure drop across the model (see203

Table 1); R is the ratio of volumetric flow in the fractures to volumetric flow in the matrix.204

2.2. Governing Equations and Numerical Methods

We solve a steady state pressure equation for incompressible fluids in two dimensional

plane view, that is neglecting gravity,

0 = ∇ ·
[
k(x)

µ
∇p

]
, (1)

where k is the locally varying permeability of the matrix or fracture, p is the fluid pressure,

µ the fluid viscosity, and x is a vector of spatial coordinates. The local fracture perme-

ability, kf , is calculated from the local fracture aperture, a, using the parallel plate law

and the corresponding assumption that the fractures are bounded smooth planar walls

kf (x) =
(a(x))2

12
. (2)

For simplicity, the permeabilities are assumed to be scalar. The two-dimensional velocity

field is obtained by solving Darcy’s law

~v(x) = −k(x)

µ
∇p. (3)

Transport of an inert chemical component is modeled locally using the standard advection-

dispersion-equation

φ(x)
∂c

∂t
= −∇ · [~v(x)c−D(x)∇c] (4)
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where c is the concentration of the chemical component and φ and D are the local porosity205

and local dispersion tensor, respectively. We stress that the dispersion tensor D is only206

used to model dispersion below the scale of a single finite element.207

The equations are solved numerically in a DFM approach using a combination of finite208

element and upwind-weighted finite volume methods [Geiger et al., 2004; Paluszny et al.,209

2007; Matthäi et al., 2010], which as implemented in the “Complex System Modeling210

Platform – CSMP++” [Matthäi et al., 2007]. The finite element method is used to solve211

the fluid pressure equation (Equation 1) and the diffusive part of the advection-dispersion212

equation (Equation 4). The finite volume method is used to solve the advective part213

of Equation 4. This allows us to use the numerical formulation that is best suited to solve214

a certain type of equations; the finite volume method for advection (hyperbolic) equations215

and the finite element method for diffusion (elliptic and parabolic) equations.216

The geometry of the Bristol Channel outcrop (Figure 1a) is discretized using a mixed-217

dimensional finite element technique. The finite elements are isoparametric with linear218

basis functions. The finite volume cells are created around each corner node of the finite219

elements. One-dimensional line elements are used to represent the fractures and two-220

dimensional triangular finite elements are used to represent the matrix. The fracture221

permeabilities are scaled by the fracture aperture to obtain the correct transmissibility222

for the one-dimensional finite elements belonging to the fractures. A key advantage of our223

combination of finite element and finite volume methods is that the upwind-weighting of224

the finite volume method overcomes numerical stability issues related to the grid Péclet225

number for advection dominated flow. Hence we can use significantly coarser grids than226

the ones dictated by the grid Péclet number. In total 347k finite elements and 154k227
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nodes are used to discretize the domain. The minimum and maximum element areas are228

7.3 × 10−7 m2 and 2.0 × 10−2 m2, respectively. Implicit time-stepping was used with a229

fixed time-step of 0.005 days. This is still a very fine spatial and temporal discretization230

which allows us to minimize numerical dispersion and resolve the concentration gradients231

between fracture and matrix accurately. We carried out several initial trial runs with232

varying grid refinements and time-steps to assess the impact of numerical dispersion on233

solute transport but found it to be small compared to physical dispersion as long as the234

time-step size is reasonably small [Matthäi et al., 2010]. We emphasize that the non-235

Gaussianity of the solute motion in the fracture network results thus from the fine spatial236

discretization and the interaction with the matrix elements. The algebraic multigrid solver237

