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Abstract

We evaluated interactions of SNP-by-ACE-I/ARB and SNP-by-TD on serum potassium (K+) 

among users of antihypertensive treatments (anti-HTN). Our study included 7 European-ancestry 

(EA) (N=4835) and 4 African-ancestry (AA) cohorts (N=2016). We performed race-stratified, 

fixed-effect, inverse-variance-weighted meta-analyses of 2.5 million SNP-by-drug interaction 

estimates; race-combined meta-analysis; and trans-ethnic fine-mapping. Among EAs, we 

identified 11 significant SNPs (P<5×10−8) for SNP-ACE-I/ARB interactions on serum K+ that 

were located between NR2F1-AS1 and ARRDC3-AS1 on chromosome 5 (top SNP rs6878413 

P=1.7×10−8; ratio of serum K+ in ACE-I/ARB exposed compared to unexposed is 1.0476, 1.0280, 

1.0088 for the TT, AT and AA genotypes, respectively). Trans-ethnic fine mapping identified the 

same group of SNPs on chromosome 5 as genome-wide significant for the ACE-I/ARB analysis. 

In conclusion, SNP-by-ACE-I/ARB interaction analyses uncovered loci that, if replicated, could 

have future implications for the prevention of arrhythmias due to anti-HTN treatment-related 

hyperkalemia. Before these loci can be identified as clinically relevant, future validation studies of 

equal or greater size in comparison to our discovery effort are needed.

INTRODUCTION

Most people initiating treatment for hypertension (anti-HTN treatments) do not experience 

clinically meaningful changes in serum potassium (K+). However, thiazide and thiazide-like 

diuretics (TDs), first-line treatments for hypertension, produce hypokalemia more frequently 

than other anti-HTN treatments.1 Additionally, angiotensin-converting enzyme inhibitors 

(ACE-Is) and angiotensin receptor blockers (ARBs) are associated with hyperkalemia. 

Though uncommon, altered serum K+ concentration during anti-HTN treatment can be 

clinically serious as it is associated with adverse cardiovascular effects.2 Hypokalemia 

during TD treatment has been implicated in the development and progression of coronary 

heart disease (CHD), new-onset diabetes mellitus3 and myocardial infarction4 as well as the 

provocation of cardiac arrhythmia and sudden death.5 Of even greater clinical significance is 

hyperkalemia which is associated cardiac arrhythmia and cardiovascular disease (CVD) 

mortality.2

For example, in the Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack 

Trial (ALLHAT), hypokalemia (K+<3.5 mmol/L) incidence was higher in the chlorthalidone 

(a TD) randomization group than in the amlodipine (a calcium channel blocker (CCB)) and 
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lisinopril (an ACE-I) randomization groups (12.9% vs. 2.1% and 1.0%, respectively).6 

Hyperkalemia (K+>5.4 mmol/L) was more common for ACE-I (3.6%) than TD (1.2%) or 

CCB (1.9%). During more than 6 years of follow-up in ALLHAT, hypokalemia was 

associated with increased mortality and hyperkalemia was associated with increased risk of 

combined CVD (including fatal or non-fatal MI, coronary revascularization, stroke, angina, 

heart failure, and treated peripheral arterial disease).

Because serum K+ is heritable6–10 and inter-individual variations in serum K+ during anti-

HTN treatment have been observed, we hypothesized that genetic factors may modify serum 

K+ levels during treatment. To test this hypothesis, we examined single-nucleotide 

polymorphism (SNP)-by-ACE-I/ARB and SNP-by-TD interaction effects on serum K+ 

among observational epidemiology cohorts participating in the Cohorts for Heart and Aging 

Research in Genomic Epidemiology (CHARGE) consortium.11 There were few cases of 

hyperkalemia and hypokalemia in these epidemiological studies, therefore, our study 

considered K+ measured as a continuous variable. Cohorts providing data on participants of 

European ancestry (EA) or African ancestry (AA) included the Cardiovascular Health Study 

(CHS); the Rotterdam Study (RS); the Atherosclerosis Risk in Communities Study (ARIC); 

the Age, Gene/Environment Susceptibility-Reykjavik Study (AGES); the Heart and Vascular 

Health Study (HVH); the Hypertension Genetic Epidemiology Network Study (HyperGEN); 

and the Jackson Heart Study (JHS). The current study leveraged data from studies with 

available measures of serum K+, genome-wide association study (GWAS) data, and 

comprehensive anti-HTN medication data for a total of 4835 EA and 2016 AA participants.

