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Abstract 

Recursively Adaptive Randomized Multi-Tree Coding (RAR MTC)  

of Speech with VAD/CNG 

by 

Hoontaek Oh 

 

A new form of a tree codec for narrowband speech, “Recursively Adaptive Randomized 

Multi-tree Coding (RAR MTC) with VAD/CNG”, is developed based on a sample-by-sample 

analysis-and-synthesis linear predictive model by benchmarking and upgrading the tree 

coding models suggested by J. D. Gibson, W. Chang and H. C. Woo. in the 1990s. A simple 

structure of the Voice Activity Detection/Comfort Noise Generation (VAD/CNG) algorithm 

is newly applied to the prior speech tree coder to lower the average bit rate by increasing 

encoding efficiency. A backward adaptive all-pole short-term predictor, which was cascaded 

to a pitch-based long-term predictor, is replaced with a backward adaptive pole-zero predictor 

for better input waveform-tracking performance with higher accuracy of prediction. The RAR 

MTC encodes the initial samples of each voiced region by spanning a 5-level Pitch 

Compensating Quantizer (PCQ) tree, and then, our randomly interleaved 4-level and 2-level 

multitree (4-2 MTC) is used to encode the rest of voiced samples with a set of prediction 

parameters initialized by the 5-level tree coding. A newly developed gain control algorithm 

for a 2-level tree based on the polarity pattern of the past 5 excitation values advances its gain 

tracking performance. 

In our simulations, the results show that those new features we have developed enable the 

RAR MTC codec to achieve very competitive performance with a lower delay and more 
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natural tone recovery compared to the widely used standard, AMR-NB, which is built on a 

CELP structure based on a block-based predictive model.   
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Chapter 1 

 

 

 

   Introduction 

 

   1. 1. Motivation 

    For a long time, speech coding research has continued to fuel the development of speech 

codecs for digital cellular and mobile radio communications. Researchers in this field have 

continuously pushed themselves to increase the performance threshold of existing speech 

codecs in diverse ways, and most of their efforts have focused on the block-based analysis-

by-synthesis model resulting in the currently popular standardized speech codecs such as the 

Adaptive Multi-Rate (AMR) codec [1] and the Enhanced Voice Services (EVS) codec[2].   

     Unlike those speech codecs, there has been, also, the efforts to develop a new codec based 

on a sample-by-sample recursive model that behaves more closely to waveform-tracking with 

a lower delay than the block-based model. Especially, the designs of the tree coders developed 

by Iyengar and Kabal [3], Gibson and Woo [4], and Chang [5] pointed forward new non-

block-based speech codec models by exploring multiple possible signal synthesis scenarios 

with a finite number of excitation candidates and finding the best scenario among them.  

     The research of Gibson and Chang [5] proved that we can even achieve a lower fractional 

rate for a tree coder by combining diverse structures of a tree unit with a good performance of 

gain adaptation algorithms; but at that time about 30 years ago, the multi-path exploration in 
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tree coding combined with backward adaptive parameter adaptation was too complex, 

particularly at the receiver, to produce competitive quality coded speech. With major advances 

in hardware technologies, we have renewed interest in their work and investigated a new tree 

codec, “Recursively Adaptive Randomized (RAR) Multi-Tree Coding (MTC) of Speech with 

VAD/CNG”. The codec is built on a new tree structure, a randomized 5-4-2 multi-tree, 

combined with a simplified VAD/CNG for a lower bit rate with a higher encoding efficiency. 

The proposed tree structure has never been explored before, and to optimize the gain 

adaptation for the tree, and especially to better adapt the gain of the 2-level tree composing 

the 5-4-2 multi-tree, we invented a new gain adaptation rule based on the polarity information 

of the past 5 excitations. The RAR MTC codec achieves the best performance ever produced 

by a non-block-based backward adaptive codec at rates below 8 kilobits/sec (kbps). 

    In this dissertation, we first introduce the common speech codec standards built on a block-

based model, and then explain the details of our RAR MTC speech codec based on a sample-

by-sample analysis model and compare our codec’s performance to the widely installed 

standardized block-based codec, AMR. 

 

 

    1. 2.  Common Speech Codec Standards based on block-based 

Model 

    There are several key technical advancements that have greatly influenced the dominant 

designs of the most common speech coding standards. The analysis-by-synthesis model 

served as the main infrastructure of the most promising speech codecs for a narrowband 

speech by the early 1990s. Most research efforts have been made to create a good block-based 
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excitation codebook to improve reconstruction quality with a proper level of search 

complexity. 

    An early codebook design method was to use the Gaussian random codebook composed of 

Gaussian random sequences, but its encoding complexity was high because it must generate 

a sufficient number of random sequences to find a well-suitable sequence from more 

candidates. Another method is to use the multiple excitation types of codebooks which consist 

of a finite number of impulses placed throughout a speech frame, and each of them possibly 

has different polarity and amplitude [6]. This is complex to encode because it needs to 

iteratively and optimally place the impulses and set their proper amplitude. Later, Adoul and 

his colleagues proved that a sparse set of positive and negative impulses with the same 

amplitude would generate good quality of speech while running at a manageable level of 

complexity due to the sparseness of the impulses and a single common amplitude value for 

them [7, 8]. This sparse excitation codebook is called an algebraic codebook, which became 

the basis of the G.729 analysis-by-synthesis speech coding standard set by the ITU-T for 

speech coding at 8 kbps [9], and the technique was named Algebraic Code Excited Linear 

Prediction (ACELP) in G.729. The most widely used speech codecs are based on the block-

based ACELP from the 2000s to date, and the Adaptive Multi-rate (AMR) codec and the 

Enhanced Voice Services (EVS) are the best-performing and most recently standardized 

codecs. We explore the properties of AMR and EVS in the next section. 
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    1. 2. 1.  AMR       

    The Adaptive Multi-Rate (AMR) speech codec [1] was first standardized for a narrowband 

speech signal by 3GPP in October 1999 and expanded to a wideband application later in 2001. 

It synthesizes the speech signal based on the linear prediction model using an ACELP 

codebook excitation. The parameters of the linear predictive model are converted to Line 

Spectral Pairs (LSP) and encoded for transmission. The overall design is Algebraic Code-

Excited Linear Prediction (ACELP) built on a block-based analysis-and-synthesis model. The 

AMR Narrowband (AMR-NB) operates at the bit rates of 4.75, 5.15, 5.9, 6.7, 7.4, 7.95, 10.2, 

and 12.2 kbps while the AMR Wideband (AMR-WB) operates at the bit rates of 6.6, 8.85, 

12.65, 14.25, 15.85, 18.25, 19.85, 23.09, and 23.85 kbps.  

    Also, the AMR codec uses Discontinuous Transmission (DTX), Voice Activity Detection 

(VAD) and Comfort Noise Generation (CNG) to lower the average bit rate by reducing the 

bandwidth usage. AMR-NB uses a 160-sample frame for the narrowband input signal sampled 

at 8kHz, and its resultant algorithmic delay per frame is 20 ms with a 5 ms of algorithm look-

ahead delay except for 12.2 kbps mode. These codecs have been used worldwide in 3rd 

generation digital cellular systems and have played an important role as the default codecs for 

VoLTE (voice over long-term evolution) in the 4th generation digital cellular. Further details 

of this codec can be found in the standard reference [1]. 
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    1. 2. 2.  EVS       

    A newer speech codec, the Enhanced Voice Services (EVS) codec [2] was standardized in 

2014 and is based on the ACELP structure and MDCT (Modulated Discrete Cosine 

Transform) and builds on components of AMR-WB. It shows enhanced voice quality with 

better coding efficiency for narrowband (NB), wideband (WB), Super-wideband (SWB), and 

Fullband (FB) with high robustness to packet loss and delay jitter by using channel-aware 

coding. Unlike AMR which mainly focuses on speech signals, EVS shows a good 

performance not only for speech, but also for music and mixed content too. The difference 

comes from the different roles of these two codecs. They both can detect the voice and other 

meaningful audio sources having a periodic tone like music, but EVS can additionally classify 

the meaningful audio source into a voice, music, or mixed, so depending on the classification 

result, EVS chooses the best encoding scheme. EVS can switch its operation bit rate every 20 

ms based on using the standardized ERVC-NW (enhanced variable rate narrowband-

wideband) codec, so it can operate at the bit rates from 5.9 kbps to 128 kbps depending on 

channel bandwidths, and the bit rate can be switched every 20 ms. Another advantage is that 

it is backward compatible with AMR-WB, and it has a great extent of new pre-processing and 

post-processing algorithms. Although the newer codec, EVS, is designed to work for a wider 

frequency range of audio sources with better performance than AMR in general, AMR-

NB/WB was released earlier than EVS and is less complex and is still widely adopted in 

mobile voice communications. 

    Compared to these codecs based on the block-analysis-and-synthesis model, we discuss our 

efforts to build a speech codec based on the sample-by-sample approach in the next section. 
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    1. 3.  Speech Codec Research for Sample-by-Sample Approach 

     Unlike the most popular block-based speech codecs like AMR and EVS, there were also 

other early efforts to develop a new speech codec based on the sample-by-sample approach. 

The sample-by-sample approach encodes and decodes a signal sequentially in every sample 

so that a codec has a much simpler structure than block-based codecs with lower time delay. 

The classic speech coding technique, Pulse Code Modulation (PCM) [10], is one of the 

examples based on a sample-by-sample method, and when it is combined with predictive 

coding to quantize and encode the prediction error instead of the original signal’s amplitude, 

it is called a Differential Pulse Code Modulation (DPCM) [11]. If we adapt the quantization 

step size from DPCM to increase SNR, we call it an Adaptive Differential Pulse Code 

Modulation (ADPCM) [12]. As a waveform coder, ADPCM processes the input on a sample-

by-sample basis, so the algorithmic delay itself is just a single sample period, and its encoding 

and decoding algorithm can be much simpler than ACELP. A brief information about 

ADPCM can be found in Appendix.   

     The concept of Tree Coding can be considered a variation of ADPCM. In the following 

section, we describe the general concept of Tree Coding for speech and how it offers many 

performance benefits. 

  

 

    1. 3. 1.  Tree Coding       

    The concept of Tree Coding in source coding is basically to generate multiple excitation 

sequences with different outputs and transmit the optimal excitation sequence generating the 

best output. Although a low look-ahead delay is necessarily accompanied, it allows existing 
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single-sequence-output encoders to have better performance, and we may design Tree Coding 

in myriad ways depending on the developer’s imagination or requirements of a target system. 

Tree Coding of a speech signal was first suggested by Anderson and Bodie in the early 1970s 

[13], and in the 1990s, Gibson, Chang, and Woo published their research work about more 

advanced and promising structures of a speech Tree Coder based on adaptive predictive 

coding models [4] [5] while implying more potential of a Tree Coder to be explored in the 

future. 

 

 

 

 

 

 

 

    Figure 1 shows a general block diagram of a Tree Coder for speech coding. The Tree Search 

module generates all possible excitation sequences to some depth and passes each of them 

through a code generator that reconstructs the signal. In our research model, we initially 

adopted the same predictive model for the code generator as [4] [5]. Once the error sequence 

between the original speech signal and the reconstructed signal is calculated, the distortion is 

measured by perceptually-weighted-filtering and mean-squaring the weighted encoding error 

for each of the candidate excitation sequences. Finally, the Tree Search module picks the best 

sequence with the minimum weighted distortion and releases one or multiple symbols of the 

best path. The symbol release rule is covered more deeply in a later chapter. 

< Fig 1.  Tree Coder > 
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    The tree can be designed in a myriad number of ways depending on the required 

performance for the target system. The rate of the tree code is calculated as 𝑅 =

1

𝛽
log 𝛼  𝑏𝑖𝑡𝑠/𝑠𝑎𝑚𝑝𝑙𝑒  where 𝛼  is the number of branches/node and 𝛽  is the number of 

excitation values/branch. The 4-level tree in Figure 2 has 𝛼 = 4 and 𝛽 = 1, and as a result, it 

provides 𝑅 = 2 𝑏𝑖𝑡𝑠/𝑠𝑎𝑚𝑝𝑙𝑒. 

 

 

 

 

 

 

 

 

    A tree can have a fractional rate by setting 𝛼  and 𝛽  differently or combining multiple 

different shapes of trees. In Gibson and Woo’s work [4], the tree is randomly populated by 

using a Gaussian codebook with 𝛼 = 32 and 𝛽 = 4, so the rate is 𝑅 = 1.25 𝑏𝑖𝑡𝑠/𝑠𝑎𝑚𝑝𝑙𝑒. 

Another example is a 4-2 multi-tree in Figure 3 which was explored in Gibson and Chang’s 

paper [5]. The 4-2 multi-tree is a combination of a 4-level tree and a 2-level tree shown. Since 

the rate for a 4-level tree is 2, and the rate for a 2-level tree is 1, the resultant average 𝑅 for a 

4-2 multitree is 1.5 𝑏𝑖𝑡𝑠/𝑠𝑎𝑚𝑝𝑙𝑒.  

 

 

< Fig 3.  4-2 Multi-Tree > < Fig 2.  4-level Tree > 
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    1. 3. 2.  Introduction of Recursively Adaptive Randomized 

Multi-Tree Coding (RAR MTC) of Speech with VAD/CNG 

    Gibson, Chang, and Woo’s research work [4] [5] showed surprising performance with low 

delay by applying Tree Coding based on a predictive coding model with backward adaptation. 

However, as the requirement for low time delay was dropped by standards bodies in the 1990s, 

the block-based speech codecs have received more attention from researchers, and the 

research of tree coding of speech has not been performed at all for a long time until we 

restarted this research. Waveform tracking and low delay are the still big advantages of tree 

coding, and prior research on tree coding left many research directions unexplored.  

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑈𝑛𝑣𝑜𝑖𝑐𝑒𝑑  
𝑜𝑟 

𝑆𝑖𝑙𝑒𝑛𝑐𝑒  𝑠ሺ𝑛ሻ 𝑆𝐼𝐷 

𝑜𝑟 

𝑆𝑁𝑈 

𝑥ሺ𝑛ሻ 

𝑉𝐴𝐷 
𝐶𝑁𝐺 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 
𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

𝑉𝑜𝑖𝑐𝑒𝑑 

𝑠ሺ𝑛ሻ 

𝑥ሺ𝑛ሻ 
𝑒ሺ𝑛ሻ 𝑒𝑃𝑊𝐹ሺ𝑛ሻ 𝐷 

𝑒𝑞ሺ𝑛ሻ 𝑃𝑎𝑡ℎ 

𝑃𝑊𝐹 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

𝑇𝑟𝑒𝑒 

𝑆𝑒𝑎𝑟𝑐ℎ 
𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 

+ 

− 

 𝐿𝑃 𝑆𝑃1 

+ 

+ 

+ 

+ 

𝑆𝑃2 
+ + 

𝑥ො𝑆𝑃ሺ𝑛ሻ 

𝑥ො𝐿𝑃ሺ𝑛ሻ 

𝑥𝑟ሺ𝑛ሻ 

𝑒𝑆𝑃ሺ𝑛ሻ 
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𝑻𝒓𝒆𝒆 𝑪𝒐𝒅𝒆𝒓 

𝑪𝒐𝒅𝒆 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒐𝒓 

< Fig 4.  Block Diagram of RAR MTC with VAD/CNG > 
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    First of all, we newly added our simplified version of Voice Activity Detection (VAD) / 

Comfort Noise Generation (CNG) to lower the average bit rates. For the structure of a tree, 

we created a 5-4-2 switchable Multi-Tree which is composed of three different tree units; 5-

level, 4-level, and 2-level tree units. Also, we apply a variable symbol release rule to decrease 

the bit rates while minimizing the loss of sound quality for voiced speech. In addition, we 

devised a new gain adaptation rule for a 2-level tree for better waveform tracking. For a code 

generator inside tree coding, we used the same form of the backward adaptive short-term and 

long-term linear predictors in a cascaded form as Gibson, Chang, and Woo’s papers [8] [9], 

but we reoptimized the controlling factors for their adaptation algorithms. The re-optimization 

of controlling factors has been done for the Perceptual Weighting Filter (PWF) too.  