SAMG was used to invert the resulting matrices of linear ordinary equations efficiently238

and accurately during each time-step [Stüben, 2001; Stüben and Clees, 2005].239

3. Results

The mean transport characteristics, expressed in the averaged permeability k̂, averaged240

velocity v̂, and ratio of volumetric flow in the fracture and matrix R are listed in Table 2241

for the cases with varying and uniform fracture apertures. Since the fractures are well-242

connected they already carry 30 times more flow compared to the matrix at a matrix243

permeability of 10−11 m2 and have flow rates that are at least four orders of magnitude244

higher than in the matrix (Figure 2). Hence the v̂ and k̂ do not change significantly as the245

matrix permeability decreases from 10−11 to 10−17 m2 (k̂ ≈ 3×10−10 m2 and v̂ ≈ 2×10−5
246

m s−1). In other words, advective transport is dominated by the fractures even if the247

matrix is comparatively permeable and small variations in fracture aperture have only a248

minor effect on v̂ and k̂. Local variations in fracture aperture also do not impact these249
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averaged transport properties greatly; the case with uniform fracture apertures has slightly250

higher averaged transport characteristics due to the absence of small-aperture fractures.251

Velocity histograms (Figure 2) for the fractures and matrix show that flow rates vary252

between four and ten orders of magnitude, which is also reflected in the R values (Table 2).253

Velocity histograms for the fractures are, generally, wider than the velocity histograms254

for the matrix (2.5 vs. 1.5 orders of magnitude variation in velocity, respectively). Note255

that the velocity histograms for the fracture are largely unaffected by variations in matrix256

permeability because the fractures are well connected. With decreasing matrix perme-257

ability, the histograms for the fractures and matrix become more separated, denoting the258

increasing influence of the fractures and transition to a true dual-porosity system. The259

velocity histograms for the fractures show a clear dependence on fracture aperture. In the260

variable fracture aperture case, four distinct peaks can be identified while only two are261

present in the uniform fracture aperture case. Also, the spread of the histogram is wider262

in the variable aperture case compared to the uniform aperture case. Both reflect stronger263

velocity variations in the variable aperture case compared to the uniform aperture due to264

the wider range of fracture permeabilities.265

Figure 3 shows the concentration distributions for matrix permeabilities of km = 10−11
266

m2 (after 3 days), km = 10−13 m2 (after 90 days), and km = 10−15 m2 (after 90 days) for267

both fracture aperture cases. Note that the concentrations are already uniform after 90268

days if the matrix permeability is km = 10−11 m2, because advective transport into and269

through the matrix blocks increases solute transfer between the fracture and the matrix.270

In all cases, solutes have broken through at the right model boundary in less than one271

day and the concentration distribution in the matrix is highly irregular. Generally, the272
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concentrations increase faster in smaller matrix blocks compared to larger matrix blocks,273

indicating a multi-rate solute exchange between fractures and matrix.274

The km = 10−11 m2 case: Significant advective solute transport occurs in the matrix275

itself, hence the concentrations in the matrix increase faster closer to the inflow boundary276

(Figure 3a and d). Concentration gradients between the matrix and vertical fractures, i.e.277

fractures oriented perpendicular to the main flow direction, are smooth downstream of the278

fractures and steep upstream. Horizontal fractures partly show tapering in concentration279

gradients, i.e. the matrix concentration is higher upstream of fractures oriented sub-280

parallel to the main flow direction and lower downstream because exchange of solutes281

between fractures and matrix has occurred for a longer time upstream. All these are282

typical for an advective contribution to solute transport in the matrix. Concentration283

distributions for uniform fracture apertures show faster solute transport in the matrix284

because flow in the fractures is more homogeneous and hence solutes can enter the matrix285

more uniformly where they are transported downstream by advection.286

The corresponding breakthrough curves at χ = 0.25 and 0.5, and to a lesser extent287

at χ = 0.75 (Figure 4a and d), show a characteristic slope change at early time. The288

lower part corresponds to the early breakthrough in the fractures and the higher to the289

breakthrough in the matrix. This slope change is less pronounced for the case of uniform290

fracture apertures because fractures with small apertures, which lead to increased advec-291

tion in the matrix, are absent. The slope change becomes less evident with increasing292

breakthrough distance. This is because the mixing of the high-concentration and low-293

concentration fluids increases downstream and breakthrough concentrations become more294

uniform. Tailing, arising from the slow diffusive exchange of solute between the matrix295
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and fractures and slow transport in the matrix, is absent in all breakthrough curves,296

indicating that a true dual-porosity system is not present.297

The km = 10−13 m2 case: Advective transport occurs predominantly in the frac-298

tures while solute transport in the matrix is dominated by diffusion (Figure 3b and e).299