METHODS

Study populations

Inclusion criteria for this analysis entailed the following: treatment for hypertension, 

available GWAS data, and available serum K+ data. Cohort participants were excluded if 

they were treated with a diuretic other than a thiazide or thiazidSEe e-like diuretic (other 

diuretics were loop, aldosterone antagonist, or K+-sparing diuretics). We also excluded 

individuals who were treated concomitantly with single or combination preparations of TD 

plus ACE-I or ARB and individuals with renal failure (eGFR <30 mL/min/1.73m2). Cohort-

specific inclusions and/or exclusions can be found in the online-only Supplementary File 

Section 1 (Study Descriptions). Across the contributing cohorts, 7 studies contributed data 

on participants of European ancestry and 4 studies contributed data on participants of 

African ancestry.

Phenotype and other clinical data

Serum K+ was measured using standard clinical chemistry methods in all cohorts. 

Information on K+ supplementation was available in all cohorts except for the HyperGEN, 

JHS, AGES and Rotterdam studies. More detailed information on the serum K+ assay and 

supplementation can be found in Supplementary File Section 1, Study Description. We also 

determined counts of clinically relevant cut points for high (>5.0 mmol/L), low (<3.5 

mmol/L) and normal serum potassium 3.5≤K+≤5.0 mmol/L by drug exposure group within 

each cohort.
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Drug exposure information

Information on anti-HTN treatment use (yes/no) was assessed at the time of serum K+ assay 

in all studies. Data was extracted at one point in time with the exception of the ARIC study 

which provided cross-sectional data at two time-points. See Supplementary File Section 1 

(Study Descriptions). TD users were defined as those participants taking a thiazide or 

thiazide-like diuretic in a single or combination preparation without concomitant use of an 

ACE-I or ARB. For the purposes of the current study, we combined ACE-I and ARB 

treatment into one exposure category because both medications downregulate angiotensin II 

(Ang II) activity and can cause hyperkalemia. ACE-I/ARB users were defined as those 

participants taking an ACE-I or ARB in a single or combination preparation without 

concomitant use of a TD. The reference group for each drug exposure was treatment with 

anti-HTN medication belonging to one of the following classes and without concomitant use 

of TD, ACE-I, or ARB: calcium channel blocker, alpha blocker, beta blocker, central acting 

agent, and/or direct vasodilator ( see Supplementary File Table 3 for counts of reference 

drug classes within each cohort). Drug exposures were assessed by medication inventory, 

self-report, or computerized databases. See Supplementary File Section 1 (Study 

Descriptions).

Genotype arrays and imputation

Genome-wide SNP genotyping was performed within each study using Illumina or 

Affymetrix genotyping arrays. Details of genotyping and quality control are provided in 

Supplementary File Table 1. General quality control procedures excluded participants based 

on sex mismatches, genotyping success rate <95%; and exclusion of SNPs failing 

genotyping call rate thresholds, typically between 90% and 99%. To increase coverage and 

facilitate evaluation of the same SNPs across cohorts, SNPs passing quality control were 

used to impute to the HapMap Phase 2 reference panels using MaCH,12 BEAGLE,13 or 

BIMBAM.14

Statistical analysis

General estimating equations (for repeated measures data in ARIC), and linear regression 

models (or mixed linear to accommodate family based designs) were used in each individual 

cohort where the outcome of interest was the natural log transform of serum K+ level treated 

as a continuous variable. All models included a term for the SNP dosage and an indicator 

variable for the anti-HTN treatment exposure. The primary parameter of interest was the 

SNP-by-treatment interaction term (βGE). Adjustment for age, sex, body mass index (BMI), 

and concomitant use of a K+ supplement (if available), as well as study-specific covariates 

