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Identification of Severe Multiple Contingencies in
Electric Power Systems

Vaibhav Donde, Member, IEEE, Vanessa López, Bernard Lesieutre, Senior Member, IEEE,
Ali Pinar, Member, IEEE, Chao Yang and Juan Meza

Abstract— In this work, we propose a computationally feasible
approach to detect severe multiple contingencies. We pose a
contingency analysis problem using a nonlinear optimization
framework, which enables us to detect the fewest possible
transmission line outages resulting in a system failure of specified
severity, and the most severe system failure caused by removing a
specified number of transmission lines from service. Illustrations
using a three bus system and the IEEE 30 bus system aim to
exhibit the effectiveness of the proposed approach.

I. INTRODUCTION

Robust operation of a power grid requires anticipation of
unplanned component outages that, if not adequately con-
sidered, could lead to dramatic and costly blackouts. Plan-
ning and operating criteria are designed in order that “the
interconnected power system shall be operated at all times
so that general system instability, uncontrolled separation,
cascading outages, or voltage collapse, will not occur as a
result of any single contingency or multiple contingencies
of sufficiently high likelihood” [1]. Additional more specific
criteria help to achieve this famous N−1 criterion in practice.
In this paper we consider the potential effects of the loss of
multiple elements. Specifically, we pose the following two
related optimization problems: 1) minimize the number of
failure events that will necessitate a minimum amount of
(specified) loss of load to maintain the integrity of the grid,
and 2) calculate the maximum loss of load that would be
required to survive a (specified) limited number of events, in
any possible combination. For example, we could identify a
minimum number of events that would require, for instance,
loss of 1,000 MW of load, or we might calculate the most load
shedding (and location) for any N − 3 scenario. We believe
these “worst-case” analyses of the more general N−k problem
are interesting in their own right. They can provide planners
and operators more confidence in the security of the system
beyond the N−1 requirement. Furthermore we recognize that
we now operate under conditions in which we are concerned
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about the possibility of purposeful and malicious N − k
scenarios. Such concerns may be best addressed by identifying
N − k scenarios that have severe consequences.

In this paper we consider the problem in a static sense
through the examination of operating points in relation to the
feasibility boundary of the power flow equations. We note
that the severity of the events we identify could be different
when dynamics are considered. Analysis of the power flow
feasibility boundary has received considerable attention in
the literature. Most notably it has been widely studied in
terms of the use of bifurcation theory to calculate margins
for secure operation relative to voltage collapse and dynamic
instability. Many articles discuss this general topic (see [6] and
references therein, for an overview); the most relevant to the
present work are those that calculate a minimum distance to
the feasibility boundary from an operating point (for a fixed
network topology) [3], [9], [10], [12], [20]. This past work has
also established the geometrical interpretations of a direction
of best load shedding strategy in the space of load powers. For
instance, Alvarado, Dobson and Hu [3] computed the point
on the feasibility boundary closest to the present operating
point, that is, the minimum change in power injections that
would result in operation at the edge of feasibility. This
closest point on the feasibility boundary provided a measure
of the security margin for the given network topology, thereby
providing a direction in the load parameter space that could
optimally move the present operating point away from the
feasibility boundary. In other words, it provided the best
direction for load shedding, if the need to do so arose. Our
approach is motivated by those interpretations. Moreover, we
allow the network topology to change in order to incorporate
transmission line failures.

Our primary contribution in this paper is to propose a
method for identifying the least possible network changes
(removal of transmission lines) that result in operating point
infeasibility, such that the amount of minimum load shedding
required for a feasible operation is greater than a user-defined
threshold. Thus we deal with changes in network topology
and the operating point simultaneously, within the same math-
ematical framework. The amount of required load shedding
provides a measure of the severity of the event.

Specifically we work with a nonlinear optimization problem
in terms of both network active and reactive powers and ad-
dress it through a two stage analysis. In the first stage, we force
the feasibility boundary to move past the nominal operating
point (rendering it infeasible) by a user-specified distance,
through alterations to the network. We allow a relaxation of
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line parameters to incorporate the network alterations, in a
similar manner as in [13], where the authors parameterized
line admittances to study the effect of parameter variation on
the power flow solution. The relaxation provides us a way
to identify a few multiple (possibly partial) line outages that
result in a severe system failure. This information obtained
from the first stage is further processed in the second stage,
wherein the N − k analysis is performed by only considering
the lines identified in the first stage. Given that such lines
are typically few in number, the computational burden of the
N − k analysis in the second stage is far less than when all
lines in the system are considered.

A similar problem of multiple contingency identification
has been addressed by other researchers using analysis tools
other than parameter relaxation. Salmeron, Wood and Baldick
[21] employed a bilevel optimization framework along with
mixed-integer programming to analyze the security of electric
grid under terrorist threat. The critical elements of the grid
were identified by maximizing the long-term disruption in
the power system operation caused by terrorist attacks based
upon limited offensive resources. The bilevel programming
framework has also been used by Arroyo and Galiana [4].
In all these formulations the optimization framework appears
promising for such types of problems where the critical system
elements that make the system vulnerable to failures must be
identified.

We emphasize that we pursue a deterministic, worst-case
framework for this problem because we would like to antici-
pate events that include those arising from malicious design.
For a probabilistic approach to N − k analysis for naturally
occurring events, the reader may consider the stochastic ap-
proach suggested in [8].

The static collapse of power systems is closely associated
with its network topology. Our previous work [11] showed
that an approximate power flow description provides a way
to relate static collapse with graph partitioning using spectral
graph theory. Grijalva and Sauer [15], [16] related topological
cuts with the static collapse based on branch complex flows.
He et. al. [17] used a voltage stability margin index to identify
weak locations in a power network. Although the connections
of static collapse with graph theory are useful and interesting
in their own right, they remain approximate and qualitative at
this stage and are not discussed further in this paper.

