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ABSTRACT OF THE DISSERTATION

Nonlinear Tools for a Nonlinear World:

Applications of Empirical Dynamic Modeling to Marine Ecosystems

by

Hao Ye

Doctor of Philosophy in Oceanography

University of California San Diego, 2015

Professor George Sugihara, Chair

A fundamental objective in the study of dynamic systems is to understand

and predict their behavior. The research presented in this thesis addresses this goal

using the general framework of empirical dynamic modeling (EDM). In the clas-

sical approach, system behavior is described using fixed mathematical equations,

and multiple effects are often treated as linearly separable (i.e. in a reductionist

framework). In contrast, EDM applies Takens’ Theorem and the method of time

delay embeddings to reconstruct system dynamics from time series data. This

gives EDM the flexibility to model nonlinear, state-dependent interactions that

are otherwise challenging for traditionally linear mathematical models.

The first part of this thesis applies EDM towards the study of sockeye

salmon populations from the Fraser River in British Columbia, Canada in order

to understand the factors that affect recruitment and to produce better models

for the annual returns. Whereas classical (linear) fisheries models do not improve

when incorporating the environment, I show that Fraser River sockeye salmon ac-

tually exhibit nonlinear dynamics, and therefore are not amenable to these meth-

xvii



ods. Instead, EDM models that can account for nonlinearity show improved fore-

casts, and moreover, benefit greatly from the incorporation of state-dependent

environmental effects. In addition, I demonstrate that the abrupt changes in the

salmon populations, correlated with North Pacific climate indices can be explained

as state-dependent nonlinear behavior. Whereas classical fisheries models or lin-

ear correlations would suggest sudden shifts in behavior associated with climate

regimes, an appropriate nonlinear lens indicates that environmental effects are

state-dependent, and that aggregation of data at the regional level produces the

apparent linear patterns.

The second part of this thesis involves the development of new methods in

the EDM framework to distill data (i.e. time series) into information (i.e. infer-

ences and conclusions). I show that a lagged form of convergent cross mapping

(CCM), a method to infer causation in time series, can greatly enhance its capa-

bilities, by quantifying the time delay associated with causation. This new method

can be used to distinguish between direct and indirect, transitive, effects as well as

produce more reliable estimates of interaction strength. I also develop Multiview

Embedding (MVE) to address the issues of noise and short time series length in

high-dimensional complex systems. By using a multimodel approach that leverages

the “equation-free” framework of EDM, MVE combines multiple reconstructions of

system behavior, producing more accurate and precise forecasts, and demonstrat-

ing that complexity can be an asset, because of how information about the system

dynamics is duplicated across interacting variables.

Finally, these methods are included in a software package for EDM, de-

veloped for the R statistical language. A user guide for this software package,

including installation instructions and examples, is included as an appendix.

xviii



Chapter 1

Introduction

Complex nonlinear dynamics are common to many systems, including promi-

nent examples in financial systems, climate, ecology [May et al., 2008, Scheffer

et al., 2009]. Because of the way in which endogenous processes, external drivers,

and stochasticity interact to produce these complex dynamics, it can be challeng-

ing to apply the traditional approach of mathematical models. In many biological

models, for example, system behavior can be highly sensitive to model structure

and parameters, making it difficult to choose the correct set of equations [Wood

and Thomas, 1999]. Even when the true system equations are known, correctly

fitting them to data in the presence of nonlinear interactions and observation error

is not guaranteed [Perretti et al., 2013]. In such cases, it can be tempting to take

a statistical approach and treat such systems as stochastic; however applying a

purely statistical framework ignores the potential for nonlinear effects to gener-

ate extreme events, leading to such statistical improbabilities as 25-sigma events

[Dowd et al., 2011].

1.1 The Dangers of Using Incorrect Models

George Box famously said that "all models are wrong, some are useful"

[Box and Draper, 1987]. The implications of this statement are that models are

simplified approximations of reality, but can give meaningful insights or predic-

tions when used appropriately. Furthermore, an oft-ignored facet of modeling is

1
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that different models have different intended uses [Peters, 1991]. For example,

some models are designed primarily to understand mechanisms and concepts or

to evaluate hypotheses, but not to be used for prediction. End-to-end ecosystem

models embody this philosophy by including the major relevant processes in order

to understand how they interact and to determine the sensitivity of system be-

havior to changes to these processes [Fulton, 2010]. Such models are not expected

to be used directly for prediction or management, because of how uncertainty in

model structure affects predictions [Kaplan et al., 2013]. Correct application of

ecological models therefore requires caution.

Although we acknowledge the reality of nonlinear systems, the linear frame-

work remains widely used. For example, a classic meta-analysis by [Myers, 1998]

examined 74 statistically significant and published correlations between fish re-

cruitment and the environment. Of these 74 correlations, only 28 held up when

re-examined with newer data, suggesting that the remaining 46 results were false

positives. However, given the prevalence of nonlinearity in marine ecosystems

[Hsieh et al., 2005, Glaser et al., 2014b], it is much more likely that these alleged

false positives are actually “mirage correlations”, a phenomenon in nonlinear sys-

tems where coupled variables can appear linearly correlated, but only over certain

time segments [Sugihara et al., 2012]. Instead of discouraging scientists from pub-

lishing environment-recruitment relationships, these findings suggest that there are

actually many more true associations that remain unpublished because they do not

pass the threshold for linear significance. This mismatch between the known re-

ality of the world and published research indicates a need for more sophisticated

tools to continue scientific progress.

1.2 Empirical Dynamic Modeling

As an alternative to the classical approach of assuming fixed equations, the

framework of Empirical Dynamic Modeling (EDM) seeks to empirically reconstruct

the behavior of a system solely from the data [Sugihara and May, 1990, Sugihara,

1994, Dixon et al., 1999, Hsieh et al., 2005, Sugihara et al., 2012, Deyle et al.,



3

2013, Ye et al., 2015]. Whereas a traditional mathematical model uses equations

to describe behavior and the interactions between variables, the EDM approach

instead extracts this information from the time-dependent relationships between

variables and their lags. Here, the key is that time series do not represent random

observations, but are actually ordered recordings of the system behavior as viewed

from the perspective of the corresponding variable.

The benefits to this nonparametric and equation-free approach are numer-

ous. Because no equations are assumed, the model’s depiction of behavior can

flexibly accommodate whatever is observed in the data. Moreover, as demon-

strated in chapter 5, the associations between multiple time series from the same

system also contain information that can be exploited to produce better models.

However, there are limitations to EDM. Because EDM is based on recovering dy-

namics from data, it can only describe what has been observed in the data, and

is therefore constrained by data quality and quantity. In contrast, the traditional

equation-based approach can use of assumed parameters or equations when data

are insufficient.

Nevertheless, EDM remains a powerful framework for studying dynamic

systems. In this dissertation, EDM is applied to time series data of sockeye salmon

populations from the Fraser River in British Columbia, Canada to understand both

the dynamics of salmon recruitment, and to produce forecast models that can be

compared with traditional fisheries models. In addition, new methods within the

EDM framework are developed to expand its capabilities, and which yield new

insights into leveraging information in complex systems.

1.3 Summary of Chapters

Chapter 2 lays the basic groundwork of analysis for sockeye salmon pop-

ulations of the Fraser River, identifying predictable recruitment dynamics using

low-dimensional embeddings, and detecting nonlinear (i.e., state-dependent) inter-

actions between juveniles and the environment. Multivariate EDM models (sensu

[Dixon et al., 1999, Deyle et al., 2013]) are constructed that incorporate predictive
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information contained within environmental proxies. By outperforming traditional

fisheries models that assume that stock size and the environment act independently,

the utility of the equation-free EDM approach for recovering nonlinear interactions

is demonstrated.

Chapter 3 investigates the question of whether apparent changes in mean

salmon productivity reflect true “regime shifts” (changes to system dynamics and

behavior) or represent artifacts arising from nonlinear behavior. Whereas classical

stock-recruitment models are known to fit the data better when it is partitioned

into climate regimes of the North Pacific Ocean [Beamish et al., 2004b], multivari-

ate EDM models show no such preference, with equivalent forecast skill regardless

of how the data are partitioned. These results suggest that an appropriately non-

linear perspective, such as the flexible EDM models used here and in chapter 2,

does not support the notion of regime-like behavior in this system.

Chapter 4 addresses several technical issues when applying the method of

convergent cross mapping (CCM) to identify causal interactions. When introduc-

ing CCM, [Sugihara et al., 2012] noted that it can be difficult to distinguish between

cases where two variables exhibit bidirectional causality (i.e., effects in both direc-

tions as in a feedback loop) and cases where one variable so strongly affects the

other that the two variables become entrained (i.e., “generalized synchrony”, as in

[Rulkov et al., 1995]). By examining the optimal time delay associated with CCM,

however, these two cases can be distinguished, because of how causes must precede

effects. Moreover, this approach is also shown to discriminate between direct and

indirect causal effects (created by the transitivity of causal chains), and to more

precisely identify the strength of causal effects.

Chapter 5 develops a multimodel approach within the EDM framework

called Multiview Embedding (MVE). MVE is based on the corollary of Takens’

Theorem [Takens, 1981] that information about dynamic behavior is contained

within all time series variables of a system. As such, different reconstructions of

the dynamics can be combined to give more precise models because of duplicated

information. Importantly, EDM is uniquely positioned to exploit this opportunity,

because it does not use fixed equations to represent the dynamics and is there-
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fore agnostic to the transformation of system equations that would otherwise be

required for a parametric approach. MVE is tested on several model systems and

a mesocosm experiment, demonstrating significantly better forecasts from time

series as short as 25 points.

Appendix A is the user guide for the rEDM software package. rEDM collects

the various methods for EDM along with several example datasets into a single

package for the R statistical language. The user guide is divide into three main

sections: (1) instructions for downloading and installing the package; (2) a basic

overview of EDM concepts and package functions; and (3) two examples of applying

EDM to time series data from real systems.



Chapter 2

Equation-free Mechanistic

Ecosystem Forecasting Using

Empirical Dynamic Modeling

2.1 Abstract

It is well known that current equilibrium-based models fall short as predic-

tive descriptions of natural ecosystems, and particularly of fisheries systems that

exhibit nonlinear dynamics. For example, model parameters assumed to be fixed

constants may actually vary in time; models may fit well to existing data but

lack out-of-sample predictive skill; and key driving variables may be misidenti-

fied due to transient (mirage) correlations that are common in nonlinear systems.

With these frailties, it is somewhat surprising that static equilibrium models con-

tinue to be widely used. Here, we examine Empirical Dynamic Modeling (EDM)

as an alternative to imposed model equations and that accommodates both non-

equilibrium dynamics and nonlinearity. Using time series from 9 stocks of sockeye

salmon (Oncorhynchus nerka) from the Fraser River system in British Columbia,

Canada, we perform the first real-data comparison of contemporary fisheries mod-

els with equivalent and new EDM formulations that explicitly use spawning stock

and environmental variables to forecast recruitment. We find that EDM models

6
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produce more accurate and precise forecasts, and unlike extensions of the classic

Ricker spawner-recruit equation, they show significant improvements when envi-

ronmental factors are included. Our analysis demonstrates the strategic utility of

EDM for incorporating environmental influences into fisheries forecasts, and more

generally, for providing insight into how environmental factors can operate in fore-

cast models, thus paving the way for equation-free mechanistic forecasting to be

applied in management contexts.

2.2 Significance Statement

The conventional parametric approach to modeling relies on hypothesized

equations to approximate mechanistic processes. Although there are known lim-

itations in using an assumed set of equations, parametric models remain widely

used to test for interactions, make predictions, and guide management decisions.

Here, we show that these objectives are better addressed using an alternative

equation-free approach, Empirical Dynamic Modeling (EDM). Applied to Fraser

River sockeye salmon, EDM models: (1) recover the mechanistic relationship be-

tween the environment and population biology that fisheries models dismiss as

insignificant; (2) produce significantly better forecasts compared to contemporary

fisheries models; and (3) explicitly link control parameters (spawning abundance)

and ecosystem objectives (future recruitment), producing models that are suitable

for current management frameworks.

2.3 Introduction

One of the fundamental challenges of environmental science is to under-

stand and predict the behavior of complex natural ecosystems. This task can be

especially difficult when multiple drivers (e.g., species interactions, environmen-

tal influences) interact in a nonlinear state-dependent way to produce dynamics

that appear to be erratic and nonstationary [Dixon et al., 1999]. In the standard

parametric approach, which implicitly assumes that the selected model and its
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equations are essentially correct, the equations (really just mechanistic hypothe-

ses) can lack the flexibility to describe the nonlinear dynamics that occur in nature.

Consequently, these parametric models tend to perform poorly as descriptions of

reality, with little explanatory or predictive power [Perretti et al., 2013, Wood and

Thomas, 1999], and limited usefulness for prediction and management.

2.3.1 Parametric Models as Hypotheses
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Figure 2.1: Model output for the Ricker, extended Ricker, and multivari-
ate EDM models.
(A) Ricker curves for the Seymour stock of Fraser River sockeye salmon are quite
different for the early (blue; 1948–1976 brood years) vs. later (red; 1977–2005)
time segments (triangles are observed data). Even fit to the whole time series
(gray line), large errors remain. (B and C) Model output (surfaces; points are
observed data) from the extended Ricker model (B) and EDM (C) using spawner
abundance and Pine Island April SST to forecast recruitment of Seymour sockeye
salmon. Although the Ricker model varies smoothly, it can forecast recruitment to
be many times higher than the historical maximum. In the EDM model, however,
the relationship between temperature and spawners is defined empirically by the
data and, thus, more realistically depicted.

A common problem when applying the parametric approach to nonlinear

systems is that of ephemeral fitting. That is, although population models may

assume that demographic parameters such as growth rate or carrying capacity

are fixed constants; these quantities are often observed to vary in time or in rela-

tion to other variables (e.g., resource availability, changing climate regimes) when

tested on actual data [Walters, 1987]. This principle is illustrated in Figure 2.1A,
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where the Ricker spawner-recruit relationship is fit to the early (1948-1976) and

late (1977-2005) halves of the time series from the Seymour stock. Very different

relationships emerge in these two time periods, conflicting with the assumption of a

fixed equilibrium and constant parameter values. Indeed, Beamish et al. [Beamish

et al., 2004a] found that the Ricker model fit better when constrained by climate

regimes, suggesting that the spawner-recruit relationship does vary in time, a fact

consistent with the general notion of nonlinear state dependence [Sugihara et al.,

2012, Deyle et al., 2013].

At its core, nonlinear dynamics (which are known to be ubiquitous in marine

species [Hsieh et al., 2005, Glaser et al., 2014a]) occur when variables have inter-

dependent effects; this can be problematic when applying a reductionist approach

to understand nonlinear systems. For example, in laboratory experiments, guppies

(Poecilia reticulatus) preferentially eat Drosophila or tubificid worms depending

on which prey is more abundant [Murdoch et al., 1975]. Thus, the strength of

predation on, say, Drosophila, will change depending on the abundance of tubi-

ficid worms. This prey switching behavior typifies nonlinear state-dependence,

whereby different components cannot be treated independently, as would be the

case in a linear system or even a nonlinear system approximated at equilibrium.

Consequently, applying a model that assumes separability of effects (e.g., vector

autoregression [Engle and Granger, 1987]) to a system that is actually nonlinear

can give the appearance of nonstationarity or stochasticity even when the under-

lying mechanisms are unchanged and deterministic.

Nonlinearity is also known to affect the correct identification of causal

drivers–a key prerequisite for understanding and predicting system behavior. In

nonlinear systems, because interacting variables can exhibit transient (mirage)

correlations that change in magnitude or sign [Sugihara et al., 2012, Deyle et al.,

2013], the use of correlation to identify causal environmental variables can be mis-

leading, producing both false positives (i.e., correlation does not imply causation)

and false negatives (i.e., lack of correlation does not imply a lack of causation).

Given the prevalence of nonlinear interactions in ecology, mirage correlations can

be misleading. Indeed, a meta-analysis examining the robustness of correlations
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between recruitment and the environment [Myers, 1998] found that only 28 out

of 74 initially significant correlations were upheld when subsequent data were in-

cluded.

Even when causal variables are known, their inclusion into improperly for-

mulated models can produce conflicting results. For example, with sockeye salmon

in the Fraser River: although anomalous oceanic conditions experienced by ju-

veniles are thought to be responsible for the low abundance of returning adults

in 2009 [Peterman and Dorner, 2011, Cohen, 2012, Thomson et al., 2012], exten-

sions of the standard Ricker model that explicitly include environmental factors

surprisingly show no significant improvements in the actual forecasts [Grant et al.,

2010, MacDonald and Grant, 2012, Grant and MacDonald, 2013]. A simple expla-

nation for this apparent contradiction is that the extended Ricker model does not

accurately portray the relevant interaction between the oceanic environment and

sockeye salmon. Indeed, the model naively assumes that the environment acts on

recruitment dynamics independently with a constant multiplicative effect (e.g., a

1◦C decrease in temperature always doubles recruitment regardless of other factors

important to the state of the system). While temperature, in all likelihood, does

affect recruitment, it probably does not follow this arbitrary form. We demon-

strate this by fitting the model to Pine Island sea surface temperature (SST) and

Seymour spawner-recruit data (Figure 2.1B), finding that the model predicts unre-

alistically high recruitment (much higher than the historically observed maximum)

for hypothetical (but plausible) conditions of high spawner abundance and low tem-

perature. Thus, although the equation may appear reasonable as a hypothesis, it

apparently does not incorporate the environment realistically.

2.3.2 Empirical Dynamic Modeling

In contrast to fitting an assumed set of equations, Empirical Dynamic Mod-

eling (EDM) instead relies on time series data to reveal the dynamic relationships

among variables as they occur [Dixon et al., 1999, Sugihara et al., 2012, Sugi-

hara and May, 1990, Liu et al., 2012, Glaser et al., 2014b]. By extracting these

relationships empirically, EDM accommodates potentially complex and changing
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interactions that cannot be described in a simple set of equations. Thus, predic-

tion accuracy with EDM is constrained by the quantity and quality of data rather

than by the hypotheses represented in a set of equations (which may be subject to

process error due to false or incomplete specification [Sugihara, 1994]).

Fundamental to EDM is the concept of a time series as an observation on

a dynamic system. Broadly speaking, a dynamic system can be viewed as a set

of states (d-dimensional vectors where each coordinate is a system variable) and

deterministic rules (governing dynamics) for how the states evolve over time. Col-

lectively, the set of states and their trajectories forms an “attractor manifold”, and

projecting the motion on this manifold to a coordinate axis produces a time series

of the corresponding variable (Figure 2.5A). For example, in a simple predator-prey

system where the system evolves as a function of the two abundances, the system

state could be represented as the ordered pair of predator and prey abundances.

This system state can be projected onto the prey coordinate axis to produce a

time series of prey abundance, though many other observation functions are also

possible (e.g., predator abundance, average number of prey for each predator).

In theory, with time series for all the system variables, it would be possible

to reconstruct the original attractor manifold by plotting each time series as a

separate coordinate. In practice, however, we typically do not have these data or

know the identity of all relevant variables. Fortunately, a fundamental mathemat-

ical result proves that information about the entire system is contained in any one

variable [Takens, 1981, Deyle and Sugihara, 2011], meaning that a shadow version

of the original attractor can be constructed from just a single time series. This

is accomplished by substituting lags of that time series for the unknown or unob-

served variables (Figure 2.5B). These essential mechanics of EDM are detailed in

[Sugihara et al., 2012] and crisply summarized in a short animation (SI Movie).

Although a single time series is usually sufficient to reconstruct a system’s

dynamics, there are exceptions (e.g., it is not a closed system). In the case of

sockeye salmon, abundance alone may not skillfully predict future returns because

they are influenced by external environmental factors. Here, the environment may

be thought to act as stochastic external forcing, necessitating its inclusion as an
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additional coordinate in a multivariate reconstruction [Dixon et al., 1999, Deyle

et al., 2013, Deyle and Sugihara, 2011]. We demonstrate this by using spawners

and sea-surface temperature to predict recruitment (Figure 2.1C). Unlike a para-

metric model in which a hypothesized interaction must be specified in advance

(the extended Ricker model, Figure 2.1B), the empirical surface in Figure 2.1C

makes no assumptions about the relationship between variables, but instead cap-

tures the interaction between density-dependence and environmental conditions as

revealed by the data: ocean temperatures have a stronger effect on recruitment

when spawner abundance is low.

2.3.3 Fraser River Sockeye Salmon
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Figure 2.2: Combined returns of Fraser River sockeye salmon.
Total returns (Dataset S1) for Fraser River sockeye salmon combined across stocks
(1954 cycle line in black). Although not all stocks exhibit cyclic dominance, and
those that do are not synchronized, cycles are still visible in the aggregated returns.

In this work, we perform a real-world test comparing EDM and the standard

parametric paradigm, by forecasting returns for the 9 most historically abundant

stocks of sockeye salmon from the Fraser River system in British Columbia, Canada

(Figure 2.2), of significance to Canada’s iconic fisheries. Total returns in this

system are highly variable and can span over an order of magnitude: a record low of

1.6 million in 2009 was followed by a record high of 28.3 million in 2010 (Figure 2.3).
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Figure 2.3: Early ocean environment for Fraser River sockeye salmon.
Upon exiting the Fraser River, juvenile sockeye salmon migrate north through
the Strait of Georgia, spending up to a month moving through this ecosystem
[Preikshot et al., 2012], before continuing through Queen Charlotte Strait and into
Queen Charlotte Sound. Red labels for the nine stocks studied in this work are
located at the approximate spawning sites. Blue triangles denote the locations of
the two lighthouses where SST is recorded. Image courtesy of DFO.

Although some of this variability occurs because of cyclic dominance [Ricker, 1950,

Cass and Wood, 1994], large interannual fluctuations in mortality and productivity

(recruits-per-spawner) are difficult to predict, leading to considerable uncertainties

in current parametric forecast models [Grant et al., 2011]. This is suggestive of

nonlinear dynamics in this fishery, and indeed, a Canadian federal inquiry [Cohen,

2012, Thomson et al., 2012] concluded that recent declines in productivity could
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not be attributed to any single mechanism, but were likely caused by the interaction

of multiple stressors (e.g., predators, food availability, environment). Applying a

simple S-map test (p = 0.002) (Supplementary Information, Figure 2.6), we confirm

the presence of nonlinear dynamics among returns of Fraser River sockeye salmon.

Thus, we apply EDM methods to unravel the mechanisms by which the en-

vironment may affect sockeye salmon recruitment. First, we compare the classical

Ricker spawner-recruit model with equivalent EDM spawner-recruit models. With

nearly all adults returning as age 4 or age 5 fish, we can consider the total returns

in a single calendar year to be composed of age 4 and age 5 recruits from different

spawning broods. Following [Grant et al., 2010], we predict annual returns by first

estimating total recruitment for each spawning brood year. This recruitment is

then partitioned by age, and the age 4 and age 5 estimates from separate brood

years combined appropriately to forecast returns (Materials and Methods). Note

that the time series of spawning abundance and recruitment already account for

the effects of the fishery (this information is contained within the time series, see

Materials and Methods), which enables us to focus on just the natural population

dynamics.

Second, to investigate the causal influence of the oceanic environment, we

consider forecasts produced by the extended Ricker model and equivalent multivari-

ate EDM formulations. In both cases, if the inclusion of environmental variables

significantly improves forecasts (Materials and Methods), those variables are taken

to have a causal influence on salmon recruitment.

Lastly, to avoid arbitrary fitting and to obtain a robust measure of forecast

skill, we apply a 4-fold cross-validation scheme for each model: the model is fit

to 3
4
of the data to predict the remaining 1

4
out-of-sample, and the procedure is

repeated for each 1
4
segment of the time series.
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Figure 2.4: Comparison of forecast accuracy.
Comparisons between equivalent EDM and Ricker models show better forecast
accuracy for the EDM models [simple EDM vs. Ricker, t(492) = 1.77, P = 0.039;
multivariate EDM vs. extended Ricker, t(492) = 2.20, P = 0.014]. Additionally,
including environmental data significantly improves accuracy for EDM [t(492) =
2.83, P = 0.0024], but not for the Ricker models [t(492) = 1.26, P = 0.10].
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2.4 Results

2.4.1 Comparison of Spawner-Recruit Forecast Models

As a fair comparison with the standard Ricker model where spawner abun-

dance is used to predict recruitment, we examine an equivalent EDM spawner-

recruit model, but which actually has fewer fitted parameters (Materials and Meth-

ods). Figure 2.4 shows that this simple EDM model has significantly higher accu-

racy (ρ, correlation between observations and predictions) than the Ricker model,

with more accurate forecasts in 8 of 9 cases and significantly lower error over-

all [mean absolute error (MAE); Figure 2.7). Nonetheless, predictions for several

stocks (Birkenhead, Chilko, Stellako, and Weaver) are not very skillful (ρ < 0.3),

suggesting that in these cases, there is no simple spawner-recruit relationship (para-

metric or otherwise). Instead, environmental factors (e.g., sea-surface temperature,

food availability) may dominate, and better performance can be obtained by ac-

counting for these external drivers.

2.4.2 Incorporating Environmental Influences

As in the actual forecast models [Grant et al., 2010], we further consider 3

environmental variables (the Pacific Decadal Oscillation (PDO), sea-surface tem-

perature (SST), and Fraser River discharge) observed at different times and lo-

cations (12 time series in total). Each of these factors is believed to have a po-

tential effect on recruitment, though significance has yet to be demonstrated in

practice. For each stock, we compare the relative performance of the extended

Ricker and corresponding multivariate EDM models that incorporate these envi-

ronmental variables (Table 2.1; Materials and Methods). Figure 2.4 shows that

multivariate EDM is consistently and significantly better at forecasting than the

extended Ricker model for all 9 stocks, and is true for both accuracy and precision

metrics (Figure 2.7). Here, the relevant causal influence of these environmental

variables is verified by the fact that multivariate EDM models that include them

perform significantly better than their simple EDM spawner-recruit counterparts.

By contrast, the extended Ricker models show no significant improvement
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Table 2.1: Forecast skill of models incorporating the environment
D, Fraser River discharge; ET, Entrance Island SST; PDO, Pacific Decadal Oscil-
lation; PT, Pine Island SST.

Stock Model Predictors No. predictions ρ MAE
Birkenhead Ricker S, ETjun 57 -0.111 0.251

EDM S 57 0.156 0.259
Chilko Ricker S, ETmay 57 0.268 0.825

EDM S 57 0.264 0.839
Early Stuart Ricker S, ETapr 57 0.737 0.172

EDM S, Dapr, Djun 57 0.878 0.140
Late Shuswap Ricker S, ETjun 57 0.875 0.842

EDM S, Dmay, PTjul 57 0.923 0.821
Late Stuart Ricker S, Djun 56 0.552 0.423

EDM S, Djun, ETapr 56 0.783 0.250
Quesnel Ricker S, ETjun 57 0.387 2.057

EDM S, PTmay, PDO 57 0.861 0.729
Seymour Ricker S, PTapr 57 0.571 0.076

EDM S, PTjul 57 0.734 0.065
Stellako Ricker S, ETmay 57 0.191 0.250

EDM S, PTapr, PDO 57 0.531 0.217
Weaver Ricker S, PDO 39 -0.094 0.215

EDM S, Dapr, Dmay 39 0.573 0.176
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over the simple Ricker models in any of the stocks. The difference between EDM

and Ricker is especially visible for Late Stuart, Quesnel, Stellako, and Weaver,

indicating that these particular environmental factors (currently considered in as-

sessments) can explain much of the variability in these stocks, provided they are

incorporated reasonably (i.e., with the minimal assumptions of EDM). For Birken-

head and Chilko however, multivariate EDM models performed no better than

the simplified stock-recruit versions, hinting that variables other than these are

required to understand the dynamics of those stocks.