Concentration levels in the matrix depend on the size of the individual blocks. Larger300

matrix blocks, where the concentration is still zero in the center, show that concentra-301

tion gradients between matrix and perpendicular fractures are smoother downstream and302

steeper upstream, indicating minor contributions of advective transport in the matrix.303

Tapering is also not as prominent as in the km = 10−11 m2 case. The difference in concen-304

tration distributions for the variable and uniform fracture aperture cases decreases with305

decreasing matrix permeability (Figure 3) because solute advection in the matrix becomes306

less important.307

Breakthrough curves exhibit significant tailing after one day (Figure 4b and e). This308

indicates that diffusive exchange between fractures and matrix and diffusion-dominated309

transport in the matrix dominates the transport behavior at “late time”, indicative of a310

dual-porosity system, and occurs at variable rates because larger matrix blocks provide311

more storage for the solutes compared to smaller ones. Although the breakthrough curves312

for both fracture aperture cases show a similar qualitative behavior, a clear quantitative313

difference prevails. The variable fracture aperture case has a much more heterogeneous314

flow field in the fractures, which leads to more dispersive breakthrough curves with earlier315

arrivals.316

The km = 10−15 m2 and km = 10−17 m2 cases: Advective transport in the matrix317

is negligible in theses cases (Figure 4c and f). Hence, results for both cases are almost318
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identical with only minor numerical variations in the breakthrough curves. Concentration319

gradients between fractures and matrix are steep even after 90 days. Matrix advection320

does not influence these gradients at all. Breakthrough curves show strong tailing and321

are identical for both these matrix permeabilities because even at km = 10−15 m2, the322

fractures already carry more than 3× 105 times the flow than the rock matrix.323

4. Continuous Time Random Walk Analysis

In this section, we briefly review the physics of the CTRW approach to transport; a more324

detailed analysis of the CTRW method can be found in Berkowitz et al. [2006]. CTRW325

generalizes the classical Random Walk approach to transport by introducing, in addition326

to the probability density functions (pdf) for the jump directions, p(x), a retention-time327

pdf, ψ(t). A CTRW characterized by p(x) and ψ(t) with finite first and second moments328

(e.g., p(x) ∼ N(0, 1), and ψ(t) = exp(−t)) is equivalent to the classical RW approach,329

and hence to an Fickian advective-dispersion formulation for transport. Many transport330

problems in heterogeneous porous materials can be characterized by a ψ(t) for which331

the first temporal moment does not exists (or is very large), whereas the p(x) can still332

be characterized by a Gaussian distribution [Cortis and Berkowitz, 2004; Cortis, 2007;333

Berkowitz et al., 2006].334

In the continuum limit, the equation that governs CTRW transport reads:

∂c(x, t)

∂t
= −

∫ t

0
M(t− t′)

∂

∂x

[
c(x, t′)− α

∂c(x, t′)
∂x

]
dt′. (5)

Equation 5 is an partial integro-differential equation that states that the time variation of

the solute concentration at a given point equal the time-convolution of the classical ADE
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transport kernel, with a memory function M(t) defined in term of the ψ(t) as

M(t) =
t̄

2πi

∫

Γ
eut u

∫∞
0 e−utψ(t) dt

1− ∫∞
0 e−utψ(t) dt

du, (6)

where Γ is a clockwise Hankel contour Krantz [1999], and t̄ is a characteristic time. Note335

that Equation 5 was made non-dimensional using characteristic length, L, and time, t̄,336

such that the non-dimensional transport velocity, t̄v/L = 1. When ψ(t) = exp(−t), the337

memory function reduces to a Dirac delta, M(t) = δ(t), and Equation 5 reduces to the338

classical advection dispersion equation.339

The correct estimation of the retention times distribution ψ(t) is key for understanding340

the upscaled character of the solute transport. A number of functional forms for ψ(t)341

have been proposed and applied to laboratory and field data, the most notable ones being342

the truncated power-law [Dentz et al., 2004] and the modified exponential [Cortis et al.,343

