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Abstract

Quasi-Newton Algorithms for Non-smooth Online Strongly Convex Optimization

by

Mark Franklin Godwin

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Francesco Borrelli, Chair

The growing prevalence of networked systems with local sensing and computational ca-
pability will result in an increasing array of online and large scale optimization problems.
We adopt the framework of online convex optimization that allows for the optimization of
an arbitrary sequence of convex functions subject to a single convex constraint set. We
identify quasi-Newton algorithms as a promising class of algorithms to solve online strongly
convex optimization problems. We first examine the relationships between several known
algorithms for convex functions that satisfy a α-exp-concave assumption. Next we present
two new quasi-Newton algorithms for non-smooth strongly convex functions and show how
these algorithms can be parallelized given a summed objective function. Our new algorithms
require fewer parameters and have provably tighter bounds then similar known algorithms.
Also, our bounds are not a function of the number of iterations, but instead a function
of the sequence of strongly convex parameters that correspond to a sequence of strongly
convex functions. We then extend these algorithms to use a block diagonal hessian ap-
proximation. An algorithm with a fully diagonal hessian approximation results in a large
scale quasi-Newton algorithm for online convex optimization. Our results can be translated
to convergence bounds and optimization algorithms that solve non-smooth strongly convex
functions. We perform numerical experiments on test functions of different dimension and
compare our algorithms to similar known algorithms. These experiments show our algo-
rithms perform well in the majority of test cases we consider. We apply our algorithms
to online portfolio optimization with a `2-norm regularized constant-rebalanced portfolio
model and compare our algorithm to known methods. In addition, a heuristic algorithm
for online vehicle routing is presented. Although online vehicle routing does not fit within
the framework of online convex optimization, the work provided significant insight into on-
line optimization and provides a future source of ideas and motivation. Finally, we provide
conclusions and discuss future research directions.
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Chapter 1

Introduction

This dissertation is motivated by the online optimization of large scale systems. This
chapter introduces our research topic and discusses our motivation. We introduce online
convex optimization, discuss related work, review our contributions and outline the chapters
to follow. We assume an understanding of the mathematical background found in Appendix
A.

1.1 Motivation

The future will see an increasing number of large systems that consist of many agents with lo-
cal sensing and computing capability connected through a communication network. Systems
of this class include computer systems connected through communication networks, but also
physical systems with embedded processors connected through communications networks.
There exists a need for algorithms that optimize computer controlled power systems, trans-
portation systems and networked unmanned vehicle systems [1]. Many of these applications
can be posed as a structured optimization problem with a summed objective function.

This dissertation focuses on structured optimization problems with a summed objective
function that can be solved using parallelized algorithms [2]. We consider three forms of
summed objective functions with varying degrees of coupling. As the objective function
becomes more decoupled, a “more parallel” algorithmic solution is possible. A optimization
problem can be trivially parallelized if it is entirely decoupled, as in the following problem

min
xr∈X r,1≤r≤R

R∑
r=1

f r(xr) (1.1)

where R is the number of computational platforms. This thesis focuses on optimization prob-
lems with coupling and a summed objective function. Consider the following optimization
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problem that has coupling through its constraints

min
[x1>,...,xR>]>∈X

R∑
r=1

f r(xr) (1.2)

where X represents a set coupling the decision variables {x1, . . . ,xR}. Online vehicle routing
has this problem structure and is discussed further in Chapter 7. This thesis also considers
optimization problems with coupling both in the objective function and in the constraints.
This problem is represented as

min
x∈X

R∑
r=1

f r(x) (1.3)

Although this problem is more coupled, the problem structure can still be exploited by a
gradient or subgradient based algorithm. Given a well known property of subgradients,
presented in Appendix A, we have

∂f(x) =
R∑
r=1

∂f r(x) (1.4)

where ∂f(x) denotes the subdifferential of f . The subdifferential is the set of subgradients
associated with a given point x. A subgradient is a generalized gradient for non-smooth
functions. Given (1.4) the subgradient calculation can be parallelized. If the calculation
of a subgradient is computationally difficult, or if R is large, then the parallelization of
these calculations can result in increased performance. Therefore, to exploit the structure of
problems with a summed objective functions we will consider subgradient based methods.

In this dissertation we assume our application requires “good” feasible solutions at regular
intervals. In the control theory community this is often referred to as real-time control. Real-
time control of an aircraft’s trajectory may require updates every few milliseconds while real-
time control of a transportation network may require updates every few seconds or minutes.
We consider applications where the required update rate is on the order of seconds or minutes.
Therefore although subgradient methods are not known to be particularly fast they are “fast
enough” for the applications we consider. Furthermore, the computational requirements of
subgradient methods per iteration typically scale well with problem dimension. Therefore
for problems with many variables subgradient methods may be the only feasible algorithmic
solution. The computational complexity of subgradient based algorithms is discussed further
in Section 1.2. As previously discussed subgradient based algorithms can use parallelism to
solve structured optimization problems, have computational requirements that scale well
with problem size and are fast enough for applications that require an update on the order
of seconds or minutes. For these reasons subgradient based algorithms are a good class of
algorithm for structured large scale convex optimization problems.
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1.2 Online Convex Optimization

Online convex optimization minimizes the regret of an online algorithm [3]. Regret is the to-
tal cost of an online algorithm’s decisions made in sequence, given only the past information,
minus the best decision made in hindsight. This formalism allows for the optimization of
an arbitrary sequence of convex functions subject to a single convex constraint set. Subgra-
dient based algorithms can solve an online convex optimization problem. An online convex
optimization problem is formally introduced in Chapter 2. An algorithm that can solve an
online convex optimization problem can be converted into an algorithm that minimizes a
single convex function as discussed in Section 2.1.1.

An algorithm for online convex optimization is Online Gradient Descent. It was adapted
from offline optimization and achieves O(

√
T ) regret where T is the number of iterations

[3]. This implies that the worst case error between the online algorithm’s decisions made in
sequence, given only the past information, minus the best decision made in hindsight grows
with O(

√
T ).

The novel idea of using a strongly convex assumption to achieve O(log T ) regret with
Online Gradient Descent was first proposed by Hazan et al. [4]. Intuitively, strongly convex
functions have a minimum curvature at every point. Strongly convex functions have been
identified as an important function class that enables efficient algorithm development with
logarithmic regret bounds. Many practical optimization problems are strongly convex or can
be made strongly convex using strongly convex regularizers [5, 6, 7].

Given that strongly convex functions have a minimum curvature, we consider the con-
struction of an approximate hessian from subgradient information to improve algorithm
performance. If a multidimensional function is twice differentiable then the matrix of second
partial derivatives is referred to as the hessian. This type of algorithm is referred to as a
quasi-Newton algorithm. In summary, this dissertation focuses on quasi-Newton algorithms
for non-smooth online strongly convex optimization problems.

1.2.1 Related Work

The following provides a brief review of adaptive algorithms for non-smooth convex and
strongly convex functions. Adaptive algorithms use information obtained through execution
to adapt algorithmic parameters and improve performance. Adaptive algorithms include
quasi-Newton algorithms are also referred to as variable metric algorithms [8].

Adaptive gradient methods have drawn from research on the Follow the Leader method
starting in 1950s game theory literature. In this literature the Follow the Leader method is
also known as the sequential compound decision problem, an approach first put forward by
Robbins [9]. Hannan [10] proposed a randomized variant of the Follow the Leader algorithm
called the Perturbed Follow the Leader algorithm for linear functions subject to a simplex
that attains O(

√
T ) regret.

Merhav and Feder [11] extended the Follow the Leader approach to strongly convex
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functions over a simplex and show that the approach can attain O(log T ) regret. Similar
results were obtained by Cesa-Bianchi and Lugosi [12] and Gaivoronski and Stella [13]. This
work led to the work by Hazan, Agarwal and Kale [14] on the Follow the Approximate Leader
algorithm for α-exp-concave convex functions subject to a convex constraint set.

In the 1970s and 80s an array of adaptive algorithms were developed including the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) family of quasi-Newton algorithms [15], Shor’s
R-Algorithm for minimization of a non-smooth nonlinear functions [16] and the ellipsoidal
method developed by Yudin and Nemirovski [17].

Although not designed to optimize non-smooth functions, the BFGS algorithm has been
shown to perform well on non-smooth problems when the correct line search is used [18].
The limited memory BFGS method has also been shown to perform well on non-smooth
problems when the correct line search is used [19]. In addition, recent work has extended
the BFGS family of quasi-Newton algorithms to non-smooth optimization [20]. Also, the
work of Bordes et al. [21] presents a quasi-Newton stochastic gradient descent procedure but
assumes a smooth objective function.

The Levenberg-Marquardt algorithm is known for solving non-linear least squares prob-
lems and can be interpreted as an adaptive algorithm that combines a Gauss-Newton algo-
rithm with gradient descent [22]. This algorithm approximates function curvature with the
outer product of gradients, a technique used by other adaptive algorithms [23, 14].

In recent years significant progress has been made on both non-adaptive and adaptive
subgradient methods. An extension of Nesterov’s Dual Averaging method [24] for non-
smooth convex functions was developed that exploits the regularization structure in an online
setting [25]. Nesterov has also proposed a smoothing technique for non-smooth functions with
an explicit max-structure that improves the worst case converage rate [26]. The best worst
case bound for optimizing non-smooth strongly convex functions with bounded gradients is
known to be O(1/T ) [27]. Several algorithms have been developed that achieve this best
worst case bound [28, 29]. It has also been shown that online convex optimization is strictly
more difficult and the best known regret bound for non-smooth strongly convex cost functions
with bounded gradients is O(log T ) [29].

An adaptive algorithm for non-smooth convex functions that considers adaptive param-
eter selection as an online (meta) learning problem has been developed by Duchi et al. [23].
This adaptive research has drawn from work on forward-backward splitting [30] and com-
posite mirror-descent generalizations [31] that includes special cases of projected gradient
descent [3] and mirror descent [27, 32]. These algorithms use a strongly convex proxy func-
tion multiplied by a time-dependent scalar while the new adaptive algorithm of Duchi et al.
[23] adapts the strongly convex proxy function. Algorithms that use a similar approach have
been developed in parallel [33].

Other algorithms for online convex optimization that exploit strong convexity have been
developed. An adaptive algorithm that interpolates between the work of Zinkevich [3] and
Hazan et al. [4] to obtain a regret bound between

√
T and log(T ) has been developed by

Bartlett et al. [34]. An online primal-dual algorithm for strongly convex functions was
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proposed and analyzed by Kakade et al. [5]. Building on the work of Hazan et al. [4]
Online Gradient Descent was extended to a more general notion of strongly convex functions
[35, 36]. Online convex optimization algorithms are typically bounded by a function of an
algorithm’s iterations. However, a regret bound has been derived that is a function of the
observed variations of α-exp-concave functions and this analysis has been applied to online
portfolio management [37, 38].

1.3 Contributions and Outline

The following chapters are outlined below along with our contributions.

• Chapter 2: We formally introduce online convex optimization, regret and state our
assumptions. We show how a regret bound can be translated into a convergence bound.
We present known algorithms for strongly convex and α-exp-concave convex functions
and the relation between these algorithms is discussed. We extend the Online Newton
Step (ONS) and Follow the Approximate Leader (FTAL) algorithms of Hazan et al.
[14] to non-smooth α-exp-concave convex functions. We also prove that ONS and
FTAL are the same algorithm under appropriate assumptions.

• Chapter 3: We present new ONS and FTAL algorithms for strongly convex functions
and present two choices of initialization parameters. These new algorithms require
fewer parameters and have a provably tighter bound than the original algorithms.
Also, our bounds are a function of a strongly convex parameter sequence instead of
the algorithm’s iterations.

• Chapter 4: We extend ONS and FTAL for strongly convex functions to used block
diagonal hessian approximations. This reduces the computational requirements such
that these algorithms can be used on large scale problems. For a fully diagonal hessian
approximation the algorithm’s update step scales with O(n), where n is the problem
dimension, and hence matches that of Online Gradient Descent.

• Chapter 5: We apply the new FTAL Algorithm for strongly convex functions to a typ-
ical online convex optimization application, online portfolio optimization. We propose
a strongly convex `2-norm regularized constant-rebalanced portfolio model and com-
pare our algorithm and model with a known algorithm and model for online portfolio
optimization.

• Chapter 6: In an offline optimization framework we perform numerical experiments on
a set of non-smooth strongly convex test functions and compare the performance of our
algorithms to a similar class of known algorithms. Numerical experiments show that
our new algorithms, in the majority of cases considered, outperform known algorithms.
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• Chapter 7: The online vehicle routing problem is defined as a sequence of NP-hard
optimization problems. We present a heuristic algorithm for online vehicle routing.
Although the problem and algorithm does not strictly fit in an online convex opti-
mization framework, the application has motivated our research and provides further
insight to advance the state of the art in online optimization.

• Chapter 8: We conclude and discuss two potential future research directions. First,
we discuss several possible approaches to decentralize these algorithms over a commu-
nication network with delays. Second, we discuss the potential application of online
convex optimization to classical control theory.
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Chapter 2

Online Algorithms

This chapter presents the mathematical framework and notation used throughout this
dissertation. We assume an understanding of the mathematical background found in Ap-
pendix A. This chapter formally presents online convex optimization and known algorithms
for strongly convex and α-exp-concave convex functions. The presentation of known al-
gorithms is used to give a better understanding of how subgradient algorithms work and
how they are analyzed. We first present the Online Gradient Descent (OGD) algorithm for
non-smooth strongly convex functions that achieves logarithmic regret O(log T ) [4]. Next
we present two quasi-Newton algorithms for α-exp-concave convex functions known as the
Online Newton Step (ONS) and Follow the Approximate Leader (FTAL) algorithm. We
extend the analysis of ONS and FTAL to non-smooth α-exp-concave convex functions. We
show how FTAL is related to ONS. Finally, the efficient implementation of these algorithms
is discussed [14].

2.1 Online Convex Optimization

We now formally introduce online convex optimization [3]. In contrast to minimizing a sin-
gle convex function, the goal of online convex optimization is to minimize regret. Regret is
the total cost of an online algorithm’s decisions made in sequence, given only past informa-
tion, minus the best decision made in hindsight. An online convex optimization problem is
formally defined as follows.

Definition 1 (Online Convex Optimization Problem). An online convex optimization prob-
lem consists of a feasible set X ⊆ Rn and an infinite sequence {f1, f2, . . . } of convex func-
tions. An algorithm A at each iteration t must choose a xt ∈ X , given only the vectors
{x1, . . . ,xt−1} and the information obtained from the functions {f1, f2, . . . , ft−1}, such that



CHAPTER 2. ONLINE ALGORITHMS 8

the regret is minimized. The regret of algorithm A up until time T is

T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x) = RT (A) (2.1)

For example, consider the online convex optimization problem (X , {f1, f2, . . . }) where we
are given the subgradients {y1,y2, . . . } drawn from the sequence of functions {f1, f2, . . . }.
For some large, possibly infinite, T we would like to solve

x∗ = arg min
x∈X

T∑
t=1

ft(x) (2.2)

However, we require a prediction of x∗ at each iteration t ∈ {1, . . . , T} using only the
knowledge of past feasible points {x1, . . . ,xt−1} and past subgradients {y1, . . . ,yt−1}. That
is, we desire an algorithm A such that xt = A({x1, . . . ,xt−1}, {y1, . . . ,yt−1}) where regret
(2.1) is minimized. The sequence of functions are all a function of the same variable and
therefore knowledge of the past can help predict the minimum argument (2.2). Consider the
following example application of online convex optimization.