2.5 Discussion

2.5.1 Nonlinearity of Fraser River Sockeye Salmon

Similar to many marine species [Hsieh et al., 2005, Glaser et al., 2014a],

Fraser River sockeye salmon show strong evidence for nonlinear dynamics (Figure

2.6, Table 2.2). Thus, it should not be surprising that a simple EDM model, which

accommodates nonlinearity, would outperform the assumed spawner-recruit equa-

tion of the Ricker model. Furthermore, because sockeye salmon are exposed to

different sources of environmentally driven mortality and because it is likely that

they integrate these effects in a nonlinear fashion, it should not be surprising that

multivariate EDM models that explicitly accommodate relevant environmental fac-

tors would show dramatically improved performance. In contrast, the extended

Ricker model cannot resolve the nonlinear effect of the environment, and shows

only non-significant improvements (that might be expected from having additional

degrees of freedom).

2.5.2 Identifying Environmental Drivers

It is believed that growth during the early marine stage for Pacific salmon

is a critical period that determines subsequent mortality and recruitment [Beamish

and Mahnken, 2001, Beamish et al., 2004b]. Thus, it is reasonable to expect that

including related environmental variables into models should improve predictions.
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However, the extended Ricker model did not improve when river discharge, SST,

or the PDO (Figure 2.4, Figure 2.7) were included. Rather than suggesting that

these variables have no effect, it is more likely that the extended Ricker model

is incorrectly specified. This is borne out by the fact that these factors produce

improved forecasts for many stocks when included non-parametrically in EDM

(Figure 2.4, Figure 2.7). Thus, our analysis suggests that the tested variables

are indeed informative about the relevant environmental conditions experienced

by juvenile sockeye salmon. For example, river discharge and SST may indicate

primary productivity in the Strait of Georgia and other areas through which juve-

niles migrate (Figure 2.2) [Thomson et al., 2012, Beamish et al., 1994, Preikshot

et al., 2012], and the associations between large-scale oceanic climate indicators

such as the PDO and Pacific salmon productivity are well-known from other stud-

ies [Mantua et al., 1997, Beamish et al., 1997]. While these variables do not reflect

direct causal mechanisms, they may be useful as simple indicators of processes that

influence salmon survival, thereby improving forecasts when included in the EDM

approach.

While individual stocks appear to be sensitive to different environmental

factors (Table 2.1), we did observe some general patterns: for example, 2 of the 9

stocks (Stellako and Quesnel) identified the PDO as an informative variable (the

first-ranked EDM models for these stocks include the PDO as a coordinate), yet

the predictability for these stocks is further improved when other variables (river

discharge or SST) are included in addition to the PDO. This suggests that the

PDO is an incomplete observation on the relevant environment for sockeye, and

that local-scale measures of the environment can enhance the information in the

PDO index (an ocean basin-scale indicator) (see Supplementary Information for

details).

Although our models confirm a general influence of the environment on

sockeye salmon recruitment, some stocks appear to be skillfully predicted using

only spawner abundance. One explanation for this is that the stocks experience

unique environments: they are exposed to different freshwater conditions in their

respective nursery lakes, and they exhibit different timings and migration routes
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as they travel through the Fraser River (T. Whitehouse, DFO, pers. comm.),

the Strait of Georgia [Beacham et al., 2014], and along the west coast of North

America [Tucker et al., 2009]. Even with shared environmental influences (e.g.,

food availability in the Strait of Georgia), nonlinear state-dependence can produce

dynamics unique to each stock. Consequently, if these myriad effects are strongly

density-dependent, recruitment could be successfully predicted using just spawner

abundance. However, if these effects are stochastic (i.e., environmentally-driven),

then it will be necessary to include informative indicator variables to improve

forecasts.

Apart from multivariate models, an alternative approach to determine causal

environmental variables would be to apply the method of convergent cross mapping

(CCM, [Sugihara et al., 2012]). However, due to data limitations (in particular,

the absence of annual monitoring of each cycle line including the oceanic phase),

CCM may not be sufficiently sensitive to resolve causality here (see Supplementary

Information for details)

2.5.3 Nonuniqueness of Models

We note that, for a given stock, different EDM models can show similar

performance (Table 2.4). Although somewhat counter-intuitive, this phenomenon

is expected, because the tested variables (river discharge, SST, the PDO) are proxy

indicators of the environment. Thus, they may contain redundant information such

that different variable combinations are equally informative even as they represent

alternative perspectives on the system. This reflects a fundamental property of

EDM in that forecast performance depends solely on the information content of

the data rather than on how well assumed equations match reality.

To clarify the concept of non-uniqueness, consider the canonical Lorenz at-

tractor (Figure 2.5A). The behavior of this system is governed by three differential

equations (Equation 2.7). However, the axes can be rotated to produce 3 new

coordinates, x′, y′, and z′ and the equations rewritten in terms of these new coor-

dinates, allowing the system to be described using either representation (x, y, and

z OR x′, y′, and z′) as well as mixed combinations (e.g., x, y, and z′). Thus, with
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an infinite number of ways to rotate the system, there are an unlimited number

of “true variables” and “true models.” In the case of sockeye salmon, the similar

performance of different models (Table 2.4) does not mean that one or the other

model is incorrect; instead, it reflects the fact that the environmental variables are

indicators of the same general mechanism, and so different variable combinations

can be equally informative for forecasting recruitment.

Again, we emphasize that including a variable does not imply a direct causal

link – variables in an EDM model improve forecasts because they are informative;

it does not mean that the included variables are proximate causes. Importantly,

the converse does not hold either: a variable could be causal and yet not appear

in the multivariate EDM; this might occur when multiple stochastic drivers affect

recruitment in an interdependent way, necessitating that a model include measure-

ments of all the drivers to account for their combined effect. For example, although

none of the tested variables seem to improve forecasts for the Birkenhead stock

(Table 2.4), this does not mean that these sockeye salmon are insensitive to SST,

river discharge, and the PDO. Rather, it suggests that the effect of these variables

may be modulated by other factors not considered here.

2.5.4 Data Requirements of EDM

Using EDM is fundamentally a data-driven approach: thus, it is important

to ensure that time series are of sufficient length to recover dynamics. For example,

Sugihara et al. [Sugihara et al., 2012] suggest that at least 35-40 points might be

necessary as a rough minimum, though methods exist for using dynamically similar

replicates in cases where time series are shorter [Hsieh et al., 2008]. For many

systems, however, the data requirements of EDM mean that increased budgets

and additional sampling effort will be important to support long-term continuous

observations and generate sufficient time series. We note, though, that it is not

necessary to sample all putatively relevant drivers, because different measurements

are often substitutable as proxies for true proximal causes.

When data requirements are met, however, we note that collecting addi-

tional data can further improve accuracy and precision of EDM models. Consider
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the simplex projection method, which uses nearest-neighbor analogues to approx-

imate system behavior. With each new data point, more analogues are available

(the reconstructed manifold becomes denser), and so these approximations become

more precise. Thus, EDM models will improve with longer time series. In contrast,

a parametric model will benefit from more data only when the assumed equations

are essentially correct. In the case of the classic Ricker model in Figure 2.1A,

it is clear that similar levels of spawner abundance yield very different levels of

recruitment, and so any simple function relating the two cannot fully explain the

scattered observations. Adding more data may result in more “precise” parameter

estimates, but individual errors will remain large when the underlying process is

more complex than the assumed model can portray.

2.5.5 Alternative Parametric Models

In this work, we use the classical and extended Ricker models as examples of

the parametric approach, but acknowledge that there are alternative models consid-

ered by the DFO for Fraser River sockeye salmon [Peterman et al., 2000, Haeseker

et al., 2007, Haeseker et al., 2008, Grant and MacDonald, 2012]. While some of

these models may fit the data better, this does not always reflect a model’s true

performance in out-of-sample forecasting. For example, a modified Ricker model

that allows parameters to randomly drift over time [Peterman et al., 2000] will ex-

plain variations in the data better than the static alternative, because doing so can

indirectly track nonlinear state-dependence. However, instead of a mechanism for

why parameters change, such models based on the Kalman filter [Kalman, 1960]

typically use forward information (i.e., observations at time t + 1 help to esti-

mate the growth rate at time t), and thus do not actually “predict.” Consequently

the actual forecast performance of such models will be overestimated by their fit

to historical data. A more fundamental concern with the parametric approach

is that it requires explicit equations to model the effects of included variables.

Such equations may be overly simplified (e.g., linear correlations) and unable to

accommodate the state-dependent effects that occur in nonlinear systems.
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2.5.6 Final Remarks

EDM addresses two important challenges for modeling natural systems.

First, EDM identifies relevant variables and interactions empirically and dynami-

cally [Sugihara et al., 2012]; this is in contrast to the conventional approach where

the use of parametric equations poses the dual risks of model misspecification [Sug-

ihara, 1994] as well as variable misidentification [Sugihara et al., 2012, Deyle et al.,

2013, Myers, 1998]. Importantly, EDM allows proxy variables to be used, which

can be a boon when observations on key processes (e.g., mortality) are lacking

but indirect measurements (e.g., SST) are available. Second, the equation-free

approach of EDM produces more accurate forecasts than equivalent parametric

models using the same data. As Perretti et al. [Perretti et al., 2013] have shown,

even when a correct parametric model is known, fitting parametric models can be

problematic, and is an important concern with many systems exhibiting nonlinear

behavior [Hsieh et al., 2005, Glaser et al., 2014a]. In contrast, EDM models can

capture dynamic information and explain behavior that may be misclassified as

random by parametric fitting procedures.

Consequently, the dynamic perspective of EDM has much to offer for model-

ing nonlinear systems, representing a viable framework (with minimal assumptions)

for system identification and robust forecasting. When parametric models are re-

quired, EDM can also be used in a complementary role to identify causal links,

recover variable relationships, and even guide the construction of reliable equation-

based models [Crutchfield and McNamara, 1987]. This represents a practical way

to perform data-driven modeling instead of starting with complex parametric mod-

els (end-to-end ecosystem models, such as Ecopath with Ecosim [Christensen and

Walters, 2004]), which often make strong assumptions and require large amounts

of data to parameterize.

Moreover, EDM models can also serve as direct substitutes for their para-

metric equivalents. Here, our simple and multivariate EDM models are formulated

similarly to their Ricker-based counterparts: using spawner abundance (and the

environment) to forecast returns. Some simple extensions to the methods, such

as the development of uncertainty estimates (see Supplementary Information, Fig-
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ure 2.9), will enable these models to be integrated into the current management

framework that uses parametric models. Thus, we believe that EDM has great

potential as a tool for understanding and forecasting nonlinear ecosystems: by op-

erating without assumed equations, it can be beneficial when exact mathematical

descriptions are not available.

2.6 Materials and Methods

2.6.1 Data

We analyze yearly time series data for the 9 historically most abundant

stocks (Birkenhead, Chilko, Early Stuart, Late Shuswap, Late Stuart, Quesnel,

Seymour, Stellako, and Weaver) of sockeye salmon from the Fraser River system.

Data span brood years 1948–2005, except for Late Stuart and Weaver, where data

begin in 1949 and 1966, respectively. We consider only single-stock models, so

notation and equations are given as for a single stock.

St is the number of effective female spawners in brood year t, and Rt is

the corresponding recruitment (returning adults). Recruitment is partitioned by

age: Ra,t is the number spawned in year t and returning at age a in year t + a.

Following [Grant et al., 2010], total recruitment is the sum of age 4 and age 5

recruits: Rt = R4,t + R5,t. In contrast, total returns, Ny, are the adults that

return to spawn in calendar year y, and computed as Ny = R4,y−4 + R5,y−5. As

explained below, recruitment is forecast from spawner abundance, and age 4 and

age 5 recruits (from different brood years) are summed to estimate total returns

in a given calendar year. Note that both recruitment and returns are computed

as catch + escapement + en-route loss, while spawner abundance is based on

observations of escapement and egg production [Grant et al., 2011]. Thus, both

spawner abundance and recruitment account for the effects of catch, and the models

we consider here focus just on the population dynamics of this system.

We investigate 3 environmental variables: the Pacific Decadal Oscillation

(PDO), sea-surface temperature (SST), and Fraser River discharge. For the PDO,

one annual time series is constructed as the average of monthly values from Novem-
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ber to March [Mantua et al., 1997]. SST measures are monthly averages from two

lighthouse stations (Entrance Island: April to June and Pine Island: April to July).

River discharge is measured at Hope; we include peak daily flow and monthly av-

erages (April to June). Fraser River sockeye salmon enter the ocean at age 2, so

the environmental data are lagged 2 years to line up with ocean entry time.

2.6.2 Attractor Reconstruction

The goal of attractor reconstruction is to approximate the originating dy-

namic system using time series data. The simplest construction uses successive

lags of a single time series [Takens, 1981, Packard et al., 1980]: given time series

{xt}, E-dimensional vectors ~xt are composed of E lags of x, each separated by a

time step τ : ~xt = 〈xt, xt−τ , . . . xt−(E−1)τ 〉.
Generalizations of Takens’ theorem [Deyle and Sugihara, 2011, Sauer et al.,

1991] permit attractor reconstructions using multiple time series. For example,

with {xt} and {yt} observed from the same system, one possible reconstruction

forms vectors as 〈xt, yt, yt−τ 〉. To account for different scaling between variables,

each time series is first linearly transformed to have mean = 0 and variance = 1.

2.6.3 Simplex Projection and S-map

Simplex projection estimates the trajectory (i.e., forecasts) of a novel system

state by computing a weighted average of the trajectories of that state’s nearest

neighbors [Sugihara and May, 1990]. Given an attractor reconstruction, and a

novel state ~xs, we first find the b nearest neighbors (typically setting b = E + 1)

that are closest to ~xs: these neighbors are the vectors ~xn(s,i) where n(s, i) designates

the time index of the ith closest neighbor to ~xs. So, ~xn(s,1) is the closest neighbor

to ~xs, ~xn(s,2) is the second closest neighbor, etc. We then evolve the neighbors

forward, and compute a weighted average of the forward evolutions (h time steps

into the future) to estimate ~xs+h:

~̂xs+h =

(
b∑
i=1

wi (s) ~xn(s,i)+h

)/ b∑
i=1

wi (s). (2.1)
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The weights, wi(s), are based on the distance between ~xs and its ith neigh-

bor, ~xn(s,i), scaled to the distance to the nearest neighbor:

wi(s) = exp
(
−d(~xs, ~xn(s,i))/d(~xs, ~xn(s,1))

)
and d(~xs, ~xt) is the Euclidean distance

between the vectors ~xs and ~xt.

In most cases, we desire forecasts of a scalar value rather than of the full

system state. This is possible when the variable to be forecast, y, is an observation

on the same dynamic system. As such, there will be a correspondence between ~xt
and the scalar value of yt, and we can adjust equation 2.1 to compute a weighted

average of the corresponding values of y:

ŷs+h =

(
b∑
i=1

wi (s) yn(s,i)+h

)/ b∑
i=1

wi (s). (2.2)

The S-map procedure computes a local linear map between lagged-coordinate

vectors and a target variable and is often used to test for nonlinear state-dependence

[Sugihara, 1994]. It includes a tuning parameter, θ, that controls the weights asso-

ciated with individual vectors: θ = 0 reduces the S-map to a linear autoregressive

model of order E, while θ > 0 gives more weight to nearby states when computing

the local linear map, thus allowing for nonlinear behavior. Following [Glaser et al.,

2014a, Hsieh et al., 2006], we test for nonlinearity by computing the decrease in

forecast error (MAE) as θ is tuned to be greater than 0 (see Supplementary Infor-

mation for details).

2.6.4 Model Descriptions

We formulate EDM models to forecast recruitment from spawner abun-

dance, combining age 4 and age 5 recruits (from different brood years) to estimate

total returns in a given calendar year. Acknowledging the persistent 4-year quasi-

cycle, the time series of recruits and spawners are scaled so that each cycle line has

mean 0 and variance 1: S ′t = (St − µk(S)) /σk(S) and R′t = (Rt − µk(R)) /σk(R),

where k = 1, 2, 3, or4, depending on cycle line and can be computed as k =

1 + ((t− 1) mod 4). µk and σk are the mean and standard deviation, respectively,

for the kth cycle line.
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The simple EDM model approximates the system state with 1 lag of the

transformed spawner abundance:

~xt = 〈S ′t〉. (2.3)

Forecasts of the age 4 and age 5 recruits, R′4,t and R′5,t, are made using

simplex projection. Here, the two nearest neighbors of S ′t are identified, and the

corresponding values of R′4,t (or R′5,t) are combined in a weighted average to produce

a forecast. These forecasts are transformed back into raw values, R̂a,t = R̂′a,t ·
σk(Ra) + µk(Ra), and age 4 and age 5 recruits are combined to produce a forecast

of total returns, N̂y = R̂4,y−4 + R̂5,y−5.

The multivariate models combine spawner data with up to 2 environmental

indicators:

~xt = 〈S ′t, U ′t+2〉

~xt = 〈S ′t, U ′t+2, U
′′
t+2〉,

(2.4)

where U ′t+2 (or U ′′t+2) is one of the environmental time series described pre-

viously, normalized to have mean = 0 and variance = 1. Just as in the simple

EDM model, forecasts of the age 4 and age 5 recruits are made using simplex

projection and combined to produce a forecast of total returns. However, because

including environmental variables increases the embedding dimension, three near-

est neighbors are used for models that include one environmental coordinate, and

four nearest neighbors for models that include two environmental coordinates.

Following [Grant et al., 2010], we use the standard Ricker model to estimate

total recruitment and then partition it into age 4 and age 5 fish. age 4 and age 5

fish from separate brood years are combined to forecast the number of returns:

R̂t = St exp (α− βSt),

N̂y = R̂y−4 · p4 + R̂y−5 · (1− p4),
(2.5)

where p4 is the average fraction of recruits that return as age 4 fish. The

extended Ricker model is similar, but includes an additional term in the exponent

for an environmental covariate:

R̂t = St exp (α− βSt + γUt+2). (2.6)



28

2.6.5 Fitting Procedure and Performance Measures

To avoid testing all combinations of (and overfitting) the environmental

variables in the EDM model, we sequentially add the environmental variable that

most improves forecast accuracy (ρ, the correlation between observed and predicted

values). If none of the variables improve forecasts when added, then no further

environmental variables are included. Thus the best EDM model for some stocks

may have only 0 or 1 environmental variable (Table 2.1). Similarly, for the extended

Ricker model, we choose the environmental variable that gives the highest ρ.

The Ricker models were fit using R 3.0.2 (http://www.r-project.org/), the

Rjags package (http://cran.r-project.org/web/packages/rjags/index.html), and

JAGS 3.2.0 (Just Another Gibbs Sampler; http://mcmc-jags.sourceforge.net/)

following the procedure outlined in [Grant et al., 2010]. Medians of the pos-

terior distribution are used to obtain point estimates suitable for comparison.

The EDM models were constructed using R 3.0.2 and the rEDM package (https:

//github.com/ha0ye/rEDM). The package can be installed with the following lines

of R code:

library(devtools)
install_github("ha0ye/rEDM")

R scripts for the models and data files can be found in the supplementary infor-

mation.

All forecasts are made using a 4-fold cross-validation procedure. To quantify

model performance, we use Pearson’s correlation coefficient (ρ) between observed

and predicted returns as a measure of accuracy and MAE as a measure of error.

Comparisons of ρ between models uses a one-sided t test with SE calculated using

the HC4 estimator from [Cribari-Neto, 2004] and with adjusted degrees of freedom

as suggested by [Wilcox, 2009]. Improvement in MAE is computed using a one-

sided paired t test for the difference, treating each forecast as an independent

sample. To compute an aggregate statistic combining all 9 stocks, we first scale

the observations and predictions for each stock so that the observed returns have

mean = 0, variance = 1, and then combine the normalized values across stocks.

The comparisons of ρ and MAE are done using this combined set of observations

http://www.r-project.org/
http://cran.r-project.org/web/packages/rjags/index.html
http://mcmc-jags.sourceforge.net/
https://github.com/ha0ye/rEDM
https://github.com/ha0ye/rEDM
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and predictions (Figure 2.4, Figure 2.7).

2.7 Supplementary Information
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Figure 2.5: Reconstruction of system dynamics from a time series.
(A) Projecting the motion of the canonical Lorenz attractor onto the x-axis yields
a time series for variable x. (B) Successive lags (with time step τ) of the time
series xt are plotted as separate coordinates to form a reconstructed “shadow”
manifold that preserves essential mathematical properties of the original system
(and is visually similar).



30

2.7.1 Attractor Reconstruction from Time Series

Broadly speaking, dynamic systems can be described as a set of states (i.e.

a manifold) and rules (governing dynamics or hidden equations) for how the states

evolve over time. Motion on the manifold can be projected onto a coordinate axis,

forming a time series (Figure 2.5A). More generally, however, any set of sequential

observations of the system state (i.e., a function that maps the state onto the real

number line) is a time series.

For example, the Lorenz attractor (a simplified description of turbulent

flow in the atmosphere [Lorenz, 1963]) is a dynamic system where the states are

3-dimensional vectors with coordinates x, y, and z, and whose motion is governed

by three differential equations (Equation 2.7).

dy

dt
= 10(y − x)

dy

dt
= x(28− z)− y

dz

dt
= xy − 8

3
z

(2.7)

In an ecological setting, these variables could represent the abundances of

different species (e.g., salmon, zooplankton, and phytoplankton), with the equa-

tions capturing the biological processes of growth, death, and predation. The

projection of the system state onto one of the axes gives a time series for the

population corresponding to that variable (Figure 2.5A).

If one knew all the relevant variables of a system, their time series could be

used to reconstruct the original manifold, by plotting each variable as a separate

coordinate. Given time series of sufficient length, it might even be possible to

derive the equations of motion for that system. However, in nature, the system

may be highly complex (hundreds or thousands of interacting variables or compo-

nents), and time series are generally short. The method of time-delay embedding

[Takens, 1981, Crutchfield and McNamara, 1987] offers a solution to this problem;

reconstructions of a dynamic system can be made using successive lags of a single

time series (Figure 2.5B). Takens’ theorem [Takens, 1981] states that, if enough
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lags are taken, this form of reconstruction is generically a diffeomorphism and pre-

serves essential mathematical properties of the original system. In other words,

local neighborhoods (and their trajectories) in the reconstruction map to local

neighborhoods (and their trajectories) of the original system. This also permits

forecasting, by finding nearest neighbors from among the historical record and

using their behavior to estimate how the system will evolve through time (e.g.,

simplex projection, see Materials and Methods).
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Figure 2.6: Nonlinearity in Fraser River sockeye salmon.
Following [Hsieh et al., 2008], we concatenate time series of returns for 9 stocks.
(A) Forecasting returns using simplex projection, 4 is identified as the optimal
embedding dimension. (B) Using the S-map procedure, forecast skill is highest
for θ ∼ 2 (P = 0.002), which demonstrates nonlinear state dependence in salmon
dynamics.

2.7.2 Identifying nonlinearity in sockeye salmon dynamics

One application of EDM is to identify nonlinear dynamics in time series.

For the Fraser River system, we first consider the 9 stocks in aggregate. Following

[Hsieh et al., 2008], each time series of returns is linearly transformed to have mean

= 0 and variance = 1. This preserves the quasicyclic behavior of each stock, but
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Table 2.2: Nonlinearity tests for individual stocks.
E is embedding dimension, θ is the optimal value of the nonlinear tuning param-
eter, ∆MAE is the difference in error between the model at the optimal value of
θ and the model at θ = 0 (negative values indicate a decrease in error, or im-
provement with θ > 0), P value is for a randomization test with 500 iterations (*
indicates significance at the α = 0.10 level).

stock E θ ∆MAE P value significantly nonlinear?
Birkenhead 5 0 0 0.494 no
Chilko 6 2 -0.070 *0.024 yes
Early Stuart 6 4 -0.023 *0.050 yes
Late Shuswap 4 2 -0.389 *0.014 yes
Late Stuart 8 3 -0.054 *0.060 yes
Quesnel 7 4 -0.298 *0.008 yes
Seymour 8 0.5 -0.002 0.162 no
Stellako 7 2 -0.025 *0.014 yes
Weaver 1 0 0 0.496 no

corrects for the relative magnitude across different stocks. The normalized time

series are joined together end-to-end, in effect treating them as 9 instances of a

single time series. Using simplex projection with τ = 1 and predicting 1 year into

the future, forecast skill (ρ) is maximized when 4 successive lags are used (Figure

2.6A). This is somewhat expected, because the quasicyclic nature of these returns

has a 4-year periodicity: knowing the previous 4 years is sufficient to identify the

current phase and estimate the current magnitude of returns.

Next, we employ the S-map procedure [Sugihara, 1994], which compares

equivalent linear and nonlinear models (adjusting a tuning parameter, θ) to test

for nonlinear dynamics. When θ = 0, all points are weighted equally, and the

model reduces to an autoregressive model of order E. For θ > 0, nearby points are

given stronger weighting, allowing the model to be adaptive to local influences and

therefore, nonlinear. If the behavior of sockeye returns is purely periodic, then the

linear model should have the highest forecast skill, because it can smooth out errors

over the entire data set. However, Figure 2.6B shows that forecast skill peaks when

θ is 2, which is evidence for nonlinearity in the aggregate time series. Using the

randomization test of [Hsieh et al., 2006, Glaser et al., 2014a], this improvement

in forecast skill (decrease in MAE) is significant with P = 0.002.
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As noted in [Hsieh et al., 2008], nonlinearity may appear as an artifact

when aggregating linear time series with somewhat different dynamics. Therefore,

to confirm the presence of nonlinearity, we also apply the S-map to each stock

individually, using the same randomization test for whether the improvement in

forecast error (MAE) is significant at the α = 0.10 level (Table 2.2). Overall, these

results are encouraging: we find 6 of the 9 stocks to be significantly nonlinear. We

note, however, that the lack of significant nonlinearity in the Birkenhead, Seymour,

and Weaver stocks may not necessarily indicate that these stocks are linear, as the

S-map test can require lengthy time series for accurate discrimination.

2.7.3 Convergent Cross Mapping

If salmon mortality is strongly influenced by the environment, then the time

series of salmon recruitment will contain information about past environmental

states. This means that it is possible to estimate past environmental conditions

from salmon abundances. To the extent that this is true, the ability to recover past

environmental states from the salmon time series is evidence for causal influence by

the environment. This criterion for causation (convergent cross mapping, CCM)

can be used to identify key variables and operates in nonlinear systems whereas

linear correlation does not [Sugihara et al., 2012, Deyle et al., 2013].

