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ABSTRACT OF THE DISSERTATION

Compressed Sensing Quantum Process Tomography for Superconducting Quantum Gates

by

Andrey Rodionov

Doctor of Philosophy, Graduate Program in Electrical Engineering

University of California, Riverside, March 2015

Dr. Alexander N. Korotkov, Chairperson

An important challenge in quantum information science and quantum computing is the

experimental realization of high-fidelity quantum operations on multi-qubit systems. Quantum pro-

cess tomography (QPT) is a procedure devised to fully characterize a quantum operation. We first

present the results of the estimation of the process matrix for superconducting multi-qubit quantum

gates using the full data set employing various methods: linear inversion, maximum likelihood, and

least-squares. To alleviate the problem of exponential resource scaling needed to characterize a

multi-qubit system, we next investigate a compressed sensing (CS) method for QPT of two-qubit

and three-qubit quantum gates. Using experimental data for two-qubit controlled-Z gates, taken

with both Xmon and superconducting phase qubits, we obtain estimates for the process matrices

with reasonably high fidelities compared to full QPT, despite using significantly reduced sets of

initial states and measurement configurations. We show that the CS method still works when the

amount of data is so small that the standard QPT would have an underdetermined system of equa-

tions. We also apply the CS method to the analysis of the three-qubit Toffoli gate with simulated

noise, and similarly show that the method works well for a substantially reduced set of data. For the
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CS calculations we use two different bases in which the process matrix is approximately sparse (the

Pauli-error basis and the singular value decomposition basis), and show that the resulting estimates

of the process matrices match with reasonably high fidelity. For both two-qubit and three-qubit

gates, we characterize the quantum process by its process matrix and average state fidelity, as well

as by the corresponding standard deviation defined via the variation of the state fidelity for differ-

ent initial states. We calculate the standard deviation of the average state fidelity both analytically

and numerically, using a Monte Carlo method. Overall, we show that CS QPT offers a significant

reduction in the needed amount of experimental data for two-qubit and three-qubit quantum gates.
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Chapter 1

Introduction

“In theory, theory and practice are the same. In practice, they are not.”

– Albert Einstein

Quantum information science is a relatively young interdisciplinary research field that

combines ideas and methods of physics, mathematics, information theory and computer science [2].

Quantum information science is based on the control and use of quantum systems like photons,

atoms, trapped ions or superconducting qubits to process and transmit information. It has been

shown that certain quantum algorithms offer tremendous advantages over classical algorithms in a

number of special computational tasks. For example, the efficient quantum algorithm of factoriza-

tion of a large integer number n was invented by Peter Shor in 1994 [3, 4, 5, 6]. Shor’s algorithm is

performed in polynomial time in log n and is exponentially more efficient than any known classical

algorithm. Specifically, it takes time O((log n)3), which is much faster than the best known clas-

sical factoring algorithm for which the time scales as O(e1.9(logn)
1/3(log logn)2/3). Shor’s algorithm

could be used to break public-key cryptography schemes such as the widely used RSA scheme [7]

1



which is based on the assumption that factoring large numbers is computationally infeasible on a

classical computer. Another famous quantum algorithm, proposed by Lov Grover [8] in 1996, ad-

dresses the problem of database searching. The computational time of Grover’s algorithm equals

the square root of time of the fastest classical algorithm. Another well-known quantum protocol,

formulated by Artur Ekert [9] in 1991, allows secure quantum key distribution. It uses entangled

pairs of photons and allows detection of eavesdropping by testing Bell’s inequality violation.

In classical information theory, information is encoded in strings of bits, which can either

be in the state 0 or 1. The physical realization of a classical bit can be an arbitrary physical system

with two states, for example, the p – n junction diode: switched-off (0) and switched-on (1). Analo-

gously, in quantum computing, a unit of quantum information is called a “qubit” or “quantum bit”,

which is a two-level quantum mechanical system. Unlike its classical counterpart, the quantum bit

can be in any superpositions of its basis states |0〉 and |1〉 (for example, the ground and excited states

of an atom), which is the manifestation of the phenomenon of quantum superposition. Examples of

physical realization of qubits can be the spin of the electron, or electron in a quantum dot, or po-

larized photon, etc. A quantum computer uses qubits to store and process information. A quantum

logic gate is a device (a basic quantum circuit) that performs a fixed unitary operation on selected

qubits [10].

The object of the research of this dissertation are quantum gates implemented with the

superconducting qubits, which are currently considered one of the most promising platforms for

quantum computing (see, e.g., [11]). Superconducting qubits are electrical resonators with a non-

linearity that is strong enough so that microwaves excite transitions only between the two lower

states, and this is why they are often called “artificail atoms”. Superconducting qubits include such
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elements as Josephson junctions, capacitors and inductors. Nonlinearity in such nonlinear LC-

resonators is due to the presence of Josephson junctions. We give a review of basic notions and

concepts from the quantum information science and discuss in details various types of supercon-

ducting qubits in Chapter 2.

Experimental realizations of quantum gates usually differ from their ideal theoretical

models due to small imperfections and experimental errors in the laboratory. Quantum tomogra-

phy describes methods to identify non-ideal quantum states and quantum gates (or, equivalently,

quantum channels, quantum processes, or quantum operations) in the laboratory. Quantum State

Tomography [2] (QST) is a method by which a quantum state is measured, and Quantum Process

Tomography (QPT) is a procedure by which an unknown quantum operation can be fully char-

acterized experimentally [2, 12, 13]. The main idea of QST is the following: for a quantum state

produced by a preparation device, a set of different measurements has to be performed on the ensem-

ble of identical quantum states on the output of that device, in order to estimate all the parameters

of the produced quantum state. These parameters form the density operator (equivalent name is

“density matrix”) of the state, which fully describes the state of a physical system. We describe the

procedure of QST and present our results of QST for the phase qubits in Chapter 3.

The methods of quantum process tomography provide us with the opportunity to predict

the evolution of a quantum state propagating through an imperfect quantum gate. In real experi-

ments, when the interaction between the qubit system and the environment cannot be neglected, it

is not possible to describe the evolution of a quantum state by a unitary operator. The experimenter

attempts to apply an ideal quantum gate U , but what really occurs is a noisy quantum operation E ,

which can be characterized by the methods of quantum process tomography. The main idea be-
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hind QPT is the following: for a quantum channel (process), that takes an input state and outputs

some transformed state, a combination of preparation of various linearly independent input states

and measurements of the multiple copies of the corresponding output states is used to determine

the quantum channel (process) parameters. The parameters that characterize the quantum channel

form the process matrix χ, which contains all accessible information about the quantum process.

Note that while the dimension of the unitary operator U , describing the ideal evolution of a N -qubit

quantum system, is 2N × 2N , the dimension of a process matrix χ, which describes the non-unitary

evolution in the presence of interaction with the environment, is 4N×4N . The role of QPT in exper-

imental characterization of quantum gates is twofold. First, it allows us to quantify the quality of the

gate; that is, it tells us how close the actual and desired quantum operations are. Second, QPT may

aid in diagnosing and correcting errors in the experimental operation [14, 15, 16, 17, 18]. The impor-

tance of QPT has led to extensive theoretical research on this subject (e.g., [19, 20, 21, 22, 23, 24]).

Therefore the quantum process tomography is an essential tool in reliable quantum information

processing.

Various methods exist for the estimation of the process matrix χ from experimental data.

One of the methods of χ-matrix estimation from the set of measurement results is the so-called linear

inversion procedure, in which the process matrix is expressed as a matrix multiplication of several

other matrices. This method is described for the systems of one and two qubits in [2, 13, 25], and

it is formulated slightly differently in [17]. Using the expressions for the process matrix from [17],

we wrote a Matlab code that calculates the process χ-matrix for the evolution of quantum systems

consisting of several qubits. We established that the maximum number of qubits in the system that

allows the exact computation of the χ-matrix on an average personal computer equals six. The
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details of the method of linear inversion for the reconstruction of the process matrix are given in

Chapter 4.

As statistical and systematic errors are usually unavoidable in experiments, the density

or process matrix obtained directly from measurement results (using the so-called “linear inver-

sion” method) can often result in parameters that do not have a physical meaning, for example, they

would correspond to negative probabilities, or probabilities greater than one, or violate the positive

semidefinite or trace-preservation property, in other words the obtained estimator of either the den-

sity or the process matrix cannot be used for statistical predictions. One of the possible methods

to avoid the problem of non-physical results is to use the maximum likelihood estimator [26, 27],

which is a convex optimization problem [27, 28, 29]. Convex optimization problems are optimiza-

tion problems, where the objective function and the constraints are convex. In convex optimization,

any local minimum must be a global minimum, which makes it much easier to deal with a convex

optimization problem in comparison to a non convex problem, as it may have multiple local optimal

points. Convex optimization has a variety of applications in science, engineering, and finance. In

the maximum likelihood approach to QST or QPT tasks, the likelihood of reproducing the exper-

imental results is maximized, where the likelihood function is a function of the parameters of the

measurement model of the quantum system, and such method guarantees the density or process

matrix to be theoretically valid while giving a close fit to the measured experimental data. The

specific mathematical form of the likelihood function can be chosen as a log-likelihood function, or

as the least squares function, or some other function. In this dissertation, we provide results for the

log-likelihood QST estimation of a two-qubit state of the system of two superconducting qubits in

Chapter 3, and also provide results for the least squares QPT estimation of the process matrix for

the systems of both two and three qubits in Chapter 5.
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Although conceptually simple, QPT suffers from a fundamental drawback: the number

of required experimental configurations scales exponentially with the number of qubits (e.g., [30]).

Even for few-qubit systems, QPT involves collecting large amounts of tomographic data and heavy

classical postprocessing. Specifically, an N -qubit quantum operation can be represented by a

4N × 4N process matrix χ containing 16N independent real parameters (or 16N − 4N parame-

ters for a trace-preserving operation) which can be determined experimentally by QPT. To alleviate

the problem of exponential scaling of QPT resources, alternative methods have been developed,

e.g., randomized benchmarking [31, 32, 33] and Monte Carlo process certification [34, 35]. These

protocols, however, find only the fidelity of an operation instead of its full process matrix. Both

randomized benchmarking and Monte Carlo process certification have been demonstrated experi-

mentally for superconducting qubit gates (see [36, 37, 38] and references therein). Although these

protocols are efficient tools for the verification of quantum gates, their limitation lies in the fact that

they do not provide any description of particular errors affecting a given process and therefore they

cannot be used to improve the performance of the gates.

Recently, a new approach to QPT which incorporates ideas from signal processing theory

has been proposed by Kosut, Shabani and coworkers [39, 40]. The basic idea is to combine stan-

dard QPT with compressed sensing (CS) theory [41, 42, 43, 44], which asserts that sparse signals

may be efficiently recovered even when significantly undersampled. Compressed sensing quantum

process tomography (CS QPT) enables one to recover the process matrix χ from far fewer experi-

mental configurations than standard QPT. The method proposed in [39, 40] is hoped to provide an

exponential speed-up over standard QPT. In particular, for a d-dimensional system the method is

supposed to require only O(s log d) experimental probabilities to produce a good estimate of the
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process matrix χ, if χ can be approximated by an s-sparse matrix in some known basis (for compar-

ison, standard QPT requires at least d4 probabilities, where d = 2N for N qubits). Note that there

are bases in which the process matrix describing the target process (the desired unitary operation)

is maximally sparse, i.e. containing only one non-zero element; for example, this is the case for the

so-called singular-value-decomposition (SVD) basis [39] and the Pauli-error basis [18]. Therefore,

if the actual process is close to the ideal (target) process, then it is plausible to expect that its process

matrix is approximately sparse when written in such a basis [40].

The main results of this dissertation, published in Ref. [1] and presented in Chapter 5,

are the characterization of quantum gates based on superconducting Xmon and phase qubits, by the

method of compressed sensing quantum process tomography. Our research [1] was inspired by the

previous work by A. Shabani et al., presented in Ref. [40], where the CS QPT method was experi-

mentally validated for a photonic two-qubit controlled-Z (CZ) gate. In that experiment, sufficiently

accurate estimates for the process matrix were obtained via CS QPT using much fewer experimen-

tal configurations than the standard QPT: from just 18 and 32 configurations, the authors of [40]

reported fidelities of 94% and 97% with process matrices calculated from an overcomplete full set

of all 576 available configurations. In this dissertation in Chapter 5 we apply the method of Ref.

[40] to several two-qubit CZ gates realized with superconducting qubits. Using the experimental

results, we find [1] that CS QPT works reasonably well when the number of used experimental

configurations is up to ∼7 times less than for standard QPT with the full number of experimental

configurations of 144. Specifically, we first present our numerical results for the CS QPT of the

superconducting two-qubit CZ gates, based on superconducting Xmon and phase qubits. We also

compare numerical results obtained by applying the CS QPT method in two different operator bases,
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the Pauli-error basis and the SVD basis. We also compare the performance of the CS QPT method

with the least squares optimization, using partial data. We also study the CS QPT of a simulated

three-qubit Toffoli gate with numerically added noise, and we find [1] that the reduction factor in

the three-qubit case is ∼40, compared with standard QPT using the full number of experimental

configurations of 1728. In our analysis in Chapter 5 we have primarily used two characteristics.

The first characteristic is the comparison between the CS-obtained process matrix χCS and the ma-

trix χfull obtained from the full data set; this comparison is quantitatively represented by the fidelity

F (χCS, χfull). The second characteristic is how well the CS method estimates the process fidelity

Fχ, i.e., how close F (χCS, χideal) is to the full-data value F (χfull, χideal). Besides calculating the

fidelities, we also calculate in Chapter 6 the standard deviation of the fidelity, defined via the varia-

tion of the state fidelity for different initial states. We show that this characteristic is also estimated

reasonably well by using CS QPT. Chapter 7 is a conclusion. In Appendices we give the list of

publications of the author of this dissertation (Appendix A), discuss the Pauli-error basis (Appendix

B) and SVD basis (Appendix C).
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Chapter 2

Overview of quantum information

processing and superconducting qubits

2.1 Overview of quantum information processing

2.1.1 Qubit

According to quantum mechanics, the state of a physical system is represented by a state

vector in a Hilbert space, which is a complex vector space with an inner product. In Dirac notation

vectors in Hilbert space are denoted by |v〉, called a “ket-vector”. The smallest nontrivial Hilbert

space is two-dimensional.

The most basic unit of quantum information is qubit, which is a two-dimensional quantum

system described by a state vector in a two-dimensional Hilbert space. Pure states for a qubit are

superpositions of the basis states |0〉 and |1〉, which means that every state vector can be written as
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a linear combination of these two basis states:

∣∣Ψ〉
= a

∣∣0〉+ b
∣∣1〉, (2.1)

where a and b are complex numbers, characterized by a relative phase and subject to the normal-

ization condition |a|2 + |b|2 = 1. In contrast to the classical bit, which can be only in the states

0 or 1, a qubit can be in an arbitrary coherent superposition of the states |0〉 and |1〉, these states

are traditionally called computational basis. If we measure a qubit in the computational basis, then

according to the postulates of quantum mechanics the state of the qubit after measurement will be

|0〉 with probability |a|2, and |1〉 with probability |b|2. This means if one prepares many copies of

the same quantum system in the state |Ψ〉, a measurement of the state of the qubit will produce the

outcome 0 with rate |a|2, and the outcome 1 with rate |b|2. In general, the dimension d of the Hilbert

space for a system of N qubits is d = 2N .

Numerous physical realizations of qubits have been proposed and demonstrated, in which

the qubits are encoded in the polarization state of a photon [45, 46, 47, 48, 49, 50, 51], in the spin

state of a trapped ion [52, 53, 54], in the the magnetic moment of a hydrogen atom in nuclear

magnetic resonance [55, 56, 57], in the ground and first excited center-of-mass vibrational states of

trapped neutral atoms [58, 59, 60], in the spin state of NV centers in diamond [61, 62, 63, 64], in the

states which represent the presence or absence of excess Cooper pairs in the superconducting island

(the charge qubit) [65], in the direction of current in a superconducting loop (the flux qubit) [66], or

in the lowest two energy levels in the local minimum of the potential energy of the superconducting

phase qubit [67, 68]. The superconducting qubits will be discussed in more details in Sections 2.2.2

— 2.2.5 of this dissertation.
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In general, a quantum state is mixed. The above example Eq. (2.1) where the quantum

state |Ψ〉 is represented by a state vector (wave function) in a Hilbert space over complex numbers

is an example of a very special case of a pure state. A mixed quantum state corresponds to a

probabilistic mixture (statistical ensemble) of pure states, and in order to describe it, the formalism

of “density operator” needs to be used, which is discussed in the next Section 2.1.2.

When the quantum state, described by Eq. (2.1), interacts with some kind of environment,

the state of a qubit may change in an uncontrollable way due to the following two main mechanisms

of decoherence. First, if the energy of the state |1〉 is higher than the energy of the state |0〉, due

to the dissipation and energy loss while interacting with the environment, the qubit’s state |1〉 can

decay to the |0〉 state at a rate typically described by an inverse decay time 1/T1. T1 is usually called

“longitudinal coherence time” or the “amplitude damping”. The second mechanism of decoherence

is dephasing, it can be thought of as noise in the relative phase between the two qubit states, when

the relative phase between the two basis states |0〉 and |1〉 may change uncontrollably as

∣∣Ψ〉
= a

∣∣0〉+ b
∣∣1〉 −→ a

∣∣0〉+ eiθb
∣∣1〉, (2.2)

where θ is the relative phase shift that changes the expectation values of measured quantities. This

mechanism of decoherence is called “pure dephasing” and is characterized by the time Tφ (some-

times denoted in the literature as T ′
2). Actually, the mechanism of “amplitude damping” also con-

tributes to dephasing since it leads to the change and fluctuation of the eigenenergies of the quan-

tum system and, consequently, to a random relative phase change between the two qubit states.

Therefore, dephasing can occur via two different mechanisms, “amplitude damping” and “pure de-

phasing”. In the presence of both types of decoherence mechanisms, relaxation time T2 (which

characterizes the total dephasing rate), T1 and Tφ are related as
1

T2
=

1

2T1
+

1

Tφ
, and T1 > T2.
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Decoherence is the main agent destroying the quantum information and one of the key

obstacles in implementing quantum computers devices. A key problem is the fact that quantum

noise, and in particular, decoherence, are non-unitary operations that cause a pure state to become a

mixed state.

2.1.2 Density matrix

In most of the situations, a quantum system appears to be in a mixed state, and therefore

the state of a quantum system must be described by a density matrix (or equivalently density opera-

tor). For example, it is not possible to describe a quantum mechanical system that undergoes general

quantum operations such as measurement, using exclusively states represented by wave functions

(ket vectors). A density matrix ρ̂ contains all the physically significant information about a quantum

system. If a density matrix is given, we can calculate the ensemble average 〈Ô〉 of any arbitrary

operator Ô on the Hilbert space of the system.

The density matrix is a linear, Hermitian operator on the Hilbert space of wave functions.

If a quantum system can be in one of the states |Ψi〉 with probability pi, then the density operator ρ̂

for such system is

ρ̂ ≡
∑
i

pi
∣∣Ψi〉〈Ψi

∣∣. (2.3)

The density operator has the following properties:

• Hermicity: The density matrix is a hermitian, or self-adjoint, operator: ρ̂ = ρ̂†;

• Positive semi-definiteness: All of the eigenvalues of the density operator are nonnega-

tive, or, equivalently, 〈φ∣∣ρ̂∣∣φ〉 ≥ 0 for any state |φ〉;

• Trace condition: its trace must equal 1, Tr(ρ̂) =
∑
i
ρii = 1;
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• Measurement: For a system in state ρ̂, the expectation value of a measurement described

by Hermitian operator Ô is Tr(ρ̂Ô).

The elements of the N -qubit density operator form a 2N × 2N matrix (or, equivalently,

d × d matrix, where d is the dimension of Hilbert space). For example, in case of a single qubit

(N = 1), a system is in a pure state described by a state vector (wavefunction) |Ψ〉 as in Eq. (2.1),

and there is only one term in the sum Eq. (2.3) with p1 = 1. Therefore, the density matrix can be

written as

ρ̂ =

⎛
⎜⎜⎝ ρ00 ρ01

ρ10 ρ11

⎞
⎟⎟⎠ = ρ00

∣∣0〉〈0∣∣+ρ01∣∣0〉〈1∣∣+ρ10∣∣1〉〈0∣∣+ρ11∣∣1〉〈1∣∣, (2.4)

or explicitly as

ρ̂ =
∣∣Ψ〉〈

Ψ
∣∣ = ∣∣a∣∣2∣∣0〉〈0∣∣+ ab∗

∣∣0〉〈1∣∣+ a∗b
∣∣1〉〈0∣∣+ ∣∣b∣∣2∣∣1〉〈1∣∣ =

⎛
⎜⎜⎝

∣∣a∣∣2 ab∗

a∗b
∣∣b∣∣2

⎞
⎟⎟⎠ . (2.5)

The elements ρ00 and ρ11 on the main diagonal are real numbers (usually referred to as “popu-

lations” of the two energy levels, as they determine the probabilities to find the system in one of

the two energy states), and the off-diagonal elements ρ01 and ρ10 are complex numbers (usually

referred to as “coherences”). Therefore we need three real parameters to write the density operator

of a one-qubit system, which can be chosen as ρ11, Re(ρ10) and Im(ρ10):

ρ̂ =

⎛
⎜⎜⎝ ρ00 ρ01

ρ10 ρ11

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ 1− ρ11 Re(ρ10)− i Im(ρ10)

Re(ρ10) + i Im(ρ10) ρ11

⎞
⎟⎟⎠ . (2.6)

In general, the density operator for the system of N qubits is a 2N × 2N matrix that

contains (4N − 1) independent real parameters.

As we will be discussing in details the Quantum State Tomography algorithms for the

two-qubit systems in Chapter 3, specifically in Section 3.3, we want to introduce here the following
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parametrization for a two-qubit density matrix:

ρ̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.7)

which is a 4×4 matrix containing 16 real parameters, 15 of which are independent. There are 4 real

parameters rjj on the main diagonal, subject to the normalization condition r11+r22+r33+r44 = 1

(this leaves only three independent parameters out of four), and 12 off-diagonal elements which are

complex numbers, subject to the hermicity condition rij = r∗ji, which leaves us with 12 independent

real parameters for the off-diagonal elements.

2.1.3 Bloch sphere and Pauli operators

There exists a nice way of graphical representation of a single qubit state as a point on

a surface of the so-called Bloch Sphere (named after a physicist Felix Bloch, one of Heisenberg’s

students). Pure states are represented by points on the surface of the Bloch sphere of unit radius,

while mixed states are inside of the sphere. Such representation can be derived as follows. The most

general state of a qubit, described by Eq. (2.1), can be represented as

|ψ〉 = eiγ
(
cos

θ

2

∣∣0〉+ eiφ sin
θ

2

∣∣1〉), (2.8)

because a and b are complex numbers in Eq. (2.1). The overall phase factor γ in Eq. (2.8) has no

observable effect and can be set to zero. The variables θ ∈ [0, π] and φ ∈ [0, 2π] are numbers that

together define a point on the surface of a unit sphere, which is known as the Bloch sphere. This
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fact becomes obvious if we introduce the parametrization

x = sin θ cosφ, (2.9)

y = sin θ sinφ, (2.10)

z = cos θ. (2.11)

Note that the north and the south poles of the Bloch sphere correspond to the states |0〉 and |1〉

respectively. Points that are antipodal on the Bloch sphere represent orthogonal pure states of the

qubit, and overlaps between states can be calculated from the relative angle between the two corre-

sponding points on the Bloch sphere.

It is convenient to visualize rotations of a qubit on the Bloch sphere. Rotations on the

Bloch sphere about x−, y− and z−axes are described mathematically by the exponentiated Pauli

matrices (Pauli operators) σx, σy and σz , where

σ0 =

⎛
⎜⎜⎝ 1 0

0 1

⎞
⎟⎟⎠ , σx =

⎛
⎜⎜⎝ 0 1

1 0

⎞
⎟⎟⎠ , σy =

⎛
⎜⎜⎝ 0 −i

i 0

⎞
⎟⎟⎠ , σz =

⎛
⎜⎜⎝ 1 0

0 −1

⎞
⎟⎟⎠ . (2.12)

The Pauli operators play a very important role in quantum information processing. The set

{σ0, σx, σy, σz} forms a traceless (except for σ0), unitary, Hermitian and orthogonal basis (orthonor-

mality can be achieved by scaling each element by 1/2).

The rotation operators on the Bloch sphere about the axes x, y and z by angle θ are

described by the following operators R θ
x , R θ

y and R θ
z :

R θ
x ≡ e−iθσx/2 = cos

(θ
2

)
I − i sin

(θ
2

)
σx =

⎛
⎜⎜⎝ cos

θ

2
−i sin θ

2

−i sin θ
2

cos
θ

2

⎞
⎟⎟⎠ ; (2.13)
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R θ
y ≡ e−iθσy/2 = cos

(θ
2

)
I − i sin

(θ
2

)
σy =

⎛
⎜⎜⎝ cos

θ

2
− sin

θ

2

sin
θ

2
cos

θ

2

⎞
⎟⎟⎠ ; (2.14)

R θ
z ≡ e−iθσz/2 = cos

(θ
2

)
I − i sin

(θ
2

)
σz =

⎛
⎜⎜⎝ e−iθ/2 0

0 eiθ/2

⎞
⎟⎟⎠ . (2.15)

A single-qubit density matrix (not necessarily of a pure state) can be expressed in terms

of Pauli matrices, which are defined by Eq. (2.12):

ρ =

⎛
⎜⎜⎝ ρ00 ρ01

ρ10 ρ11

⎞
⎟⎟⎠ =

1

2

[
r0σ0 + rxσx + ryσy + rzσz

]
, r0 = 1, (2.16)

or

ρ =

⎛
⎜⎜⎝ ρ00 ρ01

ρ10 ρ11

⎞
⎟⎟⎠ =

1

2

⎛
⎜⎜⎝ 1 + rz rx − iry

rx + iry 1− rz

⎞
⎟⎟⎠ , (2.17)

where the 3-vector r̂ = [rx, ry, rz] lies in the unit Bloch’s sphere. This vector is called the Bloch

vector (or Bloch representation) of ρ̂. For single qubit states, every point in the unit sphere is

associated to a unique quantum state and the pure states lie on the boundary of the unit sphere.