    Our new speech tree coder shows over a 3.5 PESQ-MOS score which is the best ever 

achieved by recursive backward adaptive tree coding of speech. The performance is quite 

competitive to the AMR-NB codec with similar PESQ-MOS scores at 12.2 kbps in voiced 

regions. In the following chapters, we categorize our speech codec (RAR MTC) into several 

blocks based on their distinct functions in Figure 4 and go through the details of them to 

elaborate their roles and provide new insights.   
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Chapter 2 

 

 

    VAD/CNG 

 

    2. 1. Introduction 

    The most common speech codecs, AMR and EVS have their own state-of-art VAD/CNG 

modules to switch operational modes for high efficiency of encoding scheme depending on 

the information of the input signal. Since the prior tree coding works [4] [5] before our 

research did not apply the VAD/CNG to their research models, we incorporated a new version 

of the VAD/CNG module in our tree coder. Our VAD/CNG has a simpler structure than AMR 

or EVS, and it was intended to evaluate the benefits and algorithmic performance trade-off of 

a VAD/CNG module in a speech codec while mainly focusing on the advancement of the 

actual encoding scheme, a tree coder. 

    Once VAD/CNG is equipped, the encoder does not directly pass the segmentized input 

signal to the actual tree coder. Instead, the input signal is sent to VAD first to judge which 

mode will be used for encoding. In this chapter, we first cover the general role of the VAD 

module with the specific algorithms about how it categorizes the input and how we encode 

the input segments which are not encoded by a tree coder, and finally, how a decoder 

reconstructs the signal, using a Comfort Noise, from the transmitted information for the non-

tree-coding data. 
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    2. 2. Voice Activity Detection (VAD) 

 

 

 

 

 

 

 

    As we can see in the much-simplified block diagram of our codec, Figure 5, once the input 

signal, 𝑥ሺ𝑛ሻ, comes in, it passes through a VAD module, and the speech signal is segmented 

for voice activity detection based on a block-based analysis. To detect the activity of a voice 

signal in each input signal segment, a Voice Activity Detection (VAD) module calculates 

several feature parameters from the input segment and classifies the input segment into 2 

modes; “Voiced” (V) and “Unvoiced” (UV) or “Silence” (S). When the input is classified as 

“Voiced”, the segment is transferred to and encoded by a tree coder. For the “Unvoiced” and 

“Silence” segments, the prediction coefficients and their prediction gain are calculated based 

on a block-based least squares method, and the noise parameters are quantized and transmitted 

to a receiver. Since transmitting noise parameters uses much fewer bits than encoding the 

input segment, the VAD substantially decreases the average bit rate while preserving sound 

quality. In the following section, the input classification algorithm and the feature extraction 

algorithm for “UV” and “S” modes are explored. 

 

 

𝑠ሺ𝑛ሻ 

𝑆𝐼𝐷 𝑜𝑟 𝑆𝑁𝑈 

𝑥ሺ𝑛ሻ 𝑉𝐴𝐷 𝑇𝑟𝑒𝑒 𝐶𝑜𝑑𝑒𝑟 

𝐶𝑁𝐺 
𝐹𝑒𝑎𝑡𝑢𝑟𝑒 
𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

𝑉𝑜𝑖𝑐𝑒𝑑 

𝑈𝑛𝑣𝑜𝑖𝑐𝑒𝑑 
𝑜𝑟 

𝑆𝑖𝑙𝑒𝑛𝑐𝑒 

𝑥ሺ𝑛ሻ ∶ 𝐼𝑛𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙 

𝑠ሺ𝑛ሻ ∶ 𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑇𝑟𝑒𝑒 𝑃𝑎𝑡ℎ 𝑆𝑦𝑚𝑏𝑜𝑙 

𝑉𝐴𝐷 ∶ 𝑉𝑜𝑖𝑐𝑒 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝐷𝑒𝑐𝑡𝑖𝑜𝑛 

𝐶𝑁𝐺 ∶ 𝐶𝑜𝑚𝑓𝑜𝑟𝑡 𝑁𝑜𝑖𝑠𝑒 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑆𝐼𝐷 ∶ 𝑆𝑖𝑙𝑒𝑛𝑐𝑒 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 

𝑆𝑁𝑈 ∶ 𝑆𝑖𝑙𝑒𝑛𝑐𝑒 𝑁𝑜 𝑈𝑝𝑑𝑎𝑡𝑒 

< Fig 5.  Simplified Block Diagram of RAR MTC with VAD/CNG > 
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    2. 2. 1.  Mode Classification 

    The input signal is first segmented by 𝑁𝑣𝑎𝑑 samples in length for a block-based analysis for 

Voice Activity Detection (VAD). To classify the input segment, 𝑥ሺ𝑛ሻ, the VAD calculates the 

power of the input segment, 𝑃𝑡𝑜𝑡𝑎𝑙, and zero-crossing rates, 𝑍𝐶𝑅,  

𝑃𝑡𝑜𝑡𝑎𝑙 =
1

𝑁𝑣𝑎𝑑
∑ 𝑥2ሺ𝑛ሻ
𝑁𝑣𝑎𝑑−1
𝑛=0    𝑤ℎ𝑒𝑟𝑒 𝑁𝑣𝑎𝑑 = 128 

𝑍𝐶𝑅 =
1

2𝑁𝑣𝑎𝑑
∑ |𝑠𝑔𝑛[𝑥ሺ𝑛ሻ] − 𝑠𝑔𝑛[𝑥ሺ𝑛 − 1ሻ]|

𝑁𝑣𝑎𝑑−1

𝑛=0

   𝑤ℎ𝑒𝑟𝑒 𝑁𝑣𝑎𝑑 = 128. 

   As a next step, the VAD multiplies a Hamming window, 𝑤ሺ𝑛ሻ, to the input segment for 

more accurate analysis on the original input signal’s frequency spectrum  

𝑥𝑤ሺ𝑛ሻ = 𝑥ሺ𝑛ሻ ∙ 𝑤ሺ𝑛ሻ  

The Hamming-windowed input segment is Fourier-transformed to calculate a low-frequency-

band power, 𝑃𝐹≤𝐹𝑡ℎ, for the frequencies, 𝐹 ≤ 𝐹𝑡ℎ. Finally, by using 𝑃𝑡𝑜𝑡𝑎𝑙, 𝑍𝐶𝑅, and 𝑃𝐹≤𝐹𝑡ℎ , 

we make a VAD decision based on the following algorithm 

                               {

𝐼𝑓 𝑃𝑡𝑜𝑡𝑎𝑙 ≤ 𝑃𝑡ℎ,   "𝑆𝑖𝑙𝑒𝑛𝑐𝑒"                                                       
𝐸𝑙𝑠𝑒 𝑖𝑓 𝑃𝐿𝑃𝐹 < 𝑃𝐿𝑃𝐹_𝑡ℎ 𝑎𝑛𝑑 𝑍𝐶𝑅 > 𝑍𝐶𝑅𝑡ℎ,   "𝑈𝑛𝑣𝑜𝑖𝑐𝑒𝑑"

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, "𝑉𝑜𝑖𝑐𝑒𝑑"                                                                  

 

From the above algorithms, we see that the block size 𝑁𝑣𝑎𝑑  impacts several system 

characteristics including algorithmic delay, average bit rate, and decision quality. As we 

increase the size of a VAD block, it increases the algorithmic delay for looking ahead, but it 

lowers the average bit rate because fewer silence information packets, SID or SNU, are 

transmitted in Silence or Unvoiced regions. The block size, also, affects the quality of the 

decision. The decision sharpness is substantially important for encoding the start and the end 

of Voiced regions. Depending on the size of the block, we may lose the chance to encode the 

initial voiced samples, or we may have to inefficiently encode too many Silence or Unvoiced 

(1) 

(2) 

(3) 

(4) 
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samples by using a Tree Coder. For a relatively short size of a block, a sharper decision can 

be made at the start and the end of the voiced regions. In our simulations, we tested 𝑁𝑣𝑎𝑑 =

40, 60, 80, 120, 140, 160 and found that 𝑁𝑣𝑎𝑑 = 120 is suitable to our audio sample files, but 

we slightly adjusted the value to  𝑁𝑣𝑎𝑑 = 128 which is the power of 2. As a result, the look-

ahead time delay caused by our VAD is 16 ms. 

    In addition to the block size, we need to set proper values of threshold parameters for 

classification algorithms. First, we started optimization for the power threshold 𝑃𝑡ℎ =

10−𝑘   𝑤ℎ𝑒𝑟𝑒  𝑘 = 1, 2, … , 8 , and 𝑘 = 6  showed the best quality for classifying Silence 

regions. To find a better value, we tested another set 𝑃𝑡ℎ = 𝑚 × 10−6 𝑤ℎ𝑒𝑟𝑒 𝑚 = 1, 2, … , 8, 

and finally, 𝑃𝑡ℎ = 5 × 10
−6 was chosen as the best from our test values.  

    For the lower-frequency-band power 𝑃𝐿𝑃𝐹_𝑡ℎ, it is calculated over the frequencies 𝐹 ≤ 𝐹𝑡ℎ, 

and the frequency threshold value 𝐹𝑡ℎ = 1.5 𝑘𝐻𝑧 was chosen by observing the waveforms 

and the spectrograms of the Unvoiced signals we manually classified. 𝑃𝐿𝑃𝐹_𝑡ℎ = 0.00544 was 

searched by gradually increasing from 0.001 to 0.006, and then, the optimal zero-crossing rate 

threshold 𝑍𝐶𝑅𝑡ℎ = 0.25  was found from the test set 𝑍𝐶𝑅𝑡ℎ = 0.01𝑚 𝑤ℎ𝑒𝑟𝑒 𝑚 =

5, 6, … , 40.  

    Again, our VAD algorithm is just a simple basic level compared to state-of-art quality of 

VADs from AMR or EVS, and the performance may not be as outstanding as the standardized 

codecs utilizing the advanced algorithms based on more sophisticated signal analysis with a 

wider mode selection. Accordingly, our codec would be improved if we adopt the advanced 

VAD/CNG techniques from the recent standardized speech codecs.  
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   2. 2. 2. CNG Parameters Extraction 

    Once the input segment is classified as “Silence”, the input segment is analyzed based on 

a linear prediction model as follows  

𝑥ሺ𝑛ሻ = ∑𝑎𝑘𝑥ሺ𝑛 − 𝑘ሻ

𝐿𝐶𝑁

𝑘=1

+ 𝑒𝑝ሺ𝑛ሻ 

𝑎𝑘 ∶ 𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 

𝑒𝑝ሺ𝑛ሻ ∶ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 

𝑘 = 1, 2, … , 𝐿𝐶𝑁 

The linear prediction coefficients, 𝑎𝑘, are calculated based on the autocorrelation method 

with the least-square error. The autocorrelation function can be obtained as following [14] 

𝑅ሺ𝑘ሻ =
1

𝐿𝐶𝑁
∑ 𝑥ሺ𝑛ሻ 𝑥ሺ𝑛 + |𝑘|ሻ

𝐿𝐶𝑁−|𝑘|−1

𝑛=0

 

With 𝑅ሺ𝑘ሻ, we use the following efficient recursive procedure to calculate 𝑎𝑘 [14] 

𝐿𝑒𝑡 𝐸ሺ0ሻ = 𝑅ሺ0ሻ 

𝑝𝑘 =
𝑅ሺ𝑘ሻ − ∑ 𝑎𝑙

ሺ𝑘−1ሻ𝑅ሺ𝑘 − 𝑙ሻ𝑘−1
𝑙=1

𝐸ሺ𝑘−1ሻ
,    1 ≤ 𝑘 ≤ 𝐿𝐶𝑁 

𝑎𝑘
ሺ𝑘ሻ = 𝑝𝑘 

𝑎𝑙
ሺ𝑘ሻ = 𝑎𝑙

ሺ𝑘−1ሻ − 𝑝𝑙 𝑎𝑘−𝑙
ሺ𝑘−1ሻ,    1 ≤ 𝑙 ≤ 𝑘 − 1 

𝐸ሺ𝑘ሻ = ሺ1 − 𝑝𝑘
2ሻ 𝐸ሺ𝑘−1ሻ 

From the above procedures, 𝑝𝑘 is the set of Partial Correlation (PARCOR) coefficients or 

reflection coefficients, and  𝐸ሺ𝑘ሻ  is the mean squared prediction error for the 𝑘 -th order 

prediction. PARCORs have the property that if |𝑝𝑘| ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 𝑣𝑎𝑙𝑢𝑒𝑠 , the synthesis 

process is stable. A stable set of linear prediction coefficients can be turned into an unstable 

(5) 

(6) 

(10) 

(11) 

(8) 

(9) 

(7) 
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set by quantization or other transmission coding, but PARCOR coefficients are relatively less 

sensitive to quantization. For these reasons, we transmit the PARCORs instead of the linear 

prediction coefficients (LPC), with the prediction noise power, 𝐸ሺ𝐿𝐶𝑁ሻ. 

       

 

 

 

 

 

 

    2. 2. 3. Quantization of CNG Parameters 

    To transmit PARCORs and the prediction noise power as a bit stream, the quantities are 

quantized. For PARCORs, a different dynamic range and bit allocations of symmetric mid-

rise uniform quantizers in Figure 6 were used for each of the PARCORs as in Table 1.  

  

 

 

 

 

 

 

 

 

Table 1. Dynamic Range and Bit Allocations of 

Symmetric Mid-rise Uniform Quantizers for PARCORs 
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Their dynamic ranges are set by observing the unquantized PARCORs in “Silence” regions 

for our sample files, and the quantization bit-depths are chosen depending on the sensitivity 

of each order’s PARCOR coefficient.  

 

 

 

 

 

 

 

 

𝑁𝐶𝐵 

𝑧𝑠𝑜𝑟𝑡𝑒𝑑 ∶ 𝑆𝑜𝑟𝑡𝑒𝑑 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐷𝑎𝑡𝑎 𝑆𝑒𝑡 

𝑁𝐶𝐵 ∶ 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐷𝑎𝑡𝑎 

∴ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝐵 ∶  𝑦𝑘 = 𝑀𝑒𝑎𝑛 𝑜𝑓 𝐺𝑟𝑜𝑢𝑝 "𝑘"  

< Fig 7. Initial Codebook from Training Data Set for Non-uniform Quantizer > 

𝑦ሺ𝑛ሻ 

𝑢ሺ𝑛ሻ 

… 

𝐷 = 𝑚𝑎𝑥{|𝑝𝑘|} 

𝐷

2𝑚 − 1
 

3𝐷

2𝑚 − 1
 

𝑚 ∶ 𝐵𝑖𝑡-𝐷𝑒𝑝𝑡ℎ 

𝑢ሺ𝑛ሻ ∶ 𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑟 𝐼𝑛𝑝𝑢𝑡 

𝑦ሺ𝑛ሻ ∶ 𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 

 

< Fig 6. Symmetric Mid-rise Uniform Quantizer for PARCORs > 
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    For the prediction noise power, we used a non-uniform quantizer with 5 bits. To optimize 

a codebook of the quantizer, we build up the training data set by collecting unquantized 

prediction error power quantities in each segment of “Silence” regions for all our sample files. 

The training data set is passed through the non-uniform quantizer with the initial code book 

in Figure 7, 𝐶𝐵 = {𝑦1, 𝑦2, … , 𝑦32}, based on the nearest neighbor rule, and by averaging each 

group of inputs which produce the same output, the CB is updated. This process is repeated 

500 times to get the final CB. To get the initial CB, we sorted the training data set in an 

increasing magnitude order and divide the sorted data sequence into the same size of total 32 

groups except for the last group, which is the remainder after grouping the first 31 groups. 