CCM operates on much the same principle as generalized simplex projection

in Equation 2.2 (see Materials and Methods in main text). Here, the notion is

that if variable y has a causal influence on x, then the system state (represented

using only lags of x) will contain an imprint of y. Thus, it should be possible

to map between states of the system (the univariate reconstruction based on x)

and the value of y. Cross mapping strength can be assessed by the correlation

between the estimated values of y and the corresponding observed values. In a fully

deterministic system with no noise, we expect this cross mapping correlation to

approach 1 as time series length increases and the reconstruction becomes denser.

As a practical indicator of causal influence, here we test whether the correlation is

significantly positive when using the whole time series.

It is important to note that if a variable y is stochastic and influences x
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with a time lag, then cross mapping from x to y may show evidence of a causal

interaction only if the appropriately lagged value of y is estimated. Here, we are

interested in testing for the influence of the environment on juvenile salmon, which

occurs when the salmon are 2 years old. Thus, a reconstruction based on salmon

abundance for brood year t should be informative about the environment in calen-

dar year t+ 2. Moreover, because it is only the 2-year old salmon that are affected

by this early oceanic environment, it would not make sense to include measures of

salmon abundance from multiple spawning broods (i.e., only salmon from brood

year t should have information about the environment in year t + 2). Therefore,

we use multivariate CCM, cross mapping from the reconstruction ~xt = 〈S ′t, R′t〉
(where S ′t and R′t are the cycle-line normalized spawner and recruit abundances

of brood year t, respectively, to account for the effect of cyclic dominance) to

yt = Ut+2 (where Ut+2 is an environmental variable measured in calendar year

t+ 2), to estimate the environmental effect that would have influenced that brood

of salmon.

Table 2.3 shows the cross mapping results for each combination of the 9

stocks and 12 environmental time series considered in this work. Only some of

the relationships appear significant, with most of the significant cross mapping

occurring between temperature and the Chilko, Early Stuart, Late Stuart, and

Quesnel stocks. Surprisingly, this did not seem to match well with the identifi-

cation of environmental variables using multivariate EDM (SST does not appear

to be a necessary variable to achieve skillful forecasts for Chilko, Early Stuart, or

Late Stuart). Moreover, for some stocks, river discharge or the PDO appeared to

be important (EDM models excluding those variables produced substantially less

accurate forecasts). Overall, this suggests that the effects of these environmental

variables on recruitment may be more complex than can be captured with our

CCM analysis. For instance, it could be the case that knowing the spawner abun-

dance and river discharge can predict recruitment, but that this function may not

be one-to-one, and so it is difficult to cross map the historical river discharge from

the spawner and recruit data of a specific brood year.

In other systems, we could resolve such singularities in the cross mapping
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relationship by including more coordinates (i.e., using additional time series lags)

in the reconstruction. However, here we are limited by the fact that our data

(generally) record only 2 measurements of abundance for each spawning brood

(spawner abundance and recruitment). Such is not the case for other marine

species that are sampled in annual surveys, where an external influence that has

occurred at a particular life stage will leave a record multiple times in the data

(because the affected organisms will be recorded in many consecutive data points).

Table 2.4: Results of Multivariate EDM

ET = Entrance Island SST, PT = Pine Island SST, D =

Fraser River discharge, PDO = Pacific Decadal Oscilla-

tion.

stk columns N rho mae

Birkenhead S 57 0.156 0.259

Birkenhead S, PTjul 57 0.125 0.260

Birkenhead S, Dmay 57 0.088 0.234

Birkenhead S, ETmay 57 0.005 0.282

Birkenhead S, PDOwin 57 0.005 0.293

Birkenhead S, PTmay 57 -0.022 0.319

Birkenhead S, Dmax 57 -0.034 0.303

Birkenhead S, ETjun 57 -0.108 0.287

Birkenhead S, PTjun 57 -0.119 0.324

Birkenhead S, Dapr 57 -0.144 0.306

Birkenhead S, Djun 57 -0.154 0.324

Birkenhead S, PTapr 57 -0.166 0.329

Birkenhead S, ETapr 57 -0.244 0.312

Chilko S 57 0.264 0.839

Chilko S, PTjul 57 0.250 0.853

Chilko S, ETjun 57 0.221 1.006

Chilko S, Dmax 57 0.221 0.914

Chilko S, ETmay 57 0.208 0.942
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Table 2.4 Results of Multivariate EDM (continued)

stk columns N rho mae

Chilko S, PTmay 57 0.203 0.918

Chilko S, ETapr 57 0.199 0.934

Chilko S, PTapr 57 0.184 0.879

Chilko S, Dmay 57 0.177 0.839

Chilko S, PTjun 57 0.173 0.921

Chilko S, Dapr 57 0.153 0.896

Chilko S, PDOwin 57 0.065 1.014

Chilko S, Djun 57 -0.017 1.118

Early Stuart S, Dapr, Djun 57 0.878 0.140

Early Stuart S, Dmay, Djun 57 0.876 0.132

Early Stuart S, Djun, ETmay 57 0.858 0.132

Early Stuart S, Djun, PTjul 57 0.838 0.127

Early Stuart S, Djun, ETapr 57 0.837 0.131

Early Stuart S, Dmax, Djun 57 0.831 0.147

Early Stuart S, Djun, PTmay 57 0.830 0.144

Early Stuart S, Djun 57 0.830 0.134

Early Stuart S, ETapr 57 0.827 0.130

Early Stuart S, ETmay 57 0.824 0.137

Early Stuart S, Dmax 57 0.809 0.159

Early Stuart S, Djun, PTapr 57 0.803 0.156

Early Stuart S, Dmay 57 0.801 0.154

Early Stuart S, Djun, PDOwin 57 0.801 0.143

Early Stuart S, Djun, ETjun 57 0.794 0.159

Early Stuart S, Djun, PTjun 57 0.790 0.158

Early Stuart S, PTapr 57 0.789 0.157

Early Stuart S, ETjun 57 0.788 0.155

Early Stuart S, PTmay 57 0.787 0.165

Early Stuart S, PDOwin 57 0.783 0.151

Early Stuart S, PTjun 57 0.781 0.167
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Table 2.4 Results of Multivariate EDM (continued)

stk columns N rho mae

Early Stuart S, PTjul 57 0.749 0.172

Early Stuart S, Dapr 57 0.718 0.175

Early Stuart S 57 0.685 0.182

Late Shuswap S, Dmay, PTjul 57 0.923 0.821

Late Shuswap S, Dmay 57 0.912 0.807

Late Shuswap S 57 0.900 0.852

Late Shuswap S, Dmay, ETapr 57 0.892 0.918

Late Shuswap S, Dmay, ETjun 57 0.862 0.968

Late Shuswap S, Dmax 57 0.840 1.000

Late Shuswap S, Dmay, PTmay 57 0.831 1.065

Late Shuswap S, Dmay, ETmay 57 0.831 0.887

Late Shuswap S, Dmay, Djun 57 0.819 1.079

Late Shuswap S, Dapr 57 0.816 1.106

Late Shuswap S, Dmay, PDOwin 57 0.801 1.161

Late Shuswap S, PTjul 57 0.800 1.059

Late Shuswap S, Dmax, Dmay 57 0.799 1.098

Late Shuswap S, PDOwin 57 0.799 1.049

Late Shuswap S, PTjun 57 0.795 1.197

Late Shuswap S, PTmay 57 0.795 1.200

Late Shuswap S, Dmay, PTapr 57 0.793 1.114

Late Shuswap S, Dapr, Dmay 57 0.792 1.201

Late Shuswap S, ETapr 57 0.784 1.115

Late Shuswap S, ETmay 57 0.775 1.021

Late Shuswap S, Dmay, PTjun 57 0.772 1.224

Late Shuswap S, ETjun 57 0.764 1.203

Late Shuswap S, PTapr 57 0.753 1.206

Late Shuswap S, Djun 57 0.739 1.200

Late Stuart S, Djun, ETapr 56 0.783 0.250

Late Stuart S, Dmay, Djun 56 0.752 0.305
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Table 2.4 Results of Multivariate EDM (continued)

stk columns N rho mae

Late Stuart S, Dapr, Djun 56 0.733 0.300

Late Stuart S, Djun, PTjul 56 0.708 0.316

Late Stuart S, Djun 56 0.706 0.319

Late Stuart S, ETmay 56 0.675 0.344

Late Stuart S, Dmax, Djun 56 0.667 0.343

Late Stuart S, Djun, PDOwin 56 0.644 0.338

Late Stuart S, ETapr 56 0.638 0.336

Late Stuart S, Djun, PTmay 56 0.625 0.348

Late Stuart S, Djun, ETjun 56 0.625 0.362

Late Stuart S, Djun, ETmay 56 0.621 0.365

Late Stuart S, Djun, PTapr 56 0.618 0.352

Late Stuart S, PTjun 56 0.602 0.403

Late Stuart S, Dmay 56 0.590 0.376

Late Stuart S, Dapr 56 0.588 0.409

Late Stuart S 56 0.550 0.422

Late Stuart S, PTmay 56 0.548 0.414

Late Stuart S, Djun, PTjun 56 0.548 0.394

Late Stuart S, PTapr 56 0.545 0.430

Late Stuart S, PDOwin 56 0.545 0.368

Late Stuart S, PTjul 56 0.518 0.418

Late Stuart S, ETjun 56 0.509 0.428

Late Stuart S, Dmax 56 0.469 0.478

Quesnel S, PTmay, PDOwin 57 0.861 0.729

Quesnel S, ETjun, PTmay 57 0.787 0.871

Quesnel S, PTapr, PTmay 57 0.770 0.894

Quesnel S, Djun, PTmay 57 0.768 0.895

Quesnel S, Dmax, PTmay 57 0.756 0.884

Quesnel S, ETapr, PTmay 57 0.754 0.922

Quesnel S, PTmay 57 0.753 0.889
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Table 2.4 Results of Multivariate EDM (continued)

stk columns N rho mae

Quesnel S, PTmay, PTjul 57 0.739 0.905

Quesnel S, PTapr 57 0.729 0.969

Quesnel S, PTmay, PTjun 57 0.726 0.945

Quesnel S, Djun 57 0.724 0.927

Quesnel S, Dmax 57 0.705 0.942

Quesnel S, PDOwin 57 0.697 0.950

Quesnel S, ETjun 57 0.674 1.133

Quesnel S, Dmay, PTmay 57 0.651 1.048

Quesnel S, ETmay, PTmay 57 0.642 1.071

Quesnel S, ETapr 57 0.616 1.121

Quesnel S, Dapr, PTmay 57 0.589 1.068

Quesnel S, PTjun 57 0.571 1.087

Quesnel S, PTjul 57 0.569 1.164

Quesnel S 57 0.569 1.168

Quesnel S, Dapr 57 0.500 1.297

Quesnel S, ETmay 57 0.476 1.358

Quesnel S, Dmay 57 0.459 1.311

Seymour S, PTjul 57 0.734 0.065

Seymour S, PTjul, PDOwin 57 0.695 0.062

Seymour S, PDOwin 57 0.690 0.063

Seymour S, Dapr, PTjul 57 0.671 0.083

Seymour S 57 0.666 0.073

Seymour S, Dapr 57 0.647 0.087

Seymour S, ETjun 57 0.627 0.071

Seymour S, ETjun, PTjul 57 0.617 0.073

Seymour S, Djun, PTjul 57 0.601 0.072

Seymour S, Djun 57 0.582 0.076

Seymour S, PTjun, PTjul 57 0.581 0.079

Seymour S, Dmax, PTjul 57 0.570 0.076
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Table 2.4 Results of Multivariate EDM (continued)

stk columns N rho mae

Seymour S, Dmay, PTjul 57 0.570 0.069

Seymour S, PTjun 57 0.563 0.080

Seymour S, PTmay, PTjul 57 0.561 0.083

Seymour S, ETmay 57 0.561 0.080

Seymour S, Dmax 57 0.557 0.075

Seymour S, PTmay 57 0.556 0.085

Seymour S, ETmay, PTjul 57 0.555 0.081

Seymour S, PTapr, PTjul 57 0.554 0.081

Seymour S, Dmay 57 0.533 0.074

Seymour S, PTapr 57 0.529 0.083

Seymour S, ETapr, PTjul 57 0.458 0.094

Seymour S, ETapr 57 0.415 0.100

Stellako S, PTapr, PDOwin 57 0.531 0.217

Stellako S, Dapr, PDOwin 57 0.517 0.209

Stellako S, ETjun, PDOwin 57 0.486 0.218

Stellako S, PDOwin 57 0.440 0.231

Stellako S, ETmay, PDOwin 57 0.437 0.231

Stellako S, PTjul, PDOwin 57 0.420 0.236

Stellako S, ETmay 57 0.400 0.265

Stellako S, ETapr, PDOwin 57 0.360 0.209

Stellako S, ETjun 57 0.320 0.263

Stellako S, Dmax, PDOwin 57 0.318 0.238

Stellako S, Dmay, PDOwin 57 0.315 0.241

Stellako S, Dmax 57 0.307 0.257

Stellako S, PTmay, PDOwin 57 0.286 0.248

Stellako S, PTapr 57 0.281 0.253

Stellako S, Dapr 57 0.280 0.241

Stellako S, PTjun, PDOwin 57 0.267 0.243

Stellako S 57 0.216 0.297
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Table 2.4 Results of Multivariate EDM (continued)

stk columns N rho mae

Stellako S, PTmay 57 0.212 0.271

Stellako S, PTjul 57 0.210 0.279

Stellako S, Djun, PDOwin 57 0.204 0.262

Stellako S, Djun 57 0.186 0.268

Stellako S, PTjun 57 0.152 0.279

Stellako S, Dmay 57 0.072 0.275

Stellako S, ETapr 57 0.062 0.280

Weaver S, Dmax, Dapr 39 0.573 0.176

Weaver S, Dapr, PTjul 39 0.569 0.175

Weaver S, Dapr 39 0.555 0.180

Weaver S, PTmay 39 0.525 0.172

Weaver S, Dapr, Djun 39 0.499 0.177

Weaver S, Dapr, PTmay 39 0.497 0.179

Weaver S, Dapr, ETjun 39 0.496 0.184

Weaver S, Dapr, PTjun 39 0.470 0.177

Weaver S, Dmax 39 0.442 0.201

Weaver S, ETjun 39 0.426 0.208

Weaver S, Dmay 39 0.398 0.192

Weaver S, Djun 39 0.394 0.194

Weaver S, Dapr, ETapr 39 0.380 0.189

Weaver S, Dapr, Dmay 39 0.373 0.187

Weaver S, PDOwin 39 0.335 0.180

Weaver S, PTjul 39 0.314 0.200

Weaver S, PTjun 39 0.258 0.199

Weaver S, ETapr 39 0.249 0.193

Weaver S, Dapr, PTapr 39 0.218 0.206

Weaver S, Dapr, ETmay 39 0.216 0.207

Weaver S 39 0.187 0.227

Weaver S, PTapr 39 0.168 0.219
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Table 2.4 Results of Multivariate EDM (continued)

stk columns N rho mae

Weaver S, ETmay 39 0.159 0.211

Weaver S, Dapr, PDOwin 39 0.099 0.211

2.7.4 Determining Causal Environmental Variables

In addition to improving forecasts, an important application of EDM is to

identify informative environmental variables and elucidate potential mechanisms.

Here, an environmental variable is deemed causal if including that variable into

a multivariate EDM model improves forecast skill. Thus, we use multivariate

EDM to determine if the environment has any causal influence on sockeye salmon

recruitment, by testing different combinations of environmental variables (Table

2.4). As noted above, data limitations mean that the CCM analysis (Table 2.3)

may not be sensitive enough to identify environmental drivers for this system.

The results of multivariate EDM (Table 2.4) reveal which specific variables

may be uniquely informative for particular stocks, or whether some variables may

actually be interchangeable. When interpreting Table 2.4, it is important to keep

in mind the nonuniqueness property of EDM models (i.e., there is no “true” model,

but many combinations of variables that can give similarly good performance).

Thus, the inclusion of a variable in multivariate EDM does not imply a direct

causal link, as the variable could be an indirect observation of the true mechanism.

Furthermore, the exclusion of a variable does not mean that said variable has no

effect, either. It could be the case that multiple stochastic drivers interact to affect

recruitment, such that an incomplete set of observations on those drivers do not

improve forecasts. In such cases, extending the set of tested variables may reveal

causal mechanisms that were previously hidden.

In addition, because EDM operates in a nonlinear (non-additive) frame-

work, we note that it is not possible to partition a model’s performance (i.e.,

variance explained) in terms of individual variables. Nonlinear state-dependence

necessarily implies that the effect of one variable may depend on another. For



44

Table 2.5: Comparison of model performance.
* indicates significance at the α = 0.05 level

comparison performance
measure test type test

statistic df P value

simple EDM vs.
Ricker

ρ t 1.77 492 *0.039
MAE t -1.75 493 *0.041

multivariate EDM vs.
extended Ricker

ρ t 2.20 492 *0.014
MAE t -3.87 493 *6.2× 10−5

extended Ricker vs.
Ricker

ρ t 1.26 492 0.10
MAE t -1.54 493 0.062

multivariate EDM vs.
simple EDM

ρ t 2.83 492 *0.0024
MAE t -4.58 493 *3.0× 10−6

example, in a model that includes temperature and river discharge, the addition of

temperature may improve forecasts only under certain conditions of river discharge

(e.g., low temperatures are better for recruitment, but only when river discharge

is high). Including temperature by itself may not improve forecasts at all, and so

the “variance explained” by temperature necessarily depends on the other variables

of the EDM model, thus making it impossible to assign independent r2 (variance

explained) values for each variable in the model.

2.7.5 Possible Causal Mechanisms for SST, River Discharge,

and the PDO

The tested variables (river discharge, sea-surface temperature, the Pacific

Decadal Oscillation) have been thought to influence sockeye salmon recruitment

by being indicative of juvenile mortality in the early marine period (i.e., the first

year of ocean residence) [Beamish et al., 2004a]. For example, river discharge

may improve multivariate EDM forecasts because of its effect on food availability,

which is believed to play a role in determining this mortality [Beamish et al.,

2012]. By affecting estuarine circulation in the Strait of Georgia, freshwater input

(from the Fraser River and other riverine sources) can influence ocean productivity

[Beamish et al., 1994]; indeed, river discharge, in combination with wind and other

factors, has been linked to low oceanic productivity in the Strait of Georgia that
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Figure 2.7: Comparison of forecast precision using MAE.
The simple EDM model has lower error than the equivalent Ricker model, [t(493) =
−1.75, P = 0.041]. Including environmental data significantly improves precision
for the EDM models [t(493) = −4.58, P = 3.0×10−6], but not for the Ricker models
[t(493) = −1.54, P = 0.062], and the resulting multivariate EDM models also have
significantly lower error than the Ricker equivalents [t(493) = −3.87, P = 6.2×10−5].
* Note that the error for the Ricker and extended Ricker model extends beyond
the upper range shown here. MAE is 2.13 for the Ricker model and 2.06 for the
extended Ricker model.

may have contributed to poor returns of sockeye salmon in 2009 [Beamish et al.,

2012, Thomson et al., 2012].

Using multivariate EDM, we do find support for river discharge as an in-

formative variable, with the best EDM model for 4 of the 9 stocks containing

river discharge as a coordinate (Table 2.1). Furthermore, for these 4 stocks (Early

Stuart, Late Shuswap, Late Stuart, and Weaver), nearly all of the top-ranking

EDM models include river discharge as a coordinate (i.e., Table 2.4). However,

other than Late Stuart, there are EDM models excluding river discharge that have

similar performance, suggesting that for Early Stuart, Late Shuswap, and Weaver,
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river discharge may be redundant if other observations of the environmental are

available. Thus, while river discharge may be an informative variable, it does not

appear to be strictly necessary for skillful predictions, except in the case of Late

Stuart.

Pine Island SST also appears to be an important variable, and is included

in the best multivariate model for 4 of the 9 stocks (Table 2.1). With Pine Island

lighthouse located at the boundary between Queen Charlotte Strait and Queen

Charlotte Sound (Figure 2.3), the measured SST could be informative about the

conditions that juvenile sockeye salmon experience after exiting the Strait of Geor-

gia. That Pine Island SST can be informative about recruitment resonates with

evidence that anomalous conditions in this area during 2007 were associated with

low returns 2 years later (2009), while favorable conditions (low freshwater runoff

and moderate northerly winds) in 2008 were associated with record high returns

in 2010 [Thomson et al., 2012]. Here, only the Quesnel stock seems to require

Pine Island SST for skillful forecasts, as the best model for Quesnel excluding this

variable is much less skillful. For the remaining 3 stocks where the best EDM

model included Pine Island SST, there were alternative multivariate EDM models

including only other variables that showed very similar performance (Table 2.4).

This suggests that the information in Pine Island SST relevant for predicting re-

cruitment in these stocks may be duplicated in other environmental variables (see

discussion in main text on non-uniqueness).

Lastly, although many studies [Mantua et al., 1997, Beamish et al., 1997,

Beamish et al., 2004b] have found that decadal-scale climate and oceanic indicators,

such as the PDO, are predictive of regional productivity for Pacific salmon, one

important question is whether this relationship holds at the individual stock level

(i.e., do all stocks rise and fall in sync with one another). Among the Fraser River

sockeye salmon, at least, there do not appear to be consistent patterns: there has

been an overall decline since the early 1990s, but productivity for some stocks

(e.g., Early Stuart) has been declining since the 1960s, while others (e.g., Late

Shuswap, Weaver) have not exhibited a declining trend at all [Grant et al., 2010].

Our results similarly show no uniform effect of the PDO, as the best EDM model
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only includes the PDO as a coordinate for 2 of 9 stocks. In both cases (Stellako and

Quesnel), however, performance is substantially improved when other variables are

included compared to the model that includes just the PDO (Table 2.4). Thus,

while the PDO may be informative for overall productivity of the Fraser River

system, individual stocks appear to be sensitive to more localized environmental

conditions; thus including additional (local) environmental variables is essential

for improving forecasts for those stocks.
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Figure 2.8: Including smolt data into the Chilko EDM model
For the Chilko stock, adding smolt time series as a coordinate in the best environ-
mental EDM model (spawners & May Entrance Island SST & the PDO) improves
both accuracy and error.

2.7.6 Including Smolt Data into EDM Models

For the Chilko stock, even an exhaustive search for the best possible mul-

tivariate EDM model did not produce very accurate forecasts (ρ < 0.4, Figure
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2.8). One possible explanation is that the relationship between spawner abundance

and recruits is complex, such that a reconstruction using spawning stock and the

tested environmental variables does not uniquely determine recruitment. In such

cases, additional observations, such as other environmental factors or measures of

salmon abundance at different ages, could resolve singularities in the reconstruc-

tion, thereby improving forecasts. For the Chilko stock, a long time series of smolt

abundance is available, allowing us to include this variables as an additional co-

ordinate in the multivariate EDM model (Equation 2.8, J ′t is smolt abundance

normalized to the current cycle line). Testing this model, we found improvements

in both accuracy and error (Figure 2.8).

~xt = 〈S ′t, J ′t,ETt+2,May,PDOt+2〉 (2.8)

Although the added expense of collecting this kind of data many not be

reasonable for all stocks (particularly those that are already very predictable using

the tested variables), these observations of sockeye at different ages are additional

sources of information that could potentially improve forecasts, giving managers

the ability to make trade-offs between data collection and predictability.

2.7.7 Estimating Uncertainty for Simplex Projection Fore-

casts

We note that the EDM models presented here produce point estimates for

the number of returning sockeye salmon. However, fisheries management protocols

often require an estimate of the uncertainty surrounding each forecast (i.e., confi-

dence intervals) in order to evaluate the risks associated with management actions.

Within the EDM framework, this uncertainty can be addressed in several ways.

For example, the relative divergence of nearby trajectories in the reconstructed

state space measures how sensitive the future will be to the current state, and is

therefore directly indicative of forecast uncertainty. Here we demonstrate a simple

implementation of this idea, by noting that the simplex projection method pro-

duces forecasts by computing a weighted average of the target variable, y (equation
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2.2 from the main text):

ŷs+h =

(
b∑
i=1

wi (s) yn(s,i)+h

)/ b∑
i=1

wi (s). (2.2 revisited)

In effect, the values of yn(s,i)+h can be thought of as the sample space for the

desired prediction, where each value has probability pi(s) = wi(s)∑b
i=1 wi(s)

. Equation

2.2 computes a forecast as the expected value of this probability mass function.

This idea can then be extended to the second moment of this function in order to

compute a variance:

Var (ŷs+h) = E
[(
yn(s,i)+h − ŷs+h

)2]
=

∑b
i=1wi(s)

(
yn(s,i)+h − ŷs+h

)2∑b
i=1wi (s)

(2.9)

Note that as the difference between each neighbor’s forecast and the weighted

average increases, variance will also increase, thus tracking the divergence of the

nearest neighbors.

Because simplex projection is used to forecast relative age 4 and age 5 re-

cruits, which are linearly combined to forecast returns (see Materials and Methods),

we can similarly compute the variance of returns:

Var
(
N̂t

)
= Var

(
R̂4,t−4

)
+ Var

(
R̂5,t−5

)
+ Cov

(
R̂4,t−4, R̂5,t−5

)
Var

(
R̂a,t

)
= Var

(
R̂′a,t

)
· (σk (Ra))

2
(2.10)

Here, because the age 4 and age 5 recruits are computed from separate data,

we can assume that the covariance is 0 (because the selection of nearest neighbors

used to compute R̂4,t−4 are independent of those used to compute R̂5,t−5).

This is demonstrated in Figure 2.9 for the best multivariate EDM model of

the Late Shuswap stock. Plotting the EDM forecasts along with standard errors,

it is clear that there is good correspondence: variability is higher for the dominant

cycle line (as would be expected) and forecasts are generally within 1 standard

error of the realized returns.
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Figure 2.9: Standard errors for EDM forecasts of Late Shuswap returns.
Extending the simplex projection algorithm, standard errors for each forecast can
be computed. Here, the predictions of the multivariate EDM model are plotted
against observations for the Late Shuswap stock.

2.8 Acknowledgments

The authors thank Michael Fogarty, Terry Beacham, Brad Werner, Ethan

Deyle, Charles Perretti, and two anonymous reviewers for their feedback on this

work. This research is supported by a National Science Foundation Graduate Re-

search Fellowship (HY), National Science Foundation Grant No. DEB-1020372

(GS, HY), Foundation for the Advancement of Outstanding Scholarship and Min-

istry of Science and Technology of Taiwan (CHH), NSF-NOAA Comparative Anal-

ysis of Marine Ecosystem Organization (CAMEO) program Grant NA08OAR-

4320894 / CAMEO (GS), the Sugihara Family Trust (GS), the Deutsche Bank-

Jameson Complexity Studies Fund (GS), and the McQuown Chair in Natural Sci-



51

ence (GS).

Chapter 2, in full, is a reprint of material published by the National Academies

Press as: Hao Ye, Richard J. Beamish, Sarah M. Glaser, Sue C.H. Grant, Chih-hao

Hsieh, Laura J. Richards, Jon T. Schnute, and George Sugihara. (2015) Equation-

free mechanistic ecosystem forecasting using empirical dynamic modeling. Pro-

ceedings of the National Academy of Sciences 112: E1569-E1576. The dissertation

author was the primary investigator and author of this paper.