Note that the Bloch sphere is closely analogous to the Poincaré sphere, which was de-

veloped by Henri Poincaré in the 19th century. Invented in 1891 by Henri Poincaré, the Poincaré

sphere represents classical polarizations in an analogous way (up to the 90◦ rotation) that the Bloch

sphere represents qubits.

The generalization of the Bloch vector to multi-qubit systems is not straightforward, be-

cause the pictorial representation of states associated to every point on the sphere becomes ex-

tremely complicated due to exotic geometry of multi-qubit state spaces, and not every state on the

surface would be physical. On the other hand, the Pauli basis can be easily generalized for a sys-

16



tem of N qubits as the Kronecker (tensor) products of N single-qubit Pauli operators from the set

{σ0, σx, σy, σz}.

2.1.4 Definition of a quantum channel

Generally speaking, a quantum channel E describes the evolution of a state of a physical

system characterized by the density matrix ρ̂ in to a new state ρ̂fin under some process E : ρ̂ fin =

E(ρ̂ in). The most prominent example is the unitary time evolution of a closed system, ρ̂ fin =

Uρ̂ inU † with U = e−iHt/� and Hamiltonian H: The unitary evolution E(ρ̂) of a density operator ρ̂,

described by a unitary operator U , is

E(ρ̂) = Uρ̂U †. (2.18)

In general, the notion of quantum channels is much broader, for example, the transfor-

mation E does not have to be unitary. The formal definition of a quantum channel can be formu-

lated in the following way. Let HA and HB be the state spaces (finite-dimensional Hilbert spaces

HA,B ∈ C
n) of dimensions d1 and d2 of the sending and receiving ends, respectively, of a quantum

channel. Let L(HA) denote the set of bounded linear operators on HA, in other words it is a matrix

algebra of bounded operators on a Hilbert space HA, and analogously for L(HB). By definition, a

quantum process (quantum channel) is a linear, completely positive, trace-preserving map E :

E : L(HA) −→ L(HB). (2.19)

A map is called positive, if it maps positive operators to positive operators. It is called completely

positive, if this is the case even when the map is only applied to a subsystem. That is, E is completely

positive if

E ⊗ In : L(HA)⊗ L(Cn) −→ L(HB)⊗ L(Cn) (2.20)
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is positive for all n ∈ N, where In denotes the identity map on L(Cn). In other words, if an

ancilla of an arbitrary finite dimension n is coupled to the system, then the induced map E ⊗ In

is also positive. Complete positivity allows one to use channels to describe operations local to a

subsystem. A map is called trace-preserving if

Tr[E(ρ̂)] = Tr(ρ̂) for all ρ̂ ∈ L(HA). (2.21)

Sometimes in the literature the property of trace preservation is weakened so that E is only required

to be trace-nonincreasing. A map is called linear if applying the map to a linear combination of

input density matrices yields the same result as applying it to the input density matrices separately

and taking the linear combination of the resulting states:

E(∑
i

piρ̂
in
i

)
=

∑
i

piE(ρ̂in
i ) for all ρin

i ∈ L(HA). (2.22)

Sometimes in the literature a condition for E to be unital is added to the definition of a

quantum channel. A map E : L(HA) −→ L(HB) is called unital if it maps the unity of L(HA) to

the unity of L(HB),

E(IA) = IB. (2.23)

Unitary channels are unital and describe the dynamics of a quantum system that is isolated

from environmental interactions.

2.1.5 Distance between quantum states

In order to compare the two density matrices ρ̂ and σ̂ we use the standard measures of the

distance between two quantum states from the quantum information theory: “fidelity” and “trace

18



distance”. The general definition of the fidelity [69, 70, 71, 72]:

F (ρ̂, σ̂) =
{
Tr

(√
ρ

1
2σρ

1
2

)}2
. (2.24)

The fidelity takes values between 0 and 1, i.e. 0 ≤ F ≤ 1. If the states ρ̂ and σ̂ are equal,

then F (ρ, σ) = 1, and if the states have orthogonal support (which means that they are completely

different) then F (ρ, σ) = 0. Also, this fidelity is symmetric in ρ̂ and σ̂. Note that some authors

call
√
F fidelity [2].

Another distance measure between quantum states is the trace distance [2], which is de-

fined as

D(ρ, σ) =
1

2
Tr

(
|ρ− σ|

)
=

1

2
Tr

[√
(ρ− σ)†(ρ− σ)

]
. (2.25)

2.1.6 Quantum gates

A quantum gate (or a quantum logic gate) is a basic quantum circuit that operates on a

small number of qubits. Quantum logic gates can be represented by unitary matrices. The most

common quantum gates operate on spaces of one, two or three qubits.

Important examples of one-qubit gates are the following:

• X-gate (equivalent names are NOT -gate or bit-flip), which maps
∣∣0〉 to

∣∣1〉 and
∣∣1〉

to
∣∣0〉 and has the meaning of rotation of the Bloch sphere around the X-axis by π radians, it is

represented by the Pauli σx matrix, defined in Eq. (2.12),

• Z-gate (also called as phase-flip gate), which leaves the basis state
∣∣0〉 unchanged and

maps
∣∣1〉 to −∣∣1〉 and has the meaning of a rotation around the Z-axis of the Bloch Sphere by

π radians (azimuthal rotation of the Bloch vector by π about Z-axis), it is represented by the Pauli

σz matrix, defined in Eq. (2.12),
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• There are other gates, such as Hadamard gate, Y -gate, the phase shift gates and the swap

gate. Obviously, there are infinitely many 2× 2 unitary matrices, therefore infinitely many possible

single qubit gates.

Controlled gates act on two or more qubits, where one or more qubits act as a control for

some operation, and one of the qubits, called target qubit, changes its state depending on the state

of the control qubit(s). Important examples of the two-qubit quantum gates are the following:

• CNOT gate. It operates on two qubits as follows: leaves the second qubit unchanged

when the first qubit is in state
∣∣0〉, and it flips the second qubit if the first qubit is in state

∣∣1〉. The

vectors
∣∣00〉, ∣∣01〉, ∣∣10〉, and

∣∣11〉 form an orthonormal basis for the set of pure states for a two-qubit

system. Therefore, in this basis the CNOT gate has the following representation:

∣∣00〉 −→∣∣00〉∣∣01〉 −→∣∣01〉∣∣10〉 −→∣∣11〉∣∣11〉 −→∣∣10〉

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.26)

• Controlled-Z (CZ) gate is a controlled two-qubit gate which implements the flip the sign

of
∣∣11〉 state and keeps the other three basis states unchanged, its matrix representation is

∣∣00〉 −→ ∣∣00〉∣∣01〉 −→ ∣∣01〉∣∣10〉 −→ ∣∣10〉∣∣11〉 −→ −∣∣11〉

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.27)

The Toffoli gate. The Toffoli gate, which is essentially a CCNOT-gate, is a three-qubit

controlled gate, which applies the X-gate on the third target qubit if both of the first two control
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qubits are in the states
∣∣1〉 and it does nothing for the other three possible states of the two control

qubits. ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.28)

2.2 Review of superconducting qubits

As discussed in Section 2.1.1, qubit or quantum bit is a fundamental unit of quantum

information, which can store information not only in the states |0〉 or |1〉, but also as a combination

of both basis states simultaneously, which is the manifestation of the phenomenon of quantum

superposition. There are various physical realizations of qubits. As discussed in Section 2.1.1,

numerous implementations have been reported in optics where the two photon polarizations form

the effective two-level system, in trapped ions, in semiconductors, in liquid NMR systems, in NV

centers in diamond and in other physical systems, but the object of research of this dissertation is the

analysis of the quantum states and quantum processes involving superconducting qubits, based on

Josephson effect. Superconducting qubits are electrical resonators with a non-linearity that is strong

enough so that microwaves excite transitions only between the the two lower levels of the system.

Superconducting qubits include such elements as Josephson junctions, capacitors and inductors,

21



and can be considered as nonlinear LC-circuits. Josephson junctions introduce the nonlinearity

into the circuits, which leads to unequal distances between energy levels of the system and the

possibility to distinguish the lower two levels of the system from the rest of the levels. We discuss

superconducting qubits in more details in the next Sections 2.2.2, 2.2.3, 2.2.4 and 2.2.5.

Comparing superconducting qubits to other possible physical realizations of qubits, su-

perconducting qubits have the largest physical size: their typical size is tens of micrometers (from

∼ 1μm to ∼ 100μm). This circumstance makes these types of qubits relatively easy to fabricate us-

ing standard microfabrication techniques and integrate them into the electric circuits, consisting of

capacitors, inductors, transmission lines and other linear electronic components. This makes it eas-

ier, compared with other qubit types, to couple superconducting qubits with the readout and control

circuits and to each other. Strong qubit - qubit coupling between superconducting qubits also means

faster gates compared with the other types of qubits. As a disadvantage of superconducting qubits,

strong coupling to the environment and the larger size of the qubits mean shorter coherence times,

which are currently 10 − 100 microseconds. Another difficulty is that superconducting qubits are

not true two-level systems, there are always more than two energy levels
∣∣0〉 and

∣∣1〉 in the potential

well. The upper level
∣∣2〉 can become accidentally populated, which is possible for the qubits with

small anharmonicity when the
∣∣0〉 −→ ∣∣1〉 transition frequency differs very insignificantly (several

percent) from the
∣∣1〉 −→ ∣∣2〉 transition frequency. For example, for this reason a small nonlinearity

places restrictions on the speed of quantum gates in transmon qubits.

2.2.1 General introduction to Josephson junction dynamics

The Josephson effect is the phenomenon of supercurrent (a current that flows indefinitely

long without any applied voltage) across a device known as a Josephson junction. In superconduc-
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tors at low temperatures electrons bind into Cooper pairs (bound states of two electrons with oppo-

site momenta and spins) that condense into a state with zero-resistance and a well-defined phase.

The idea of forming the Cooper pairs is the following: an electron moving through a lattice of ions

creates vibrations (phonons), which can be absorbed by another electron. The interaction that arises

as a result can be attractive provided the electron-phonon coupling is strong enough. Cooper pairs

are bosons (the net spin of a pair of electrons is zero), therefore they may form a Bose-Einstein

condensate that possesses the property of superconductivity. All the Cooper pairs at a given point

in a superconductor can be described by a single wavefunction with a phase φ.

A Josephson junction is a quantum mechanical device which consists of two supercon-

ducting electrodes separated by a thin1 layer of a nonsuperconducting material, such as insulating

tunnel barrier, thin normal metal, etc. The devices are named after Brian Josephson, who predicted

in 1962 [73] that pairs of superconducting electrons can quantum-mechanically tunnel through the

nonsuperconducting barrier from one superconductor to another, and also predicted the mathemat-

ical relationships for the current and voltage across the the junction. Anderson and Rowell [74]

observed the effect in 1964. The supercurrent IJ that flows through the junction as the result of the

tunneling of Cooper pairs, and the voltage V across the barrier, are described by the following two

classical equations:

IJ = I0 sin δ, (2.29)

V =
Φ0

2π

dδ

dt
, (2.30)

where Φ0 =
h

2e
= 2.07× 10−15Wb is the superconducting flux quantum, I0 is the critical-current

parameter of the junction, δ = φL−φR and V are the superconducting phase difference and voltage

1Note that in a Josephson junction, the nonsuperconducting barrier separating the two superconductors must be very

thin. If the barrier is an insulator, it has to be on the order of 30 angstroms thick or less. If the barrier is another metal

(nonsuperconducting), it can be as much as several microns thick.
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across the junction. It can be shown from these two equations that the Josephson junction can be

considered as a nonlinear inductance: differentiating Eq. (2.29) and replacing
dδ

dt
with V using

Eq. (2.30), one arrives at the equation V = LJ
dIJ
dt

with the nonlinear inductance

LJ =
Φ0

2πI0 cos δ
(2.31)

(nonlinearity arises from the term
1

cos δ
). Therefore, as we see, a Josephson superconducting qubit

can be understood as a nonlinear resonator formed from the Josephson nonlinear inductance and its

geometric junction capacitance. The nonlinearity of the junction plays an extremely important role

because it leads to non-equidistant energy levels in such resonator, namely the frequency ω10 that

drives transitions between the qubit states 0 ↔ 1 is different from the frequency ω21 for transitions

1 ↔ 2.

Using Eq. (2.30), it is easy to derive another fundamental relation between the phase

difference δ across the Josephson junction and the magnetic flux in the loop Φ. In a Josepson

junction closed with a superconducting loop, the voltage across the Josephson junction can arise

only as a result of a change of the magnetic flux Φ in the loop,

V =
dΦ

dt
. (2.32)

The magnetic flux Φ is defined as Φ ≡ ∫
BndA, where B is the magnetic field, and A is the

area of the contour. Substituting into Eq. (2.32) the expression for the voltage across the junction

from Eq. (2.30), we arrive at the following fundamental relation

δ = 2π
Φ

Φ0
. (2.33)

As we see from Eq. (2.33), the phase difference δ across the junction is linearly proportional to the

magnetic flux Φ in the loop. This is an important relation, in particular we will use Eq. (2.33) while

discussing the phase qubits in Section 2.2.5. 24



There are three main types of superconducting qubits: the charge, the flux and the phase

qubits. Charge qubits (also called Cooper pair box) were the first superconducting qubits to be

demonstrated in 1998 [65, 75]. A year later the flux qubits were demonstrated [66]. The phase qubit

was first demonstrated in 2002 [76, 77, 78]. The main difference between the charge, flux, and

phase qubits is the shape of their nonlinear potentials, which are correspondingly cosine, quatric

and cubic. In subsequent years various design modifications to these original qubit types have

been done, and several other qubits were introduced, such as quantronium [79], transmon [80,

81], fluxonium [82], which have improved performance by reducing the sensitivity to decoherence

mechanisms that existed in earlier designs. We are giving a brief introduction into the main types of

superconducting qubits in the next sections of this dissertation, where we first describe the charge

and flux qubits in Section 2.2.2 and 2.2.3, then discuss the transmon qubit as a refined charge qubit

with charge noise insensitivity in Section 2.2.4, and finally we give an overview of the phase qubits

in Section 2.2.5.

2.2.2 Charge qubit

The “Cooper pair box” or charge qubit [65], effective circuit diagram of which is pre-

sented in Fig. 2.1, is a small superconducting island (“box”), which is basically a small supercon-

ducting electrode, connected via a Josephson junction with capacitance CJ and Josephson energy

EJ to a grounded reservoir. (There also exists a modified version, called “split Cooper pair box”,

presented at Fig. 2.2, with two Josephson junctions, connected together to form a superconduct-

ing loop, which can be biased by an external magnetic flux Φext.) The superconducting island

can be biased by a voltage source Vg in series with gate capacitance Cg. Cooper pairs can tunnel

onto the island and off the island, one at a time, therefore the relevant degree of freedom is the
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Figure 2.1: Effective circuit diagram of the Cooper-pair box. The small superconducting island is

connected to a large superconducting reservoir by a Josephson junction with capacitance CJ and

Josephson energy EJ . The island can be biased by a voltage source (gate voltage) Vg in series with

a gate capacitance Cg.

Vg Cg 
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ducting 
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�ext�

Figure 2.2: Effective circuit diagram of the split Cooper-pair box. The small superconducting island

is connected to a large superconducting reservoir by two Josephson junctions with capacitances CJ

and Josephson energies EJ (not necessarily equal). The island can be biased by a voltage source

(gate voltage) Vg in series with a gate capacitance Cg and by an external magnetix flux Φext.

number of Cooper pairs on the island. Such a qubit is described by its Josephson coupling en-

ergy EJ = I0Φ0/(2π) and by its Coulomb charging energy, corresponding to one Cooper pair on

the junction, EC = (2e)2/(2CΣ), where CΣ = CJ + Cg is the total capacitance of the box (the

sum of the capacitance of the junction CJ and the capacitance of the gate Cg), and e is the electron

charge. Coherent oscillations in such Cooper-pair box have been observed in [83, 84].

To write the Hamiltonian of the charge qubit, we need to introduce the operator n̂ of

the number of excess Cooper pairs on the island. The total number of excess Cooper pairs n is

related to the total charge q of the island as q = −2en, n = 0 corresponding to an electrically

neutral island. Obviously, n can take both positive and integer values, corresponding to the excess
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or deficit number of Cooper pairs on the island, and as Cooper pairs can tunnel in and out of the

island by Josephson tunneling, this number n can fluctuate quantum-mechanically. Therefore the

convenient basis for the charge states of the island are the eigenvectors of n̂: n̂|n〉 = n|n〉. It is also

convenient to introduce the operator δ̂, conjugated to n̂, with the commutation relation [δ̂, n̂] = i,

where δ ∈ [0, 2π] defines the phase of the Cooper pair condensate on the island. Using the charge

basis, we can write the Hamiltonian in the charge representation as the sum of its electrostatic and

Josephson coupling parts:

Ĥ =
∑
n

[
(2e)2

2CΣ

(
n̂− CgVg

2e

)2|n〉〈n| − EJ

2

(
|n〉〈n+ 1|+ |n+ 1〉〈n|

)]
, (2.34)

or, introducing the dimensionless gate charge ng =
CgVg
2e

, which represents the charge on the gate

capacitor in units of Cooper pairs and can be tuned by the voltage Vg at the gate electrode,

Ĥ =
∑
n

[
EC

(
n̂− ng

)2|n〉〈n| − EJ

2

(
|n〉〈n+ 1|+ |n+ 1〉〈n|

)]
. (2.35)

It can be shown that cos δ =
1

2

(
|n〉〈n+ 1|+ |n+ 1〉〈n|

)
, therefore the Hamiltonian can

be rewritten as

Ĥ =
∑
n

[
EC

(
n̂− ng

)2
]
− EJ cos δ. (2.36)

For the “split Cooper pair box”, presented at Fig. 2.2, the effective Josephson couplingEJ

of the junctions in the charge qubit can be tuned with the external perpendicular magnetic flux Φext

through the loop [85] as

EJ = EJ,max cos

(
π
Φext

Φ0

)
, (2.37)

then the Hamiltonian Eq. (2.36) takes the form

Ĥ =
∑
n

[
EC

(
n̂− ng

)2
]
− EJ,max cos

(
π
Φext

Φ0

)
cos δ. (2.38)
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The energy spectrum of Hamiltonian Eq. (2.36) or Eq. (2.38) depends on ng and on the ratio

EJ/EC . The energy spectrum is discrete and periodic in ng (the period equals one).

The eigenstates |n〉 and eigenenergies En of the charge qubit are given by

EC

(
n̂− ng

)2∣∣n〉 = En

∣∣n〉, n ∈ N, (2.39)

and the number of Cooper pairs on the island is represented by the number operator, n̂.

2.2.3 Flux qubit

In this Section the flux qubit [66] will be discussed very briefly (such type of qubits is

never used in any calculations in this dDissertation, therefore we will discuss it briefly). The pro-

totype of a flux qubit is a circuit called “RF-SQUID”, which consists of a Josephson junction with

capacitance CJ , the two sides of which are connected by a superconducting loop with inductance

L (usually L ≤ LJ where LJ is defined in Eq. (2.31)). An external flux Φext is imposed through

the loop by an auxiliary coil. This external flux plays a role similar to the gate electrode in the

charge qubit, allowing us to tune the effective Josephson coupling. The flux qubit parameters are

such that EC  EJ , minimizing the charge noise that is present in charge qubits. The flux qubit

is operated with the external flux Φext in the vicinity of the point Φext = Φ0/2. The potential of

an RF-SQUID qubit has a form of a double well, this potential is symmetric for Φext = Φ0/2, and

any change in Φext tilts the potential. The two wells of the potential represent different “fluxoid”

states of the RF-SQUID, corresponding to the counterclockwise and clockwise persistent currents

circulating in the loop formed by L. Such coherent superposition of the two magnetic-flux states in

different wells of the RF-SQUID was observed in [86]: one state corresponding to a few microam-

peres of current flowing clockwise, the other state corresponding to the same amount of current
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flowing counterclockwise. In [87] and [88] a coherent time evolution between two quantum states

of a superconducting flux qubit comprising three Josephson junctions in a loop was observed.

2.2.4 Transmon and Xmon

The drawback of the charge qubit, discussed in Section 2.2.2, is its sensitivity to the 1/f

charge noise. A new type of superconducting charge qubit that has reduced sensitivity to the charge

noise was developed at Yale University [80, 81] in 2007. Such a qubit is called “transmon”, which

stands for “transmission-line shunted plasma oscillation qubit”. The transmon consists of two su-

perconducting islands coupled through two Josephson junctions and isolated from the rest of the

circuitry. The crucial distinction of the transmon from the “Cooper pair box” is a shunting connec-

tion of the two superconductors via a large capacitance CB , accompanied by a similar increase in

the gate capacitance Cg. The Hamiltonian of the transmon takes the same form as the Hamiltonian

of the “Split Cooper pair box” Eq. (2.38), with the additional capacitance CB in the expression for

the total capacitance CΣ = CJ +CB +Cg, which enters into the formula for the Coulomb charging

energy EC = (2e)2/(2CΣ). The presence of the additional capacitance term CB allows us to make

the charging energy EC small compared to the Josephson energy EJ . The reduced sensitivity of

the transmon to charge noise is made possible by significantly increasing the ratio of the Josephson

energy to the charging energy EJ/EC , which effectively flattens the energy bands (dependence of

the eigenenergies En corresponding to Eq (2.39) on ng becomes more and more flat as the ratio

EJ/EC increases), as explained in [80]. The typical values of the ratio EJ/EC are about 20 —

100 for the transmon qubits (in other words EJ � EC), while EJ/EC ∼ 1 for the charge qubits.

Several experiments in which transmons were used are reported, for example, in [89, 90, 91].
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Figure 2.3: Effective curcuit diagram of the transmon qubit. The two Josephson junctions (with

capacitance and Josephson energy CJ and EJ ) are shunted by an additional large capacitance CB ,

matched by a comparably large gate capacitance Cg. Lr and Cr model the coupling to the transmis-

sion line. Vg is the gate voltage.

The main idea of the method of measurement of the transmon qubit consists in coupling

the transmon off resonance to a cavity, irradiating the cavity by microwave radiation, and then

probing the transmitted or reflected photons. A cavity is realized in transmon experiments as a

superconducting transmission line resonator, called coplanar stripline resonator. When a qubit is

coupled off resonance to a cavity, the resonator’s frequency depends on the qubit’s quantum state,

and photons populating the resonator acquire a qubit state dependent phase shift. The phase or

amplitude of the microwave field outgoing from the resonator is measured, and the measurement

contains information about the state of the qubit (more specifically, information about the qubit’s

projection along the z-axis of the Bloch sphere). The resonant frequency of the resonator can be

controlled by changing the length of its middle stripe, and when the resonator is irradiated at the

resonant frequency, a standing wave is formed inside of the resonator. The coupling of the qubit

with the resonator is achieved by putting the qubit into the center of the transmission line.
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This spectroscopic measurement scheme was first considered in [92], and this technique

was first demonstrated for charge qubits [93, 94, 95] before the transmon was invented, but as shown

in [80], this technique called dispersive measurement may be directly transferred to the transmon.

In the dispersive limit, the detuning Δ ≡ ωq−ωr between the qubit and the resonator frequencies is

large in comparison with the strength of the qubit-resonator coupling g, Δ � g (ωq = ω1−ω0 is the

transition frequency of the qubit). Theoretical analysis shows that the resonator frequency is shifted

by the value χ ≡ ±g2/Δ, and the difference in resonator frequency for the two qubit states is 2χ, see

Fig. 2.4. To perform a measurement of the qubit, a pulse of microwave radiation with the frequency

of ωμw = ωr or ωr ± g2/Δ is sent through the cavity. The choice of the frequency of the probe

radiation ωμw is determined by the ratio of the parameters Δ, g, and κ of the system (κ denotes the

cavity decay rate which determines the width of the resonant peak at Fig. 2.4). As explained in [92],

if
g2

κΔ
> 1, i.e. the frequency shift of the resonator g2/Δ is greater than the line width κ, then

under irradiation of the cavity at one of the “pulled” frequencies ωr ± g2/Δ, the transmission of the

cavity will be close to unity for one state of the qubit and close to zero for the other state. Therefore,

knowing the drive frequency and the intensity of the transmitted radiation, one can measure which

state the qubit is in. If the opposite situation
g2

κΔ
< 1 takes place, then it is preferable to irradiate

the resonator at the bare cavity frequency ωμw = ωr. In this case the state of the qubit is encoded

in the phase of the transmitted microwaves, and the homodyne detection technique can be used to

measure it and to infer the state of the qubit. Such dispersive measurement with a microwave pulse

has become a well-established technique of transmon readout, for example the measurement fidelity

of 98% was reported recently in [96]. The dispersive measurement technique was generalized for

the systems of two transmon qubits in [97], where a method to jointly and simultaneously read out
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Figure 2.4: Transmission Spectrum of the cavity, which presents a peak of width κ at ωr − g2/Δ
or ωr + g2/Δ depending on the state of the qubit, red curve for the excited state, blue curve for

the ground state. κ denotes the cavity decay rate. To perform a measurement of the qubit, a pulse

of microwave photons, at a probe frequency ωμw = ωr or ωr ± g2/Δ, is sent through the cavity.