2004b]. These functional forms, however, have limited use in modeling extremely complex344

heterogeneity structures that involve non-trivial solute exchanges patterns between inter-345

connected flow structures such as those found in more complex fracture networks [Cortis346

and Birkholzer, 2008].347

The BTCs in Figure 4 do not exhibit a classical normal transport, and a careful analysis348

of the BTCs tails in double-logarithmic units does not reveal any significant power-law349

decay such as the -3/2 slope typical for matrix diffusion and rate-limited mass trans-350

fer [Haggerty et al., 2001]. Finding a suitable functional form for ψ(t) is therefore a351

challenge. For this reason, in this study we use the non-parametric inversion algorithm352

(NPIA) first described by Cortis [2007]. The NPIA recovers a numerical approximation of353

the full spectrum of retention times, ψ(t), without postulating its functional form a priori.354

An important finding made possible by the NPIA analysis of CTRW transport is that the355
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non-dimensional dispersivity coefficient, α, is not anymore a parameter associated with356

the microgeometry of the porous medium but rather an ancillary parameter associated357

with the particular distribution of retention times, ψ(τ |α).358

The coefficient α is the coefficient of variation of the spatial distribution of jump length,359

and as such, reflects the intimate connection between the distribution of jump length and360

durations, which characterizes the CTRW description of transport.361

In other words, it is always possible to find a distribution of retention times for any362

reasonably small value of α close to the small-scale dispersion estimate. In this study363

the longitudinal and transverse dispersivities were set to αL = 0.01 m and αT = 0.001364

m, respectively, and the value of α/L in equation Equation 5 was taken to be roughly365

100 times larger, i.e., α/L = 5 × 10−2. The reason for this choice is that using α ∼ αL366

makes the character of the ADE almost hyperbolic rather parabolic and requires different367

numerical solution schemes. The advantage of the NPIA approach with respect to other368

upscaling methods is therefore in the reduction of the dispersivity to a scale-independent369

coefficient.370

Figures 5 and 6, show the CTRW-NPIA best-fit results for the constant and variable371

fracture aperture cases, respectively. The left-hand panels show the numerical compu-372

tations (black dots) for the four sections χ = 0.25, 0.5, 0.75, 0.99, for each of the four373

matrix-fracture permeability contrasts. The solid blue line on top of the χ = 0.5 break-374

through curves represents the NPIA best fit. The corresponding ψ(t) is shown as blue dots375

on the right-hand side of each figure. The dashed black line is the exponential exp(−t),376

for reference. Having this estimated ψ(t) calibrated on the χ = 0.5 section, we can now377

predict the breakthrough curves at χ = 0.75, 0.99, and make a backwards prediction for378
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the BTC at χ = 0.25 (red solid lines). We find a perfect agreement between the CTRW379

predictions and the direct numerical simulations for all the four matrix-fracture perme-380

ability contrast cases, both for the constant and variable aperture cases. Calibration of381

the ψ(t) on the BTC at χ = 0.25 (not shown) yields identical results to the one presented382

in Figure 5.383

We must stress that the NPIA yields only a numerical approximation of the distribution384

of retention times (blue dots), and not an explicit functional form. It is nonetheless385

possible to gain valuable insight by carefully analyzing the fine details of the best-fit386

ψ(τ |α).387

In the case of constant fracture aperture, for instance, the best-fit ψ(t) does not exhibit

power-law like decay for any significantly long time period; as a consequence, the system

cannot be modeled neither by (truncated) power-law expressions, nor by means of any

fractional derivatives approach. The plot in Figure 5 suggest, however, that the best-fit