 

 

 

 

    2. 2. 4.  SID/SNU 

    The quantized CNG parameters are not always transmitted to a receiver. If the parameters 

for the current input segment are close enough to the ones for the previous input segment, the 

transmitter sends a “Silence No Update (SNU)” packet which means that the receiver does 

not need to update its CNG parameters from the previous set. However, if the new parameters 

are quite distant from the older ones, a “Silence Information Descriptor (SID)” packet is 

transmitted including the new quantized CNG parameters.  The exact algorithm for judging 

which CNG packet will be transmitted is shown below. 
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{
𝐼𝑓 ‖𝑎𝑛𝑒𝑤 − 𝑎𝑜𝑙𝑑‖

2
> 𝑎𝑡ℎ = 0.05  𝑜𝑟  

𝐸𝑜𝑙𝑑
ሺ𝐿𝐶𝑁ሻ − 𝐸𝑛𝑒𝑤

ሺ𝐿𝐶𝑁ሻ

𝐸𝑜𝑙𝑑
ሺ𝐿𝐶𝑁ሻ

> 𝐸𝑡ℎ
ሺ𝐿𝐶𝑁ሻ = 0.4,     𝑠𝑒𝑛𝑑 "𝑆𝐼𝐷"

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   𝑠𝑒𝑛𝑑 "𝑆𝑁𝑈"

 

𝑎𝑜𝑙𝑑 ∶ 𝑂𝑙𝑑 𝐶𝑁𝐺 𝐿𝑃𝐶 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 

𝑎𝑛𝑒𝑤 ∶ 𝑁𝑒𝑤 𝐶𝑁𝐺 𝐿𝑃𝐶 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 

𝐸𝑜𝑙𝑑
ሺ𝐿𝐶𝑁ሻ: 𝑂𝑙𝑑 𝐶𝑁𝐺 𝐿𝑃𝐶 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 𝑃𝑜𝑤𝑒𝑟 

𝐸𝑛𝑒𝑤
ሺ𝐿𝐶𝑁ሻ: 𝑁𝑒𝑤 𝐶𝑁𝐺 𝐿𝑃𝐶 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 𝑃𝑜𝑤𝑒𝑟. 

 

The threshold values from the above algorithm are properly chosen through multiple 

simulations with different values, from 0.01 to 0.1 by 0.01 increment for 𝑎𝑡ℎ, from 0.1 to 0.5 

by 0.1 increment for 𝐸𝑡ℎ
ሺ𝐿𝐶𝑁ሻ.  

    SID and SNU are classified by using a single header bit, and the size of SID is 53 bits = 48 

bits (PARCORS) + 5 bits (Prediction Error Power). Although the header bit is used for 

classifying the two different noise packets, the usage of SNU decreases the average bit rate 

by removing unnecessary updates. 

 

 

 

    2. 2. 5.  Comfort Noise Generation (CNG) 

    Once a decoder receives the SID or SNU frame, it updates the comfort noise parameters 

depending on the information in the frame and generates a comfort noise by using the updated 

noise parameters based on an autoregressive model as following 

(12) 
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𝑥𝑟ሺ𝑛ሻ = ∑𝑎𝑘𝑥𝑟ሺ𝑛 − 𝑘ሻ

𝐿𝐶𝑁

𝑘=1

+ 𝑒𝑐𝑛𝑔ሺ𝑛ሻ 

𝑥𝑟ሺ𝑛ሻ ∶ 𝐶𝑜𝑚𝑓𝑜𝑟𝑡 𝑁𝑜𝑖𝑠𝑒 

𝑎𝑘 ∶ 𝐿𝑃𝐶 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑃𝐴𝑅𝐶𝑂𝑅𝑠 

𝑒𝑐𝑛𝑔ሺ𝑛ሻ ~𝑁(0, 𝐸
ሺ𝐿𝐶𝑁ሻ) 

𝐸ሺ𝐿𝐶𝑁ሻ ∶ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑃𝑜𝑤𝑒𝑟 

 

    For PARCORs, they are converted into linear prediction coefficients and applied to the 

synthesis model. This CNG process does not happen at the transmitter because an encoder has 

no need to recover the comfort noise signal, instead, it just delivers the required data for signal 

synthesis at a decoder. Furthermore, since we are not extending the concept of tree coding to 

this CNG process, an encoder has no reason to recover and analyze the signal.  

    It may achieve better sound performance when we increase the order of PARCORs and the 

quantization bit allocations while resulting in the higher average bit rates of the whole 

encoding process, so the specifications for these parameters can be varied depending on the 

requirement of the intended system. 

    Unlike the unvoiced segment (UV), the silence (S) segment is considered the pure low-

energy meaningless noise, so when VAD/CNG was first researched, the silence was once 

replaced with a pure zero signal, total silence, and there were several unexpected negative 

effects on the listener side. First, people are likely to think that their connection is lost during 

total silence. Secondly, the sudden start of speech signals after total silence often incurs 

uncomfortable and unnatural ear experiences, and it makes the sound very “choppy” so that it 

(13) 
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makes people hard to understand. To avoid these issues, CNG is substantially essential to a 

receiver in voice communication systems. 
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Chapter 3 

 

   Code Generator 

 

    3. 1. Introduction 

    When the input block is classified as “Voiced”, the input is handed over to the Tree Coder. 

The “Tree Search” module in Figure 1 generates multiple excitation sequence candidates and 

passes them to a code generator, and then for each of the excitation sequences, the code 

generator synthesizes output signals.  

 

 

 

 

 

 

 

 

 

 

 

𝐿𝑃 𝑆𝑃1 

+ 

+ 

+ 

+ 

𝑆𝑃2 
+ + 

< Fig 8.  Code Generator > 

 

𝑥𝑟ሺ𝑛ሻ ∶ 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 

𝑥ො𝑆𝑃1ሺ𝑛ሻ ∶ 𝑆ℎ𝑜𝑟𝑡-𝑡𝑒𝑟𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ሺ𝑃𝑜𝑙𝑒𝑠 𝑂𝑛𝑙𝑦ሻ 

𝑥ො𝑆𝑃2ሺ𝑛ሻ ∶ 𝑆ℎ𝑜𝑟𝑡-𝑡𝑒𝑟𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ሺ𝑍𝑒𝑟𝑜𝑠 𝑂𝑛𝑙𝑦ሻ 

𝑥ො𝑆𝑃ሺ𝑛ሻ ∶ 𝑆ℎ𝑜𝑟𝑡-𝑡𝑒𝑟𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (𝑥ො𝑆𝑃1ሺ𝑛ሻ + 𝑥ො𝑆𝑃2ሺ𝑛ሻ) 

𝑥ො𝐿𝑃ሺ𝑛ሻ ∶ 𝐿𝑜𝑛𝑔-𝑡𝑒𝑟𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

𝑒𝑆𝑃ሺ𝑛ሻ ∶ 𝑆ℎ𝑜𝑟𝑡-𝑡𝑒𝑟𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 

𝑒𝑞ሺ𝑛ሻ ∶ 𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑔𝑛𝑎𝑙 

𝑥ො𝑆𝑃ሺ𝑛ሻ 

𝑥ො𝐿𝑃ሺ𝑛ሻ 

𝑥𝑟ሺ𝑛ሻ 𝑒𝑞ሺ𝑛ሻ 
𝑒𝑆𝑃ሺ𝑛ሻ 

𝑥ො𝑆𝑃1ሺ𝑛ሻ 𝑥ො𝑆𝑃2ሺ𝑛ሻ 

𝑠ሺ𝑛ሻ 

𝑥ሺ𝑛ሻ 
𝑒ሺ𝑛ሻ 𝑒𝑃𝑊𝐹ሺ𝑛ሻ 𝐷 

𝑥𝑟ሺ𝑛ሻ 

𝑒𝑞ሺ𝑛ሻ 
𝑃𝑎𝑡ℎ 

𝑃𝑊𝐹 

𝐶𝑜𝑑𝑒 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

𝑇𝑟𝑒𝑒 

𝑆𝑒𝑎𝑟𝑐ℎ 
𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 

+ 

− 

< Fig 1.  Tree Coder > 

𝑥ሺ𝑛ሻ ∶ 𝐼𝑛𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙 

𝑥𝑟ሺ𝑛ሻ ∶ 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 

𝑒𝑞ሺ𝑛ሻ ∶ 𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑔𝑛𝑎𝑙 

𝑒ሺ𝑛ሻ ∶ 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 

𝑒𝑃𝑊𝐹ሺ𝑛ሻ ∶ 𝑃𝑊𝐹-𝑒𝑑 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑢𝑟𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 

𝐷 ∶ 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 

𝑠ሺ𝑛ሻ ∶ 𝑇𝑟𝑒𝑒 𝑃𝑎𝑡ℎ 𝑆𝑦𝑚𝑏𝑜𝑙 

𝑃𝑊𝐹 ∶ 𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝐹𝑖𝑙𝑡𝑒𝑟 
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Based on the general concept of a Tree Coder, the structure of the code generator depends on 

a codec designer, but in our codec, we adopted a predictive coding structure as the 

predecessors did in tree coding of speech [4] [5]. 

    The code generator in Figure 8 is composed of a long-term and short-term adaptive 

predictor in a cascaded form. When an excitation comes to a code generator, the first stage of 

signal synthesis is performed by the long-term predictor. The output of the first stage becomes 

the excitation to a short-term predictor which is the second stage of signal synthesis. The 

sequence of the two predictors has been set by interchanging their orders and finding the best 

one. In the following sections, the details of the adaptive predictors are introduced. 

 

    3. 2. Backward Adaptive Long-term Predictor 

 

 

 

 

 

 

    The long-term predictor uses the feature of a speech signal, a pitch or long-term 

redundancy, for its prediction. When we plot the voiced regions of a speech signal in the time 

domain, we can see a certain shape of a waveform periodically repeats, and the period of the 

periodic signal is called a pitch period. By using the periodicity, we can intuitively predict the 

current input value by using a 3-tap of input values centered at the time a pitch period ago as 

follows [15] 

𝑥𝑟.𝐿𝑃ሺ𝑛ሻ ∶ 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 

𝑥ො𝐿𝑃ሺ𝑛ሻ ∶ 𝐿𝑜𝑛𝑔-𝑡𝑒𝑟𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

𝑒𝑞ሺ𝑛ሻ ∶ 𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑔𝑛𝑎𝑙 

𝑑𝑘ሺ𝑛ሻ ∶ 𝐿𝑜𝑛𝑔-𝑡𝑒𝑟𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ሺ𝑜𝑟 𝑃𝑖𝑡𝑐ℎሻ 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 

 

𝐿𝑃 

+ 

+ 

𝑥ො𝐿𝑃ሺ𝑛ሻ 

𝑥𝑟ሺ𝑛ሻ 𝑒𝑞ሺ𝑛ሻ 

𝑑𝑘ሺ𝑛ሻ 

< Fig 9.  Backward Adaptive Long-term Predictor > 
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𝑥ො𝐿𝑃ሺ𝑛ሻ = ∑ 𝑑𝑘ሺ𝑛ሻ 𝑥𝑟.𝐿𝑃ሺ𝑛 − 𝑃 − 𝑘ሻ

+1

𝑘=−1

 

𝑥ො𝐿𝑃 ∶ 𝐿𝑜𝑛𝑔-𝑡𝑒𝑟𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ሺ𝐿𝑃ሻ,    𝑥𝑟.𝐿𝑃 ∶ 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑆𝑖𝑛𝑔𝑎𝑙 𝑓𝑟𝑜𝑚 𝐿𝑃 𝑆𝑦𝑛𝑡ℎ𝑒𝑖𝑧𝑒𝑟 

 𝑃 ∶ 𝑃𝑖𝑡𝑐ℎ 𝑃𝑒𝑟𝑖𝑜𝑑, 𝑑𝑘ሺ𝑛ሻ ∶ 𝐿𝑃 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠  

 

However, since our speech signal is composed of diverse sentences of speakers with different 

pitch values, it is nonstationary and time-variant. For this reason, the long-term predictor 

needs to constantly track the pitch period and LP coefficients in real time. To adapt these 

parameters, we use a hybrid algorithm composed of a block pitch parameters adaptation 

algorithm and a recursive pitch parameters algorithm. In the following sub-sections, we look 

at the details of each algorithm.  

 

 

    3. 2. 1. Block Pitch Parameters Adaptation 

    The block method adaptation algorithm uses the covariance for a block of past samples to 

find the pitch period and LP coefficients, and this algorithm was presented first in [16]. The 

covariance in this algorithm is defined as  

𝑞𝑛ሺ𝑢, 𝑣ሻ = ∑ 𝑥𝑟.𝐿𝑃ሺ𝑛 − 𝑚 − 𝑢ሻ 𝑥𝑟.𝐿𝑃ሺ𝑛 − 𝑚 − 𝑣ሻ

𝑁𝐿𝑃.𝐵𝑙𝑜𝑐𝑘

𝑚=1

 

𝑞𝑛ሺ𝑢, 𝑣ሻ ∶ 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑡𝑤𝑜 𝑡𝑖𝑚𝑒 𝑙𝑎𝑔𝑠, 𝑢 𝑎𝑛𝑑 𝑣. 

𝑁𝐿𝑃.𝐵𝑙𝑜𝑐𝑘 ∶ 𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 

By using the covariance function, we calculate the normalized correlation function 𝜌𝑛ሺ𝑙ሻ for 

the pitch lag 𝑙 over the range of 16 ~ 160 

(14) 

(15) 
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𝜌𝑛ሺ𝑙ሻ =
𝑞𝑛ሺ0, 𝑙ሻ

√𝑞𝑛ሺ0,0ሻ 𝑞𝑛ሺ𝑙, 𝑙ሻ
 

The 𝑙 minimizing 𝜌𝑛ሺ𝑙ሻ becomes the pitch period 𝑃 for our long-term prediction, and once P 

is determined, we solve the following normal equations to find the LP coeffcients 𝑑𝑘ሺ𝑛ሻ 

 

 

 

Since it is possible to have mismatch in time or the above 3×3 matrix has determinant zero, 

the softening factor 𝛾 = 0.001 is added to the diagonal elements of the 3×3 matrix in the 

above normal equation to decrease the effect of time mismatch [16], [17].  

 

 

    3. 2. 2. Recursive Pitch Parameters Adaptation 

    Another long-term parameter update method recursively updates the prediction parameters 

based on gradient adaptation. The specific method was first introduced by Pettigrew and 

Cuperman [17], and their algorithm is given below 

𝜎ො𝑥𝑟.𝐿𝑃
2 ሺ𝑛ሻ = 𝜆 𝜎ො𝑥𝑟.𝐿𝑃

2 ሺ𝑛 − 1ሻ + ሺ1 − 𝜆ሻ𝜎ො𝑥𝑟.𝐿𝑃
2 ሺ𝑛ሻ 

𝜌ො𝑛ሺ𝑘ሻ = 𝜆 𝜌ො𝑛−1ሺ𝑘ሻ +
𝑥𝑟.𝐿𝑃ሺ𝑛ሻ 𝑥𝑟.𝐿𝑃ሺ𝑛 − 𝑘ሻ

𝜎ො𝑥𝑟.𝐿𝑃
2 ሺ𝑛ሻ

 

𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 ∶  𝜆 = 0.95 

    First, it recursively tracks the variance of the LP synthesizer output 𝜎ො𝑥𝑟.𝐿𝑃
2 ሺ𝑛ሻ and the auto-

correlation function 𝜌ො𝑛ሺ𝑘ሻ for 𝑘 =  𝑃ሺ𝑛ሻ − 1, 𝑃ሺ𝑛ሻ, 𝑃ሺ𝑛ሻ + 1. Once these two quantities are 

calculated, the pitch period is updated based on the following algorithm [17] 

[

ሺ1 + 𝛾ሻ 𝑞𝑛ሺ𝑃 − 1, 𝑃 − 1ሻ

𝑞𝑛ሺ𝑃, 𝑃 − 1ሻ

𝑞𝑛ሺ𝑃 + 1, 𝑃 − 1ሻ
     

𝑞𝑛ሺ𝑃 − 1, 𝑃ሻ

ሺ1 + 𝛾ሻ 𝑞𝑛ሺ𝑃, 𝑃ሻ

𝑞𝑛ሺ𝑃 + 1, 𝑃ሻ
     

𝑞𝑛ሺ𝑃 − 1, 𝑃 + 1ሻ

𝑞𝑛ሺ𝑃, 𝑃 + 1ሻ

ሺ1 + 𝛾ሻ 𝑞𝑛ሺ𝑃 + 1, 𝑃 + 1ሻ
] × [

𝑑−1ሺ𝑛ሻ

𝑑0ሺ𝑛ሻ

𝑑1ሺ𝑛ሻ
] = [

𝑞𝑛ሺ0, 𝑃 − 1ሻ

𝑞𝑛ሺ0, 𝑃ሻ

𝑞𝑛ሺ0, 𝑃 + 1ሻ
] 

 

(16) 

(18) 

(17) 

(19) 
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The auto-correlation function vector is only for 3 time-lag values centered at the pitch 

period, so when the pitch period is changed by +1 or -1, its auto-correlation vector should be 

shifted up or down while filling up with the new autocorrelation factor, 0.3 𝜌ො𝑛ሺ𝑃 + 1ሻ or 

0.3 𝜌ො𝑛ሺ𝑃 − 1ሻ.   