(Adapted from Ref. [92].)

the quantum state of two transmon qubits dispersively coupled to a microwave resonator has been

presented.

In 2013 a new type of the transmon qubit, the Xmon, has been developed [98] in the

research group of prof. J. Martinis (UCSB). Such Xmon qubit shows long coherence time exceed-

ing 40μs (in the original paper [98] the reported measured energy relaxation time was T1 = 44μs,

the much longer time T1 ∼ 60μs has been reported recently in [99]), allows for straightforward

coupling to multiple elements, and has a low parasitic coupling. Such qubits are frequency tunable,

which allows the high-fidelity implementation of fast two-qubit gates, such as CZ-gate. The device

is shown in Fig. 2.5, it has a planar geometry consisting of the cross-shaped qubit capacitor, which

connects at the bottom to the tunable Josephson junction, formed by the rectangular ring-shaped

superconducting quantum interference device, and the four arms of the cross-shaped capacitor are

connected to the following four elements: to the readout line on the top, to a quantum bus resonator
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Figure 2.5: (a) Schematics of the Xmon qubit, formed by the Al superconducting film and the

exposed sapphire substrate. The qubit is capacitively coupled to a readout resonator on the top, a

quantum bus resonator (right), and an XY control line (left), and inductively coupled to a Z control

line (bottom). (b) The inset shows the shadow evaporated Al junction layer (blue regions). (c) The

electrical circuit of the qubit. (Adapted from Ref. [98].)

on the right, to an XY control line on the left for the qubit state excitations, and to a Z control line

on the bottom for tuning the qubit frequency. The first three couplings are capacitive, while the last

coupling to a Z control line is inductive. The typical sizes of the described qubit are the following:

the arm length L ∼ 130 − 165μm, and the width of the junction size S, W on the order of 10μm

(see Table 1 in [98] for the discussion of the specific values of these parameters). Such Xmon qubit

has the transition frequency between the ground and first excited states of about 6 GHz, and a ratio

of Josephson to charging energyEJ/EC ∼ 95. The main experimental data used in this dissertation

in Chapters 5 and 6, where we present our results for the compressed sensing method of QPT, were

obtained using the two-qubit CZ gate realized with Xmon qubits [98].
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2.2.5 Flux-biased phase qubit

Besides using the experimental data obtained with Xmon qubits in our calculations, we

have also performed the analysis of the CS QPT of two CZ gates based on phase qubits in Chapters

5 and 6. Therefore we are giving a brief review of the type of superconducting qubits known as

the “flux-biased phase qubit” [67, 68, 100] in this Section. A flux-biased phase qubit is a super-

conducting loop, formed by a single Josephson junction in a nonlinear LC-circuit, exposed to an

external magnetic flux Φext. Its schematics is presented in Fig. 2.6. When an external magnetic flux

is applied to the loop, a current starts to circulate in the loop, which, in turn, produces a magnetic

flux, which changes the total flux. One can derive the following expression for the potential energy

of such phase qubit (see, for example, [100]):

U(δ) = −I0Φ0

2π
cos δ +

Φ2
0

2L

[
φ− δ

2π

]2
= −EJ cos δ +

(
Φ0

2π
δ − Φext

)2

2L
, (2.40)

where δ is a superconducting phase difference across the Josephson junction, Φ0 = h/(2e) is

the magnetic flux quantum, φ = 2πΦext/Φ0 is the dimensionless external magnetic flux, EJ =

I0Φ0/(2π) is the Josephson coupling energy, I0 is the critical current, e is the electron charge, L is

the inductance. Note that typically the ratio of the Josephson energy EJ to the charging energy EC

is much higher than that for the charge qubit or for the transmon: for phase qubits EJ/EC ∼ 104

[76, 101].

The derivation of Eq. (2.40) is pretty straightforward. First, we write down the expressions

for the energy of the capacitance EC , the Josephson junction EJJ , and the inductance EL. As is

well known, the energy stored in the capacitor C is a function of the charge Q (or, equivalently,

of voltage V across the capacitor), and the magnetic energy which is stored in the inductor L is a
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Figure 2.6: The circuit schematic of a flux-biased phase qubit (a), and the schematics of the plot of

the potential energy U as a function of the phase difference δ across the Josephson junction with the

measurement scheme (b). In Fig. (a): Φ is the external flux applied through the inductor loop, L is

the inductance of the loop, C is the capacitance of the loop. In Fig. (b): When measuring the state

of the phase qubit, the height of the potential barrier is lowered, the state |1〉 tunnels through the

potential barrier, and relaxes into the deeper well. The superconducting phase difference δ changes

its value.

function of the magnetic flux Φ:

EC =
CV 2

2
=
C

2

(
�
2

4e2

)(dδ
dt

)2
, (2.41)

EJJ = −EJ cos δ, (2.42)

EL =
1

2L
Φ2 =

1

2L

(Φ0

2π
δ − Φext

)2
. (2.43)

While writing these relations, we have used some basic equations for Josephson junctions from

Chapter 2.2.1. We have used Eq. (2.30) when writing here the equation Eq. (2.41), and we have also

used the previously derived relation Eq. (2.33) between the phase difference δ across the junction

and the magnetic flux Φ in the loop in Eq. (2.43) for EL. Eq. (2.33) from Chapter 2.2.1 is valid

without the external magnetic flux in the circuit, and when we turn on the external magnetic flux

Φext, we modify Eq. (2.33) to

Φ+ Φext =
Φ0

2π
δ, (2.44)
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from which we get

Φ2 =
(Φ0

2π
δ − Φext

)2
, (2.45)

which we used in Eq. (2.43). The kinetic part of the total energy of the phase qubit is EC , and

the potential part of the total energy of the phase qubit is EJJ + EL, therefore we arrive at the

expression for the potential energy Eq. (2.40) by summing up Eq. (2.42) and Eq. (2.43).

The typical profile of the potential energy U(δ) for a flux-biased phase qubit as a function

of the superconducting phase difference δ across the junction can be modeled by two wells with

different numbers of quantized states in each well, as in Fig. 2.6. The “left” potential well is shallow,

while the “right” potential well is much deeper. Typically, there are approximately 3 to 7 energy

levels in the “left” shallow potential well, and at least 300 energy levels in the “right” deep potential

well [78].

The most important feature of such potential is its anharmonicity, which means the energy

levels in each potential well are not equidistant. The “shallow” left well can be approximated as

a“cubic” potential (a quadratic parabola profile with a cubic anharmonicity), therefore the energy

eigenstates are not equidistant. The lowest two energy eigenstates in the left shallow potential well

form the effective two-level system and are used as the qubit basis states, the ground |0〉 and the

first excited |1〉. Typically, the energy difference between these two lower levels isE10/� ∼ 6GHz.

Microwaves can be applied at the qubit frequency ω10 = E10/� to cause transitions and coherent

oscillations between the qubit levels |0〉 and |1〉 without populating the upper levels. In addition,

the flux bias φb applied to the qubit can be adjusted to tilt the potential, which allows changing the

height of the barrier between the left and right potential wells. This possibility of controlling the

height of the potential barrier allows the measurement of populations of the energy levels of the

qubit.
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The measurement scheme of the population of the upper qubit level of phase qubit was

first implemented in 2004 [68, 101]. In this scheme, a low-frequency measurement pulse lowers

the barrier between the shallow “left” potential well used for qubit states and a much deeper “right”

well, which increases the probability of tunneling of a qubit from its upper energy level |1〉 from

the “left” potential well into the “right” well. During the measurement pulse a qubit in the upper

state |1〉 switches by tunneling to the right-hand well with probability close to one, while the state

of a qubit in the lower state |0〉 does not change. When the tunneling of the state |1〉 into the

deeper “right” well happens, it quickly relaxes into a state with a much lower energy, which is not

sufficient for the return tunneling back into the shallow “left” well. If tunneling of |1〉 state happens,

then the superconducting phase difference δ changes by π, which corresponds to the the magnetic

flux variation by one magnetic flux quantum Φ0, and the resulting magnetic field can be measured

by the nearby SQUID (SQUID stands for “superconducting quantum interference device”, which is

a very sensitive magnetometer used to measure extremely weak magnetic fields, a voltage appears

between the ports of the SQUID) [102]. This completes the measurement.
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Chapter 3

Quantum State Tomography for

superconducting qubits

3.1 The idea of the quantum state tomography

Quantum State Tomography (QST) is the procedure that allows us to completely deter-

mine an unknown quantum state from a set of experimental measurements. The need to estimate

the quantum state appears when testing or claiming the preparation of specific quantum states. The

density matrix ρ̂ completely describes our knowledge of the state of a system, therefore the goal of

Quantum State Tomography is measuring all the elements of the density matrix by several sets of

multiple measurements. In this Chapter, we give a general overview of the idea of QST applied to

the phase qubits in Section 3.1, provide mathematical details of the QST procedure in Section 3.2,

and discuss in details the linear inversion method of QST in Section 3.3 and the maximum likeli-

hood method of QST in Section 3.4. Matlab scripts implementing both these methods of QST in

application to the phase qubit measurements have been written by the author of this thesis.
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QST has been used to study a wide range of problems, such as determining the motional

state of a trapped atom [103, 104] in 1996, determining the state of nuclear spins in NMR sys-

tems with a solution of chloroform molecules [105, 106] in 1998, determining the internal angular

momentum state of an ensemble of cesium atoms [107] in 2001, also the technique of QST was de-

scribed and implemented for quadrupole nuclei with nuclear spin 3/2 [108, 109] in 2004. In optics,

the early ideas of quantum state tomography can be found in the work of G. S. Stokes [110] in 1852,

where a minimal set of measurements to describe the polarization of light was developed. The first

tomography of an entangled quantum state was performed on the polarization state of two photons

generated by spontaneous parametric down-conversion [51] in 2001. The first realization of QST

for a single phase qubit at UCSB was reported in 2006 [111], and for two phase qubits also in 2006

in [112].

For a general unknown quantum state the measurement of the density matrix cannot be

done in a single attempt, it requires non-commuting measurements to be repeatedly done in differ-

ent bases. Consider first a single phase qubit. The procedure for measuring a qubit by lowering

the height of the potential barrier and reading the magnetic field by a SQUID, described above in

Section 2.2.5 of Chapter 2, gives only a binary output of 0 or 1 for the occupation of the qubit upper

state |1〉. By identically preparing the state and repeating this measurement many (thousands) times,

an average occupation probability of the eigenstates |0〉 and |1〉 can be found. This gives informa-

tion only about the diagonal elements of the density matrix, and leaves the off-diagonal elements of

the density matrix unknown. In the language of the Bloch sphere, the population difference is called

“z-component” of the Bloch vector. As these measurements do not reveal any phase information,

we need additional sets of measurements along the x− and y− directions of the Bloch sphere, which
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are achieved by the rotating the state to be measured by ±π/2 around the y− or x−axis before the

measurement. This rotation is fulfilled experimentally by applying microwave pulses as explained

in Section 2.2.5 of Chapter 2. From the sets of measurements of the Bloch vector in the z−, x− and

y−directions, the Bloch vector (and therefore all the elements of the density matrix) can be fully

reconstructed. The procedure can be generalized for several qubits.

Before going into mathematical details of the procedure, let us make a couple of remarks.

As it was explained, we need basis rotations. There are two alternatives: either (1) mea-

sure identical qubits in different bases, or (2) keep the measurement basis fixed, but rotate the qubits.

These two approaches are equivalent because of the property of the quantum-mechanical trace op-

eration:

Tr[ρ̂UMU †] = Tr[U †ρ̂UM ].

For experimental convenience, the qubit is always rotated by applying microwave pulses, while the

measurement basis is kept fixed (it is the computational basis |0〉 and |1〉).

Also, let us emphasize that we rotate about the y− axis to obtain the x−coordinate on the

Bloch sphere and rotate about the x−axis to obtain the y−coordinate.

3.2 Mathematical details of QST for one and two qubits

In this Section, we first provide mathematical details of the measurement of all compo-

nents of a single-qubit density matrix and then discuss the two-qubit QST.

The relations Eq. (2.17) from Section 2.1.3 of Chapter 2 can easily be inverted, and the

coefficients of the Bloch vector r̂ = [rx, ry, rz] can be expressed in terms of the density matrix
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elements as

rx = ρ01 + ρ10 = 2Re(ρ10),

ry = i(ρ01 − ρ10) = 2Im(ρ10),

rz = ρ00 − ρ11 = 1− 2ρ11.

(3.1)

As explained in Section 2.2.5 of Chapter 2, as the result of SQUID measurements, it is possible to

measure the “z-component” of the Bloch vector, which is the coefficient in front of the σz-matrix

in the decomposition Eq. (2.16) from Section 2.2.5 of Chapter 2. As this coefficient equals rz , the

diagonal elements ρ11 and ρ00 of the density matrix, introduced in Eq. (2.6) in Section 2.1.2 of

Chapter 2, can be measured.

In order to measure the real and imaginary coefficients of the off-diagonal elements of

the density matrix Eq. (2.6), ρ10 = Re(ρ10) + i Im(ρ10), ±π/2 rotations about the x− and y−axes

need to be applied. Mathematically such rotations are described by the rotation operators introduced

in Eqs. (2.13)-(2.15). For example, measurement in the same computational basis, after rotation by

the angle θ = π/2 about x−axis, yields the imaginary part of the element ρ10 of the density matrix

(note that Im(ρ10) = −Im(ρ01)), because after this rotation the ry-coefficient of the Bloch vector

appears to be in front of the σz-matrix in the Pauli decomposition of the density matrix:

R θ
x ρ̂(R

θ
x )

† =

⎛
⎜⎜⎝ cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

⎞
⎟⎟⎠ ρ̂

⎛
⎜⎜⎝ cos(θ/2) i sin(θ/2)

i sin(θ/2) cos(θ/2)

⎞
⎟⎟⎠
∣∣∣∣∣
θ=π/2

=

= (r0σ0 + rxσx − rzσy + ryσz)/2,

because

R π/2
x σx (R π/2

x )† = σx, R π/2
x σy (R π/2

x )† = σz, R π/2
x σz (R

π/2
x )† = −σy.

Analogously, measurement in the same basis, after rotation by the angle θ = −π/2 about

y−axis, yields the coefficient rx of the Bloch vector (now under this rotation the coefficient rx
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appears to be in front of the σz-matrix), and, therefore, Re(ρ10) element of the density matrix (2.6)

is measured:

R θ
y ρ̂(R

θ
y )

† =

⎛
⎜⎜⎝ cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

⎞
⎟⎟⎠ ρ̂

⎛
⎜⎜⎝ cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

⎞
⎟⎟⎠
∣∣∣∣∣
θ=−π/2

=

= (r0σ0 − rzσx + ryσy + rxσz)/2,

because

R −π/2
y σx (R −π/2

y )† = σz, R −π/2
y σy (R −π/2

y )† = σy, R −π/2
y σz (R

−π/2
y )† = −σx.

For multiple qubits, the expansion of the density matrix in terms of Pauli matrices can

be generalized to ρ̂ =
1

2N

3∑
i=0

3∑
j=0

...

3∑
k=0

rij...k σi ⊗ σj ⊗ ... ⊗ σk, and the idea of the measure-

ment remains the same: measure some coefficients rij...k, apply basis rotations, and measure other

coefficients rij...k.

As we see, for a single qubit it is tomographically sufficient to use nR = 3 basis rotations

in order to measure all independent elements of the density matrix Eq. (2.6). Such rotations are the

identity rotation I, and two rotations about x− and y−axes, R
π/2
x , and R

−π/2
y . This technique with

nR = 3 basis rotations has been used in the first QST experiment with one and two phase qubits at

UCSB in Prof. J. Martinis’ research group in 2006 [111, 112]. In case of two or more qubits in the

system, multi-qubit rotations are built as n N
R Kronecker products of single-qubit rotations (N is the

number of qubits in the system), so for the case of two qubits we have in total nine rotations, while

for the three-qubit systems we have twenty seven rotations.

In case of the SQUID measurement scheme realized with two phase qubits, as described

in Section 2.2.5 of Chapter 2, we get four possible outcomes for each of the 9 measurements of the

state of a two-qubit system, corresponding to the following four joint probabilities:
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• probability P00 that both qubits are in the ground states,

• probability P01 that the first qubit is in the ground state, second qubit is in the excited state,

• probability P10 that the first qubit is in the excited state, second qubit is in the ground state,

• probability P11 that both qubits are in the excited states.

Therefore, if nR = 3 basis rotations per qubit are used in the two-qubit tomography protocol, then

the actual experimental data consists of 36 distinct probabilities: we have 9 different measurements

with 4 outcomes each. In general, for an N -qubit system, 3N different measurement settings with

2N distinct outcomes each are required for the density matrix measurement.

More recently, an improved measurement scheme has been used in two-qubit experi-

ments at UCSB with nR = 6 single-qubit rotations (see for example [113, 114]), e.g., Rmeas =

{I, R±π/2
y , R

±π/2
x , Rπ

x}. In this protocol, which researchers at UCSB have named “overconstrained

tomography” or “octomography”, we get n2R = 36 different two-qubit measurements, each with

4 possible outcomes, therefore the actual experimental data consists of 144 distinct probabilities.

Such measurement scheme has advantages from the symmetry viewpoint and can reduce some ex-

perimental imperfections, like taking into account the population of the upper noncomputational

level
∣∣2〉.

3.3 Linear inversion method of QST for two phase qubits

In this Section we explain the linear inversion method for the “overconstrained tomogra-

phy” protocol of QST for two phase qubits (nR = 6, N = 2) for the experimental data obtained

at UCSB. One of the first tasks of the author of this dissertation was to write a Matlab computer

code that performs QST for the experimental data from UCSB by the linear inversion method. As
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explained in Chapter 3.2, the experimental data consists of 144 measured probabilites, which we

denote as P rot
ij . On the other hand, as was explained in Section 2.1.2 of Chapter 2, a two-qubit state

is described by a 4 × 4 density matrix ρ̂ introduced in Eq. (2.7), with 16 unknown parameters r11,

r12,...,r44. One can derive theoretical (symbolic) expressions Pij(r11, ..., r44) for all 144 measured

probabilities P rot
ij in terms of 16 parameters r11, r12,...,r44 using n N

R = 36 two-qubit basis rotation

operators Uj (j = 1, ..., 36). These 36 operators Uj are calculated as the Kronecker products of the

single-qubit basis rotation operators from the set Rmeas = {I, R±π/2
x , R

±π/2
y , Rπ

x} (operators Rθ
x

and Rθ
y were introduced in Eqs. (2.13)-(2.15)).

The unitary evolution of the density operator under basis rotations Uj is described by

equation Eq. (2.18) from Section 2.1.4 of Chapter 2, therefore the probability of the measurement

outcome described by a measurement operator M̂i (index i = 1, ..., 4 corresponds to four possible

measurement outcomes P00, P01, P10, P11) can be calculated as

Pij(r11, ..., r44) = Tr(M̂i Uj ρ̂ U
+
j ). (3.2)

Hence we get 144 linear equations for Pij(r11, ..., r44), corresponding to j = 1, .., 36 two-qubit

basis rotations and i = 1, ..., 4 measurement outcomes for each basis rotation, in terms of 16 un-

known parameters r11, r12,...,r44. We can set each of these symbolic equations for Pij(r11, ..., r44)

equal to the experimental probabilities P rot
ij . It is convenient to arrange 144 probabilities P rot

ij and

16 density matrix elements rmn in columns, which allows us to write these 144 equations in matrix
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form as ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P I⊗I
00

P I⊗I
01

P I⊗I
10

P I⊗I
11

P I⊗R
π/2
x

00

P I⊗R
π/2
x

01

P I⊗R
π/2
x

10

P I⊗R
π/2
x

11

P
I⊗R

−π/2
y

00

...

P
Rπ

x⊗Rπ
x

11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1,1 B1,2 ... B1,16

B2,1 B2,2 ... B2,16

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

B144,1 B144,2 ... B144,16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r11

r12

r13

r14

r21

...

r44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸

(3.3)

(144 x 1) (144 x 16) (16 x 1)

where B is a 144 x 16 transformation matrix, whose entries are calculated theoretically considering

operators of basis rotations and projections to four possible measurement outcomes as explained

above, and explicit two-qubit basis rotations are written in the superscript indices of expressions for

probabilities P in the left column of Eq. (3.3). It is convenient to rewrite Eq. (3.3) in a compact

matrix notation

�P = B�r, (3.4)

where �P is a column-vector consisting of 144 measured probabilities, �r is a column-vector con-

sisting of 16 density matrix elements r11, ..., r44, which we need to determine, and B is a 144 x 16

transformation matrix which is calculated theoretically.
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In order for Eq. (3.4) to have the exact unique solution, the transformation matrix B

needs to have an inverse, which is possible only if the number of rows (number of measurements)

in B is the same as the number of columns (the number of density matrix elements, d2) in matrix

B. Usually in the case of full tomography the number of measurements significantly exceeds the

number of density matrix elements, therefore Eq. (3.4) is the overdetermined system of equations

for determining the unknown d2 elements of the density matrix. For example, for the system of

two qubits we have 144 equations for determining the unknown 16 elements r11, ..., r44 of the

density matrix. In this situation, when the problem is overdetermined, the method of solution of

overdetermined problem from linear regression theory [115] can be employed. Multiplying both

sides of Eq. (3.4) by B†, we arrive at

B† �P = (B†B)�r, (3.5)

where B† �P is a d2-dimensional column vector and B†B is a square matrix of size d2 × d2. There-

fore, the equation Eq. (3.4) can be rewritten as

(B†B)−1B† �P = �r. (3.6)

Using the last equation Eq. (3.6), �r can be found as the density matrix that minimizes

the sum of the variances between the measured experimental data and the analytical expectation

values for corresponding probabilities. Therefore the linear inversion method of QST consists of

finding the least-square estimator of the density matrix from the overdetermined system of equations

Eq. (3.4), which can be done, for example, using the “mldivide” operation in Matlab. The Matlab

script, implementing this algorithm of linear inversion, was written by the author of this dissertation

at the initial stage of his work. Example of the density matrix reconstruction for the experimental

data for the CZ gate realized with the phase qubits is presented in Fig. 3.1.
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Figure 3.1: Results for the reconstruction of the density matrix by the linear inversion method

of QST. Experimental data for the CZ gate based on the phase qubits have been used.

The linear inversion solution for the density matrix can produce results that do not satisfy

some of the basic properties of a valid density matrix, because in this technique no positivity con-

straint or trace-normalization constraint is imposed. For instance, such solution could give negative

probabilities or probabilities greater than one for some measurement outcomes. Mathematically

it is equivalent to the violation of the condition that all eigenvalues of the physical density matrix

must lie within the interval [0, 1]. To avoid this problem, the maximum likelihood estimation of the

density matrix can be employed.

3.4 Maximum likelihood estimation of the density matrix

As we have just mentioned in the previous Section 3.3, methods of reconstruction of the

density matrix based on the linear inversion may lead to certain physical artifacts such as the neg-

ative eigenvalues of the reconstructed density matrix. In order to avoid these physical artifacts, an
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estimation method, based on statistical maximum-likelihood principle, has been proposed in [116].

In this approach, called maximum likelihood estimation, the positive semidefiniteness and trace nor-

malization of the reconstructed density matrix are guaranteed, because these necessary conditions

are incorporated into the parametrization of the density matrix. The first application of this method

to the problem of density matrix reconstruction was done in optics by James et. al. in [51]. One

of the tasks of the author of this thesis, in the beginning of his work, was the development of the

computer Matlab scripts implementing the maximum-likelihood estimation of the density matrices

for the experimental data for CZ gates based on phase qubits, obtained at Prof. J. Martinis’ group at

UCSB.

Maximum likelihood estimation is a widely used statistical technique for estimating some

quantity based on a set of measurements. For any given value of the quantity, we calculate the

“likelihood” that this value would produce the observed measurement results, consistent with the

measured dataset, the error model, and a parametrized model of the system. Using a numerical

search, the estimated quantity is then taken to be that for which the likelihood of the observed

measurements is maximized. In case of the measurements on two phase qubits, using the “over-

constrained tomography” protocol as it was explained in the previous Section 3.3, we have 144

measurement results (144 probabilities), and the quantity that we estimate are 16 real elements of

the density matrix. We can get the theoretical expressions for each of 144 measured probabilities, as

in Eq. (3.2) in the previous Section 3.3, and find a set of 16 parameters in the density matrix, which

gives the best “likelihood” that we get these 144 measured probabilities.

As a reminder, for any density matrix to be physical, it must satisfy the three properties:

be normalized, be hermitian, and have non-negative eigenvalues (due to the normalization condition
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the eigenvalues cannot exceed one). The algorithm of construction of the density matrix satisfying

all three conditions for the case of a quantum gate realized with two phase qubits and measured

using “overconstrained tomography” protocol, is the following:

• Generate a formula for an explicitly “physical” density matrix, i.e., a matrix that has the

three important properties of normalization, Hermicity, and positivity. This matrix is a function of

16 real variables denoted t1, t2, ..., t16. We denote the density matrix as ρ̂(t1, t2, ..., t16).