Example 1 (Sequence of Quadratic Functions). Consider the online convex optimization
problem defined by the set X = R the sequence of functions {f1, f2, . . . } where ft : X → R
and

ft(x) =

{
1
2
x2 + x, if t odd

1
2
x2 − x, if t even

(2.3)

Each gradient is calculated as follows

∇ft(xt) =

{
xt + 1, if t odd

xt − 1, if t even
(2.4)

For some large T we would like to solve (2.2) where

x∗ =

{
−1
T
, if T odd

0, if T even
(2.5)

However, we need a prediction of the optimal x∗ at each iteration t using only the vectors
{x1, . . . , xt−1} and the gradients {∇f1(x1), . . . ,∇ft−1(xt−1)} of the functions {f1, f2, . . . , ft−1}.
That is, we need an algorithm such that xt = A({x1, . . . , xt−1}, {∇f1(x1), . . . ,∇ft−1(xt−1)}).
Therefore, we propose Algorithm 1 with the goal of minimizing regret. At t = 1 we guess
x1 = 1 is the minimum of (2.2).
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Algorithm 1 Proposed algorithm

Require: x1 = 1
1: for t = 1 to T do
2: yt = ∇ft(xt)
3: xt+1 = xt − 1

t
yt

4: end for

Starting from the initial guess, x1 = 1, Figure 2.1 plots the iterations of Algorithm 1
for T = 60 iterations. Notice that the algorithm’s iterations {x1, x2, . . . } converge to the
minimum argument (2.5) of problem (2.2).
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(b) Cost of predictions over time

Figure 2.1: Results for one dimensional example

4

We assume our algorithms can calculate the subgradient of a function for any feasible
argument. We also assume a bound on the subgradients, parameterized by L, and a bound
on the convex set X , parameterized by D.

Assumption 1. Unless otherwise stated the following assumptions are made throughout the
remainder of this work.

(a) The set X is convex.

(b) The set X is bounded. There exists a D ∈ R such that

||x− z||2 ≤ D

for all x, z ∈ X .
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(c) The set X is closed. For all sequences {x1,x2, . . . } where xt ∈ X for all t, if there exists
a x ∈ Rn such that x = limt→∞ xt, then x ∈ X .

(d) The set X is nonempty.

(e) Let f : X → R be a convex function. For any x ∈ X we can obtain a subgradient
y ∈ ∂f(x) and the function value f(x).

(f) Let f : X → R be a convex function. There exists a L ∈ R such that ||y||2 ≤ L for any
x ∈ X and any subgradient y ∈ ∂f(x).

We now examine how a bound on regret relates to a convergence bound for a single
convex function.

2.1.1 Convergence Bound for Non-smooth Convex Functions

Online convex optimization is a generalization of optimization for a single non-smooth convex
function. Lemma 1 shows that if an online convex optimization algorithm achieves asymp-
totically sub-linear regret and it is applied to a sequence of identical convex functions then
it is an optimization algorithm that obtains the minimum of the single convex function.

Lemma 1. Let f : X → R be a convex function where x∗ = arg minx∈X f(x). Now consider
the online convex optimization problem (X , {f1, f2, . . . }) where ft = f for all t ∈ {1, . . . , T}.
If algorithm A is applied to the online convex optimization problem (X , {f1, f2, . . . }) and
achieves asymptotically sub-linear regret such that RT (A) = o(T ) then

f(x̂T )− f(x∗) ≤ RT (A)

T
(2.6)

where x̂T = 1
T

∑T
t=1 xt and limT→∞

RT (A)
T

= 0

Proof (Lemma 1). Given f = ft for all t ∈ {1, . . . , T} we have

T∑
t=1

[ft(xt)− ft(x∗)] = RT (A) (2.7)

T∑
t=1

f(xt)− Tf(x∗) = RT (A) (2.8)

dividing through by T and using Jenson’s inequality we have

f(x̂T )− f(x∗) ≤ RT (A)

T
(2.9)

where x̂T = 1
T

∑T
t=1 xt. By definition of RT (A) = o(T )

lim
T→∞

RT (A)

T
= 0 (2.10)
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2.2 Online Gradient Descent

We present the Online Gradient Descent algorithm for strongly convex functions as Algo-
rithm 2. This analysis was introduced by Hazan, et al. [4] who used strong convexity
to achieve logarithmic regret. The proof for Lemma 2 using Definition 7 can be found in
Shalev-Shwartz et al. [36].

Lemma 2 (Strongly Convex). The function f : X → R is H-strongly convex with respect to
a norm || · || if and only if for all z,x ∈ X

f(z) ≥ f(x) + y>(z− x) +
H

2
||z− x||2 (2.11)

for all y ∈ ∂f(x).

Algorithm 2 Online Gradient Descent

Require: x1 ∈ X ⊆ Rn and {ηt}Tt=1

1: for t = 1 to T do
2: yt ∈ ∂ft(xt)
3: zt+1 = xt − ηtyt
4: xt+1 = ΠX (zt+1) = arg minx∈X ||zt+1 − x||2
5: end for

We will now derive the logarithmic regret bound for Online Gradient Descent. This proof
is instructive by showing how the strongly convex assumption can be used to reduce regret.

Theorem 1. If ft : X → R is a H-strongly convex function with respect to || · ||2 for all
t ∈ {1, . . . , T} where H > 0 and subject to X ⊆ Rn then Algorithm A2, where ηt = 1

Ht
for

t ∈ {1, . . . , T}, has the following regret bound

RT (A2) ≤
L2

2H
(log(T ) + 1) (2.12)

Proof (Theorem 1). Let x∗ ∈ arg minx∈X
∑T

t=1 ft(x). Given ft : X → R is H-strongly
convex with respect to || · ||2 then by Lemma 2 we have

ft(x
∗) ≥ ft(xt) + y>t (x∗ − xt) +

H

2
||x∗ − xt||22 (2.13)

where yt ∈ ∂f(xt). This can be written as the upper bound

ft(xt)− ft(x∗) ≤ y>t (xt − x∗)− H

2
||xt − x∗||22 (2.14)
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Given the non-expansive property of projection as in Lemma 19 we have

||xt+1 − x∗||22 = ||ΠX (xt − ηtyt)− x∗||22 ≤ ||xt − ηtyt − x∗||22 (2.15)

and therefore

||xt+1 − x∗||22 ≤ ||xt − ηtyt − x∗||22 (2.16)

= ||xt − x∗||22 − 2ηty
>
t (xt − x∗) + η2t ||yt||22 (2.17)

by rearranging terms we obtain

2y>t (xt − x∗) ≤ ||xt − x∗||22 − ||xt+1 − x∗||22
ηt

+ ηt||yt||22 (2.18)

Combining (2.18) with (2.14) then

2
T∑
t=1

[ft(xt)− ft(x∗)] ≤ (
1

η1
−H)||x1 − x∗||22 −

1

ηT
||xT+1 − x∗||22 +

T∑
t=2

||xt − x∗||22(
1

ηt
− 1

ηt−1
−H) +

T∑
t=1

ηt||yt||22 (2.19)

then given ηt = 1
Ht

the first three terms can be dropped and

T∑
t=1

[ft(xt)− ft(x∗)] ≤
T∑
t=1

1

2Ht
||yt||22 (2.20)

then using Assumption 1(f) and an upper bound on the harmonic series we have

T∑
t=1

[ft(xt)− ft(x∗)] ≤
L2

2H

T∑
t=1

1

t
(2.21)

≤ L2

2H
(log(T ) + 1) (2.22)

Giving the result

RT (A2) ≤
L2

2H
(log(T ) + 1) (2.23)
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2.3 Online Newton Step

This section presents a quasi-Newton algorithm for α-exp-concave convex functions. This
class of functions is a more general class than strongly convex functions. We extend the
Online Newton Step (ONS) algorithm to non-smooth α-exp-concave convex functions. A
α-exp-concave convex function is formally defined as follows.

Definition 2 (Exponential Concavity). A function convex f : X → R is a α-exp-concave
convex function if exp(−αf(x)) is concave for all x ∈ X ⊆ Rn.

The Online Newton Step (ONS) is similar to the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) family of quasi-Newton algorithms in that it descends the objective function from
its current primal iterate using the gradient or, in this case, the subgradient [15]. Unlike the
BFGS family of quasi-newton algorithms ONS uses a α-exp-concave assumption to approx-
imate the hessian. The ONS algorithm is as follows.

Algorithm 3 Online Newton Step

Require: x1 ∈ X ⊆ Rn, β = 1
2

min{ 1
4LD

, α} , Q0 = Inε and ε = 1
β2D2

1: for t = 1 to T do
2: yt ∈ ∂ft(xt)
3: Qt = yty

>
t + Qt−1

4: zt+1 = xt − 1
β
Q−1t yt

5: xt+1 = ΠQt

X (zt+1) = arg minx∈X (zt+1 − x)>Qt(zt+1 − x)
6: end for

Before we can present the regret bound for this algorithm we need to extend a result
obtained by Hazan et al. [14] to non-smooth α-exp-concave convex functions.

Lemma 3. Consider a function f : X → R where exp(−αf(x)) is concave for all x ∈ X
then the following holds for β ≤ 1

2
min{ 1

4LD
, α} :

∀x, z ∈ X f(z) ≥ f(x) + y>(z− x) +
β

2
(z− y)>yy>(z− y) (2.24)

for all y ∈ ∂f(x).

Proof (Lemma 3). Since exp(−αf(x)) is concave and 2β ≤ α the function h(x) ≡ exp(−2βf(x))
is also concave. Given that the exponential function is nondecreasing, the convexity of f
and y ∈ ∂f(x) then

h(z) = exp(−2βf(z)) (2.25)

≤ exp(−2β[f(x) + y>(z− x)]) (2.26)

= exp(−2βf(x)− 2βy>(z− x)) (2.27)

≤ exp(−2βf(x))− exp(−2βf(x))2βy>(z− x) (2.28)
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The last statement follows from: If g : R → R is concave then g(a + b) ≤ g(a) + g′(a)b for
all a, b ∈ R. Now consider

exp(−2βf(z)) ≤ exp(−2βf(x))[1− 2βy>(z− x)] (2.29)

Rearranging terms then

f(z) ≥ f(x)− 1

2β
log(1− 2βy>(z− x)) (2.30)

Using bounds on the set X and subgradients, Assumptions 1(b) and 1(f), then

|2βy>(z− x)| ≤ 2β||y||2||z− x||2 (2.31)

≤ 2βLD (2.32)

≤ 1

4
(2.33)

For |r| ≤ 1
4

then − log(1 − r) ≥ r + 1
4
r2. Applying this inequality for r = 2βy>(z − x) we

obtain

f(z) ≥ f(x)− 1

2β
log(1− 2βy>(z − x)) (2.34)

≥ f(x) +
1

2β
[2βy>(z − x) + β2(z− x)yy>(z− x)] (2.35)

= f(x) + y>(z− x) +
β

2
(z− x)yy>(z− x) (2.36)

The proof of the following regret bound for the Online Newton Step is found in Hazan,
et al. [14]. However, our Lemma 3 must be used in place of Lemma 3 from Hazan, et al.
[14] to extend the result to non-smooth α-exp-concave convex functions.

Theorem 2. If ft : X → R is a α-exp-concave convex function for all t ∈ {1, . . . , T} subject
to the convex set X ⊆ Rn then Algorithm A3 has the following regret bound

RT (A3) ≤ 5(
1

α
+ LD)n log(T ) (2.37)

As stated previously the class of α-exp-concave convex functions is more general than the
class of H-strongly convex functions. A strongly convex function with subgradients upper
bounded by L and a parameter H > 0 are α-exp-concave for any α > 0 such that α ≤ H

L2

[14]. By assuming strong convexity, α = H
L2 and using Theorem 2 we obtain the following

regret bound

RT (A3) ≤ 5(
L2

H
+ LD)n log(T ) (2.38)
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2.4 Follow the Approximate Leader

In this section we present the Follow the Approximate Leader (FTAL) algorithm [14] that
was developed using intuition from the Follow the Leader algorithm [10, 39]. In Section
2.5 we discuss the relation between ONS and FTAL. The Follow the Approximate Leader
(FTAL) algorithm is as follows.

Algorithm 4 Follow the Approximate Leader Algorithm (Version 1)

Require: x1 ∈ X ⊆ Rn and β = 1
2

min{ 1
4LD

, α}
1: for t = 1 to T do
2: yt ∈ ∂ft(xt)
3: xt+1 = arg minx∈X

∑t
i=1 fi(xi) + y>i (x− xi) + β

2
(x− xi)

>yiy
>
i (x− xi)

4: end for

The proof of the regret bound for FTAL is found in Hazan et al. [14]. However, our
Lemma 3 must be used in place of Lemma 3 from Hazan et al. [14] to extend the result to
non-smooth α-exp-concave convex functions.

Theorem 3. If ft : X → R is a α-exp-concave convex function for all t ∈ {1, . . . , T} and
subject to the convex set X ⊆ Rn then Algorithm A4 has the following regret bound

RT (A4) ≤ 64(
L2

H
+ LD)n(log(T ) + 1) (2.39)

To show how FTAL is related to a quasi-Newton algorithm we present an alternative form
of Algorithm 4. Given that Q†t denotes the Moore-Penrose pseudoinverse of Qt consider the
following algorithm.

Algorithm 5 Follow the Approximate Leader Algorithm (Version 2)

Require: x1 ∈ X ⊆ Rn , β = 1
2

min{ 1
4LD

, α} , Q0 = 0 and b0 = 0
1: for t = 1 to T do
2: yt ∈ ∂ft(xt)
3: Qt = yty

>
t + Qt−1

4: bt = yty
>
t xt − 1

β
yt + bt−1

5: zt+1 = Q†tbt
6: xt+1 = arg minx∈X (zt+1 − x)>Qt(zt+1 − x)
7: end for

At first glance these two algorithms appear to be different. However, following Hazan et
al. [14] we show with Lemma 4 that Algorithm 4 and Algorithm 5 are essentially equivalent.
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Lemma 4. Given Qt is invertible then Algorithm 4 and Algorithm 5 are equivalent.

Proof (Lemma 4). Consider the update from Algorithm 4

xt+1 = arg min
x∈X

t∑
i=1

fi(xi) + y>i (x− xi) +
β

2
(x− xi)

>yiy
>
i (x− xi) (2.40)

= arg min
x∈X

t∑
i=1

−(βx>i yiy
>
i − y>i )x +

β

2
x>yiy

>
i x (2.41)

= arg min
x∈X

t∑
i=1

1

2
x>yiy

>
i x− (yiy

>
i xi −

1

β
yi)
>x (2.42)

= arg min
x∈X

1

2
x>Qtx− b>t x (2.43)

= arg min
x∈X

x>Qtx− 2b>t x (2.44)

= arg min
x∈X

(x−Q−1t bt)
>Qt(x−Q−1t bt)− b>t Q−1t bt (2.45)

which is the update step for Algorithm 5.

Lemma 4 shows that Algorithm 4 and Algorithm 5 are essentially equivalent. This result
provides insight into how FTAL works and how it is related to a quasi-Newton algorithm.
Section 2.3 also presented ONS as a quasi-Newton algorithm. In the next section we will
explore how ONS and FTAL are related.

2.5 Relation of ONS and FTAL Algorithms

Previous work states that ONS, presented as Algorithm 3, was derived using intuition from
FTAL, presented as Algorithm 5 [14]. However, it is unclear exactly how these two algorithms
are related. Their relationship is highlighted by Lemma 5.

Lemma 5. Given Algorithms 3 and 5 let zt ∈ X for all t ∈ {1, . . . , T} and x1 = 0. If
Algorithm 5 is such that Q0 = εIn where ε > 0 then the resulting algorithm is equivalent to
Algorithm 3.

Proof (Lemma 5). Given zt ∈ X for all t ∈ {1, . . . , T} then xt = zt for all t ∈ {1, . . . , T}.
Given our assumptions we will inductively show that the algorithms are equivalent. For
t = 1 the update of Algorithm 3 is

x2 = x1 −
1

β
Q−11 y1 (2.46)

x2 = − 1

β
Q−11 y1 (2.47)
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The update for Algorithm 5 where Q0 = εIn and ε > 0 is

xt+1 = Q−1t (
t∑
i=1

yiy
>
i xi −

1

β
yi) (2.48)

where Qt =
∑t

i=1 yiy
>
i + εIn. At t = 1 the update is as follows

x2 = Q−11 (y1y
>
1 x1 −

1

β
y1) (2.49)

x2 = − 1

β
Q−11 y1 (2.50)

showing that the update is equivalent at t = 1. Given the update is equivalent at t we show
that the update is also equivalent at t+ 1. Consider again the update of Algorithm 5.

xt+1 = Q−1t (
t∑
i=1

yiy
>
i xi −

1

β

t−1∑
i=1

yi)−
1

β
Q−1t yt (2.51)

xt+1 = pt −
1

β
Q−1t yt (2.52)

where pt = Q−1t (
∑t

i=1 yiy
>
i xi − 1

β

∑t−1
i=1 yi). Now consider

xt = (
t−1∑
i=1

yiy
>
i + Q0)

−1(
t−1∑
i=1

yiy
>
i xi −

1

β
yi) (2.53)

(
t−1∑
i=1

yiy
>
i + Q0)xt =

t−1∑
i=1

yiy
>
i xi −

1

β

t−1∑
i=1

yi (2.54)

(
t−1∑
i=1

yiy
>
i + Q0)xt + yty

>
t xt =

t−1∑
i=1

yiy
>
i xi −

1

β

t−1∑
i=1

yi + yty
>
t xt (2.55)

(
t∑
i=1

yiy
>
i + Q0)xt =

t∑
i=1

yiy
>
i xi −

1

β

t−1∑
i=1

yi (2.56)

Qtxt =
t∑
i=1

yiy
>
i xi −

1

β

t−1∑
i=1

yi (2.57)

xt = Q−1t (
t∑
i=1

yiy
>
i xi −

1

β

t−1∑
i=1

yi) (2.58)

xt = pt (2.59)
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and therefore

xt+1 = pt −
1

β
Q−1t yt (2.60)

= xt −
1

β
Q−1t yt (2.61)

showing that given our assumptions Algorithm 5 is equivalent to Algorithm 3.