Chapter 3

Apparent Regime Shifts or

Nonlinear State-Dependence?

3.1 Abstract

Natural systems that exhibit complex, nonlinear dynamics can undergo

sudden changes characterized as regime shifts. A prominent example is the corre-

lation between the Pacific Decadal Oscillation (PDO) and Pacific salmon, where

salmon productivity is notably higher or lower depending on whether the PDO

regime is warm or cold. Indeed, studies have found that salmon recruitment is

better explained by separate stock-recruitment relationships for each PDO regime.

However, this apparent relationship may actually represent a mirage correlation, a

phenomenon known to occur when variables interact in a nonlinear system. Using

nonparametric Empirical Dynamic Modeling (EDM), we fit multivariate models

to time series data of Fraser River sockeye salmon recruitment. We find no sig-

nificant differences in forecasts when partitioning the data into different possible

regimes, and thus no evidence supporting regime-specific recruitment dynamics.

Rather, the observed correlation between the PDO and Pacific salmon productiv-

ity is likely a manifestation of nonlinear dynamics that gives the appearance of

regime shifts even though the underlying system is unchanged.

52
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3.2 Introduction

A central question in fisheries science, dating back at least a century to

Hjort’s seminal work [Hjort, 1914] is to understand the factors that influence re-

cruitment. To date, various hypotheses have been proposed: tn the case of Pacific

salmon populations, early work by Ricker on fitting stock-recruitment relationships

suggested density-dependence as a mechanism [Ricker, 1954]. Another promi-

nent hypothesis has been the influence of environmental variability on recruitment

[Cushing, 1982]. Here, an early study by [Ricker, 1958], again on Pacific salmon,

found no evidence for environmental effects. However, this negative result may be

caused by the limited statistical power of the data available at the time (Richard

Beamish, personal communication, May 27, 2014).

More recent work has identified correlations between decadal scale climate

indices (e.g., Pacific Decadal Oscillation, PDO; Aleutian Low Pressure Index,

ALPI) and Pacific salmon productivity [Mantua et al., 1997, Beamish et al., 1997].

These results suggest that there is indeed some form of physical-biological cou-

pling between salmon populations and the environment. Indeed, when the data

are partitioned by climate regime, standard stock-recruitment curves actually fit

better for pink and sockeye salmon from the Fraser River [Beamish et al., 2004b],

suggesting that there are trends in survival and productivity related to climate.

One of the implications of regime-dependent behavior or parameters is that

models will perform better when fit to data from exactly one regime (à la [Beamish

et al., 2004b]). When the system transitions into a new regime, models based on

data from a different regime may no longer be predictive. A correct understanding

of the causes for observed shifts in populations is thus critical for fisheries man-

agement, to distinguish between natural impacts caused by biological or physical

mechanisms, and fishing effects that could potentially be controlled through regu-

lation and management [Beamish et al., 1999]. A failure to consider the possibility

of changing system dynamics can lead to misguided or ineffective management,

such as in the case of prolonged recovery of Northwest Atlantic cod [Shelton et al.,

2011].

Although regime shifts appear quite common in marine fish stocks [Vert-
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pre et al., 2013], the hallmark features of regime shifts are also characteristic of

nonlinear systems. For example, time series from nonlinear systems often exhibit

red noise power spectra, which can be erroneously identified as regime shifts [Rud-

nick and Davis, 2003]. Moreover, the defining feature of nonlinear systems is that

variable interactions are state-dependent and change as a function of system state.

Slow changes in the these interactions over time could be interpreted as regime

shifts when linear models are applied, just as simple nonlinear functions can be

approximated by piece-wise linear segments. Finally, a prime example of nonlinear

phenomena that can give the appearance of changing dynamics is that of “mirage

correlations”, transient artifacts that can appear in coupled dynamic systems [Sug-

ihara et al., 2012]. There is growing evidence that mirage correlations are prevalent

in marine fisheries, with many studies showing inconsistent correlations as longer

time series are collected [Myers, 1998, McClatchie et al., 2010, Litzow et al., 2014].

Thus, the apparent regime-like behavior of Pacific salmon populations may not

reflect changing behavior, but could actually be indicative of nonlinearity.

Here, we utilize the approach of empirical dynamic modeling (EDM) to

examine the possibility of regime-dependent dynamics in Fraser River sockeye

salmon. We consider four hypotheses for the number of distinct “regimes” over

the time span of our data:

I Four different time periods [Beamish et al., 2004b]: 1948-1976, 1977-1988,

1989-1998, and 1999-present

II Three different time periods [Litzow and Mueter, 2014]: 1948-1976, 1977-

1998, 1999-present

III Two different time periods [McGowan et al., 2003]: 1948-1976, 1977-present

IV One time period (null hypothesis): 1948-present

For each hypothesis, we fit multivariate EDM models [Dixon et al., 1999]

to data from each time period separately, producing up to four different models.

This procedure is then repeated for each of the nine most historically abundant

stocks of sockeye salmon in the Fraser River: Birkenhead, Chilko, Early Stuart,
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Late Stuart, Late Shuswap, Quesnel, Seymour, Stellako, and Weaver. As shown in

previous work [Ye et al., 2015], EDM methods can accommodate nonlinearity as

well as state-dependent environmental effects. Thus, this approach is ideally suited

to distinguish between actual shifts in dynamics across hypothesized regimes and

the illusion of change when linear models are applied to nonlinear systems.

3.3 Results

Figure 3.1 shows predictions vs. observed values for the four different hy-

potheses and aggregated over the nine stocks examined here. Note that because

the stocks have different mean population sizes, the forecasts and actual values for

each stock are normalized to mean = 0, and variance = 1. It is visually apparent

that there are very few differences in forecast skill across the four hypotheses, and

confirmed by the computed forecast accuracy numbers (ρ, correlation coefficient

between predicted and observed, in the upper left corner of each panel).

Table 3.1 lists the forecast accuracy (ρ, correlation coefficient between ob-

servations and predictions) and forecast error (MAE, mean absolute error) for

each individual stock under the four different hypotheses. In general, there are no

large differences in forecast skill across the four hypotheses. For some stocks (e.g.,

Quesnel, Birkenhead, Weaver), forecast skill is more variable across the different

hypotheses; however, no pairwise comparisons are significant at the p = 0.05 level

for either forecast accuracy (ρ) or forecast error (MAE) (see Methods for details

of statistical tests).

3.4 Discussion

Our results (Figure 3.1 and Table 3.1) show no evidence that Fraser River

sockeye salmon have regime-specific dynamics. This may not be surprising given

that earlier studies in this system reported nonlinear dynamics and state-dependent

environmental interactions [Ye et al., 2015]. However, even so, we might have

expected forecasts to be better when different models could be fit separately to
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Figure 3.1: Aggregated forecast accuracy for different regime hypotheses.
(A) Normalized predictions vs. normalized observations, aggregated over the nine
historically most abundant stocks. For each stock, models are fit separately to the
four time periods of hypothesis I. (B-D) Same as (A), but for hypotheses II, III,
and IV, respectively. Forecast skill is nearly identical across the four hypotheses,
indicating no evidence for regime-specific behavior.

the different time periods. By selecting the best model for each time period,

and using leave-one-out cross-validation to produce forecasts (see Methods), any

differences in dynamics across regimes should appear as improvements in forecast
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Table 3.1: Stock-specific forecast skill for different regime hypotheses.
ρ, correlation coefficient between observations and predictions; MAE, mean abso-
lute error.

stock metric Four regimes Three regimes Two regimes One regime
Early Stuart ρ 0.893 0.896 0.884 0.882

MAE 0.124 0.118 0.130 0.124
Seymour ρ 0.781 0.777 0.775 0.762

MAE 0.056 0.057 0.056 0.058
Chilko ρ 0.396 0.360 0.418 0.393

MAE 0.778 0.781 0.750 0.751
Late Stuart ρ 0.760 0.750 0.794 0.791

MAE 0.316 0.316 0.296 0.304
Quesnel ρ 0.554 0.603 0.706 0.705

MAE 1.068 1.029 0.916 0.925
Stellako ρ 0.607 0.536 0.505 0.446

MAE 0.206 0.215 0.222 0.241
Birkenhead ρ 0.572 0.615 0.538 0.481

MAE 0.180 0.171 0.189 0.213
Late Shuswap ρ 0.873 0.886 0.872 0.867

MAE 0.840 0.809 0.887 0.880
Weaver ρ 0.812 0.791 0.743 0.729

MAE 0.130 0.136 0.149 0.158

skill. Given that performance was virtually identical across the four hypotheses, we

conclude that there is no benefit to partitioning the data by climate regimes when

modeling recruitment. Nevertheless, we consider several alternative explanations

for our results.

3.4.1 Alternative Explanations

One possibility is that the nearest-neighbor forecasting method used in

our EDM models is flexible enough to account for regime-specific dynamics, thus

yielding equivalent performance for the“one-regime” and “multi-regime” hypothe-

ses. Because simplex projection makes predictions based on nearest neighbors (i.e.,

the historical times best judged to be similar states of the system) it could be the

case that points from different regimes are simply accurately identified as not being

nearest neighbors. For example, the system behavior for the 1950-1976 time period
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could be quite different from that of the 1977-present time period, and when EDM

is applied, the data from these two time periods are localized to different regions

of the reconstructed state space. Thus, points in a different regime would not be

selected as nearest neighbors, and forecast performance would be equivalent to

fitting separate models to the different regimes. Even so, we might expect better

forecasts when partitioning the data into regimes, because the model for each time

period can be different. In other words, the most predictive set of environmental

variables might be different across regimes, thereby yielding better forecast skill for

the “multi-regime” hypothesis. However, this does not appear to occur, suggesting

that there are no performance advantages to allowing the model to change over

time.

Another possible explanation is that the variables used in this study are not

informative enough to differentiate between regime-specific dynamics. As noted in

[Ye et al., 2015], these environmental variables are hypothesized to be proxies

for juvenile food availability. Thus, while the relationship between recruitment

dynamics and the tested environmental variables does not appear to be regime-

specific, this may reflect the incompleteness of using an environmental measure as

a proxy. In other words, it may be the case that the relationship between food

availability and recruitment is regime-specific, but that the mapping between food

availability and the environmental proxies is not. As such, information is lost when

using the environment as an imperfect proxy; this would explain both the imperfect

forecast skill and the lack of improvement in forecasts when partitioning the data

into different time periods. This data limitation could be overcome by including

more direct measurements of the system. For instance trawl surveys of the Strait

of Georgia should be more informative about actual food availability [Beamish

et al., 2000]. Although these data do not extend far back enough to re-examine

the regime shift question, it would still be possible to determine whether they

are more relevant for predicting recruitment compared to indirect environmental

proxies.
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3.4.2 Nonlinearity

Like other studies [Hsieh et al., 2005, Glaser et al., 2014b], our results con-

tribute to growing evidence of nonlinear dynamics in marine fish stocks. An im-

portant distinction between the nonlinear perspective and that of the regime shift

perspective relates to how data are used to construct models. In both frameworks,

future behavior can be estimated by examining similar historical states. However,

whereas the EDM approach identifies similar states based on location within the

reconstructed state space, a regime shift perspective would identify similar states

based on their proximity in time (i.e., points belonging to the same regime). In

cases where the the system occupies similar regions of the state-space (perhaps

due to red-noise spectra of important environmental factors), the resulting dy-

namics may thus appear to be time-dependent. In other words, the appearance

of regime shifts can result from the nonlinear interaction of biological populations

with red-noise-like environmental forcing.

We also note that aggregating data across multiple nonlinear systems is

known to obscure nonlinear signals [Sugihara, 1994]. As such, the prominent cor-

relations of Pacific salmon productivity with North Pacific climate [Mantua et al.,

1997, Beamish et al., 1997] may be a simplification of the true system behavior and

the result of averaging over state-dependent interactions at the individual stock

level. While such a coarse description of environmental impacts may be useful for

predicting regional long-term trends (e.g., due to climate change), it ignores impor-

tant nonlinear interactions that are potentially important for fisheries management

on smaller spatial scales.

3.5 Conclusions

We find no evidence that Fraser River sockeye salmon dynamics change

across different regimes of North Pacific Ocean climate. Rather, our results sug-

gest that the apparent changes in mean salmon abundance reflect nonlinear inter-

actions between stochastic environment and salmon biology. Moreover, because

aggregating multiple nonlinear signals can result in linearity [Sugihara, 1994], the
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observed correlations between salmon productivity and climate indices [Mantua

et al., 1997, Beamish et al., 1997] are likely the result of combining time series

from multiple stocks into a single measure of regional salmon productivity, and

inadvertently diminishing the nonlinear signal.

The distinction between nonlinearity and regime-shift dynamics has impor-

tant implications for fisheries management. If populations are influenced by the

interaction of multiple factors (including fishing, the environment, and species in-

teractions), correct accounting of these influences is necessary for effective manage-

ment. As shown here, nonlinear, equation-free approach of EDM can accomplish

the task of forecasting recruitment where traditional mathematical models would

suggest that system behavior is tied to climate regimes. Nevertheless, the regime

shift framework may be useful in some cases, for instance, when data are not

available to identify nonlinear interactions. However, with sufficient observations,

established patterns may eventually break down [Litzow et al., 2014], necessitating

a more realistic and nonlinear worldview.

3.6 Methods

3.6.1 Data

Following [Ye et al., 2015], we analyze yearly time series data for the 9 his-

torically most abundant stocks (Birkenhead, Chilko, Early Stuart, Late Shuswap,

Late Stuart, Quesnel, Seymour, Stellako, and Weaver) of sockeye salmon from the

Fraser River system. Data span brood years 1948–2005, except for Late Stuart

and Weaver, where data begin in 1949 and 1966, respectively.

Population data consists of two biological variables: stock size (number of

effective female spawners) and recruitment (returning adults. Recruitment is also

partitioned by age; following [Grant et al., 2010], we consider only age 4 and age

5 recruits.

Environmental data consists of three variables: the Pacific Decadal Oscil-

lation (PDO), sea-surface temperature (SST), and Fraser River discharge. As in

[Ye et al., 2015], one annual time series is constructed for the PDO as the average
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of monthly values from November to March [Mantua et al., 1997], SST measures

are monthly averages from two lighthouse stations (Entrance Island: April to June

and Pine Island: April to July), and river discharge is measured at Hope (including

both peak daily flow for the year, and monthly averages from April to June).

Because the identified regimes pertain to the physical conditions of the

North Pacific, and the environmental data are believed to influence sockeye salmon

recruitment at age 2, we partition the data according based on when the corre-

sponding environmental measures fall in one regime or another. That is, if 1948-

1976 is one physical regime, the relevant biological data for that regime corresponds

to brood years 1946-1974, with age 4 recruits appearing in calendar years 1950-

1978.

Data are partitioned in one, two, three, or four different time periods ac-

cording to descriptions of North Pacific regimes in [McGowan et al., 2003, Beamish

et al., 2004b, Litzow and Mueter, 2014]:

I Four different time periods: 1948-1976, 1977-1988, 1989-1998, and 1999-

present

II Three different time periods: 1948-1976, 1977-1998, 1999-present

III Two different time periods: 1948-1976, 1977-present

IV One time period: 1948-present

As noted above, these years refer to calendar years for the physical environment.

The corresponding brood years are shifted 2 years earlier.

3.6.2 Model Construction and Performance

Following [Ye et al., 2015], we use multivariate simplex projection. For each

combination of stock and time period, we examine models that include spawning

stock size and up to 2 environmental variables. Forecasts for each model were

produced using leave-one-out validation: for each forecast, the model was fit to

data that excluded the corresponding stock size and environmental data. Although

[Ye et al., 2015] used four-fold cross-validation to estimate out-of-sample forecast
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performance, several of the time periods examined here are much shorter and not

suitable for such subdivision of the data.

Forecasts were produced for both age 4 and age 5 recruits before summing

to obtain total recruitment for each brood year. (Note that this recruitment hap-

pens over two consecutive calendar years, with age 4 recruits appearing 4 years

after spawning, and age 5 recruits appearing 5 years after spawning.) For each

combination of stock and time period, the model producing the highest model

accuracy (ρ, described below) was selected.

Model performance is quantified using Pearson’s correlation coefficient (ρ)

between observed and predicted returns as a measure of accuracy and MAE (mean

absolute error) as a measure of error. Comparisons of ρ between models uses a one-

sided t test with SE calculated using the HC4 estimator from [Cribari-Neto, 2004]

and with adjusted degrees of freedom as suggested by [Wilcox, 2009]. Differences in

MAE were computed using a paired t test for the difference, treating each forecast

as an independent sample.

To compute an aggregate statistic combining all 9 stocks, we first scale the

observations and predictions for each stock so that the observed returns have mean

= 0, variance = 1, and then combine the normalized values across stocks (Figure

3.1).
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Chapter 4

Distinguishing Time-Delayed Causal

Interactions Using Convergent Cross

Mapping

4.1 Abstract

An important problem across many scientific fields is the identification of

causal effects from observational data alone. Recent methods (convergent cross

mapping, CCM) have made substantial progress on this problem by applying

the idea of nonlinear attractor reconstruction to time series data. Here, we ex-

pand upon the technique of CCM by explicitly considering time lags. Applying

this extended method to representative examples (model simulations, a laboratory

predator-prey experiment, temperature and greenhouse gas reconstructions from

the Vostok ice core, and long-term ecological time series collected in the Southern

California Bight), we demonstrate the ability to identify different time-delayed in-

teractions, distinguish between synchrony induced by strong unidirectional-forcing

and true bidirectional causality, and resolve transitive causal chains.

64
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4.2 Introduction

A fundamental question in science is identifying the causal relationships

between variables. The conventional approach to this problem is to observe the

outcomes of controlled experiments; however, this is not always possible due to

moral, legal, or feasibility reasons. Consequently, the ability to infer causality using

only observational data is a highly valuable tool with applications in many fields of

study (e.g., financial systems, ecosystems, neuroscience [Granger, 1969, Hiemstra

and Jones, 1994, Chen et al., 2006, Sugihara et al., 2012]).

Early on, Bishop Berkeley [Berkeley, 1710] warned that the co-occurrence of

events did not necessarily mean that they are causally related (i.e., correlation does

not imply causation). Even so, the use of correlation to suggest causality (or more

frequently, the lack of correlation suggesting no causality) has remained a common,

heuristic notion, and is still commonly applied today. In 1969, however, Granger

[Granger, 1969] suggested an alternative framework for detecting causality based

on the idea of using prediction as a criterion. In the Granger causality framework,

a variable x is said to “cause” variable y if x has unique information (i.e., not

found in other variables) that can improve the prediction of y. Thus, causality

could be inferred if the optimal model for y improves when x is included. However,

Granger noted that this approach might not apply in dynamic systems, and indeed,

Sugihara et al. [Sugihara et al., 2012] showed that it does not: in dynamic systems

with behaviors that are at least somewhat deterministic, information about past

states is carried forward through time (i.e., the system is not completely stochastic).

Thus, Takens’ Theorem [Takens, 1981] applies, and so if x is indeed causal to y,

then information about x must be recorded in y. Consequently, causal variables

(i.e., x) cannot contain unique information (it will also be recorded in the affected

variables), and so Granger’s test is invalid (except in certain cases; see Discussion).

As an alternative test for causality, Sugihara et al. [Sugihara et al., 2012]

suggested a new method, convergent cross mapping (CCM). It follows from Takens’

Theorem [Takens, 1981] that if x does influence y, then the historical values of x can

be recovered from variable y alone. In practical terms, this is accomplished using

the technique of “cross mapping”: a time delay embedding is constructed from the
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time series of y, and the ability to estimate the values of x from this embedding

quantifies how much information about x has been encoded into y. Thus, the

causal effect of x on y is determined by how well y cross maps x. This approach

is described in further detail in the materials and methods, but also summarized

in this short instructional animation: (https://www.youtube.com/playlist?list=

PL-SSmlAMhY3bnogGTe2tf7hpWpl508pZZ).

Although CCM can be successfully applied to systems with weak to mod-

erate coupling strengths, Sugihara et al. observed that exceptionally strong unidi-

rectional forcing can lead to the phenomenon of “generalized synchrony” [Rulkov

et al., 1995]. In these situations, the dynamics of a response variable, y, become

dominated by those of the driving variable, x, such that the full system (consisting

of both the response variable and driving variable) collapses to just that of the

driving variable. Although there is no causal effect of y on x, the states of the

driving variable x can uniquely determine the response variable y, and so CCM is

observed in both directions (i.e., x cross maps y and y cross maps x). Thus, CCM

appears to be limited by the fact that it may not be able to distinguish between

bidirectional causality and strong unidirectional causality that leads to synchrony.

Here, we propose an extension to CCM that can resolve this problem: by

explicitly considering different lags for cross mapping, it is possible to determine

whether a driving variable acts with some time delay on a response variable. In

the case of synchrony caused by strong unidirectional forcing, this approach should

detect a negative lag for cross mapping in the true causal direction (the response

variable is better at predicting the past values of the driving variable rather than

future values) and a positive lag in the other direction (the driving variable best

predicts the future response). Thus, this “asynchrony” reflecting the time lag in the

response can be used to distinguish between bidirectional causality and generalized

synchrony when there is a detectable lag in the response time between causes and

effects.

This extension of CCM has several additional applications: the identifica-

tion of time delays in causation can be informative, for instance in understanding

delays in interventions or manipulations. It can also be used to identify the causal

https://www.youtube.com/playlist?list=PL-SSmlAMhY3bnogGTe2tf7hpWpl508pZZ
https://www.youtube.com/playlist?list=PL-SSmlAMhY3bnogGTe2tf7hpWpl508pZZ
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effects of stochastic drivers that have no dynamics (for which general cross map-

ping may not succeed), and can even correctly determine the order of variables in

a transitive causal chain.

4.3 Results & Discussion

4.3.1 Model Simulations

Figure 4.1 shows the results of extended CCM applied to the two-species

coupled logistic map (equation 4.1). As shown in the first panel (Figure 4.1A),

where causation occurs with an effective delay of 1 time step (y(t) affects x(t+ 1)

and vice-versa), the optimal cross mapping in both directions occurs at a lag of

-1. Moreover, as expected, a time delay in the effect of x on y (Figure 4.1B-C),

produces optimal cross mapping (from y to x) with a lag corresponding to the

degree of time delay. Extending this analysis to systems with random coefficients

(see Supplementary Information), the result is robust, with only a few outliers that

exhibit optimal cross mapping at different lags (Figure 4.6). This validates a basic

rule of thumb for bidirectional causality: we may reasonably expect optimal cross

mapping lags to be negative, and with the magnitude of the lag roughly equal to

the time delay of causality.

For systems where strong unidirectional causality leads to generalized syn-

chrony (equation 4.2), a time delay in the response can be detected using extended

convergent cross mapping. Although the response variable “synchronizes” to the

causal variable, if causality is not instantaneous, the synchronization occurs with

some lag that can then be identified using extended convergent cross mapping.

In Figure 4.2, we find that the optimal cross map lag from y to x is negative, as

expected; x causes y, and so cross map skill is better when estimating the his-

torical influence of x from the response variable y. Conversely, the optimal cross

map lag from x to y is positive, because even with synchrony, there is no flow of

causal information from y to x, and so changes in x are not reflected in y until

sometime in the future. Thus, the positive lag from x cross mapping y informs us

that there is unidirectional causality, even when the interaction is strong enough to
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Figure 4.1: Model demonstration of causal lags and optimal cross map-
ping using a 2-species logistic model with bidirectional forcing.
Cross-mapping skill (ρ) is shown as a function of cross-mapping lag for three dif-
ferent time delays, τd, in the effect of x on y. Here, “y xmap x” refers to using
y and its lags to cross map variable x with time lag l. (A) With τd = 0, both
variables respond to each other within a single time-step (y(t+ 1) is influenced by
x(t) and vice-versa), and so the optimal cross map lag occurs at l = −1, falling
within the embedding vector (green bar) as expected. (B-C) For τd = 2 or 4, the
effect of x on y is delayed, and so the optimal lag for y cross mapping x (i.e., red
line, measuring the effect of x on y) shifts back by a corresponding amount, while
x cross mapping y is unchanged. Plots show mean cross map skill and standard
deviation over 100 random libraries (see Materials and Methods).

result in synchrony. Again, extending this analysis to similar systems with random

coefficients (see Supplementary Information), we find that optimal cross map lags
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Figure 4.2: Generalized synchrony in a 2-species logistic model with uni-
directional forcing.
In this system, the dynamics of y becomes enslaved to x, and so y can be pre-
dicted from x. Since x affects future values of y, x is best able to cross map y
forward in time (l ∼ 3 > 0), whereas cross mapping in the true direction shows
optimal prediction for negative time lags (l ∼ −1 < 0, as in Figure 4.1). Thus,
even though there is cross mapping in both directions, we can use the positive
optimal prediction lag to distinguish the direction of causality. As in Figure 4.1,
“y xmap x” refers to using y and its lags to cross map variable x with time lag l;
plots show mean cross map skill and standard deviation over 100 random libraries
(see Materials and Methods).

can reliably distinguish between generalized synchrony and bidirectional causality

(Figure 4.7).

As discussed by Sugihara et al. [Sugihara et al., 2012], CCM can detect

indirect causality that occurs through a transitive causal chain. For example, in

the system depicted in Figure 4.3A, y1 causes y2 causes y3 causes y4 (equation

4.3). With CCM, we can detect these direct causal connections (e.g., using the

cross map from yj to yi to infer the effect of yi on yj). However, there are also

indirect effects from y1 to y3, y2 to y4, and y1 to y4. These indirect effects may

also appear significant in CCM if coupling is strong enough. To unravel the direct
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Figure 4.3: Direct and indirect causality in a transitive causal chain.
(A) In this system, y1 causes y2 causes y3 causes y4 such that indirect causation from
y1 to y3, y2 to y4, and y1 to y4 occurs. (B) Using extended CCM, the direct links
(top row) are strongest with the highest cross map skill and the most immediate
effects (l ∼ −2), the indirect links separated by one node (middle row) have
moderate cross map skill and somewhat delayed effects (l ∼ −4), and the indirect
link from y1 to y4 (bottom row) is the weakest and with the longest time delay
(l ∼ −6). Here “yi xmap yj” refers to using yi and its lags to cross map to yj.
Plots show mean cross map skill and standard deviation over 100 random libraries
(see Materials and Methods).
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from indirect effects in this system, we can apply extended CCM to identify the

optimal cross map lags and optimal cross map skill (Figure 4.3B). For the direct

links (top row of Figure 4.3B), optimal cross mapping occurs with high skill and a

small negative lag (l ∼ −2); for indirect links separated by a single node (middle

row of Figure 4.3B), optimal cross mapping occurs with moderate skill and a

moderate negative lag (l ∼ −4); and for the indirect link from y1 to y4 (separated

by both y2 and y3), optimal cross mapping is weak, and at a large negative lag (l ∼
−6). When this analysis was repeated for model systems with random coefficients

(see Supplementary Information), the differences in optimal cross map lag were

relatively robust (Figure 4.5.3). However, cross map skill showed more variance,

suggesting that it is a less reliable indicator of direct vs. indirect causation. The

outliers are likely a result of stable dynamics (with cross map skill, ρ that reaches

1), since this is a simple model simulated without process error.