(e.g., principal components for ancestry and study site) was taken into account and, if 

applicable, correlation matrices to account for family relatedness. Robust standard error (SE) 

estimates were used for non-familial data.15 Details of the models and software packages 

used to estimate cohort-specific results are shown in Supplementary File Table 2. In 

secondary analysis we considered clinically relevant cut points for serum K+ as a binary 

outcome variable for significant SNP findings from the primary analysis using logistic 

regression in cohorts with available data. Sensitivity analysis was performed removing 

participants with K+ supplementation for our top finding. Since beta blockers have been 

Irvin et al. Page 5

Pharmacogenomics J. Author manuscript; available in PMC 2019 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associated with variation in serum K+16 we conducted an additional sensitivity analysis in 

the HyperGEN EA cohort removing those exposed to beta blockers from the reference group 

for our top finding. Finally, since serum Na+ and K+ may behave in the opposite direction 

during anti-HTN treatment we also examined K+ significant drug-by-SNP interaction effects 

on serum Na+ in the HyperGEN EA cohort.

Study-specific interaction estimates (βGE) and “corrected” SEs were combined by fixed 

effect inverse variance weighted meta-analysis using METAL (code available upon request).
17 To obtain “corrected” SEs, P-values were calculated using a t reference distribution for 

the ratio of the βGE term to its SE; then corrected SEs were the SE values that would give 

the t-distribution-based p-values when assuming a normal distribution for the ratio of the 

βGE term to its corrected SE. Such correction was necessary due to known underestimation 

of SEs by robust methods when any SNP-treatment stratum is small.18 The degrees of 

freedom (DF) for the t reference distribution were estimated using Satterthwaite’s method in 

cohorts with unrelated participants.19, 20 In HyperGEN the DF was estimated as the Filter 

DF described below. To control for remaining inflation in the QQ-plots for variants with 

smaller minor allele frequency (MAF), due to a lower limit of accuracy of the t-distribution-

based correction, a study-specific filter was calculated (Filter DF=2*imputation 

quality*MAF*Nexposed; where Nexposed was the approximate number of independent 

observations exposed to the drug). SNPs within each study that had Filter DF value ≤10 

were excluded from the meta-analysis.18 The genome-wide threshold for significant drug-

by-SNP interaction was P<5.0×10−8. SNPS with Cochran’s Q-test for heterogeneity p-value 

<0.05 were excluded from the final result set. Both race-specific and race-combined meta-

analyses were conducted. To illustrate the effect size of a statistically significant SNP-by-

treatment interaction we used inverse-variance-weighted meta-analysis to get an estimate of 

the treatment coefficient and the treatment-SNP interaction coefficient along with the 

variances. We then calculated the expected difference between the treatment (of interest) 

exposed and unexposed by genotype, along with the 95% confidence interval (CI) and 

exponentiated those values.

We also performed trans-ethnic fine-mapping of significant results from the above analysis 

using MANTRA21 combining fixed effect estimates from the EA and AA discovery. We 

considered an association to have reached genome-wide significance if the log10 Bayes 

Factor (BF) from MANTRA was greater than 5 as recommended by the authors.21 A log10 

Bayes Factor > 5 was estimated to approximate P<8*10−7 and log10 Bayes Factor > 6.1 was 

estimated to approximate P<5.0 × 10−8 by Wang et al.22

Gene annotation

We used publicly available regional ENCyclopedia Of DNA Elements (ENCODE) 

annotations accessed June 28, 2016 to evaluate transcription factor binding sites, chromatin 

modifications, histone acetylation, long non-coding RNAs, previous GWAS findings, and 

micro RNAs in the region of our association results. We also used Bioconductor’s FunciSNP 

to extract information on 1000 Genomes (1000G) database SNPs in linkage disequilibrium 

(LD) with our statistically significant findings. FunciSNP curates all 1000G database SNPs 

in LD to the trait-associated SNP and their overlap with genomic biological features from 
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ENCODE. We scanned for 1000G database SNPs within a 2-MB window of our index SNPs 

and required 1000G database SNPs reported on to have an R2 value of >0.5 with our K+-

associated SNPs.23 We used the online LDlink tool to investigate LD between SNPs 

belonging to association peaks.24

Replication

We attempted to replicate statistically significant findings from the discovery meta-analysis 

in the Netherlands Epidemiology of Obesity (NEO) Study. The inclusion and exclusion 

criteria, methods for medication use assessment and K+ level measurement, and statistical 

analysis was the same as in the discovery analysis. A total of 817 NEO participants were 

included in the replication analysis. See Supplementary File section 1 for a description of the 

NEO cohort.