    The pitch coefficients 𝑑𝑘ሺ𝑛ሻ are also recursively updated by tracking the long-term 

prediction error variance 𝜎ො𝑒𝐿𝑃
2 ሺ𝑛ሻ as follows [17]  

𝜎ො𝑒𝐿𝑃
2 ሺ𝑛ሻ = 𝜆 𝜎ො𝑒𝐿𝑃

2 ሺ𝑛 − 1ሻ + ሺ1 − 𝜆ሻ 𝑒𝐿𝑃
2 ሺ𝑛ሻ 

𝑑𝑘ሺ𝑛ሻ = 𝜆 𝑑𝑘ሺ𝑛ሻ +
Δ𝐿𝑃

𝜎ො𝑒𝐿𝑃ሺ𝑛ሻ 𝜎ො𝑥𝑟.𝐿𝑃ሺ𝑛ሻ
  𝑤ℎ𝑒𝑟𝑒  𝑘 =  −1, 0, +1 

𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 ∶  𝜆 = 0.95 

    When we first designed a long-term predictor, the tap size was one, and then, it was 

expanded to 3 samples. Compared to a single-sample tap, a 3-sample tap shows better 

performance because it additionally uses more past input values centered at the time a pitch 

period ago, 𝑛 − 𝑃 and compensates for mismatch between pitch and the sampling rate.  The 

even number of tap size is not suitable because we cannot use the symmetry centered at 𝑛 −

𝑃. The tap size longer than 3 was not explored because we did not want to increase the 

computation complexity of the hybrid adaptation algorithm. The leakage factor 𝜆 = 0.95 in a 

recursive adaptation algorithm is the best from the test set, {0.91, 0.92, 0.93,… , 0.98, 0.99} 

based on the PESQ-MOS performances. 

{
 
 
 

 
 
 
𝑖𝑓 𝜌ො𝑛ሺ𝑘 + 1ሻ > maxሺ𝜌ො𝑛ሺ𝑘ሻ, 𝜌ො𝑛ሺ𝑘 − 1ሻ, 𝜌ො𝑚𝑖𝑛ሻ  ,   𝑃ሺ𝑛 + 1ሻ = 𝑃ሺ𝑛ሻ + 1 𝑎𝑛𝑑 [

𝜌ො𝑛+1ሺ𝑃 − 1ሻ

𝜌ො𝑛+1ሺ𝑃ሻ

𝜌ො𝑛+1ሺ𝑃 + 1ሻ
] = [

0.3 𝜌ො𝑛ሺ𝑃 + 1ሻ

𝜌ො𝑛ሺ𝑃 + 1ሻ

𝜌ො𝑛ሺ𝑃ሻ
]

𝑖𝑓 𝜌ො𝑛ሺ𝑘 − 1ሻ > maxሺ𝜌ො𝑛ሺ𝑘ሻ, 𝜌ො𝑛ሺ𝑘 + 1ሻ, 𝜌ො𝑚𝑖𝑛ሻ  ,   𝑃ሺ𝑛 + 1ሻ = 𝑃ሺ𝑛ሻ − 1 𝑎𝑛𝑑 [

𝜌ො𝑛+1ሺ𝑃 − 1ሻ

𝜌ො𝑛+1ሺ𝑃ሻ

𝜌ො𝑛+1ሺ𝑃 + 1ሻ
] = [

 𝜌ො𝑛ሺ𝑃ሻ

𝜌ො𝑛ሺ𝑃 − 1ሻ

0.3 𝜌ො𝑛ሺ𝑃 − 1ሻ
]

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,   𝑁𝑜 𝐶ℎ𝑎𝑛𝑔𝑒

 
(20) 

(21) 

(22) 
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    3. 2. 3. Hybrid Pitch Parameters Adaptation 

    The two prior methods have merits and demerits over each other. The block method is likely 

to generate better estimates by calculating the normalized correlation function for a wide range 

of time lags and directly solving the normal equations based on the past samples, but it is 

computationally burdensome if it has to repeat the whole progress every sample. Furthermore, 

it cannot prevent the pitch estimation from suddenly jumping to multiple times of the actual 

pitch period. On the other hand, the recursive method, as we can see, is much simpler than the 

block method because it tracks the autocorrelation functions for only 3 time delays centered 

at the pitch period based on the gradient descent algorithm. Moreover, if the pitch change is 

smooth enough, the pitch tracking works well too without a sudden big jump. However, if our 

speech has some drastic transition from one sound to another different sound, the recursive 

method is subject to be lost in tracking. Interestingly, the two methods complement each 

other’s shortcomings, so they are mixed in a hybrid method [17]. 

    Every 20 samples, the block method is used to update the pitch period and the pitch 

coefficients based on past output values. Otherwise, the recursive method updates them. The 

hybrid method performs better than the block method only or recursive method only. 
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    3. 3.  Backward Adaptive Short-term Predictor 

    The second-stage signal synthesis after the pitch synthesizer is performed by the adaptive 

short-term linear predictor which uses another feature of a voiced speech signal, the high 

correlation of consecutive samples.  

 

 

 

 

 

Figure 10 shows the block diagram of the adaptive short-term predictor we use, and the 

general model of the short-term predictor is shown below 

𝑥𝑟.𝑆𝑃ሺ𝑛ሻ = 𝑥ො𝑆𝑃 + 𝑒𝑆𝑃ሺ𝑛ሻ 

𝑥ො𝑆𝑃 = 𝑥ො𝑆𝑃1 + 𝑥ො𝑆𝑃2 

𝑥ො𝑆𝑃1 = ∑ 𝛼𝑙ሺ𝑛ሻ 𝑥𝑟.𝑆𝑃ሺ𝑛 − 𝑙ሻ

𝑁𝑆𝑃1

𝑙=1

   where 𝑁𝑆𝑃1 = 10  ሺ𝑃𝑜𝑙𝑒 𝑃𝑎𝑟𝑡ሻ 

𝑥ො𝑆𝑃2 = ∑ 𝛽𝑘ሺ𝑛ሻ 𝑒𝑆𝑃ሺ𝑛 − 𝑘ሻ

𝑁𝑆𝑃2

𝑙=1

   where 𝑁𝑆𝑃2 = 6  ሺ𝑍𝑒𝑟𝑜 𝑃𝑎𝑟𝑡ሻ 

𝑥𝑟.𝑆𝑃ሺ𝑛ሻ = ∑ 𝛼𝑙ሺ𝑛ሻ 𝑥𝑟.𝑆𝑃ሺ𝑛 − 𝑙ሻ

𝑁𝑆𝑃1

𝑙=1

+ ∑ 𝛽𝑘ሺ𝑛ሻ 𝑒𝑆𝑃ሺ𝑛 − 𝑘ሻ

𝑁𝑆𝑃2

𝑘=1

+ 𝑒𝑆𝑃ሺ𝑛ሻ 

 

The transfer function of the shot-term prediction synthesis is  

𝑋𝑟.𝑆𝑃ሺ𝑧ሻ

𝐸𝑆𝑃ሺ𝑧ሻ
=
1 + ∑ 𝛽𝑘ሺ𝑛ሻ 𝑧

−𝑘𝑁𝑆𝑃2
𝑘=1

1 − ∑ 𝛼𝑙ሺ𝑛ሻ 𝑧−𝑙
𝑁𝑆𝑃1
𝑙=1

 

𝑥𝑟.𝑆𝑃ሺ𝑛ሻ ∶ 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 

𝑥ො𝑆𝑃1ሺ𝑛ሻ ∶ 𝑆ℎ𝑜𝑟𝑡-𝑡𝑒𝑟𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ሺ𝑃𝑜𝑙𝑒𝑠 𝑂𝑛𝑙𝑦ሻ 

𝑥ො𝑆𝑃2ሺ𝑛ሻ ∶ 𝑆ℎ𝑜𝑟𝑡-𝑡𝑒𝑟𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ሺ𝑍𝑒𝑟𝑜𝑠 𝑂𝑛𝑙𝑦ሻ 

𝑥ො𝑆𝑃ሺ𝑛ሻ ∶ 𝑆ℎ𝑜𝑟𝑡-𝑡𝑒𝑟𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (𝑥ො𝑆𝑃1ሺ𝑛ሻ + 𝑥ො𝑆𝑃2ሺ𝑛ሻ) 

𝑒𝑆𝑃ሺ𝑛ሻ ∶ 𝑆ℎ𝑜𝑟𝑡-𝑡𝑒𝑟𝑚 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 

𝛼𝑘ሺ𝑛ሻ ∶ 𝑃𝑜𝑙𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 

𝛽𝑘ሺ𝑛ሻ ∶ 𝑍𝑒𝑟𝑜 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 

𝑥ො𝑆𝑃ሺ𝑛ሻ 

𝑥𝑟.𝑆𝑃ሺ𝑛ሻ 𝑒𝑆𝑃ሺ𝑛ሻ 

𝑥ො𝑆𝑃1ሺ𝑛ሻ 𝑥ො𝑆𝑃2ሺ𝑛ሻ 

< Fig 10.  Backward Adaptive Short-term Predictor > 
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𝛼𝑘ሺ𝑛ሻ 𝛽𝑘ሺ𝑛ሻ 
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    Compared to the pole-only predictor, the inclusion of zeros makes the estimation more 

accurate and can reduce the flattening of the estimated spectral envelope of the autoregressive 

model by coupling the backward adaptive predictor to the codec’s input signals more directly. 

Rate distortion theory indicates that for optimal encoding using the mean squared error 

distortion measure, the short-term predictor should include zeros as well as poles when 

achieving small distortion [18]. 

 

 

    3. 3. 1. Backward Pole Coefficients Adaptation 

    Instead of using the pole linear prediction coefficients 𝛼𝑘ሺ𝑛ሻ, we adopted the lattice-

structure short-term predictor based on the reflection coefficients [19] 

𝑥ො𝑆𝑃1 = ∑𝛤𝑘
𝑏ሺ𝑛ሻ ∙ 𝑏𝑘−1ሺ𝑛 − 1ሻ

𝑁−1

𝑘=0

 ሺ𝑅𝐶-𝑏𝑎𝑠𝑒𝑑 𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛ሻ 

𝛤𝑘
𝑏ሺ𝑛ሻ ∶ 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠, 𝑏𝑘−1ሺ𝑛 − 1ሻ ∶ 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟  

 

 

 

 

 

 

 

 

 

𝜞𝟏
𝒇
ሺ𝒏ሻ 

𝒙𝒓.𝑺𝑷𝟏ሺ𝒏ሻ 

𝒇𝟏ሺ𝒏ሻ 
+ 

− 

+ 

− 

𝒛−𝟏 𝒛−𝟏 

𝜞𝟏
𝒃ሺ𝒏ሻ 

𝜞𝟐
𝒇
ሺ𝒏ሻ 

𝜞𝟐
𝒃ሺ𝒏ሻ 

⋯ 

⋯ 𝒛−𝟏 

𝜞𝑵
𝒇
ሺ𝒏ሻ 

𝜞𝑵
𝒃 ሺ𝒏ሻ 

𝒃𝟏ሺ𝒏ሻ 

𝒇𝟐ሺ𝒏ሻ 

𝒃𝟐ሺ𝒏ሻ 

𝒇𝑵−𝟏ሺ𝒏ሻ 

𝒃𝑵−𝟏ሺ𝒏ሻ 

𝒇𝑵ሺ𝒏ሻ 

𝒃𝑵ሺ𝒏ሻ 

+ 

− 

+ 

− 

+ 

− 

+ 

− 

𝒇𝟎ሺ𝒏ሻ 

𝒃𝟎ሺ𝒏ሻ 

∑𝜞𝒌
𝒃ሺ𝒏ሻ ∙ 𝒃𝒌−𝟏ሺ𝒏 − 𝟏ሻ

𝑁

𝑘=1

 
𝑥ො𝑆𝑃1ሺ𝑛ሻ 

< Fig 11.  The Lattice Short-term Predictor based on Reflection Coefficients > 

𝑓𝑘ሺ𝑛ሻ ∶ 𝑇ℎ𝑒 𝑘-𝑡ℎ 𝑂𝑟𝑑𝑒𝑟 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 

𝑏𝑘ሺ𝑛ሻ ∶ 𝑇ℎ𝑒 𝑘-𝑡ℎ 𝑂𝑟𝑑𝑒𝑟 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 

 

 

 

Γ𝑘
𝑓ሺ𝑛ሻ ∶ 𝑇ℎ𝑒 𝑘-𝑡ℎ 𝑂𝑟𝑑𝑒𝑟 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 

Γ𝑘
𝑏ሺ𝑛ሻ ∶ 𝑇ℎ𝑒 𝑘-𝑡ℎ 𝑂𝑟𝑑𝑒𝑟 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 
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Figure 11 shows the block diagram of the lattice predictor based on reflection coefficients, 

and for the adaptation of the reflection coefficients, the recursive least-square (RLS) lattice 

algorithm below is used [20] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑓0ሺ𝑛ሻ = 𝑏0ሺ𝑛ሻ = 𝑥𝑟ሺ𝑛ሻ 

𝜉0ሺ𝑛ሻ = 0 

𝐸1
𝑓ሺ𝑛ሻ = 𝐸1

𝑏ሺ𝑛ሻ = 𝜆2 ∙ 𝐸1
𝑏ሺ𝑛ሻ + 𝑓0

2ሺ𝑛ሻ,    𝜆2 = 0.99 

Γ𝑘ሺ𝑛ሻ = 𝜆2 ∙ Γ𝑘ሺ𝑛 − 1ሻ +
𝑓𝑘−1ሺ𝑛ሻ ∙ 𝑏𝑘−1ሺ𝑛 − 1ሻ

1 − 𝜉𝑘−1ሺ𝑛ሻ
 

Γ𝑘
𝑓ሺ𝑛ሻ =

Γ𝑘ሺ𝑛ሻ

𝐸𝑘
𝑓ሺ𝑛ሻ

 

Γ𝑘
𝑏ሺ𝑛ሻ =

Γ𝑘ሺ𝑛ሻ

𝐸𝑘
𝑏ሺ𝑛 − 1ሻ

 

 

𝜆2 ∶ 𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 

𝑓𝑘ሺ𝑛ሻ ∶ 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 

𝑏𝑘ሺ𝑛ሻ ∶ 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 

𝜉𝑘ሺ𝑛ሻ ∶ 𝐺𝑎𝑖𝑛 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

 

 

 

𝐸𝑘+1
𝑓 ሺ𝑛ሻ ∶ 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 

𝐸𝑘+1
𝑏 ሺ𝑛ሻ ∶ 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 

Γ𝑘
𝑓ሺ𝑛ሻ ∶ 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 

Γ𝑘
𝑏ሺ𝑛ሻ ∶ 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 

 

 

 

𝐸𝑘+1
𝑓 ሺ𝑛ሻ =

𝐸𝑘
𝑓ሺ𝑛ሻ − Γ𝑘

𝑏ሺ𝑛ሻ ∙ Γ𝑘ሺ𝑛ሻ

0.982
 

𝐸𝑘+1
𝑏 ሺ𝑛ሻ =

𝐸𝑘
𝑏ሺ𝑛 − 1ሻ − Γ𝑘

𝑓ሺ𝑛ሻ ∙ Γ𝑘ሺ𝑛ሻ

0.982
 

𝜉𝑘ሺ𝑛ሻ = 𝜉𝑘−1ሺ𝑛ሻ +
𝑏𝑘−1
2 ሺ𝑛 − 1ሻ

𝐸𝑘
𝑏ሺ𝑛 − 1ሻ

 

𝑓𝑘ሺ𝑛ሻ = 𝑓𝑘−1ሺ𝑛ሻ − Γ𝑘
𝑏ሺ𝑛ሻ ∙ 𝑏𝑘−1ሺ𝑛 − 1ሻ 

𝑏𝑘ሺ𝑛ሻ = 𝑏𝑘−1ሺ𝑛 − 1ሻ − Γ𝑘
𝑓ሺ𝑛ሻ ∙ 𝑓𝑘−1ሺ𝑛ሻ 
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The RLS lattice algorithm shows rapid adaptations, and since it is based on reflection 

coefficients, the magnitude of each coefficient less than 1 implies stability. 