As proven by Lemma 5 the only difference between ONS, Algorithm 3, and FTAL,
Algorithm 5, is an initialization of the hessian approximation and a projection step onto
a convex set X . The projection step of FTAL incorporates all primal and dual points in
calculating the descent direction represented by bt in Algorithm 5. In contrast, the projection
step of ONS uses only the most up-to-date subgradient −yt as the descent direction in
Algorithm 3. This indicates that ONS is more like a classic quasi-Newton algorithm [40] while
FTAL creates an ever improving quadratic approximation of the objective function. At each
iteration FTAL minimizes the approximate objective function subject to the constraints.

2.6 Implementation

A naive implementation of ONS, Algorithm 3, requires that a matrix inverse be calculated
at each iteration. However, a well known formula can be used to update the inverse of a
matrix with rank one updates [41].

(Q + yy>)−1 = Q−1 − Q−1yy>Q−1

1 + y>Q−1y
(2.62)

Therefore, updates of ONS can be calculated in O(n2) time with matrix-vector and vector-
vector products, not including the projection step. Similarly, O(n2) space is required to store
the matrix at each iteration. Therefore Algorithm 3 can be implemented in O(n2) time and
space without the projection step.

The projection step can be solved as a convex optimization problem with space and time
requirements depending on the constraint set. For many common and simple convex sets,
such as the unit cube, efficient algorithms exist.
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Chapter 3

New Quasi-Newton Algorithms

This chapter presents two new algorithms for strongly convex functions. Section 3.1
presents a new Online Newton Step (ONS) algorithm for strongly convex functions. In
Section 3.2, using the intuition from Section 2.5, a new FTAL algorithm for strongly con-
vex functions is presented. The regret bounds for these algorithms are not a function of
the number of iterations but instead depend on a sequence of strongly convex parameters
{H1, . . . , HT}. In Chapter 4, Section 4.3, we discuss how these quasi-Newton algorithms can
be parallelized when given a summed objective function.

3.1 ONS for Strongly Convex Functions

We present a new Online Newton Step (ONS) algorithm for strongly convex functions and
the corresponding regret bound. Although our analysis requires that the convex set and
the subgradients are bounded, unlike the algorithms of Chapter 2 our algorithms do not
depend on the parameters D or L as defined by Assumption 1. Also, we obtain a provably
tighter regret bound than Algorithm 3. The choice of the initialization parameter ε, and
the resulting bound, is addressed in Section 3.1.2. The new ONS algorithm is presented as
Algorithm 6.

Algorithm 6 Online Newton Step for Strongly Convex Functions

Require: x1 ∈ X ⊆ Rn, {Ht}Tt=1, Q0 = Inε and ε > 0
1: for t = 1 to T do
2: yt ∈ ∂ft(xt)
3: vt =

√
Ht

||yt||2 yt

4: Qt = vtv
>
t + Qt−1

5: zt+1 = xt −Q−1t yt
6: xt+1 = ΠQt

X (zt+1) = arg minx∈X (zt+1 − x)>Qt(zt+1 − x)
7: end for
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3.1.1 Analysis

We now present our results with proofs to follow. Lemma 6 exploits strong convexity to
obtain a lower bound on the objective function.

Lemma 6. Given a Ht-strongly convex function with respect to || · ||p where p ∈ {1, 2} then
for all z,xt ∈ X and any yt ∈ ∂ft(xt) where ||yt||2 ≤ L

ft(z) ≥ ft(xt) + y>t (z− xt) +
1

2
[v>t (z− xt)]

2 (3.1)

where vt = αtyt and αt =
√
Ht

||yt||2 . Also, given β = Hmin

L2 where Hmin = mintHt then
α2
t

β
≥ 1.

Next we present the main theorem using Lemma 6 and Lemmas 18 and 19 of Appendix
B. The regret bound is presented with an unknown ε > 0. The choice of ε is addressed
in Section 3.1.2. Notice that the strongly convex constant is allowed to change with each
iteration.

Theorem 4. If ft : X → R is a Ht-strongly convex function with respect to || · ||p for all
t ∈ {1, . . . , T} where p ∈ {1, 2}, Ht > 0 and Hmin = mintHt subject to the convex set
X ⊆ Rn then Algorithm A6 has the following regret bound

RT (A6) ≤
nL2

2Hmin

log(
1

ε

T∑
t=1

Ht + 1) +
εD2

2
(3.2)

where ε > 0 is an initialization parameter.

The proofs for the above results are as follows.

Proof (Lemma 6). Consider Theorem 7.7.3 of Horn and Johnson [42]. Given A ∈ Sn++ and
B ∈ Sn+ then A � B if and only if λmax(BA−1) ≤ 1. Let A = In and let B = 1

||yt||22
yty

>
t .

Therefore if λmax(B) ≤ 1 then In � B.

trace(B) =
1

||yt||22

n∑
i=1

(yt(i))
2 (3.3)

=
1

||yt||22
||yt||22 (3.4)

= 1 (3.5)

We have trace(B) =
∑n

i=1 λi = 1 and given B � 0 then λi ≥ 0 for all i ∈ {1, . . . , n}.
Therefore λi ≤ 1 for all i ∈ {1, . . . , n} and therefore λmax(B) ≤ 1. This implies that In � B.
Using strong convexity, Lemma 2 and given || · ||21 ≥ || · ||22 we have for some p ∈ {1, 2} that

ft(z) ≥ ft(xt) + y>t (z− xt) +
Ht

2
||z− xt||2p (3.6)

≥ ft(xt) + y>t (z− xt) +
Ht

2
||z− xt||22 (3.7)
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Now consider

ft(z) ≥ ft(xt) + y>t (z− xt) +
Ht

2
(z− xt)

>B(z− xt) (3.8)

= ft(xt) + y>t (z− xt) +
1

2
(z− xt)

>vtv
>
t (z− xt) (3.9)

= ft(xt) + y>t (z− xt) +
1

2
[v>t (z− xt)]

2 (3.10)

where vt = αtyt and αt =
√
Ht

||yt||2 . Now consider that α2
t = Ht

||yt||22
and β = Hmin

L2 we then have

αt
2 =

Ht

||yt||22
(3.11)

≥ Hmin

L2
(3.12)

= β (3.13)

and therefore
α2
t

β
≥ 1.

Proof (Theorem 4). Starting with the definition of zt+1 we have

zt+1 − x∗ = xt − x∗ −Q−1t yt (3.14)

Qt(zt+1 − x∗) = Qt(xt − x∗)− yt (3.15)

multiplying on the left by (3.14) we obtain

(zt+1 − x∗)>Qt(zt+1 − x∗) = (xt − x∗ −Q−1t yt)
>Qt(xt − x∗)−

(xt − x∗ −Q−1t yt)
>yt (3.16)

(zt+1 − x∗)>Qt(zt+1 − x∗) = (xt − x∗)>Qt(xt − x∗)− 2y>t (xt − x∗) +

y>t Q−1t yt (3.17)

rearranging terms we have

2y>t (xt − x∗) = ||xt − x∗||2Qt
− ||zt+1 − x∗||2Qt

+ y>t Q−1t yt (3.18)

Given Q−1t is positive definite then using
α2
t

β
≥ 1 of Lemma 6 and let vt ≡ αtyt we have

2y>t (xt − x∗) ≤ ||xt − x∗||2Qt
− ||zt+1 − x∗||2Qt

+
α2
t

β
y>t Q−1t yt (3.19)

= ||xt − x∗||2Qt
− ||zt+1 − x∗||2Qt

+
1

β
v>t Q−1t vt (3.20)
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Using Lemma 19 we have

||zt+1 − x∗||2Qt
≥ ||xt+1 − x∗||2Qt

(3.21)

and then

2y>t (xt − x∗) ≤ ||xt − x∗||2Qt
− ||xt+1 − x∗||2Qt

+
1

β
v>t Q−1t vt (3.22)

summing together all T inequalities

2
T∑
t=1

y>t (xt − x∗) ≤ ||x1 − x∗||2Q1
+

T∑
t=2

(xt − x∗)>(Qt −Qt−1)(xt − x∗)−

||xT+1 − x∗||2QT
+

1

β

T∑
t=1

v>t Q−1t vt (3.23)

given Qt −Qt−1 = vtv
>
t then

2
T∑
t=1

y>t (xt − x∗) ≤ (x1 − x∗)>[Q1 − v1v
>
1 ](x1 − x∗) +

T∑
t=1

[v>t (xt − x∗)]2 −

||xT+1 − x∗||2QT
+

1

β

T∑
t=1

v>t Q−1t vt (3.24)

2
T∑
t=1

y>t (xt − x∗) ≤ (x1 − x∗)>Q0(x1 − x∗) +
T∑
t=1

[v>t (xt − x∗)]2 −

||xT+1 − x∗||2QT
+

1

β

T∑
t=1

v>t Q−1t vt (3.25)

given Assumption 1(b) of Section 2.1, Q0 = Inε and dropping negative terms we obtain

2
T∑
t=1

y>t (xt − x∗) ≤ εD2 +
T∑
t=1

[v>t (xt − x∗)]2 +
1

β

T∑
t=1

v>t Q−1t vt (3.26)

using the lower bound of Lemma 6 then

T∑
t=1

[ft(xt)− ft(x∗)] ≤
εD2

2
+

1

2

T∑
t=1

[v>t (xt − x∗)]2 − 1

2

T∑
t=1

[v>t (xt − x∗)]2 +

1

2β

T∑
t=1

v>t Q−1t vt (3.27)

T∑
t=1

[ft(xt)− ft(x∗)] ≤
1

2β

T∑
t=1

v>t Q−1t vt +
εD2

2
(3.28)
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using Lemma 18 and ||vt||2 ≤
√
Ht then

T∑
t=1

v>t Q−1t vt ≤ n log(
1

ε

T∑
t=1

Ht + 1) (3.29)

finally given β = Hmin

L2 we have the result

RT (A6) ≤
nL2

2Hmin

log(
1

ε

T∑
t=1

Ht + 1) +
εD2

2
(3.30)

3.1.2 Initial Conditions

We now present two different choices for ε to use in Algorithm 6 and the resulting bound.
One candidate initial parameters ε is determined by solving a simple optimization problem
and other is determined by inspection. We assume that all strongly convex constants are
equal to H since it does not effect the choice of ε.

Initial ε by Optimization

Given the bound from Theorem 4 then

RT (A6) ≤
L2

2H
n log(

HT

ε
+ 1) +

εD2

2
(3.31)

=
L2

2H
n log(

HT

ε
) +

L2

2H
n log(

HT
ε

+ 1
HT
ε

) +
εD2

2
(3.32)

Given H, ε > 0 then for large enough T we have 1 ≤ HT
ε

and

RT (A6) ≤
L2

2H
n log(

HT

ε
) +

L2

2H
n log(2) +

εD2

2
(3.33)

let g : R+ → R and

g(ε) =
L2

2H
n log(

HT

ε
) +

L2

2H
n log(2) +

εD2

2
(3.34)

=
L2

2H
n log(HT )− L2

2H
n log(ε) +

L2

2H
n log(2) +

εD2

2
(3.35)

By inspection, g(ε) is convex. Now, solving

min
ε∈R

g(ε)
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g′(ε) = −nL
2

2H

1

ε
+
D2

2
= 0

and then

ε =
nL2

HD2

It is tempting to use this optimized parameter in practice. However, intuition indicates the
n parameter is an artifact of analysis. Therefore, in the numerical experiments of Chapter 6
we use ε = L2

HD2 . Again using the bound from Theorem 4 and letting ε = L2

HD2

RT (A6) ≤
L2

2H
n log(

D2H2T

L2
+ 1) +

L2

2H
(3.36)

Now let κ = L2

H
be the effective condition number of the function sequence {f1, f2, . . . } then

RT (A6) ≤
nκ

2
log(

D2H

κ
T + 1) +

κ

2
(3.37)

Initial ε by Inspection

In addition, by inspection we can obtain another bound that is better than bound (2.38).
Also, the algorithm using the following choice of ε does not dependent on the knowledge of
the parameters D or L. Consider

RT (A6) ≤
L2

2H
n log(

HT

ε
+ 1) +

εD2

2
(3.38)

let ε = H then

RT (A6) ≤
1

2

L2

H
n log(T + 1) +

HD2

2
(3.39)

=
1

2

L2

H
n log(T ) +

1

2

L2

H
n log(T + 1)− 1

2

L2

H
n log(T ) +

HD2

2
(3.40)

=
1

2

L2

H
n log(T ) +

1

2

L2

H
n log(

T + 1

T
) +

HD2

2
(3.41)

≤ 1

2

L2

H
n log(T ) +

1

2

L2

H
n log(2) +

HD2

2
(3.42)

Now compare this to (2.38), restated below for convenience.

RT (A3) ≤ 5
L2

H
n log(T ) + 5

LD

2
n log(T )

It is clear that the first term dependent on log(T ) is larger than the first term of our bound.
The second term is also dependent on log(T ) but our term is simply a constant. It is therefore
clear for some T our bound is tighter than (2.38). Furthermore, our result shows that the
effect of choosing an initial argument far from the optimal, or having a large constraint set
X , does not grow with the number of iterations T .
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3.2 FTAL for Strongly Convex Functions

This section presents a FTAL algorithm for strongly convex functions. Algorithm 7 is similar
to Algorithm 5 but has an initial approximate hessian, a strongly convex assumption and
does not depend on the parameters D or L as defined by Assumption 1. A similar variant
can be found in related work with a α-exp-concave assumption [37]. The FTAL algorithm
for strongly convex functions is as follows.

Algorithm 7 FTAL for Strongly Convex Functions

Require: x1 ∈ X , {Ht}Tt=1, Q0 = Inε, ε > 0 and b0 = 0
1: for t = 1 to T do
2: yt ∈ ∂ft(xt)
3: vt =

√
Ht

||yt||2 yt

4: Qt = vtv
>
t + Qt−1

5: bt = vtv
>
t xt − yt + bt−1

6: zt+1 = Q−1t bt
7: xt+1 = arg minx∈X (zt+1 − x)>Qt(zt+1 − x)
8: end for

3.2.1 Analysis

The regret bound proof for FTAL uses a proxy function f̃t that lower bounds each function
ft and is derived from Lemma 6. A bound on the difference between two sequential proxy
functions [f̃t(xt)−f̃t(xt+1)] is obtained and then it is shown that this difference is greater than
the difference between the optimal function value, ft(x

∗), and the function value generated
by the algorithm, ft(xt). Finally, the sum of differences [f̃t(xt)− f̃t(x∗)] is bounded to obtain
the regret bound of Theorem 6. We start with Lemma 7 that uses the proxy functions {f̃t}Tt=1

to bound the given functions {ft}Tt=1.

Lemma 7. Let ft : X → R be a cost function and let xt ∈ X for t ∈ {1, . . . , T}. Let
f̃t : X → R be a proxy function for t ∈ {1, . . . , T} such that ft(xt) = f̃t(xt) and for all
x ∈ X let ft(x) ≥ f̃t(x). Then

T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x) ≤
T∑
t=1

f̃t(xt)−min
x∈X

hT (x) +
1

2
x∗>Q0x

∗ (3.43)

where hT (x) =
∑T

t=1 f̃t(x) + 1
2
x>Q0x and x∗ ∈ arg minx∈X

∑T
t=1 ft(x).