RESULTS

Characteristics of study participants are shown in Tables 1 and 2. The average age (SD) of 

the EA participants ranged from 54.6 (6) to 79.2 (4) in EAs and 51.3 (10) to 72.5 (5) in AAs. 

The average systolic blood pressure (SD) ranged from 125.3 (18) to 144.8 (22) mm Hg in 

EAs and 131.1 (18) to 145.4 (24) mm Hg in AAs. The average diastolic blood pressure 

ranged from 71.5 (12) to 82.6 (12) mm Hg in EAs and 75.8 (11) to 82.6 (12) mm Hg in 

AAs. Finally, the median value (interquartile range) of serum K+ ranged 3.9 (0.3) to 4.4 

(0.7) mmol/L in EAs and 3.9 (0.7) to 4.2 (0.5) mmol/L in AAs. See Supplementary File 

Tables 4 (EAs) and 5 (AAs) for counts of high, low and normal serum K+ levels by drug 

exposure group in each cohort.

Across the individual cohort GWAS analyses, there was not excessive evidence for the 

inflation of P-values for gene-by-drug interaction terms (range of genomic inflation factors 

1.01–1.11, see Supplementary File Table 6). Manhattan plots for the ACE-I/ARB exposure 

discovery meta-analyses are presented in Figure 1 (race-combined, EA, and AA). QQ plots 

for the ACE-I/ARB exposure analysis in the individual EA cohorts are presented in 

Supplementary File Figure 1.

In the EA stratum, eleven SNPs with a statistically significant interaction effect were 

identified for the ACE-I/ARB exposure in an intergenic region between arrestin domain 

containing 3 antisense RNA (ARRDC3-AS1) and nuclear receptor subfamily 2, group F, 

member 1 antisense RNA (NR2F1-AS1) (smallest Pint=1.7*10−8 for rs6878413) (Table 3). 

The SNPs were present in each of the 7 cohorts contributing EA data and had the same 

direction of effect for the interaction term across studies with the exception of the Rotterdam 

study. The 11 variants are in strong LD in the CEU population (R2>0.9). Figure 2 shows that 

the ratio (95% CI) of serum K+ in ACE-I/ARB exposed compared to unexposed for 

genotypes TT, AT and AA at rs6878413 (the most significant SNP) is 1.0476 (1.038–1.057), 

1.0280 (1.021–1.034) and 1.0088 (1.000–1.017), respectively. Sensitivity analysis removing 

those participants reporting K+ supplementation did not change individual cohort estimates 

for the top SNP (rs6878413) appreciably in the ARIC, CHS, HVH1 and HVH2 studies 

(Supplemental Table 7). In the HyperGEN EA cohort removing those treated with beta 

blockers did not substantially change the interaction effect estimate for the top SNP and the 
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SNP-ACE-I/ARB interaction term for these 11 SNPs was not associated with serum Na+ 

(P>0.1). We also calculated the OR for high serum K+ with ACE-I/ARB exposure versus 

other anti-HTN treatment using data from HVH1, HVH2, and ARIC and meta-analyzed 

those results using inverse variance weighted meta-analysis. For rs6878413 the OR (95% 

CI) for high K+ for genotypes TT, AT, and AA comparing those exposed to ACE-I/ARB 

versus other anti-HTN treatments was 3.7 (0.9–14.0), 2.4 (1.0–6.0), and 1.6 (1.0–2.6), 

respectively.