II. PROBLEM DESCRIPTION

Conceptually, we aim to identify a small set of transmission
lines in the network whose removal from service would
minimally necessitate a reduction in load to avoid a potentially
severe blackout, such that this minimal reduction in load
would be significant. In order to be able to give a measure
of the severity of the loss of these lines, we consider the
minimum load lost after the failure occurs. Thus, we pose
the fundamental question: what is the least altered network
topology that makes the power flow infeasible at the nominal
load distribution, and for which the minimum amount of load
required to be shed to make the power flow feasible again is
greater than some specified severity threshold?
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Fig. 1. Schematic view of load shedding process in the space of active load
powers.

A schematic view of the load shedding process is provided
in Figure 1, for a power network having constant power factor
loads. The solid-lined curve represents the nominal power flow
feasibility boundary when all the lines are in service. The
nominal operating point P 0 lies within the feasible region of
operation. When a few lines are removed from service, the
feasible region shrinks and the boundary moves to the one
shown as a dashed-line. The minimal load shedding strategy
moves the original operating point P 0 to an operating point
P that lies on the new feasibility boundary. The amount of
the total load shedding, for instance, z1 +z2, corresponds to a
measure of severity. Note that the feasibility boundaries may
be non-convex in general, although they appear convex in the
schematic representation (Figure 1).

In our analysis we consider a lossless power system network
having m buses (nodes) and n lines (branches). Let P and
Q be, respectively, vectors whose components are given by
the active and reactive power injections at the buses. Due to
the lossless character of the system, we have

∑m
i=1 Pi = 0,

however,
∑m

i=1 Qi > 0 as part of the reactive power is
consumed in the network.

We note that reducing the admittance of any transmission
line in the system to zero is equivalent to removing the line
from service. We thus model line outages in the system by
associating a set of indicator variables γi, i = 1, . . . , n, with
the line admittances and define the modified admittance of
line i as the product of the admittance of line i with (1− γi).
Then γi = 1 corresponds to the i-th line being removed from
service, while γi = 0, which results in the modified admittance
being equal to the nominal admittance, indicates that the line
is in service.

Representing the network angle variables and voltage mag-
nitudes by vectors θ and V , respectively, and letting B denote
a diagonal matrix with the value of the line susceptances on its
diagonal1, the active and reactive power flow equations (with

1It is assumed for simplicity that the lines are lossless and shunt elements
are absent. However the mathematical framework and the formulations pro-
posed in later sections do not require this assumption.
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modified admittances) can be written in matrix form as

AT EB(I − Γ) sin(Aθ) = P (1)

−|A|T EB(I − Γ) cos(Aθ) + d = Q, (2)

where A is the branch-node incidence matrix of the network
graph and |A|i,j = |Ai,j |, E is a diagonal matrix with

Ei,i = exp((|A| ln V )i), i = 1, . . . , n,

I is the identity matrix, Γ is a diagonal matrix with

Γi,i = γi, i = 1, . . . , n,

d is defined by

di = V 2
i × (AT B(I − Γ)A)i,i, i = 1, . . . , m,

and sin(Aθ) denotes a vector whose i-th component is equal
to sin((Aθ)i). Similar notation is used to define cos(Aθ) and
ln V . Refer to [22] for more details on this model.

Most work documented in the literature in this context
assumes the notion of a slack bus. The choice of the slack
bus is typically arbitrary and it serves to supply network
losses. Moreover, in the event of load shedding or load pick
up, the slack bus is assumed to provide the net reduction or
increment in the loads. It is well known, but often understated,
that the results depend upon the choice of the slack bus.
In this study, we use a distributed slack bus, where the net
reduction in load due to load shedding is accounted for by
every generator in the system by lowering their respective
dispatches in proportion to their generating capacities. This
eliminates the aspect of arbitrariness that the results contain
when a particular bus is used as a slack bus2. This choice
of distributed slack is motivated by the presence of droop
governor controls on generators in which the response to a
disturbance is distributed in a uniform manner among the
generators. In the WECC system, for example, generators have
5% droop governor controls [2].

We note that due to the incorporation of a single unified
distributed slack mechanism in our framework, all the gen-
erators in the system are redispatched in proportion to their
nominal dispatches in response to load shedding, even when
line failures result in system islanding (disconnected groups
or partitions). Multiple distributed slack mechanisms would
be more appropriate while dealing with cases when there
is partitioning of the graph underlying the system network.
Such an approach can be easily followed once the partitioning
details are known. However we note that the analysis presented
in this paper does not explicitly address issues related with
system islanding and graph partitioning.

A. Power Flow Model, Load Shedding and Distributed Slack

Suppose that the system has mg PV (generator) buses and
ml PQ (load) buses, such that the total buses are m = mg+ml.
Let P 0

pv and P 0
pq be the vectors of active power injections at

PV and PQ buses, respectively, at the original operating point
P 0. Let z ∈ Rml be a vector representing a reduction in the
active load powers due to load shedding. In general, some

2The notion of a distributed slack is used in [7], [23] for other applications.

PQ buses in the network will not have any load connected to
them. In other words, such buses will have no load shedding
activity associated with them. Corresponding components of
the vector z are set to zero. It is assumed that the loads are
constant power factor loads, so that the relationship Q0

pq =
MP 0

pq holds, where Q0
pq represents a vector of reactive power

injections at PQ buses and M is a diagonal matrix. Hence, the
reduction in reactive load powers is equal to Mz. In the space
of active load powers, the vector z provides a direction for load
shedding, whose components are schematically represented in
Figure 1.