We now need to bound proxy function regret. Lemma 8 shows that proxy function regret
can be upper bounded by the difference of proxy functions.
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Lemma 8. Let f̃t : X → R for t ∈ {1, . . . , T} be a sequence of proxy functions and let
xT+1 = arg minx∈X hT (x) where hT (x) =

∑T
t=1 f̃t(x) + 1

2
x>Q0x. Then

T∑
t=1

f̃t(xt)−min
x∈X

hT (x) ≤
T∑
t=1

[f̃t(xt)− f̃t(xt+1)] (3.44)

The next theorem bounds the difference of differentiable univariate convex functions
that leads to a logarithmic regret bound. The lower bounding proxy function resulting from
Lemma 6 is formulated as a differentiable univariate convex function.

Theorem 5. Assume for all t ∈ {1, . . . , T} the function f̃t : X → R can be written as
f̃t(x) = gt(u

>
t x) for a differentiable univariate convex function gt : R→ R and some vector

ut ∈ Rn. Assume that for some a, b, ε > 0 some ct > 0 where t ∈ {1, . . . , T} we have

||vt||2 ≤ ct where vt =
√
g′′t (u>t x)ut. Assume for all xt ∈ X we have |g′t(u>t xt)| ≤ b and for

all x ∈ X we have |g′t(u>t x)| ≤ b and g′′t (u>t x) = α2
t ≥ a. Then Algorithm 7 satisfies the

follow bound:

T∑
t=1

[f̃t(xt)− f̃t(xt+1)] ≤
nb2

a
log(

1

ε

T∑
t=1

c2t + 1) (3.45)

Finally, we bring these results together to obtain the final regret bound.

Theorem 6. If ft : X → R is a Ht-strongly convex function with respect to || · ||p for all
t ∈ {1, . . . , T} where p ∈ {1, 2}, Ht > 0 and Hmin = mint{Ht} subject to a convex set
X ⊆ Rn then Algorithm A7 has the following regret bound

RT (A7) ≤
nL2

Hmin

log(
1

ε

T∑
t=1

Ht + 1) +
1

2
εD2 (3.46)

The proofs of the previously states lemmas and theorems are as follows.

Proof (Lemma 7). Let x∗ ∈ arg minx∈X
∑T

t=1 ft(x) then

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗) ≤

T∑
t=1

f̃t(xt)−
T∑
t=1

f̃t(x
∗)− 1

2
x∗>Q0x

∗ +
1

2
x∗>Q0x

∗ (3.47)

≤
T∑
t=1

f̃t(xt)−min
x∈X

hT (x) +
1

2
x∗>Q0x

∗ (3.48)

where hT (x) =
∑T

t=1 f̃t(x) + 1
2
x>Q0x



CHAPTER 3. NEW QUASI-NEWTON ALGORITHMS 27

Proof (Lemma 8). We prove inductively that

T∑
t=1

f̃t(xt+1) ≤ min
x∈X

hT (x) (3.49)

By definition

f̃1(x2) +
1

2
x2
>Q0x2 = min

x∈X
f̃1(x) +

1

2
x>Q0x (3.50)

given Q0 � 0 then

f̃1(x2) ≤ min
x∈X

f̃1(x) +
1

2
x>Q0x (3.51)

proving (3.49) for T = 1. Assuming correctness for T − 1 then

T−1∑
t=1

f̃t(xt+1) ≤ min
x∈X

T−1∑
t=1

f̃t(x) +
1

2
x>Q0x (3.52)

T−1∑
t=1

f̃t(xt+1) + f̃T (xT+1) ≤ min
x∈X

T−1∑
t=1

f̃t(x) +
1

2
x>Q0x + f̃T (xT+1) (3.53)

T∑
t=1

f̃t(xt+1) ≤
T−1∑
t=1

f̃t(xT+1) +
1

2
xT+1

>Q0xT+1 + f̃T (xT+1) (3.54)

= min
x∈X

T∑
t=1

f̃t(x) +
1

2
x>Q0x (3.55)

= min
x∈X

hT (x) (3.56)

by definition. Completing the proof by induction. The result follows.

Proof (Theorem 5). Let ht(x) ≡
∑t

i=1 f̃i(x) + 1
2
x>Q0x where Q0 = Inε and ε > 0. Let

∆ be the forward difference operator such that ∆xt ≡ (xt+1 − xt) and ∆∇ht−1(xt) ≡
∇ht(xt+1)−∇ht−1(xt). Note that ∇f̃t(x) = g′t(u

>
t x)ut and let ∇t ≡ ∇f̃t(xt). Consider now

that

∇ht(xt+1)−∇ht(xt) =
t∑
i=1

∇f̃i(xt+1)−∇f̃i(xt) + Q0(xt+1 − xt) (3.57)

=
t∑
i=1

[g′i(u
>
i xt+1)− g′i(u>i xt)]ui + Q0(xt+1 − xt) (3.58)
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by applying a Taylor expansion of the function g′i(u
>
i x) at point xt for some ζit on the line

segment between xt and xt+1 such that

g′i(u
>
i xt+1) = g′i(u

>
i xt) +∇g′i(u>i ζit)>(xt+1 − xt) (3.59)

then

∇ht(xt+1)−∇ht(xt) =
t∑
i=1

ui[∇g′i(u>i ζit)>(xt+1 − xt)] + Q0(xt+1 − xt) (3.60)

=
t∑
i=1

g′′i (u>i ζ
i
t)uiu

>
i (xt+1 − xt) + Q0(xt+1 − xt) (3.61)

= (
t∑
i=1

g′′i (u>i ζ
i
t)uiu

>
i + Q0)(xt+1 − xt) (3.62)

Define Qt ≡
∑t

i=1 α
2
iuiu

>
i + Q0 where g′′i (u>i ζ

i
t) = α2

i and therefore

∇ht(xt+1)−∇ht(xt) = Qt∆xt (3.63)

Given that α2
i ≥ a and Q0 is positive definite then Qt is positive definite. Now consider that

∇ht(xt+1)−∇ht(xt) = ∇ht(xt+1)−
t−1∑
i=1

∇f̃i(xt)−Q0xt −∇f̃t(xt) (3.64)

= ∇ht(xt+1)−∇ht−1(xt)−∇t (3.65)

= ∆∇ht−1(xt)−∇t (3.66)

Now combining (3.66) and (3.63) we obtain

Qt∆xt = ∆∇ht−1(xt)−∇t (3.67)

multiplying on the left by −∇>t Q−1t we get

−∇>t ∆xt = −∇>t Q−1t ∆∇ht−1(xt) +∇>t Q−1t ∇t (3.68)

Now using the convexity of f̃t we obtain

f̃t(xt)− f̃t(xt+1) ≤ −∇f̃t(xt)>(xt+1 − xt) (3.69)

= −∇>t ∆xt (3.70)

and therefore

f̃t(xt)− f̃t(xt+1) ≤ −∇>t Q−1t ∆∇ht−1(xt) +∇>t Q−1t ∇t (3.71)
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We will now show that

−∇>t Q−1t ∆∇ht−1(xt) ≤ 0 (3.72)

Since xi = arg minx∈X hi−1(x) we have

∇hi−1(xi)>(x− xi) ≥ 0 (3.73)

for any x ∈ X using convexity and Lemma 16. Therefore

0 ≤ ∇ht(xt+1)
>(xt − xt+1) +∇ht−1(xt)>(xt+1 − xt) (3.74)

= −∇ht(xt+1)
>(xt+1 − xt) +∇ht−1(xt)>(xt+1 − xt) (3.75)

= −[∇ht(xt+1)−∇ht−1(xt)]>(xt+1 − xt) (3.76)

= −[∆∇ht−1(xt)]>∆xt (3.77)

Using (3.67) to solve for ∆xt we obtain

∆xt = Q−1t (∆∇ht−1(xt)−∇t) (3.78)

and then

0 ≤ −[∆∇ht−1(xt)]>Q−1t ([∆∇ht−1(xt)]−∇t) (3.79)

= −[∆∇ht−1(xt)]>Q−1t [∆∇ht−1(xt)] + [∆∇ht−1(xt)]>Q−1t ∇t (3.80)

rearranging terms and given that Q−1t is positive definite we obtain

−∇>t Q−1t [∆∇ht−1(xt)] ≤ −[∆∇ht−1(xt)]>Q−1t [∆∇ht−1(xt)] (3.81)

≤ 0 (3.82)

This results in

T∑
t=1

[f̃t(xt)− f̃t(xt+1)] ≤
T∑
t=1

∇>t Q−1t ∇t (3.83)

Given
α2
t

a
≥ 1 and ∇t = g′t(u

>
t xt)ut then

T∑
t=1

∇>t Q−1t ∇t ≤
T∑
t=1

α2
t

a
[g′t(u

>
t xt)ut]

>Q−1t [g′t(u
>
t xt)ut] (3.84)

=
T∑
t=1

g′t(u
>
t xt)

2

a
[αtut]

>Q−1t [αtut] (3.85)
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Let vt ≡ αtut and |g′t(u>t xt)| ≤ b then

T∑
t=1

∇>t Q−1t ∇t ≤
b2

a

T∑
t=1

v>t Q−1t vt (3.86)

where Qt =
∑t

i=1 viv
>
i + Q0. Using Lemma 18 and ||vt||2 ≤ ct then

T∑
t=1

v>t Q−1t vt ≤ n log(
1

ε

T∑
t=1

c2t + 1) (3.87)

and therefore

T∑
t=1

[f̃t(xt)− f̃t(xt+1)] ≤
nb2

a
log(

1

ε

T∑
t=1

c2t + 1) (3.88)

Proof (Theorem 6). Using the Ht-strongly convex assumption and Lemma 6 we have
ft(xt) = f̃t(xt) and ft(x) ≥ f̃t(x) for all x ∈ X where

f̃(x) ≡ ft(xt) + y>t (x− xt) +
α2
t

2
[y>t (x− xt)]

2 (3.89)

αt =
√
Ht

||yt||2 and yt ∈ ∂ft(xt). Given this, and using Lemma 7 we have the bound

T∑
t=1

[ft(xt)− ft(x∗)] ≤
T∑
t=1

f̃t(xt)−min
x∈X

hT (x) +
1

2
x∗>Q0x

∗ (3.90)

where hT (x) =
∑T

t=1 f̃t(x) + 1
2
x>Q0x. Adding x∗>Q0x

∗ to the result of Lemma 8 then

T∑
t=1

[ft(xt)− ft(x∗)] ≤
T∑
t=1

f̃t(xt)−
T∑
t=1

f̃t(xt+1) +
1

2
x∗>Q0x

∗ (3.91)

Without loss of generality we assume 0 ∈ X and then using Assumption 1(b) we have
1
2
x∗>Q0x

∗ ≤ 1
2
εD2 giving

T∑
t=1

[ft(xt)− ft(x∗)] ≤
T∑
t=1

f̃t(xt)−
T∑
t=1

f̃t(xt+1) +
1

2
εD2 (3.92)

Now to satisfy the conditions of Theorem 5 consider f̃t(x) = gt(y
>
t x) where

gt(s) ≡ ft(xt) + (s− y>t xt) +
α2
t

2
[s− y>t xt]

2 (3.93)
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and therefore a = β since g′′t (s) = α2
t ≥ β by Lemma 6. Then

||vt||2 = ||
√
g′′t (u>t x)ut||2 (3.94)

= ||αtyt||2 (3.95)

=
√
Ht (3.96)

and therefore ct =
√
Ht. Then finally |g′t(y>t xt)| = |1 + α2

ty
>
t (xt − xt)| = 1 and therefore

b = 1. Using these parameters, Theorem 5 , equation (3.92) and β = Hmin

L2 we have our result

RT (A7) ≤
nL2

Hmin

log(
1

ε

T∑
t=1

Ht + 1) +
1

2
εD2 (3.97)
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Chapter 4

New Block Diagonal Quasi-Newton
Algorithms

The algorithms analyzed in Chapter 3 have an update step that can be implemented in
O(n2) space and time. This results from the need to store and calculate an approximate
hessian matrix with n2 elements. In this chapter we develop and analyze an algorithmic
extension to a block diagonal, or fully diagonal, hessian approximation. This results in
a new algorithm family where complexity can be managed while still obtaining the same
theoretical bounds. The update step for a fully diagonal approximation requires O(n) space
and time and therefore matches the update complexity of Online Gradient Descent.

A similar known algorithm uses a mirror descent framework and applies to strongly
convex functions with respect to || · ||p where p ≥ 2 [23]. Our new algorithms use a Follow
the Leader framework, apply to p ≤ 2 and does not rely on the knowledge of parameters.

In Section 4.3 we present how quasi-Newton algorithms can exploit problem structure
to obtain a parallelized algorithm. In the constrained case, the projection step of our al-
gorithms require a quadratic program to be solved. However, with a fully diagonal hessian
approximation, all hessian eignvalues of the quadratic program are known by inspection.
Algorithms that exploit this structure can be used to solve the quadratic program [2].

We adopt the following notation to help present block diagonal matrices. A vector
vt ∈ X and be decomposed into R ∈ {1, . . . , n} sub-vectors vrt ∈ Rm where r ∈ {1, . . . , R}
and n = R×m such that vt = [v1

t
>
, . . . ,vRt

>
]>.

4.1 Block Diagonal ONS for Strongly Convex Func-

tions

We now present a block diagonal Online Newton Step (ONS) algorithm for strongly convex
functions and the resulting regret bound. Similar to the algorithms developed in Chapter
3, this algorithm does not depend on the parameters D or L as defined by Assumption 1.
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The algorithm achieves the same theoretical guarantee but allows for block diagonal hessian
approximations. The choice of the initialization parameter ε, and the resulting bound, is
addressed in Section 3.1.2.

Algorithm 8 Block Diagonal Matrix ONS for Strongly Convex Functions

Require: x1 ∈ X ⊆ Rn, {Ht}Tt=1, Q0 = Inε, ε > 0 and R ∈ {i|i ∈ {1, . . . , n}, n = i×m}
1: for t = 1 to T do
2: yt ∈ ∂ft(xt)
3: vt =

√
Ht

||yt||2 yt

4: Qt =

v1
tv

1
t
>

0 0

0
. . . 0

0 0 vRt vRt
>

+ Qt−1

5: zt+1 = xt −Q−1t yt
6: xt+1 = ΠQt

X (zt+1) = arg minx∈X (zt+1 − x)>Qt(zt+1 − x)
7: end for

4.1.1 Analysis

Lemma 9 presents a block diagonal version of Lemma 6. This lemma exploits strong convexity
to obtain a lower bound on the objective function.

Lemma 9. Given a Ht-strongly convex function with respect to || · ||p where p ∈ {1, 2} then
for all z,xt ∈ X and any yt ∈ ∂ft(xt) and some R and m such that n = R × m where
||yt||2 ≤ L we have

ft(z) ≥ ft(xt) + y>t (z− xt) +
1

2
(z− xt)

>Dt,R(z− xt) (4.1)

where

Dt,R ≡

v1
tv

1
t
>

0 0

0
. . . 0

0 0 vRt vRt
>

 (4.2)

and equivalently

ft(z) ≥ ft(xt) + y>t (z− xt) +
1

2

R∑
r=1

[vrt
>(zr − xrt )]

2 (4.3)

where vrt ∈ Rm for all r ∈ {1, . . . , R} and vt = [v1
t
>
, . . . ,vRt

>
]>, vrt = αty

r
t and αt =√

Ht

||yt||2 . Also, given β = Hmin

L2 where Hmin = mintHt then
α2
t

β
≥ 1.
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Next we present the main theorem using Lemma 9 and Lemmas 18 and 19 of Appendix
B. The regret bound is presented with an unknown ε > 0 and the choice of ε is addressed in
Section 3.1.2. As with the algorithms presented in Chapter 3 the strongly convex constant
H > 0 is allowed to change at each iteration.