These findings on chromosome 5 for the ACE-I/ARB exposure were not consistent in the 

AA stratum and not strengthened in the race-combined meta-analysis (Table 3). Ten of the 

top 11 SNPS were present in both ethnicities and the log10 BF was >5 (approximating a P < 

8*10−7) for 8 of 10 SNPs after combining the results of both ethnic groups using MANTRA 

(Supplementary File Table 8). None of the 10 variants reached a significance threshold 

approximating P<5*10−8 or log10 BF >6.1. This group of 10 SNPs represents the highest 

MANTRA peak on chromosome 5 and includes variants with heterogeneous allelic effects 

(posterior probabilities >0.5). There was a different lead SNP (rs6557075) in trans-ethnic 

meta-analysis also suggesting differences between the race groups.

Annotation of the region on chromosome 5 revealed that the 11 markers (highlighted in blue 

in Supplementary File Figure 2) are closest to the downstream gene NR2F1-AS1. Upstream, 

the nearest functionally characterized gene is >1.8Mbp away (ARRCDC3-AS1) and the 

region between NR2F1-AS1 and ARRDC3-AS1 is devoid of protein-coding genes (i.e., in a 

gene desert), but includes lincRNA expression reads and previous published GWAS 

findings. SNPs from previous GWAS in the region are associated with breast cancer,25, 26 

subcutaneous adipose tissue,26 and obesity.27 The region immediately surrounding the SNPs 

of interest is rich in transcription factor binding sites for NR2F1.28 FunciSNP identified 44 

1000G SNPs in LD with our statistically significant findings (index SNPs) on chromosome 

5. All 44 of those variants were upstream of NR2F1-AS1 and located in open chromatin 

regions as determined by formaldehyde-assisted isolation of regulatory elements (FAIRE). 

See Supplementary Table 9 for FunciSNP output on the 44 1000G SNPs. In the NEO study 

population the K+ range was 3.1–6.1 mmol/L and 457 of 817 (56%) participants were 

exposed to ACE-I or ARB. The results for the interaction terms for the 11 SNPs of interest 

from the discovery meta-analysis were not replicated in NEO. Supplementary File Table 10 

shows that Pint ranged from 0.068 to 0.44, and that the direction of effect was opposite the 

direction in the discovery meta-analysis.

There were no other statistically significant SNP-by-ACE-I/ARB interactions in the AA 

stratum. Although a peak of marginal significance intronic to choline/ethanolamine 

phosphotransferase 1 (CEPT1) was found on chromosome 1 (top SNP, rs2490334; 

P=1.5×10−6). In the race-combined analysis, the most significant finding (P=1.4×10−7) was 

on chromosome 15 for rs4886544 between LOC645752 (~8kb) and LOC645752 (~60 Kb) 

(Supplementary File Table 11).

Top results for the TD exposure meta-analysis of serum K+ levels in EAs and AAs are 

presented in Supplementary File Table 12 and graphically in Figure 3. No SNP-by-TD 

interaction was statistically significant in the EA or AA meta-analysis. Among EAs the most 
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significant (Pint =6.9×10−7) SNP-by-TD interaction was on chromosome 12 where the SNP 

(rs7313728) was intergenic between T-Box 3 (TBX3, distance 1 Mbp) and mediator 

complex subunit 13-like (MED13L, distance 0.26 Mbp). Three other SNPs (rs1816225, 

rs6490032, rs1352141) in the same region had marginal significance with Pint <1×10−5. In 

each case, the SNP was present in 5 of 7 cohorts (missing in the HyperGEN and Rotterdam 

studies due to filter DF<10) and the interaction term had the same direction of effect across 

the cohorts. Among AAs the most significant (Pint =1.9×10−7) SNP-by-TD interaction (for 

rs12133062) was on chromosome 1 upstream of immunoglobulin superfamily, member 2 

(IGSF2). Another SNP (rs12759956) in this region was marginally significant 

Pint=1.3×10−5. When the results for the EA and AA strata were combined, a marker intronic 

to retinoic acid receptor beta (RARB) almost reached the statistical significance threshold at 

Pint=9.9×10−8 (Figure 2A). The SNP-by-TD exposure interaction peak nearby TBX3 was 

strengthened in the race combined analysis (top SNP rs7313728 with Pint=1.7×10−7). 

Finally, a dense peak was identified ~700 kb upstream of the angiotensin II receptor type 1 

(AGTR1) gene with smallest Pint= 1.3×10−6 for rs1462657. Because none of the discovery 

findings were statistically significant we did not seek replication for the TD findings.