    When we first designed the pole predictor, we tested the linear prediction order from 4 to 

60 for a short-term pole predictor only in a tree coder. Although a higher order produced a 

higher PESQ-MOS score, as the prediction order increased, the performance increased less. 

Since the adaptation algorithm of a short-term predictor is based on a sequential computation, 

the adaptation algorithm cannot be executed in parallel. As a result, the computational time is 

proportional to the prediction order. Considering these tradeoffs, the 10-th order short-term 

pole predictor was finally chosen. Like a long-term predictor, the leakage factor of the short-

term pole coefficient adaptation algorithm, 𝜆2 , was optimized from the test set, 

{0.91, 0.92, 0.93,… , 0.98, 0.99} based on the PESQ-MOS performances. 

 

 

    3. 3. 2. Backward Zero Coefficients Adaptation 

    The zero coefficients 𝛽𝑘ሺ𝑛ሻ are recursively updated by using the polarities of the current 

and past prediction errors for its step size based on the gradient approach as following [21]  

𝛽𝑘ሺ𝑛 + 1ሻ = 𝜆3 𝛽𝑘ሺ𝑛ሻ + ሺ1 − 𝜆3ሻ𝑠𝑖𝑔𝑛(𝑒𝑆𝑃ሺ𝑛ሻ) 𝑠𝑖𝑔𝑛(𝑒𝑆𝑃ሺ𝑛 − 𝑘ሻ) 

𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 ∶  𝜆3 = 127/128 

For the zero predictor, we just directly used a 6-th order without any further test with different 

values, and the leakage factor 𝜆3 for the adaptation of zero coefficients was the best from the 

different test set {
2𝑘−1

2𝑘
|𝑘 = 4,5,6,7,8,9}. The set of test values was motivated by the reference 

paper of the adaptation algorithm [21]. 

(41) 
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    The use of both poles and zeros in a linear predictive model has several advantages 

compared to the pole-only model. Generally, an Infinite Impulse Response (IIR) filter based 

on poles and zeros can use a fewer number of pole and zero coefficients by using feedback 

based on a recursive nature than a Finite Impulse Response (FIR) filter. Furthermore, once 

all-pole predictor loses its tracking, it tends to track itself rather than changes in the input 

signal transfer function, but by adding zeros, a pole-zero predictor makes its prediction 

dependent upon the input signal transfer function to better track dynamic changes of the input 

with better accuracy of signal reconstruction [22]. 
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Chapter 4 

 

 

 

   Perceptual Weighting Filter 

 

   4. 1. Introduction  

    As the Code Generator reconstructs a signal 𝑥𝑟ሺ𝑛ሻ for each excitation sequence candidate, 

a reconstruction error signal is obtained by subtracting the recovered signal from the original 

signal 𝑥ሺ𝑛ሻ. Although the predictive coding puts the major priority on minimizing the root-

mean-squared error (RMSE) distortion for the synthesized signal, the lower RMS distortion 

does not sound always better to our ears. It implies that the speech perception mechanism of 

our ears is not based on only the RMSE-based approach. Another useful approach is to shape 

a noise signal by using the Perceptually Weighting Filter (PWF) [15].  

 

 

 

 

 

 

 

𝑠ሺ𝑛ሻ 

𝑥ሺ𝑛ሻ 
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< Fig 1.  Tree Coder > 

 

𝑥ሺ𝑛ሻ ∶ 𝐼𝑛𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙 

𝑥𝑟ሺ𝑛ሻ ∶ 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 

𝑒𝑞ሺ𝑛ሻ ∶ 𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑔𝑛𝑎𝑙 

𝑒ሺ𝑛ሻ ∶ 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 

𝑒𝑃𝑊𝐹ሺ𝑛ሻ ∶ 𝑃𝑊𝐹-𝑒𝑑 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑢𝑟𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 

𝐷 ∶ 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 

𝑠ሺ𝑛ሻ ∶ 𝑇𝑟𝑒𝑒 𝑃𝑎𝑡ℎ 𝑆𝑦𝑚𝑏𝑜𝑙 

𝑃𝑊𝐹 ∶ 𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝐹𝑖𝑙𝑡𝑒𝑟 
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In Figure 1, the reconstruction error 𝑒ሺ𝑛ሻ is passed through the PWF, and the RMSE is 

calculated from the filtered output for distortion comparison in a tree search algorithm. 

    In this chapter, the transfer function of PWF we used in our codec is introduced and it is 

shown how to adapt the coefficients of the PWF and how the PWF affects the resultant sound 

quality. 

 

 

   4. 2. PWF Design 

    The PWF is designed by using the linear prediction coefficients from the original input. 

The PWF, first, scans a block of the original signal, which is composed of the past 50 samples 

and the future 50 samples, by using a Hamming window. From the block, the linear prediction 

coefficients are calculated based on the least-squared error approach, and its linear prediction 

model can be simplified as Figure 13. 

 

 

 

 

 

 

 

In Figure 12, the analysis and synthesis filters are expressed as (41) and (42), so 𝑥𝑤ሺ𝑛ሻ and 

𝑒𝑤ሺ𝑛ሻ can be written as (43) and (44). 

𝑨ሺ𝒛ሻ 𝑺ሺ𝒛ሻ = 𝑨−𝟏ሺ𝒛ሻ 𝒙𝒘ሺ𝒏ሻ 𝒙𝒘ሺ𝒏ሻ 
𝒆𝒘ሺ𝒏ሻ 

< Fig 12.  Block Diagram of Linear Prediction Model for PWF Design > 

𝑥𝑤ሺ𝑛ሻ ∶   𝐻𝑎𝑚𝑚𝑖𝑛𝑔-𝑤𝑖𝑛𝑑𝑜𝑤𝑒𝑑 𝐼𝑛𝑝𝑢𝑡 

𝑥ො𝑤ሺ𝑛ሻ ∶ 𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑑𝑘 

𝑒𝑤  ሺ𝑛ሻ ∶ 𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 

𝐴ሺ𝑧ሻ ∶  𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝐹𝑖𝑙𝑡𝑒𝑟 

𝑆ሺ𝑧ሻ ∶  𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 𝐹𝑖𝑙𝑡𝑒𝑟 
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Based on the linear prediction coefficients (LPC), 𝑑𝑘 given by Figure 12, the transfer function 

of the PWF has the following form [16]   

 

 

 

The LPC are periodically updated every 50 samples, and the constants, 𝜇 and 𝛾, are the factors 

affecting the shape of the filter. In designing a PWF, the filter constants, 𝜇  and 𝛾 , were 

optimized by varying them separately from 0.1 to 0.9 by 0.1 increment. The values of 𝜇 and 

𝛾 affect the positions of poles and zeros of 𝑊ሺ𝑧ሻ, and as a result, they affect the shape of 

𝑊ሺ𝑧ሻ. They can be reoptimized on our test sequences if any change is made to a Tree Coder. 

Furthermore, the order of the filter coefficients, 𝐿 = 10, is matched with the prediction order 

for the short-term pole predictor because we may, later, directly use the pole prediction 

coefficients from a short-term predictor as PWF coefficients.  

 

 

𝑥𝑤ሺ𝑛ሻ = 𝑥ො𝑤ሺ𝑛ሻ + 𝑒𝑤ሺ𝑛ሻ = ∑𝑑𝑘 ∙ 𝑥𝑤ሺ𝑛 − 𝑘ሻ

𝐿

𝑘=1

+ 𝑒𝑤ሺ𝑛ሻ      𝑤ℎ𝑒𝑟𝑒 𝐿 = 10 

𝑒𝑤ሺ𝑛ሻ = 𝑥𝑤ሺ𝑛ሻ −∑𝑑𝑘 ∙ 𝑥𝑤ሺ𝑛 − 𝑘ሻ

𝐿

𝑘=1

 

𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 𝐹𝑖𝑙𝑡𝑒𝑟 ∶  𝑆ሺ𝑧ሻ = 𝐴−1ሺ𝑧ሻ =
1

1 − ∑ 𝜏𝑘 ∙ 𝑧
−𝑘𝐿

𝑘=1

 

𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝐹𝑖𝑙𝑡𝑒𝑟 ∶  𝐴ሺ𝑧ሻ = 1 −∑𝑑𝑘 ∙ 𝑧
−𝑘

𝐿

𝑘=1

 

 

𝑊ሺ𝑧ሻ =
𝐴ሺ
𝑧
𝜇ሻ

𝐴ሺ
𝑧
𝛾ሻ
=
1 − ∑ 𝜏𝑘 ∙ 𝜇

𝑘 ∙ 𝑧−𝑘𝐿
𝑘=1

1 − ∑ 𝜏𝑘 ∙ 𝛾𝑘 ∙ 𝑧−𝑘
𝐿
𝑘=1

     𝑤ℎ𝑒𝑟𝑒  𝐿 = 10, 𝜇 = 0.9, 𝛾 = 0.4 

(42) 

𝜏𝑘 ∶ 𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑘 = 1,2, … , 10 

(43) 

(44) 

(45) 

(46) 
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   4. 3. Effect of PWF in Frequency Domain 

    The major role of the PWF is to shape a reconstruction error and accordingly result in better 

sound reproduction on average. To show how the filter ultimately shapes the noise, we picked 

up a certain input speech segment (n = 4701 ~ 4900) for the audio sample, F1, and analyzed 

the LPC spectral envelopes of the original signal, the reconstruction error signals without and 

with a PWF for our tree coder, and the results are shown in Figure 13. 

 

 

 

 

 

 

 

 

 

 

    Without the PWF, the reconstruction error looks almost flat over the whole frequency 

range, and for some frequency bands, the error envelope is higher than the original speech 

envelope. This causes some audible distortions. However, when you look at the reconstruction 

error with the PWF, the error is shaped similar to the original signal’s envelope and pushed 

down below the original envelope, and this shaping results in better reconstructed sound.  

 

 

𝑥ሺ𝑛ሻ 
𝑒ሺ𝑛ሻ 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑃𝑊𝐹 

 
𝑒ሺ𝑛ሻ 𝑤𝑖𝑡ℎ 𝑃𝑊𝐹 

 

0 𝑑𝐵 

 

< Fig 13.  The Waveform of the Speech Segment (Left) and the LPC Spectral Envelopes (Right) of 

the Original Signal 𝒙ሺ𝒏ሻ and the Reconstruction Error 𝒆ሺ𝒏ሻ without and with PWF 

for the samples of F1 (n = 4701~4900) > 
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    The effect in Figure 13 may not happen for some voiced segments as shown in Figure 14 

because the PWF’s filter coefficients may not perfectly reflect the actual speech file’s 

envelope. First of all, since the PWF coefficients are updated every 50 samples based on a 

block analysis, they may not perfectly match the actual real-time linear prediction coefficients 

in the very dynamic regions. Furthermore, since we fixed the shaping constants, 𝜇 and 𝛾 of 

the PWF transfer function, the set of values may not be suitable for some regions. We may 

get a better shaping result if we increase the order of the PWF to model more accurately the 

spectral envelope of the input signal, but this results in a longer filtering time, so the trade-off 

should be considered in actual application depending on the system’s requirements. 

    Since the receiver has only a code generator and CNG module for signal synthesis for a 

single stream of an excitation signal, the PWF is not needed at a receiver because the effect 

of PWF has been already applied to the transmitted excitation signal which is generated by a 

tree coder at a transmitter.  

 

< Fig 14.  The Waveform of the Speech Segment (Left) and the LPC Spectral Envelopes (Right) of 

the Original Signal 𝒙ሺ𝒏ሻ and the Reconstruction Error 𝒆ሺ𝒏ሻ without and with PWF 

for the samples of F1 (n = 35801 ~ 36000) > 



 

 38 

Chapter 5 

 

 

 

   Tree Coding 

 

   5. 1.  Introduction 

    In basic predictive coding with a quantizer, as a prediction error comes to a quantizer, a 

single output with the minimum distance to the input is generated, and the quantized error is 

directly transmitted to a receiver. In other words, only a single excitation sequence is explored 

by an encoder. The concept of Tree Coding is to explore multiple excitation sequence 

candidates while accepting some time delays to look ahead, and to send the best excitation 

sequence to a receiver.  

    Generally, Tree Coding allows myriad options in designing a tree structure, a tree search 

algorithm, a symbol release rule, and a code generator. In our Tree Coding, the tree is built by 

using switchable 5-level, 4-level, and 2-level trees constructed from adaptive scalar 

quantizers, so each tree branch is mapped to a single excitation value. As a tree grows, the 

number of tree branches to process rapidly increases, so the computational complexity goes 

beyond the system’s capability soon. To control complexity, a full search of the tree must be 

avoided, and in our system, we adopt the (M, L) algorithm which limits the depth of the tree 

searching to L and the number of branches to keep for the next tree spanning to M. Finally, 
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for the best tree path with the minimum distortion, the number of symbols to be released is 

controlled by a symbol release rule. 

    In this chapter, the details of a tree design, a tree-complexity-control algorithm, and the 

symbol release rule we use in our Tree Coder are introduced. 

 

   5. 2.  Tree Design 

    A Tree Coder encodes the voiced speech segments classified as voiced by VAD. For the 

initial 140 samples (𝑇𝑆𝑃) of a voiced speech segment, a 5-level tree based on an adaptive 

Pitch-Compensating Quantizer (PCQ) [23] is used, and in this case, the code generator is 

composed of only a short-term predictor because there is no memory in the transition from 

Silence to Voiced Speech.  

    After 140 samples (𝑇𝑆𝑃), the remaining part of the voiced segment is encoded by the tree 

randomly interleaving 4-level and 2-level trees to excite a code generator with both long and 

short-term predictors. The following section shows how each tree is designed with a gain 

adaptation rule, and how we randomly order a 4-level and a 2-level tree. 

 

   5. 2. 1.  5-level Tree 

    We generate a 5-level tree modeled on a 5-level robust PCQ studied by Cohn and Melsa 

[23]. The PCQ rapidly responds to high peak factor (ratio of peak value to rms value) signals. 