Theorem 7. If ft : X → R is a Ht-strongly convex function with respect to || · ||p for all
t ∈ {1, . . . , T} where p ∈ {1, 2}, Ht > 0, Hmin = mintHt with some R and m such that
n = R × m subject to the convex set X ⊆ Rn then Algorithm A8 has the following regret
bound

RT (A8) ≤
nL2

2Hmin

log(
1

ε

T∑
t=1

Ht + 1) +
εD2

2
(4.4)

where ε > 0 is an initialization parameter.

The proofs for the above results are as follows.

Proof (Lemma 9). Consider Theorem 7.7.3 of Horn and Johnson[42]. Given A ∈ Sn++ and
B ∈ Sn+ then A � B if and only if λmax(BA−1) ≤ 1. Let A = In and let B = 1

Ht
Dt,R for

any R ∈ {1, . . . , n} where

Dt,R ≡

v1
tv

1
t
>

0 0

0
. . . 0

0 0 vRt vRt
>

 (4.5)

Therefore if λmax(B) ≤ 1 then In � B.

trace(B) =
1

||yt||22

n∑
i=1

(yt(i))
2 (4.6)

=
1

||yt||22
||yt||22 (4.7)

= 1 (4.8)

We have trace(B) =
∑n

i=1 λi = 1 and given B � 0 then λi ≥ 0 for all i ∈ {1, . . . , n}.
Therefore λi ≤ 1 for all i ∈ {1, . . . , n} and therefore λmax(B) ≤ 1. This implies that
HtIn � Dt,R. Now, using strong convexity and Lemma 2 and given || · ||21 ≥ || · ||22, we have
for some p ∈ {1, 2} that

ft(z) ≥ ft(xt) + y>t (z− xt) +
Ht

2
||z− xt||2p (4.9)

≥ ft(xt) + y>t (z− xt) +
Ht

2
||z− xt||22 (4.10)
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Now consider

ft(z) ≥ ft(xt) + y>t (z− xt) +
1

2
(z− xt)

>HtIn(z− xt) (4.11)

≥ ft(xt) + y>t (z− xt) +
1

2
(z− xt)

>Dt,R(z− xt) (4.12)

then

ft(z) ≥ ft(xt) + y>t (z− xt) +
1

2

R∑
r=1

[vrt
>(zr − xrt )]

2 (4.13)

and vrt = αty
r
t for all r ∈ {1, . . . , R} and αt =

√
Ht

||yt||2 . Now consider that α2
t = Ht

||yt||22
and

β = Hmin

L2 we then have

α2
t =

Ht

||yt||22
(4.14)

≥ Hmin

L2
(4.15)

= β (4.16)

and therefore
α2
t

β
≥ 1.

Proof (Theorem 7). Starting with the definition of zt+1 we have

zt+1 − x∗ = xt − x∗ −Q−1t yt (4.17)

Qt(zt+1 − x∗) = Qt(xt − x∗)− yt (4.18)

multiplying on the left by (4.17) we obtain

(zt+1 − x∗)>Qt(zt+1 − x∗) = (xt − x∗ −Q−1t yt)
>Qt(xt − x∗)−

(xt − x∗ −Q−1t yt)
>yt (4.19)

(zt+1 − x∗)>Qt(zt+1 − x∗) = (xt − x∗)>Qt(xt − x∗)− 2y>t (xt − x∗) +

y>t Q−1t yt (4.20)

rearranging terms we have

2y>t (xt − x∗) = ||xt − x∗||2Qt
− ||zt+1 − x∗||2Qt

+ y>t Q−1t yt (4.21)

Given Q−1t is positive definite then using
α2
t

β
≥ 1 of Lemma 9 and let vt ≡ αtyt we have

2y>t (xt − x∗) ≤ ||xt − x∗||2Qt
− ||zt+1 − x∗||2Qt

+
α2
t

β
y>t Q−1t yt (4.22)

= ||xt − x∗||2Qt
− ||zt+1 − x∗||2Qt

+
1

β
v>t Q−1t vt (4.23)
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Using Lemma 19 we have

||zt+1 − x∗||2Qt
≥ ||xt+1 − x∗||2Qt

(4.24)

and then

2y>t (xt − x∗) ≤ ||xt − x∗||2Qt
− ||xt+1 − x∗||2Qt

+
1

β
v>t Q−1t vt (4.25)

summing together all T inequalities

2
T∑
t=1

y>t (xt − x∗) ≤ ||x1 − x∗||2Q1
+

T∑
t=2

(xt − x∗)>(Qt −Qt−1)(xt − x∗)−

||xT+1 − x∗||2QT
+

1

β

T∑
t=1

v>t Q−1t vt (4.26)

As defined by Lemma 9 we have Qt −Qt−1 = Dt,R and then

2
T∑
t=1

y>t (xt − x∗) ≤ (x1 − x∗)>[Q1 −D1,R](x1 − x∗) +
T∑
t=1

(xt − x∗)>Dt,R(xt − x∗)−

||xT+1 − x∗||2QT
+

1

β

T∑
t=1

v>t Q−1t vt (4.27)

2
T∑
t=1

y>t (xt − x∗) ≤ (x1 − x∗)>Q0(x1 − x∗) +
T∑
t=1

(xt − x∗)>Dt,R(xt − x∗)−

||xT+1 − x∗||2QT
+

1

β

T∑
t=1

v>t Q−1t vt (4.28)

given Assumption 1(b) , Q0 = Inε and dropping negative terms we obtain

2
T∑
t=1

y>t (xt − x∗) ≤ εD2 +
T∑
t=1

||xt − x∗||Dt,R
+

1

β

T∑
t=1

v>t Q−1t vt (4.29)

using the lower bound of Lemma 9 then

T∑
t=1

[ft(xt)− ft(x∗)] ≤
εD2

2
+

1

2

T∑
t=1

||xt − x∗||Dt,R
− 1

2

T∑
t=1

||xt − x∗||Dt,R
+

1

2β

T∑
t=1

v>t Q−1t vt (4.30)

T∑
t=1

[ft(xt)− ft(x∗)] ≤
1

2β

T∑
t=1

v>t Q−1t vt +
εD2

2
(4.31)
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let

Qt ≡

Q1
t 0 0

0
. . . 0

0 0 QR
t

 (4.32)

where for all r ∈ {1, . . . , R}

Qr
t =

t∑
i=1

vriv
r
i
> + εIm

then

T∑
t=1

v>t Q−1t vt =
T∑
t=1

R∑
r=1

vrt
>(Qr

t )
−1vrt (4.33)

using Lemma 18 and ||vrt || ≤ ||vt||2 ≤
√
Ht then for each r ∈ {1, . . . , R}

T∑
t=1

vrt
>(Qr

t )
−1vrt ≤ m log(

1

ε

T∑
t=1

Ht + 1) (4.34)

finally given β = Hmin

L2 we have the result

RT (A8) ≤
L2

2Hmin

R∑
r=1

m log(
1

ε

T∑
t=1

Ht + 1) +
εD2

2
(4.35)

RT (A8) ≤
L2

2Hmin

Rm log(
1

ε

T∑
t=1

Ht + 1) +
εD2

2
(4.36)

RT (A8) ≤
nL2

2Hmin

log(
1

ε

T∑
t=1

Ht + 1) +
εD2

2
(4.37)

4.2 Block Diagonal FTAL for Strongly Convex Func-

tions

This section presents a block diagonal FTAL algorithm for strongly convex functions. This
algorithm is similar to previous work on general convex functions [33]. However, their algo-
rithm requires knowledge of bounds on the feasible set. Also, our algorithm exploits strong
convexity to obtain better worst case bounds.
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Algorithm 9 Block Diagonal Matrix FTAL for Strongly Convex Functions

Require: x1 ∈ X , {Ht}Tt=1, Q0 = Inε, ε > 0, b0 = 0 and R ∈ {i|i ∈ {1, . . . , n}, n = i×m}
1: for t = 1 to T do
2: yt ∈ ∂ft(xt)
3: vt =

√
Ht

||yt||2 yt

4: Dt,R =

v1
tv

1
t
>

0 0

0
. . . 0

0 0 vRt vRt
>


5: Qt = Dt,R + Qt−1
6: bt = Dt,Rxt − yt + bt−1
7: zt+1 = Q−1t bt
8: xt+1 = arg minx∈X (zt+1 − x)>Qt(zt+1 − x)
9: end for

4.2.1 Analysis

The analysis from Chapter 3 can be used to prove a theoretical bound for Algorithm 9.
The proxy function f̃t is derived from Lemma 9 and lower bounds ft with a block diagonal
matrix approximation. Theorem 8 then uses Lemma 7 , Lemma 8 and Theorem 5 to prove
the bound for Algorithm 9.

Theorem 8. If ft : X → R is a Ht-strongly convex function with respect to || · ||p for all
t ∈ {1, . . . , T} where p ∈ {1, 2}, Ht > 0 and Hmin = mint{Ht} and some R,m ∈ {1, . . . , n}
such that n = R ×m subject to a convex set X ⊆ Rn then Algorithm A9 has the following
regret bound

RT (A9) ≤
nL2

Hmin

log(
1

ε

T∑
t=1

Ht + 1) +
1

2
εD2 (4.38)

The proofs of the previously states lemmas and theorems are as follows.

Proof (Theorem 8). Using the Ht-strongly convex assumption and Lemma 9 we have
ft(xt) = f̃t(xt) and ft(x) ≥ f̃t(x) for all x ∈ X where

f̃(x) ≡ ft(xt) + y>t (x− xt) +
α2
t

2

R∑
r=1

[yrt
>(xr − xrt )]

2 (4.39)

αt =
√
Ht

||yt||2 and yt ∈ ∂ft(xt). Given this, and using Lemma 7 we have the bound

T∑
t=1

[ft(xt)− ft(x∗)] ≤
T∑
t=1

f̃t(xt)−min
x∈X

hT (x) +
1

2
x∗>Q0x

∗ (4.40)
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where hT (x) =
∑T

t=1 f̃t(x) + 1
2
x>Q0x. Adding x∗>Q0x

∗ to the result of Lemma 8 then

T∑
t=1

[ft(xt)− ft(x∗)] ≤
T∑
t=1

f̃t(xt)−
T∑
t=1

f̃t(xt+1) +
1

2
x∗>Q0x

∗ (4.41)

Without loss of generality we assume 0 ∈ X and then using Assumption 1(b) we we have
1
2
x∗>Q0x

∗ ≤ 1
2
εD2 giving

T∑
t=1

[ft(xt)− ft(x∗)] ≤
T∑
t=1

f̃t(xt)−
T∑
t=1

f̃t(xt+1) +
1

2
εD2 (4.42)

Now to satisfy the conditions of Theorem 5 consider f̃t(x) =
∑R

r=1 g
r
t (y

r
t
>xr) where

grt (s
r) ≡ 1

R
ft(xt) + (sr − yrt

>xrt ) +
α2
t

2
[sr − yrt

>xrt ]
2 (4.43)

and therefore a = β since grt
′′(sr) = α2

t ≥ β by Lemma 9. Then

||vrt ||2 = ||
√
grt
′′(urt

>xr)urt ||2 (4.44)

= αt||yrt ||2 (4.45)

≤ αt||yt||2 (4.46)

=
√
Ht (4.47)

and therefore ct =
√
Ht. Then finally |grt ′(yrt>xrt )| = |1 + α2

ty
r
t
>(xrt − xrt )| = 1 and therefore

b = 1. Using these parameters, Theorem 5 , equation (4.42) and β = Hmin

L2 we have our result

RT (A9) ≤
T∑
t=1

R∑
r=1

grt (y
r
t
>xrt )−

T∑
t=1

R∑
r=1

grt (y
r
t
>xrt+1) +

1

2
εD2 (4.48)

RT (A9) ≤
R∑
r=1

T∑
t=1

[
grt (y

r
t
>xrt )− grt (yrt

>xrt+1)
]

+
1

2
εD2 (4.49)

RT (A9) ≤
R∑
r=1

mL2

Hmin

log(
1

ε

T∑
t=1

Ht + 1) +
1

2
εD2 (4.50)

=
nL2

Hmin

log(
1

ε

T∑
t=1

Ht + 1) +
1

2
εD2 (4.51)
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4.3 Parallelization of Quasi-Newton Algorithms

We now present the parallelized forms of the algorithms found in Chapter 3 given the objec-
tive function structure described in Chapter 1. Bertsekas [43] provides an in-depth review of
specialized subgradient methods for optimization problems with a summed objective func-
tion. We now highlight how parallelism can be exploited in certain structured optimization
problems. We do not present parallelized algorithms with a block diagonal hessian approxi-
mation. However, the implications with regard to algorithmic complexity will be discussed
and given the following presentation the form of these algorithms should be clear to the
reader.

Coupled Objective Function

Consider the online optimization problem of Definition 1, but assume the sequence of convex
functions {f1, f2, . . . } satisfy the following assumption.

Assumption 2. The function ft : X → R has the following form

ft(x) =
R∑
r=1

f rt (x) (4.52)

where x ∈ X ⊆ Rn.

A problem with this objective function has coupling through the function arguments and
may have coupling through the constraints, but parallelism can still be employed through
the subgradient calculation. By utilizing a subgradient property we have

∂ft(x) =
R∑
r=1

∂f rt (x) (4.53)

as found in Appendix A. Therefore each subgradient yrt ∈ ∂f rt (xrt ) can be calculated in
parallel on R slave processes. These subgradients are then sent to a master process that
aggregates the subgradients, calculates the projection onto the convex set and then transmits
the new feasible arguments back to the slave processes.

Decoupled Objective Function

Consider an online convex optimization problem with a function that only has coupling
through the constraints.

Assumption 3. The function ft : X → R has the following form

ft(x) =
R∑
r=1

f rt (xr) (4.54)

where [x1, . . . ,xR] ∈ X ⊆ Rn and xr ∈ Rm for all r ∈ {1, . . . , R}
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This problem structure allows greater algorithmic decoupling and therefore permits greater
parallelism. All calculations can be done in parallel on R slave processes with the exception
of the projection step calculated by a master process. Given the following result, it is clear
that the algorithms can be parallelized, as described in Section 4.3.1, and that the previously
presented theoretical results still hold.

Lemma 10. Given a Ht-strongly convex function with respect to || · ||p where p ∈ {1, 2} with
the function structure of Assumption 3 then for all z,xt ∈ X and for all yt ∈ ∂f(xt) then

R∑
r=1

f rt (zrt ) ≥
R∑
r=1

f rt (xrt ) +
R∑
r=1

yrt
>(zr − xrt ) +

R∑
r=1

1

2
[vrt
>(zr − xrt )]

2 (4.55)

where yt = [y1
t , . . . ,y

R
t ]> , xt = [x1

t , . . . ,x
R
t ]>, z = [z1, . . . , zR]> , vrt = αrty

r
t , αrt =

√
Ht

||yr
t ||2

.

Also, given β = Hmin

L2 then
(αr

t )
2

β
≥ 1.

Proof (Lemma 10). Using strong convexity, Lemma 2, and the function structure of As-
sumption 3 we have for some p ∈ {1, 2}

ft(z) ≥ ft(xt) + y>t (z− xt) +
Ht

2
||z− xt||2p (4.56)

ft(z) ≥ ft(xt) + y>t (z− xt) +
Ht

2
||z− xt||22 (4.57)

R∑
r=1

f rt (zr) ≥
R∑
r=1

f rt (xrt ) +
R∑
r=1

yrt
>(zr − xrt ) +

Ht

2

R∑
r=1

||zr − xrt ||22 (4.58)

which are R summed Ht-strongly convex functions. The remaining proof follows from the
proof of Lemma 6.

We now present parallel quasi-Newton algorithms for strongly convex functions.

4.3.1 Parallel ONS and FTAL for Strongly Convex Functions

A parallel version of Algorithm 6 is presented as Algorithm 10 assuming functions of the form
given by Assumption 3. The algorithm portion that can be executed in parallel is the loop
over the computing platforms R. To make the algorithm clearer and more compact consider
the notation zt+1 ≡ [z1>

t+1, . . . , z
R>
t+1]

> , xt+1 ≡ [x1>
t+1, . . . ,x

R>
t+1]

>, yt+1 ≡ [y1>
t+1, . . . ,y

R>
t+1]

> and

Qt ≡

Q1
t 0 0

0
. . . 0

0 0 QR
t

 bt ≡

 b1
t

...
bRt

 (4.59)
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Algorithm 10 Parallel ONS for Strongly Convex Functions

Require: x1 ∈ X , {Ht}Tt=1, Q0 = Inε and ε > 0
1: for t = 1 to T do
2: for r = 1 to R do
3: yrt ∈ ∂f rt (xrt )
4: vrt =

√
Ht

yr
t

||yr
t ||2

5: Qr
t = vrtv

r
t
> + Qr

t−1
6: zrt+1 = xrt − (Qr

t )
−1yrt

7: end for
8: [x1>

t+1, . . . ,x
R>
t+1]

> = arg min[x1>,...,xR>]>∈X
∑R

r=1(z
r
t+1 − xr)>Qr

t (z
r
t+1 − xr)

9: end for

The parallelized version of Algorithm 7 is presented as Algorithm 11.