• Introduce a “likelihood function” which quantifies how good the density matrix

ρ̂(t1, t2, ..., t16) is in relation to the experimental data. This likelihood function is a function of the

16 real parameters tn and of the 144 experimentally measured probabilities Pk (k = 1, ..., 144)

(these probabilities were denoted as P rot
ij in the previous Section 3.3). We will denote this function

as L̂(t1, t2, ..., t16;P1, P2, ..., P144).

• Using standard numerical optimization techniques, find the optimum set of variables

t
(opt)
1 , t

(opt)
2 , ..., t

(opt)
16 for which the function L̂(t1, t2, ..., t16;P1, P2, ..., P144) has its maximum value.

The best estimate for the density matrix is then ρ̂(t
(opt)
1 , t

(opt)
2 , ..., t

(opt)
16 ).

It is convenient to parametrize the density matrix as a function of 16 real parameters t1,

t2, ..., t16 in the following way:

ρ̂(t) =
T+(t)T (t)

Tr{T+(t)T (t)} . (3.7)

This parametrization guarantees that the density matrix ρ̂(t) satisfies all three mathematical proper-

ties of a “physical” density matrix. Firstly, any matrix that can be written in the form Ĝ = T̂+T̂ is

non-negative definite. To see this, note that mathematically the property of non-negative definiteness

for any matrix Ĝ can be written as

〈ψ∣∣Ĝ∣∣ψ〉 ≥ 0 ∀ ∣∣ψ〉,
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which is automatically true for a matrix Ĝ parametrized in the way Ĝ = T̂+T̂ :

〈ψ∣∣T̂+T̂
∣∣ψ〉 = 〈ψ′∣∣ψ′〉 ≥ 0, where

∣∣ψ′〉 = T̂ ′∣∣ψ〉.
Secondly, matrix Ĝ = T̂+T̂ is automatically Hermitian: (T̂+T̂ )+ = T̂+(T̂+)+ = T̂+T̂ . Finally,

to insure normalization, we divide by the trace.

It is useful and convenient to choose a lower-triangular (tridiagonal) form for T̂ :

T (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 0 0 0

t5 + it6 t2 0 0

t11 + it12 t7 + it8 t3 0

t15 + it16 t13 + it14 t9 + it10 t4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.8)

with the total of 16 entries for the 4 × 4 two-qubit case, and where there are four real parameters

on the main diagonal. This form of parametrization is based on the Cholesky decomposition of a

Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate

transpose in linear algebra. It has been shown by Andre-Louis Cholesky that every Hermitian pos-

itive definite matrix A can be decomposed into the product of a lower triangular matrix L with

strictly positive diagonal entries and the Hermitian conjugated matrix L∗: A = LL∗. The Cholesky

decomposition is unique: given a Hermitian, positive-definite matrix A, there is only one lower

triangular matrix L with strictly positive diagonal entries such that A = LL∗. There is a standard

Matlab command “chol” which calculates the Cholesky decomposition of a positive-definite matrix.

In order to write an expression for the likelihood function L̂(t1, t2, ..., t16;P1, P2, ..., P144),

which we use in the maximum likelihood estimation algorithm, we need to establish the probabil-

ity distribution that describes the measurement scheme. As explained in Chapter 3.2, there are
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36 different two-qubit basis rotations Uj involved in the “overconstrained tomography” measure-

ment protocol for a quantum gate based on two phase qubits, and measurement of the state of the

qubit after each of those 36 rotations Uj can yield four different probabilities P rot
00 , P rot

01 , P rot
10 and

P rot
11 . Therefore the multinomial distribution with four outcomes (“tetranomial” distribution) needs

to be employed for the description of the measurement scheme.

The tetranomial distribution can be viewed as a generalization of the well-known bino-

mial distribution, which describes the measurements with two possible outcomes only. First, let us

rewrite the well-known binomial distribution as

P (k1, k2;n, p1, p2) =
n!

k1! k2!
pk11 pk22 , (3.9)

where it is presumed that we have observed k1 outcomes of type #1 with underlying probability p1

and k2 different outcomes of type #2 with underlying probability p2. Obviously, p1 + p2 = 1 and

k1 + k2 = n, where n is the total number of trials. It is now easy to generalize this formula for the

case of measurement with four possible outcomes. The tetranomial distribution gives the analytical

expression for the probability that we have observed k1 outcomes of type #1 with underlying prob-

ability p1, k2 outcomes of type #2 with underlying probability p2, k3 outcomes of type #3 with

underlying probability p3 and k4 outcomes of type #4 with underlying probability p4:

P (k1, k2, k3, k4;n, p1, p2, p3, p4) =
n!

k1! k2! k3! k4!
pk11 pk22 pk33 pk44 . (3.10)

Obviously, p1 + p2 + p3 + p4 = 1 and k1 + k2 + k3 + k4 = n, where n is the number of repetitions

of measurements for each of 36 basis rotations (for example, n = 1500 for the specific tomography

experiments at UCSB which were used to obtain the experimental data with phase qubits, used for

calculations in this dissertation). Let us call this probability P (k1, k2, k3, k4;n, p1, p2, p3, p4) as the
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likelihood L that the result of type j with the underlying probability pj was observed kj times (j =

1, 2, 3, 4). Note that the expression Eq. (3.10) as the product of four terms describes the probability

distribution after only one two-qubit basis rotation Uj (operators Uj are built as the Kronecker

products of the single-qubit basis rotation operators from the set Rmeas = {I, R±π/2
x , R

±π/2
y , Rπ

x}

as explained in Section 3.3). As there are 36 distinct two-qubit basis rotations Uj involved in the

tomography experiment, each yielding the four possible outcomes, the full likelihood is the product

of 144 terms.

For the convenience of numerical calculations, rather than finding the maximum value

of L, it is easier to find the minimum of its logarithm taken with negative sign. Taking logarithm

of L, we have

lnL = ln
( n!

k1! k2! k3! k4!

)
+ k1 ln p1 + k2 ln p2 + k3 ln p3 + k4 ln p4, (3.11)

where the first term is independent of pj , so it can be omitted. Dividing the other terms in Eq. (3.11)

by the number of repetitions of experiment n for each of 36 basis rotations (where for the specific

experiment n = k1 + k2 + k3 + k4 = 1500), we get the following functional (it is convenient from

computational point of view to take the natural logarithm of the resulting functional):

− lnL = −
{k1
n

ln p1 +
k2
n

ln p2 +
k3
n

ln p3 +
k4
n

ln p4

}
. (3.12)

The terms
kj
n

in Eq. (3.12) have the meaning of experimentally measured probabilities, and pj in

Eq. (3.12) can be calculated theoretically from the elements of the density matrix parametrized

through parameters t1, t2, ..., t16. Therefore we need to minimize the functional L

L ≡ − lnL = −
144∑
j=1

{
p
(exp)
j ∗ ln p(th)j (t1, t2, ..., t16)

}
(3.13)

over real parameters t1, t2,..., t16, where p
(exp)
j are the 144 measured probabilities.
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The author of this dissertation wrote the Matlab computer program that finds the minimum

of the likelihood function Eq. (3.13) and calculates the density matrices by the maximum likelihood

method for the experimental data for the CZ gates based on phase qubits. In our codes, we used the

Matlab built-in function “fminunc” which requires an initial estimate for the values of t1, t2,..., t16.

For this, the tomographic estimate of the density matrix obtained by the linear inversion method,

described in the previous Section 3.3, has been used. We checked that all eigenvalues of the den-

sity matrix obtained by the linear inversion method were positive, and in case some of them were

negative, we assigned small positive values to those eigenvalues, then we used the Matlab built-in

function “chol” to find the Cholesky decomposition of the density matrix obtained by the linear

inversion method, which gave the initial guess for the real parameters t1, t2,..., t16. The resulting

density matrices, obtained by the maximum likelihood method, have been fully physical. Example

of a density matrix, calculated by the maximum likelihood method for the experimental data for the

CZ gate based on phase qubits, is presented in Fig. 3.2. Note that usually the difference between the

density matrices calculated by the linear inversion method and by the maximum likelihood method

is not very significant. For example, the state fidelity (defined in Eq. (2.24) of Chapter 2) between

the two density matrices, presented in Figs. 3.1 and 3.2, equals F = 0.998, and the trace distance

(defined in Eq. (2.25) of Chapter 2) between these density matrices equals D = 0.008. This means

that the density matrices reconstructed by the two different methods are slightly different, but they

are not too far from each other.

It is shown in statistics that binomial and multinomial distributions can be approximated

by the Gaussian (normal) distribution for large n. Such transition is based on the Stirling formula

lnn! ≈ n lnn−n+O(log n), which allows one to replace factorials in the multinomial distribution
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Figure 3.2: Results for the reconstruction of the density matrix by the maximum likelihood method

of QST. Experimental data for the CZ gate based on the phase qubits have been used.

by n! ≈ √
2πn

(n
e

)n
. The rule of thumb that is mentioned in statistics about the validity of Gaussian

approximation is that both products n ∗ p and n ∗ (1− p) should be greater than 5, which is usually

the case in the tomography experiments at UC Santa Barbara, as n = 1500. Therefore the exact

multinomial likelihood functional can be replaced by the approximate Gaussian one,

L(t1, t2, ..., t16) = −
144∑
j=1

{
p
(exp)
j − p

(th)
j (t1, t2, ..., t16)

}2

2p
(exp)
j

. (3.14)

This possibility of transition to Gaussian probability distribution is mentioned in a theoretical pa-

per [117], and Gaussian distribution is always used in optics. In particular, Gaussian distribution

Eq. (3.14) was used in the first optical implementation of the method [51].
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Chapter 4

Standard Quantum Process

Tomography of multi-qubit gates

4.1 Basics of “standard” quantum process tomography

Quantum Process Tomography is the procedure used to characterize a quantum gate, or

quantum process, which takes an arbitrary given input state ρin and transforms it into the output state

ρfin = E(ρin). Usually, such task arises when we want to understand how closely an experimentally

realized gate approximates the desired unitary operation. This Chapter is structured as follows. In

this Section 4.1 we are giving an overall introduction into quantum process tomography, we also

provide the details of the experimental setup of QPT for superconducting qubit gates in Section 4.2,

and explain in Section 4.3 the so-called linear inversion method of QPT, which was programmed in

Matlab by the author of this dissertation. We give the details of programming of the linear inversion

method, discuss computational resources, such as time and memory, and then discuss in Section 4.4

55



alternative methods for the process matrix reconstruction, such as the maximum likelihood and the

least squares method.

The theoretical fundamentals of QPT were formulated in [12, 13] in 1997. Quantum pro-

cess tomography was first applied to an NMR system1 in 2001 [118, 119, 120], then it was used to

study optical quantum gates in 2003 and 2004 [121, 122], after that the first process tomography

experiment in ion trap systems was done in 2006 [123, 124]. The first process tomography exper-

iment for superconducting phase qubits was performed for a memory operation between a single

phase qubit and a two-level state in 2008 [125], and the first demonstration of QPT in a system of

two superconducting phase qubits was carried out in 2010 [126]. The method of quantum process

tomography was also applied to superconducting qubits in [36, 114, 126, 127, 128].

The idea behind QPT is to reconstruct a quantum operation ρin �→ ρfin = E(ρin) from

experimental data. The quantum operation is a completely positive linear map E that transforms the

density operator ρin into the output density operator ρfin. Then for an N -qubit system prepared in

the state with density matrix ρin, the quantum operation E can be expressed in terms of the so-called

Kraus operators as [2]

E(ρin) =
K∑
j=1

Ajρ
inA†

j , (4.1)

where Aj are called “Kraus operators” of the quantum operation E , and the number K of such

operators does not exceed d2, where d = 2N is the dimension of the system. The representation

Eq. (4.1) is also known as the “operator-sum representation”. Since the quantum operation E must

be trace-preserving (or trace non-increasing), the Kraus operators A need to satisfy the condition

K∑
j=1

A†
jAj = I. (4.2)

1the fidelity of a CNOT logic gate in an NMR apparatus was measured in Ref. [118].
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To prove this trace-preservation condition Eq. (4.2), note that

1 = Tr E(ρ) = Tr
(∑

j

Ajρ
inA†

j

)
=

∑
j

Tr
(
Ajρ

inA†
j

)
= Tr

(∑
j

A†
jAj ρ

in
)
, (4.3)

which must be true for all input density matrices ρin, therefore the condition Eq. (4.2) needs to be

satisfied. In case of a trace non-increasing quantum operation, the condition Eq. (4.2) becomes

K∑
j=1

A†
jAj ≤ I .

The decomposition Eq. (4.1) of the quantum operation E into the Kraus operators is not

unique as different sets of Kraus operators may describe the same quantum operation E . Therefore,

it is more convenient to introduce the following unique expansion of the quantum operation E over

some fixed set of basis operators Eα:

E(ρin) =
d2∑

α,β=1

χαβEαρ
inE†

β , (4.4)

where d = 2N is the dimension of the system, χ ∈ C
d2×d2 is the process matrix and {Eα ∈ C

d×d}

is a chosen basis of operators. We assume that this basis is orthogonal, 〈Eα|Eβ〉 ≡ Tr(E†
αEβ) =

Qδαβ , where Q = d for the Pauli basis and Pauli-error basis, and Q = 1 for the SVD basis

(see Appendices B and C). Note that for a trace-preserving operation Tr(χ) = 1 if Q = d, while

Tr(χ) = d ifQ = 1. We implicitly assume in this and the next Chapters of this dissertation the usual

normalization Q = d, unless mentioned otherwise. The process matrix χ is positive semidefinite

(which implies being Hermitian), and we also assume it to be trace-preserving,

χ ≥ 0 (positive semidefinite), (4.5)

d2∑
α,β=1

χαβE
†
βEα = Id (trace-preserving). (4.6)
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These conditions ensure that ρfin = E(ρin) is a legitimate density matrix for an arbitrary (legitimate)

input state ρin. The condition Eq. (4.6) reduces the number of real independent parameters in χ

from d4 to d4 − d2. For example, for one qubit the 4× 4 process matrix χ contains 12 independent

elements, for two qubits the 16×16 process matrix contains 240 independent elements, and for three

qubits the number of independent elements in the 64 × 64 process matrix becomes 4032. Hence

the number of parameters needed to fully specify the quantum map E scales as O(16N ) with the

number of qubits N . Note that the set of allowed process matrices χ defined by Eqs. (4.5) and (4.6)

is convex [29, 39]. The elements of the process matrix χ can be related to Kraus operators A as

χm,n =
∑K

j=1 cj,mc
∗
j,n, where cj,m are the coefficients of decomposition of Kraus operators A over

the chosen basis of operators {Eα}: Aj =
d2∑

m=1

cj,mEm.

The essential idea of standard QPT is to exploit the linearity of the map Eq. (4.4) by

preparing the qubits in different initial states, then applying the quantum gate E , and then measuring

a set of observables until the collected data allows us to obtain the process matrix χ through matrix

inversion or other methods. More precisely, if the qubits are prepared in the state ρink , then the

probability of finding them in the (measured) state |φi〉 after applying the gate is given by

Pik = Tr(ΠiE(ρink )) =
∑
α,β

Tr(ΠiEαρ
in
k E

†
β)χαβ , (4.7)

where Πi = |φi〉 〈φi|. By preparing the qubits in one of the linearly independent input states

{ρin1 , . . . , ρinNin
} and performing a series of projective measurements {Π1, . . . ,ΠNmeas} on the output

states, using the methods of quantum state tomography described in Chapter 3, one obtains a set of

m = NinNmeas probabilities {Pik} which, using Eq. (4.7), may be written as

�P (χ) = Φ�χ, (4.8)

where �P (χ) ∈ C
m×1 and �χ ∈ C

d4×1 are vectorized forms of {Pik} and χαβ , respectively. The
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m × d4 transformation matrix Φ has entries given by Φik,αβ = Tr(ΠiEαρ
in
k E

†
β). Note the simili-

tude between the last equation Eq. (4.8) relating the elements of the unknown process matrix χ with

the column-vector of the the measured probabilities in the QPT problem and the equation Eq. (3.4)

from Section 3.3 of Chapter 3, which related the elements of the unknown elements of the density

matrix with the column-vector of the measured probabilities in the QST problem.

4.2 Experimental details of QPT of multi-qubit superconducting gates

There are several different ways to perform standard QPT for an N -qubit quantum gate

realized with superconducting qubits [113, 126, 129, 128, 130, 131, 132, 114]. The differences are

the following. First, it can be performed using either nin = 4 initial states for each qubit [126, 129,

128, 130], e.g., {|0〉 , |1〉 , (|0〉+ |1〉)/√2, (|0〉+ i |1〉)/√2}, or using nin = 6 initial states per qubit

[131, 132], e.g., {|0〉 , |1〉 , (|0〉±|1〉)/√2, (|0〉±i |1〉)/√2}, so that the total number of initial states

is Nin = nNin . Multiqubit initial states are built as Kronecker product (also called tensor product or

direct product) of single-qubit input states. (It is tomographically sufficient to use nin = 4, but the

set of 6 initial states is more symmetric, so it can reduce the effect of experimental imperfections.)

Second, the final measurement of the qubits can be realized in the computational basis after one out

of nR = 3 rotations per qubit [126, 128], e.g., Rmeas = {I, R−π/2
y , R

π/2
x }, or nR = 4 rotations

[36, 129, 132], e.g., Rmeas = {I, Rπ
y , R

π/2
y , R

π/2
x }, or nR = 6 rotations [113, 131, 114], e.g.,

Rmeas = {I, Rπ
y , R

±π/2
y , R

±π/2
x }. This gives NR = nNR measurement “directions” in the Hilbert

space. Again, rotations in multiqubit systems are built as the Kronecker product of single-qubit

rotations. Third, it may be possible to measure the state of each qubit simultaneously [126, 113,
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128], so that the probabilities for all 2N outcomes are measured, or it may be technically possible

to measure the probability for only one state (say, |0...0〉) or a weighed sum of the probabilities

[131, 129, 130]. Therefore, the number of measured probabilities for each configuration is either

Nprob = 2N (with 2N − 1 independent probabilities, since their sum is equal 1) or Nprob = 1. Note

that if Nprob = 2N , then using nR = 6 rotations per qubit formally gives the same probabilities as

for nR = 3, and in an experiment this formal symmetry can be used to improve the accuracy of the

results. In contrast, in the case when Nprob = 1, the use of nR = 4 or nR = 6 is natural for the

complete tomography.

Thus, the number of measurement configurations (including input state and rotations) in

standard QPT isMconf = NinNR = nNinn
N
R , while the total number of probabilities in the data set is

M =MconfNprob. This number of probabilities can be as large as M = 72N for nin = 6, nR = 6,

and Nprob = 2N (with 72N − 36N independent probabilities). Since only 16N − 4N independent

probabilities are necessary for the standard QPT, a natural choice for a shorter experiment is nin = 4,

nR = 3, and Nprob = 2N ; then the total number of probabilities is M = 24N , with 24N − 12N

independent probabilities. If Nprob = 1 due to the limitations of the measurement technique, then

the natural choices are nin = 4 and nR = 4, giving M = 16N or nin = 4 and nR = 6, giving

M = 24N .

In this and the following Chapters of this dissertation we focus on the case nin = 4, nR =

3, and Nprob = 2N . Based on this, for a two-qubit quantum gate there are Mconf = 12N = 144

measurement configurations and M = 24N = 576 probabilities (432 of them independent).
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4.3 Linear inversion method of quantum process tomography

4.3.1 The method of linear inversion for QPT

In principle, for tomographically complete sets of input states {ρin1 , . . . , ρinNin
} and mea-

surement operators {Π1, . . . ,ΠNmeas}, one could invert Eq. (4.8) and thus uniquely find the process

matrix χ by using the experimental set of probabilities �P exp. This method of linear inversion in

which the process matrix χ is represented in a block form as the product of several other auxiliary

matrices, is described for the systems of one and two qubits in [2, 13, 25], and is formulated slightly

differently in [17]. We wrote the Matlab computer code which implements the linear inversion

method of [17], and we discuss this algorithm in this Section.

The algorithm of linear inversion, formulated in [17], describes a two-step procedure of

calculation of the process matrix χ. First, it is convenient to compute some auxiliary matrix J

of dimension 4N × 4N , called Jamiolkowski operator, and then in the second step of the algorithm

convert J into the process matrix χ. As explained in Section 4.1, in the quantum process tomography

procedure one needs to prepare nNin linearly independent initial states ρin, which are traditionally

chosen as all possible Kronecker products of the single-qubit states, perform the evolution E , and

measure the resulting states ρfin, using the quantum state tomography procedure. Note that different

number of basis rotations per qubit, nR = 3 or nR = 4, or nR = 6, can be used in the algorithm. In

order to calculate matrix J , in the first step of the linear inversion method of QPT, it is convenient to

introduce 4N × 4N matrices R and R0 constructed from the density matrices ρfin and ρin, reshaped

into the columns, so that the nth column of R is the nth density matrix ρfin reshaped into a column,

and similar for R0. Matrices R and R0 can be related through the 4N × 4N matrix L: R = LR0.
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Therefore the matrix L can be calculated as

L = RR−1
0 . (4.9)

Jamiolkowski matrix J consists of the reordered elements of L. The reordering procedure

is the following [17]: (1) each row of L is converted into a 2N × 2N matrix by sequentially placing

the rows of 2N elements below each other and (2) these matrices are placed from left to right, with

a new row of matrices starting after each set of 2N steps. Therefore, the first step of the algorithm

of the χ-matrix calculation by the method of linear inversion consists in calculation of the matrix

L and its reordering, which yields the 4N × 4N Jamiolkowski matrix J . In the second step of the

algorithm, J needs to be transformed into the process matrix χ. As stated in [17], J matrix coincides

with the process matrix χ in a special unphysical by-element basis |i〉〈j|, the so-called elementary

basis. Therefore, to obtain the process matrix χ for a physical operator basis En, one needs to make

the following transformation of J . First, a matrix E of the dimension 4N × 4N must be constructed

from the elements of operator basis matrices En, which are reshaped into columns. Namely, the nth

column of matrix E contains all elements of the 2N × 2N matrix En. After calculating the matrix

E, some matrix multiplication of J , E and E† needs to be done for the calculation of χ-matrix.

For the case of mutually orthogonal basis operators En (such as the Pauli basis operators), the final

computational formula for the χ-matrix has the following block structure:

χ = E†JE/4N . (4.10)

We have written the Matlab code which implements the above two-step linear inversion

algorithm of the process matrix calculation. It is convenient to split the calculations into two sep-

arate scripts (files), because some matrices in the algorithm (namely, R0 and E) depend only on
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the choice of the basis of operators for QPT (matrices {Eα} in Eq. (4.4)) and the initial states ρin,

and therefore can be calculated just once in an auxiliary script and recorded into the data mat-files.

Other matrices R, and therefore L and J , which depend on the density matrices ρfin, are calcu-

lated in the main Matlab script. The main Matlab script calculates the process matrix χ, using the

nNin density matrices ρfin, each of the dimension 2N × 2N , as the input data. These nNin density

matrices correspond to the output density matrices ρfin in Eq. (4.4) after the evolution of the known

input basis states. These density matrices ρfin can either be experimentally measured (using QST

methods) density matrices at the output of the quantum channel, or, as we do not have true exper-

imental data for the systems of more than two qubits, can be randomly generated for an arbitrary

number of qubits. According to the general QPT methodology, these density matrices correspond to

measuring nNin states ρfin at the quantum channel’s output, as the result of the evolution of the input

states ρin, as in Eq. (4.4).

Before running the main Matlab script, an auxiliary script needs to be run first (just one

time) in order to calculate and save into mat-files the inverse of matrix R0 and the matrix E, dis-

cussed above. These calculations of the inverse of the matrix R0 and of the matrix E in a separate

auxiliary script increase the speed of the main program by approximately a factor of two. In order

to calculate the process matrix χ, the main Matlab script performs reshaping of the density matri-

ces ρfin into columns, as described above, and builds the R matrix. Then the program reads from

the mat-file the inverse matrix R−1
0 , which was calculated and recorded into the mat-file earlier by

the auxiliary script. Now, when the main program has both matrices R and R−1
0 , it calculates the

matrix L according to Eq. (4.9). In the next step, this matrix L is reshaped into the J-matrix accord-

ing to the reshaping rule formulated above. After the calculation of J-matrix, the main program
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reads already calculated E matrix from the mat-file, created beforehand by the auxiliary Matlab

script, and calculates the process matrix χ by matrix multiplication of E†, J and E according to

the Eq. (4.10).

The author of this dissertation wrote the Matlab computer program, which performs the

calculation of the process matrix χ by the linear inversion method. Example of the process matrix χ,

calculated by the linear inversion method of QPT from the experimental data for the two-qubit CZ

gate, realized with the phase qubits, is presented in Fig. 4.1.

Below follows the discussion of the computer resources, such as memory RAM and com-

putational time, required for the linear inversion algorithm of QPT.