Note that all the elements of z are nonnegative, which
is consistent with the sign convention (power injections are
positive) and that the loads are only allowed to be shed. Due
to the adopted notion of a distributed slack bus and the lossless
character of the network, the net reduction in the active power
load due to load shedding, i.e., eT z, where e = [1 1 . . . 1]T ∈
Rml , is accounted for by a reduction in injection at every
PV bus in proportion to their nominal generation dispatch3.
The net reduction in active power injections at PV buses is
given by the product kP 0

pv , where k is a (nonpositive) scalar.
It follows from the conservation of active power that we must
have eT z + keT P 0

pv = 0, therefore

k = − eT z

eT P 0
pv

. (3)

Finally, we assume here that generator voltage controls
act to maintain voltage magnitudes at the PV buses at their
nominal values; one need only consider the reactive power
equations in (2) corresponding to PQ buses. Then, using (1)–
(2), the power flow description at the new operating point P
that is achieved after load shedding is given by

FP
pv(θ, V, γ)− (

P 0
pv + kP 0

pv

)
= 0 (4)

FP
pq(θ, V, γ)− (P 0

pq + z) = 0 (5)

FQ
pq(θ, V, γ)−M(P 0

pq + z) = 0, (6)

where k is as in (3), FP
pv(θ, V, γ) and FP

pq(θ, V, γ) denote,
respectively, the left-hand side from (1) corresponding to PV
and PQ buses, and FQ

pq(θ, V, γ) represents the left-hand side
from (2) corresponding to PQ buses. For a given network
topology (i.e., for fixed γ), the system of equations (4)–
(6) geometrically represents an ml-manifold in the space of
variables (θ, V, z).

We remark that no active power balance equation is omitted
in the power flow description (4)–(6), and thus no angle
reference is provided. As a result, the power flow Jacobian

J =
[

∂F
∂θ

∂F
∂V

]
(7)

has a trivial zero eigenvalue with w0 = [eT 0T ]T as the
corresponding left eigenvector, where e = [1 1 . . . 1]T ∈ Rm,
w0 ∈ Rm+ml , and F denotes the left-hand side of (4)–(6).
This is also apparent from the structure of (1)–(2) and the
fact that the sum of the elements in each row of the incidence

3However, note that our approach is general enough to allow other distrib-
uted slacks.
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matrix A is equal to zero. Note that w0 satisfies

∂F

∂z

T

w0 = 0. (8)

B. Obtaining a (Locally) Best Load Shedding Strategy

Referring to Figure 1, a best load shedding strategy is sought
that moves the initial operating point P 0 to a new operating
point P , such that a minimum amount of load is lost. Results
in the literature related to this topic have employed a 2-
norm notion of distance to a feasible operating point, see for
example [5]. In practice, since our emphasis is on minimum
load shedding, it is more appropriate to express our distance in
a 1-norm sense. That is, we are more interested in the simple
sum of lost load than the sum of squared lost load.

Typically the 2-norm measure is more amenable to mathe-
matical analysis than the 1-norm. The 1-norm measure intro-
duces an aspect of non-smoothness in the analysis, and thus
may increase the complexity of the problem. As mentioned
in Section II-A, in the present case however, note that every
load is only allowed to be shed as opposed to being increased.
This requires all the elements of z to have the same sign, in
particular they need to be all nonnegative in the present frame-
work. This observation greatly reduces the complexity that
the problem would encounter otherwise, and simplifies ‖z‖1
to eT z (which would otherwise be eT |z|). To determine such
a load shedding strategy, consider the following optimization
problem,

min
θ,V,z

eT z (9)

s.t. F (θ, V, z) = 0, (10)

P 0
pq ≤ P 0

pq + z ≤ 0 (11)

Vmin ≤ V ≤ Vmax (12)
−π/2 ≤ Aθ ≤ π/2 (13)

where (10) denotes the system (4)–(6) for a given network
topology (i.e., for fixed γ), such that it does not have a
solution at z = 0. Inequality constraints (11)–(13) ensure
that the variables are within bounds. Note, in particular, that
(11) ensures the validity of this formulation by enforcing
nonnegativity of elements of vector z. It also ensures that the
upper limit on the amount of load shedding is defined by the
nominal load, thus preventing the loads to act as generators.
Voltage magnitudes at PQ buses are bounded by upper and
lower limits Vmax and Vmin, respectively, as indicated by (12).
This constraint ensures that the voltages are within acceptable
limits, even after load shedding. With a good choice of Vmin,
this constraint also serves to exclude low voltage (steady
state unstable) solutions from consideration. Constraint (13)
guarantees that the phase angles across the transmission lines
are in a range acceptable for a steady state stable operation of
the power system.

The Lagrangian corresponding to (9)–(13) is

L = zT e + λT F (θ, V, z) + µT
1 (−z) + µT

2 (P 0
pq + z)

+ µT
3 (Vmin − V ) + µT

4 (V − Vmax)

+ µT
5 (−π/2−Aθ) + µT

6 (Aθ − π/2). (14)

where λ and µ1, . . . , µ6 are vectors of Lagrange multipli-
ers. Optimal solutions to this problem satisfy the following
Karush-Kuhn-Tucker conditions,

e +
∂F

∂z

T

λ− µ1 + µ2 = 0 (15)

JT λ +
[ −AT µ5 + AT µ6

−µ3 + µ4

]
= 0 (16)

µ1 · z = 0 (17)

µ2 · (P 0
pq + z) = 0 (18)

µ3 · (Vmin − V ) = 0 (19)
µ4 · (V − Vmax) = 0 (20)
µ5 · (π/2 + Aθ) = 0 (21)
µ6 · (Aθ − π/2) = 0 (22)

µ1, · · · , µ6 ≥ 0, (23)

along with (10)–(13). Thus the vector z that provides the best
load shedding strategy is obtained by solving (10) and (15)–
(22), while honoring the inequalities (11)–(13) and (23). The
notation “·” in (17)–(22) is used to indicate component-wise
multiplication of associated vectors.