For this reason, although it uses more levels than a 4-level or a 2-level tree, it tracks the initial 

part of a voiced segment with relatively sudden changes of the waveform causing a high peak 

factor. The 5-level PCQ is a mid-tread symmetric quantizer shown in Figure 15.  
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The quantity X(n) is recursively updated based on its current output as following [23] 

 

 

 

 

 

 

 

 

 

𝑒𝑝ሺ𝑛ሻ 

𝑒𝑞ሺ𝑛ሻ 

2𝑋ሺ𝑛ሻ 

5𝑋ሺ𝑛ሻ 

−2𝑋ሺ𝑛ሻ 

−5𝑋ሺ𝑛ሻ 

𝑋ሺ𝑛ሻ −𝑋ሺ𝑛ሻ 

𝑒𝑝 ∶ 𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑟 𝐼𝑛𝑝𝑢𝑡 

𝑒𝑞 ∶ 𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 

𝑠 ∶ 𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑦𝑚𝑏𝑜𝑙 

𝑠ሺ𝑛ሻ = 1 

𝑠ሺ𝑛ሻ = 2 

𝑠ሺ𝑛ሻ = 3 

𝑠ሺ𝑛ሻ = 4 

𝑠ሺ𝑛ሻ = 5 

4.5𝑋ሺ𝑛ሻ −4.5𝑋ሺ𝑛ሻ 

< Fig 15.  5-level PCQ (Left) mapping to 5-level Tree (Right) > 

𝑠ሺ𝑛ሻ = 1 

𝑠ሺ𝑛ሻ = 2 

𝑠ሺ𝑛ሻ = 3 

𝑠ሺ𝑛ሻ = 4 

𝑠ሺ𝑛ሻ = 5 

𝑋ሺ𝑛ሻ = 2𝐺ሺ𝑛ሻ 

𝐺ሺ𝑛ሻ = 𝐺𝑃ሺ𝑛ሻ + 𝐶ሺ𝑛ሻ + 𝑟  𝑤ℎ𝑒𝑟𝑒 𝑟 = −11  

𝐺𝑃ሺ𝑛 + 1ሻ = 𝑎1 𝐺𝑃ሺ𝑛ሻ + 𝑓1(𝑠ሺ𝑛ሻ)  𝑤ℎ𝑒𝑟𝑒 𝑎1 =
63

64
  

𝐶ሺ𝑛 + 1ሻ = 𝑎2 𝐶ሺ𝑛ሻ + 𝑓2(𝑠ሺ𝑛ሻ)  𝑤ℎ𝑒𝑟𝑒 𝑎2 =
63

64
 

𝑓1(𝑠ሺ𝑛ሻ) =

{
 
 

 
 −

7

128
   𝑖𝑓 𝑠ሺ𝑛ሻ = 3         

       
7

64
   𝑖𝑓 𝑠ሺ𝑛ሻ = 2 𝑜𝑟 4

  −
15

64
   𝑖𝑓 𝑠ሺ𝑛ሻ = 1 𝑜𝑟 5

 

𝑓2(𝑠ሺ𝑛ሻ) = {
  
3

4
   𝑖𝑓 𝑠ሺ𝑛ሻ = 1 𝑜𝑟 5

  0    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

   . 

 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 
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    In the adaptation algorithm of a 5-level PCQ Tree, the fixed constants, 𝑟, 𝑎1, 𝑎2, 𝑓1(𝑠ሺ𝑛ሻ), 

𝑓1(𝑠ሺ𝑛ሻ) are related to the adaptation performance, but 𝑟, 𝑎1, 𝑎2 from [23] did not perform 

well because of different dynamic ranges of audio sample files. For this reason, we re-

optimized them from the sets {𝑟 = −15,−14, −5} ,  {𝑎1 =
2𝑘−1

2𝑘
|𝑘 = 4,5,6,7,8,9} , 

{𝑎2 =
2𝑘−1

2𝑘
|𝑘 = 4,5,6,7,8,9} based on the PESQ-MOS performance. 

    In our actual simulation, we did not do source coding for each symbol, but we assume that 

ideal entropy coding is applied to the 5-level tree based on the empirical distribution of each 

symbol,  𝑃𝑃𝐶𝑄(𝑠ሺ𝑛ሻ) . Therefore, theoretically, the bits allocated to the symbol s(n) is 

−𝑃𝑃𝐶𝑄(𝑠ሺ𝑛ሻ) log2 𝑃𝑃𝐶𝑄(𝑠ሺ𝑛ሻ) bits, and accordingly, the average rate R is assumed to be the 

entropy of the distribution 𝑃𝑃𝐶𝑄(𝑠ሺ𝑛ሻ)  

 

 

𝑃𝑃𝐶𝑄(𝑠ሺ𝑛ሻ) ∶ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠ሺ𝑛ሻ 

 

    The 5-level tree at the beginning of Voiced segments not only responds quickly to a silence 

to Voiced transition but in turn it causes the backward adaptive parameter adaptation 

algorithms to rapidly begin to track the Voiced speech. 

 

 

 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅5-𝑙𝑒𝑣𝑒𝑙 𝑇𝐶 = −∑𝑃𝑃𝐶𝑄(𝑠ሺ𝑛ሻ) 𝑙𝑜𝑔2 𝑃𝑃𝐶𝑄(𝑠ሺ𝑛ሻ)

5

𝑛=1

  𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙 (53) 
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   5. 2. 2.  4-level Tree 

    A 4-level tree is created by using a 4-level adaptive scalar quantizer [24] illustrated in 

Figure 16.   

 

 

 

 

 

 

 

 

 

 

 

 

The quantizer gain term 𝑔ሺ𝑛ሻ is also recursively updated by using a multiplier function 𝑀ሺ𝑛ሻ 

which takes the current output of a quantizer as an input [24] 

 

 

 

 

 

𝑒𝑝ሺ𝑛ሻ 

𝑒𝑞ሺ𝑛ሻ 

𝑔

2
 

3𝑔

2
 

−
𝑔

2
 

−
3𝑔

2
 

𝑔 −𝑔 

𝑔 ∶ 𝐺𝑎𝑖𝑛 𝑜𝑟 𝑆𝑡𝑒𝑝 𝑆𝑖𝑧𝑒 

𝑒𝑝 ∶ 𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑟 𝐼𝑛𝑝𝑢𝑡 

𝑒𝑞 ∶ 𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 

𝑠 ∶ 𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑦𝑚𝑏𝑜𝑙 

𝑠ሺ𝑛ሻ = 1 

𝑠ሺ𝑛ሻ = 2 

𝑠ሺ𝑛ሻ = 3 

𝑠ሺ𝑛ሻ = 4 

𝑔ሺ𝑛 + 1ሻ = 𝑔𝜆𝑞ሺ𝑛ሻ 𝑀ሺ𝑛ሻ 

𝑀ሺ𝑛ሻ = {
0.8     𝑖𝑓 𝑠ሺ𝑛ሻ = 2 𝑜𝑟 3

1.6     𝑖𝑓 𝑠ሺ𝑛ሻ = 1 𝑜𝑟 4
 

𝜆𝑞 =
127

128
 

 

< Fig 16.  4-Level Adaptive Quantizer (Left) mapping to 4-level Tree (Right) > 

𝑠ሺ𝑛ሻ = 1 

𝑠ሺ𝑛ሻ = 2 

𝑠ሺ𝑛ሻ = 3 

𝑠ሺ𝑛ሻ = 4 

(54) 

(55) 
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    If the quantizer’s output is the inner level, it contracts by 0.8, and it expands by 1.6 if the 

output is the outer level. The product of the contraction multiplier 0.8 and the expansion 

multiplier 1.6 is 1.28 which is over 1 because the inner level has a higher probability. the 

leakage factor in the adaptation algorithm, 𝜆𝑞 =
127

128
, shows the best PESQ-MOS performance 

among the set {𝜆𝑞 =
2𝑘−1

2𝑘
|𝑘 = 4,5,6,7,8,9}. 

    Unlike the 5-level tree applying entropy coding to the source symbols, the 4 tree branch 

symbols are represented with 2 bits, so the rate is 𝑅4-𝑙𝑒𝑣𝑒𝑙 𝑇𝐶 =  2  𝑏𝑖𝑡𝑠/𝑠𝑦𝑚𝑏𝑜𝑙.  

 

 

   5. 2. 3.  2-level Tree 

    For the 2-level tree, we cannot use the same multiplier function as the 4-level tree because 

the only available information from the 2-level tree is the polarity of outputs. Therefore, we 

decided to use the polarity information of the past tree outputs for designing a gain adaptation 

algorithm. As the first step, we prepared a cascaded form of a short-term and a long-term 

predictor only without tree coding. By running the predictors for the voiced regions of our 

audio sample files, we generated a prediction error gain sequence based on the following 

equation 

 

𝑔𝑁𝑜 𝑇𝐶ሺ𝑛ሻ = √
𝑒𝑝2ሺ𝑛 − 3ሻ + 𝑒𝑝2ሺ𝑛 − 2ሻ + 𝑒𝑝2ሺ𝑛 − 1ሻ + 𝑒𝑝2ሺ𝑛ሻ

4
 

{
𝐼𝑓 𝑔𝑁𝑜 𝑇𝐶ሺ𝑛ሻ < 𝑔𝑁𝑜 𝑇𝐶ሺ𝑛 − 1ሻ,   𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝐼𝑓 𝑔𝑁𝑜 𝑇𝐶ሺ𝑛ሻ ≥ 𝑔𝑁𝑜 𝑇𝐶ሺ𝑛 − 1ሻ,     𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 
 

 

(56) 

(57) 
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From the prediction error gain, we calculate the empirical probabilities of contraction and 

expansion of the prediction error gain given the 𝑘-th polarity pattern group for the past 5 

prediction error values 𝑒𝑝ሺ𝑛 − 4ሻ, 𝑒𝑝ሺ𝑛 − 3ሻ, 𝑒𝑝ሺ𝑛 − 2ሻ, 𝑒𝑝ሺ𝑛 − 1ሻ, 𝑒𝑝ሺ𝑛ሻ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 shows the result for the statistics of the prediction gain contraction and expansion for 

each polarity pattern. In Table 2, the excitation polarity sequences with the same pattern of 

changes are grouped together, and 𝑃ሺ𝑘ሻ is the probability that the group “k” happens, and 

𝑃ሺ𝐶|𝑘ሻ and 𝑃ሺ𝐸|𝑘ሻ mean the probability that the prediction error gain contracts and expands 

Table 2. Probability of Contraction and Expansion of Gain for Prediction Error Polarity Sequence 
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given the polarity pattern group ‘𝑘’. From this table, if any higher probability of 𝑃ሺ𝐶|𝑘ሻ and 

𝑃ሺ𝐸|𝑘ሻ is larger than 54%, we allocated the proper value of contraction or expansion 

multiplier value to the polarity pattern group “𝑘” as shown in Figure 17. Otherwise, the 

multiplier is just set as 1.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

For the multiplier function table on the right side of Figure 17, the multiplier value for each 

group is empirically optimized in the range from 0.72 to 1 by 0.02 increment for contraction 

multiplier, from 1 to 1.38 by 0.02 increment for expansion multiplier. The leakage factor in 

< Fig 17.  Multiplier Function for 2-level Tree > 

𝐺𝑎𝑖𝑛 𝑈𝑝𝑑𝑎𝑡𝑒 ∶  𝑔ሺ𝑛 + 1ሻ = 𝑔𝜆𝑞ሺ𝑛ሻ 𝑀ሺ𝑛ሻ 
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the adaptation algorithm, 𝜆𝑞 =
127

128
, shows the best PESQ-MOS performance among the set 

{𝜆𝑞 =
2𝑘−1

2𝑘
|𝑘 = 4,5,6,7,8,9}.  

    When we first built this algorithm, we started using only two past polarities as [5] [24], and 

as we increased the number of polarities from 2 through 5, we are likely to see the patterns 

with more unbalanced probability distributions making a multiplier function more 

meaningful. However, to keep the proper level of searching complexity, we decided to use 5 

polarities without further increase. The rate for a 2-level tree is 𝑅2-𝑙𝑒𝑣𝑒𝑙 𝑇𝐶 =  1 𝑏𝑖𝑡/𝑠𝑦𝑚𝑏𝑜𝑙. 

     

 

   5. 2. 4.  4-2 Multitree 

    The application of the 2-level tree decreases the average rate of a tree coder, but we cannot 

use the 2-level tree only because the gain tracking performance is not good enough to track 

the prediction error alone. For this reason, we combine the 4-level and the 2-level tree as 

another tree structure unit and call the structure the 4-2 Multitree Coder (MTC) shown in 

Figure 3 [5]. 

 

 

 

 

 

 

    For this 4-2 MTC, we can achieve the fraction rate 𝑅4-2 𝑀𝑇𝐶 =
2+1

2
= 1.5 𝑏𝑖𝑡𝑠/𝑠𝑎𝑚𝑝𝑙𝑒. 

< Fig 3.  4-2 Multi-Tree > < Fig 2.  4-level Tree > 
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   5. 2. 5.  Randomized 4-2 Multitree 

    We may simply repeat the 4-2 multitree for tree spanning with a fixed rate of 1.5 

bits/symbol, but rather than imposing this periodicity of 4-2, we decide to randomly interleave 

the 4-level and the 2-level tree with equal probability to achieve the desired rate. Randomly 

choosing a 4-level or a 2-level tree every tree spanning for the full length of the utterances is 

not realizable in the actual application because the additional bits are needed to let a receiver 

know the random tree sequence to correctly update the gain term in the same way an encoder 

does. Instead, among all possible 40 sample tree sequences with a fixed rate of 1.5 bit/sample, 

we randomly chose 100 tree sequences and repeated until the end of the input speech signal 

and selected the best length 40 tree sequence with the highest average PESQ-MOS 

performance over our audio sample files. The best tree sequence of the 100 simulations is 

shown in Figure 18. 

 

 

  

 

  

 

  

 

 

 

 

< Fig 18.  The Best Tree Sequence (Length = 40) > 
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   5. 3.  (M, L) Algorithm 

    For a 4-level tree coder, the number of tree branches for depth 𝑘  is 4𝑘  which grows 

exponentially. Considering that a code generator adapts along each tree path, we need to limit 

the number of tree branches to an acceptable level of computational complexity. To do this, 

we apply a (M, L) algorithm to our tree coder [13]. According to the algorithm, when the 

number of the tree branches is larger than M, only the best M tree branches based on 

distortions survive for the next tree spanning, so other branches are pruned. In addition, when 

the tree depth reaches L, it releases the symbol(s) of the best tree path with the minimum 

distortion according to a chosen symbol release rule. For our RAR MTC codec, M = 8 and 

L=10 are used, and its resultant encoding time delay for L = 10 is 1.25 ms. 

 

 

   5. 4.  Symbol Release Rule 

    The (M, L) algorithm lets the tree span up to the depth L while limiting the maximum tree 

branches to M, and once it reaches the depth L, it has to release the symbol(s) of the optimal 

path. In our initial experiment, we set our tree coder to release the first single symbol of the 

best path, but later, we adopted a variable symbol release (VSR) rule [25] to avoid undesirable 

path switching with a single symbol release (SSR) rule. According to [25], the VSR rule has 

the ability to distinguish between desirable and undesirable path switching and may avoid the 

latter by sending a variable number of symbols. Furthermore, by sending multiple symbols, 

we can expect a lower computational load compared to the SSR. 
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    According to a VSR algorithm [25], a tree coder finds the best path with the minimum 

perceptually weighted distortion and releases the symbols mapping to the perceptually 

weighted reconstruction error 𝑒𝑤ሺ𝑛ሻ, 𝑒𝑤ሺ𝑛 + 1ሻ, … , 𝑒𝑤ሺ𝑛 + 𝑗ሻ until 𝑗 satisfies   

 

 

 

 

    In our actual simulations for our audio sample files with SSR and VSR, VSR was not always 

better than SSR, and it implies that VSR cannot perfectly filter the undesirable path better than 

SSR, but given that their average performances are quite close to each other, the VSR has the 

advantage for lower computation load.    
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Chapter 6 

 

 

 

 

   Performance of RAR MTC 

 

 

      

   6. 1.  Introduction 

    Although our tree coder can be applicable for narrow-band or wide-band speech signals, 

the parameters of our tree coder have been optimized for narrow-band speech signals without 

background noise, but the final version of our codec was tested for the speech signals with 

multiple types of background noises too. Our speech codec performance was measured by 

two criteria, a PESQ-MOS score and an average bit rate. So in this chapter, we introduce what 

narrow-band speech signals and background noises have been used for our tests and the details 

of performance measurement criteria, and finally, we will see how well our codec performs 

well compared to a popular codec, AMR-NB. All simulations are performed by using 

MATLAB. 
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   6. 2.  Test Audio Files 

    For the design of our codec, we used speech files from Recommendation ITU-T P.501 [26] 

that includes a wide range of test signals recorded in different languages applicable for several 

purposes in telephony and other speech-based applications. Among the whole set of test files, 

we picked a set of the English-spoken test files sampled at 8 kHz as our narrow band speech 

inputs, and the list of the files is given in Table 3. 