ψ(τ |α) can be decomposed into the sum of three exponentials each for all the various

matrix permeability cases analyzed in this study:

ψ(τ |α) =
1

∑3
i=1

ai

bi

3∑

i=1

ai exp(−biτ), (7)

where the coefficients ai > 0, and bi > 0 are listed in Table 3. We recall here that a388

decaying exponential is the signature of “normal” (Gaussian) transport.389

The exponential component with the largest decay rate value, b1, (cyan dashed line) may390

be interpreted as the contribution to transport from the fractures, whereas the component391

with the smallest value, b3, (red dashed line) may be interpreted as the contribution392

due to the flow in the matrix. The intermediate value, b2, (green dashed line), may be393

interpreted as the contribution to transport arising from the continuous exchange between394
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matrix and fractures. We have therefore reduced the numerical approximation of the ψ(t)395

to a functional form depending on a (relatively small) number of parameters, i.e., the396

coefficients of the exponential components, in addition to the (arbitrarily fixed) value of397

the dispersivity, α.398

For the case with variable fracture aperture, however, it is not possible to decompose the399

best-fit ψ(t) in the sum of three exponentials. Despite the general qualitative agreement400

between the ψ(t) and the best-fit sum-of-exponentials decomposition, it is clear that the401

individual segments of the ψ(t) which we have associated to fracture, matrix, and exchange402

transport, respectively, cannot be assimilated, in this case, to decaying exponentials.403

The three regions of the distribution, more closely resemble algebraic decaying curves404

(power-laws), the parameters of which, given the relatively short time span, are difficult405

to estimate. This can be readily understood in the context of the CTRW framework, by406

noting that the disorder associated with any given attribute of the heterogeneity give raise407

in most cases to algebraic decays in the distribution of retention times. In this case, it is408

the heterogeneity in the distribution of fracture apertures, and the subsequently stronger409

variations in fracture velocities (Figure 2), which is responsible for the algebraic decay410

characterizing the ψ(t).411

The CTRW-NPIA analysis of complex fracture-matrix transport problems presented412

in this work has proved to be a very effective and flexible tool for the determination of413

various flow regimes, and for discriminating between systems with constant or variable414

fracture aperture. A more systematic analysis of the dependence of the coefficients of the415

exponential components of ψ on fracture density and permeability contrast is needed and416

will be the object of a future study.417
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Moreover, the question of how much heterogeneity needs to be seen by the tracer to418

have a correct estimate of the ψ(t) is an open one. Preliminary computations have shown419

that, for the system analyzed in this study, it is sufficient to calibrate the ψ(t) on a BTC420

at χ = 0.1. For other less regular and poorly connected fracture systems, however, the421

calibration of the ψ(t) does not seem to yield good results for χ < 0.25. These important422

questions will be analyzed in a separate study.423

5. Concluding remarks

We have carried out high-resolution simulations of solute transport in real fracture-424

matrix geometries and for several combinations of fracture and matrix permeabilities,425

representing a wide range of highly heterogeneous fracture-matrix transport systems where426

transport velocities can varies over 10 orders of magnitude. We used these simulations to427

generate a suite of surrogate breakthrough curves, all of which show the early breakthrough428

and long tailing typical of anomalous transport. We then extracted the residence time429

distribution ψ(t) with the non-parametric CTRW method.430

The non-parametric CTRW method faithfully predicts the anomalous transport be-431

haviour in these realistic representations of complexly and naturally fractured porous432

media. It accurately captures the various forms of early breakthrough and long tailing433

observed in our simulations, for cases where diffusion in the matrix dominates to cases434

with advective transport contributions in the matrix. The resulting ψ(t) could be used to435

in new, CTRW-based, upscaling approaches, to adequately simulate fractured reservoirs436

at the field-scale [Rhodes et al., 2008, 2009].437

The ψ(t) differs significantly from a decaying exponential exp(−t), which represents the438