4.3.2 Computer memory and time requirements for the linear inversion method of

QPT

The biggest numerical matrices that one needs to store in memory RAM of the computer

are the complex matrices R and R0, which enter into Eq. (4.9) for calculation of L, and matrices

L, J, and χ that are calculated using R and R0. All these matrices are complex matrices of the

dimension 4N × 4N . It is possible to use two types of memory allocation for the elements of these

arrays: the default “double-precision floating point numbers format” for each number in the arrays,

which requires 64 bits, or equivalently 8 bytes, for each value stored, or we can change the format

to “single-precision floating point numbers format”, which requires 32 bits, or equivalently 4 bytes,

for each value. The amount of computer memory, necessary to store the matrices R and R0, is

shown in Table 4.1 for various numbers of qubits in the system,N . As we see, the required memory

scales as 16N .
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Figure 4.1: The process matrix χ [Re(χ) on the top panel, Im(χ) on the lower panel] calculated by

the linear inversion method of QPT. The experimental data for the two-qubit CZ gate realized with

the phase qubits have been used. The process fidelity with the ideal χ-matrix is F ≡ Tr(χχideal) =
0.63. The modified Pauli basis {Eα} has been used. Note that the scales on the vertical axes for

Re(χ) and Im(χ) are different.
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Strictly speaking, this consideration turns out to be not the upper memory limitation in

our Matlab program. The program is written in the way that in order to calculate Jamiolkowski J-

matrix, the cell array of dimension 4N × 4N is introduced and calculated in the program, and later

this cell array is converted into a numerical J-matrix. It is known that cell arrays require more

memory than numerical arrays, because some information is recorded into headers, which require

additional memory, but it turns out that such additional memory does not play a significant role. For

a 64-bit Windows system, each cell array header consumes 112 bytes, and there are 4N elements of

the cell-array, therefore the additional memory is only (4N × 112) bytes, which corresponds to only

448 kB for a 6-qubit system (a very small addition to 256 MB).

Table 4.1: The amount of computer RAM memory, required to store the arraysR andR0 for various

number of qubits in the system, N . Two types of memory allocation are compared.

N Dimension of R and R0 Memory “double-precision” Memory “single-precision”

2 16× 16 4 kB 2 kB

3 64× 64 64 kB 32 kB

4 256× 256 1 MB 512 kB

5 1024× 1024 16 MB 8 MB

6 4096× 4096 256 MB 128 MB

7 16384× 16384 4GB 2 GB

Although it may seem that the dimensions of matrices and RAM memory needed in the

7−qubit case are within the size of RAM-memory of an average computer (a computer with 6GB

of RAM memory was used by the author of dissertation for these calculations), and it was indeed

possible to calculate matrices R and R0 for the 7− qubit case (it takes about 4 hours of calculation

time on an average computer to calculate each matrix), but Matlab runs out of memory when it tries
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to calculate the inverse of matrix R0 in Eq. (4.9), either by using the Matlab command “inv”, or

by using the Matlab right-divide operator “mrdivide”. Therefore six is the maximum number of

qubits in a quantum system, for which the process matrix χ can be calculated by the linear inversion

method of full QPT, described in this Section, on an average computer.

The computer time requirements are not demanding for this algorithm. It takes less than

a second of computational time to run the QPT algorithm (both auxiliary and main scripts) for the

systems of two and three qubits on an average PC, and the computational time increases with the

increasing number of qubits. It takes about 1000 seconds to run the “auxiliary” script and about

260 seconds to run the “main” script for the case of 6 qubits on an average PC.

Let us provide the rough estimate of time resources it takes in an experiment to measure

the necessary full set of experimental probabilities for different numbers of qubits N (from N = 2

to N = 6) in the system. We compare two protocols of measurements. First we consider the mea-

surement protocol with the minimum number of basis rotations per qubit nR = 3 and nin = 4

different initial states per qubit in QST experiments. In this protocol an experimentalist needs to

perform 12N different experiments and measure 24N different probabilities. If a bigger number of

basis rotations per qubit nR = 6 is used in the so-called “overconstrained tomography” QST exper-

iment, keeping the same number of initial states nin = 4 for every qubit, then the experimentalist

needs to perform 24N different experiments and measure 48N different probabilities. If it takes

about a millisecond (t = 1 ms) for measuring a single experimental outcome, and if one needs to

perform 1000 repetitions of experiment to achieve reasonable statistics for each probability (there

were actually 1500 repetitions in the experiments with two phase qubits, performed at UCSB, we

assume here 1000 repetitions for the simplification of our estimate), then we arrive at the follow-
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ing crude estimate for the time, required to measure the full set of probabilities for QPT, which is

presented in Table 4.2.

Table 4.2: Time required to measure the full set of probabilities in QPT, for different numbers of

basis rotations per qubit, nR = 3 and nR = 6, and for various numbers of qubits in the system, N .

The number of initial states for each qubit is nin = 4.

N nR = 3, nin = 4 nR = 6, nin = 4

2 2.4 minutes 9.6 minutes

3 29 minutes 3.8 hours

4 5.76 hours 3.8 days

5 2.9 days 3 months

6 34.6 days 6 years

Here is an example of how this rough estimate can be obtained for N = 6 qubits, if the

number of basis rotations per qubit nR = 3 and the number of different initial states per qubit is

nin = 4: 12N different experiments ×1000 repetitions×0.001sec = 12N sec= 829.4 hours= 34.6

days. As we see, the “overconstrained” tomography with nR = 6 becomes impractical for more

than four qubits.

4.4 Maximum likelihood and least-squares methods for QPT

We have just discussed in Section 4.3 the method of linear inversion in QPT that allows

one to invert Eq. (4.8) and thus find the process matrix χ from the experimental set of probabilities

�P exp. In this method, however, the conditions for the process matrix to be physically valid, such

as the positive semidefinite condition Eq. (4.5) and the trace preservation condition Eq. (4.6), were
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not imposed on the process matrix χ. In practice, because of experimental uncertainties present in

�P exp, the process matrix thus obtained is usually non-physical, that is, inconsistent with the condi-

tions Eqs. (4.5) and (4.6). In standard QPT this problem is remedied by finding the physical process

matrix [satisfying Eqs. (4.5) and (4.6)] that minimizes (in some sense) the difference between the

probabilities �P (χ) and the experimental probabilities �P exp.

Two popular methods used to estimate a physical process matrix χ compatible with the

experimental data are the maximum likelihood (ML) method [133, 123, 134] (see also [51, 135])

and the least-squares (LS) method [122, 36, 136]. The ML method minimizes the cost function

[133]

CML = −
∑

j
P exp
j lnPj(χ), (4.11)

where the index j labels the measured probabilities, while the LS method (often also called maxi-

mum likelihood) minimizes the difference between �P (χ) and �P exp in the �2-norm sense [?], so the

minimized cost function is

CLS = ||�P (χ)− �P exp||2�2 =
∑

j
[P exp

j − Pj(χ)]
2. (4.12)

In both methods the conditions Eq. (4.5) and Eq. (4.6) should be satisfied to ensure that χ corre-

sponds to a physical process. This can be done in a number of ways, for example using the Cholesky

decomposition, the Lagrange multipliers, or just stating the conditions Eqs. (4.5) and (4.6) as a con-

straint (if an appropriate software package is used). The ML method Eq. (4.11) is natural when

the inaccuracy of �P exp is dominated by the statistical error due to a limited number of experimental

runs. However, this method does not work well if a target probability Pj is near zero, but P exp
j is not

near zero due to experimental imperfections (e.g., “dark counts”); this is because the cost function
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Eq. (4.11) is very sensitive to changes in P exp
j when Pj(χ) ≈ 0. Therefore the LS method Eq. (4.12)

is a better choice when the inaccuracy of �P exp is not due to a limited number of experimental runs.

Note that other cost functions can also be used for minimization in the procedure. For ex-

ample, by replacing lnPj(χ) in Eq. (4.11) with ln[Pj(χ)/P
exp
j ] (this obviously does not affect opti-

mization), then expanding the logarithm to second order, and using condition
∑

j Pj(χ) =
∑

j P
exp
j

(which cancels the first-order term), we obtain [51] CML ≈ const +
∑

j [P
exp
j − Pj(χ)]

2/2P exp
j .

This leads to another natural cost function

C =
∑
j

[Pj(χ)− P exp
j ]2

P exp
j + a

, (4.13)

where we phenomenologically introduced an additional parameter a, so that for a � 1 the mini-

mization reduces to the LS method, while for a  1 it is close to the ML method (the parameter a

characterizes the relative importance of non-statistical and statistical errors). One more natural cost

function is similar to Eq. (4.13), but with P exp
j in the denominator replaced by P exp

j (1−P exp
j ) (see

[133]), which corresponds to the binomial distribution variance.

Both problems Eq. (4.11) and Eq. (4.12) are convex optimization problems [29, 39, 137],

therefore it is convenient to use the special Matlab software for solving these convex optimiza-

tion problems, such as YALMIP [138] or CVX [139]. Unfortunately, the ability to solve the log-

convex problems described by Eq. (4.11) has not been implemented in any of these Matlab packages

YALMIP or CVX by its developers so far, but efficient numerical algorithms capable of solving the

least-squares convex optimization problems of the type of Eq. (4.12) are implemented in both these

packages. Therefore, it is much easier to solve the least-squares convex optimization problem of

the type of Eq. (4.12) from the computational point of view. In this dissertation we use the LS

method Eq. (4.12) for the standard QPT. In particular, we find the process matrix χfull for the full
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data set �P
exp
full by minimizing ||�P (χfull) − �P

exp
full ||�2 , subject to the conditions Eqs. (4.5) and (4.6).

Such minimization problem is computationally tractable as it is a convex optimization problem, and

the author of this dissertation has written the Matlab computer program that calculates the process

matrix χ by the least-squares method. As an example, two process matrices χfull reconstructed by

the LS method from the two sets of experimental data for two-qubit CZ gates are shown in Figs. 4.2

and 4.3. The process matrix presented in Fig. 4.2 is calculated from the experimental data for the

CZ gate based on phase qubits, while the experimental data obtained with Xmon qubit are used in

the calculation of the the process matrix presented in Fig. 4.3.

In the next Chapter 5 we benchmark the results of the compressed sensing QPT process

matrix reconstruction from partial data against the process matrix χfull, obtained by the LS method

using the full data set.
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Figure 4.2: The process matrix χ calculated by the least squares method of QPT. The experimental

data for the two-qubit CZ gate realized with the phase qubits have been used. The process fidelity

with the ideal χ-matrix is F ≡ Tr(χχideal) = 0.51. The modified Pauli basis {Eα} has been used.
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Figure 4.3: The process matrix χ calculated by the least squares method of QPT. The experimental

data for the two-qubit CZ gate realized with the Xmon qubits have been used. The process fidelity

with the ideal χ-matrix is F ≡ Tr(χχideal) = 0.91. The modified Pauli basis {Eα} has been used.
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Chapter 5

Compressed Sensing Quantum Process

Tomography of two and three qubit

gates

5.1 Introduction to Compressed Sensing Quantum Process Tomogra-

phy

As we have seen in Chapter 4, the standard QPT suffers from a fundamental drawback

in that the number of required experimental configurations and therefore the number of measured

probabilities scale exponentially with the number of qubits, this makes the standard QPT imprac-

tical for systems of several qubits. As we have discussed in Chapter 4, for an N -qubit system, the

number of measurement configurations in standard QPT is Mconf = nNinn
N
R , while the total number

of probabilities in the data set is M = MconfNprob (where nin is the number of input single-qubit
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states and nR is the number of basis rotations per qubit, and the number of measured probabilities

per configuration Nprob is usually 2N ). These numbers Mconf and M become very large even for

few-qubits systems, implying the amount of information one needs to collect during the experiment

and the computer resources required for post-processing the data are becoming unmanageable. The

method of compressed sensing QPT (CS QPT) proposed in [39, 40] is hoped to alleviate this prob-

lem. Compressed sensing techniques are based on the idea that the ideal operation can be described

by a maximally sparse process matrix in a special basis which includes the intended unitary process.

Therefore, a nearly precise implementation of the intended process will be described by an approxi-

mately sparse matrix in this basis. The concepts of compressed sensing techniques as used in signals

processing [41, 42, 43, 44] are then applied to efficiently characterize the implemented process. As

it has been shown in [40], if the process matrix χ is known to be s-compressible1 in some known

basis, then for a d-dimensional quantum system the CS QPT method is supposed to require only

O(s log d) experimental probabilities to produce a good estimate of the process matrix χ. The CS

QPT method was experimentally validated in Ref. [40] for a photonic two-qubit controlled-Z (CZ)

gate.

The CS idea also inspired another (quite different) algorithm for quantum state tomogra-

phy (QST) [140, 141], which can be generalized to QPT [141, 142]. This matrix-completion method

of CS QST estimates the density matrices of nearly pure (low rank r) d-dimensional quantum states

from expectation values of only O(rd poly log d) observables, instead of d2 observables required

for standard QST. It is important to mention that this method does not require any assumption about

the quantum state of a system, except that it must be a low-rank state (in particular, we do not need

to know the state approximately). The CS QST method has been used to reconstruct the quantum

1Roughly speaking, a matrix is s-compressible if it can be well approximated by an s-sparse matrix.
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states of a 4-qubit photonic system [143] and cesium atomic spins [144]. In Ref. [141] it has been

shown that using the Jamiołkowski process-state isomorphism [145] the formalism of CS QST can

also be applied to the QPT, requiring O(rd2 poly log d) measured probabilities (where r is the rank

of the Jamiołkowski state) to produce a good estimate of the process matrix χ. Therefore there

is crudely a square-root speedup compared with standard QPT. Note that this algorithm requires

exponentially more resources than the CS QPT method of Ref. [40], but it does not require us to

know a particular basis in which the matrix χ is sparse. The performance of these two methods has

been compared in the recent paper [142] for a simulated quantum system with dimension d = 5; the

reported result is that the method of Ref. [141] works better for coherent errors, while the method

of Ref. [40] is better for incoherent errors.

The method of compressed sensing is now an already well-developed mathematical field

with numerous applications in signal processing, including medical magnetic resonance tomogra-

phy [146], photography [147], face recognition [148], holography [149], seismic imaging [150],

etc. Compressed sensing typically involves forming a convex optimization involving the �2-norm

of the measurement error and the �1-norm (we define norms in the subsequent Section 5.2) of the

estimation variable, the latter being a convex heuristic for sparsity. The estimate is obtained by

solving a convex optimization problem where under suitable measurement conditions the underde-

termined measurements plus the sparsity heuristic yields a very accurate solution. Perfect recovery

of a sparse signal is achieved with no measurement noise, and the errors grow gracefully with noise

and near-sparsity of the signal.

Compressed sensing quantum process tomography (CS QPT) enables one to recover the

process matrix χ from far fewer experimental configurations than the standard QPT. In this Chapter
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we apply the method of CS QPT, introduced in Ref. [40] and experimentally validated there for a

photonic two-qubit controlled-Z (CZ) gate, to several two-qubit CZ gates realized with supercon-

ducting Xmon and phase qubits, as well as to the simulated data for the three-qubit Toffoli gate with

numerically added noise.

This Chapter is structured as follows. We first formulate the problem of CS QPT math-

ematically in Section 5.2, then discuss the set of measurement configurations used to collect QPT

data for the systems with Xmon and phase qubits, and also briefly discuss our way of computing

the process matrix χ via compressed sensing in Section 5.3. In the following sections we present

our numerical results for the CS QPT of a superconducting two-qubit CZ gate. We explain the im-

portance of choosing the proper value for the so-called noise parameter ε in Section 5.4, then we

present the results of the reconstruction of the process matrix χ by the CS QPT method from the

reduced (partial) data set in Sections 5.5 and 5.6 for various values of the noise parameter ε. We

also compare numerical results obtained by applying the CS QPT method in two different operator

bases, where the process matrix is expected to be almost sparse (the Pauli-error basis and the SVD

basis), in Section 5.7. We also compare the performance of the CS QPT method with the least op-

timization, using partial data, in Section 5.8. Finally, we present the results of our study of the CS

QPT of a simulated three-qubit Toffoli gate with the numerically added noise in Section 5.9.

5.2 Fundamentals of Compressed Sensing Quantum Process Tomog-

raphy

If the number of available experimental probabilities in the quantum process tomography

problem is smaller than the number of independent parameters in the process matrix (i.e. m <
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d4− d2), then the set of linear equations Eq. (4.8) from Chapter 4 for the process matrix χ becomes

underdetermined. Actually, the LS method may still formally work in this case for some range

of m, but, as discussed in Sections 5.8 and 5.9, it is less effective. As a natural alternative, the

methodology of compressed sensing is applicable to an underdetermined set of equations where the

unknown signal is known to be sparse with an unknown sparsity pattern. By using the ideas of

compressed sensing [41, 43, 42, 44], the method of CS QPT requires a significantly smaller set of

experimental data to produce a reasonably accurate estimate of the process matrix.

Let us formulate the problem mathematically as follows: we wish to find the physical

process matrix �χ0 satisfying the equation

�P exp = Φ�χ0 + �z, (5.1)

where the vector �P exp ∈ C
m (with m < d4 − d2) and the matrix Φ ∈ C

m×d4 are given, while

�z ∈ C
m is an unknown noise vector, whose elements are assumed to be bounded (in the root-mean-

square sense) by a known limit ε, ||�z||�2/
√
m ≤ ε. While this problem seems to be ill-posed since

the available information is both noisy and incomplete, in Ref. [41] it was shown that if the vector

χ0 is sufficiently sparse and the matrix Φ satisfies the restricted isometry property (RIP), χ0 can be

accurately estimated from Eq. (5.1). Note that the CS techniques of Ref. [41] were developed in

the context of signal processing; to adapt [39] these techniques to QPT we also need to include the

positivity and trace-preservation conditions, Eqs. (4.5) and (4.6) from Section 4.1 of Chapter 4.

The idea of CS QPT [40] is to minimize the �1-norm of �χ in a basis where χ is assumed

to be approximately sparse. The definitions of the �1 and �2 norms are the following: for a vector

x ∈ Cm, the �2 norms is defined as ||x||�2 =
√
x†x =

√∑m
i=1 |xi|2, and the �1 norm as ||x||�1 =

∑m
i=1 |xi|. Mathematically, the method of compressed sensing is solving the following convex
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optimization problem:

minimize ||�χ||�1 , (5.2)

subject to ||�P (χ)− �P exp||�2
/√

m ≤ ε (5.3)

and conditions (4.5), (4.6).

As shown in Refs. [42, 40], a faithful reconstruction recovery of an approximately s-sparse pro-

cess matrix χ0 via this optimization is guaranteed (see below) if (i) the matrix Φ satisfies the RIP

condition,

1− δs ≤
||Φ�χ1 − Φ�χ2||2�2
||�χ1 − �χ2||2�2

≤ 1 + δs, (5.4)

for all s-sparse vectors (process matrices) �χ1 and �χ2, (ii) the isometry constant δs is sufficiently

small, δs <
√
2− 1, and (iii) the number of data points is sufficiently large,

m ≥ C0s log(d
4/s) = O(sN), (5.5)

where C0 is a constant. Quantitatively, if χCS is the solution of the optimization problem [Eqs. (5.2)

and (5.3)], then the estimation error ||χCS − χ0||�2 is bounded as

||χCS − χ0||�2√
m

≤ C1||χ0(s)− χ0||�1√
ms

+ C2 ε, (5.6)

where χ0(s) is the best s-sparse approximation of χ0, while C1 and C2 are constants of the order

O(δs). Note that in the noiseless case (ε = 0) the recovery is exact if the process matrix χ0 is s-

sparse. Also note that while the required number of data pointsm and the recovery accuracy depend

on the sparsity s, the method itself [Eqs. (5.2) and (5.3)] does not depend on s, and therefore s need

not be known.

The inequality Eq. (5.5) and the first term in the inequality Eq. (5.6) indicate that the

CS QPT method is supposed to work well only if the actual process matrix χ0 is sufficiently sparse.
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Therefore it is important to use an operator basis {Eα} [see Eq. (4.4) in Section 4.1 of Chapter 4], in

which the ideal (desired) process matrix χideal is maximally sparse, i.e., it contains only one nonzero

element. Then it is plausible to expect the actual process matrix χ0 to be approximately sparse [40].

In this paper we will use two bases in which the ideal process matrix is maximally sparse. These

are the so-called Pauli-error basis [18] and the SVD basis of the ideal unitary operation [39]. In

the Pauli-error basis {Eα}, the first element E1 coincides with the desired unitary U , while other

elements are related via the N -qubit Pauli matrices P , so that Eα = UPα. The N -qubit Pauli

matrices P are calculated as the Kronecker product (also called tensor product or direct product) of

the single-qubit Pauli matrices σ0, σx, σy, σz , introduced in Section 2.1.3 of Chapter 2. In the SVD

basis E1 = U/
√
d, and other elements are obtained via a numerical SVD procedure. More details

about the Pauli-error and SVD bases are discussed in Appendices B and C.

As mentioned previously, the method of CS QPT involves the RIP condition Eq. (5.4)

for the transformation matrix Φ. In Ref. [40] it was shown that if the transformation matrix Φ

in Eq. (4.8) is constructed from randomly selected input states ρink and random measurements Πi,

then Φ obeys the RIP condition with high probability. Notice that once a basis {Eα} and a to-

mographically complete (or overcomplete) set {ρink ,Πi} have been chosen, the matrix Φfull corre-

sponding to the full data set is fully defined, since it does not depend on the experimental outcomes.

Therefore the mentioned above result of Ref. [40] tells us that if we build a matrix Φm by randomly

selecting m rows from Φfull, then Φm is very likely to satisfy the RIP condition. Hence the subma-

trix Φm ∈ C
m×d4 , together with the corresponding set of experimental outcomes �P exp ∈ C

m can

be used to produce an estimate of the process matrix via the �1-minimization procedure Eq. (5.2)

and (5.3).
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5.3 CS QPT for two-qubit controlled-Z gate

In the following sections, we present results for the experimental CZ gate realized with

superconducting Xmon and phase qubits, which were introduced in the sections 2.2.4 and 2.2.5 of

Chapter 2. Before proceeding to presenting our results, we first introduce in this section the set of

measurement configurations used to collect QPT data and the experimental device used, and also

briefly explain our way of computing the χ-matrix via compressed sensing.

As was explained in Section 4.2 in Chapter 4 of this dissertation, for an N -qubit system

the number of measurement configurations in standard QPT is Mconf = nNinn
N
R , while the total

number of probabilities in the data set is M =MconfNprob. We denote the number of input single-

qubit states as nin, the number of basis rotations per qubit as nR, and the number of measured

probabilities for each configuration as Nprob. In this dissertation we focus on the case nin = 4,

nR = 3, and Nprob = 2N . Then for a two-qubit quantum gate there are Mconf = 12N = 144

measurement configurations and M = 24N = 576 probabilities (432 of them independent). For

a three-qubit gate there are Mconf = 1728 configurations and M = 13824 probabilities (12096 of

them independent).

The main experimental data used in this dissertation are for the two-qubit CZ gate realized

with Xmon qubits [98]. The data were obtained with nin = 6, nR = 6, and Nprob = 2N . However,

since the main emphasis of this dissertation is the analysis of QPT with a reduced data set, we started

by reducing the data set to nin = 4 and nR = 3 by using only the corresponding probabilities and

removing other data. We will refer to these data as “full data” (with Mconf = 144 and M =

24N = 576). For testing the CS method we randomly choose mconf ≤ Mconf configurations, with

corresponding m = 4mconf experimental probabilities (3mconf of them independent). Since the
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process matrix χ is characterized by 16N −4N = 240 independent parameters, the power of the CS

method is most evident when mconf < 80, so that the system of equations (4.8) is underdetermined.

[For a three-qubit gate the system of equations becomes underdetermined for mconf < (16N −

4N )/(2N − 1) = 576.]

The main experimental data used for the analysis in this dissertation were taken on an

Xmon device, similar to the one used in Ref. [11], but there were some differences in its design2.

For the device used here the qubits were coupled via a bus, and the entangling gate between qubits

A and B was implemented with three multiqubit operations: 1) swap state from qubit B to bus, 2)

CZ gate between qubit A and bus, 3) swap back to qubit B. The swap was done with the resonant

Strauch gate [151], by detuning the frequency of qubit A with a square pulse. Generating a square

pulse is experimentally challenging, moreover this gate has a single optimum in pulse amplitude

and time. We also note that the qubit frequency control was not optimized for imperfections in the

control wiring, as described in Ref. [152] (see also Fig. S4 in Supplementary Information of [11]).

The combination of device, non-optimal control, and multiple operations, leads to the experimental

process fidelity Fχ = 0.91 of the CZ gate used for the analysis here to be significantly less than

the randomized benchmarking fidelity FRB = 0.994 reported in [11]. Moreover, QPT necessarily

includes state preparation and measurement (SPAM) errors [33], while randomized benchmarking

does not suffer from these errors. This is why we intentionally used the data for a not-well-optimized

CZ gate so that the gate error dominates over the SPAM errors. (Note that we use correction for

the imperfect measurement fidelity [113]; however, it does not remove the measurement errors

2The data were collected during an experiment performed by postdoc Rami Barends and graduate student Julian Kelly

at the University of California, Santa Barbara. The author of this dissertation used in his theoretical work the experimental

data provided by Rami Barends.
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completely.) It should also be mentioned that in the ideal case 1− Fχ = (1− FRB)× (1 + 2−N ),

so the QPT fidelity is supposed to be slightly less than the randomized benchmarking fidelity.

Besides performing the CS QPT analysis of the experimental data, obtained with an Xmon

device, we also used in our calculations two other sets of experimental data, obtained with phase

qubits. In fact, experiments with the phase qubits at UCSB were done much earlier than the experi-

ments with Xmon qubits, and there were several technical problems in initial attempts to implement

the CZ gate using phase qubits, such as low anharmonicity and low T1 decoherence time, which

resulted in a low quality of both CZ gates implemented with phase qubits. In the phase-qubit exper-

iments, the data were obtained with nin = 4, nR = 6, and Nprob = 2N . In analogy to the Xmon

data, we reduced both data sets, obtained with phase qubits, to nin = 4 and nR = 3 by using only

the corresponding probabilities and removing other data. These “full data” have Mconf = 144 and

M = 24N = 576, the same Mconf and M as the “full data” for Xmon qubits.

Now we briefly explain the overall procedure of our calculations using CS QPT method,

the details of calculations and our results will be presented in the following sections of this Chapter.