 

 

 

 

 

 

 

 

    Although the above sample files are sampled at 8 kHz, they have strong energy outside the 

desired narrowband telephone frequency band (300 ~ 3400 Hz), so we additionally pass them 

through a band pass filter (BPF) by using the default MATLAB BPF filter design function, 

“bandpass(x, fpass, fs)”. For the input values of the function, x has been sampled at a rate of 

fs Hz, and the two-element vector fpass specifies the passband frequency range of the filter in 

Hz. When we set fpass = [300, 3400] and fs = 8000, the filter is automatically designed as the 

616-th order of FIR BPF with the passband frequency 300 ~ 3400 Hz, 0.1 dB of passband 

ripple, 60dB of stopband attenuation. The frequency response of the BPF is shown in Figure 

Table 3. Design Speech Sample Group from ITU-T P.501 
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19. The same BPF filter is applied to the output of our codecs too so that we can remove the 

unwanted frequency components arising from reconstruction process. 

 

 

 

 

 

 

 

 

 

 

 

 

    Various fixed parameters related to our codec were optimized for the band-pass-filtered 

sample files in Table 3, and then, we tested our speech codec on more audio samples from 

ITU-T P.501 outside of the design set to get more generalized result. Since we could not find 

more narrowband signals from the standard audio sample set, we chose a certain set of original 

high-definition English audio sample files sampled at 48 kHz and converted them into 

narrowband signals sampled at 8 kHz by passing them through the above BPF and down-

sampling by 6. Table 4 shows the group of the test speech files we converted, 8 female voice 

files and 7 male voice files. Since the original reference files are composed of multiple 

sentences with a long period of silences between sentences, we segmented the whole sequence 

< Fig 19.  Frequency Response of the MATLAB Band Pass Filter "bandpass(x,[300,3400],8000)" > 
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into several pieces of a single sentence. Like we did for the first set of audio sample files, the 

output for the second set of these sentences are filtered by a BPF too. 

 

 

 

 

 

 

 

 

 

    After testing our codec for the above first and second groups of speech samples, we repeat 

the simulations with diverse background noises in Table 5 from the set of first responder 

background sounds [27] to test the robustness of our codec. Since these background noises 

are also HD audio files sampled at 48 kHz with 16-bit audio bit depth like the second speech 

sample group, we passed them through a BPF and down-sampled by 6 for conversion. 

 

 

 

 

 

 

Table 4. Non-Design Speech Sample Group from ITU-T P.501 

Table 5. Test Background Noise Files 
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    When we add the noise files to speech files for simulation, the noise sequence is cut to the 

same length as the speech file, and the power level of the truncated noise sequence is 

normalized depending on the speech file’s power level so that the Speech-to-Background-

Noise Ratio (SBNR) is equal to 3 𝑑𝐵  

𝑆𝐵𝑁𝑅 = 10 log
𝑃𝑥

𝑃𝐵𝑁𝑛𝑜𝑟𝑚
= 3 𝑑𝐵 

𝑃𝑥 ∶ 𝑃𝑜𝑤𝑒𝑟 𝑜𝑓 𝑆𝑝𝑒𝑒𝑐ℎ 𝑆𝑖𝑔𝑛𝑎𝑙 

𝑃𝐵𝑁𝑛𝑜𝑟𝑚 ∶ 𝑃𝑜𝑤𝑒𝑟 𝑜𝑓 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑁𝑜𝑖𝑠𝑒 𝑆𝑖𝑔𝑛𝑎𝑙 

 

 

   6. 3.  Performance Evaluation Methods 

    To measure speech quality, we use a standardized software tool, Perceptual Evaluation of 

Speech Quality (PESQ) [28] which is an objective evaluation method for end-to-end speech 

quality assessment of narrow-band telephone networks and speech codecs, and we adopted 

this method for our analysis. The perceptual model of PESQ is used to calculate a distance 

between the original and recovered speech signal which is described as a PESQ score, and the 

PESQ score is converted to a Mean Opinion Score (MOS)-like scale in the range of -0.5 to 

4.5, so we simply call this output a PESQ-MOS score. The details of the structure of this 

software can be found in [28]. 

    Along with the sound quality, another important criterion is the average bit rate of our 

codec. The best is to have a good sound quality with a lower bit rate. Since we adopt a 

VAD/CNG in our speech codec, the average bit rate is dependent on the ratio of “Silence” 

and “Unvoiced” regions over “Voiced” regions. Furthermore, we need to consider that, in 

(59) 
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“Voiced” regions, our tree is populated with a 5-level tree for the initial 140 samples of a 

voiced segment with assumption that the 5-level tree symbols are ideally entropy-coded, and 

then the optimally randomized 4-2 multitree is used for the rest voiced samples. After 

considering all of these, the final equation for the average bit rate of the output is given below 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 =
𝑁5-𝑙𝑒𝑣𝑒𝑙 𝑇𝐶  𝑅5-𝑙𝑒𝑣𝑒𝑙 𝑇𝐶 + 𝑁4-2 𝑀𝑇𝐶  𝑅4-2 𝑀𝑇𝐶 + 𝑆𝑆𝐼𝐷 𝑁𝑆𝐼𝐷

𝑁𝑡𝑜𝑡𝑎𝑙  𝑇𝑠
 

 

𝑁5-𝑙𝑒𝑣𝑒𝑙 𝑇𝐶 ∶ 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑑𝑒𝑑 𝑏𝑦 𝑎 5-𝑙𝑒𝑣𝑒𝑙 𝑇𝑟𝑒𝑒 

𝑁4-2 𝑀𝑇𝐶 ∶ 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑑𝑒𝑑 𝑏𝑦 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑 4-2 𝑀𝑇𝐶 

𝑁𝑆𝐼𝐷 ∶ 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑆𝐼𝐷 𝐹𝑟𝑎𝑚𝑒𝑠 

𝑆𝑆𝐼𝐷 ∶ 𝑇ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑎 𝑆𝐼𝐷 𝑓𝑟𝑎𝑚𝑒 𝑓𝑜𝑟 𝑎 𝐶𝑁𝐺 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑢𝑝𝑑𝑎𝑡𝑒 ሺ = 53 𝑏𝑖𝑡𝑠ሻ 

𝑁𝑇𝑜𝑡𝑎𝑙 ∶ 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑝𝑒𝑒𝑐ℎ 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 

𝑇𝑠 ∶ 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑃𝑒𝑟𝑖𝑜𝑑 ሺ =
1

8000
sሻ  

 

 

 

 

 

 

 

 

 

(60) 
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   6. 4.  Performance Analysis 

    6. 4. 1. Simulations for Short-term Prediction Order and Code Generator 

Sequence of a Forward Adaptive ADPCM without VAD/CNG 

    The initial simulation in this research was fulfilled to find the proper prediction order to be 

used in a code generator. For a linear predictor, although the higher prediction order generally 

gives a better Signal-to-Prediction-Error Ratio (SPER) performance, it costs a higher 

complexity of computation in the algorithms. Furthermore, it is needed to test how the addition 

of the long-term predictor increases the resultant prediction performance and how the 

sequence of the short-term and long-term predictors combined in a code generator affects the 

performance. For these reasons, we prepared three different models of ADPCM algorithms 

without VAD/CNG, Tree Coding, and a quantizer.  
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< Figure 20.1.  SP Only without Quantizer > 
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< Figure 20.2.  SP + LP without Quantizer > 
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< Figure 20.3.  LP + SP without Quantizer > 

𝑥ො𝐿𝑃ሺ𝑛ሻ 

𝑥ሺ𝑛ሻ 

𝐿𝑃 

𝑒𝐿𝑃ሺ𝑛ሻ + 

− 



 

 57 

    The first model in Fig. 20.1 is only the short-term predictor, and the second in Fig. 20.2 is 

the short-term predictor followed by the long-term predictor, and the Fig. 20.3, the third 

model, is the reverse of the second, the long-term predictor followed by the short-term 

predictor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    For these models, we varied the short-term prediction order from 1 to 60 and calculated 

SPER (dB) performances, and the result is shown in Fig. 21. For all tested models, SPER 

performance increases as the prediction order increases, but the increment gradually decreases 

and flattens out. In addition, the second model, SP + LP in Fig. 20.2, shows the highest 

performance among the tested three models. Interestingly, the third model, LP + SP in Fig. 

< Fig 21. SPER Performances for SP, SP+LP, LP+SP depending on SP Order > 
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20.3, shows the second performance for a lower prediction order, but for F1, M1, and M2, as 

the prediction order increases, SP only in Fig. 20.1 gradually starts to outperform the third 

model, LP+SP.  

 

 

   6. 4. 2. Simulations for Short-term Prediction Order and Code Generator 

Sequence of a Backward Adaptive ADPCM without VAD/CNG 

    Since these models in Sec. 6.4.1 were based on pure predictors without a quantizer, we 

added a quantizer to these models. 
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< Figure 22.1.  SP Only with Quantizer > 
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< Figure 22.2.  SP + LP with Quantizer > 
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< Figure 22.3.  LP + SP with Quantizer > 
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    The block diagrams for the three models with a quantizer are shown in Fig. 22.1~22.3, and 

the same simulation for different prediction orders was performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    The simulation performance graphs with a quantizer are shown in Fig. 23, and it reveals 

several different results compared to the previous simulation without a quantizer. First of all, 

SP + LP or LP + SP, they are mostly better than a single SP. Furthermore, LP + SP performs 

better than SP + LP for all samples except for M2 which shows almost similar performances 

for higher SP orders. In common, the previous and the current simulation show that their 

< Fig 23. SPER Performances for SP, SP+LP, LP+SP with a Quantizer depending on SP Order > 
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performances for all models get saturated as the SP order goes over around 10, and this led us 

to decide to use the 10-th order short-term predictor.  

 

   6. 4. 3. Simulations for Short-term Prediction Order and Code Generator 

Sequence of a Tree Coder without VAD/CNG 

    To make a better decision about whether we use SP + LP or LP + SP, we additionally 

applied tree coding based on only the 4-level tree with the rate, R = 2 bits/sample. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
< Fig 24. SPER Performances for SP, SP+LP, LP+SP with Tree Coding depending on SP Order > 
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   As shown in Fig. 24, the application of Tree Coding has increased their SPER performances 

over all values of a SP order compared to no Tree Coding, and unlike the previous result, SP 

+ LP outperforms LP + SP for all audio sample files. Since Tree Coding is one of our codec’s 

main features, SP + LP is finally chosen as our code generator structure.  

 

 

 

    6. 4. 4. Simulations of 5-4-2 Randomized Multi-Tree Coder with 

VAD/CNG and PWF with Non-Quantized CNG Parameters 

  As a next step, we upgraded the 4-level tree coder to the 4-2 randomized Multi-Tree Coder 

(MTC) with VAD/CNG and PWF to additionally lower the bit rate while keeping a good 

quality of sound. At this moment, when the 1-bit tree is used to span tree branches in the 4-2 

randomized MTC, it did not adapt its gain value depending on the 1-bit tree’s output, and 

when CNG parameters were generated, the encoder transmitted the parameters without 

quantization in the simulation. The codec at this stage is simply called Type 1. The main 

problem of the Type 1 codec is the poor encoding performance at the start of each voiced 

segment. The initial part of the voiced segment is quite short and low-energy so it is difficult 

for the adaptive predictors to quickly restart the adaptation of the prediction parameters. This 

led us to make our codec perform with only PCQ for the initial 120 samples of a voiced 

segment. Let’s call this codec Type 2. Later then, the 1-bit tree not updating a gain term needed 

to be upgraded with a new gain adaptation algorithm, so we finally devised and applied the 

new gain adaptation algorithm for 1-bit tree based on the polarity sequence of the past five 

excitation values. This final version of codec is called Type 3. 
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    We tested Type 1 ~ 3 for our design audio samples, F1, F2, M1, M2, which have almost 50 

percent silence or unvoiced regions categorized by our VAD module, and the result is 

displayed in Table 6. The addition of the 5-level PCQ from Type 1 to Type 2 has increased 

PESQ-MOS. Moreover, the new 1-bit tree gain adaptation rule based on the 5-polarity 

adaptation rule in Figure 14 has additionally advanced our codec’s performance as evident 

from Table 6.   

    Moreover, considering that voiced regions are encoded by a 4-2 tree coder at the bit rate of 

12 kbps, VAD/CNG has dropped the average bit rate for whole utterances to about half of 12 

kbps for our design audio samples, and the average bit rate is dependent on the portion of 

voiced regions for each input. As we mentioned earlier that our VAD/CNG has a simple 

structure to briefly explore its effect in a speech codec, our VAD/CNG’s classification and 

noise generation performance might not be as good as other recent standardized speech 

codecs’ VAD/CNG algorithms. To focus on the voice recovery quality in voiced regions only, 

we extracted the recovered speech signals for voiced regions only and concatenate them and 

pass the newly generated signal through the PESQ-MOS software. For a comparison to the 

AMR-NB codec, we also did the same extraction and concatenation process for the 

Table 6. Performance for Type 1 ~ 3 
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reconstructed speech from the AMR-NB codec in the same voiced regions classified by our 

VAD module, and the final result is given in Table 7. 

 

 

 

 

 

 

    Among diverse running modes of AMR-NB, we used a 12.2 kbps of AMR-NB because is 

has the closest bit rate to our codec’s bit rate, so Table 7 shows that AMR-NB’s bit rate is 

slightly less than our type 3 model by about 0.04 kbps. From Table 7, we see the overall 

PESQ-MOS scores in voiced regions only have improved by almost 0.3 compared to the result 

for the whole utterances. Furthermore, we can see the same positive effect of the 5-level PCQ 

and the new gain control algorithm based on 5-polarity for the 2-bit tree like Table 6. Although 

the advancement for using the 5-polarity gain control algorithm is relatively small, it still 

shows plus effect for all tested audio samples. The most important result is that our final 

version of the model, Type 3, now has the PESQ-MOS scores higher than 3.5 which is 

considered Good, and even more than 3.7 up to slightly over 4.0 which is considered Very 

Good. Although the AMR-NB 12.2 kbps mode consistently shows the PESQ-MOS scores 

slightly over 4.0, for Male 1, our Type 3 codec has almost equivalent performance as the 

AMR-NB 12.2 kbps. 

Table 7. Performance for Type 1 ~ 3 vs AMR in Voiced Regions Only 
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    The Type 3 model has been optimized for the design set of audio samples, F1, F2, M1 and 

M2, and we expanded the same test in voiced regions for the samples outside the design set 

in Table 4. 

 

 

 

 

 

 

 

    Table 8-1 shows the result for the additional female samples, and we see that the addition 

of 5-level PCQ has mostly increased the performance except for F7 and F10. From Type 2 to 

Type 3, the 5-polarity-based gain control algorithm have slightly increased the performance 

except for F4. Although AMR-NB shows better performance on average than our Type 3 by 

0.133, but for F9 and F11, our Type 3 codec performs better. 

 

 

 

 

 

 

Table 8-1. Performance for Type 1 ~ 3 vs AMR in Voiced Regions Only 

For Additional Female Samples 

Table 8-2. Performance for Type 1 ~ 3 vs AMR in Voiced Regions Only 

For Additional Male Samples 
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    Similar performance results are shown in Table 8-2 for the additional male samples. Type 

2 outperforms Type 1 except for M10, and Type 3 slightly performs better than Type 2 except 

for M4 and M9. AMR-NB is still showing higher scores than Type 3 except for M9.  