Algorithm 11 Parallel FTAL for Strongly Convex Functions

Require: x1 ∈ X , {Ht}Tt=1, Q0 = Inε, ε > 0 and b0 = 0
1: for t = 1 to T do
2: for r = 1 to R do
3: yrt ∈ ∂f rt (xrt )
4: vrt =

√
Ht

yr
t

||yr
t ||2

5: Qr
t = vrtv

r
t
> + Qt−1

6: brt = vrtv
r
t
>xrt − yrt + brt−1

7: zrt+1 = (Qr
t )
−1brt

8: end for
9: [x1>

t+1, . . . ,x
R>
t+1]

> = arg min[x1>,...,xR>]>∈X
∑R

r=1(z
r
t+1 − xr)>Qr

t (z
r
t+1 − xr)

10: end for

As discussed in Section 2.6, the ONS and FTAL with a general strongly convex objective
function can be implemented in O(n2) time and space not including the projection step.
Given the structured objective function of Assumption 3 and counting calculations done in
parallel as a single calculation, the parallel ONS and FTAL can be implemented in time and
space O(n

2

R
) without the projection step. This result indicates that for the problem class

where n << R parallelism may results in improved performance. Furthermore by applying
the fully diagonal algorithms from Sections 4.1 and 4.2, the complexity scales with O(m) not
including the projection step. This algorithm is particularly efficient when m << R and the
projection step is computationally efficient. If one were to use an interior point method a
barrier function would be constructed by placing all the constraints in the objective function
[44]. This would result in a coupled objective function where you are no longer able to
exploit the problems structure for parallelism.
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The structured objective function of Assumption 3 is discussed again in Chapter 7 when
we address online vehicle routing. Although online vehicle routing is not a convex problem,
the objective function satisfies Assumption 3 and permits parallel computation.
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Chapter 5

Online Portfolio Optimization

One application of online convex optimization is online stock portfolio optimization.
We seek to maximize our wealth using a constant-rebalanced portfolio (CRP) [45]. A CRP
strategy rebalances a fixed amount of wealth among a set of stocks at regular trading periods.
We will measure the performance of strategy by minimizing regret, where regret is the
difference between an portfolio chosen at each iteration and the best portfolio chosen in
hindsight. A investment strategy is said to be universal if it achieves sub-linear regret [46].

Regret bounds that are a function of the variation or volatility in stock have been de-
rived. This is in contrast to a bound that is a function of an algorithm’s iterations [37].
Meta algorithms have been developed that integrate many heuristic algorithms with a single
universal algorithm to obtain a new algorithm that is also universal [47]. Our new universal
algorithms presented in Chapter 3 and 4 could be used within this framework. Our work
does not include transaction costs as in the work of Blum and Kalai [48].

We present two models for online portfolio management. The first is based on the α-
exp-concave convex functions that motivated the logarithmic regret algorithms in Chapter
2. These algorithms were shown to out perform other known universal algorithms [49].
The second model we present is a `2-norm regularized model that is strongly convex. This
model penalizes portfolios where all wealth is placed in just a few stocks and thus encourages
balanced portfolios.

5.1 Models for Online Portfolio Optimization

Let there be n stocks in a portfolio. At every trading period t ∈ {1, . . . , T} an investor
observes a relative price vector rt ∈ Rn, where rt(i) is the ratio of the closing price of stock i
on day t onto the closing price on day t−1. If an investor chooses a portfolio xt, then during
trading period t their wealth changes by a factor of r>t xt. Therefore after T trading periods
the wealth achieved per dollar invested is

∏T
t=1 r>t xt and the logarithmic growth ratio is then∑T

t=1 log(r>t xt). We will assume that the change in stock price over every trading period is
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bounded above and below as stated by Asummption 4 [49].

Assumption 4. A price relative vector rt ∈ Rn is such that ||rt||∞ ≤M and mini∈{1,...,n} rt(i) =
B where B > 0 for all for t ∈ {1, . . . , T}.

The best constant-rebalanced portfolio (CRP) in hindsight at trading period T is defined
as

x∗ = arg max
x∈Sn

T∑
t=1

log(r>t x) (5.1)

where Sn is the n-dimensional simplex. This model is concave however from this point
forward we will consider regret minimization of an online convex optimization problem.
Therefore, to maximize our wealth, we will use an algorithm A to minimize regret as follows:

T∑
t=1

gt(xt)− min
x∈Sn

T∑
t=1

gt(x) = RT (A, {g1, . . . , gT}) (5.2)

where the function gt : Sn → R is defined as

gt(x) ≡ − log(r>t x) (5.3)

This function is α-exp-concave function for all α ∈ (0, 1] as proven by Lemma 4 of Das and
Banerjee [47]. Given that a n-dimentional simplex is bounded and Lemma 11, then the
results presented in Chapter 2 can be applied to model 5.3.

Lemma 11. Let the function gt : Sn → R be defined by gt(x) = − log(r>t x) where Sn is the

n-dimensional simplex. Given Assumption 4 then ||∇gt(x)||2 ≤
√
nM
B

for all x ∈ Sn.

Proof (Lemma 11). Consider

||∇gt(x)||2 = || − 1

r>t x
rt||2 (5.4)

=
1

|r>t x|
||rt||2 (5.5)

Now, using minj rt(j) ≥ B we have |r>t x| ≥
∑n

i=1Bx(i) then using x ∈ Sn we have∑n
i=1 x(i) = 1 and therefore |r>t x| ≥ B. Finally given that ||rt||2 ≤

√
n||rt||∞ and ||rt||∞ ≤

M we have

||∇gt(x)||2 =
1

|r>t x|
||rt||2 (5.6)

≤ 1

B
||rt||2 (5.7)

≤
√
n

B
||rt||∞ (5.8)

≤
√
nM

B
(5.9)



CHAPTER 5. ONLINE PORTFOLIO OPTIMIZATION 46

giving our result.

5.1.1 `2-norm Regularized Model

This section presents a `2-norm regularized model for online portfolio management. In a
financial context minimizing ||x||22 where x ∈ Sn corresponds roughly to maximizing the
effective number of assets Ne where Ne ≤ n. That is,

||x||22 ≈
1

Ne

(5.10)

where x ∈ Sn. By maximizing the effective number of assets, Ne , portfolio diversification is
encouraged. Portfolio diversification counteracts instability by acting as a regularizer [50].
Therefore we will define the model ft : Sn → R as

ft(x) ≡ − log(r>t x) +
H

2
||x||22 (5.11)

where H is a tuned parameter. The regret we desire to minimize is then

T∑
t=1

ft(xt)− min
x∈Sn

T∑
t=1

ft(x) = RT (A, {f1, . . . , fT}) (5.12)

A larger H will result in a more diversified portfolio while a smaller H will result in a
less diversified portfolio. A two dimensional simplex for different values of H can be seen in
Figure 5.1. When H = 0 then we obtain the standard model for online portfolio management
(5.3). As the H parameter increases the best portfolio is forced from the extremes to a more
diversified portfolio.
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Figure 5.1: Two dimensional simplex of `2-regularized model for different H values, Stock B
is 10% better than Stock A

For a fixed H = 0.21 two three dimensional simplexes is plotted in Figure 5.2. Each
extreme point of the simplex represents the allocation of all wealth into a single stock.
Figure 5.2 represents two different cases possible over one trading day. In the first case
stock A is 10% better than stock B and C while the second case shows stock B and C is
10% better than stock A. The second case shows that if two stocks are equivalently better
than another stock the portfolio allocation will be split between them. These figures show
the model’s primary advantage. With essentially equivalent but a slightly different stock
values model (5.3) recommends moving all the stock value back and forth between the two
stocks. On the other hand model (5.11) keeps the stock value split nearly even between
the two different stocks. The two different models use two distinct strategies to optimize a
constant-rebalanced portfolio. Model (5.3) finds and tracks a few of the best stocks, while
model (5.11) deviates slightly from a uniform constant-rebalanced portfolio and shifts the
allocation toward the better performing stocks.
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Figure 5.2: 3-dimensional simplex of `2-regularized model with H = 0.21

The model defined by function (5.11) is H-strongly convex using Lemma 17. Given
Lemma 12 and the n-dimensional simplex is bounded, then the results presented in Chapter
3 can be applied to this model.

Lemma 12. Let the function ft : Sn → R be defined by ft(x) = − log(r>t x) + H
2
||x||22 where

Sn is an n-dimensional simplex. Given Assumption 4 then ||∇ft(x)||2 ≤
√
nM
B

+ H for all
x ∈ Sn.

Proof (Lemma 12). Consider

||∇ft(x)||2 = || − 1

r>t x
rt +Hx||2 (5.13)

≤ 1

|r>t x|
||rt||2 +H||x||2 (5.14)

using the triangle inequality. Given that ||x||2 ≤ ||x||1 and ||x||1 = 1 for all x ∈ Sn we have

||∇ft(x)||2 ≤
1

|r>t x|
||rt||2 +H (5.15)

The result follows from Lemma 11.
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5.2 Numerical Experiments

We will now numerically compare three algorithms. We compare a specialized FTAL algo-
rithm for online portfolio management presented in Agarwal et al. [49], FTAL for strongly
convex functions, Algorithm 7, and a uniform constant rebalanced portfolio. A uniform con-
stant rebalanced portfolio is defined such that xt = 1

n
1 for all t ∈ {1, . . . , T}. A summary of

the algorithms and the abbreviation used for each algorithm is presented in Table 5.1.

Table 5.1: Abbreviations for algorithms

Abbreviation Description Reference

FTAL-OPO FTAL for online portfolio optimization Agarwal et al.[49] with Model 5.3
FTAL-SC FTAL for strongly convex functions Algorithm 7 with Model 5.11
UCRP Uniform constant-rebalanced portfolio xt = 1

n
1 for all t ∈ {1, . . . , T}

The FTAL-OPO algorithm uses model (5.3) while FTAL-SC uses model (5.11). Our
numerical experiments use historical New York Stock Exchange (NYSE) data for 19 stocks
over a 44-year period (11178 trading days) ending in 2006 [51]. The data from July 3, 1962
to December 31, 1984 is identical to that used by Cover and Helmbold et al. [45, 52]. After
that period relative price vectors are calculated from the nominal closing prices, including
dividends and splits. The parameters used in our numerical experiments are found in Table
5.2.

Table 5.2: Parameters used in numerical experiments

Algorithm Parameters

FTAL-OPO β = 1, δ = 1
8
, η = 0 and x1 = 1

n
1

FTAL-SC H = 0.21, ε = 0.05 and x1 = 1
n
1

Performance Metrics

We measure performance using three metrics: wealth, Annual Percentage Yield (APY) and
volatility. Let Vi be the initial value of an investment and Vf be the final value after T

trading days and let Tyears = T/365. Wealth is defined as, W ≡ Vf
Vi

where Vi = 1, the
return per dollar of initial investment. Annual Percentage Yield (APY) is calculated by the
following formula

APY ≡
[
(Vf/Vi)

1
Tyears − 1

]
× 100 (5.16)

Volatility is calculated by taking the standard deviation of the sequence {r>t xt}Tt=1 for a
given algorithm.
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5.2.1 Results

The performance metrics for the NYSE dataset are found in Table 5.3. As the table shows,
FTAL-SC performs significantly better than FTAL-OPO. However, we shall see that the two
algorithms and models use different strategies and FTAL-SC is not always better.

Table 5.3: Daily trading period NYSE dataset

Algorithm Wealth APY Volatility

FTAL-OPO 713.9 23.93 0.0126
FTAL-SC 3815.7 30.90 0.0118

UCRP 503.3 22.52 0.0098

Figure 5.3 presents the growth of logarithmic wealth over time. Both the FTAL-OPO
and FTAL-SC algorithms out perform the UCRP algorithm.
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Figure 5.3: Logorithmic growth of wealth plotted vs. trading days
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To gain insight into the algorithms’ strategies we run numerical experiments with a
portfolio of Coke, IBM and General Electric. The stock allocations chosen by the algorithms
for each trading day are plotted on a three dimensional simplex in Figure 5.4. The UCRP
algorithm is not shown since it would always choose the portfolio in the center of the simplex.
This figure illuminates the distinct strategies of FTAL-OPO and FTAL-SC. The FTAL-OPO
algorithm tracks a few of the best performing stocks and the FTAL-SC algorithm shifts the
“center of gravity” toward the best performing stocks. In this case neither algorithm performs
significantly better or worse then the other as shown in Table 5.4. Both FTAL-OPO and
FTAL-SC slightly out perform the UCRP strategy.
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Figure 5.4: Portfolio over time for Coke, IBM and GE

Table 5.4: Daily Trading Period with Coke, IBM and GE

Algorithm Wealth APY Volatility

FTAL-OPO 299.44 20.47 0.0139
FTAL-SC 292.40 20.37 0.0120

UCRP 283.60 20.25 0.0120
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For this specific example Figure 5.5 shows that the FTAL-OPO algorithm performs bet-
ter with a larger portfolio because there is a greater chance of finding and tracking high
performing stocks. FTAL-OPO also performs better with a large or short trading period.

5

10

15

20

0

10

20

30

19

20

21

22

23

24

Number of Stocks
Trading Period

M
e

a
n

 A
P

Y

5

10

15

20

0

10

20

30

0

1

2

3

4

Number of Stocks
Trading Period

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 A

P
Y

Figure 5.5: FTAL-OPO Annual Percentage Yield vs. trading period and portfolio size

Figure 5.6 shows that the FTAL-SC algorithm performs best with a short trading period
and a large stock portfolio. The FTAL-OPO algorithm out performs the FTAL-SC algorithm
for a large stock portfolio and a long trading period.
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Figure 5.6: FTAL-SC Annual Percentage Yield vs. trading period and portfolio size

Figure 5.7 and 5.8 present the volatility associated with different portfolio sizes and
trading periods. Figure 5.7 shows that the FTAL-OPO algorithm has low volatility for large
stock portofilios because it finds and tracks the best stocks. The more stocks it has to choose
from increases the likelihood that it will find good stocks to track. Figure 5.8 shows that the
FTAL-SC algorithm constantly adjusts the “center of gravity” toward the best performing
stocks resulting in increased volatility for larger portfolios and trading periods.
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Figure 5.7: FTAL-OPO volatility vs. trading period and portfolio size

5

10

15

20

0

10

20

30

0.01

0.012

0.014

0.016

Number of Stocks
Trading Period

M
e
a
n
 V

o
lit

ili
ty

5

10

15

20

0

10

20

30

0

2

4

6

8

x 10
−4

Number of Stocks
Trading Period

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 V

o
lit

ili
ty

Figure 5.8: FTAL-SC volatility vs. trading period and portfolio size
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Chapter 6

Numerical Experiments in Convex
Optimization

As discussed in Section 2.1.1, the results of Chapters 2 through 4 apply to the optimization
of a non-smooth strongly convex function. In this chapter we use numerical experiments to
study the performance of the algorithms from Chapters 2 through 4 and related work.

6.1 Experimental Setup

We adopt a MATLAB testing environment designed for benchmarking non-smooth optimiza-
tion algorithms [19]. The testing environment was then adapted and expanded to include
new algorithms and test functions. We ran our experiments on a Quad Core Intel Xeon
Processor 2.33GHz using 64bit Red Hat Linux with 8GB of RAM. The algorithms found in
Table 6.1 and the functions found in Table 6.3 were implemented in MATLAB R2008a.