When the inequality constraints (11)–(13) are inactive,
we have µ1, . . . , µ6 = 0. Referring to (16), this results in
JT λ = 0, which in turn makes λ a left eigenvector of J
corresponding to its zero eigenvalue. Note that J must have
an extra (nontrivial) zero eigenvalue as λ = w0 does not satisfy
(15) and (8) simultaneously. In other words, λ equals w, where
w is a left eigenvector of J corresponding to its nontrivial
zero eigenvalue. For this case, it is insightful to appreciate the
geometrical interpretation of (15)–(16). Consider a hyperplane
tangent to the manifold defined by (10). Vectors (δθ, δV, δz)
on that tangent hyperplane satisfy

J

[
δθ
δV

]
+

∂F

∂z
δz = 0. (24)

Premultiplying with the eigenvector wT results in

wT J

[
δθ
δV

]
+ wT ∂F

∂z

T

δz = 0, (25)

However, as the first term in (25) vanishes to zero, we must
have

(
∂F
∂z w

)T
δz = 0. This implies that the normal to the

power flow feasibility boundary at (θ, V, z) is given by ∂F
∂z

T
w.

It also follows from (15) that, this normal aligns with e when
the inequality constraints are inactive.

C. Relaxation on Line Admittance Coefficients

Recall that our goal is to identify a small number of
transmission lines whose removal from service leads to a
significant system failure, where line outages are modeled via
the concept of modified admittance coefficients γ, as described
at the beginning of Section II. Realistically only two situations
are possible, namely, the i-th line is in service (γi = 0) or
it is out of service (γi = 1). This introduces an aspect of
discreteness in the analysis framework and any optimization
problem formulation that involves γi ∈ {0, 1} would result in
an mixed-integer nonlinear programming problem. We note
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that such problems are more difficult to handle than ones
involving continuous variables.

We address this issue by relaxing the variable vector γ in
the first stage of our analysis, and allowing its elements to
take continuous values between 0 and 1. In other words, we
allow partial line outages by letting

γi ∈ [0, 1], i = 1, . . . , n. (26)

Note that the discussion on obtaining the best load shedding
strategy as in Section II-B is applicable for any fixed network
topology (as long as the network remains connected). Thus it
holds valid for situations when the lines are partially removed
from service.

D. A Constrained Optimization Problem

To pose the contingency screening problem, the first stage
of analysis uses a constrained optimization framework that
employs the mechanisms of best load shedding strategy,
distributed slack and partial line outages, described in the
previous sections. Note that we seek to move both the original
operating point P 0 and the power flow feasibility boundary.
This boundary is moved past P 0 such that the minimum load
shedding required to move P 0 to a different operating point
lying on the new boundary is greater than the minimum desired
severity of the blackout. Mathematically, the problem takes the
following form,

min
θ,V,z,γ,µ1,...,µ6,λ

eT γ (27)

s.t. F (θ, V, z, γ) = 0 (28)

e +
∂F

∂z

T

λ− µ1 + µ2 = 0 (29)

JT λ +
[ −AT µ5 + AT µ6

−µ3 + µ4

]
= 0 (30)

µ1 · z = 0 (31)

µ2 · (P 0
pq + z) = 0 (32)

µ3 · (Vmin − V ) = 0 (33)
µ4 · (V − Vmax) = 0 (34)
µ5 · (π/2 + Aθ) = 0 (35)
µ6 · (Aθ − π/2) = 0 (36)

µ1, · · · , µ6 ≥ 0 (37)

P 0
pq ≤ P 0

pq + z ≤ 0 (38)

Vmin ≤ V ≤ Vmax (39)
−π/2 ≤ Aθ ≤ π/2 (40)

0 ≤ γ ≤ 1 (41)

eT z ≥ Smin. (42)

Constraints (28) denotes the power flow equations (10), now
with γ as an additional variable. Together, constraints (28)–
(40) are the Karush-Kuhn-Tucker conditions as obtained in
Section II-B; they are repeated here for clarity. Constraint (41)
follows from the relaxation on γ. Constraint (42) ensures the
total amount of load shed is greater than Smin, a positive-
valued user defined parameter that indicates the minimum
desired severity of the blackout.

By virtue of the distributed slack mechanism, all the gener-
ators contribute to the load shedding in the same proportion.
This ensures that all the generators must reduce (not increase)
their dispatches to account for load shedding, thus in turn
ensuring that their upper dispatch capacity limits are not hit.
This also guarantees that all generators will reach the lower
dispatching limit assumed as zero simultaneously, when all
the load in the system is shed. Thus a constraint that limits
generator dispatches is unnecessary and hence is not included
in the set of constraints (28)–(42).

In the present formulation, we aim to find the least number
of partial line outages that result in a failure having severity
greater than Smin. Another related formulation that can ad-
dress our network vulnerability problem is where one aims
to find the maximum possible failure severity when at most
Lmax number of lines are removed from service. Although
both these formulations carry the same conceptual flavor, they
are different problems depending upon the values that the user
defined parameters Smin and Lmax take. Mathematically, the
latter formulation has the same structure as (27)–(42), except
that the objective is now replaced by

max
θ,V,z,γ,µ1,...,µ6,λ

eT z, (43)

and the constraint (42) is replaced by

eT γ ≤ Lmax, (44)

while keeping other constraints intact.
Using either formulation (27)–(42) or (43)–(44), the critical

lines for system security are identified as the ones that have
non-zero γ’s associated with them. In the second stage of our
analysis, only such lines are considered for an N − k study,
where N is the number of lines identified and k may take
values from 1 through N .

III. EXAMPLES

To illustrate the application of the ideas discussed in Sec-
tion II, we first consider a three bus system (Figure 2),
followed by the IEEE 30 bus system (Figure 7).

A. Three Bus System

This small system is convenient for an easy graphical
visualization of results and to highlight the main aspects of
our formulation. Consider the network as shown in Figure 2
that has two generators and a single constant power factor
load. The network data and the nominal power flow solution
are summarized in Table VI.