4.3.2 Veilleux’s Paramecium-Didinium Experiment

Applying extended CCM to the time series of Paramecium and Didinium

from Veilleux’s lab experiments [Veilleux, 1976], we confirm the results of Sugihara

et al. [Sugihara et al., 2012] showing bidirectional causality. However, whereas

Sugihara et al. suggested that the difference in cross mapping predictability (with

a lag of 0) was indicative of stronger top-down forcing, our analysis here reveals

another layer to the story: considering different lags, we find that cross mapping

predictability is roughly equal at optimal lag values (Figure 4.5A), suggesting that

top-down and bottom-up effects are equally important. We do note that the opti-

mal cross mapping lag does depend on the interaction: an optimal lag of -1 for the

Paramecium cross mapping Didinium direction suggests that Paramecium respond

quickly to changes in Didinium abundance. However, an optimal lag of -4 for the

Didinium cross mapping Paramecium direction suggests that Didinium respond

more slowly to changes in Paramecium abundance. These results are consistent

with the ecological context of this system [Li et al., 2013]: the prey (Paramecium)

respond quickly to predators (Didinium) because predator-induced mortality has

an immediate (negative) effect on the abundance of prey, whereas the abundance
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Figure 4.4: Applying extended CCM to real world examples.
(A) Extended CCM analysis of time series from Veilleux’s predator-prey exper-
iment [Veilleux, 1976] with Paramecium aurelia (prey) and Didinium nasutum
(predator) reveals bidirectional causality. While the effect of predators on prey
(red, “para. xmap didi.”) is immediate, the effect of prey on predators (blue, “didi.
xmap para.”) shows a distinct lag, as prey ingestion does not instantaneously
translate into population growth. (B) Analysis of causality between Earth atmo-
spheric CO2 and temperature using time series data from the Vostok ice core for
the previous 412,000 years. As expected CO2 has a nearly instantaneous effect
on temperature (blue, “temp. xmap CO2”) due to the fast-acting greenhouse gas
effect, while the influence of temperature on CO2 is much slower, with an opti-
mal CCM lag of ∼ 3000 years (red, “CO2 xmap temp.”). (C) Analysis of weekly
averages of sea surface temperature (SST) and chlorophyll-a at SIO pier in La
Jolla, CA suggests that the effect of SST occurs with a lag of 1-4 weeks (blue, “chl.
xmap SST”). All plots show mean cross map skill and standard deviation over 100
random libraries (see Materials and Methods).
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of predators (Didinium) responds more slowly to prey (Paramecium), because of

the time delay in converting food into new individuals.

4.3.3 Vostok Ice Core

Figure 4.5B shows the application of extended convergent cross mapping to

time series of CO2 and temperature reconstructed from the Vostok ice core [Petit

et al., 1999]. Here, we detect bidirectional causality (the optimal cross mapping

lag is negative in both directions), suggesting that there is a positive feedback in

the Earth’s climate system between temperature and greenhouse gases. Notably,

the optimal lag in the temperature to CO2 direction matches current scientific

knowledge that greenhouse gases have a rapid effect on temperature (faster than

the 1000-year timescale of the data), while the influence of global temperature

on greenhouse gases likely occurs through slower mechanisms (e.g., increased plant

respiration at higher temperatures [Cramer et al., 2001], release of greenhouse gases

from terrestrial [Schuur et al., 2009] or marine ecosystems [Archer et al., 2009]).

A detailed analysis of this system appears in van Nes et al. [Nes et al., 2015].

4.3.4 Southern California Bight

In Figure 4.5C, we show the results of extended CCM applied to long-term

time series of chlorophyll-a and sea surface temperature measured at the Scripps

Institution of Oceanography pier. As expected, there is no effect of chlorophyll-a on

SST (red line). However, we do identify a causal influence of SST on chlorophyll-a,

suggesting that the physical environment plays a role in determining phytoplankton

abundances (which are proxied by concentrations of chlorophyll-a). Moreover,

optimal cross mapping occurs with a lag of 3 weeks, suggesting that the physical

drivers of algae populations act with a lag of several weeks. Ideally, if other causal

drivers show similar time delays in their effects, then it may be possible to produce

models that can forecast events such as algal blooms several weeks in advance!
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4.3.5 Stochastic Drivers

We note that in certain systems, especially those with stochastic drivers

that contain unique information, Granger causality may correctly identify causal

interactions. Indeed, Granger causality has been successful when applied to system

consisting solely of stochastic components. However, in situations where both

cause and effect have deterministic dynamics, causal information cannot be isolated

from amongst the affected variables, and alternative methods, such as CCM must

therefore be used.

4.3.6 Final Remarks

Here, we have shown that explicitly considering time lags when applying

convergent cross mapping can be a valuable tool beyond the simple test of whether

two variables are causally related. Although this general approach has been ex-

plored elsewhere [Schumacher et al., 2015], here we show how the CCM framework

can be directly extended to account for temporal delays. As demonstrated in

our model simulations, CCM can now distinguish synchrony induced by strong

unidirectional forcing from true bidirectional causation (Figure 4.2), as well as or-

der nodes in transitive causal chains that produce direct and indirect causal links

(Figure 4.3).

In addition, we show how identification of time delays can clarify our under-

standing of the causal effects, which can be valuable in producing a more detailed

and mechanistic description of causal dynamics in real systems. For example,

knowing the approximate time delay of causal interactions can be important when

forecasting future events – although in general, a single time series contains all

necessary dynamic information, this will not be the case when stochastic drivers

are influencing the dynamics. Since the stochastic driver has unique information,

it must be explicitly included at the appropriate lag for optimal predictability (see

ref. [Deyle et al., 2013, Ye et al., 2015] for examples). Moreover, understanding the

delayed effect of external drivers will be important in management scenarios, as

knowing when to expect the system to respond to interventions or manipulations

will guide future management actions.
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4.4 Methods

4.4.1 Convergent Cross Mapping

The basic principle of cross mapping involves reconstructing system states

from two time series variables and then quantifying the correspondence between

them using nearest neighbor forecasting [Sugihara and May, 1990]. Reconstruction

is done using the method of time delay embedding: with the system state repre-

sented using successive lags of a single time series [Takens, 1981, Packard et al.,

1980]. For example, given a time series {y(t)}, an E-dimensional reconstruction

uses E successive lags of y, each separated by a time step τ : 〈y(t), y(t−τ), . . . , y(t−
(E − 1)τ)〉.

We note that the optimal value of the embedding dimension E depends on

several factors, including system complexity, time series length, and noise. In the

case of model systems, the number of interacting variables is known exactly and was

used to select E. In the remaining cases, the value of E was determined empirically

by applying simplex projection [Sugihara and May, 1990] to the individual time

series and choosing the optimal E. Since most time series were not overly sampled

in time, we fixed τ = 1 for all systems.

In the case of a system where x causes y, Takens’ Theorem [Takens, 1981]

implies that there should be a correspondence between the state ~y(t) and the

contemporaneous state ~x(t). Convergent cross mapping (CCM [Sugihara et al.,

2012]) quantifies this relationship using simplex projection (a nearest-neighbor

forecasting method, see ref. [Sugihara and May, 1990] for details) to estimate the

scalar value x(t) from the reconstructed vector ~y(t) (see ref. [Sugihara et al., 2012]

and Movie S3 for details). Although different performance metrics are possible,

here we use Pearson’s correlation coefficient between the estimated and observed

values of x(t) as an indicator of “cross map skill”.

We note that, in general, one may compute a function that maps from ~y(s)

to the entire vector ~x(s) as opposed to just the scalar value x(s) [Schiff et al.,

1996, Ma et al., 2014]. However, doing so can decrease the sensitivity of the cross

mapping idea, because the errors are no longer scalar values, but E-dimensional
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vectors, for which common distance metrics can become meaningless [Aggarwal

et al., 2001]. Moreover, by estimating entire vectors, we limit the capability to use

cross mapping to analyze time delays in the effect of x on y, which we show here

can be informative in an extended version of CCM (see below).

4.4.2 Extended Convergent Cross Mapping

y
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Figure 4.5: Effect of time delays on cross mapping.
Panel A shows causation for two cases: (i) no time delay in the effect of x on y (i.e.,
y responds instantaneously to x), and (ii) y responds to x with a time delay of 4
(time steps). Panel B shows (i) cross mapping with l = 0, equivalent to the original
formulation by Sugihara et al. [Sugihara et al., 2012] and (ii) cross mapping with
l = −4, which may be expected to be better than l = 0 when x acts on y with
some time delay.

Standard cross mapping when x causes y (Figure 4.5A) computes the pre-

dictability of x(t) from theE-dimensional reconstruction ~y(t) = 〈y(t), y(t−τ), . . . , y(t−
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(E − 1)τ)〉 (Figure 4.5B.i). However, the general theory of CCM [Sugihara et al.,

2012], based on generalizations of Takens’ Theorem [Sauer et al., 1991, Deyle and

Sugihara, 2011], suggests that we should also be able to cross map from ~y(t) to

x(t+l), for any reasonable lag value of l, since the variable x(t+l) is simply another

observation function of the system. In fact, if x acts on y with some time delay

(Figure 4.5A.ii), then the current state of the system, ~y(t), will better predict the

past values of x (Figure 4.5B.ii).

In general, we note that optimal predictability may be expected to occur

for some l < 0, even if y responds instantaneously to x [Casdagli et al., 1991].

In other words, the state of the system at a time t is often best estimated from

a reconstruction that includes both past and future values. This phenomenon

occurs because information in a dynamic system can be thought of as propagating

both forwards and backwards through time. In other words, knowing the exact

value of variable x at time t restricts the likely set of possible futures (the value

at time t + 1) as well as the likely set of possible pasts (the state at time t − 1).

Furthermore, the exact amount of information contained in past (and future) values

of x is determined by the rate at which predictability decreases when we forecast

further into the future (or past). Consequently, this means the most information

about the current system state occurs with a combination of forward and backward

lags [Casdagli et al., 1991]: a time-centered embedding that balances positive and

negative lags: 〈y(t), y(t− τ), y(t+ τ), . . . y(t− (E − 1)τ/2), y(t+ (E − 1)τ/2)〉. In
the context of extended CCM, this then suggests that the optimal lag will occur

in the middle of the prediction vector: l = (E − 1)τ/2. In reality, however, the

optimal lag will vary from system to system; so while the “middle of the vector” is

a useful heuristic, optimal cross mapping at any lag that lies within the embedding

vector, −(E − 1)τ ≤ l ≤ 0, is consistent with an influence of x on y with no time

delay.
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4.4.3 Two-Species Model System with Bidirectional Causal-

ity

We first consider a simple model system consisting of 2 coupled logistic

difference equations:

x(t+ 1) = x(t) [3.78− 3.78x(t)− 0.07y(t)]

y(t+ 1) = y(t) [3.77− 3.77y(t)− 0.08x(t− τd)]
(4.1)

where τd is the time delay for the effect of x on y. The system is initialized as

x(1) = 0.2 and y(1) = 0.4, and run for 3000 time steps, with different values for

the time delay: τd = 0, τd = 2, and τd = 4. Using extended CCM, we analyze this

system using E = 2, τ = 1, selecting 100 random libraries of 200 vectors over time

points 101-2000, and computing cross map skill for time points 2001-3000.

4.4.4 Two-Species Model System with Synchrony

We also examine a modified form of the above system with causality from

x to y only:

x(t+ 1) = x(t) [3.8− 3.8x(t)]

y(t+ 1) = y(t) [3.1− 3.1y(t)− 0.8x(t)]
(4.2)

As above, the system is initialized as x(1) = 0.2 and y(1) = 0.4, and run for 1000

time steps. Because of the strong forcing of x on y, the dynamics of y are entrained

to those of x (i.e., “generalized synchrony” [Rulkov et al., 1995]). Thus, we apply

extended CCM to identify the optimal cross map lag and distinguish this case

from the case of bidirectional causality. In this system, we also use E = 2, τ = 1,

selecting random libraries of 200 vectors over time points 101-2000, and computing

cross map skill for time points 2001-3000.

4.4.5 Four-Species Model System

To demonstrate extended CCM in systems with indirect causality (as a

result of a transitive causal chain), we consider a 4-species model system. The
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system is initialized as y1(1) = y2(1) = y3(1) = y4(1) = 0.4, and evolves according

to:

y1(t+ 1) = y1(t) [3.9− 3.9y1(t)]

y2(t+ 1) = y2(t) [3.6− 0.4y1(t)− 3.6y2(t)]

y3(t+ 1) = y3(t) [3.6− 0.4y2(t)− 3.6y3(t)]

y4(t+ 1) = y4(t) [3.8− 0.35y3(t)− 3.8y4(t)]

(4.3)

Although the only direct causal links are from y1 to y2, from y2 to y3, and

from y3 to y4, this creates a transitive chain of causality, such that there is an

indirect influence of y1 on y3, from y2 to y4, and from y1 to y4 (Figure 4.3a). Thus,

we apply extended CCM with E = 4 and τ = 1 to distinguish between direct and

indirect causation. For each pair, we sample 100 random libraries of size 200 from

time points 101-1000 and compute the cross map skill for time points 2001-3000.

4.4.6 Paramecium-Didinium Predator-Prey System

We examine causality in a classical predator-prey system, the Paramecium-

Didinium protozoan system using experimental time series from Veilleux [Veilleux,

1976], who refined earlier work from Gause [Gause, 1935] and Luckinbill [Luckinbill,

1973] to establish sustained oscillations. The data we used came from dataset 11a,

and can be found at: http://robjhyndman.com/tsdldata/data/veilleux.dat. CCM

analysis was done using E = 3, and τ = 1. Libraries were bootstrap samples

over all 71 points of data, and cross map skill was computed using leave-one-out

cross-validation over the same,

4.4.7 Vostok Ice Core

Time series for historical Earth temperature and atmospheric CO2 concen-

tration were based on reconstructions from the Vostok ice core [Veilleux, 1976]

and span ∼410,000 years. To produce time series with regular intervals, we lin-

early interpolated the raw reconstructions to obtain estimates of temperature and

CO2 spaced every 1000 years. CCM analysis was done by sampling 100 random

http://robjhyndman.com/tsdldata/data/veilleux.dat
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libraries of size 100 and predicting over all 412 points of data, using leave-one-out

cross-validation, E = 4, and τ = 1.

4.4.8 Scripps Pier Time Series

Chlorophyll-a data came from measurements collected twice weekly at the

end of the Scripps Institution of Oceanography’s pier (SIO Pier) as part of the

Southern California Coastal Ocean Observing System, Harmful Algal Bloom Mon-

itoring Program. Sea Surface Temperature (SST) was sampled daily as part of

the Shore Stations Program, also at SIO Pier. Because of irregular sampling, we

processed the data to construct weekly time series for the period June 30, 2008

to May 26, 2014. Extended CCM was then applied to investigate the relationship

between SST and chlorophyll-a using E = 4 and τ = 1 (corresponding to 1 week)

and sampling 100 random libraries of size 100 and predicting over all 306 points

of data.

4.5 Supplementary Information

4.5.1 Two-Species Model System with Bidirectional Causal-

ity

We generalize the simple model system consisting of 2 coupled logistic dif-

ference equations as follows:

x(t+ 1) = x(t) [Rx −Rxx(t)− Axyy(t)]

y(t+ 1) = y(t) [Ry −Ryy(t)− Ayxx(t− τd)]
(4.4)

where τd is the time delay for the effect of x on y. For each simulation run,

we sample a new fixed value for the growth rates Rx and Ry from the uniform

distribution (3.7, 3.9), as well as new values for the interaction coefficients Axy and

Ayx from the uniform distribution (0.05, 0.1). In addition each simulation is ini-

tialized with random starting points with x(1) and y(1) drawn from the uniform

distribution (0.01, 0.99), and run for 3000 time steps. For each of the different val-

ues for the time delay: τd = 0, τd = 2, and τd = 4, we ran a total of 500 simulations
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Figure 4.6: Robustness of extended CCM in the 2-species logistic model
with bidirectional forcing.
Boxplots of optimal cross map lag (l) are shown for 500 random simulations of the
2-species logistic model with bidirectional causality and with three different time
delays, τd. Except for a few outliers, the optimal cross map lag when using x to
cross map y (blue, “x xmap y”) is -1, as would be expected, because x responds to
y within a single time step. In the opposite direction, a larger time delay (τd) in
the effect of x on y results in larger negative values for the optimal cross map lag
when using y to cross map x (red, “y xmap x”)

(when populations reached negative values or increased beyond carrying capacity,

we sampled new coefficients and re-ran the simulation). Using extended CCM, we

analyze each simulation using E = 2, τ = 1, selecting a random library of 200

vectors over time points 101-2000, and computing cross map skill for time points

2001-3000.

The results are depicted in Figure 4.6, with boxplots for the value of the

cross map lag (l) that gives the highest cross map skill (ρ). Because nearly all
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simulations had identical values for the optimal cross map lag (l), the boxplots

are depicted as straight lines with just a few outliers. As expected, “y xmap x”

(red), depicting the causal effect of y on x has an optimal cross map lag of l = −1,

because y affects x with a lag of 1 time step (y(t) influences x(t+ 1)). Conversely,

the optimal cross map lag for “x xmap y” (blue) changes depending on τd; this is

also expected since τd describes the time delay in the response of y to x. In fact,

the optimal cross map lag for “x xmap y” appears to accurately recover the time

delay parameter τd: for example, the optimal l is nearly always -3 when τd = 2

(meaning x(t) influences y(t+3) and therefore it takes 3 time steps for y to respond

to x).

4.5.2 Two-Species Model System with Synchrony

We also generalize the modified form of the above system that produces

synchrony with strong forcing from x to y only:

x(t+ 1) = x(t) [Rx −Rxx(t)]

y(t+ 1) = y(t) [Ry −Ryy(t)− Ayxx(t)]
(4.5)

For each simulation, Rx is sampled from the uniform distribution (3.7, 3.9),

Ry is sampled from the uniform distribution (2.5, 3.2), and Ayx is sampled from

the uniform distribution (0.7, 0.9). As above, the system is initialized with random

starting points with x(1) and y(1) drawn from the uniform distribution (0.01, 0.99),

and run for 3000 time steps. We ran a total of 500 simulations (when populations

reached negative values or increased beyond carrying capacity, we sampled new

coefficients and re-ran the simulation). Using extended CCM, we analyze each

simulation using E = 2, τ = 1, selecting a random library of 200 vectors over time

points 101-2000, and computing cross map skill for time points 2001-3000.

Results for the “generalized synchrony” model are shown in Figure 4.7, with

boxplots showing the value of the cross map lag (l) that gives the highest cross

map skill (ρ). Again, we see that the optimal cross map lag (l) is generally negative

in the direction of true causality (red, “y xmap x”) and positive in the direction of

synchrony (blue, “x xmap y”).
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Figure 4.7: Robustness of extended CCM in the 2-species logistic model
with generalized synchrony.
Boxplots of optimal cross map lag (l) are shown for 500 random simulations of
the 2-species logistic model with unidirectional causality producing generalized
synchrony. Except for a few outliers, the optimal cross map lag when using y to
cross map x (red, “y xmap x”) is negative, and positive in the opposite direction
(blue, “x xmap y”). This is expected, because x has a true causal influence on future
values of y, meaning y is better at cross mapping to past values of x; conversely,
the lack of an actual effect of y on x, but rather “generalized synchrony” means
that x is better at cross mapping future values of y.

4.5.3 Four-Species Model System

To test the robustness of extended CCM in distinguishing between direct

and indirect causality, we generalize the 4-species model system with a transitive

causal chain:

y1(t+ 1) = y1(t) [R1 −R1y1(t)]

y2(t+ 1) = y2(t) [R2 − A21y1(t)−R2y2(t)]

y3(t+ 1) = y3(t) [R3 − A32y2(t)−R3y3(t)]

y4(t+ 1) = y4(t) [R4 − A43y3(t)−R4y4(t)]

(4.6)

For each simulation, the growth parameters are sampled as follows: R1 is
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drawn from the uniform distribution (3.8, 4.0), R2 and R3 are both drawn from

the uniform distribution (3.5, 3.7), and R4 is drawn from the uniform distribution

(3.7, 3.9). The interaction parameters A21, A32, and A43 are all drawn from the

uniform distribution (0.3, 0.5). As above, the system is initialized with random

starting points with each yi(1) drawn from the uniform distribution (0.01, 0.99),

and run for 3000 time steps. We ran a total of 500 simulations (when populations

reached negative values or increased beyond carrying capacity, we sampled new

coefficients and re-ran the simulation). Using extended CCM, we analyze each

simulation using E = 4, τ = 1, selecting a random library of 200 vectors over time

points 101-2000, and computing cross map skill for time points 2001-3000.

Results for this analysis are shown in Figure 4.5.3, with bagplots [Rousseeuw

et al., 1999] depicting the bivariate boxplots for the optimal cross map lags l)

and corresponding cross map skill (ρ). As in Figure 4.3, the top row of panel b

shows that the optimal cross map lags are close to 0 and show high cross map

skill, as would be expected for these direct interactions. In contrast, the indirect

interactions generally have optimal cross map lags that are more negative, and

lower cross map skill, with the most indirect interaction (from y1 to y4, identified

using y4 xmap y1) showing the most negative cross map lag and the lowest cross

map skill. We note that the variance in cross map skill is quite high, indicating

that it may not be as useful in separating direct from indirect interactions in real

systems, whereas cross map lag shows clearer separation.
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Figure 4.8: Robustness of extended CCM for distinguishing direct and
indirect causality in a transitive causal chain.
(A) In this system, y1 causes y2 causes y3 causes y4 such that indirect causation
from y1 to y3, y2 to y4, and y1 to y4 occurs. (B) Bagplots show the optimal cross
map lag (l) and corresponding cross map skill (ρ) for 500 random simulations of
this system. The white central area depicts the 95% confidence interval for the
median value, while the darker colored region is the “bag” containing the central
50% of points (i.e., similar to an interquartile range), and the lighter colored region
is the loop with area 3 times the size of the bag, as described in [Rousseeuw et al.,
1999]. The direct links (top row) are strongest with the highest cross map skill
and the most immediate effects (l ∼ −2), while the indirect links separated by one
node (middle row) have moderate cross map skill and somewhat delayed effects
(l ∼ −4), and the indirect link from y1 to y4 (bottom row) is the weakest and with
the longest time delay (l ∼ −6)



Chapter 5

Complexity is Not a Curse:

Leveraging Information in

Interconnected Systems

5.1 Abstract

Many real-world systems exhibit complex behaviors that result from in-

teracting coupled components. This interconnectedness is often perceived as an

obstacle for modeling, because of the difficulties in fitting mathematical equations

with large numbers of variables. We present an alternative approach, Multiview

Embedding (MVE), based on the concept of reconstructing system dynamics em-

pirically from time series data. MVE uses the fact that each variable records not

just its own behavior, but also that of interacting components, such that informa-

tion is actually duplicated across different variables. By combining different models

of the same system, forecasts can be dramatically improved, as we demonstrate for

three model systems and a mesocosm experiment. Thus, MVE represents a new

approach for information extraction, turning complexity into an advantage.

87
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5.2 Introduction

A major challenge is to understand and predict complex systems, such as

ecosystems, financial networks, and medicine. This is because much of the be-

havior in these systems is determined by interacting components, and even small

perturbations of one variable can produce unexpected or catastrophic results on

other parts of the system [Scheffer et al., 2001]. The study of these systems be-

comes especially difficult as complexity increases: more variables means a much

greater increase in the number of possible interactions (the “curse of dimension-

ality”; [Donoho, 2000, Fulton, 2010]. Nevertheless, the ability to forecast these

complex systems remains highly desirable, and would be of great utility in en-

abling targeted interventions or preemptive management actions to moderate the

impacts of abrupt shifts [Hill et al., 2007, Doak et al., 2008].

Although traditional mathematical models have been applied to complex

systems, they often show great sensitivity to parameters, model structure, and

fitting routines [Wood and Thomas, 1999]. Moreover, model complexity often

exceeds what can be uniquely determined by the data. The alternative, strategi-

cally expedient, approach of reducing complexity (by e.g., aggregating species into

trophic levels or functional groups, decomposing the system into independent com-

ponents, holding parameters constant) can produce unrealistic behavior, leading

to large uncertainties, overconfidence in long-term forecasts, and incorrect stabil-

ity estimates [Pahl-Wostl, 1997, Fulton, 2001, Clark et al., 2001, Fulton et al.,

2003, Sugihara et al., 2011].

The identification of important interactions can itself be a challenging prob-

lem, with classical methods, such as correlation or Granger causality [Granger,

1969] insufficient when applied to systems with dynamic, state-dependent behavior

[Sugihara et al., 2012]. Indeed, alternative frameworks that empirically reconstruct

system behavior from data (Empirical Dynamic Modeling, EDM), have several

advantages over classical approaches when modeling dynamic systems [Perretti

et al., 2013, Deyle et al., 2013, Ye et al., 2015]. Here, we develop a new approach

within the EDM framework to address the challenges associated with modeling

high-dimensional complex systems.
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Figure 5.1: Attractor reconstruction from a time series.
(A) Projecting the motion of the canonical Lorenz attractor onto the x-axis yields
a time series for variable x. (B) Successive lags (with time step τ) of the time series
xt are plotted as separate coordinates to form a reconstructed “shadow” manifold,
which appears similar to the original manifold in panel (A). (C) A magnified view
shows nearest neighbor forecasting, whereby the nearest neighbors (red points) to
the current observed vector xt (black point) are used to infer the behavior of the
system going forward: the trajectories (purple lines) of the nearest neighbors are
averaged to estimate the future behavior (gray dashed line) of xt.

Unlike standard mathematical models, Empirical Dynamic Modeling (EDM)

does not use hypothesized or assumed equations, and instead recovers behavior and

interactions from the data directly. The essential idea is that time series are ob-

servations of the system dynamics (see Fig. 5.1a), which can be reconstructed by

projecting successive lags of a single time series as separate coordinates (see Fig.

5.1b; [Crutchfield, 1979, Packard et al., 1980, Takens, 1981]). Using a sufficient

number of lags, the dynamics unfold such that each point corresponds to a unique

system state, with nearby points representing similar system states. These recon-

structions can then produce forecasts via nearest-neighbor methods (see Fig. 5.1c;

[Lorenz, 1969, Sugihara and May, 1990]).

As a data-driven approach, EDM models are constrained by the available

data: time series of 50 points or longer may be required to uniquely identify system

states and nearest neighbors. This can be problematic for datasets that have
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been sampled for only short periods of time. One potential remedy is to combine

data from multiple similar systems into a single composite attractor (“dewdrop

regression”, [Hsieh et al., 2008, Clark et al., 2015]) and increase the effective time

series length. While reasonable in some situations, the requirement of dynamically

equivalent time series is not always met, limiting the application of this technique.

Moreover, while such methods directly address estimation error (i.e., an inaccurate

model resulting from limited data), they do not address the issue of observational

noise.