DISCUSSION

The mechanisms through which TDs, ACE-Is, and ARBs lead to lower or higher serum K+ 

concentrations in some users but not the majority of users are not well understood. To better 

understand the potential for a genetic contribution to the inter-individual variation in serum 

K+ during anti-HTN treatment, we undertook two independent, genome-wide, gene-by-

treatment meta-analyses of serum K+ (SNP-by-TD and SNP-by-ACE-I/ARB, respectively) 

in the CHARGE consortium representing genotypes and relevant data on almost 5000 

persons of European descent and just over 2000 persons of African descent. We uncovered 

11 statistically significant SNPs for the ACE-I/ARB exposure analysis on chromosome 5 in 

between NR2F1-AS1 and ARRDC3-AS1 in the EA stratum. The result was not replicated in 

a smaller group of EAs from the Netherlands, though trans-ethnic meta-analysis of 

chromosome 5 helped to validate the importance of the finding as the lead peak.

The group of SNPs downstream of ARRDC3-AS1 are biologically interesting. ARRDC3-
AS1 is the antisense RNA to ARRDC3 which is 1 of 6 known human α-arrestins and has 

been implicated in the downregulation of the β2-adrenergic receptor (β2AR).29 Interestingly 

catecholamines (such as adrenaline) induce K+ loss via up-regulation of beta-adrenoceptors.
30 Unfortunately, we were unable to identify 1000G SNPs (in LD with our statistically 

significant SNPs) that tagged functional elements near ARRDC3-AS1. The region between 

our statistically significant SNPs and ARRDC3-AS1 is an extensive gene desert with no 

identified protein coding genes. The 1000G SNPs identified by the FunciSNP program 

(Supplemental Table 9) were between 7kb upstream and 40kb downstream of the index 

SNPs but upstream of NR2F1-AS1. NR2F1 on chromosome 5 (immediately downstream of 

NR2F1-AS1) codes for transcription factor coup 1 (TFCOUP1) which is a member of the 

steroid/thyroid hormone receptor superfamily. Aldosterone is a steroid hormone belonging 

to the renin angiotensin aldosterone system (RAAS) that promotes K+ excretion; therefore, 

this gene’s biological role cannot be ruled out. Our index SNPs did overlap with open 

chromatin regions upstream of NR2F1-AS1 and could be linked to the promoter region for 
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that gene. One interesting transcription factor binding site, which directly overlaps with 

rs1545708, was for STAT3 which is a key regulator of cell-to-cell communication in the 

heart.31

Though none of our findings for the TD exposure were statistically significant, two gene 

regions are potentially biologically interesting in relation to serum K+ during TD treatment. 

TBX3 is member of a family of phylogenetically conserved transcription factors that share a 

common DNA-binding domain, the T-box involved in the regulation of developmental 

processes. TBX3 has been highlighted in previous genome-wide association studies of 

systolic and diastolic blood pressure in both EA and AA populations.32, 33 Another report 

suggested TBX3 mutant mice are at increased risk for sudden death due to arrhythmia and 

that arrhythmias induced by knockdown of TBX3 in adult mice reveal its requirement for 

conduction system homeostasis.34 The other biologically plausible finding was near 

AGTR1. AGTR1 regulates aldosterone which works in the kidney to increase water and 

sodium reabsorption and K+ excretion. Larger sample sizes may be needed to verify the 

importance of these findings.

Other pharmacogenetic discovery efforts have investigated whether genetic factors 

contribute to metabolic side effects of common anti-HTN agents, including changes in 

lipids, fasting glucose, and uric acid.35, 36 Most of the previous pharmacogenetic research 

has focused on metabolic response to the TD class of anti-HTN agents. We know of no 

studies that have considered how genetic factors may modify serum K+ during RAAS 

inhibition (i.e., treatment with ACE-Is or ARBs). Among the TD response studies, a 

genome-wide, trans-ethnic meta-analysis in 718 EA and AA hypertensive participants from 

the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) and the Genetic 

Epidemiology of Responses to Antihypertensive (GERA) Trials suggested variants 

belonging to the heme pathway influenced hydrochlorathiazide- (HCTZ) induced K+ loss.37 