Figure 3 shows the space of active power injections at
buses 2 and 3. Given that the system is lossless, the power
injection at bus 1 is simply −(P2 + P3) and consideration
of another axis P1 is unnecessary. When all the lines are
in service, the power flow solution space boundary can be
traced by a continuation technique [18] and is identified as
Σ0. The region enclosed by Σ0 contains all possible power
flow solutions that the present network topology (defined by
line parameters) supports. The part of this region relevant to
us is the quadrant having P2 ≥ 0 and P3 ≤ 0, given that
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Fig. 2. Three bus system.
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Fig. 3. Three bus system: nominal and modified power flow solution space
boundary as defined by the solution in Table I.

the devices connected to buses 2 and 3 are a generator and
load, respectively. Note that the nominal operating point P 0

lies within this region.
Moreover, the subset of the power flow solution space that

contains solutions satisfying the voltage and angle constraints
(39)–(40) defines the region of feasibility. At the nominal
operating point P 0, the load bus voltage is 0.84 p.u. The lower
voltage limit Vmin is set to 0.5 p.u. in the optimization formu-
lation (discussed later). Generator buses 1 and 2 maintain their
voltages at 1 p.u. Given that there are no shunt capacitors in the
network and line charging is ignored, the load bus 3 voltage
would not rise above 1 p.u., effectively making the constraint
V ≤ Vmax unnecessary. The nominal operating point P 0 thus
lies inside the region of feasibility.

Using the problem formulation (27)–(42), a few critical lines
in this system are identified while ensuring that their removal
will cause a failure having a severity of at least 1 p.u., or
equivalently the one that will necessitate at least 1 p.u. of
load shedding at bus 3. The corresponding parameter Smin is
defined as 1. The initial guess for the solution process was
obtained as described in Appendix II. The solution, summa-
rized in Table I, identifies lines 3 and 5 as important. When
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Fig. 4. The fourth quadrant of Figure 3.

these lines are partially removed from service (as defined by
their respective γ’s), the load bus voltage is 0.55 p.u. and
phase angles across the lines (that still remain in service)
are within ±π/2. With both voltage and angle constraints
(39)–(40) inactive, the power flow Jacobian J is nontrivially
singular, as discussed in Section II-B. This is shown pictorially
in Figure 3. With the new network topology, the original
boundary Σ0 moves to Σ1. Note that the original operating
point P 0 lies outside this new boundary, and is now infeasible.
The solution identifies point P 1 which achieves feasibility
again by shedding the least possible load at bus 3. As the
power flow Jacobian J is nontrivially singular, this point lies
on Σ1.

For clarity, the relevant (fourth) quadrant of Figure 3 is
redrawn in Figure 4. The arrow represents the movement of
the operating point from P 0 to P 1. Its projection onto the P3

axis corresponds to the amount of load that is shed at bus 3.
The optimization has obtained point P 1 lying on Σ1 such that
this projection is (locally) least possible in magnitude, while
ensuring that it is at least 1 p.u. (In the present case, it is
exactly 1 p.u., making the corresponding inequality constraint
active.) As apparent from the figure, P 1 satisfies both these
constraints. Note from Table I that due to the distributed
slack bus mechanism, the generators have been redispatched
in a constant proportion to their nominal values so as to
accommodate the reduction of load at bus 3.

TABLE I
A THREE BUS SYSTEM SOLUTION: USING THE FORMULATION (27)–(42)

Lines Load shed and
identified generation redispatch

Line γ Bus P 0 P 1

# #

3 0.67 1 1.0000 0.6667
5 1.00 2 2.0000 1.3333

3 -3.0000 -2.0000
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Fig. 5. Three bus system: nominal and modified power flow solution space
boundary as defined by the solution in Table II.

When the formulation (43)–(44) is used so that at most two
lines are removed (i.e., with Lmax = 2), lines 3 and 5 are
identified again. To obtain this solution, which is summarized
in Table II, the same initialization procedure as before is
employed. The load bus voltage is again about 0.55 p.u.
The optimization algorithm completely removes lines 3 and
5 from service in order to achieve the maximum of the
objective function. This corresponds to a more severe failure
(1.5582 p.u. load shed at bus 3) than the one described in
Table I (1 p.u. load shed at bus 3), but it has also required
(incrementally) more partial line failures.

The voltage and angle constraints are inactive for this
solution too, thus making the Jacobian J nontrivially singular.
It follows that the new (post load shedding) operating point
P 2, as identified in Figure 5, lies on the power flow solution
space boundary Σ2 resulting from a complete removal of
lines 3 and 5 from service. The operating points P 0 and P 1,
and corresponding boundaries Σ0 and Σ1 are also shown for
comparison. The power flow solution space shrinks more when
both these lines are completely removed than when line 3 is
only partially removed, as one would anticipate. Consequently
more load is shed when a load shedding strategy moves P 0

to P 2 than to P 1. Note that the points P 0, P 1 and P 2 are
collinear due to the incorporation of the distributed slack
mechanism. That is, for instance, P 2 lies on Σ2 as well as

TABLE II
A THREE BUS SYSTEM SOLUTION: USING THE FORMULATION (43)–(44)

Lines Load shed and
identified generation redispatch

Line γ Bus P 0 P 1

# #

3 1.00 1 1.0000 0.4806
5 1.00 2 2.0000 0.9612

3 -3.0000 -1.4418
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Fig. 6. Three bus system: nominal and modified power flow solution space
boundary, load bus voltage constraint boundary, and optimization solution.

on the line joining P 0 and the origin.
In summary, the algorithms aim to identify a few line

failures (at most two) and a high blackout severity (at least
1 p.u.). A direct N − 2 analysis by enumeration, which is
easy on this small system, can be used to validate the results
obtained above. Table III enumerates the cases where any
two lines are removed from service such that the power flow
is infeasible. Other combinations of two simultaneous line
failures do not lead to power flow infeasibility, and they are
not included in the table. The least amount of load shedding
required to regain feasibility is also listed in each case. Note
that the removal of lines 3 and 5 achieves the highest possible
severity.