A B Cunivariate forecasts using lags of x univariate forecasts using lags of z multiembed forecasts

Figure 5.2: Information leverage in complex systems.
(A-B) Univariate reconstructions of the 3-species food chain model give incomplete
views of the full system: predictions (solid points) only cover some portions of the
original system attractor (grey lines) over the same time period. (C) Combining
information from multiple reconstructions, the MVE model has a clearer depiction
of the actual dynamics, resulting in predictions that span much more of the original
system attractor. The same 1000 points are predicted by each model, based on
the same 50 point library (see Methods).

Here we introduce “multiview embedding” (MVE) as an EDM-based so-

lution for modeling complex systems. The idea behind MVE is to exploit the

property that time series contain information about causally related components

[Sugihara et al., 2012]; as such, different time series from the same system contain

redundant information. By combining these time series in different ways, multiple

views of the same system can be constructed; together, these multiple then produce

a clearer depiction of the dynamics (similar in spirit to stereoscopy where two 2D

images form a single 3D image; see Fig. 5.2). In fact, because any generic combi-
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nation of variables and lags is a valid reconstruction [Sauer et al., 1991, Deyle and

Sugihara, 2011], the number of such views grows combinatorially with the number

of variables, enabling substantial data leverage. Using l lags for each of n variables,

the number of reconstructions of dimension E is given by
(
nl
E

)
−
(
n(l−1)
E

)
1; with 10

time series, and E = l = 3, nearly 3000 different reconstructions are possible!

5.3 Results

To demonstrate multiview embedding (MVE), we implement a model-

averaging approach. First, we generate all possible reconstructions, computing

the performance of each based on an in-sample training set (see Methods). Then,

an MVE model is defined as the average of the top 25% of these reconstructions

and tested on an out-of-sample test set. Figure 5.3 compares the performance of

this MVE model with two commonly-used EDM methods: a “univariate” model,

using only lags of the variable being forecast, and a “best multivariate” model,

using the single reconstruction with the highest in-sample performance. For the

three ecosystem models [Hastings and Powell, 1991, Dennis et al., 2001], MVE has

the most predictive power (a measure of information gained; see Methods) as well

as the highest accuracy (ρ, correlation between observations and predictions), and

the lowest error (mean absolute error, MAE; and root mean square error, RMSE;

see Figs. 5.5-5.7).

We next apply MVE to time series from a long-term mesocosm experiment

[Heerkloss and Klinkenberg, 1998, Benincà et al., 2009]. Here, convergent cross

mapping [Sugihara et al., 2012] verifies that the two grazers (rotifers and calanoid

copepods) are causally influenced by their prey (nanoflagellates and picocyanobac-

teria) (see Fig. 5.4ab). Thus, we produce models to forecast grazer abundances

that include both prey time series as possible coordinates. Again comparing MVE

to the “univariate” and “best multivariate” EDM models, the overall results are

similar to those for the simulated ecosystems (see Fig. 5.4c, Fig. 5.8), with MVE

1Note that
(
nl
E

)
is the number of ways to choose E coordinates from the nl variable × lag

combinations. The correction of
(
n(l−1)

E

)
accounts for repeated counting (e.g., 〈x(t), y(t)〉 and

〈x(t− 1), y(t− 1)〉 represent the same reconstruction).
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Figure 5.3: Comparison of forecast performance for model systems.
Multiview embedding produces more accurate forecasts than the best multivariate
and univariate methods. (A-C) Forecast skill (ρ, correlation between observations
and predictions) vs. library size for variables x, y, and z, in the coupled logis-
tic map. Lines indicate average values over 100 randomly sampled libraries (see
Methods) and error bars denote ±1 standard deviations. (D-F) Same as A-C, but
for the 3-species food chain model. (G-I) Same as A-C, but for the flour beetle
model.

outperforming both of the other two methods.
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Figure 5.4: Analysis of the long-term mesocosm experiment.
Panel (A) shows a portion of the food web. (B) Cross mapping between the
grazers (calanoid copepods and rotifers) and the two prey items (nanoflagellates
and picocyanobacteria) indicating causal influence of the prey items on the grazers.
(C) Forecast accuracy (ρ) is higher for multiview embedding than for the univariate
or best multivariate methods.

5.4 Discussion

Accurate forecasts from a model require identification of the current state

and estimation of how the system will evolve from that state. Consequently, predic-

tive skill is diminished when a model does not clearly distinguish between states

with divergent trajectories. Although Takens’ Theorem and its generalizations

suggest that all attractor reconstructions are valid [Takens, 1981, Sauer et al.,

1991, Deyle and Sugihara, 2011], in practical settings, observation error, limited

time series length, and noise amplification mean that reconstructions can differ

greatly in predictive skill [Casdagli et al., 1991].

For example, in the 3-species coupled logistic map, forecasts produced by

univariate models are inaccurate, and improve very little with more data (gray

lines, Fig. 5.3a-c). This occurs because of the strong nonlinear interactions in this

model: future values of a single variable, such as y, can depend greatly on the value

of other variables (x and z). In univariate models that include only lags of y, it

can be difficult to infer the concurrent values of x and z, thereby limiting forecast

skill. Because of these limitations of univariate models, increasing the time series
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length may only result in marginal improvements in performance.

In contrast, multivariate models that include direct observations of the in-

teracting variables can produce more complete depictions of the system dynamics.

The result is better forecasts that also show substantial improvement with in-

creased library size (red lines, Fig. 5.3a-c). Because there are many ways to form

multivariate reconstructions, we perform model selection on the in-sample data to

choose the reconstruction that gives the highest accuracy. This enables the selec-

tion of the most relevant variables and lags for each forecast target. We further

note that, unlike the traditional approach of creating a single complex model for

the entire system, this model selection approach can select different reconstructions

depending on the target variable. In other words, there is no single best model

for the system, but a collection of different models for different components of the

system.

Surprisingly, the MVE model produces better forecasts than the multivari-

ate approach, even though MVE is essentially an average of different models (only

one of which is the “best” multivariate model). We hypothesize that the improved

performance of MVE is due to a reduced effect of observational error when combin-

ing multiple views of the system dynamics. Insofar as different time series variables

can be reasonably assumed to have independent observation errors, combining dif-

ferent views of the system will increase precision and produce better forecasts. This

is especially important when time series are short, because the reconstructions will

be relatively sparse, and the selection of nearest neighbors will be unreliable.

For example, in both the univariate and multivariate approaches, nearest

neighbors are identified by distance in the reconstructed state space. If the data are

subject to observation error, then the distance metric will be an uncertain measure

of how similar these states actually are. Whereas points are normally weighted

based on this distance metric, MVE effectively weights these points based on often

it is the nearest neighbor among the best reconstructions. The improved forecasts

suggest that this approach is a more reliable measure of whether points represent

truly similar analogue states, thus allowing MVE forecasts to outperform single

embedding-based models.
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We note that noise reduction can also compensate for short time series

length. For example, in the flour beetle model (see Fig. 5.3g-i), the dynamics

appear to be well explained with the univariate method once time series are long

enough (∼ 200 points). However, in many practical circumstances, time series

length is limited, and single reconstructions are not dense enough to counteract

the effects of noise. Instead of requiring many neighbors to decrease error, MVE

uses different reconstructions. Thus, at the smallest library size (25 points), the

performance of MVE is often comparable to that of the best multivariate method

with 2-3 times more data, and in many cases surpasses the univariate method even

when the latter has 10 times more data.

Although we use a simple ranking and averaging scheme to implement MVE,

more sophisticated methods to combine reconstructions (e.g., a weighted average,

different ranking depending on system state) could produce further improvements,

especially when larger datasets are available or when system-specific knowledge is

available (e.g., noise structure, likely causal drivers). An obvious benefit to MVE

is that with more time series, a clearer picture of the system dynamics emerges, as

each additional variable increases the number of possible reconstructions. Because

the number of reconstructions grows combinatorially with the number of variables,

we suggest judiciously selecting only the relevant time series variables when ap-

plying MVE. As demonstrated here, convergent cross mapping (CCM) [Sugihara

et al., 2012] can be used in conjunction with system-specific knowledge to identify

the most informative variables for a given forecasting target. CCM is uniquely

suited for this task, as it detects the presence of causal interactions using the same

empirical framework as MVE.

5.5 Conclusions

The primary advantage of MVE is in leveraging multiple time series ob-

servations of a single system. That these time series represent interconnected

components is actually a prerequisite for MVE, because it means that dynamical

information is duplicated across different variables [Sugihara et al., 2012]. By us-
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ing the equation-free approach of EDM, this information can then be extracted

and re-combined. This approach to rich datasets allows MVE models to mitigate

the effect of noisy observations, and is fundamentally different from other noise

reduction algorithms.. For example, the Kalman filter [Kalman, 1960] assumes

that the underlying dynamics are known and that noise is linearly separable, two

assumptions that are typically unsuitable for complex systems.

Here, we demonstrate the usage of MVE to improve forecasts; however,

MVE has potential benefits in many applications where noise reduction is a chal-

lenge, such as signal processing [Carroll and Rachford, 2012] and nonlinear control

systems [Ott et al., 1990]. Although the high-dimensionality of complex systems is

typically perceived as an obstacle, MVE shows, counterintuitively, that complexity

is actually an opportunity for information leverage.

5.6 Methods Summary

We used time series from 3 different models (a coupled logistic map, a 3-

species food chain [Hastings and Powell, 1991], and a flour beetle model [Dennis

et al., 2001]) and data collected from a long-term mesocosm experiment (a plankton

community isolated from the Baltic Sea; [Heerkloss and Klinkenberg, 1998, Benincà

et al., 2009]). For the model systems, 3000 points were generated with simulated

observation error. For the mesocosm data, we sampled segments from the raw

data, by using all segments of at least 15 points where the lag between points was

6-8 days, resulting in 17 segments comprising 725 data points. Time series were

rescaled to mean = 0 and variance = 1.

For each model system, we generated all 3-dimensional attractor recon-

structions, allowing lags of 0, 1, or 2, resulting in 64 unique reconstructions for

each system. We applied a similar procedure to 2 subsystems from the mesocosm

data, where each subsystem consisted of one of the grazers (rotifers or calanoid

copepods) and its two main prey items (picocyanobacteria and nanoflagellates)

(see Fig. 4a). We computed in-sample performance on “library” segments using

simplex projection [Sugihara and May, 1990] and leave-one-out cross-validation to
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forecast 1 time step ahead. The attractors were then ranked based on ρ, the cor-

relation coefficient between observations and predictions. This ranking identified

the reconstructions to be used in the “multivariate” (best ρ) and MVE (top 16 ρ)

methods when making out-of-sample forecasts.

We measured forecast skill using 4 different metrics: ρ, MAE (mean ab-

solute error), RMSE (root mean square error), and predictive power (a measure

of information gain [Schneider and Griffies, 1999]). For the ecosystem models,

we randomly subsampled 100 contiguous libraries (ranging in size from 25 to 300

vectors) from among the first 1300 points, and producing out-of-sample forecasts

for the last 500 points. For the mesocosm data, we used an approximate 4-fold

cross-validation scheme, assigning the 17 segments into 4 roughly-equally sized

subsets.

5.7 Methods

5.7.1 Data Sources

We used time series generated from 3 different models (described below)

and data collected from a long-term mesocosm experiment using a plankton com-

munity isolated from the Baltic Sea [Hastings and Powell, 1991, Dennis et al.,

2001, Heerkloss and Klinkenberg, 1998, Benincà et al., 2009].

5.7.2 Ecosystem Models

Coupled Logistic Map

We modeled 3 interacting species using the coupled logistic map:
xt+1

yt+1

zt+1

 = ~r ◦


xt

yt

zt

 ◦



1

1

1

− A×

xt

yt

zt


 (5.1)
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where ~r is a 3×1 vector, A is a 3×3 matrix with Ai,i = 1, and ◦ is the Schur product

(entrywise product). We used initial conditions


x1

y1

z1

 =


0.2

0.2

0.2

, r =


3.6

3.0

3.0

, and

A =


1 0.2 0.2

0.2 1 −0.2

0.2 −0.2 1

.
3-species Food Chain

We modeled a 3-species food chain following [Hastings and Powell, 1991]:

dx/dt = x(1− x)− f1(x)y

dy/dt = f1(x)y − f2(y)z − d1y
dz/dt = f2(y)z − d2(z)

(5.2)

where

fi(u) = aiu/ (1 + biu)

We used the parameterization a1 = 2.5, b1 = 3.2, b2 = 2.0, d1 = 0.2, and

d2 = 0.015; and initial conditions x0 = 0.8, y0 = 0.2, and z0 = 8.

Flour Beetle Model

We modeled 3 life stages (larvae, pupae, and adults) of the flour beetle,

Tribolium castaneum following [Dennis et al., 2001]:

Lt+1 = bAt exp (−celLt − ceaAt)
Pt+1 = Lt (1− µl)

At+1 = Pt exp (−cpaAt) + At (1− µa)

(5.3)

parameterization b = 10.67, µl = 0.1955, µa = 0.96, cel = 0.01647, cea = 0.01313,

and cpa = 0.35, which are the maximum-likelihood estimates of the model param-

eters from real data, but with cpa adjusted to give chaotic dynamics [Dennis et al.,

2001]. Initial conditions were L1 = 250, P1 = 5, and A1 = 100.
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Time Series Generation

The coupled logistic map and flour beetle model were run forward in time

following equations 5.1 and 5.3, respectively. The 3-species food chain model was

run by solving equation 5.2 using the classical Runge-Kutta method with a time

step of 0.01 and downsampling by a factor of 800. For each model, we generated

time series with 2000 points, and then simulated observation error by multiplying

each time series with i.i.d. white noise drawn from a lognormal distribution with

mean = 1 and CV (coefficient of variation) = 0.1. Next, we rescaled each time

series to mean = 0 and variance = 1. (This ensures that the distance calculations

for each attractor reconstruction are not skewed by the choice of coordinates.)

5.7.3 Plankton Community

This experiment has previously been described in numerous publications as

an example of chaotic dynamics. We used the raw data from the supplement of

[Benincà et al., 2009] and focused on forecasting the abundances of rotifers (mainly

Brachionus plicatilis) and the calanoid copepod Eurytemora affinis. [Benincà et al.,

2009] noted that the primary food items of the rotifers and calanoid copepods

were picocyanobacteria and nanoflagellates (see Fig. 5.4a). We used convergent

cross mapping [Sugihara et al., 2012] to verify that causal information about the

prey abundances were present in the predator abundances (see Fig. 5.4b). Thus

multivariate attractor reconstructions using the prey time series are suitable for

forecasting the predators (rotifers and calanoid copepods).

Instead of interpolating the data (which can pollute the dynamics by com-

bining information from multiple sampling times), we instead extracted all pos-

sible segments of 15 points or more and where the lag was 6-8 days (∼ 1 week).

This procedure resulted in 17 segments, comprising 725 data points. Next, we

applied the same fourth root transformation of [Benincà et al., 2009] to suppress

sharp peaks that distort the attractor reconstruction (especially when searching for

nearest neighbors) before applying the scaling procedure described above. Forecast

statistics were computed after reversing the transformations.
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5.7.4 Attractor Reconstruction

For each system, we generated all possible 3-dimensional attractor recon-

structions where each coordinate could be any of the 3 time series variables with a

lag of 0, τ , or 2τ . Then we kept only the reconstructions where at least one coordi-

nate had no lag, resulting in 64 attractors for each model system. For all models,

we used τ = 1. (Note that for the 3-species food chain model, τ is effectively 8,

because we ran the model using a time step of 0.01 and downsampled by 800, and

for the mesocosm data τ = 1 corresponds to ∼ 1 week.)

In the general case with n time series variables, l possible lags for each vari-

able, and embedding dimension E, the number of possible attractor reconstructions

is given by

(
nl

E

)
−
(
n(l − 1)

E

)
where

(
nl
E

)
is the number of attractors formed by choosing E of the nl

possible coordinates, and
(
n(l−1)
E

)
is the number of “invalid” attractors where all E

coordinates are chosen from among the n(l− 1) possible coordinates with positive

(i.e. nonzero) lag.

5.7.5 Multiview Embedding

Using the method of simplex projection [Sugihara and May, 1990] and leave-

one-out cross-validation, we computed the performance of each attractor recon-

struction when forecasting 1 time step ahead on an in-sample portion of the data,

called the library. The attractors were ranked based on ρ, the correlation coef-

ficient between observations and predictions. The top attractors were then used

to produce forecasts for the out-of sample portion of the data. The multiview

embedding forecast is defined to be the arithmetic mean of the forecasts from the

top attractors:

ŷt+p =
1

m

m∑
i=1

ynni
1(t)+p
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where m is the number of attractors to average over (16 in this case), nni1(t)

is the time index of the nearest neighbor in the ith attractor at time t, and p = 1

is the prediction horizon.

Conventional simplex projection [Sugihara and May, 1990] uses b nearest

neighbors from a single attractor reconstruction, and each of these neighbors rep-

resents a unique historical state. These neighbors are weighted by their distance,

which is influenced by observational error, so forecasts can be quite sensitive to

noise. However, multiview embedding uses the single nearest neighbor from m at-

tractor reconstructions. As these points potentially represent the same historical

state and have different observation errors, averaging over them will give a larger

weighting towards the points that are consistently closer to the actual system state,

in a manner similar to the weighted average used in simplex projection.

5.7.6 Performance Metrics

Forecast skill was measured using 4 different metrics: ρ, the correlation co-

efficient between observations and predictions; MAE, mean absolute error; RMSE,

root mean square error; and predictive power [Schneider and Griffies, 1999]. ρ cap-

tures forecast accuracy, how well the predictions line up with observations. Both

MAE and RMSE capture forecast error, the “average” deviation of predictions from

observations. Predictive power is an information-theoretic measure that indicates

how much uncertainty in the predicted variable is reduced by forecasts.

For the model data, we sampled 100 libraries from the generated time series

by choosing the beginning of each library from the uniform distribution [501, 2001].

(Note that we exclude the first 500 points from each time series, so as to reduce

the effect of transient behavior.) Out-of-sample forecasts were then produced for

last 500 points of the time series (times 2501-3000). The libraries ranged in size

from 25 to 300 vectors (L ∈ {25, 50, 75, 100, 200, 300}); thus, there was no overlap

between the library and forecasts, because the last possible point in the library is

at time 2500 and the first point to be forecast is at time 2501. For the mesocosm

data, we used a 4-fold cross-validation scheme where 1/4 of the data was held out

of sample and the remaining 3/4 was the “library”. The forecasts for each quarter
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of the data were then combined before computing statistics. (Note that although

the statistics are computed once over the whole time series, the attractors were

ranked separate for each 1/4 of the data, so that all forecasts are out-of-sample.).

5.8 Extended Data Figures

5.9 Acknowledgments

This research is supported by Department of Defense, Strategic Environ-

ment Research and Development Program W912HQ-15-C-00 (GS, HY), Lenfest

Foundation Award 00028335 (GS), National Science Foundation Grant No. DEB-

1020372 (GS, HY), NSF-NOAA Comparative Analysis of Marine Ecosystem Orga-

nization (CAMEO) program Grant NA08OAR4320894/CAMEO (GS), McQuown

Natural Science Research and Education Fund F-2619 (HY), National Science

Foundation Graduate Research Fellowships (HY), the Sugihara Family Trust (GS),

the Deutsche Bank-Jameson Complexity Studies Fund (GS), and the McQuown

Chair in Natural Science (GS).

Chapter 5, in full, is material prepared for submission: Hao Ye and George

Sugihara. Complexity is not a curse: leveraging information in interconnected

systems. The dissertation author was the primary investigator and author of this

paper.



103

0.1

0.2

0.3

0.4

0.5

0.850

0.875

0.900

0.925

0.825

0.850

0.875

0.900

0.70

0.75

0.80

0.85

0.90

0.30

0.35

0.40

0.45

0.35

0.40

0.45

0.9

1.0

1.1

0.40

0.45

0.50

0.55

0.40

0.45

0.50

0.55

0.60

−0.10

−0.05

0.00

0.05

0.10

0.40

0.45

0.50

0.55

0.35

0.40

0.45

0.50

0.55

0 100 200 300 0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300 0 100 200 300
library size

univariate best multivariate multiview embedding

library sizelibrary size

ac
cu

ra
cy

 (ρ
)

er
ro

r (
M

AE
)

er
ro

r (
R

M
SE

)
pr

ed
ic

tiv
e 

po
we

r

A E I

B F J

C G K

D H L

x y z

Figure 5.5: Comparison of forecast performance for the 3-species coupled
logistic map model.
Multiview embedding produces more precise forecasts than the best multivariate
and univariate methods for the 3-species coupled logistic map model. (A-D) Fore-
cast accuracy (ρ, correlation between observations and predictions), forecast errors
(MAE, mean absolute error; RMSE, root mean square error), and predictive power
vs. library size for variable x. Lines indicate average values over 100 randomly
sampled libraries (see Methods) and error bars denote ±1 standard deviations.
(E-H) Forecast accuracy, forecast errors, and predictive power for variable y. (I-L)
Forecast accuracy, forecast errors, and predictive power for variable z.
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Figure 5.6: Comparison of forecast performance for the 3-species food
chain model.
Multiview embedding produces more precise forecasts than the best multivariate
and univariate methods for the 3-species food chain model. (A-D) Forecast accu-
racy (ρ, correlation between observations and predictions), forecast errors (MAE,
mean absolute error; RMSE, root mean square error), and predictive power vs. li-
brary size for variable x. Lines indicate average values over 100 randomly sampled
libraries (see Methods) and error bars denote ±1 standard deviations. (E-H) Fore-
cast accuracy, forecast errors, and predictive power for variable y. (I-L) Forecast
accuracy, forecast errors, and predictive power for variable z.
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Figure 5.7: Comparison of forecast performance for the larvae-pupae-
adult flour beetle model.
Multiview embedding produces more precise forecasts than the best multivariate
and univariate methods for the larvae-pupae-adult flour beetle model. (A-D) Fore-
cast accuracy (ρ, correlation between observations and predictions), forecast errors
(MAE, mean absolute error; RMSE, root mean square error), and predictive power
vs. library size for larvae. Lines indicate average values over 100 randomly sam-
pled libraries (see Methods) and error bars denote ±1 standard deviations. (E-H)
Forecast accuracy, forecast errors, and predictive power for pupae. (I-L) Forecast
accuracy, forecast errors, and predictive power for adults.
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Figure 5.8: Comparison of forecast performance for the long-term meso-
cosm experiment.
Multiview embedding produces more precise forecasts than the best multivariate
and univariate methods. (A-D) Forecast accuracy (ρ, correlation between ob-
servations and predictions), forecast errors (MAE, mean absolute error; RMSE,
root mean square error), and predictive power when predicting calanoid copepods.
(E-H) Forecast accuracy, forecast errors, and predictive power when predicting
rotifers.



Appendix A

rEDM: A Package for Empirical

Dynamic Modeling Based on

Attractor Reconstruction

A.1 Abstract

Empirical dynamic modeling (EDM) is an emerging non-parametric frame-

work for modeling nonlinear dynamic systems. In an ecological context, EDM has

numerous applications, including forecasting population abundances, unraveling

species interactions, and identifying causal drivers. In contrast to the conventional

approach of fitting assumed model equations to data, EDM relies on the fact that

ecosystems have dynamics that allows us to reconstruct attractors directly from

time series. This approach (with minimal assumptions) makes EDM particularly

suitable for studying ecosystems, which exhibit non-equilibrium dynamics (prob-

lematic for models that typically assume stable equilibria) and state-dependent

behavior (interactions that change with system state). This guide is designed to

introduce both the theory behind EDM, as well as providing practical examples

for using the rEDM software package.
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A.2 The rEDM package

A.2.1 Installation

rEDM is an Rcpp package, and contains both C++ and R code. Because

the C++ code needs to be compiled prior to usage, there are several different

options for obtaining and installing the rEDM package, depending on preference.

Binary Version

The precompiled binary version is suitable for mot users and can be down-

loaded from Github here. The latest version is 0.2.6 as of August 9, 2015. Clicking

on the “view the full file” link will initiate a downlaod of the .tgz or .zip file, which

can be saved to any desired location. Note that R expects a single package file, so

the downloaded archive should not be unpacked into a folder.

To install the downloaded package, the standard R command (install.

packages) as below, replacing *** with the name of the package file. (You will need

to either give the complete path, or put the package file in R’s current working

directory.)

install.packages("***", type = "source", repos = NULL)

Note that the Rcpp package (versions 0.11.5 and higher) must be installed

first.

Source Code Version

The raw source can be downloaded from Github here. The package can

then be built and installed following the normal procedures.

The source code is managed using Git for version control and includes an

RStudio project file, so it can be cloned and built from within RStudio as well.

Finally, the package can also be installed using functions from the devtools

package:

library(devtools)

install_github("ha0ye/rEDM")

https://github.com/ha0ye/rEDM-binary
https://github.com/ha0ye/rEDM
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Note that the latter two methods require the Git software to be installed.

All methods here require a C++11 compiler, in addition to the Rcpp package.

Installation from source has been tested using both Rtools 3.1 for Windows and

XCode 5.0+ for Macintosh 10.9+.

A.3 Background

A.3.1 Time Series as Observations of a Dynamic System

The essential concept behind Empirical Dynamic Modeling (EDM) is that

time series can be viewed as projections of the behavior of a dynamic system. This

framework requires only a few modest assumptions:

• The system state can be described as a single point in a high-dimensional

space. Axes can be thought of as fundamental state variables, such as popula-

tion abundances, resources, or environmental properties a la the Hutchinson

Niche [Hutchinson, 1957].

• The system state changes through time following some deterministic rules.

In other words, the behavior is not completely random.

Projecting the system state to an axis then gives the value of the corre-

sponding state variable, and sequential projections over time produce a time series.

Different time series observed from the system can capture different state variables,

but are more generally, some function of the system state and may convolve several

different state variables.

A.3.2 Attractor Reconstruction / Takens’ Theorem

To reproduce this fundamental, geometric view of the system, one might

suppose that time series of all the state variables are required. However, Takens’

Theorem [Takens, 1981] states that a mathematically equivalent reconstruction

can be created by substituting lags of a time series for the unknown or unobserved

variables.
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x

y
z

Figure A.1: Time series from a dynamic system.
Projecting the motion of the canonical Lorenz attractor onto the x-axis yields a
time series for variable x.

In other words, instead of representing a system state as being composed of

multiple different state variables, we instead use a lagged-coordinate embedding:

~xt = 〈xt, xt−τ , . . . , xt−(E−1)τ 〉

xt

xt-τ

xt-2τ

τ

2τ

time

xt-2τ

xt

xt-τ

t

Figure A.2: Attractor reconstruction from a time series.
Successive lags (with time step τ) of the time series xt are plotted as separate
coordinates to form a reconstructed “shadow” manifold, which appears similar to
the original manifold in Figure A.1.
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If sufficient lags are used, the reconstruction preserves essential mathemat-

ical properties of the original system. For instance, the points will map one-to-one

to actual system states, and nearest neighbors in the reconstruction correspond to

similar system states and behave similarly in the near future.

A.3.3 Nearest Neighbor Forecasting using Simplex Projec-

tion

One application of the reconstructed attractor is prediction. This can be

accomplished using nearest neighbor forecasting methods, because of the similar

behavior of nearby points in the reconstruction. One such method is simplex

projection [Sugihara and May, 1990]. Simplex Projection is implemented in rEDM

as the function simplex, and can be used both for prediction or to identify the

optimal embedding dimension by quantifying the forecast skill of reconstructions

with different dimensionality.