classical advection-diffusion equation with a macro dispersivity. If the fracture aperture is439
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uniform, ψ(t) can be decomposed into the sum of three exponentials contributions. Each440

has a clear physical meaning associated with transport in fractures, matrix, and their441

interaction, respectively. For the case of variable fracture aperture, however, it is not442

possible to obtain such a simple decomposition, and the portion of ψ(t) corresponding to443

the aforementioned fracture, matrix, and exchange terms, resemble more closely power-444

laws than exponentials. This difference represents an attractive feature of our model,445

because the success or failure in obtaining such a decomposition allows ultimately to446

discriminate between systems with relatively constant and variable fracture apertures.447

Future work will focus on the ergodicity of the system, i.e., we will investigate the448

question of how much heterogeneity a tracer must encounter before a reliable ψ(t) can be449

extracted. Preliminary studies for the “Bristol Channel” fracture network which is the450

object of this work indicate that the breakthrough curve can be calibrated successfully at451

χ = 0.1, i.e., when the tracer has encountered just 10% of the heterogeneity. For other452

systems, however, such length depends on the stationarity of the heterogeneity field.453
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Figure 1. Fracture geometry of the Bristol Channel fractured reservoir analogue (a),

fluid pressure distribution for a matrix permeability of km = 10−15 m2 (b), and logarithm

of the magnitude of the Darcy velocity (c). Fracture apertures vary between 0.1 and 1.2

mm.
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Parameter  Symbol Value Unit 
 

Matrix 
 

Permeability km  case dependent† m2
 

 
Porosity φm  0.25   – 

Longitudinal dispersion  αL   0.01  m 

Transversal dispersion αT  0.001  m 

Diffusivity   D   10−9 m2 s−1
 

Fractures 
 

Permeability kf variable‡ m2
 

 

Porosity φf 1.0 – 
 

Longitudinal dispersion
 

αL 

 

0.01 
 

m 
 

Transversal dispersion 
 

αT 

 

0.001 
 

m 
 
Diffusivity  D  10−9 m2 s−1

 

 

Initial  conditions      

 

Viscosity 
 

µ 
 

0.001 
 

Pa s 
 

Concentration 
 

c 
 

0.0 
 

kg m−3
 

 

Pressure 
 

p 
 

variable*
 

 

bar 
 

Boundary conditions      

 

Inflow concentration 
 

cx=0 

 

1.0 
 

kg m−3
 

 
Outflow concentration cx=xmax ∂c/∂x = 0 – 
 

Inflow pressure px=0 

 

10.01 
 

bar 
 

Outflow pressure 
 

px=xmax 

 

10 
 

bar 

Table 1.  Model parameters and initial and boundary conditions. † Matrix permeability 

is constant and uniform at 10−11, 10−13, 10−15, or 10−17  m2. ‡ Fracture permeability is 

computed from the parallel plate law as kf  = a2/12.  The fracture aperture a either varies 
   

 

from 0.1 to 1.2 mm in individual fractures or is uniform at 1 mm. * See Figure 1b for the 

pressure field. 
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Figure 2. Velocity histograms for the variable fracture aperture (a) and uniform

fracture aperture (b) case. Note that the velocity distributions in the fractures are almost

completely insensitive to changes in matrix permeability and hence only the velocity

histograms for the fractures for the km = 10−11 m2 case are shown.
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Table 2. Averaged horizontal transport properties for the four different matrix perme-

abilities km of the model “Bristol Channel”. Note that the average porosity φ̂ is constant

at φ̂ = 0.254 in all four cases.

km (m2) k̂ (m2) v̂ (m s−1) R (–)

Variable fracture aperture, kf between 0.1 and 1.2 mm

10−11 3.26× 10−10 1.81× 10−5 31.76

10−13 3.11× 10−10 1.73× 10−5 3134

10−15 3.11× 10−10 1.73× 10−5 3.13× 105

10−17 3.11× 10−10 1.73× 10−5 3.13× 107

Constant fracture aperture, kf = 1 mm

10−11 3.35× 10−10 1.86× 10−5 32.75

10−13 3.22× 10−10 1.79× 10−5 3238

10−15 3.22× 10−10 1.79× 10−5 3.24× 105

10−17 3.22× 10−10 1.79× 10−5 3.24× 107
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(d)