Both rs10845697 on chromosome 12, near to the HEME binding protein 1 gene (HEBP1), 

and rs11135740 on chromosome 8, near to the Mitoferrin-1 gene (SLC25A37), reached the 

statistical significance threshold for change in K+ level over 2–3 weeks of treatment. In our 

cross-sectional data, we did not replicate these findings (data not shown). Our study also did 

not cover the same variants as in a renal sodium transport candidate gene analysis (N~75) of 

K+ during HCTZ treatment.38

A limitation of the current study is the lack of replication of the primary finding on 

chromosome 5 in 817 participants from the NEO study. Our post-hoc power calculations 

suggested we had adequate power (~80%) to replicate the interaction effect in NEO (with 

variance explained ≥3% for the interaction term and MAF of 0.40, data not shown) using an 

effect size estimate from one of the discovery studies. However, this effect may be inflated 

due to the winner’s curse phenomenon, and several reports warn replication of genetic 

associations require samples sizes at least as big or bigger than the discovery.39–44 

Ultimately, replication and further fine-mapping of the region would be necessary to fully 

understand how variation in this region on chromosome 5 may modify serum K+ level 

during anti-HTN treatment. Given the mechanistic relationship between this finding and 

serum K+, additional studies should be pursued. Other limitations included a focus on 

common variants from GWAS arrays; therefore, rare variants and protein-coding variants 
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were not represented. We studied cross-sectional serum K+ as a continuous trait outcome in 

our observational data; clinical trial data would facilitate the study of K+ response to anti-

HTN treatment. Additionally, hyperkalemia, the clinical outcome of interest, was rare in our 

data. However, in secondary analysis we found the TT genotype at our top SNP may be 

associated with 3 fold increased risk of high serum K+ levels with ACE-I/ARB exposure 

versus other anti-HTN treatment among persons of European descent. Since this result was 

based off of only 70 cases, future larger SNP-ACE-I/ARB interaction studies of 

hyperkalemia are needed to better understand the clinical impact of our finding on 

chromosome 5. The sample size for the AA stratum was only about a third of the size of that 

for the EA stratum for both anti-HTN treatment exposures. However, AAs are 

underrepresented in the GWAS literature in general, and, that we know of, this still 

represents the largest study of gene-by-anti-HTN treatment effects on serum K+ among 

AAs. Finally, K+ supplementation information was missing on 4 of the cohorts included in 

this study.

Changes in serum K+ with TD or ACE-I or ARB treatment represent a serious potential 

metabolic side effect of common anti-HTN treatments. Overall anti-HTN treatment is safe 

and the vast majority of users do not experience serious changes in serum K+. However, in a 

minority of users these changes can be clinically significant. Genetic factors may underlie 

the between-person variation observed. This study used data from a large consortium of 

observational cardiovascular epidemiology studies to look for common SNPs that modify 

serum K+ levels during treatment with 2 common anti-HTN treatment classes. Results 

suggest that SNPs intergenic to ARRDC1-AS1 and NR2F1-AS1 may modify serum K+ level 

during treatment with ACE-Is or ARBs among EAs. The 11 statistically significant SNPs are 

closest in distance to NR2F1-AS1, but both genes may have relevance to serum K+ level 

during treatment with ACE-I or ARB. This region warrants further study using additional 

external data.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plot of SNP-by-ACE/ARB interaction term p-values for the (A) race combined 

meta-analysis, (B) EA meta-analysis, and (C) AA meta-analysis. Blue line is at 5 

(P=1×10−5). Red line is at 7.30 (P=5×10−8).
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Figure 2. 
Ratio (95% CI) of serum K+ in participants exposed to ACE-I/ARB versus the reference 

antihypertensive treatment group by genotype for rs6878413.
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Figure 3. 
Manhattan plot of SNP-by-TD interaction term P-values for the (A) race combined meta-

analysis, (B) EA meta-analysis, and (C) AA meta-analysis. Blue line is at 5 (P=1×10−5). Red 

line is at 7.30 (P=5×10−8).
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