Example

First, we load the data and look at the format. Because this dataset is part

of the rEDM package, we need to first load the package into R, before we have

access to its datasets and functions.

library(rEDM)

data(tentmap_1d)

head(tentmap_1d)

## [1] -0.0992003 -0.6012986 0.7998003 -0.7944096 0.7979992 -0.8195405

We can see that the data consists of just a single vector, containing the raw

data (first-differences from a tentmap). Because the simplex function can accept

a single vector as the input time series, we don’t need further processing of the

data. Furthermore, because the data come from a discrete-time model, we can let

many of the parameters be default values (e.g., τ = 1, tp = 1). The default values

for the embedding dimension, E, range from 1 to 10, and so the output will allow

us to determine which embedding dimension best unfolds the attractor.
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We need to specify what portions of the data to use for constructing the

simplex projection model, and what portions to use for testing the forecast skill.

By default, ‘simplex‘ will use leave-one-out cross-validation over the entire time

series, but because the data contain no observational noise, and are particularly

long, we’d like to be more conservative.

lib <- c(1, 100)

pred <- c(201, 500)

This will use the first 100 points (time = 1 to 100) in the time series as

the “library” to construct the model, and 300 points (time = 201 to 500) as the

“prediction set” to test the model.

Note that if the code detects any overlap in the lib and pred, it will enable

leave-one-out cross-validation and return a warning message.

ts <- tentmap_1d

simplex_output <- simplex(ts, lib, pred)

The results are a simple data.frame with columns for each of the model

parameters and forecast statistics, and rows for each run of the model. In this

case, there is one run for each value of E, so we can simply plot E against ρ, the

correlation between observed and predicted values:

par(mar = c(4,4,1,1), mgp = c(2.5, 1, 0))

plot(simplex_output$E, simplex_output$rho, type = "l", xlab = "Embedding

Dimension (E)", ylab = "Forecast Skill (rho)")

A.3.4 Prediction Decay

An important property of deterministic chaos is that nearby trajectories

eventually diverge over time (the so-called “butterfly effect”). This means that

prediction is primarily limited to short-term forecasts, because over the long-term,

the system state may be viewed as essentially random. This property also differ-

entiates nonlinear systems from the equilibrium view, where the system can be

expected to settle around a stable point.
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Figure A.3: Identifying optimal embedding dimension using simplex pro-
jection.
Plotting forecast skill (ρ) vs. embedding dimension (E) for the first-differenced
tent map time series, the optimal embedding dimension is 2.

Example

We can test for this property by adjusting the tp parameter in the models,

which determines how far into the future the model seeks to predict:

simplex_output <- simplex(ts, lib, pred, E = 2, tp = 1:10)

Here, we can simply plot tp against ρ to see how forecast accuracy changes

as we predict further and further into the future:

par(mar = c(4,4,1,1))

plot(simplex_output$tp, simplex_output$rho, type = "l", xlab = "Time to

Prediction (tp)", ylab = "Forecast Skill (rho)")
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Figure A.4: Identifying prediction decay using simplex projection.
Plotting forecast skill (ρ) vs. time to prediction (tp) for the first-differenced tent
map time series, predictability clearly declines with increasing forecast horizons.

A.3.5 Identifying Nonlinearity

One concern is that many time series may show predictability even if they

are purely stochastic, because they behave similarly to autocorrelated red noise.

Luckily, there are additional tests that can be done to distinguish between red

noise and deterministic behavior, by quantifying the degree of "nonlinearity" in

the data.

Here, we use the S-map forecasting method, that is based on fitting local

linear maps for prediction instead of the nearest-neighbor interpolation of simplex

projection [Sugihara, 1994]. In addition to the parameters for simplex projection,

S-map also contains a nonlinear tuning parameter, θ that affects the weights as-

sociated with individual points when fitting the local linear map. When θ = 0,

all weights are equal, and the S-map is identical to an autoregressive model; val-

ues of θ above 0 give greater weight to nearby points in the state space, thereby

accommodating nonlinear behavior by allowing the local linear map to vary in
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state-space. For autoregressive red noise, the linear model should perform better,

because the S-map model can reduce observation error by averaging over many

points instead of just the most nearby points.

Thus, varying θ allows us to compare equivalent linear and nonlinear models

as a test for nonlinear dynamics (after first using simplex projection to estimate

the optimal embedding dimension for a time-series.)

Example

Following from the previous example, we set E = 2 based on the results

from simplex projection. Again, note that we allow many of the parameters take

on default values (e.g., τ = 1, tp = 1). If we had changed these for simplex

projection, we would want to propagate them here. The default values for the

nonlinear tuning parameter, θ, range from 0 to 8, and are suitable for our purposes.

Note also, that the default value for num_neighbors is 0. Typically, when

using s_map to test for nonlinear behavior, we allow all points in the reconstruc-

tion to be used, subject only to the weighting based on distance. By using 0 for

this parameter (an otherwise nonsensical value), the program will use all nearest

neighbors.

smap_output <- s_map(ts, lib, pred, E = 2)

Again, the results are a simple data.frame with columns for each of the

model parameters and forecast statistics, and rows for each run of the model. In

this case, there is one run for each value of θ, so we can simply plot θ against ρ:

par(mar = c(4,4,1,1), mgp = c(2.5, 1, 0))

plot(smap_output$theta, smap_output$rho, type = "l", xlab = "Nonlinearity

(theta)", ylab = "Forecast Skill (rho)")

A.3.6 Generalized Takens’ Theorem

Instead of creating an attractor by taking lags of a single time series, it is

possible to combine lags from different time series, if they are all observed from the

same system [Sauer et al., 1991, Deyle and Sugihara, 2011]. The practical reality
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Figure A.5: Identifying nonlinearity using S-map.
Plotting forecast skill (ρ) vs. nonlinearity (θ) for the first-differenced tent map
time series clearly shows nonlinearity, as predictability improves with θ > 0.

of applying EDM to systems with finite data, noisy observations, and stochastic

influences means that such “multivariate” reconstructions can often be a better

depiction of the true dynamics than "univariate" counterparts.

In rEDM, the block_lnlp function generalizes the simplex and s_map func-

tions, allowing generic reconstructions to be used with either of the simplex pro-

jection or S-map algorithms. The main data input for block_lnlp is a matrix or

data.frame of the time series observations, where each column is a separate time

series and each row represents the variables observed at the same time. In addition

to the typical arguments for simplex or s_map, block_lnlp contains arguments to

specify which column is to be forecast (target_column) as well as which columns

to use to construct the attractor (columns). In both cases, either a numerical index

or the column name can be given. For obvious reasons, column names will work

only if the input data has column names.

Note that if lagged coordinates are intended to be used, they need to be
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manually created as separate columns in the matrix or data.frame.

Example

We begin by loading an example dataset of time series and lags from a

coupled 3-species model system. Here, the block_3sp variable is a 10-column

data.frame with 1 column for time, and 3 columns for each of the variables (un-

lagged, t-1, and t-2 lags).

data(block_3sp)

head(block_3sp)

## time x_t x_t-1 x_t-2 y_t y_t-1 y_t-2

## 1 1 -0.7418625 NA NA -1.2681036 NA NA

## 2 2 1.2448818 -0.7418625 NA 1.4888875 -1.2681036 NA

## 3 3 -1.9176852 1.2448818 -0.7418625 -0.1131881 1.4888875 -1.2681036

## 4 4 -0.9623176 -1.9176852 1.2448818 -1.1067786 -0.1131881 1.4888875

## 5 5 1.3318751 -0.9623176 -1.9176852 2.3850408 -1.1067786 -0.1131881

## 6 6 -0.8170829 1.3318751 -0.9623176 -0.6753463 2.3850408 -1.1067786

## z_t z_t-1 z_t-2

## 1 -1.8639802 NA NA

## 2 -0.4815825 -1.8639802 NA

## 3 1.5352388 -0.4815825 -1.8639802

## 4 -1.4929558 1.5352388 -0.4815825

## 5 -1.1194762 -1.4929558 1.5352388

## 6 0.7466579 -1.1194762 -1.4929558

In order to correctly index into columns, block_lnlp has an option to in-

dicate that the first column is actually a time index. When first_column_time is

set to TRUE, a value of 1 for target_column now points to the first data column in

the data.frame, as opposed to the time column (the columns parameter is similarly

indexed).

lib <- c(1, NROW(block_3sp))

pred <- c(1, NROW(block_3sp))
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block_lnlp_output <- block_lnlp(block_3sp, lib = lib, pred = pred, columns

= c(1,2,4), target_column = 1, stats_only = FALSE, first_column_time

= TRUE)

We can also run the same model by referring to the names of the columns

directly.

block_lnlp_output <- block_lnlp(block_3sp, lib = lib, pred = pred, columns

= c("x_t", "x_t-1", "y_t"), target_column = "x_t", stats_only = FALSE

, first_column_time = TRUE)

Note that we did not specify a value for the tp parameter. Here, the default

value of 1 means that the program will predict the target variable 1 time step into

the future (based on the row-structure of the input data). In some cases, the data

may already be processed into a format where one wants to predict a different

column that has already been aligned correctly. In that case, one can set tp = 0

when calling block_lnlp.

By setting stats_only to FALSE, we get back a list with the full model

output. Only 1 model was run, so the output is a list with 1 element. To extract

the raw predictions, we can go into the model_output variable and pull out the

observed and predicted values, plotting them to see how well the model fit relative

to the expected 1:1 line.

observed <- block_lnlp_output[[1]]$model_output$obs

predicted <- block_lnlp_output[[1]]$model_output$pred

par(mar = c(4,4,1,1), pty = "s")

plot_range <- range(c(observed, predicted), na.rm = TRUE)

plot(observed, predicted, xlim = plot_range, ylim = plot_range, xlab = "

Observed", ylab = "Predicted")

abline(a = 0, b = 1, lty = 2, col = "blue")

A.3.7 Causality Inference and Cross Mapping

One of the corollaries to the Generalized Takens’ Theorem is that it should

be possible to cross-predict or cross-map between variables that are observed from
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Figure A.6: Forecast skill of a multivariate model.
Predictions are plotted vs. observed values for a multivariate model for the cou-
pled 3-species model. The dashed blue line is the one-to-one line, indicating that
relatively symmetric errors.

the same system. Consider two variables, x and y that interact in a dynamic

system. Then the univariate reconstructions based on x or y alone should uniquely

identify the system state and the corresponding value of the other variable. Thus,

it should be possible to use one variable to cross-predict the other.

In the case of unidirectional causality, x causes y, then the behavior of the

causal variable (x) leaves a signature on the affected variable (y). In such cases, the

reconstructed states based on y can be used to cross-predict the values of x (because

the reconstruction based on y must be complete, it must include information about

the value of x). Note that this cross-prediction is in the opposite direction of the

causal effect. At the same time, cross-prediction from x to y will fail, because the

time series of x behaves independently of y, so a univariate reconstruction using

only lags of x is necessarily incomplete.
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Figure A.7: Cross mapping between two attractor reconstructions.
Reconstructions of the Lorenz Attractor using variable x (Mx) and variable y (My)
map one-to-one to each other because they are both generic observations of the
same dynamic system.

Although x has incomplete information for predicting y, it does affect the

values of y, and therefore will likely to have nonzero predictive skill. However, this

cross-mapping will be limited to the statistical association between x and y and

fail to improve as longer time series are used for reconstruction. In contrast, in the

absence of noise, the cross-prediction of x from y will continually improve. This

convergence is therefore necessary to infer causality.

For practical reasons, the sensitivity of detecting causality this way is im-

proved if, instead of predicting the future value of another variable, we estimate

the concurrent value of another variable. We refer to this modified method as

cross-mapping, because we are not “predicting” the future.

A.3.8 Convergent Cross Mapping (CCM)

In the rEDM package, the ccm function presents an easy way to compute

cross map skill for different subsamples of the time series, enabling observation

of both convergence and uncertainty regarding cross map skill. In the following
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example, we use CCM to identify causality between anchovy landings in California

and Newport Pier sea-surface temperature.

Here, we use a previously identified value of 3 for the embedding dimension.

We set lib_sizes (the number of library vectors) to vary from 10 to 80 in steps

of 10. Setting num_samples to 100 means that 100 different library samples will be

generated, by random sampling (random_libs = TRUE by default) from the possible

vectors with replacement (replace = TRUE by default).

data(sardine_anchovy_sst)

anchovy_xmap_sst <- ccm(sardine_anchovy_sst, E = 3, lib_column = "anchovy"

, target_column = "np_sst", lib_sizes = seq(10, 80, by = 10), num_

samples = 100)

sst_xmap_anchovy <- ccm(sardine_anchovy_sst, E = 3, lib_column = "np_sst",

target_column = "anchovy", lib_sizes = seq(10, 80, by = 10), num_

samples = 100)

The output from CCM is a data.frame with statistics for each model run

(in this case, 100 models at each of 8 library sizes = 800 rows). Because we cross

map using multiple libraries at each library size, we’d like to aggregate the results

and plot the average cross map skill at each library size. Because average cross

map skill less than 0 is noninformative, we filter out negative values when plotting.

a_xmap_t_means <- ccm_means(anchovy_xmap_sst)

t_xmap_a_means <- ccm_means(sst_xmap_anchovy)

par(mar = c(4,4,1,1), mgp = c(2.5, 1, 0))

plot(a_xmap_t_means$lib_size, pmax(0, a_xmap_t_means$rho), type = "l", col

= "red", xlab = "Library Size", ylab = "Cross Map Skill (rho)", ylim

= c(0, 0.4))

lines(t_xmap_a_means$lib_size, pmax(0, t_xmap_a_means$rho), col = "blue")

legend(x = "topleft", legend = c("anchovy xmap SST", "SST xmap anchovy"),

col = c("red", "blue"), lwd = 1, inset = 0.02, cex = 0.8)
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Figure A.8: Causation between anchovy landings and Newport pier sea-
surface temperature.
Plotting cross map skill (ρ) vs. library size shows clear cross mapping from an-
chovy to sea-surface temperature (“anchovy xmap SST”), indicating an effect of
temperature on anchovy. In the converse direction (“SST xmap anchovy”), there
is no cross map skill, and thus no evidence that anchovy affect temperature, as
expected.

A.4 Example 1: Community Productivity and In-

vasibility

The data presented here are part of Experiment 120, the “Big Biodiver-

sity” experiment at Cedar Creek LTER. This experiment is the longest running

randomized test for the effects of plant diversity on ecosystem functions. Plots

were established in 1994 and planted with 1, 2, 4, 8, or 16 species, and have since

then been sampled annually for above-ground plant biomass. Full methods are

described in [Tilman et al., 1997]. The most well-known result from the experi-

ment is that planted species number strongly, positively influences above-ground

biomass production. However, because the diversity treatments are fixed, rather
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than dynamical variables, they do not lend themselves to state space reconstruc-

tion.

Instead, we focus a different set of published results from the experiment:

interactions between primary productivity, soil nitrate, and invasion rates by non-

planted species. These show that increased biomass is associated with decreases

in soil nitrate levels and decreases in invasion success [Fargione and Tilman, 2005].

A posited mechanism for this is soil nitrate: increased primary productivity leads

to decreased soil nitrate, which in turn reduces resources available to invaders.

For the analyses here, we combine planted diversity treatments from 4-8 species

planted treatments, and analyze them as a block.

The columns in the dataset e120_invdat are as follows: Exp, Year, Month

, Plot, Field, and FieldPlot describe experiment, plot identity, and sampling

time. NumSp and SpNum show the planted and realized species diversity in the plot

respectively. AbvBioAnnProd shows annual aboveground productivity of planted

species, in g/m2. noh020tot shows soil nitrate levels in the top 20 cm of soil,

measured in µg/kg soil. invrichness shows species richness of unplanted species

in the plot. SummerPrecip.mm. shows precipitation annual from May to August

measured in mm.

A.4.1 Preparing the Data

E120 includes data from multiple plots, meaning that we first need to col-

lapse it into a single composite time series. As before, we begin by normalizing

each time series.

data(e120_diversity)

head(e120_diversity)

# separate time column from data

composite_ts <- e120_diversity[,c(7:9,12)]

# normalize each time series

n <- NCOL(composite_ts)
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blocks <- e120_diversity$Plot

blocks_index <- sort(unique(blocks))

for(j in 1:n) {

for(i in 1:length(blocks_index)) {

subs <- which(blocks == blocks_index[i])

composite_ts[subs,j] <- (composite_ts[subs,j] - mean(composite_ts[

subs,j])) / sd(composite_ts[subs,j])

}

}

composite_ts <- cbind(year = e120_diversity$Year, composite_ts)

## Exp Year Month Plot NumSp SpNum AbvBioAnnProd noh020tot invrichness

## 1 120 1996 8 3 4 5 35.1670 0.22520 11

## 2 120 1997 8 3 4 5 65.9167 0.14430 7

## 3 120 1998 8 3 4 5 195.5670 0.07070 8

## 4 120 1999 8 3 4 5 69.4092 0.02610 7

## 6 120 2001 8 3 4 5 80.6292 0.18045 3

## 7 120 2002 8 3 4 5 143.5750 0.01130 9

## Field FieldPlot SummerPrecip.mm.

## 1 1 1 3 447.548

## 2 1 1 3 445.516

## 3 1 1 3 356.108

## 4 1 1 3 487.680

## 6 1 1 3 356.870

## 7 1 1 3 484.886

Again, we need to indicate separations between plots so that lagged vectors

are not constructed that contain coordinates spanning multiple time series.

# make composite library

segments <- NULL

startpos <- 1

for(i in 2:nrow(composite_ts)) {

if(composite_ts$year[i] < composite_ts$year[i-1]) {
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segments <- rbind(segments, c(startpos, i))

startpos <- i+1

}

}

segments <- rbind(segments, c(max(segments)+1, nrow(composite_ts)))

# choose random segments for prediction

set.seed(2312)

rndlib <- sort(sample(1:nrow(segments), round(nrow(segments)/2,0), rep=

FALSE))

composite_lib <- segments[rndlib,]

composite_pred <- segments[-rndlib,]

Because the time series for precipitation does not vary among replicates,

we also need to construct separate variables for analyzing precipitation dynamics:

precip_ts <- unique(e120_diversity[,c("Year", "SummerPrecip.mm.")])

precip_ts <- precip_ts[order(precip_ts$Year),]

A.4.2 Applying Simplex and S-map Algorithms

We can then use the rEDM functions as normal for each of our time series.

First, we apply simplex projection:

par(mar = c(4,4,1,1), mfrow=c(2,2), mgp = c(2.5, 1, 0))

varlst <- colnames(composite_ts)[2:4]

simplex_output_list <- NULL

for(i in 1:length(varlst)) {

simplex_output_list[[i]] <- simplex(composite_ts[,c("year", varlst[i])

], lib=composite_lib, pred=composite_pred, E = c(2:6))

plot(simplex_output_list[[i]]$E, simplex_output_list[[i]]$rho, type =

"l", xlab = "Embedding Dimension (E)", ylab = "Forecast Skill (rho

)", main=varlst[i])

}
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simplex_output_list[[4]] <- simplex(precip_ts, lib = c(1,7), pred = c(1,7)

, E = c(2:6), silent = TRUE)

names(simplex_output_list) <- c(varlst, "precipmm")

plot(simplex_output_list[[4]]$E, simplex_output_list[[4]]$rho, type = "l",

xlab = "Embedding Dimension (E)", ylab = "Forecast Skill (rho)", main

="Precip")
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Figure A.9: Predictability of biological and physical variables in E120.
Both biological time series (“AbvBioAnnProd” and “invrichness”) show predictabil-
ity with a low embedding dimension. Soil nitrate levels (“noh020tot”) also appear
predictable, as would be expected as a resource that is tightly controlled by bio-
logical productivity. Precipitation (“Precip”), however, does not appear to exhibit
predictable dynamics, as expected for a stochastic external driver.
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These results give us the best embedding dimension for each of our projec-

tions:

bestE <- sapply(simplex_output_list, function(simplex_output) {

simplex_output$E[which.max(simplex_output$rho)]

})

bestE

## AbvBioAnnProd noh020tot invrichness precipmm

## 5 5 4 2

Using these embedding dimensions, we can now apply S-maps to identify

nonlinearity:

par(mar = c(4,4,1,1), mfrow=c(2,2), mgp = c(2.5, 1, 0))

smap_output_list <- NULL

for(i in 1:length(varlst)) {

smap_output_list[[i]] <- s_map(composite_ts[,c("year", varlst[i])],

lib = composite_lib, pred = composite_pred, E = bestE[i], silent =

TRUE)

plot(smap_output_list[[i]]$theta, smap_output_list[[i]]$rho, type = "l

", xlab = "Nonlinearity (theta)", ylab = "Forecast Skill (rho)",

main = varlst[i])

}

smap_output_list[[4]] <- s_map(precip_ts, E = bestE[4], silent = TRUE)

plot(smap_output_list[[4]]$theta, smap_output_list[[4]]$rho, type = "l",

xlab = "Nonlinearity (theta)", ylab = "Forecast Skill (rho)", main = "

Precip")

Note that all time series suggest nonlinear dynamics in the data (because

of the initial rise in rho for non-zero theta, followed by a sharp drop-off in rho with

theta).
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Figure A.10: Nonlinearity of biological and physical variables in E120.
Both biological time series (“AbvBioAnnProd” and “invrichness”) show nonlinear-
ity, with improved forecast skill for θ > 0 compared to forecast skill at θ = 0.
Soil nitrate levels (“noh020tot”) and precipitation (“Precip”), also appear to be
nonlinear. (Note that in this case, the S-map model for precipitation shows pos-
itive forecast skill when θ > 0, indicating that there may be some (nonlinear)
predictability, in contrast to the simplex projection results in Figure A.9.

A.4.3 Multivariate Models

Next, we can use information from several time series to make better pre-

dictions about system dynamics. We can accomplish this with the block_lnlp

command. First, we need to manually construct lagged vectors for each variable.

This requires a bit of care in coding, as we need to ensure that lagged components

come only from observations within a single field and transect.
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n <- NROW(composite_ts)

# make lags

block_data <- data.frame(year=composite_ts$year)

block_data$AB_tm <- composite_ts$AbvBioAnnProd

block_data$AB_tm1 <- c(NA, block_data$AB_tm[-n])

block_data$AB_tm2 <- c(NA, block_data$AB_tm1[-n])

block_data$AB_tm3 <- c(NA, block_data$AB_tm2[-n])

block_data$NO_tm <- composite_ts$noh020tot

block_data$NO_tm1 <- c(NA, block_data$NO_tm[-n])

block_data$NO_tm2 <- c(NA, block_data$NO_tm1[-n])

block_data$NO_tm3 <- c(NA, block_data$NO_tm2[-n])

block_data$IV_tm <- composite_ts$invrichness

block_data$IV_tm1 <- c(NA, block_data$IV_tm[-n])

block_data$IV_tm2 <- c(NA, block_data$IV_tm1[-n])

block_data$IV_tm3 <- c(NA, block_data$IV_tm2[-n])

block_data$PR_tm <- composite_ts$SummerPrecip.mm

block_data$PR_tm1 <- c(NA, block_data$PR_tm[-n])

block_data$PR_tm2 <- c(NA, block_data$PR_tm1[-n])

block_data$PR_tm3 <- c(NA, block_data$PR_tm2[-n])

# remove overlaps from other plots

startyear <- 1996

for(i in 2:nrow(block_data)) {

if(block_data$year[i] < block_data$year[i-1]) {

startyear <- block_data$year[i]

}

if(block_data$year[i] == startyear) {

block_data[i,c("AB_tm1", "NO_tm1", "IV_tm1", "PR_tm1")] <- NA

block_data[i,c("AB_tm2", "NO_tm2", "IV_tm2", "PR_tm2")] <- NA
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block_data[i,c("AB_tm3", "NO_tm3", "IV_tm3", "PR_tm3")] <- NA

}

if(block_data$year[i] == (startyear+1)) {

block_data[i,c("AB_tm2", "NO_tm2", "IV_tm2", "PR_tm2")] <- NA

block_data[i,c("AB_tm3", "NO_tm3", "IV_tm3", "PR_tm3")] <- NA

}

if(block_data$year[i] == (startyear+2)) {

block_data[i,c("AB_tm3", "NO_tm3", "IV_tm3", "PR_tm3")] <- NA

}

}

head(block_data[,1:5],20)

## year AB_tm AB_tm1 AB_tm2 AB_tm3

## 1 1996 -1.0626351 NA NA NA

## 2 1997 -0.5456990 -1.0626351 NA NA

## 3 1998 1.6338642 -0.5456990 -1.0626351 NA

## 4 1999 -0.4869863 1.6338642 -0.5456990 -1.0626351

## 5 2001 -0.2983658 -0.4869863 1.6338642 -0.5456990

## 6 2002 0.7598219 -0.2983658 -0.4869863 1.6338642

## 7 1996 -1.0139507 NA NA NA

## 8 1997 -0.9855735 -1.0139507 NA NA

## 9 1998 1.4960850 -0.9855735 -1.0139507 NA

## 10 1999 0.3898716 1.4960850 -0.9855735 -1.0139507

## 11 2001 -0.4926840 0.3898716 1.4960850 -0.9855735

## 12 2002 0.6062517 -0.4926840 0.3898716 1.4960850

## 13 1996 -1.4989147 NA NA NA

## 14 1997 -0.6867934 -1.4989147 NA NA

## 15 1998 1.5499186 -0.6867934 -1.4989147 NA

## 16 1999 0.3648442 1.5499186 -0.6867934 -1.4989147

## 17 2000 0.6089230 0.3648442 1.5499186 -0.6867934

## 18 2001 -0.5679305 0.6089230 0.3648442 1.5499186

## 19 2002 0.2299527 -0.5679305 0.6089230 0.3648442

## 20 1996 -1.3230421 NA NA NA
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Now, we can run block_lnlp on the composite, multi-variate time series.

First, we run the algorithm to predict primary productivity dynamics, based on its

own lagged dynamics. Next, we add additional information about precipitation:

block_lnlp_output_AB <- block_lnlp(block_data, lib = composite_lib, pred =

composite_pred, columns = c("AB_tm", "AB_tm1", "AB_tm2"), target_

column = 1, stats_only = FALSE, first_column_time = TRUE)

block_lnlp_output_ABPR <- block_lnlp(block_data, lib = composite_lib, pred

= composite_pred, columns = c("AB_tm", "AB_tm1", "AB_tm2", "PR_tm", "

PR_tm1", "PR_tm2"), target_column = 1, stats_only = FALSE, first_

column_time = TRUE)

Note that each additional variable adds slightly to the predictive power of

the model.

observed_AB <- block_lnlp_output_AB[[1]]$model_output$obs

predicted_AB <- block_lnlp_output_AB[[1]]$model_output$pred

observed_ABPR <- block_lnlp_output_ABPR[[1]]$model_output$obs

predicted_ABPR <- block_lnlp_output_ABPR[[1]]$model_output$pred

par(mar = c(4,4,1,1), pty = "s", mgp = c(2.5, 1, 0), mfrow = c(1,2))

plot_range <- range(c(observed_AB, predicted_AB), na.rm = TRUE)

plot(observed_AB, predicted_AB, xlim = plot_range, ylim = plot_range, xlab

= "Observed", ylab = "Predicted", main = "Productivity (Univariate

Model)")

abline(a = 0, b = 1, lty = 2, col = "darkgrey", lwd=2)

abline(lm(predicted_AB~observed_AB), col="black", lty=3, lwd=2)

plot(observed_ABPR, predicted_ABPR, xlim = plot_range, ylim = plot_range,

xlab = "Observed", ylab = "Predicted", main = "Productivity (

Multivariate Model)", pch=2, col="red")

abline(a = 0, b = 1, lty = 2, col = "darkgrey", lwd=2)

abline(lm(predicted_ABPR~observed_ABPR), col="red", lty=3, lwd=2)
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Figure A.11: Comparison of univariate and multivariate forecasts of an-
nual aboveground productivity.
Points are actual predictions, black and red dotted lines are the lines of best fit,
and the dark grey dashed lines Including lags of precipitation appears to improve
predictions of productivity, with better coherence between observations and pre-
dictions for the multivariate model.