(e)

(f)

(a)

(b)

(c)

Figure 3. Concentration distributions for km = 10−11 m2 after 3 days (a, d), for

km = 10−13 m2 after 90 days (b, e), and for km = 10−15 m2 after 90 days (c, f). Fracture

apertures vary between 0.1 and 1.2 mm (a to c) or are uniform at 1 mm (d to f). The

concentration distributions for km = 10−15 and km = 10−17 are essentially identical for

both fracture aperture cases.
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Figure 4. Breakthrough curves for km = 10−11 m2 (a, d), km = 10−13 m2 (b, e), and

km = 10−15 m2 (c, f) measured at different distances, denoted as χ = x/L, away from the

left (inflow) model boundary. Fracture apertures vary between 0.1 and 1.2 mm (a to c)

or are uniform at 1 mm (d to f). The blue line corresponds to χ = 0.25, the green line

to χ = 0.5, the red line to χ = 0.75, and the cyan line to χ = 0.999. The breakthrough

curves for km = 10−15 and km = 10−17 are essentially identical for both fracture aperture

cases.
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Table 3. Decomposition of the non-parametric best-fit ψ(t) in the sum of 3 decaying

exponentials (normal modes of transport). Coefficients ai, and bi, are the amplitude and

decay rate, respectively, for the expression in Equation 7.

km (m2) a1 a2 a3 b1 b2 b3

Variable fracture aperture, kf between 0.1 and 1.2 mm

10−11 8.21 4.81×10−3 3.73×10−1 24.25 1.06 5.85×10−1

10−13 7.64 1.29×10−1 4.96×10−3 9.16 1.19 8.52×10−2

10−15 8.13 7.12×10−1 4.07×10−3 11.47 2.87 9.30×10−2

10−17 8.29 8.65×10−1 4.13×10−3 12.32 3.05 9.41×10−2

Constant fracture aperture, kf = 1 mm

10−11 4.57 1.83×10−2 5.82×10−1 20.36 4.46 7.55×10−1

10−13 6.05 4.03×10−2 8.67×10−3 6.67 9.86×10−1 1.69×10−1

10−15 6.05 1.64×10−2 6.00×10−3 6.38 9.54×10−1 1.75×10−1

10−17 6.05 1.58×10−2 5.67×10−3 6.37 9.09×10−1 1.68×10−1
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Figure 5. Left-hand side panels of (a)-(d): Breakthrough curves for km = 10−11

m2 (a), km = 10−13 m2 (b), km = 10−15 m2 (c), and km = 10−17 m2 (d) measured at

different distances, denoted as χ = x/L, away from the left (inflow) model boundary.

The fracture apertures are constant at 1 mm. The time scale is non-dimensional. Black

dots represent numerical computations, solid blue line (χ = 0.5) is the NPIA-CTRW

best-fit, and solid red lines are the predictions based on the calibrated ψ(t). Right-hand

size of (a)-(d): distribution of retention time, ψ(t). calibrated on the BTC measured

at χ = 0.5. The dashed black line is the ADE decaying exponential, exp(−t). The solid

blue line represents the sum of three individual decaying exponentials shown as light-blue,

green, and red dashed lines, respectively. The coefficients of the decaying exponential are

reported in Table 3.
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Figure 6. Same as for Figure 5 but for fractures with variable aperture. Opposite to

the case of constant aperture, the the non-parametric best-fit ψ(t) (black dots) cannot be

represented as the sum of three decaying exponentials. The numerical errors for case (c)

at x = 1 are due to yet unresolved numerical problem in the inverse Laplace transform

algorithm [Cortis and Berkowitz, 2005]. Current work is on the way to improve on the

stability of the inversion algorithm.
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