When Vmin is set to 0.7 p.u., solutions to both the optimiza-
tion formulations observe a binding lower voltage constraint
(39), when other parameters are set as Smin = 1 p.u. and
Lmax = 2. Then at the solutions, the power flow Jacobian J
is not nontrivially singular and the new (post load shedding)
operating point does not lie on the power flow solution space
boundary. Instead it lies on the manifold defined by V3 =
Vmin. Such solution obtained using formulation (27)–(42) is
depicted graphically in Figure 6. Curve Ω0 defines a boundary
of the region where V3 > Vmin, when all lines are in service
(nominal case). This region is a subset of the complete power

TABLE III
THE N − 2 ENUMERATION WITH THE THREE BUS SYSTEM

Severity
Lines removed (Load shed at bus 3)

p.u. % of nominal

1, 5 0.5120 17.07%
2, 3 0.5970 19.90%
2, 5 0.6000 20.00%
3, 4 0.5970 19.90%
3, 5 1.5582 51.94%
4, 5 0.5970 19.90%
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flow solution space, whose boundary is shown as Σ0. The
optimization formulation identifies lines 3 and 5, with their
relaxation parameters as γ3 = 0.55 and γ5 = 1. With these
lines (partially) removed as defined by their respective γ’s,
Σ0 moves to Σ3, and Ω0 to Ω3. The boundary Ω3 encloses
solutions having V3 > Vmin, at this network topology. The
optimization identifies the new operating point P 3 that lies on
Ω3, thus making sure that the voltage constraint is not violated,
and yet at least 1 p.u. load is shed. In the present case, exactly
1 p.u. load is shed.

We emphasize that due to the incorporation of voltage and
angle constraints within our analysis, the solution feasibility
boundary that we seek is not always identical with the power
flow solution space boundary. It is the same as the power flow
solution space boundary when load voltages and line angles
are not at their limits. However, it is defined as the composite
boundary of the region Vmin ≤ Vl ≤ Vmax and −π/2 ≤
θij ≤ +π/2, when load voltage(s) Vl or line angle(s) θij are
at their limits. Mathematically, (30) defines such a feasibility
boundary.

In this three bus system, no single line failure contingency
results in an infeasible operation. Thus the second stage of
N − k enumeration study involving only lines 3 and 5 is
unnecessary. Finally, it is important to note that the schematic
in Figure 1 shows a space of load powers while Figures 3, 4,
5 and 6 show a complete space of all bus (nodal) powers. As
there is only one load in the three bus system, the space of load
powers is 1-dimensional and does not provide a significant
visualization aid.

B. IEEE 30 Bus System

The IEEE 30 bus system as shown in Figure 7 is considered
for the identification of lines critical for system security using
the formulation discussed in Section II-D. The generators are
dispatched in the original system data [27] in such a way
that the system observes an active power balance within the
left, right and the lower parts of the network. To emphasize
some important aspects of our algorithm, the generator active
power injections are modified so that there is no natural power
balance in the system subsets. Table VII documents the system
data that is used to obtain the results that follow.

Problem formulation (27)-(42) is used for the contingency
screening. Feasible initial guesses were obtained according to
the procedure described in Appendix II. The solutions were
computed using the solver SNOPT [14], the AMPL modeling
language [24], and the NEOS server for optimization [25],
[26]. SNOPT uses a sequential quadratic programming algo-
rithm suitable for problems with (nonlinear) objective function
and is designed for both nonlinear and linear constraints with
sparse derivatives. The latter is particularly attractive for the
optimization problem under consideration.

An obvious (and trivial) solution to the optimization prob-
lem is the one that isolates all the generation from the loads,
by removing radial lines that connect generators (and/or loads)
with rest of the system. Such cases are excluded by not
allowing the radial lines (in this case, lines 13, 16 and 34) to
be removed from service, as our goal is to identify more subtle
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Fig. 7. Optimization solution for the IEEE 30 bus system.

solutions, that is, those not trivially revealed in the network
topology.

Buses having generators attached to them are assumed to
have 1.05 p.u. voltage. The base case (all lines in service and
no load shedding) power flow solution results in a voltage
profile such that the lowest bus voltage in the system is
0.85 p.u (at bus 8). Within the optimization framework, the
limit of Vmin = 0.8 p.u. is enforced on load bus voltages.
This places the nominal voltage profile within the range
of allowable voltage magnitudes, thus making the nominal
operation feasible. Using the same argument as in Section III-
A, we note that the constraint V ≤ Vmax is unnecessary for
this example.

Figure 7 depicts a solution based upon an initial guess pro-
vided by the initialization procedure described in Appendix II.
The parameter Smin was set to 2 p.u. This solution identifies
three transmission lines as critical ones. It also reveals that
the aggregate of 2 p.u. load must be shed so as to just avoid
a failure when these lines are removed partially from service
(as defined by their respective γ’s). This amounts to shedding
24.4% of the total load in the system. Table IV summarizes
this solution. With lines 28 and 29 completely removed and
line 36 partially removed from service, the generation rich
lower region of the network is almost unable to supply loads in
the other regions. This results in a sagging voltage at buses 19
and 20, and they are constrained at Vmin. Effectively, as the
solution identifies, loads at this bus and neighboring buses
must be shed to maintain power flow and voltage feasibility.
Recall that bus 8 had the lowest voltage at the base case power
flow. It turns out that some load must be shed at this bus too,
in order to avoid the overall system failure, and its voltage
will sag down to Vmin post-load shedding.