   When we compare the results for the female and male samples, our codec and AMR show 

lower PESQ-MOS scores for female audio samples on average. Since female voice generally 

has a shorter pitch period, there are more pitch periods in a frame that are averaged together 

for fixed-length-block-based coders such as AMR. For our codec, the long-term redundancy 

from pitch is hard to precisely track by our backward adaptive algorithm, so additional pitch 

pulses in a shorter period of time create tracking difficulties [29]. However, it does not mean 

that the speech codecs always perform better for all male speakers because other factors except 

for pitch period may be involved with encoding performances.  

   Another fact in comparison with the design set of audio samples, the new set of audio 

samples show a little bit lower performance than the design set of samples for our codecs and 

AMR-NB 12 kbps.  
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   6. 4. 5. Simulations of 5-4-2 Randomized Multi-Tree Coder with VAD/ 

CNG and PWF with Quantized CNG Parameters 

   As we mentioned earlier, the Type 3 codec in the previous section is not perfectly practical 

because it does not quantize the CNG parameters which are transmitted to a receiver for CNG 

process, so we apply a quantization scheme to the CNG parameters as a next step. 

 

   

 

 

 

 

 

 

 

 

 

  

   The CNG parameters are composed of 8 PARCORs and the residual energy. Rather than 

quantizing them all at once, we decided to quantize the PARCORs first by finding the proper 

quantization bit depth and dynamic range for each PARCOR. Table 9 shows the results for 

the sequential simulations to arrive at the final CNG parameter quantization scheme. From the 

non-quantized CNG parameters, we first applied the uniform quantizers for PARCORs with 

the same bit depth and dynamic range as shown in the second row of Table 9. Based on the 

Table 9. Quantization of CNG Parameters for Type 3 
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fact that the lower-order coefficients of PARCORs needs more bit-depth because of its higher 

variance, the new bit-depth scheme in the third row of Table 9 was applied next, and its result 

was slightly better than before in average. To enhance the performance more, we additionally 

adjusted the dynamic range for the quantization as shown in the fourth row of Table 9, so we 

finally settled at the uniform quantization setting for PARCORs. We did not do a broad range 

of simulations to find the optimal quantization scheme for PARCORs because the VAD/CNG 

algorithm is relatively not a core part of our codec as it has been built quite simply. To quantize 

the remaining parameter, the residual energy, we applied the non-uniform quantizer with 5-

bit depth, and the final version of the quantization scheme in the 5-th row shows 0.061 lower 

PESQ-MOS scores than non-quantized CNG. 

 

    6. 4. 6. RAR MTC vs AMR 

    In order to check the relative performance of our codec, we ran the reference AMR codec 

for the design set of audio samples and replaced the signals in unvoiced and silence regions 

classified by our VAD/CNG algorithm with our codec’s reconstructed comfort noise signals 

because it was difficult to substitute the AMR’s VAD/CNG module to our VAD/CNG. There 

are several different modes for AMR codec, and among them, we chose the mode, AMR 12.2 

kbps, with the bit rate closest to our codec running at 12 kbps in voiced regions. 

 

 

 

  

Table 10. RAR MTC vs AMR 12.2 kbps for the Design Set of Audio Samples  
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   As you can see Table 10, our codec shows slightly better performance except for M2, so it 

implies that our codec is competitive compared to the AMR codec, but the original AMR’s 

outputs would be better than the above results because it uses a highly advanced VAD/CNG 

module.  

 

    6. 4. 7. RAR MTC vs AMR with Background Noises  

    Since our codec structure has been finalized based on the design set of 4 speech samples, 

we additionally found another set of audio samples and test it with background noises too. 

Since two codecs are using different algorithms for VAD/CNG, it is quite hard to do a 

perfectly fair comparison for actual voiced signal encoding, so we passed the input signals 

through our tree coder without our simple VAD/CNG which shows an acceptable level of 

classification performance for low-power white noise sounds of a voice signal, but the bad 

classification for the test background noises in emergent situations like a loud siren or sawing 

sounds. For this additional test with background noises, we prepared two methods of PESQ-

MOS measurements.  

  

 

 

 

 

    One of the methods, Option 1 from Figure 25, takes the sum of the original voice signal 

and the background noise as a reference signal, and PSEQ/MOS is measured by comparing 

the encoder output to the reference signal. In order words, this measurement takes account of 

< 𝑭𝒊𝒈. 𝟐𝟓.  𝑶𝒑𝒕𝒊𝒐𝒏 𝟏 𝒇𝒐𝒓 𝑷𝑬𝑺𝑸/𝑴𝑶𝑺 𝑴𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕 𝒘𝒊𝒕𝒉 𝑩𝒂𝒄𝒌𝒈𝒓𝒐𝒖𝒏𝒅 𝑵𝒐𝒊𝒔𝒆  > 
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the quality for both voice and background noise signals together, so the higher PESQ-MOS 

scores may not absolutely imply better voice quality because it is possible that the background 

noise is recovered better than the voice signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Table 11 above shows the result of the female audio samples with background noises for 

the Option 1 measurement. On average over voice samples, our codec performs better for the 

background noise BN 1, 3, 5, 6, 8. Especially for BN5, female voice samples except for F2, 

F5, and F7, show scores over 4.0 which means very good while AMR does not have any result 

over 4.0. Furthermore, our codec and AMR show poorer performances for BN2, 4 and 7 for 

Table 11. RAR MTC vs AMR 12.2 kbps for Female Samples + Background Noise 

by Option 1 Measurement 



 

 70 

all voice samples. Considering that the codec’s performance is dependent on the distribution 

of input signal’s frequency components, BN2, 4 and 7 are particularly difficult sources for a 

predictive model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Table 12 is for the male voice samples with the same measurement, and we can see that our 

codec is better with the background noise BN 1, 3, 5, 6, 8, and that BN2, 4, and 7 are disturbing 

the overall encoding performances for both codecs like the female samples. As we already 

mentioned, the option 1 measurement is based on the speaker voice and background noise 

Table 12. RAR MTC vs AMR 12.2 kbps for Male Samples + Background Noise 

by Option 1 Measurement 
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together, these scores may not be directly connected to the actual voice recovery quality, so 

we prepared another PESQ-MOS measurement method, option 2. 

 

 

 

 

 

As we can see in Figure 26, the reference signal is just the voice signal, so the option 2 is 

focusing on the quality of the voice signal only.  
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Table 13. RAR MTC vs AMR 12.2 kbps for Female Samples + Background Noise 

by Option 2 Measurement 
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    Table 13 is the result for female speakers with background noises based on the measurement 

option 2. For both codecs, compared to the results over 3.0 from the option 1, PESQ-MOS 

scores for the option 2 have substantially dropped to under 3.0 because the recovered 

background noises signal are the unwanted outputs for the option 2. Furthermore, the lowest 

scores are almost close to 1.5, and the highest scores are around 2.5 for both codecs. Unlike 

the option 1 shows worse performances for BN 2, 4, and 7, the option 2 adversely shows worse 

performances for the noises, BN 1, 3, 5, 6, 8 on average. In comparison of both codecs for 

option 2, AMR codec is slightly better in average over all background noises except BN 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14. RAR MTC vs AMR 12.2 kbps for Male Samples + Background Noise 

by Option 2 Measurement 
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    When we look at Table 14 which shows the results for male speakers with the measurement 

option 2, the same data analysis from the female data can be drawn to male data although their 

exact data numbers are different. 

 

 

 

 

 

 

 

 

 

 

    By incorporating the average scores over female and male voice samples separately, we can 

get Table 15 above. The additional fact about this data is that the performances for both codecs 

are mostly better with male voices than female voices, and it implies that a longer pitch period 

of male voices are more likely to allow better prediction performances inside both codecs. 

Although it was hard to say which codec is dominantly better, as we change the measurement 

method from option 1 to option 2 with a huge drop of scores, the AMR looks slightly better 

than RAR MTC except for BN2, but considering that our RAR MTC is running at 12 kbps in 

voiced regions 0.2 kbps lower than AMR 12.2 kbps, we can say that their average 

performances are almost same. Even in the actual headphone sound tests, the differences are 

not easily audible.  

Table 15. RAR MTC vs AMR 12.2 kbps for All Voice Samples + Background Noises 

By Option 1 & 2 
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    6. 4. 8. Informal Listening Tests 

    PESQ-MOS is standardized to evaluate the objective sound quality as numeric scores based 

on extensive experiments. We also conducted the informal listening tests over headphones to 

complement the PESQ-MOS and to characterize the types of distortion present. For the 

listening test, we listened to the reconstructed signals of the RAR MTC and the AMR-NB 12 

kbps mode from Table 10. Since the output for the AMR-NB 12 kbps from Table 10 has the 

signals in unvoiced and silence regions replaced with our RAR MTC codec’s output, we could 

not hear any difference in the periods between voiced segments. For the voiced parts, the 

overall sound qualities for both codecs are very clear for all audio samples, so it is difficult to 

find any difference between the two codecs at first, but as we repeat the listening test with a 

deeper focus on the voiced parts, we can hear some differences. First of all, there are some 

audible, but very low level of hissing in the voiced parts for the RAR MTC codec, but the 

hissing cannot be easily heard especially for F1. The AMR-NB codec rarely has sounds 

hissing, but when we focus on the speakers’ tone, their voiced regions sometimes have spectral 

distortion and sound like an artificial voice, whereas our codec reproduces very natural voice, 

and these experiences fit our intuition. Compared to the block-based AMR built on the CELP 

structure, our RAR MTC codec is more of a waveform-following type codec, so the tones of 

the reconstructed signals for our codec steadily sound natural over all voiced regions, but with 

a low level of hissing sound which could be similar to quantization noise. In summary, the 

PESQ-MOS scores from Table 7 and our informal listening tests show that the RAR MTC 

performs well in comparison to the AMR-NB codec which is a widely implemented 

international speech codec standard. 
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Chapter 7 

 

 

   Conclusions and Future Work 

 

 

   7. 1. Conclusions 

       We started this research by benchmarking the tree coders of Gibson, Chang, and Woo’s 

research work [4] [5], and the potential of speech tree coding based on a sample-by-sample 

approach have led us to explore more possibilities based on the following new efforts. 

• One of the efforts to realize the potential was to replace the all-pole short-term 

predictor of a code generator with a pole-zero predictor for better waveform-tracking 

performance. 

• The addition of our simple VAD/CNG module enables our codec to have a lower 

average bit rate of close to half of 12 kbps for the input samples in Table 6 and Table 

7. The average bit rate is dependent on the portion of voiced regions while resulting in 

some quality loss in unvoiced and silence regions, and this quality loss may be 

minimized with state-of-art VAD/CNG algorithms.  

• Furthermore, by randomly interleaving 4-level and 2-level trees with a fixed rate of 

1.5 bits/sample instead of repeating the unit trees one by one (ex : 4-2-4-2-4-2-…) and 
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selecting the best sequence for our design set of samples, our tree coder can be more 

stochastically optimized for the given design audio samples.  

• The application of a 5-level PCQ tree for the initial samples of each voiced segment 

can help better initialization of predictive coding parameters of the randomized 4-2 

tree coding for the remaining samples in voiced regions. 

• Unlike the 4-level tree unit, the 2-level tree unit is quite tricky to adapt its gain because 

the tree generates only 2 outputs, but our new gain adaptation algorithm based on the 

5-polarity of the past excitations has slightly increased the overall codec performances.  

• The algorithmic time delay for the RAR MTC with VAD/CNG is composed of the 

look-ahead delay of VAD scanning (128 samples = 16 ms) and the tree encoding delay 

based on the tree depth (10 samples = 1.25 ms) for the (M = 8, L = 10) algorithm. The 

total delay is 17.25 ms which is lower than AMR-NB’s delay, 25 ms.  

 

    As these new features are combined with a backward adaptive tree coder, our final version 

of tree coder, RAR MTC, can achieve the PESQ-MOS scores between 3.5 and 4.0 running at 

the bit rates of 4 to 6 kbps on average without background noises. Although AMR-NB codecs 

perform better than ours, considering that the AMR-NB is the result of long history of 

standardization meetings with hundreds of engineers and researchers, our research led by only 

two members for a much shorter time period shows excellent performances. Our RAR MTC 

codec achieves the best performance ever for the backward adaptive predictive coders based 

on a sample-by-sample analysis-and-synthesis model. 
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   7. 2. Future Work 

     The RAR MTC codec still has more possibilities to be improved by upgrading each of the 

functional components composing a tree coder, so the following works should be considered 

in the future. 

• When we compare the results of Table 6 and Table 7, we can see the performance drop 

in unvoiced and silence regions because of our VAD/CNG module while resulting in 

a lower average bit rate. The next step should include a newer version of VAD/CNG 

which can more precisely detect a voice tone or other information by using a filter 

bank like the AMR codec.  

• For the pole-zero short-term predictor in a code generator, other promising adaptation 

algorithms need to be tested for the adaptation of the zero coefficients for better 

prediction performance. Applying the same lattice structure of adaptation algorithms 

to zero coefficients as pole coefficients may be a good choice for the efforts. In 

parallel, the prediction performance should be analyzed by varying the order of the 

zero coefficients. 

• More efforts to find a better pitch parameters adaptation algorithm for a long-term 

predictor should be considered too. Especially, since the current recursive pitch 

parameter update rule can increase or decrease its pitch period estimate by only 1 each 

iteration, the pitch period tracking sometimes cannot quickly respond to the quick 

change of the actual pitch period during the regions where a recursive method should 

be used. 

• For PWF, future work can consider the way to adapt the perceptual weighting filter’s 

shaping constant, 𝜇  and 𝛾 , like its filter coefficients need to be considered. As 
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mentioned in Chapter 5, the PWF’s shaping effect may not properly work in some 

regions, and we suspect that the fixed values of 𝜇  and 𝛾  may cause undesirable 

weighting effects in some regions. 

• The efforts to find a better gain adaption algorithm for the 2-level tree unit should 

continue too. As one of the suggestions, using more polarity information than five in 

the current 2-level gain control rule can be considered. If a longer excitation polarity 

sequence than five shows a more skewed probability distribution for expansion or 

contraction, better adaptation performance can be expected with more diverse ranges 

of gain multiplication factors. Once any better performance of the 2-level gain control 

algorithm is developed, a tree coder can achieve a lower average bit rate with a little 

bit of sound quality loss by using more 2-level trees than 4-level trees in generating a 

tree sequence. 

• Not limited to the combination of 4-level and 2-level trees, more diverse levels of tree 

units with different ratios should be analyzed to find a better structure of a tree code. 

• Lastly, because of the good waveform-tracking performance of the RAR MTC codec, 

future work should consider expanding the evaluation for the first responder 

communication where the RAR MTC codec may outperform any other standardized 

speech codecs.  
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Appendix. Adaptive Differential Pulse Code Modulation 

(ADPCM) 

    Differential Pulse Code Modulation (DPCM) [30] is the most common classical technique 

in signal processing to compress or encode data to represent audio or video signals by reducing 

correlated information between sequential data. DPCM is a form of predictive coding that 

takes advantage of the statistical correlation between adjacent samples in voiced speech 

segments. Rather than directly quantizing the current voice sample’s amplitude, it predicts the 

current voice value first and quantizes the difference (or prediction error) between the 

prediction and the actual value. Supposing that we have a good predictor, the dynamic range 

of the prediction error is much smaller than the actual voice sample, so the encoder can achieve 

better Signal-to-Noise Ratio (SNR) performance with the same number of quantization bits. 

However, the fixed step size of a quantizer may show poor performance when the prediction 

gain dynamically changes, so if we add an algorithm to adapt the quantizer step size to allow 

smaller quantization error, the variant of DPCM is called Adaptive Differential Pulse Code 

Modulation (ADPCM) [31].  

 

 

 

 

 

    Once quantized prediction errors are encoded by binary codes, the encoded data are 

transmitted to a receiver, and a decoder reconstructs the signal with the transmitted prediction 

error with the same structure of the predictor as an encoder in Figure A.    
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