A.4.4 Convergent Cross Mapping

Finally, we can apply CCM to our data in order to test for causal links

among variables.

In each case, we use the embedding dimension corresponding to the “best”

embedding dimension for the variable that we are trying to predict (i.e., the puta-

tive causal process).

# A. repens:

no_xmap_inv <- ccm(composite_ts, lib=segments, pred=segments, E = bestE

[4], lib_column = "noh020tot", target_column = "invrichness", lib_

sizes = c(seq(5, 55, by=2), seq(55, 400, by=50)), num_samples = 100,

silent = TRUE)

inv_xmap_no <- ccm(composite_ts, lib=composite_lib, pred=composite_pred, E

= bestE[1], lib_column = "invrichness", target_column = "noh020tot",

lib_sizes = c(seq(5, 55, by=2), seq(55, 400, by=50)), num_samples =
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100, silent = TRUE)

n_xmap_i_means <- data.frame(ccm_means(no_xmap_inv), sd.rho = with(no_xmap

_inv, tapply(rho, lib_size, sd)))

i_xmap_n_means <- data.frame(ccm_means(inv_xmap_no), sd.rho = with(inv_

xmap_no, tapply(rho, lib_size, sd)))

# S. scoparium:

ab_xmap_inv <- ccm(composite_ts, lib=segments, pred=segments, E = bestE

[4], lib_column = "AbvBioAnnProd", target_column = "invrichness", lib_

sizes = c(seq(5, 55, by=2), seq(55, 400, by=50)), num_samples = 100,

silent = TRUE)

inv_xmap_ab <- ccm(composite_ts, lib=segments, pred=segments, E = bestE

[2], lib_column = "invrichness", target_column = "AbvBioAnnProd", lib_

sizes = c(seq(5, 55, by=2), seq(55, 400, by=50)), num_samples = 100,

silent = TRUE)

a_xmap_i_means <- data.frame(ccm_means(ab_xmap_inv), sd.rho=with(ab_xmap_

inv, tapply(rho, lib_size, sd)))

i_xmap_a_means <- data.frame(ccm_means(inv_xmap_ab), sd.rho=with(inv_xmap_

ab, tapply(rho, lib_size, sd)))

# plot output

par(mar = c(4,4,1,1))

plot(n_xmap_i_means$lib_size, pmax(0, n_xmap_i_means$rho), type = "l", col

= "red", xlab = "Library Size", ylab = "Cross Map Skill (rho)", ylim

= c(0, 0.6), lwd=2)

lines(i_xmap_n_means$lib_size, pmax(0, i_xmap_n_means$rho), col = "blue",

lwd=2)

legend(x = "topleft", legend = c("Nitrate xmap Inv. Richness", "Inv.

Richness xmap Nitrate"), col = c("red", "blue"), lwd = 2, inset =

0.02, bty="n", cex = 0.8)

abline(h=0, lty=3, col="darkgrey", lwd=2)
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# add CIs

lines(n_xmap_i_means$lib_size, n_xmap_i_means$rho+n_xmap_i_means$sd.rho,

col = "red", lty=2, lwd=2)

lines(n_xmap_i_means$lib_size, n_xmap_i_means$rho-n_xmap_i_means$sd.rho,

col = "red", lty=2, lwd=2)

lines(i_xmap_n_means$lib_size, i_xmap_n_means$rho+i_xmap_n_means$sd.rho,

col = "blue", lty=2, lwd=2)

lines(i_xmap_n_means$lib_size, i_xmap_n_means$rho-i_xmap_n_means$sd.rho,

col = "blue", lty=2, lwd=2)

plot(a_xmap_i_means$lib_size, pmax(0, a_xmap_i_means$rho), type = "l", col

= "orange", xlab = "Library Size", ylab = "Cross Map Skill (rho)",

ylim = c(0, 0.6), lwd=2)

lines(i_xmap_a_means$lib_size, pmax(0, i_xmap_a_means$rho), col = "blue",

lwd=2)

legend(x = "topleft", legend = c("Abv. Biomass xmap Inv. Richness", "Inv.

Richness xmap Abv. Biomass"), col = c("orange", "blue"), lwd = 2,

inset = 0.02, bty="n", cex = 0.8)

abline(h=0, lty=3, col="darkgrey", lwd=2)

# add CIs

lines(a_xmap_i_means$lib_size, a_xmap_i_means$rho+a_xmap_i_means$sd.rho,

col = "orange", lty=2, lwd=2)

lines(a_xmap_i_means$lib_size, a_xmap_i_means$rho-a_xmap_i_means$sd.rho,

col = "orange", lty=2, lwd=2)

lines(i_xmap_a_means$lib_size, i_xmap_a_means$rho+i_xmap_a_means$sd.rho,

col = "blue", lty=2, lwd=2)

lines(i_xmap_a_means$lib_size, i_xmap_a_means$rho-i_xmap_a_means$sd.rho,

col = "blue", lty=2, lwd=2)

In each case, results suggest that invasive richness is driven by other vari-

ables more strongly than it influences them in return. In particular, while invasion

dynamics appear to be strongly forced by soil nitrate dynamics, invasion does not
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Figure A.12: Causal drivers of species richness.
Convergent cross mapping (CCM) between species richness and nitrate (left panel)
suggests a causal effect of nitrate on species richness, but no effect in the opposite
direction. In contrast, CCM between species richness and productivity indicates
causal effects in both directions.

appear influence plot soil nitrate at all. This makes sense, as invading species in

these plots are quickly weeded out and should not have time to influence local envi-

ronmental conditions. Causal forcing between biomass and invasion, on the other

hand, may be bi-directional based on our analyses. Again, though, it makes sense

that there should only be moderate effects of invading species on plot-level biomass

(e.g., by decreasing biomass of planted species through light competition), while

effects of plot-level planted biomass on invader success should be much stronger

(e.g., through competition for space or soil resources).

A.5 Example 2: Apple-Blossom Thrips

In this next example, we will use EDM methods to re-examine the classic

apple-blossom thrips (Thrips imaginis) time series from the Wait Institute in Aus-

tralia [Davidson and Andrewartha, 1948a, Davidson and Andrewartha, 1948b].

Seasonal outbreaks of Thrips imaginis were observed to vary greatly in magni-
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tude from year to year, but large outbreaks tended to coincide across large spatial

domains. This lead to the hypothesis that regional-scale climatic factors were re-

sponsible for controlling the size of the seasonal outbreaks (what might now be

called the Moran effect).

data(thrips_block)

colnames(thrips_block)

## [1] "Year" "Month" "Thrips_imaginis" "maxT_degC" "Rain_mm"

## [6] "Season"

The first data column colnames(thrips_block)[3] contains counts of Thrips

imaginis obtained from the Global Population Dynamics Database. colnames(

thrips_block)[4] is the mean maximum daily temperature (degrees F) taken over

each month and colnames(thrips_block)[5] is the monthly rainfall (mm), both

from the Waite Institute. The final column colnames(thrips_block)[6] is a simple

annual sinusoid that peaks in December (the Austral summer) that acts as an

indicator of season.

First, we plot the data.

par(mar = c(4,4,1,1), mfrow = c(4,1), mgp = c(2.5,1,0))

time_dec <- thrips_block$Year + (thrips_block$Month)/12

plot(time_dec, thrips_block$Thrips_imaginis, type = "l", col = "green",

ylab = "Thrips")

plot(time_dec, thrips_block$maxT_degC, type = "l", col = "red", ylab = "

maxT (oC)")

plot(time_dec, thrips_block$Rain_mm, type = "l", col = "blue", ylab = "

Rain (mm)")

plot(time_dec, thrips_block$Season, type = "l", col = "magenta", ylab = "

Season")

A.5.1 Univariate Analysis

ts <- thrips_block$Thrips_imaginis

lib <- c(1, length(ts))
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Figure A.13: Time series of Apple-Blossom Thrips.
Time series for thrips abundance (green), maximum daily temperature (red),
monthly rainfall (blue), and season (magenta). Note that all the time-series
variables, particularly the mean maximum daily Temperature, show marked
seasonality.
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pred <- c(1, length(ts))

simplex_output <- simplex(ts, lib, pred, tau = 1)

par(mar = c(4,4,1,1), mgp = c(2.5, 1, 0))

plot(simplex_output$E, simplex_output$rho, type = "l", xlab = "Embedding

Dimension (E)", ylab = "Forecast Skill (rho)")
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Figure A.14: Predictability of Apple-Blossom Thrips.
Plotting forecast skill (ρ) vs. embedding dimension (E) indicates predictable dy-
namics. While there is an initial peak in the forecast skill at E = 4, the global
maximum is at E = 8. This suggests that both E = 4 and E = 8 are practical
embedding dimensions.

To test for nonlinearity, we examine both E = 4 and E = 8 to verify that

the S-maps result is robust to the choice of embedding dimension.

smap_output <- list()

smap_output[[1]] <- s_map(ts, lib, pred, E = 4)

smap_output[[2]] <- s_map(ts, lib, pred, E = 8)

par(mar = c(4,4,1,1), mgp = c(2.5, 1, 0))



139

plot(smap_output[[1]]$theta, smap_output[[1]]$rho, type = "l", xlim=c(0,4)

, ylim = c(0.2, 0.6), xlab = "Nonlinearity (theta)", ylab = "Forecast

Skill (rho)", col = "blue")

lines(smap_output[[2]]$theta, smap_output[[2]]$rho, col = "red")

legend("topright", legend = c("E = 4", "E = 8"), col = c("blue", "red"),

lwd = 1)
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Figure A.15: Nonlinearity of Apple-Blossom Thrips.
Plotting forecast skill (ρ) vs. nonlinearity (theta) demonstrates clear nonlinear
dynamics. At both E = 4 (blue) and "E = 8" (red), nonlinear models (θ > 0)
produce better predictions than the equivalent linear model (θ = 0).

The S-map (Figure A.15) results demonstrate clear nonlinearity in the

Thrips time series. This suggests that Thrips, despite the strong seasonal dy-

namics, do not simply track the environment passively, but have some intrinsic

dynamics. To look more closely at the issue of seasonal drivers, however, we turn

to convergent cross-mapping (CCM).
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A.5.2 Seasonal Drivers

Recall that there is a two-part criterion for CCM to be a rigorous test of

causality. (1) The cross-map prediction skill with the full time-series is statistically

significant. (2) Cross-map prediction demonstrates convergence, i.e. prediction

skill increases as more of the time-series is used.

Cross-map matrix

For an initial summary, we first simply compute the cross-map skill (mea-

sured with Pearson’s ρ) with the full time-series.

ncol <- dim(thrips_block)[2]-2

M_rho <- array(NA,dim=c(ncol,ncol),dimnames=list(colnames(thrips_block

[3:6]),colnames(thrips_block[3:6])))

for (i in 1:ncol){

for (j in 1:ncol){

if (i!=j){

out_temp <- ccm(thrips_block,E=8,lib_column=2+i,target_column

=2+j,

lib_sizes = dim(thrips_block)[1],replace=FALSE

, silent = TRUE)

M_rho[i,j] <- out_temp$rho

}

}

}

Correlation matrix

For comparison we also compute the lag cross-correlation, allowing lags up

to ±6 months.

M_corr <- array(NA,dim=c(ncol,ncol),dimnames=list(colnames(thrips_block

[3:6]),colnames(thrips_block[3:6])))
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for (i in 1:ncol){

for (j in 1:ncol){

if (i!=j){

cf_temp <- ccf(x=thrips_block[,2+i], y=thrips_block[,2+j],

type = "correlation", lag.max = 6, plot = FALSE)$acf

M_corr[i,j] <- max(abs(cf_temp))

}

}

}

We compare the two matrices.

Cross-map

M_rho

## Thrips_imaginis maxT_degC Rain_mm Season

## Thrips_imaginis NA 0.9239205 0.5136489 0.9551902

## maxT_degC 0.6046406 NA 0.4629704 0.9918832

## Rain_mm 0.4277785 0.8210977 NA 0.7780148

## Season 0.5619095 0.9625766 0.3944837 NA

Correlation

M_corr

## Thrips_imaginis maxT_degC Rain_mm Season

## Thrips_imaginis NA 0.4489876 0.2668395 0.4488334

## maxT_degC 0.4489876 NA 0.5949077 0.9452625

## Rain_mm 0.2668395 0.5949077 NA 0.5332935

## Season 0.4488334 0.9452625 0.5332935 NA

Notice that the lagged correlation between maxT and the seasonal indi-

cator is extremely high, and Season can almost perfectly cross-map maxT , ρ =

r M_rho["Season", "maxT_degC"]. This makes the interpretation of cross-mapping

more complicated, because we have to consider synchrony. Let’s elaborate. It is

clear from cross-mapping (or even just visual inspection) that seasonality drives

Thrips abundance. Since the monthly mean maximum temperature is almost per-

fectly synchronized to the seasons, it contains the same information as the simple
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season indicator. Any variable that can predict (cross-map) the seasonal cycle,

i.e. was influenced by seasonality, will therefore also predict maxT , regardless of

if temperature is actually the mechanism of seasonal forcing.

Convergent Cross-Mapping

With this in mind, we examine convergence in cross-map predictability.

thrips_xmap_maxT <- ccm(thrips_block, E = 8, random_libs = TRUE, lib_

column = "Thrips_imaginis", target_column = "maxT_degC", lib_sizes =

seq(10, 75, by = 5), num_samples = 300)

maxT_xmap_thrips <- ccm(thrips_block, E = 8, random_libs = TRUE, lib_

column = "maxT_degC", target_column = "Thrips_imaginis", lib_sizes =

seq(10, 75, by = 5), num_samples = 300)

thrips_xmap_Rain <- ccm(thrips_block, E = 8, random_libs = TRUE, lib_

column = "Thrips_imaginis", target_column = "Rain_mm", lib_sizes = seq

(10, 75, by = 5), num_samples = 300)

Rain_xmap_thrips <- ccm(thrips_block, E = 8, random_libs = TRUE, lib_

column = "Rain_mm", target_column = "Thrips_imaginis", lib_sizes = seq

(10, 75, by = 5), num_samples = 300, silent = TRUE)

thrips_xmap_Season <- ccm(thrips_block, E = 8, random_libs = TRUE, lib_

column = "Thrips_imaginis", target_column = "Season", lib_sizes = seq

(10, 75, by = 5), num_samples = 300)

Season_xmap_thrips <- ccm(thrips_block, E = 8, random_libs = TRUE, lib_

column = "Season", target_column = "Thrips_imaginis", lib_sizes = seq

(10, 75, by = 5), num_samples = 300)

xmap_means_maxT <- list(ccm_means(thrips_xmap_maxT),ccm_means(maxT_xmap_

thrips))

xmap_means_Rain <- list(ccm_means(thrips_xmap_Rain),ccm_means(Rain_xmap_

thrips))

xmap_means_Season <- list(ccm_means(thrips_xmap_Season), ccm_means(Season_

xmap_thrips))
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Next, we plot the cross map skill (ρ) against the library size (L):

par(mar = c(4,4,1,1), mgp = c(2.5, 1, 0), mfrow = c(2,2))

plot(xmap_means_maxT[[1]]$lib_size, pmax(0, xmap_means_maxT[[1]]$rho),

type = "l", col = "red", xlab = "Library Size", ylab = "Cross Map

Skill (rho)", ylim = c(0.2, 1))

lines(xmap_means_maxT[[2]]$lib_size, pmax(0, xmap_means_maxT[[2]]$rho),

col = "green")

abline(h=M_corr["Thrips_imaginis", "maxT_degC"], col = "black", lty = 2)

legend(x = "bottomright", legend = c("Thrips xmap maxT", "maxT xmap Thrips

"), col = c("red", "green"), lwd = 1, inset = 0.02)

plot(xmap_means_Rain[[1]]$lib_size, pmax(0, xmap_means_Rain[[1]]$rho),

type = "l", col = "blue", xlab = "Library Size", ylab = "Cross Map

Skill (rho)", ylim = c(0.1, 0.5))

lines(xmap_means_Rain[[2]]$lib_size, pmax(0, xmap_means_Rain[[2]]$rho),

col = "green")

abline(h=M_corr["Thrips_imaginis", "Rain_mm"], col = "black", lty = 2)

legend(x = "bottomright", legend = c("Thrips xmap Rain", "Rain xmap Thrips

"),

col = c("blue", "green"), lwd = 1, inset = 0.02)

plot(xmap_means_Season[[1]]$lib_size, pmax(0, xmap_means_Season[[1]]$rho),

type = "l", col = "magenta", xlab = "Library Size", ylab = "Cross Map

Skill (rho)", ylim = c(0.2, 1))

lines(xmap_means_Season[[2]]$lib_size, pmax(0, xmap_means_Season[[2]]$rho)

, col = "green")

abline(h=M_corr["Thrips_imaginis", "Season"], col = "black", lty = 2)

legend(x = "bottomright", legend = c("Thrips xmap Season", "Season xmap

Thrips"), col = c("magenta", "green"), lwd = 1, inset = 0.02)

Importantly, the results show clear evidence of convergence for Thrips cross-

mapping the climactic variables, and the ρ at maximum L greatly exceeds the linear

correlation. However, we are still left with the conundrum that maxT and to a

lesser extent Rain are easily predicted from the seasonal cycle, suggesting that
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Figure A.16: Cross mapping between Thrips abundance and potential
drivers.
Cross mapping from Thrips to temperature (“Thrips xmap maxT”, red line) sug-
gests a strong effect of temperature on Thrips abundance. In the opposite direction
(“maxT xmap Thrips”, blue line), CCM suggests a weaker effect of Thrips on tem-
perature. The same is true for rainfall, and the seasonal proxy. Cross-correlation
between the variables is indicated by a black dashed line.

Thrips abundance affects temperature and rainfall. Since this is clearly false, it

suggests that cross map skill is artificially high due to shared seasonal patterns,

and maxT and Rain may only appear to affect Thrips because of shared seasonal
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forcing.

To reframe, we would like to reject the null hypothesis that the causal effects

we measure for maxT and Rain with CCM can be solely explained by their shared

seasonality. This hypothesis is readily tested using surrogate methods.

Seasonal Surrogate Test

num_surr <- 1000

surr_maxT <- make_surrogate_data(thrips_block$maxT_degC, method = "

seasonal", T_period = 12, num_surr = num_surr)

surr_Rain <- make_surrogate_data(thrips_block$Rain_mm, method = "seasonal"

, T_period = 12, num_surr = num_surr)

rho_surr <- data.frame(maxT = numeric(num_surr), Rain = numeric(num_surr))

for (i in 1:num_surr) {

rho_surr$maxT[i] <- ccm(cbind(thrips_block$Thrips_imaginis, surr_maxT

[,i]), E = 8, lib_column = 1, target_column = 2, lib_sizes = NROW(

thrips_block), replace = FALSE)$rho

rho_surr$Rain[i] <- ccm(cbind(thrips_block$Thrips_imaginis, surr_Rain

[,i]), E = 8, lib_column = 1, target_column = 2, lib_sizes = NROW(

thrips_block), replace = FALSE)$rho

}

We now have a null distribution, and can easily estimate the p value for

rejecting the null hypothesis of mutual seasonality. Here, the p-value is estimated

as k+1
n+1

, where k is the number of “successes” (null values that exceed the true cross

map skill), and n is the number of null values computed.

(sum(rho_surr$Rain > M_rho["Thrips_imaginis", "Rain_mm"]) + 1) / (length(

rho_surr$Rain) + 1)

## [1] 0.05494505
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(sum(rho_surr$maxT > M_rho["Thrips_imaginis", "maxT_degC"]) + 1) / (length

(rho_surr$maxT) + 1)

## [1] 0.1748252

In both cases, the CCM we measure for the real time series are better

than the median expectation under the null hypothesis. For rainfall, the effect

is not significant based on the common threshold of p < 0.05, but is marginally

significant using the threshold of p < 0.10. However, the high correlation between

the maximum daily temperature averaged over a month and the seasonal cycle

makes it harder to establish significance for the effect of maxT . We note that

the original Thrips data collections were at a much higher frequency than those

available through the GPDD, and that maxT shows much larger departures from

the seasonal cycle on shorter time-scales. With more highly resolved data, it may

well be possible to establish significance, by increasing the power of our tests.

A.6 Technical Details

A.6.1 Data Input

The rEDM functions are designed to accept data in common R data formats,

namely vectors, matrices, and data.frames. Depending on the specific function, one

or the other data type is preferred. Please see the documentation associated with

individual functions for more details.

Missing data can be input using either NA or NAN. The program will automat-

ically ignore such missing values as appropriate. For instance, simplex projection

will not select nearest neighbors if any of the state vector coordinates is missing

or if the corresponding target value is missing.

Note that when there is no observed target value, it is still possible to predict

from a given state vector, if it has no missing values. Thus, it is possible to use

the software to forecast ahead from an observed state into an unobserved future.

This can be done simply by substituting NA or NAN for unknown future values.

However, be aware that the performance metrics will be computed so as to ignore

such predictions (since there are no observed values to compare against). Thus,
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the statistics (e.g., ρ, MAE, RMSE) may be computed based on fewer predictions

than those actually made by the software.

A.6.2 General Function Arguments

Many of the functions in rEDM are designed around the same prediction

engine, and so share many of the same arguments. Please see the documenta-

tion associated with individual functions to verify which parameters are applicable

as well as the default values (which can change, depending on which function is

called).

• lib

– a 2-column matrix (or 2-element vector) where each row specifies the

portions of the time series to use for attractor reconstruction (i.e., the

set of vectors that can be selected as nearest neighbors)

– e.g., lib = c(1, n) specifies that the first n rows of data are a contiguous

time series block, each point of which can be used to construct state

vectors

– by default, uses the entire input as a single contiguous segment

• pred

– (same format as lib, but specifies the portions of the time series to make

predictions for)

• norm_type

– "L2 norm" (default) or "L1 norm": specifies which distance metric to use

when doing calculations

– "L2 norm" is the standard Euclidean distance, where the distance be-

tween a vector ~x = 〈x1, x2, . . . , xn〉 and ~y = 〈y1, y2, . . . , yn〉 is computed

as
√

(x1 − y1)2 + (x2 − y2)x + · · ·+ (xn − yn)2.
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– "L1 norm" is the Manhattan norm (also known as taxicab distance),

where the distance between a vector ~x = 〈x1, x2, . . . , xn〉 and ~y =

〈y1, y2, . . . , yn〉 is computed as |x1 − y1|+ |x2 − y2|+ · · ·+ |xn − yn|.

• E

– the embedding dimension to use for attractor reconstruction

• tau

– the lag to use for attractor reconstruction; by default, set to 1

• tp

– the prediction horizon (how many steps ahead to make forecasts)

– negative values will also work

• num_neighbors

– the number of neighbors to use

– "e+1", "E+1", "e + 1", and "E + 1" will all peg this parameter to be

‘E+1‘ for each run

– values less than 1 will use all possible neighbors

• theta

– the nonlinear tuning parameter (for use with S-maps) that adjusts how

distance is factored into computation of the local linear map (0 corre-

sponds to a globally linear map, while values greater than 0 correspond

to nonlinear models where the local linear map changes as a function of

state-space)

• stats_only

– TRUE (default) or FALSE: specifies whether the output should just contain

statistics of the predictions, or also contain all the predictions that were

made
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• exclusion_radius

– sets the threshold whereby all vectors with time indices too close to the

predictee will be excluded from being considered nearest neighbors

– e.g., 1 means that vectors must have an associated time index more

than 1 away from potential nearest neighbors

– by default, set to NULL (turning this filtering off)

• epsilon

– sets the threshold whereby all vectors with distance too far away from

the predictee will be excluded from being considered nearest neighbors

– e.g., epsilon = 2 means that vectors must have be within a distance of

2 from potential nearest neighbors

– by default, set to NULL (turning this filtering off)

• silent

– TRUE or FALSE (default): specifies whether to suppress warning messages

from being printed to the R console

• save_smap_coefficients

– TRUE or FALSE (default): specifies whether to include a table of s-map

coefficients with the output

– (note that setting this to TRUE forces the full output as if stats_only =

FALSE, overriding the value for stats_only)

A.7 Applications

A.7.1 Composite Time Series

In some cases, we may have multiple time series that can serve as spatial or

ecological replicates. To treat these time series as replicates when applying EDM,
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we want to combine the data together into a single composite time series. Because

the scale may differ across time series, we typically apply a normalization routine

to linearly transform each time series to have mean = 0 and variance = 1 before

concatenating.

data(sockeye_returns)

# separate time column from data

time <- sockeye_returns$year

sockeye_returns <- sockeye_returns[,-1]

# normalize each time series

n <- NCOL(sockeye_returns)

for(j in 1:n)

{

sockeye_returns[,j] <- (sockeye_returns[,j] - mean(sockeye_returns[,j

])) / sd(sockeye_returns[,j])

}

# make composite time series

composite_ts <- data.frame(year = time,

returns = stack(sockeye_returns)$value)

Before applying EDM, however, we want to make sure that EDM will prop-

erly recognize the different time series segments as being different, so that lagged

vectors are not constructed that contain coordinates spanning multiple time series.

This is simply handled by constructing the lib and pred arguments so that the first

column designates the start of each time series segment, and the second column

designates the end.

# make composite library

segments <- cbind(seq(from = 1, by = NROW(sockeye_returns), length.out = n

), seq(from = NROW(sockeye_returns), by = NROW(sockeye_returns),

length.out = n))

composite_lib <- segments[1:5,]
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composite_pred <- segments[6:9,]

We can then use the rEDM functions as normal:

par(mar = c(4,4,1,1), mgp = c(2.5, 1, 0), mfrow = c(2,1))

simplex_output <- simplex(composite_ts, composite_lib, composite_pred)

plot(simplex_output$E, simplex_output$rho, type = "l", xlab = "Embedding

Dimension (E)", ylab = "Forecast Skill (rho)")

smap_output <- s_map(composite_ts, composite_lib, composite_pred, E = 8)

plot(smap_output$theta, smap_output$rho, type = "l", xlab = "Nonlinearity

(theta)", ylab = "Forecast Skill (rho)")
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Figure A.17: Univariate analysis of composite time series.
Simplex Projection indicates an optimal embedding dimension of 8. Using E = 8,
an S-map analysis shows clear evidence of nonlinear dynamics.
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