Having identified the lines whose (even partial) failure
results in a severe system disturbance, one can perform the
N −k study by only considering those lines (where N is now
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TABLE IV
THE IEEE 30 BUS SYSTEM SOLUTION

Lines identified Load shed Buses
Line γ Bus p.u. % of at

# # nominal Vmin

28 1.00 8 0.3640 24.3% 8, 19, 20
29 1.00 17 0.4197 93.3%
36 0.67 19 0.3418 72.0%

21 0.8750 100.0%

3, rather than 41). Note that the computational burden reduces
drastically, for instance, the number of combinations to ana-
lyze reduce from 820 to 3 combinations for the N − 2 study.
Table V describes the results of such an enumeration process,
along with the load shedding to be performed at various buses
to just avoid the otherwise impending system failure. The third
column of Table V provides a load shedding strategy that will
just avoid the infeasibility caused by the line removals. The
net load reduction due to the load shedding is accounted for by
the distributed slack mechanism. Mathematically, the process
of identifying such a load shedding strategy corresponds to
solving the optimization problem (9)–(13), with the constraint
(13) enforced only on the lines in service.

Referring to Table V, the removal of line 29 leads to an
infeasible operation as the system will not be able to hold
the voltage at bus 21 at or above Vmin

4. About 13% of load
at this bus must be shed in order to maintain feasibility. This
load shedding would place the voltage at that bus at Vmin, thus
just avoiding the infeasible operation. The system operation is
also infeasible when either of or both the lines 28 and 36 are
removed along with line 29. For instance, when lines 28 and
29 are removed from service, a total of 1.5239 p.u. load must
be shed to maintain feasibility. Voltages at buses 8, 19 and 20
would be at Vmin when this load shedding is executed.

When all the identified lines, namely, lines 28, 29 and 36
are removed from service at a time (Table V, last row), the
system gets grouped into two subsystems that are connected
to each other by a single line (line 30). Recall that the group at
the lower part of the network is generation rich. This results
in a substantial need for load shedding in the other group
(2.47 p.u., which is 30% of the total system load). Even with
all the load at buses 17, 19 and 21 being shed along with
partial load shedding at buses 8 and 20, the voltage at bus 19
would be as low as Vmin.

IV. CONCLUSION

In this paper, we propose a computationally feasible ap-
proach to detect multiple contingencies resulting in a severe
system failure that does not require a prohibitively expensive
enumeration. This approach provides an avenue to undertake
a higher order N − k security analysis on a large-scale power
system, in turn providing the planners and operators a deeper
understanding of the system.

4A feasible operation is possible when the constraint specifying the lower
limit on bus voltages is removed. Bus 21 voltage would however drop below
Vmin.

TABLE V
SELECTED ENUMERATION WITH THE IEEE 30 BUS SYSTEM

Severity Load shed Buses
Lines removed p.u. Bus p.u. % of at

# nominal Vmin

29 0.1136 21 0.1136 13.0% 21

28, 29 1.5239 8 0.1620 10.8% 8, 19, 20
17 0.2524 56.1%
19 0.2269 47.8%
20 0.0076 6.9%
21 0.8750 100%

29, 36 0.5138 8 0.1922 12.8% 8, 21
21 0.3215 36.7%

28, 29, 36 2.4700 8 0.6258 41.7% 19
17 0.4500 100%
19 0.4750 100%
20 0.0442 40.2%
21 0.8750 100%

Our approach seeks to identify a few line outages such
that the system will need to shed significant amount of load
in order to continue a feasible operation. It is important to
discuss the level of modeling detail we have used and the
impact it may have on results. By incorporating a nonlinear
power flow, a droop-governor-motivated distributed slack bus,
and using a one-norm metric, our model is consistent with (or
is more detailed than) the models used in the most closely
related literature on calculating the distance to the power
flow feasibility boundary. Nevertheless, it lacks a detailed
representation of system dynamics and therefore our results
may be optimistic if the system were to exhibit instabilities.
Alternatively, neglecting fast-acting reserves and special re-
medial action schemes that may be in place, may make our
results pessimistic. We will work in the future to add some of
these features to our model. We believe the model is valuable
in its present form for identifying multiple contingencies that
may undergo further scrutiny, perhaps with a detailed dynamic
model.

We should also comment on the practical algorithms to per-
form the computations outlined in this paper. While the results
on our test systems reveal the effectiveness of the problem
formulation, the associated nonlinear optimization problem
offers many challenges for larger (continental size) problems.
Due to the nonlinearity of power flow equations and other
constraints, the resulting optimization problem is in general
non-convex. Thus the solution obtained corresponds to a local
optimum, depending upon the initial guess, the solver used and
complexity of the power network under consideration. We have
posed our problem in a worst-case optimization framework,
but the non-convexity inherent in the model suggests that we
cannot prove the result is indeed the worst case result. We
would like to point out that this issue of non-convexity applies
to all optimization problems that use a nonlinear model for the
power grid, including traditional economic-focused optimal
power flows, security margin calculations, etc., although one
rarely encounters this caveat mentioned in the literature. (See
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TABLE VI
THREE BUS SYSTEM DATA (NOMINAL POWER FLOW)

Bus data Line data
Bus P inject. Q inject. Ang., θ Volt., V Line React.

# (net), p.u. (net), p.u. rad p.u. # X , p.u.

1 1.0000 1.7040 0.0420 1.0000 1 0.10
2 2.0000 1.7600 0.0770 1.0000 2 0.33
3 -3.0000 -2.4000 -0.1200 0.8412 3 0.14

4 0.33
5 0.14

[19] for a discussion of the impact of non-convexity in the
context of electricity markets.)

The advantage of studying the test systems presented in
this paper is that the results up to N − 2 can be verified by
complete enumeration. The removal of lines 28 and 29 that we
identify as the worst N − 2 case in the IEEE 30 bus example
is confirmed by complete enumeration of all possible 2-line
outages (excluding the ones that result in system islanding).
Our approach for determining initial guesses, outlined in Ap-
pendix II, has worked well so far, but we will need to keep the
issue of non-convexity in mind as we develop algorithms for
large-scale systems. Special algorithms need to be developed
since commercial power flows do not presently perform the
calculations we have developed here. The state of the art in
high performance computing provides a platform to efficiently
deal with large, complex and non-convex problems. We are
currently working on algorithms that can efficiently exploit
such platforms.