We first calculate the process matrix χfull for the full data set by using the least-squares

method described in Eq. (4.12) in Section 4.4 of Chapter 4. For that we use three different operator

bases {Eα}: the Pauli basis, the Pauli-error basis, and the SVD basis. The pre-computed transfor-

mation matrix Φ in Eq. (4.8) depends on the choice of the basis, thus giving a basis-dependent result

for χfull. We then check that the results essentially coincide by converting χfull between the bases

and calculating the fidelity between the corresponding matrices (the infidelity is found to be less

than 10−7).
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As a natural extension of the fidelity between quantum states to quantum channels, intro-

duced in Eq. (2.24) in Chapter 2, the fidelity between two process matrices χ1 and χ2 is defined as

the square of the Uhlmann fidelity [153, 69],

F (χ1, χ2) =
(
Tr

√
χ
1/2
1 χ2 χ

1/2
1

)2
, (5.7)

so that it reduces to F (χ1, χ2) = Tr(χ1χ2) [154] when at least one of the process matrices corre-

sponds to a unitary operation. Since 0 ≤ F ≤ 1, we refer to 1− F as the infidelity.

The LS method using the full data set produces the process matrix χfull, which has the

process fidelity F (χfull, χideal) = 0.907 relative to the ideal CZ operation in the experiments with

Xmon qubits. Note that our full data set is actually a subset of an even larger data set (as explained

above), and the χ matrix calculated from the initial set corresponds to the process fidelity of 0.928

for the Xmon qubits; the difference gives a crude estimate of the overall accuracy of the procedure.

The values of the same process fidelities for the two sets of data obtained with phase qubits were

significantly lower, only F (χfull, χideal) = 0.62 and F (χfull, χideal) = 0.51.

After calculating χfull for the full data set, we can calculate its fidelity compared to the

process matrix χideal of the desired ideal unitary operation, Fχ = Ffull = F (χfull, χideal). This is

the main number used to characterize the quality of the quantum operation.

Then we calculate the compressed-sensing process matrix χCS by solving the �1 - mini-

mization problem described by Eqs. (5.2) and (5.3), using the reduced data set. It is obtained from

the full data set by randomly selectingmconf configurations out of the full numberMconf configura-

tions. We use the fidelity F (χCS, χfull) to quantify how well the process matrix χCS approximates

the matrix χfull obtained from full tomographic data. Additionally, we calculate the process fidelity
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F (χCS, χideal) between χCS and the ideal operation, to see how closely it estimates the process

fidelity Ffull, obtained using the full data set.

Since both the least-squares and the �1-norm minimization are convex optimization prob-

lems [39, 137], they can be efficiently solved numerically. We used two ways for MATLAB-based

numerical calculations: (1) using the package CVX [139], which calls the convex solver SeDuMi

[155]; or (2) using the package YALMIP [138], which calls the convex solver SDPT3 [156]. In

general, we have found that for our particular realization of computation, CVX with the solver

SeDuMi works better than the combination YALMIP-SDPT3 (more details are below in the subse-

quent Chapters).

The CS method calculations were mainly done in the Pauli-error basis, using the CVX-

SeDuMi combination for the �1-norm minimization. This is what is implicitly assumed in this

and the next Chapters, unless specified otherwise. Note that the CS-method optimization is very

different from the LS method. Therefore, even for the full data set we would expect the process

matrix χCS to be different from χfull. Moreover, χCS depends on the noise parameter ε [see Eq.

(5.3)], which to some extent is arbitrary. To clarify the role of the parameter ε, we will first discuss

the CS method applied to the full data set, with varying ε, and then discuss the CS QPT for a reduced

data set, using either near-optimal or non-optimal values of ε.

5.4 Full data set, varying noise parameter ε

We start with calculating the process matrix χCS by solving the �1-minimization prob-

lem, Eqs. (5.2) and (5.3), using the full data set and varying the noise parameter ε. The resulting

matrix is compared with the LS result χfull and with the ideal matrix χideal. Figure 5.1 shows the
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corresponding fidelities F (χCS, χfull) and F (χCS, χideal) as functions of ε. We see that χCS co-

incides with χfull [so that F (χCS, χfull) = 1] at the optimal value εopt = 0.0199. This is exactly

the noise level corresponding to the LS procedure, ||�P exp
full − Φ�χfull||�2/

√
M = 0.0199. With ε in-

creasing above this level, the relative fidelity between χCS and χfull decreases, but it remains above

0.95 for ε < 0.028. Correspondingly, the process fidelity reported by χCS, i.e. F (χCS, χideal), also

changes. It starts with F (χCS, χideal) = F (χfull, χideal) = 0.907 for ε = 0.0199, then increases

with increasing ε, then remains flat above ε = 0.025, and then decreases at ε > 0.032. We note

that for another set of experimental data (for a CZ gate realized with phase qubits) there was no

increasing part of this curve, and the dependence of F (χCS, χideal) on ε remained practically flat

for a wide range of ε, up to 4εopt, see Fig. 5.2. The process fidelity for this CZ gate was very

low, F (χfull, χideal) = 0.51. One more set of experimental data for phase qubits with a little better

process fidelity of F (χfull, χideal) = 0.62 again had the increasing part of the curve F (χCS, χideal),

see Fig. 5.3.

To check how close the result of �1-optimization Eq. (5.2) is to the upper bound of the

condition (5.3), we calculate the numerical value εnum = ||�P exp
full − Φ�χCS||�2/

√
M as a function of

ε. The results for all three CZ gates are shown in the insets of Figs. 5.1 – 5.3, we see that εnum is

quite close to ε for all three CZ gates. The CVX-SeDuMi package does not solve the optimization

problem for values of the noise parameter ε below the optimal value εopt.

Finding a proper value of ε to be used in the CS method is not a trivial problem, since

for the reduced data set we cannot find εopt in the way we used. Therefore the value of ε should

be estimated either from some prior information about the noise level in the system or by trying

to solve the �1-minimization problem with varying value of ε. Note that the noise level ||�P exp −
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Figure 5.1: The CS QPT procedure, applied to the full data set for the superconducting Xmon qubit,

with varying noise parameter ε. The red (upper) line shows the fidelity F (χCS, χfull) between the

process matrix χCS obtained using the compressed-sensing method and the matrix χfull obtained

using the least-squares method. The blue (lower) line shows the process fidelity F (χCS, χideal),
i.e., compared with the matrix χideal of the ideal unitary process. The vertical dashed brown line

corresponds to the noise level εopt = ||�P exp
full − Φ�χfull||�2/

√
M = 0.0199 obtained in the LS pro-

cedure. The inset shows εnum = ||�P exp
full − Φ�χCS||�2/

√
M as a function of ε (green line); for

comparison, the dashed line shows the expected straight line, εnum = ε. The process fidelity

F (χfull, χideal) = 0.91. The numerical calculations have been carried out in the Pauli-error basis

using CVX-SeDuMi package.

Φ�χideal||�2/
√
M defined by the ideal process is not a good estimate of εopt; in particular for our

full data corresponding to the CZ gate implemented with the Xmon qubit, it is 0.035, which is

significantly higher than εopt = 0.0199.

5.5 Reduced data set, near-optimal noise parameter ε

Now we apply the CS method to a reduced data set, by randomly choosing mconf out of

Mconf = 144 configurations, while using all 4 probabilities for each configuration. (Therefore the

number of used probabilities is m = 4mconf instead of M = 4Mconf in the full data set.) For the
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Figure 5.2: Similar to Fig. 5.1, but for the CZ gate, realized with superconducting phase qubits. The

process fidelity F (χfull, χideal) = 0.51 is much lower than that for the Xmon qubit gate. The CS

QPT procedure, applied to the full data set for the superconducting phase qubit, with varying noise

parameter ε. The red (upper) line shows the fidelity F (χCS, χfull) between the process matrix χCS

obtained using the compressed-sensing method and the matrix χfull obtained using the least-squares

method. The blue (lower) line shows the process fidelity F (χCS, χideal), i.e., compared with the

matrix χideal of the ideal unitary process. The vertical dashed brown line corresponds to the noise

level εopt = ||�P exp
full − Φ�χfull||�2/

√
M = 0.0197 obtained in the LS procedure. The inset shows

εnum = ||�P exp
full − Φ�χCS||�2/

√
M as a function of ε (green line); for comparison, the dashed line

shows the expected straight line, εnum = ε. The numerical calculations have been carried out in the

Pauli-error basis using CVX-SeDuMi package.

noise level εwe use a value slightly larger than εopt [40]. If a value too close to εopt is used, then the

optimization procedure often does not find a solution; this happens when we choose configurations

with a relatively large level of noise in the measured probability values. For the figures presented

in this Section, which are obtained from the experimental data for the CZ gate realized with the

Xmon qubits, we used ε = 0.02015, which for the full data set corresponds to the fidelity of 0.995

compared with χfull and to the process fidelity of 0.910 (see Fig. 5.1).

Figure 5.4 shows the fidelities F (χCS, χfull) (upper line) and F (χCS, χideal) (lower line)

versus the number mconf of used configurations. For each value of mconf we repeat the procedure
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Figure 5.3: Similar to Fig. 5.1, but for the CZ gate, realized with superconducting phase qubits. The

process fidelity F (χfull, χideal) = 0.62 is much lower than that for the Xmon qubit gate. The CS

QPT procedure, applied to the full data set for the superconducting phase qubit, with varying noise

parameter ε. The red (upper) line shows the fidelity F (χCS, χfull) between the process matrix χCS

obtained using the compressed-sensing method and the matrix χfull obtained using the least-squares

method. The blue (lower) line shows the process fidelity F (χCS, χideal), i.e., compared with the

matrix χideal of the ideal unitary process. The vertical dashed brown line corresponds to the noise

level εopt = ||�P exp
full − Φ�χfull||�2/

√
M = 0.0146 obtained in the LS procedure. The inset shows

εnum = ||�P exp
full − Φ�χCS||�2/

√
M as a function of ε (green line); for comparison, the dashed line

shows the expected straight line, εnum = ε. The numerical calculations have been carried out in the

Pauli-error basis using CVX-SeDuMi package.

50 times, choosing different random configurations. The error bars in Fig. 5.4 show the standard de-

viations (±σ) calculated using these 50 numerical experiments, while the central points correspond

to the average values.

We see that the upper (red) line starts with fidelity F (χCS, χfull) = 0.995 for the full data

set (mconf = 144) and decreases with decreasing mconf . It is important that this decrease is not

very strong, so that we can reconstruct the process matrix reasonably accurately, using only a small

fraction of the QPT data. We emphasize that the system of equations (4.8) in the standard QPT

procedure becomes underdetermined at mconf < 80; nevertheless, the CS method reconstructs χfull
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Figure 5.4: The CS method results using a reduced data set with randomly chosen mconf config-

urations. The red (upper) line shows the fidelity F (χCS, χfull) between the CS-estimated process

matrix χCS and the matrix χfull obtained from the full data set. The blue (lower) line shows the

estimated process fidelity Fχ = F (χCS, χideal). The procedure of randomly choosing mconf out

of 144 configurations is repeated 50 times; the error bars show the calculated standard deviations.

The noise parameter ε = 0.02015 is chosen slightly above εopt. The calculations are carried out in

the Pauli-error basis using CVX-SeDuMi. The experimental data are for the CZ gate realized with

Xmon qubits; the process fidelity is F (χfull, χideal) = 0.907.

quite well for mconf � 40 and still gives reasonable results for mconf � 20. In particular, for mconf

between 40 and 80, the reconstruction fidelity F (χCS, χfull) changes between 0.96 and 0.98.

The lower (blue) line in Fig. 5.4 shows that the process fidelity Fχ = F (χCS, χideal) can

also be found quite accurately, using only mconf � 40 configurations (the line remains practically

flat), and the CS method still works reasonably well down to mconf � 20. Even though the blue

line remains practically flat down to mconf � 40, the error bars grow, which means that in a partic-

ular experiment with substantially reduced set of QPT data, the estimated process fidelity Fχ may

noticeably differ from the actual value. It is interesting that the error bars become very large at

approximately the same value (mconf � 20), for which the average values for the red and blue lines

become unacceptably low.
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Figure 5.5: (a) The process matrix χfull based on the full data set (144 configurations) and (b,c) the

CS-estimated matrices χCS using a reduced data set: 72 configurations (b) and 36 configurations

(c). The process matrices are shown in the Pauli-error basis. The main element χII,II (process

fidelity) is off the scale and therefore is cut; its height is 0.907, 0.918, and 0.899 for the panels (a),

(b), and (c), respectively. All other peaks characterize imperfections. The fidelity F (χCS, χfull) for

the matrices in panels (b) and (c) is equal to 0.981 and 0.968, respectively. The middle and lower

panels use the data set, corresponding to underdetermined systems of equations. Experimental data

for CZ gate realized with Xmon qubits have been used.
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Figure 5.6: Similar to Fig. 5.4, but for the CZ gate realized with superconducting phase qubits. The

process fidelity F (χfull, χideal) = 0.51 is much lower than that for the Xmon qubit gate. As we see,

CS QPT works significantly better for this lower-fidelity gate than for the better gate presented in

Fig. 5.4.

Figure 5.5 shows examples of the CS estimated process matrices χCS for mconf = 72

(middle panel) and mconf = 36 (lower panel), together with the full-data process matrix χfull (upper

panel). The process matrices are drawn in the Pauli-error basis to display the process imperfections

more clearly. The peak χII,II is off the scale and is cut arbitrarily. We see that the CS estimated

process matrices are different from the full-data matrix; however the positions of the main peaks are

reproduced exactly, and their heights are also reproduced rather well (for a small number of selected

configurations the peaks sometimes appear at wrong positions). It is interesting to see that the CS

procedure suppressed the height of minor peaks. Note that both presented χCS are based on the data

sets corresponding to underdetermined system of equations.

The computer resources needed for the calculation of results presented in Fig. 5.4 are not

demanding. The calculations require about 30 MB of computer memory and 2–4 seconds time for

a modest PC per individual calculation (smaller time for smaller number of configurations).
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Figure 5.7: Similar to Fig. 5.4, but for the CZ gate realized with superconducting phase qubits. The

process fidelity F (χfull, χideal) = 0.62 is much lower than that for the Xmon qubit gate. As we see,

CS QPT works significantly better for this lower-fidelity gate than for the better gate presented in

Fig. 5.4.

Besides the presented results, we have also performed analysis for the CS QPT of two

CZ gates based on phase qubits. The results are qualitatively similar, except the process fidelity for

phase-qubit gates was significantly lower: 0.62 and 0.51. The results for these gates are presented in

Figs. 5.6 and 5.7. Comparing with Fig. 5.4, we see that CS QPT works better for this lower-fidelity

gate. In particular, the blue line in Figs. 5.6 and 5.7 are practically flat down to mconf � 20 and the

error bars are quite small (in Fig. 5.7 the blue line has even values slightly exceeding the process

fidelity F (χfull, χideal) = 0.62 for mconf � 20 . We think that the CS QPT works better for a lower-

fidelity gate because experimental imperfections affect the measurement error relatively less in this

case than for a higher-fidelity gate.

Thus our results show that for a CZ gate realized with superconducting qubits CS QPT

can reduce the number of used QPT configurations by up to a factor of 7 compared with full QPT,

and up to a factor of 4 compared with the threshold at which the system of equations for the standard

QPT becomes underdetermined.
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5.6 Reduced data set, nonoptimal noise parameter ε

As mentioned above, in a QPT experiment with a reduced data set, there is no straight-

forward way to find the near-optimal value of the noise parameter ε (which we find here from the

full data set). Therefore, it is important to check how well the CS method works when a nonoptimal

value of ε is used. Figure 5.8 shows the results obtained using the experimental data for the CZ

gate realized with Xmon qubits, similar to those in Fig. 5.4, but with several values of the noise

parameter: ε/εopt = 1.01, 1.2, 1.4, 1.6, and 1.8. The upper panel shows the fidelity between the

matrix χCS and the full-data matrix χfull; the lower panel shows the process fidelity F (χCS, χideal).

We see that the fidelity of the χ matrix estimation, F (χCS, χfull), becomes monotonously worse

with increasing ε, while the estimated process fidelity, F (χCS, χideal), may become larger when a

nonoptimal ε is used. This observation agrees with the results presented in Fig. 5.1, where we saw

that for the full data set (the most right points in Figs. 5.8) the fidelity between the matrix χCS and

the full-data matrix χfull, F (χCS, χfull), monotonously decreases for increasing nonoptimal values

of ε, while the process fidelity, F (χCS, χideal), may take larger values for nonoptimal values of ε.

Similar results are presented in Fig. 5.9 and Fig. 5.10 for the CZ gate based on phase qubits

(see Fig. 5.6 and Fig. 5.7) with the process fidelities of F (χfull, χideal) = 0.62 and F (χfull, χideal) =

0.51, respectively. The values of the noise parameter were chosen as ε/εopt = 1.01, 2, 3, 4 (and

even 5 for the CZ gate with F (χfull, χideal) = 0.51). The results presented in Fig. 5.9 and Fig. 5.10

show significantly better tolerance to a nonoptimal choice of ε; in particular, even for ε = 3εopt

the process fidelity practically coincides with the blue lines in Fig. 5.7 and Fig. 5.6 (obtained for

ε ≈ εopt). This result is in agreement with the behaviour of the process fidelities presented in

Fig. 5.3 and Fig. 5.2 for the full data, where we saw that the process fidelity remained practically
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Figure 5.8: (a) Fidelity F (χCS, χfull) of the process matrix estimation and (b) the estimated process

fidelity F (χCS, χideal) as functions of the data set size for several values of the noise parameter ε
used in the CS optimization: ε/εopt = 1.01, 1.2, 1.4, 1.6, and 1.8. Error bars show the standard

deviations calculated using 50 random selections of reduced data sets. The red lines are the same

as the lines in Fig. 5.4. The experimental data are for the CZ gate realized with Xmon qubits; the

process fidelity is F (χfull, χideal) = 0.907.
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flat for a wide range of ε, approximately up to 4εopt. We believe the lower gate fidelity for phase

qubits is responsible for this relative insensitivity to the choice of ε.
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Figure 5.9: (a) Fidelity F (χCS, χfull) of the process matrix estimation and (b) the estimated process

fidelity F (χCS, χideal) as functions of the data set size for several values of the noise parameter

ε used in the CS optimization: ε/εopt = 1.01, 2.0, 3.0, and 4.0. Error bars show the standard

deviations calculated using 50 random selections of reduced data sets. The red lines are the same as

the lines in Fig. 5.7. The experimental data are for the CZ gate realized with the phase qubits; the

process fidelity is F (χfull, χideal) = 0.62.
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Figure 5.10: (a) Fidelity F (χCS, χfull) of the process matrix estimation and (b) the estimated process

fidelity F (χCS, χideal) as functions of the data set size for several values of the noise parameter

ε used in the CS optimization: ε/εopt = 1.01, 2.0, 3.0, and 5.0. Error bars show the standard

deviations calculated using 50 random selections of reduced data sets. The red lines are the same as

the lines in Fig. 5.6. The experimental data are for the CZ gate realized with the phase qubits; the

process fidelity is F (χfull, χideal) = 0.51.
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5.7 Comparison between Pauli-error and SVD bases

So far for the CS method we have used the Pauli-error basis, in which the process ma-

trix χ is expected to be approximately sparse because the ideal process matrix χideal contains only

one non-zero element, χideal II,II = 1. However, there is an infinite number of the operator bases

with this property: for example, the SVD basis (see Appendix C) suggested in Refs. [39] and [40].

The process matrices are different in the Pauli-error and SVD bases, therefore the CS optimization

should produce different results in two different bases (which entails solving two different optimiza-

tion problems). To compare the results, we do the CS optimization in the SVD basis, then convert

the resulting matrix χ into the Pauli-error basis, and calculate the fidelity F (χCS-SVD, χCS) between

the transformed process matrix and the matrix χCS obtained using optimization in the Pauli-error

basis directly.

Figure 5.11 shows the comparison of the results obtained in the Pauli-error basis and the

SVD-basis, for the experimental data for the CZ gate realized with Xmon qubits. The green line

in Fig. 5.11 shows F (χCS-SVD, χCS) as a function of the selected size of the data set for the CZ

gate realized with Xmon qubits, similar to Fig. 5.4 (the same ε is used). We also show the fidelity

between the SVD-basis-obtained matrix χCS-SVD and the full-data matrix χfull as well as the ideal

process matrix χideal. For comparison we also include the lines shown in Fig. 5.4 (dashed lines),

obtained using the Pauli-error basis. As we see, the results obtained in the two bases are close to

each other, though the SVD basis seems to work a little better at small data sizes, mconf � 20. We

also include a similar plot Fig. 5.12 presenting analogous results for the data, obtained using the

experimental data for phase qubits with the much lower process fidelity F (χfull, χideal) = 0.51. As

we see, for the low-fidelity quantum gate, the results obtained in two bases are very similar to each

other for most values of mconf, except for the very low ones below mconf � 20.
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Figure 5.11: Comparison between the CS results obtained in the SVD and Pauli-error bases for the

CZ gate realized with Xmon qubits. The green line shows the relative fidelity F (χCS-SVD, χCS)
as a function of the number mconf of randomly selected configurations. We also show the fi-

delities F (χCS-SVD, χfull) (brown line), F (χCS, χfull) (red dashed line), and process fidelities

F (χCS-SVD, χideal) (magenta line) and F (χCS, χideal) (blue dashed line). The dashed lines have

been shown in Fig. 5.4. The results using the SVD basis are somewhat more accurate than those for

the Pauli-error basis when mconf < 40.

The visual comparison of χ-matrices obtained in these bases (as in Fig. 5.5), presented

here at Fig. 5.13 and Fig. 5.14, show that although we worked in two different bases, the pro-

cess matrices recovered via CS exhibit a similar structure. In addition, the real and imaginary

parts of the process matrix χfull reconstructed using the full set of experimental data, are plotted in

Fig. 5.15. Experimental data for the CZ gate realized with the phase qubits with the process fidelity

F (χfull, χideal) = 0.51 have been used in Fig. 5.13 – Fig. 5.15.

It should be noted that the calculations in the SVD basis are somewhat faster (∼2 seconds

per point) and require less memory (∼6 MB) than the calculations in the Pauli-error basis. This is

because the matrix Φ defined in Eq. (4.8) for the CZ gate contains about half the number of non-zero

elements in the SVD basis than in the Pauli-error basis.
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Figure 5.12: Comparison between the CS results obtained in the SVD and Pauli-error bases for

the low-fidelity CZ gate realized with phase qubits. The green line shows the relative fidelity

F (χCS-SVD, χCS) as a function of the number mconf of randomly selected configurations. We also

show the fidelities F (χCS-SVD, χfull) (brown line), F (χCS, χfull) (red dashed line), and process fi-

delities F (χCS-SVD, χideal) (magenta line) and F (χCS, χideal) (blue dashed line). The dashed lines

have been shown in Fig. 5.6. The results using the SVD basis and the Pauli-error basis are very

close to each other for most values of mconf. The experimental data are for the low-fidelity CZ gate

realized with the phase qubits; the process fidelity is F (χfull, χideal) = 0.51.

All results presented here are obtained using the CVX-SeDuMi package. The results for

the CZ gate obtained using the YALMIP-SDPT3 package are similar when the same value of ε

is used. Surprisingly, in our realization of computation, the YALMIP-SDPT3 package still finds

reasonable solutions when ε is significantly smaller than εopt (even when ε is zero or negative), so

that the problem cannot have a solution; apparently in this case the solver increases the value of ε

until a solution is found. This may seem to be a good feature of YALMIP-SDPT3. However, using

ε < εopt should decrease the accuracy of the result (see the next subsection). Moreover, YALMIP-

SDPT3 does not work well for the Toffoli gate discussed in Section 5.9. Thus we conclude that

CVX-SeDuMi package is better than YALMIP-SDPT3 package for our CS calculations. (Note that

this finding may be specific to our system.)
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Figure 5.13: Real (left figure) and imaginary (right figure) parts of the process matrix χCS−SV D

for the CZ gate, calculated in the SVD basis and converted into the Pauli-error basis. We

used 36 randomly chosen measurement configurations out of the full set of 144. The fidelity

F (χCS−SV D, χfull) = 0.88, the fidelity F (χCS , χCS−SV D) = 0.94. The main element Re(χII,II)
(process fidelity) is off the scale and therefore is cut; its height is 0.52. The experimental data

are for the CZ gate realized with the phase qubits; the process fidelity calculated from full data is

F (χfull, χideal) = 0.51.
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Figure 5.14: Real (left figure) and imaginary (right figure) parts of the process matrix χCS for

the CZ gate calculated directly in the Pauli-error basis. We used 36 randomly chosen measure-

ment configurations out of the full set of 144. The fidelity F (χCS , χfull) = 0.91, the fidelity

F (χCS , χCS−SV D) = 0.94. The main element Re(χII,II) (process fidelity) is off the scale and

therefore is cut; its height is 0.50. The experimental data are for the CZ gate realized with the phase

qubits; the process fidelity calculated from full data is F (χfull, χideal) = 0.51.
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Figure 5.15: Real (left figure) and imaginary (right figure) parts of the process matrix χLS for the

CZ gate calculated from the full data. The main element Re(χII,II) (process fidelity) is off the scale

and therefore is cut; its height is 0.51. The experimental data are for the CZ gate realized with the

phase qubits; the process fidelity is F (χfull, χideal) = 0.51.

5.8 Comparison with least-squares minimization

Besides using the CS method for reduced data sets, we also used the LS minimization

[with constraints Eq. (4.5) and Eq. (4.6) from Section 4.1 of Chapter 4] for the same reduced sets.