Although the theory developed earlier in this dissertation allows for the optimization of
constrained non-smooth strongly convex functions we limit our tests to unconstrained non-
smooth strongly convex functions. Specifically, we study the non-smooth strongly convex
test functions in Table 6.3. The test functions can be defined for any dimension n. We test
the algorithms using four values of n. Given our implementation and available computational
resources, we will refer to cases where (n = 10) as very small scale, (n = 100) as small scale,
(n = 1000) as a medium scale and (n = 10000) as a large scale. Given memory limitations,
algorithms with O(n2) complexity are tested on very small and small scale problems while
algorithms with O(n) complexity are tested on medium and large scale problems. We will
study and compare algorithms performance by looking at the error at termination defined
by

ferror = min
i∈[1,Ttotal]

fi(xi)− f(x∗) (6.1)

and the total number of iterations Ttotal at termination. For a given function, problem
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dimension and algorithm set, each algorithm is given a fixed amount of time to solve a
randomly generated problem instance. The time given to a problem instance depends on
problem dimension. A problem of dimension (n = 10) is given 0.1 seconds, (n = 100) is
given 1 second, (n = 1000) is given 10 seconds, and (n = 10000) is given 100 seconds. Time
instead of function error is used as a termination condition because some algorithms require
a prohibitive amount of time to reach the error achieved by other algorithms.

Given a set of 100 randomly generated problem instances the average error and iterations
at termination is calculated with a 95% confidence interval for each algorithm and test
function. A problem instance is composed of function parameters and an initial function
argument. Test function parameters are randomly generated as described in Section 6.3.
An initial condition is randomly generated from a unit normal distribution and then added
to the optimal argument of the test problem. The optimal argument is known a priori by
definition of the function.

6.2 Algorithms for Numerical Experiments

We compare the performance of the algorithms in Table 6.1. The table lists each algorithm’s
abbreviation and a reference. As specified in Table 6.2, with the exception of AdaGradMD
and OGD-SC, all algorithms use the same initial hessian approximation. The initial hessian
approximation for AdaGradMD was derived from its regret bound using optimization in
the same way as our algorithm in Section 3.1.2 [23]. To accurately compare performance
Algorithm 5 is initialized in the same way as Algorithm 7 and referred to as FTAL-EC-I.
During testing, Algorithm 5 without the initial hessian was consistently outperformed by
the same algorithm with an initial hessian and therefore the algorithm without an initial
hessian has been omitted.

Table 6.1: Abbreviations used for different algorithms in the numerical experiments

Abbreviation Description Reference

FTAL-SC FTAL for strongly convex functions Algorithm 7
FTAL-SC-D Diagonal Matrix FTAL for strongly convex functions Algorithm 9
ONS-SC ONS for strongly convex functions Algorithm 6
ONS-SC-D Diagonal Matrix ONS for strongly convex functions Algorithm 8
ONS-EC ONS for α-exp-concave functions Algorithm 3
FTAL-EC-I FTAL for α-exp-concave functions with initial hessian Algorithm 5
AdaGradMD AdaGrad mirrored descent Duchi et al. [23]
OGD-SC Gradient descent for strongly convex functions Algorithm 2

The functions outlined in Table 6.3 are all constructed such that they are H-strongly
convex with respect to || · ||2 where H = 1. Although the new algorithms developed in
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Chapter 3 do not require function parameter information, other than the strongly convex
parameter H, the previously known algorithms do require function parameter information.
As a compromise, we determine the function parameters from the initial argument and initial
subgradient and then allow the new algorithms, developed Chapter 3 and 4, to use these
parameters to calculate its initial hessian approximation. The function parameters used by
each algorithm and the update complexity of each algorithm are found in Table 6.2. Let
the randomly generated initial argument be x1 and let the initial subgradient be y1. The
function parameters are then L = ||y1||2, L∞ = ||y1||∞ and D = ||x1 − x∗||2. The optimal
argument x∗ is known a priori via the test problem definition.

Table 6.2: Update complexity and parameter choices

Algorithm Update Complexity Parameters

FTAL-SC O(n2) ε = L2

HD2

FTAL-SC-D O(n) ε = L2

HD2 , R = 1

ONS-SC O(n2) ε = L2

HD2

ONS-SC-D O(n) ε = L2

HD2 , R = 1

ONS-EC O(n2) ε = L2

HD2 , α = L2

H

FTAL-EC-I O(n2) Q0 = L2

HD2 In, α = L2

H

AdaGradMD O(n) η = L2
∞
H

, δ = 1
D2

OGD-SC O(n) ηt = 1
Ht

for all t ∈ {1, . . . , T}

6.3 Non-smooth Strongly Convex Test Functions

The test functions are outlined in Table 6.3. These functions can be defined for any dimension
n and are all H-strongly convex by construction where H = 1. The test functions were
adopted from those found in earlier related work on non-smooth functions [53, 54, 18, 19].
Functions F1-F3 require only O(n) scalar variables to store the parameters and therefore are
used for numerical experiments on very small, small, medium and large scale problems while
functions F4-F5 require O(n2) scalar variables and therefore are only used for very small,
small and medium scale problems.

The remainder of this section describes each function and the method for generating
function parameters. Figures 6.1 through 6.5 show a two dimensional contour plot of each
function for a randomly generated problem instance and the iterates chosen by the FTAL-SC
algorithm.
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Table 6.3: Test functions

Abbreviation Description Function Definition

F1 `∞-norm plus quadratic f(x) = max1≤i≤n |aixi|+ 1
2

∑n
i=1(bixi)

2

F2 Low memory piecewise quadratic f(x) = max1≤i≤n
1
2
x>Dix + b>i x + ci

F3 `1-norm plus quadratic f(x) =
∑n

i=1 |aixi|+
1
2

∑n
i=1(bixi)

2

F4 Piecewise quadratic f(x) = max1≤i≤n
1
2
x>Aix + b>i x + ci

F5 Convex partly smooth f(x) =
√

x>Ax + x>Bx

`∞-norm plus quadratic (F1)

By inspection the optimal argument is x∗ = 0 and the optimal solution is f(x∗) = 0. The
parameters ai are drawn uniformly from the interval [n, 0] and bi are drawn uniformly from
the interval [n, 1] for all i ∈ {1, . . . , n}.
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Figure 6.1: Test function F1
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Low memory piecewise quadratic (F2)

The piecewise quadratic parameters for each i ∈ {1, . . . , n} are generated as follows. Di is
a diagonal positive definite matrix with elements on the diagonal drawn uniformly from the
interval [1, 4.8i] and with all other elements zero. The elements of the vector bi are drawn
uniformly from the interval [i−1, i]. Let x̄ = −D−1n bn and then finally ai = −1

2
x̄>Dix̄−b>i x̄.

The problem then has the optimal solution x∗ = x̄ with the optimal value f(x∗) = 0.
This problem is potentially challenging because all the quadratic functions are active at the
optimal.
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Figure 6.2: Test function F2
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`1-norm plus quadratic (F3)

By inspection the optimal argument is x∗ = 0 and the optimal solution is f(x∗) = 0. The
parameters ai are drawn uniformly from the interval [n, 0] and bi are drawn uniformly from
the interval [n, 1] for all i ∈ {1, . . . , n}.
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Figure 6.3: Test function F3
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Piecewise quadratic (F4)

The piecewise quadratic parameters for each i ∈ {1, . . . , n} are generated as follows. Ai is
a positive definite matrix with eignvalues drawn uniformly from the interval [1, 4.8i]. The
elements of the vector bi are drawn uniformly from the interval [i− 1, i]. Let x̄ = −A−1n bn
and then finally ai = −1

2
x̄>Aix̄− b>i x̄. The problem then has the optimal solution x∗ = x̄

with the optimal value f(x∗) = 0. This problem is potentially challenging because all the
quadratic functions are active at the optimal.
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Figure 6.4: Test function F4
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Convex partly smooth (F5)

By inspection the optimal argument is x∗ = 0 and the optimal solution is f(x∗) = 0. The

parameters are calculated as follows: A =
[

M 0
0 0

]
where M ∈ Rn/2×n/2 is a randomly

generated symmetric positive definite matrix with condition number [n/2]2 and B ∈ Rn×n

is a randomly generated symmetric positive definite matrix with condition number n2 and a
minimum eignvalue of one.
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Figure 6.5: Test function F5
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6.4 Results

We now discuss the results of our experiments. We first consider both O(n) and O(n2)
algorithms for very small scale and small scale problems in Sections 6.4.1 and 6.4.2. We
then consider O(n) algorithms for medium and large scale problems in Sections 6.4.3 and
6.4.4. Given that each test function is artificially constructed we are concerned with the
relative mean error, instead of the absolute error, of each function. Therefore, we normalize
the mean error across algorithms for each function. The raw data used to construct each
figure is found in tables at the end of each section. A summary of our results is found in
Section 6.4.5.

6.4.1 Very Small Scale (n = 10)

For a very small scale problem Figure 6.6 gives the normalized mean error for all algorithms
in Table 6.1 and all functions in Table 6.3. Figure 6.6 shows that the algorithms with lowest
mean error for F5 are ONS-SC and FTAL-SC. It is unclear however which algorithms have
the lowest error for functions F1-F4. Therefore consider Figure 6.7 that plots the mean error
with a 95% confidence interval for the algorithms FTAL-SC, ONS-SC and OGD-SC.
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Figure 6.6: Mean error for all algorithms (n = 10)
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For test functions F1-F4 Figure 6.7 shows OGD-SC has a lower mean error than FTAL-
SC and ONS-SC. One possible explanation for this is that OGD-SC is a O(n) algorithm
while FTAL-SC and ONS-SC are both O(n2) algorithms. The algorithms were run for the
same amount of time and therefore OGD-SC is allowed to execute more iterations. Therefore
in Figure 6.8 we compare the diagonal matrix algorithms FTAL-SC-D and ONS-SC-D to
OGD-SC and AdaGradMD.
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Figure 6.7: Mean error with 95% confidence interval for test functions F1-F4 (n = 10)

Figure 6.8 shows that ONS-SC-D and FTAL-SC-D outperform the other algorithms for
test function F5. In Figure 6.9 we compare the O(n) algorithm for functions F1-F4.
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Figure 6.8: Mean error for O(n) algorithms (n = 10)

The relative mean error shown in Figure 6.9 is quite similar to Figure 6.7. In Figure
6.9 FTAL-SC-D and ONS-SC-D are shown to have marginally lower or effectively equivalent
mean error as FTAL-SC and ONS-SC in Figure 6.7.
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Figure 6.9: Mean error with 95% confidence interval for test functions F1-F4 and O(n)
algorithms (n = 10)

From these results we conclude that for problems of dimension (n = 10) on test function
F5 algorithms that FTAL-SC and ONS-SC have lower mean error than any other algorithm
considered. On the other test functions OGD-SC has the lowest mean error followed by
FTAL-SC and ONS-SC, AdaGradMD and then finally ONS-EC and FTAL-EC-I. Table 6.4
presents the data used to compose Figure 6.6. Table 6.5 presents the data used to create
Figure 6.8. Table 6.4 and 6.5 both have columns for algorithms AdaGradMD and OGD-
SC. The two tables were created from two distinct experiments however the results for
AdaGradMD and OGD-SC should be statistically equivalent. The numbers are different
because two different sets of test problems were randomly generated.
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6.4.2 Small Scale (n = 100)

We now investigate small scale problems. In Figure 6.10 we can see that FTAL-SC has a
lower mean error than all other algorithms for test functions F4 and F5. Figure 6.10 also
shows FTAL-SC, ONS-SC and OGD-SC have lower mean error than FTAL-EC, ONS-EC
and AdaGradMD for all test functions. Now consider Figure 6.11 that compares FTAL-SC,
ONS-SC and OGD-SC with test functions F1-F3.
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Figure 6.10: Mean error for all algorithms (n = 100)

It is seen in Figure 6.11 FTAL-SC and ONS-SC have lower mean error than OGD-SC for
test functions F3 while OGD-SC has lower mean error on functions F1 and F2. For problems
of larger dimension, algorithmic complexity should have more of an effect on performance so
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we should compare algorithms with the same algorithmic complexity. Consider Figure 6.12
for a comparison of algorithms with O(n) complexity for problem dimension (n = 100).
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Figure 6.11: Mean error with 95% confidence interval for test functions F1-F3 (n = 100)

For the algorithms with O(n) complexity the relative mean error for all functions is seen
in Figure 6.10. Let’s look closer at the relative mean error of ONS-SC-D, FTAL-SC-D and
OGD-SC in Figure 6.13.
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Figure 6.12: Mean error for O(n) algorithms (n = 100)

Figure 6.13 presents similar results to Figure 6.11 however as a result of the increased
iterations executed by ONS-SC-D and FTAL-SC-D the performance difference between the
algorithms has decreased.
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Figure 6.13: Mean error with 95% confidence interval for test functions F1-F3 and O(n)
algorithms (n = 100)

In summary, for small scale problems FTAL-SC-D has the lowest mean error for test
functions F3, F4 and F5 while OGD-SC has the lowest mean error for test functions F1 and
F2. Tables 6.6 and 6.7 both have columns for algorithms AdaGradMD and OGD-SC. The
two tables were created from two distinct experiments however the results for AdaGradMD
and OGD-SC should be statistically equivalent. The numbers are different because two
different sets of test problems were randomly generated.
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6.4.3 Medium Scale (n = 1000)

Consider now medium scale problems. Given limitations on computational resources and
the results obtained in the previous sections, we only compare the algorithms with O(n)
complexity to the test functions with O(n) memory requirements. The O(n) algorithms
are compared with test functions F1-F3 in Figure 6.14. From this figure it is clear that
FTAL-SC-D has the lowest mean error for test function F2. Also it is clear that OGD-SC,
ONS-SC-D and FTAL-SC-D out perform AdaGradMD for all test functions. Figure 6.15
compares algorithms OGD-SC, ONS-SC-D and FTAL-SC-D for test functions F1 and F3.
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Figure 6.14: Mean error for O(n) algorithms (n = 1000)

Figure 6.15 shows that FTAL-SC-D has the lowest mean error for F1 and F3 followed by
ONS-SC-D and then OGD-SC.
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Figure 6.15: Mean error with 95% confidence interval for test functions F1, F3 and O(n)
algorithms (n = 1000)

In summary, the FTAL-SC-D algorithm has the lowest mean error with test functions F1-
F3 for problems of dimension (n = 1000). Table 6.8 presents the data, and a 95% confidence
interval, used to plot Figures 6.14 and 6.15.

Table 6.8: Mean error and total iterations with 95% confidence interval for O(n) algorithms
(n = 1000)

FTAL-SC-D ONS-SC-D OGD-SC AdaGradMD

F1 f̂error 1.64e+00 ±5.15e-02 3.10e+00 ±1.27e+00 1.39e+02 ±2.16e+01 1.67e+08 ±2.03e+06

T̂inter 33830.02 ±19.87 34660.49 ±17.88 19879.64 ±63.09 24385.07 ±131.47
F2 f̂error 8.64e+05 ±4.31e+04 1.78e+06 ±2.18e+05 2.08e+06 ±2.24e+05 2.08e+06 ±2.24e+05

T̂inter 359.21 ±0.44 359.00 ±0.34 360.45 ±0.28 358.53 ±0.33
F3 f̂error 1.32e+02 ±1.22e+00 1.94e+02 ±1.00e+01 1.24e+04 ±9.02e+01 1.65e+08 ±2.26e+06

T̂inter 34612.84 ±14.27 35270.45 ±13.90 41234.12 ±15.78 36847.17 ±13.33
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6.4.4 Large Scale (n = 10000)

We now consider solving large scale test problems. The results for all O(n) algorithms and
test functions F1-F3 are shown in Figure 6.16. This figure shows that FTAL-SC-D has the
lowest mean error for test function F2. It is also clear that ONS-SC-D and FTAL-SC-D have
lower mean error than algorithms AdaGradMD and OGD-SC for test functions F1 and F3.
In Figure 6.17 we compare the performance of algorithms ONS-SC-D and FTAL-SC-D on
test functions F1 and F3.
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Figure 6.16: Mean error for O(n) algorithms (n = 10000)

Figure 6.17 shows that for large scale problems FTAL-SC-D has the lowest mean error
for test functions F1-F2 followed by ONS-SC-D.
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Figure 6.17: Mean error with 95% confidence interval for test functions F1, F3 and O(n)
algorithms (n = 10000)

In summary, the FTAL-SC-D algorithm has the lowest mean error on test functions F1-
F3 for problems of dimension (n = 10000). Table 6.9 presents the data, and a 95% confidence
interval, used to compose Figures 6.16 and 6.17.