APPENDIX I
EXAMPLE SYSTEM DATA

This appendix summarizes the data used for the three bus
system and the IEEE 30 bus system, used in this paper.
Tables VI and VII include the network parameters and the
nominal power flow solution for these two systems respec-
tively. Note that a few PV buses in the 30 bus system have local
loads connected. Such buses are considered as PV buses with
the nominal generation as the net nominal injection. In other
words, they are assumed to not have any ability to perform
load shedding. However a slight modification to (4)–(6) can
handle the shedding of loads local to their generation.

APPENDIX II
OBTAINING FEASIBLE INITIAL GUESSES

Nonconvexity of the optimization formulation (27)–(42)
demands good (feasible) initial guesses to obtain convergence.
Such initial guesses can be obtained by using simplified
problem formulations of the main problem. One such approach
is outlined here and is used to obtain the solutions discussed
in Sections III-A and III-B.

Authors discuss in [11] that the problem of contingency
screening can be formulated using spectral graph partitioning
approach and simplified power flow. In that formulation, all
the bus voltages are assumed to be at 1 p.u., however the

nonlinearity in terms of the angles is fully considered. Solu-
tions obtained using that approach can be processed further
to provide feasible initial guesses to the optimization problem
(27)–(42), as discussed below.

One can note just by inspection of the three bus system
that the most severe blackout is obtained by removing lines 2,
3, 4 and 5 from the network as it will isolate the load from
generation. Such a situation can be systematically identified
by the graph theory based algorithm discussed in [11] for a
larger system. For example, a significant blackout is obtained
by removing lines 28, 29, 30 and 36 for the IEEE 30 bus
system, as identified in [11]. By allowing the line parameter
γ associated with only these lines to vary, the initialization
process poses the problem: what is the most (locally) severe
failure that can be obtained by partially removing only these
lines from service? This problem can be described mathemat-
ically in an optimization framework as

max
θ,V,z,γ,µ1,...,µ6,λ

eT z, (45)

such that constraints (10)–(13) and (15)–(23) are satisfied
along with 0 ≤ γ ≤ γmax and eT z ≥ Smin. The nominal
power flow solution (Table VI and Table VII) provides an
initial guess for this initialization procedure. Parameter γmax

is set to 0.9, a value close to but less than one, and Smin is
set to 0.5, a small positive value, to avoid graph partitioning
and/or trivial solutions. (One trivial/undesired solution is λ =
w0, µ1 = e, µ2, · · · , µ6, z = 0; thus making the objective
function zero.) This approach has been used to obtain solutions
discussed in Sections III-A and III-B.

We note that there are other ways to obtain feasible initial
guesses for the optimization problem (27)–(42). One way
features solving the simplified problem

min
θ,V,z,γ,µ1,...,µ6,λ

∣∣∣∣∣

∣∣∣∣∣e +
∂F

∂z

T

λ− µ1 + µ2

∣∣∣∣∣

∣∣∣∣∣
2

, (46)

such that constraints (10)–(13) and (16)–(23) are satisfied
along with 0 ≤ γ ≤ γmax, eT γ ≤ Lmax and eT z ≥ Smin.
The nominal power flow solution provides an initial guess
for this initialization procedure. Random starting guesses have
also produced solutions to (46).
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TABLE VII
IEEE 30 BUS SYSTEM DATA (NOMINAL POWER FLOW)

Bus data Line data
Bus P inject. Q inject. Ang., θ Volt., V Line React.

# (net), p.u. (net), p.u. rad p.u. # X , p.u.

1 0.1765 0.5084 0.0387 1.0500 1 0.06
2 0.9635 2.0656 0.0390 1.0500 2 0.19
3 -0.1200 -0.0600 0.0045 0.9586 3 0.17
4 -0.3800 -0.0800 0.0017 0.9420 4 0.04
5 0.0000 0.0000 -0.0416 0.9497 5 0.20
6 0.0000 0.0000 -0.0255 0.9075 6 0.18
7 -1.1400 -0.5450 -0.0985 0.8930 7 0.04
8 -1.5000 -1.5000 -0.0842 0.8449 8 0.12
9 0.0000 0.0000 0.0345 0.9535 9 0.08
10 -0.2900 -0.1000 0.0637 0.9788 10 0.04
11 0.0000 0.0000 0.0345 0.9535 11 0.21
12 -0.5600 -0.3750 0.2047 0.9372 12 0.56
13 2.1000 1.2760 0.5080 1.0500 13 0.21
14 -0.3100 -0.0800 0.1463 0.9327 14 0.11
15 -0.4100 -0.1250 0.1721 0.9480 15 0.26
16 -0.1750 -0.0900 0.1041 0.9294 16 0.14
17 -0.4500 -0.2900 0.0474 0.9464 17 0.26
18 -0.1600 -0.0450 0.0469 0.9232 18 0.13
19 -0.4750 -0.1700 -0.0047 0.9205 19 0.20
20 -0.1100 -0.0350 0.0066 0.9326 20 0.20
21 -0.8750 -0.5600 0.1073 1.0252 21 0.19
22 1.5795 2.1958 0.1351 1.0500 22 0.22
23 1.3000 0.8515 0.3332 1.0500 23 0.13
24 -0.4350 -0.3350 0.2049 1.0080 24 0.07
25 0.0000 0.0000 0.3162 1.0110 25 0.21
26 -0.1750 -0.1150 0.2479 0.9633 26 0.08
27 2.0955 1.1650 0.4189 1.0500 27 0.07
28 0.0000 0.0000 0.0151 0.8992 28 0.15
29 -0.1200 -0.0450 0.2985 1.0050 29 0.02
30 -0.5300 -0.0950 0.2161 0.9884 30 0.20

31 0.18
32 0.27
33 0.33
34 0.38
35 0.21
36 0.40
37 0.42
38 0.60
39 0.45
40 0.20
41 0.06