Solid lines in Fig. 5.16 show the resulting fidelity F (χLS, χfull) compared with the full-data process

matrix and the estimated process fidelity F (χLS, χideal).

Somewhat surprisingly, the LS method still works (though less well) in a significantly

underdetermined regime. Naively, we would expect that in this case Eq. (4.8) from Section 4.1

of Chapter 4 can be satisfied exactly, and there are many exact solutions corresponding to the null

space of the selected part of the matrix Φ. However, numerical results show that in reality Eq. (4.8)

cannot be satisfied exactly unless the selected data set is very small. The reason is that the matrix

χ has to be positive, and the (corrected) experimental probabilities can be close to the limits of the

physical range or even outside it.

The problem is that the experimental probabilities are not directly obtained from the ex-

periment, but are corrected for imperfect measurement fidelity [113]. As a result, they may become
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Figure 5.16: Comparison between the results obtained by the LS and CS methods. The solid lines

are for the LS method, the dashed lines (same as in Fig. 5.4) are for the CS method. The CS method

is more accurate for a substantially reduced data set. The experimental data are for the CZ gate

realized with Xmon qubits.

larger than one or smaller than zero. This happens fairly often for high fidelity gates because for an

ideal operation the measurement results are often zeros and ones, so the experimental probabilities

should also be close to zero or one. Any additional deviation due to imperfect correction for the

measurement fidelity may then push the probabilities outside of the physical range. It is obvious

that in this case Eq. (4.8) cannot be satisfied exactly for any physical χ. To resolve this problem

one could consider rescaling the probabilities in such instances, so that they are exactly one or zero

instead of lying outside the range. However, this also does not help much because a probability of

one means that the resulting state is pure, so this strongly reduces the number of free parameters in

the process matrix χ. As a result, Eq. (4.8) cannot be satisfied exactly, and the LS minimization is

formally possible even in the underdetermined case.

Another reason why Eq. (4.8) may be impossible to satisfy in the underdetermined case,

is that the randomly selected rows of the matrix Φ can be linearly dependent. Then mathematically
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some linear relations between the experimental probabilities must be satisfied, while in reality they

are obviously not satisfied exactly.

These reasons make the LS minimization a mathematically possible procedure even in

the underdetermined regime. However, as we see from Fig. 5.16, in this case the procedure works

less well than the compressed sensing, estimating the process matrix and process fidelity with a

lower accuracy. Similar calculations for the CZ gate realized with phase qubits (not presented here)

also show that the LS method does not work well at relatively small mconf. The advantage of the

compressed sensing in comparison with the LS minimization becomes even stronger for the three-

qubit Toffoli gate considered in the next Section. Note though that when the selected data set is large

enough to give an overdetermined system of equations Eq. (4.8), the LS method works better than

the CS method. Therefore, the compressed sensing is beneficial only for a substantially reduced

(underdetermined) data set, which is exactly the desired regime of operation.
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5.9 Three-qubit CS QPT for Toffoli gate

In this Section we apply the compressed sensing method to simulated tomographic data

corresponding to a three-qubit Toffoli gate [2, 157, 158, 113, 130]. As discussed in Section 4.2

of Chapter4, the process matrix of a three-qubit gate contains 163 − 43 = 4032 independent real

parameters, while the full QPT requires Mconf = 123 = 1728 measurement configurations yielding

a total of M = 123 × 23 = 13824 experimental probabilities, if we use nin = 4 initial states and

nR = 3 measurement rotations per qubit, with all qubits measured independently. If we work with a

partial data set, the system of equations Eq. (4.8) becomes underdetermined if the number mconf of

used configurations is less than 4032/7 = 576. In such a regime the traditional maximum likelihood

or LS methods are not expected to provide a good estimate of the process matrix. In this section we

demonstrate that for our simulated Toffoli gate the compressed sensing method works well even for

a much smaller number of configurations, mconf  576.

For the analysis we have simulated experimental data corresponding to a noisy Toffoli

gate by adding truncated Gaussian noise with a small amplitude to each of M = 13824 ideal

measurement probabilities P ideal
i . We assumed the set of experimental probabilities in Eq. (4.8) to

be of the form P
exp
i = P ideal

i + ΔPi, where ΔPi are random numbers sampled from the normal

distribution with zero mean and a small standard deviation σ. By choosing different values of the

standard deviation σ we can change the process fidelity of the simulated Toffoli gate: a smaller

value of σ makes the process fidelity closer to 1. After adding the Gaussian noise ΔPi to the ideal

probabilities P ideal
i , we check whether the resulting simulated probabilities P

exp
i are in the interval

[0, 1]. If a P
exp
i happens to be outside the interval [0, 1], we repeat the procedure until the condition

P
exp
i ∈ [0, 1] is satisfied. Finally, we renormalize each set of 8 probabilities corresponding to the
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Figure 5.17: CS QPT for a simulated Toffoli gate. Red line: fidelity F (χCS, χfull) of the pro-

cess matrix estimation, blue line: the estimated process fidelity F (χCS, χideal), both as functions

of the data set size, expressed as the number mconf of randomly selected configurations. The full

QPT corresponds to 1728 configurations. The system of equations becomes underdetermined when

mconf < 576. The error bars show the standard deviations calculated by repeating the procedure of

random selections 7 times.

same measurement configuration so that these probabilities add up to 1.

Thus the simulated imperfect quantum process is defined by M = 13824 probabilities,

corresponding to Mconf = 1728 configurations; the process fidelity for a particular realization (used

here) with σ = 0.01 is Fχ = F (χfull, χideal) = 0.959. We then test efficiency of the compressed

sensing method by randomly selecting mconf ≤ 1728 configurations, finding the corresponding

process matrix χCS, and comparing it with the full-data matrix χfull by calculating the fidelity

F (χCS, χfull). We also calculate the process fidelity F (χCS, χideal) given by χCS.

The red line in Fig. 5.17 shows the fidelity F (χCS, χfull) as a function of the number

mconf of randomly selected configurations. The value of ε is chosen to be practically equal to

εopt = ||(�P exp
full − Φ�χfull)||�2/

√
M = 0.01146 (the relative difference is less than 10−3). The �1-

minimization is done using the CVX-SeDuMi package. The error bars are calculated by repeating
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Figure 5.18: Comparison between the calculations using CS and LS methods for the simulated

Toffoli gate. Solid lines are for the LS method, dashed lines (the same as in Fig. 5.17) are for the CS

method. In the underdetermined regime the CS-method results are much better than the LS-method

results.

the procedure of random selection 7 times. We see a reasonably high fidelity F (χCS, χfull) of

the reconstructed process matrix even for small numbers of selected configurations. For example,

F (χCS, χfull) = 0.95 for only mconf = 40 configurations, which represents a reduction by more

than a factor of 40 compared with the full QPT and approximately a factor of 15 compared with the

threshold of the underdetermined system of equations.

The blue line in Fig. 5.17 shows the process fidelity F (χCS, χideal) calculated by the CS

method. We see that it remains practically flat down to mconf � 40, which means that χ CS can be

used efficiently to estimate the actual process fidelity.

Figure 5.18 shows similar results calculated using the LS method (for comparison the

lines from Fig. 5.17 are shown by dashed lines). We see that the LS method still works in the

underdetermined regime (mconf < 576); however, it works significantly worse than the CS method.

As an example, for mconf = 40 the fidelity of the process matrix estimation using the LS method
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Figure 5.19: Comparison between the CS results obtained in the SVD and Pauli-error bases for the

simulated Toffoli gate. The green line shows the relative fidelity F (χCS-SVD, χCS) as a function of

the numbermconf of randomly selected configurations. We also show the fidelities F (χCS-SVD, χfull)
(brown line), F (χCS, χfull) (red dashed line), and process fidelitiesF (χCS-SVD, χideal) (magenta line)

and F (χCS, χideal) (blue dashed line). The dashed lines have been shown in Fig. 5.17. The results

using the SVD basis and the Pauli-error basis are very close to each other for most values of mconf.

The error bars show the standard deviations calculated using 7 random selections of reduced data

sets.

is F (χLS, χfull) = 0.86, which is significantly less than F (χCS, χfull) = 0.95 for the CS method.

Similarly, for mconf = 40 the process fidelity obtained via the CS method, F (χCS, χideal) = 0.96

is close to the full-data value of 0.959, while the LS-method value, F (χLS, χideal) = 0.85, is quite

different.

Besides using the Pauli-error basis for the results shown in Fig. 5.17, we have also per-

formed the calculations using the SVD basis. The results are presented in Fig. 5.19 and as we see,

they are very close to those in Fig. 5.17. In particular, we see that the relative fidelityF (χCS-SVD, χCS)

is above 0.98 for mconf > 200 and above 0.95 for mconf > 40.

We have also performed the calculations using non-optimal values of the noise parameter

ε. In comparison with the results for CZ gate shown in Fig. 5.8, the results for the Toffoli gate
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(shown in Fig. 5.20) are more sensitive to the variation of ε. In particular, the fidelity F (χCS, χfull)

is about 0.94 for ε = 1.2ε opt (not significantly depending on mconf for mconf > 40) and the process

fidelity F (χCS, χideal) for ε = 1.2εopt is approximately 0.94 instead of the actual value 0.96. Note

that in contrast to Fig. 5.8, error bars showing the standard deviations at Fig. 5.20 were calculated

using only 7 random selections of reduced data sets, because it takes significantly longer time to

perform calculations for the three-qubit gate compared with the two-qubit gate.

Compared with the two-qubit case, it takes significantly more computing time and mem-

ory to solve the �1-minimization problem for three qubits. In particular, our calculations in the

Pauli-error basis took about 8 hours per point on a personal computer for mconf � 1500 and about

1.5 hours per point for mconf � 40; this is three orders of magnitude longer than for two qubits.

The amount of used computer memory was 3–10 GB, which is two orders of magnitude larger than

for two qubits. (The calculations in the SVD basis for the Toffoli gate took 1–3 hours per point

and ∼2 GB of memory.) Such a strong scaling of required computer resources with the number of

qubits seems to be the limiting factor in extending the CS QPT beyond three qubits, unless a more

efficient algorithm is found. (Note that LS calculations required similar amount of memory, but the

computation time was much shorter.)

The presented results have been obtained using the CVX-SeDuMi package. We also

attempted to use the YALMIP-SDPT3 package. However, in our realization of computation the

calculation results were very unreliable for mconf < 200 using the SVD basis, and even worse when

the Pauli-error basis was used. Therefore we decided to use only the CVX-SeDuMi package for the

3-qubit CS procedure.
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Figure 5.20: (a) Fidelity F (χCS, χfull) of the process matrix estimation for the simulated Toffoli

gate and (b) the estimated process fidelity F (χCS, χideal) as functions of the data set size for several

values of the noise parameter ε used in the CS optimization: ε/εopt = 1.0, 1.1, 1.2, 1.4 and 1.6. The

error bars show the standard deviations calculated using 7 random selections of reduced data sets.

The red lines are the same as the lines in Fig. 5.17. The process fidelity is F (χfull, χideal) = 0.96.
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Chapter 6

Standard deviation of state fidelity

In this Chapter, we consider an equivalent to the process fidelity Fχ characteristic of a

quantum gate, called average state fidelity Fst, which is sometimes also called the “gate fidelity”.

Since neither of these two fidelities provides any information about fluctuations in the gate fidelity

(i.e., how the errors vary over input states), it proves useful to be able to calculate the standard

deviation of the average state fidelity. We provide in Section 6.1 the results of the calculation of

the average state fidelity and the standard deviation of the state fidelity for both the two-qubit CZ

gate, realized with Xmon qubits, and for the three-qubit Toffoli gate with the numerically added

noise. In addition we provide the detailed derivation of the formula for the standard deviation of

the average state fidelity in Section 6.2, and to confirm our results, we perform the Monte Carlo

numerical simulation of the standard deviation of the average state fidelity in Section 6.3.
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6.1 Standard deviation of state fidelity

As shown in the previous Chapter, the process matrices χCS obtained via the CS method

allow us to estimate reliably the process fidelity Fχ = F (χ, χideal) of a gate using just a small

fraction of the full experimental data. While Fχ is the most widely used characteristic of an exper-

imental gate accuracy, it is not the only one. An equivalent characteristic (usually used in random-

ized benchmarking) is the average state fidelity, defined as Fst =
∫

Tr(ρactualρideal) d|ψin〉/
∫
d|ψ in〉,

where the integration is over the initial pure states |ψin〉 (using the Haar measure; it is often assumed

that
∫
d|ψin〉 = 1), while the states ρideal and ρactual are the ideal and actual final states for the initial

state |ψin〉. The average state fidelity Fst is sometimes called the “gate fidelity” [33] and can can

naturally be measured via randomized benchmarking [31, 32, 33] (FRB = F st); it is linearly related

[159, 160] to the process fidelity Fχ through the formula,

Fst =
Fχd+ 1

d+ 1
, (6.1)

where d = 2N is the Hilbert space dimension.

Besides the average state fidelity, an obviously important characteristic of a gate operation

is the worst-case state fidelity Fst, min, which is minimized over the initial state. Unfortunately,

finding the minimum state fidelity is a hard problem from the computational point view, even when

the process matrix χ is known. Another natural characteristic is the standard deviation of the state

fidelity,

ΔFst =

√
F 2

st − Fst
2
, (6.2)

where F 2
st =

∫
[Tr(ρactualρideal)]

2 d|ψin〉/
∫
d|ψin〉 is the average square of the state fidelity. The

advantage of ΔFst in comparison with Fst, min is that F 2
st and ΔFst can be calculated from χ in a
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Figure 6.1: Blue (upper) line: average state infidelity 1 − Fst for the CS-estimated process matrix

χCS as a function of the selected data set size for the experimental CZ gate, realized with Xmon

qubits (this line is linearly related to the blue line in Fig. 5.4). Brown (lower) line: the standard

deviation of the state fidelity ΔFst, defined via variation of the initial state, Eq. (6.2), using the

same χCS. The error bars are computed by repeating the procedure 50 times with different random

selections of used configurations.

straightforward way [161, 162]. Our way of calculating F 2
st is described in the next Section 6.2 [see

Eq. (6.14)].

We have analyzed numerically how well the CS QPT estimates ΔFst from the reduced

data set, using the previously calculated process matrices χCS for the experimental CZ gate and the

simulated Toffoli gate (considered in Secs. 5.5 and 5.9 of Chapter 5). The results are presented in

Figs. 6.1 and 6.2. We show the average state infidelity, 1−Fst, and the standard deviation of the state

fidelity, ΔFst, as functions of the number of selected configurations, mconf. The random selection

of used configurations is repeated 50 times for Fig. 6.1 (7 times for Fig. 6.2), the error bars show

the statistical variation, while the dots show the average values.

As it may be seen in Figs. 6.1 and 6.2, the CS method estimates reasonably well not only

the average state fidelity F st (which is equivalent to Fχ presented in Figs. 5.4 and 5.17), but also its

112



�

�
�

�
���

�

�

�

�
�

�

��

�

�

�
�

��
�

�
��

�
�

�

�

0 500 1000 1500
0.00

0.02

0.04

0.06

0.08

0.10

mconf

�
F s

t,
1
�

Fs
t

�Fst

1 � Fst

X 5

Figure 6.2: The same as in Fig. 6.1, but for the simulated Toffoli gate. The random selection of

configurations is repeated 7 times for each point. The results for the standard deviation ΔFst are

multiplied by the factor of 5 for clarity.

standard deviation ΔFst. It is interesting to note that ΔFst is significantly smaller than the infidelity

1 − Fst, which means that the state fidelity Tr(ρacualρideal) does not vary significantly for different

initial states [the ratio ΔF st/(1−Fst) is especially small for the simulated Toffoli gate, though this

may be because of our particular way of simulation].

6.2 Details of the formula for average square of state fidelity

In this Section we present a detailed derivation of an explicit formula for the squared state

fidelity F 2
st, averaged over all pure initial states, for a quantum operation, represented via Kraus

operators. We follow the same steps as in Ref. [162], where a closed-form expression for F 2
st in

terms of the process matrix χ was presented. Although our approach is not new, we show it here for

completeness. In our derivation we use the theory of permutation operators, symmetric subspaces
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and we compute averages over Haar measures. We start this Section from the review of some basic

definitions from the theory of permutations.

Definition. A function f : A → B is called “one-to-one”, or “injective”, if each element

of B appears at most once as the image of an element of A. A function f : A→ B is called “onto”,

or “surjective”, if f(A) = B. That is, if each element of B is the image of at least one element of

A. A function that is both injective and surjective is called “bijective”.

Definition. A “permutation” of a set A is a function α : A→ A that is bijective (i.e. both

one-to-one and onto).

Unlike calculus, where most functions are defined on infinite sets and given by formulas,

permutations of finite sets are usually given by simply listing where each value goes. For example,

we can define a permutation α of the set S = {1, 2, 3} by stating:

α(1) = 2, α(2) = 1, α(3) = 3.

A slightly more convenient way to represent this permutation α is by the so-called array

notation or Cauchy’s two-line notation:

α←→
( 1 2 3

2 1 3

)
,

where one lists the elements of the set S in the first row, and for each element its image under the

permutation below it in the second row. Also the techniques of arrow diagrams and cycle-arrow

diagrams are nice visual ways of representing the permutation (not explained here).

Definition. The “identity” permutation is the permutation that does nothing:

α↔
( 1 2 . . . n

1 2 . . . n

)
.
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Definition. An k-cycle is a permutation which cyclically permutes (rearranges) k elements

of a set A while leaving the rest elements unchanged. For example (k = 3),

( 1 2 3 4 ... n

2 3 1 4 ... n

)
.

For the first three numbers every number moves to the right and the third number, k = 3, cycles

around back to 1.

An example of a 2-cycle is a “transposition”, which is an exchange of two elements of

a set A with all others staying the same. In other words a transposition is a permutation of two

elements.

Definition. The set of all permutations of n elements is called the “the symmetric group

of degree n”, and is denoted by Sn. For clarity, we can write this definition as Sn = {α : α is a

permutation of Zn}. Some authors use notation Sym(n) instead of Sn.

One of the basic properties of permutations is that every permutation can be written as

a product of “disjoint cycles”, that is where the various cycles have no numbers in common. The

algorithm to determine the cycle form of the permutation can be illustrated in the following example.

Suppose we need to determine the cycle form of the permutation

α =

( 1 2 3 4 5 6 7 8 9 10

5 1 6 8 4 10 7 2 9 3

)
.

We start with the smallest number in the set, in our case it is 1. Since α(1) = 5 we begin the cycle

by writing (1, 5, . . .) . . ., then as α(5) = 4, so we continue building the cycle as (1, 5, 4, . . .) . . .

until we reach the mapping α(2) = 1, which closes the first cycle (1, 5, 4, 8, 2) . . .. Now we need to

find the smallest number that doesn’t appear in any previously constructed cycle, number 3 in our
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example. In a similar fashion, we build the second cycle (1, 5, 4, 8, 2)(3, 6, 10) . . .. Now we pick

the smallest number that is not contained in any previously constructed cycle, 7 in our example, and

as it maps to itself, we get (1, 5, 4, 8, 2)(3, 6, 10)(7) . . .. The only remaining number is 9, and as

it maps to itself, we get the following cycle form of permutation α: (1, 5, 4, 8, 2)(3, 6, 10)(7)(9).

Following the usual convention, we omit the 1-cycles, and simply write α as (1, 5, 4, 8, 2)(3, 6, 10).

Thus, in our case, α is the product of a 3-cycle and a 5-cycle.

After this brief review of the theory of permutation operators, we will explain the deriva-

tion of the formula for the squared state fidelity F 2
st.

We begin by writing the quantum operation as E = U ◦ Ẽ [see Eq. (B.2)], where U

corresponds to the ideal (desired) unitary operation, while the map Ẽ accounts for the errors in the

actual gate, and ◦ denotes composition. Let

Ẽ(ρ) =
∑
n

AnρA
†
n (6.3)

be the operator-sum representation of Ẽ , where {An}d2n=1 are Kraus operators satisfying the trace-

preservation condition
∑

nA
†
nAn = I. The Kraus operators can be easily obtained from the process

matrix χαβ describing the operation E . Note that by diagonalizing χ, i.e., χ = V DV †, where V is

unitary and D = diag(λ1, λ2, . . .) with λn ≥ 0, we can express the Kraus operators in Eq. (6.3) as

An =
√
λn U

† ∑
αEαVαn, where U is the desired unitary.

The state fidelity Fφ (assuming a pure initial state |φ〉) can be written in terms of Kraus

operators {An} as follows:

Fφ ≡ 〈φ| Ẽ(φ) |φ〉 =
∑
n

〈φ|An |φ〉 〈φ|A†
n |φ〉 . (6.4)

Obviously, this expression depends on the state |φ〉. Using the identity Tr(A⊗B) = Tr(A) Tr(B),
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one can rewrite the above expression for Fφ as

Fφ =
∑
n

Tr [An |φ〉 〈φ|] Tr [A†
n |φ〉 〈φ|] =

∑
n

Tr
[
(An ⊗A†

n)(|φ〉 〈φ|⊗2)
]
, (6.5)

where the notation |φ〉 〈φ|⊗k ≡ |φ〉 〈φ| ⊗ |φ〉 〈φ| . . .⊗ |φ〉 〈φ|︸ ︷︷ ︸
k

means that the state is copied in k

identical Hilbert spaces (k equals 2 in formulae for the state fidelity). The expression Eq. (6.5) is

an inner product between a term including all Kraus operators and a term including all the state-

dependence. Similarly, one can express the squared state fidelity as

F 2
φ =

∑
n,m

〈φ|An |φ〉 〈φ|A†
n |φ〉 〈φ|Am |φ〉 〈φ|A†

m |φ〉

=
∑
n,m

Tr
[
(An ⊗A†

n ⊗Am ⊗A†
m)(|φ〉 〈φ|⊗4)

]
. (6.6)

The average state fidelity Fst of a quantum operation Ẽ is defined as follows:

Fst ≡
∫
dφ 〈φ| Ẽ(φ) |φ〉 =

∫
Fφ dφ, (6.7)

where the integral is over the uniform (Haar) measure dφ on the initial pure states, normalized so

∫
dφ = 1. Obviously, the averaging over the states |φ〉 should be performed on the second term in

Eq. (6.5) only, therefore we need to calculate the average of the type |φ〉〈φ| ⊗ |φ〉〈φ|.

In order to compute the average state fidelity Fst =
∫
Fφ dφ, the average square of the

state fidelity

F 2
st =

∫
F 2
φ dφ, (6.8)

and higher moments of Fst (we assume the normalized integration over the initial pure states,

∫
dφ = 1), one can use the following result [163]

∫
|φ〉 〈φ|⊗k dφ =

1(
k+d−1
d−1

) Πk, Πk ≡ 1

k!

∑
σ∈Sk

Pσ. (6.9)
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Here σ is an element of the permutation group Sk (the k! permutations of k objects),
(
k+d−1
d−1

)
=

d(d+1)(d+2)...(d+k−1)
k(k−1)...1 is a binomial coefficient “(k + d − 1) choose (d − 1)”, Πk is the projector

onto the symmetric subspace of H⊗k, and the operator Pσ is the representation of permutation σ in

H⊗k = H⊗ . . .H︸ ︷︷ ︸
k

, i.e.,

Pσ(|φ1〉 ⊗ |φ2〉 . . .⊗ |φk〉) = |φσ(1)〉 ⊗ |φσ(2)〉 . . .⊗ |φσ(k)〉 . (6.10)

(The operator Pσ acts on the wavefunction of kN qubits by permuting k blocks, each containing N

qubits.)

In view of the above discussion, we see that the kth moment F k
st ≡ ∫

F k
φ dφ can be

expressed as a sum of (2k)! terms corresponding to the elements in S2k [note that k in Eqs. (6.9)

and (6.10) is now replaced with 2k],

F k
st =

∑
n1...nk

∑
σ∈S2k

Tr[(An1 ⊗A†
n1

⊗ . . . Ank
⊗A†

nk
)Pσ]

(
2k+d−1
d−1

)
(2k)!

. (6.11)

For example, the average state fidelity Fst is determined by the sum over S2,

Tr(An ⊗A†
n Π2) =

1

2

∑
σ∈S2

Tr(An ⊗A†
nPσ)

=
1

2

∑
σ∈S2

∑
i1,i2

〈i1, i2|An ⊗A†
n |σ(i1), σ(i2)〉

=
1

2

[
Tr(An) Tr(A

†
n)︸ ︷︷ ︸

identity

+Tr(AnA
†
n)︸ ︷︷ ︸

transposition

]
, (6.12)

which yields the well-known result [160]

Fst =
1

d(d+ 1)

(∑
n

|Tr(An)|2 + d

)
. (6.13)

In order to express the average square of the state fidelity F 2
st in terms of Kraus operators,

it is convenient to write each element of the group S4 as a product of disjoint cycles. Using the so-
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called cycle notation for permutations, the 24 elements of the permutation groups S4 can be grouped

as follows:

• Identity (1 element): (1)(2)(3)(4) (this notation means that no change of position occurs

for all numbers in the sequence 1234);

• Transpositions (6 elements): (12), (13), (14), (23), (24), and (34) (this notations means

that only the specified numbers in the sequence are exchanged):

(12) =

( 1 2 3 4

2 1 3 4

)
, (13) =

( 1 2 3 4

3 2 1 4

)
, (14) =

( 1 2 3 4

4 2 3 1

)
,

(23) =

( 1 2 3 4

1 3 2 4

)
, (24) =

( 1 2 3 4

1 4 3 2

)
, (34) =

( 1 2 3 4

1 2 4 3

)
;

(23) =

( 1 2 3 4

1 3 2 4

)
, (24) =

( 1 2 3 4

1 4 3 2

)
, (34) =

( 1 2 3 4

1 2 4 3

)
;

• 3-cycles (8 elements): (123), (132), (124), (142), (134), (143), (234), and (243) [here the

notation (123) means the permutation 1→2→3→1, while the remaining number does not change]:

(123) =

( 1 2 3 4

2 3 1 4

)
= (123)(4), (132) =

( 1 2 3 4

3 1 2 4

)
= (132)(4),

(124) =

( 1 2 3 4

2 4 3 1

)
= (124)(3), (142) =

( 1 2 3 4

4 1 3 2

)
= (142)(3),

(134) =

( 1 2 3 4

3 2 4 1

)
= (134)(2), (143) =

( 1 2 3 4

4 2 1 3

)
= (143)(2),
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(234) =

( 1 2 3 4

1 3 4 2

)
= (234)(1), (243) =

( 1 2 3 4

1 4 2 3

)
= (243)(1);

• Products of transpositions (3 elements): (12)(34), (13)(24), and (14)(23) (two pairs of

numbers exchange):

(12)(34) =

( 1 2 3 4

2 1 4 3

)
, (13)(24) =

( 1 2 3 4

3 4 1 2

)
, (14)(23) =

( 1 2 3 4

4 3 2 1

)
;

• 4-cycles (6 elements): (1234), (1243), (1324), (1342), (1423), and (1432) [here (1234)

means the permutation 1→2→3→4→1]:

(1234) =

( 1 2 3 4

2 3 4 1

)
, (1243) =

( 1 2 3 4

2 4 1 3

)
, (1324) =

( 1 2 3 4

3 4 2 1

)
,

(1342) =

( 1 2 3 4

3 1 4 2

)
, (1423) =

( 1 2 3 4

4 3 1 2

)
, (1432) =

( 1 2 3 4

4 1 2 3

)
.

This classification simplifies keeping track of the termsNσ ≡ ∑
n,mTr

[(
An⊗A†

n⊗Am⊗
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A†
m

)
Pσ

]
in Eq. (6.11). The corresponding contributions to the sum

∑
σ∈S4

Nσ are the following:

Identity:

(∑
n

|Tr(An

)|2)2.
Transpositions:

2d
∑
n

|Tr(An)|2 + 2
∑
n,m

Tr(AnA
†
m) Tr(A†

n) Tr(Am)

+
∑
n,m

[
Tr(AnAm) Tr(A†

n) Tr(A
†
m) + Tr(A†

nA
†
m) Tr(An) Tr(Am)

]
.

3-cycles:

4
∑
n

|Tr(An)|2 + 2
∑
n,m

[
Tr(AnA

†
nAm) Tr(A†

m) + Tr(AnA
†
nA

†
m) Tr(Am)

]
.

Products of transpositions:

d2 +
∑
n,m

[
|Tr(AnAm)|2 + |Tr(AnA

†
m)|2

]
.

4-cycles:

3d+
∑
n,m

Tr(AnA
†
nAmA

†
m) + 2

∑
n,m

Tr(AnAmA
†
nA

†
m).

(We used the trace-preservation condition
∑

nA
†
nAn = I). Substituting the above terms in Eq. (6.11)
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(with k = 2), we finally obtain the average square of the state fidelity,

F 2
st =

1

d(d+ 1)(d+ 2)(d+ 3)

{
d2 + 3d

+2(d+ 2)
∑
n

|Tr(An)|2 +
[∑

n

|Tr(An)|2
]2

+
∑
n,m

(|Tr(AnAm)|2 + |Tr(AnA
†
m)|2)

+2
∑
n,m

Tr(AnAmA
†
nA

†
m) +

∑
n,m

Tr(AnA
†
nAmA

†
m)

+2
∑
n,m

Tr(AnA
†
m) Tr(A†

n) Tr(Am)

+2
∑
n,m

Re[Tr(AnAm) Tr(A†
n) Tr(A

†
m)]

+4
∑
n,m

Re[Tr(AnA
†
nA

†
m) Tr(Am)]

}
. (6.14)

This is the formula we used in Section 6.1 to calculate F 2
st.

6.3 Monte Carlo numerical calculations

In order to verify the correctness of the formula Eq. (6.14), we have performed numerical

calculations of the average state fidelity Fst and the average square of the state fidelity F 2
st, defined

in Eq. (6.7) and Eq. (6.8), using a Monte Carlo integration method. The idea of Monte Carlo

integration is to numerically evaluate the integrals Eq. (6.7) and Eq. (6.8) over the uniform Haar

measure dφ by evaluating the discrete versions of the integrals for Fst and F 2
st with randomly chosen

points. For this purpose we calculate in a sum over index r the values of the state fidelity and

its square for randomly generated quantum states {|Φr〉} = {|Φ1〉 , |Φ2〉 , . . . , |ΦR〉}, uniformly

distributed on a surface of a multidimensional sphere with a unit radius, and then average the results.

Our implementation of the algorithm for an N -qubit system is the following. 1) Using random

numbers from a uniform distribution, generate a random N -qubit quantum state |Φr〉 on the surface
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of the (2×2N )–dimensional sphere of unit radius, 2) at each iteration of r calculate the propagation

of the state |Φr〉 through the quantum channel described by a process matrix χ, and 3) calculate the

quantum process characteristics such as the state fidelity Fφ,r and the square of the state fidelity F 2
φ,r

for each random state |Φr〉. After averaging over r we obtain the numerical results for the average

state fidelity Fst and for the average square of the state fidelity F 2
st. We observe that in the limit

of a large number R of random states |Φr〉, used in the procedure, our numerical results for the

average characteristics asymptotically approach the values calculated using the analytic expressions

Eq. (6.13) and Eq. (6.14). We have for the state fidelity

FR =
1

R

R∑
r=1

F (Φr) −−−−→
R→∞

F =

∫
dφF (φ),

and for the square of the state fidelity

F 2
R =

1

R

R∑
r=1

F 2(Φr) −−−−→
R→∞

F 2 =

∫
dφF 2(φ).

These numerical results also make it possible to evaluate numerically the standard deviation of

the state fidelity. We perform Monte Carlo numerical simulations for two-qubit and three-qubit

quantum channels, which were considered in Chapter 5.

Below follows a more detailed description of our implementation of the Monte Carlo

algorithm. The steps of the algorithm at each iteration of the sum over r are the following.

1. First, we generate a random N -qubit quantum state (a vector) |Φr〉, which is described

by (2×2N ) independent real coefficients in the computational basis of 2N basis states. For example,
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for the system of two qubits (N = 2) the computational basis consists of 4 states

|00〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, |01〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, |10〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, |11〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and the two-qubit quantum state is described by 8 real coefficients, corresponding to 4 complex

numbers, as follows:

|Φr〉 = (α00 + iβ00) |00〉+ (α01 + iβ01) |01〉+ (α10 + iβ10) |10〉+ (α11 + iβ11) |11〉 , (6.15)

where the eight coefficients αk,m and βk,m (k,m = 0, 1) satisfy the normalization condition

∑
k,m=0,1

|αk,m|2 +
∑

k,m=0,1

|βk,m|2 = 1. (6.16)

Eq. (6.16) is the equation of a (2×2N )–dimensional sphere of unit radius (8-dimensional sphere for

two qubits or 16-dimensional sphere for three qubits), centered at the origin of coordinates. There-

fore, the task of generating a uniformly distributed random N -qubit quantum state is equivalent to

the task of generating a uniformly distributed point on a surface of a (2 × 2N )–dimensional sphere

of unit radius.

To generate a uniformly distributed random point on the surface of a multidimensional

sphere, we use the following acceptance-rejection algorithm [164, 165]. We first generate a random

point within a (2× 2N )–dimensional hypercube, the center of which is at the origin of coordinates,

and the length of each of its sides equals 2. For this purpose we generate (2× 2N ) random numbers

(denote them as xk,m and yk,m, where k,m = 0, 1) uniformly distributed on the interval [−1,+1]

(for example, generate 8 random numbers for a two-qubit system). These (2×2N ) random numbers
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determine a point inside a (2× 2N )-dimensional cube. We then reject the points that are within this

(2 × 2N )–dimensional cube, but outside the (2 × 2N )–dimensional sphere of unit radius, keeping

only the points that are within the multidimensional sphere. We need this step in order to ensure that

the distribution of random points on the surface of the multidimensional sphere is uniform. Also in

order to reduce the possibility of the numerical (precision) errors, we discard the sets of randomly

generated points that happen to be in the immediate vicinity of the origin. Hence we check if the

following conditions

η ≤
⎛
⎝∑

k,m

|xk,m|2 +
∑
k,m

|yk,m|2
⎞
⎠ ≤ 1 (6.17)

are satisfied (most of the time the “right” condition in Eq. (6.17) is violated). The parameter η is a

small cut-off parameter, its value can be set arbitrarily. For our simulation we used η = 0.01. In the

rare case when the condition Eq. (6.17) is satisfied, we rescale the numbers xk,m and yk,m, that is,

we compute

αk,m =
xk,m√[∑

k,m |xk,m|2 +∑
k,m |yk,m|2

] , βk,m =
yk,m√[∑

k,m |xk,m|2 +∑
k,m |yk,m|2

] ,

which ensures that the vector with (2 × 2N ) components αk,m and βk,m lies on the surface of the

multidimensional unit sphere, defined by Eq. (6.16).

Once we have, successfully, generated a random N -qubit state |Φr〉, we can compute

Fst(|Φ〉) and F 2
st(|Φ〉).

It is not difficult to estimate the efficiency of the described algorithm by estimating the

ratio of “successful” random point generation events, when the points happen to be inside of the

(2 × 2N )–dimensional ball, to the total number of randomly generated sets of points inside of

a (2 × 2N )–dimensional cube. This ratio is equal to the ratio of the volume of the (2 × 2N )–
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dimensional ball with radius R, VB =
π[2

N ]R[2×2N ]

(2N )!
, to the volume of the (2 × 2N )–dimensional

cube with the length of its side 2R, VC = (2R)[2×2N ]. In particular, for the two-qubit system

(N = 2) we have the ratio of volumes of an 8-dimensional ball and an 8-dimensional cube equal to

VB
VC

=
π4R8

28 4!R8
= 0.016, which is not a very small number, so this algorithm is relatively efficient.

Roughly speaking, on average, we succeed in generating a random 2-qubit state after one hundred

attempts. In case of a three-qubit system (N = 3), this ratio of volumes of a 16-dimensional ball

and cube is
VB
VC

=
π8R16

216 8!R16
= 3.6 × 10−6, and the algorithm still works, although not as fast as

for the two-qubit situation: we succeed only one time in approximately one million attempts.

2. After we generated the random input pure state |Φr〉 described by Eq. (6.15), and

its density matrix |Φr〉〈Φr|, we calculate the corresponding output “experimental” density matrix

ρexpr at the output of the quantum gate by using the standard definition Eq. (4.4) of Chapter 4 of the

evolution of a quantum state propagating through the quantum gate described by a process matrix χ.

While performing this calculation, we substitute into Eq. (4.4) the process matrix χ calculated either

from the full data by the Least-Squares method, or from the partial data by the compressed sensing

method. Also, using the same randomly generated input state |Φr〉, we easily calculate the “ideal”

output density matrix ρidealr , corresponding to the unitary evolution of the input state |Φr〉 described

by Eq. (2.18) of Chapter 2.

3. Using the results for ρexpr and ρidealr , calculated at the rth iteration of the loop over

various randomly generated states, we calculate the statistical characteristics of the channel after

r iterations of the loop in a cumulative way. We define the cumulative variables Fφ,r and F 2
φ,r (which

are initialized to zero before the iterative loop over r), as follows: Fφ,r = Fφ,r−1 + Tr(ρexpr ρidealr )

and F 2
φ,r = F 2

φ,r−1 + [Tr(ρexpr ρidealr )]2. Then the average state fidelity Fst(r) after r realizations can
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be numerically calculated as

Fst(r) = Fφ,r/r, (6.18)

the average square of state fidelity F 2
st(r) after r realizations as

F 2
st(r) = F 2

φ,r/r, (6.19)

and the standard deviation of the fidelity ΔF (r) after r realizations as

ΔF (r) =

√
F 2
φ,r − r(Fst(r))

2

r
. (6.20)

These results Eqs. (6.18) – (6.20), obtained by Monte - Carlo numerical simulations, lead to the nu-

merical values of the statistical characteristics of the quantum channel (such as the average state

fidelity Fst, the average square of state fidelity F 2
st, and the standard deviation of the state fi-

delity ΔF ), which are in a good agreement with the analytical results obtained using the exact

formulae in Eq. (6.13) and Eq. (6.14), for both two and three qubits.

To demonstrate this agreement between the numerical and analytical results, consider

for simplicity the two-qubit case. We show that the difference between the numerical results for

the average state fidelity Fst(r) or its average square F 2
st(r) and their analytic values Fst or F 2

st

approaches zero, as the number r of random states used in the Monte-Carlo procedure increases.

As the values of Fst(r) or F 2
st(r) can fluctuate slightly for different randomly generated states used,

we repeat the Monte-Carlo procedure K = 100 times for every specific number r, and denote as

Fst,k(r) and F 2
st,k(r) the values for the statistical characteristics obtained at each of such repetitions

(index k changes from 1 to 100). Now we introduce the following two functions σF (r) and σF2(r),

σF (r) =

√√√√ 1

K

K∑
k=1

(
Fst,k(r)− Fst

)2
, (6.21)
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and

σF2(r) =

√√√√ 1

K

K∑
k=1

(
F 2
st,k(r)− F 2

st

)2
, (6.22)

which have the meaning of the standard deviation of the numerical values for Fst(r) or F 2
st(r) from

their analytical values Fst or F 2
st.

We show in Fig. 6.3 and Fig. 6.4 the dependence of these functions σF (r) and σF2(r) on

the number of random states r used in the Monte-Carlo procedure, plotted in a log-log scale (the

number r varies from 1 to 105). We see that as we increase the number of random states r used

in the Monte-Carlo procedure, these functions σF (r) and σF2(r) approach zero. This means that

the results of the numerical estimation of the average state fidelity by Eq. (6.18) and the average

square of state fidelity by Eq. (6.19) asymptotically approach the corresponding results obtained

from the exact analytic formulae Eq. (6.13) and Eq. (6.14). Also, as we see, these functions σF (r)

and σF2(r) have the 1/
√
r dependence, which corresponds to the straight line on the log-log plot

(shown by the green dashed lines). The presented Fig. 6.3 and Fig. 6.4 have been obtained using the

experimental data for the two-qubit CZ gate realized with the phase qubits.

These results confirm the correctness of the analytic formulae Eq. (6.13) and Eq. (6.14),

which have been used in our analytic calculations of the average state fidelity, the average square of

the state fidelity, and the standard deviation of the fidelity.
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Figure 6.3: Verification of the formula for the average state fidelity by the Monte-Carlo method.

The blue curve shows the function σF (r) defined in Eq. (6.21), for the various number r of the

random states used in the Monte-Carlo procedure. For comparison, the green dashed line shows the

1/
√
r dependence. Experimental data for the two-qubit CZ gate realized with the phase qubits have

been used.
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Figure 6.4: Verification of the formula for the average square of the state fidelity by Monte-Carlo

method. The blue curve shows the function σF2(r) defined in Eq. (6.22), for the various number r
of the random states used in the Monte-Carlo procedure. For comparison, the green dashed line

shows the 1/
√
r dependence.
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Chapter 7

Conclusion

In this dissertation we explored quantum process tomography (QPT), which is a technique

for fully characterizing a quantum operation. We first presented results for the analysis of the two-

qubit and multi-qubit quantum gates based on superconducting qubits using three distinct methods

of standard quantum process tomography: linear inversion, maximum likelihood, and least-squares.

A well-known problem of standard QPT is the exponential scaling of the resources, i.e., the number

of the required experimental configurations needed to characterize the evolution of a multi-qubit

system increases exponentially with the number of qubits. We showed that the method of com-

pressed sensing quantum process tomography (CS QPT), applied to the two-qubit and three-qubit

quantum gates based on superconducting qubits, offers a significant reduction of the needed amount

of experimental data.

In Chapter 2, we gave a brief review of the main concepts of quantum information and dif-

ferent types of superconducting qubits. In Chapter 3, we presented the results of the state estimation

using two methods for quantum state tomography (QST), which is the procedure of experimentally
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determining all the elements of the density matrix of an unknown quantum state. We wrote Matlab

code for the estimation of the density matrices of a system of two superconducting phase qubits

by the method of direct linear inversion, as well as by the method of maximum likelihood, and we

presented the resulting density matrices and their comparison. While the method of linear inversion

may lead to nonphysical artifacts, such as negative probabilities, the maximum likelihood method

guarantees the density matrix to be theoretically valid while giving the closest fit to the measured

experimental data.

In Chapter 4, we gave an overall introduction to the quantum process tomography, dis-

cussed the experimental details of QPT with superconducting qubits, and presented the results of

the estimation for the process matrix by the method of linear inversion. We discussed computational

resources required for the implementation of the linear inversion for various numbers of qubits, and

we concluded that the maximum number of qubits in the system that allows the exact computation

of the process matrix on an average personal computer is six. We also discussed that as the con-

straints for the process matrix to be physical were not imposed in the linear inversion method, the

resulting process matrix may be nonphysical. The methods of maximum likelihood or least-squares,

formulated as the convex optimization problems, result in a legitimate physical process matrix. We

discussed both these methods, and we presented the results of the two-qubit process matrix calcu-

lations by the least-squares method. The method of the least-squares was used in the subsequent

Chapters 5 and 6 to obtain a fully physical process matrix, against which the results of the CS QPT

process matrix reconstruction were benchmarked.

In Chapter 5, we numerically analyzed the efficiency of CS QPT applied to superconduct-

ing qubits. We used experimental data for two-qubit controlled-Z (CZ) gates realized with Xmon
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and phase qubits, and also used simulated data for the three-qubit Toffoli gate with numerically

added noise. We showed that CS QPT permits a reasonably high fidelity estimation of the process

matrix from a substantially reduced data set compared to the full QPT. In particular, for the CZ gate

(Fig. 5.4) the amount of data can be reduced by a factor of ∼7 compared to the full QPT (which is

a factor of ∼4 compared to the threshold of underdetermined system of equations). For the Toffoli

gate (Fig. 5.17) the data reduction factor is ∼40 compared to the full QPT (∼15 compared to the

threshold of underdeterminacy).

We primarily used two fidelity characteristics in our analysis: first, the fidelityF (χCS, χfull)

of the CS QPT-estimated process matrix χCS compared with the matrix χfull calculated from the

full data set, and second, the fidelity F (χCS, χideal) of χCS compared with the ideal process ma-

trix χideal. Besides these two characteristics, we also calculated in Chapter 6 the standard deviation

of the average state fidelity ΔFst. We established that the CS method estimates ΔFst from a reduced

data set (Figs. 6.1 and 6.2) with a high accuracy. The dependence of the standard deviation of the

average state fidelity ΔFst on the number of measurement configurations was evaluated both ana-

lytically and numerically using a Monte Carlo simulation technique. In order to obtain an analytic

expression for the standard deviation of the state fidelity ΔFst, a detailed derivation of the formula

for calculating the second moment F 2
st of the average state fidelity Fst for the CS QPT-estimated

process matrix χCS compared with χideal was presented.

We also showed that the results of the compressed sensing method depend on the choice

of the basis, in which the process matrix should be approximately sparse. We used two bases in

this work: the Pauli-error basis and the singular value decomposition (SVD) basis. We found that

the results obtained in both bases are similar to each other, though the SVD basis required fewer

computational resources.
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We also performed the comparison of the CS method with the least squares (LS) optimiza-

tion. We showed that even though the LS method formally works, it gives a less accurate estimate

of the process matrix χ than the CS method in the significantly underdetermined regime (although

it does give a better estimate in the overdetermined regime). The advantage of the CS method over

the LS method was more pronounced for the Toffoli gate (Fig. 5.18).

Overall, several different methods of performing quantum process tomography for the

quantum gates based on superconducting qubits were presented in this dissertation, and in partic-

ular we showed that the compressed sensing method of QPT offers efficient estimation of process

matrices of superconducting two-qubit and three-qubit logic gates.
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B Appendix B. Pauli-error basis

In this Appendix we discuss the definition of the Pauli-error basis used in this paper. The

detailed theory of the QPT in the Pauli-error basis is presented in Ref. [18].

Let us start with description of a quantum process E in the Pauli basis {Pα},

ρin �→ E(ρin) =

d2∑
α,β=1

χαβPαρ
inP†

β , (B.1)

where for generality P is not necessarily Hermitian (to include the modified Pauli basis, in which

Y = −iσy). Recall that d = 2N is the dimension of the Hilbert space for N qubits, and in N -qubit

systems the elements of the Pauli basis {Pα} are built as the Kronecker (tensor) products of N

single-qubit Pauli operators from the set {σ0, σx, σy, σz}, introduced in Eq. (2.12) of Section 2.1.3

of Chapter 2.

In order to compare the process E with a desired unitary rotation U [i.e. with the map

U(ρin) = Uρ inU †], let us formally apply the inverse unitary U−1 = U † after the process E . The

resulting composed process

Ẽ = U−1 ◦ E (B.2)

characterizes the error: if E is close to the desired U , then Ẽ is close to the identity (memory)

operation. The process matrix χ̃ of Ẽ in the Pauli basis is what we call in this paper the process

matrix in the Pauli-error basis.

The process matrix χ̃ obviously satisfies the relation

∑
α,β

χ̃αβPαρ
inP†

β = U−1

⎛
⎝∑

α,β

χαβPαρ
inP†

β

⎞
⎠U, (B.3)

which can be rewritten as

∑
α,β

χ̃αβ(UPα)ρ
in(UPβ)

† =
∑
α,β

χαβPαρ
inP†

β . (B.4)
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Therefore the error matrix χ̃ is formally the process matrix of the original map E , expressed in the

operator basis

Eα = UPα. (B.5)

This is the Pauli-error basis used in our paper. (Another obvious way to define the error basis is to

use Eα = PαU [18]; however, we do not use this second definition here.) The Pauli-error basis

matrices Eα have the same normalization as the Pauli matrices,

〈Eα|Eβ〉 = Tr(E†
αEβ) = d δαβ . (B.6)

The matrices χ and χ̃ (in the Pauli and Pauli-error bases) are related via unitary transformation,

χ̃ = V χV †, Vαβ = Tr(P†
αU

†Pβ)/d. (B.7)

The matrix χ̃ has a number of convenient properties [18]. It has only one large element,

which is at the upper left corner and corresponds to the process fidelity, χ̃II = Fχ = F (χ, χideal).

All other non-zero elements of χ̃ describe imperfections. In particular, the imaginary elements

in the left column (or upper row) characterize unitary imperfections (assuming the standard non-

modified Pauli basis), other off-diagonal elements are due to decoherence, and the diagonal elements

correspond to the error probabilities in the Pauli-twirling approximation.

138



C Appendix C. Singular value decomposition (SVD) basis

The SVD basis used in this paper is introduced following Ref. [39]. Let us start with the

so-called natural basis for d×dmatrices, which consists of matricesEnat
α , having one element equal

to one, while other elements are zero. The numbering corresponds to the vectorized form obtained

by stacking the columns: for α = (d− 1)i+ j the matrix is (Enat
α )lk = δilδjk. For a desired unitary

rotation U , the process matrix χnat in the natural basis can be obtained by expanding U in the natural

basis, U =
∑

α uαE
nat
α , and then constructing the outer product,

χnat
αβ = uαu

∗
β . (C.1)

For example, for the ideal CZ gate the components uα are (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,−1),

and χnat has 16 non-zero elements, equal to ±1. Note that χnat is a rank-1 matrix with Tr(χnat) =

∑
α |uα|2 = d.

We then apply numerical procedure of the SVD decomposition, which diagonalizes the

matrix χnat for the desired unitary process,

χnat = V diag(d, 0, . . . , 0)V †, (C.2)

where V is a unitary d2 × d2 matrix and the only non-zero eigenvalue is equal to d because

Tr(χnat) = d. The columns of thus obtained transformation matrix V are the vectorized forms

of thus introduced SVD-basis matrices ESVD
α ,

ESVD
α =

d2∑
β=1

VβαE
nat
β . (C.3)

Note that the notation V used in Appendix B has a different meaning.

The matrices of the SVD basis introduced via Eqs. (C.2) and (C.3) have the different
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normalization compared with the Pauli basis,

Tr(ESVD†
α ESVD

β ) = δαβ . (C.4)

Correspondingly, the normalization of the process matrix χSVD in the SVD basis is TrχSVD = d (for

a trace-preserving process). For the ideal unitary process the matrix χSVD has one non-zero (top left)

element, which is equal to
√
d. For an imperfect realization of the desired unitary operation the top

left element is related to the process fidelity as χSVD
11 = Fχd.

Note that when the numerical SVD procedure (C.2) is applied to χnat of ideal CZ and/or

Toffoli gates, many (most) of the resulting SVD-basis matrices ESVD
α coincide with the matrices of

the natural basis Enat
α . Since these matrices contain only one non-zero element, the matrix Φ in Eq.

(4.8) is simpler (has more zero elements) than for the Pauli or Pauli-error basis. (The number of

non-zero elements of Φ in the SVD basis is crudely twice less for the CZ gate and 4 times less for

the Toffoli gate.) As the result, from the computational point of view it is easier to use the SVD

basis than the Pauli-error basis: less memory and less computational time are needed.
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