Table 6.9: Mean error and total iterations with 95% confidence interval for O(n) algorithms
(n = 10000)

FTAL-SC-D ONS-SC-D OGD-SC AdaGradMD

F1 f̂error 1.97e+00 ±6.27e-02 2.85e+06 ±3.63e+04 1.66e+11 ±7.41e+08 1.66e+11 ±7.41e+08

T̂inter 110116.13 ±109.78 114223.01 ±117.72 113921.05 ±298.85 55092.68 ±392.19
F2 f̂error 1.10e+08 ±4.07e+06 2.26e+08 ±2.35e+07 2.26e+08 ±2.35e+07 2.26e+08 ±2.35e+07

T̂inter 56.61 ±0.32 55.46 ±0.33 57.14 ±0.22 56.18 ±0.25
F3 f̂error 1.32e+03 ±3.63e+00 5.29e+06 ±1.68e+05 1.68e+11 ±7.33e+08 1.68e+11 ±7.33e+08

T̂inter 91593.12 ±51.24 94211.67 ±48.31 130984.68 ±187.74 105307.78 ±55.07

6.4.5 Summary

Table 6.10 gives a summary of our numerical results. For very small scale problems (n =
10) OGD-SC achieves the lowest mean error for the test functions we considered with the
exception of test function F5 where FTAL-SC-D has the lowest mean error. For small scale
problems (n = 100) FTAL-SC has the lowest mean error for test function F3, FTAL-SC-D for
F4-F5 and OGD-SC for F1-F2. For medium scale problems (n = 1000) the O(n) algorithms
were used to optimize test functions F1-F3. In all cases the FTAL-SC-D algorithm had
the lowest mean error. Finally for large scale problems (n = 10000), where again the O(n)
algorithms were used to optimize test functions F1-F3, the FTAL-SC-D algorithm has the
lowest mean error.
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Table 6.10: Algorithms with lowest mean error for a given function and problem size. NA
stands for not applicable.

(n = 10) (n = 100) (n = 1000) (n = 10000)

F1 OGD-SC OGD-SC FTAL-SC-D FTAL-SC-D
F2 OGD-SC OGD-SC FTAL-SC-D FTAL-SC-D
F3 OGD-SC FTAL-SC FTAL-SC-D FTAL-SC-D
F4 OGD-SC FTAL-SC-D NA NA
F5 FTAL-SC-D FTAL-SC-D NA NA
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Chapter 7

A Heuristic Algorithm for Online
Vehicle Routing

Online vehicle routing seeks to find the optimal time ordering of tasks for each vehicle
given an optimal assignment of tasks to vehicles and changing problem parameters. Our
abstract model can be interpret as optimizing a fleet of vehicles to pickup packages from
customers while using the minimum amount of fuel. Our research draws from multiagent
auctioning research [55], vehicle routing research [56] and machine learning [14] to solve the
online vehicle routing problem [57]. Our research uses a variant of the classic vehicle routing
problem (VRP) where a vehicle is not required to return its start location. This variant is
referred to as a wandering vehicle routing problem (WVRP) or exploration problem [58, 55].
This application does not fit within the theoretical framework of Chapters 2 though 6 since
the WVRP problem is non-convex. However, our theoretical work was inspired by, and has
drawn from, experimental work on online vehicle routing for collaborative unmanned aerial
vehicle (UAV) systems. We highlight connections between our heuristic WVRP algorithm
and adaptive subgradient based algorithms.

Our first algorithm for solving the WVRP problem was inspired by auction based mul-
tiagent routing [55] and led to an experimental implementation demonstrated in summer
2006 [1, 59]. A next generation collaborative control algorithm was developed and then
implemented in summer 2009 [60, 57, 61]. This new algorithm combined multiagent auc-
tioning and optimization based vehicle routing [56]. A simplified form of the core algorithm
demonstrated in summer 2009 is presented here as a heuristic algorithm for online vehicle
routing.

Within the last decade there has been significant effort devoted to understanding and
solving different variations of online vehicle routing problems for unmanned aerial vehicles.
Researchers have proposed robust task allocation algorithms [62] with complex constraints
such as time windows [63]. In the following sections, we highlight connections between our
heuristic and subgradient based algorithms for online convex optimization. Online convex
optimization has been applied to the online shortest path problem. As in our formulation,
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edge weights are allowed to change over time [39]. However, unlike the shortest path problem
with positive weights, the VRP and the WVRP are NP-hard [58, 55].

The TSP is a well studied problem and our research does not seek to create better
solutions for single vehicle routing. Instead we solve a sequence of single vehicle routing
problems, using known methods, to solve the online WVRP. A significant body of research
exists to solve the classic VRP such as that of Fisher [64] that draws on the work of Held
and Karp [65] on the TSP.

Given that WVRP is NP-hard, approximations are used to obtain a practical solution.
We first present a formal definition of WVRP in Section 7.1. In Section 7.2 decomposition
is used to pose the WVRP as a relatively low dimensional function subject to relatively few
constraints. In Section 7.3 we approximate this function with a piecewise affine function.
Finally, we formally define the online vehicle routing problem in Section 7.4 and then present
a heuristic algorithm for online vehicle routing in Section 7.5.

7.1 Vehicle Routing Problem

We first present a time invariant Binary Integer Programming (BIP) formulation of the
WVRP. As stated previously, this problem is NP-hard. Let there be R vehicles, m task
locations in Euclidean space and let n ≡ R×m. Let the binary vector z ∈ {0, 1}n represent
an allocation of tasks to vehicles and the binary vector e ∈ {0, 1}R×(m2+m) represent the
ordering of tasks for each vehicle. If zr(i) = 1 then task i will be executed by vehicle r,
otherwise zr(i) = 0. The decision variable er(i, j) = 1 if vehicle r will visit location j after
location i, otherwise er(i, j) = 0. The cost cr(i, j) is the Euclidean distance for vehicle r to
travel to location j from location i. This problem has no resource constraints and therefore
is always feasible [56, 66]. Consider the following Binary Integer Programming formulation
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of the WVRP:

minimize
e,z

R∑
r=1

∑
i

∑
j

cr(i, j)er(i, j) (7.1)

subject to:
R∑
r=1

zr(i) = 1 ∀i ∈ {1, . . . ,m} (7.2)

For each vehicle ∀r ∈ {1, . . . , R} then
m∑

i=1,i 6=j

er(i, j) + er(r, j) = zr(j) ∀j ∈ {1, . . . ,m} (7.3)

m∑
i=1,i 6=j

er(j, i) ≤ zr(j) ∀j ∈ {1, . . . ,m} (7.4)

m∑
i=1

er(r, i) ≤ 1 (7.5)∑
i,j∈S

er(i, j) ≤ |S| − 1 ∀S ⊆ {1, . . . ,m} : |S| ≥ 2 (7.6)

z ∈ {0, 1}n e ∈ {0, 1}R×(m
2+m) (7.7)

Constraints (7.2) require that each task is allocated to one and only one vehicle; constraints
(7.3) require that if a task is allocated to a vehicle then the vehicle must enter that task;
constraints (7.4) require that if a task is allocated to a vehicle then the vehicle must not
exit that task more than once; constraint (7.5) requires that a vehicle must not leave its
start location more than once and (7.6) denotes the classic subtour constraints [66]. For
an intuitive understanding of an optimal solution for two vehicles and three tasks in R2 see
Figure 7.1.
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Figure 7.1: A graphical representation of a typical wandering vehicle routing problem with
3 vehicles and 5 tasks in two dimensional Euclidean space

7.2 Decomposition of Vehicle Routing Problem

Problem (7.1)-(7.7) can be reformulated as a function of lower dimension with fewer con-
straints. However, this function is difficult to evaluate because a Binary Integer Program
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(BIP) must be solved. The WVRP can be written equivalently as follows:

minimize
zr,r∈{1,...,R}

R∑
r=1

gr(zr) (7.8)

subject to:
R∑
r=1

zr = 1 (7.9)

zr ∈ {0, 1}m ∀r ∈ {1, . . . , R} (7.10)

where zr = [zr(1), . . . , zr(m)]> for each vehicle r ∈ {1, . . . , R}. The function gr is defined as
the optimization problem:

gr(zr) ≡ minimize
er

cr>er (7.11)

subject to: Drer = zr (7.12)

Brer ≤ zr (7.13)

Hrer ≤ hr (7.14)

er ∈ {0, 1}m2

(7.15)

where zr is given. The constraints (7.12)-(7.14) describe a single vehicle routing problem and
correspond to the constraints (7.3)-(7.6) for a given vehicle r ∈ {1, . . . , R}. Constraints (7.12)
corresponds to constraints (7.3) and require that a vehicle enter an assigned task. Constraints
(7.13) correspond to constraints (7.4) and require that a vehicle leave an assigned task no
more than once. Constraints (7.14) correspond to constraints (7.5)-(7.6) and require that a
vehicle leave its start location no more than once and eliminates all possible subtours. The
tasks assigned to vehicle r is given by the binary vector zr. For any feasible task assignment
to vehicle r, the problem (7.11)-(7.15) is always feasible because tasks can always be ordered
[56]. To simplify notation we define the set:

Z ≡
{

[z1>, . . . , zR
>

]> ∈ {0, 1}n
∣∣∣ R∑
r=1

zr = 1
}

(7.16)

Given set (7.16) the original problem (7.1)-(7.7) can be written compactly as

min
z∈Z

g(z) (7.17)

where

g(z) ≡
R∑
r=1

gr(zr) (7.18)

Note that this function is decoupled and satisfies Assumption 3.
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7.3 Heuristic Convex Approximation

We will develop a heuristic convex approximation of function (7.18). This convex approxi-
mation is not guaranteed to be a lower bound of the function. Attempts to develop practical
Lagrangian cuts for this function have not been successful [56, 67]. Our heuristic approxima-
tion has drawn from multiagent auctioning research [55] and heuristics to solve the vehicle
routing problem [56]. Although it is unclear if there is a direct connection between our
approximation and Lagragian duality theory, it is clear that the goal of both methods is to
obtain a “price” for each vehicle’s task assignment.

We now describe the procedure for constructing the piecewise affine approximation of
function (7.18). First the problem (7.11)-(7.15) is solved for a given allocation zi ∈ Z
with an efficient TSP heuristic. This heuristic is chosen to meet the speed and accuracy
requirements of a specific application.

Let the feasible solution corresponding to the allocation zri obtained by the efficient
heuristic be denoted by êri . The heuristic “prices” for the allocation zri are calculated as
follows

ŷri = Dr(cr ◦ êri ) (7.19)

where ◦ is the Hadamard (elementwise) product. The nonzero elements of the vector cr ◦ êri
are the cost edges traversed by each vehicle. The matrix Dr maps the edges traversed while
entering a task to the elements of ŷri corresponding to vehicle’s assigned tasks. If a vehicle
is not assigned to a task that element is zero. Using these “prices” we obtain the convex
approximation f̂ : X → R of function (7.18) such that

f̂(x) =
R∑
r=1

f̂ r(xr) (7.20)

=
R∑
r=1

max
i=1,...,K

cri
>êri + ŷri

>(xr − zri ) (7.21)

where X is the convex hull of the point in Z, that is Z ⊆ X .

7.4 Online Vehicle Routing Problem

The WVRP in Section 7.1 is not time varying. We now extend this formulation to a time
varying problem and relate it to online convex optimization. Online convex optimization,
by Definition 1, can accommodate a time varying objective function but not time varying
constraints. First consider the non-convex vehicle routing problem denoted by problem
(7.17). We assume the VRP constraints remain unchanged over time but that a new cost
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vector ct is given at each iteration. Consider, for a given z ∈ Z at time t, the R parallel
wandering TSPs denoted by the function:

gt(z) ≡ minimize
e

c>t e (7.22)

subject to: De = z (7.23)

Be ≤ z (7.24)

He ≤ h (7.25)

e ∈ {0, 1}R×(m
2+m) (7.26)

where the elements ct are the cost to traverse an edge at time t. By allowing the vector
ct to change over time, we consider the case where task locations, vehicle start locations
and vehicle end locations may change over time. If fuel is the cost metric then our online
vehicle routing formulation minimizes the total fuel consumed by all vehicles over all time
for a fixed set constraints. We desire to optimize the infinite sequence of non-convex function
{g1, g2, . . . } with an algorithm A. The regret RT (A) of the online vehicle routing problem is

T∑
t=1

gt(xt)−min
x∈Z

T∑
t=1

gt(x) = RT (A) (7.27)

Given the functions {g1, g2, . . . } are non-convex and the set Z defined by (7.16) is not
convex this is not an online convex optimization problem by Definition 1. To help solve this
problem we approximate the online WVRP problem with the heuristic convex approximation
(7.21) subject to non-convex constraints.

T∑
t=1

f̂t(xt)−min
x∈Z

T∑
t=1

f̂t(x) = R̂T (A) (7.28)

Given that the set Z defined by (7.16) is not a convex set this is still not a online convex
optimization as defined by Definition 1. Given the non-convex constraints, we present a
heuristic algorithm below, in Section 7.5, to solve the online WVRP.

7.5 A Heuristic Algorithm for Online Vehicle Routing

Our heuristic algorithm has a similar form to those presented in Chapters 4 and exploits
the structure of Assumption 3 to create a parallelized algorithm. The algorithm includes a
`2-norm projection onto a non-convex set. Projections onto non-convex sets are in general
difficult but given the problem’s special structure we show that it can be solved efficiently.

This algorithm was validated with numerical and experimental results. The algorithm
was compared to a multiagent auctioning algorithm and the optimal solution [61]. The
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algorithm was also implemented and demonstrated on a fleet of fully autonomous unmanned
aerial vehicles in 2009 [60]. The author’s involvement with this research led to our work on
quasi-Newton algorithms for online convex optimization.

Algorithm 12 Heuristic for Online WVRP with Quadratic BIP

Require: x1 ∈ Z, D0 = In and b0 = 0
1: for t = 1 to T do
2: for r = 1 to R do
3: yrt ∈ ∂f̂ rt (xrt )

4: Dr
t =

x
r
t (1) 0 0

0
. . . 0

0 0 xrt (m)

+ Dr
t−1

5: brt = −yrt + brt−1
6: zrt+1 = (Dr

t )
−1brt

7: end for
8: xt+1 = arg minx∈Z

∑R
r=1(z

r
t+1 − xr)>(zrt+1 − xr)

9: end for

The `2-norm projection step onto a non-convex set is a quadratic binary integer program.
We show below that this quadratic binary integer program can also be solved in parallel with
m sorting algorithms. We first prove Lemma 13 that highlights a special property of the set
(7.16).

Lemma 13. Let the set Z be defined by (7.16) then ||z||22 = m for all z ∈ Z.

Proof. Using the definition of Z then zr(i) ∈ {1, 0} and

R∑
r=1

zr(i) = 1 (7.29)

Therefore [zr(i)]2 = zr(i) and

||z||22 =
R∑
r=1

m∑
i=1

[zr(i)]2 (7.30)

=
m∑
i=1

R∑
r=1

zr(i) (7.31)

=
m∑
i=1

1 (7.32)

= m (7.33)
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The projection step of Algorithm 12 can be written as

xt+1 = arg min
x∈Z

R∑
r=1

(zrt+1 − xr)>(zrt+1 − xr) (7.34)

= arg min
x∈Z

R∑
r=1

xr>xr − 2brt
>(Dr

t )
−1xr + brt

>(Dr
t )
−2brt (7.35)

For all x ∈ Z by Lemma 13 we have x>x = m and therefore dropping all constant terms
and coefficients we have

xt+1 = arg min
x∈Z

R∑
r=1

−brt
>(Dr

t )
−1xr (7.36)

which is a BIP with totally unimodular constraints and therefore solvable as the following
linear program

minimize
x

m∑
i=1

R∑
r=1

− b
r(i)

dr(i)
xr(i) (7.37)

subject to:
R∑
r=1

xr(i) = 1 ∀i ∈ {1, . . . ,m} (7.38)

xr(i) ≥ 0 ∀i ∈ {1, . . . ,m} (7.39)

Given decoupled constraints, by inspection, the linear program is solved with m parallel
problems. For each i ∈ {1, . . . ,m} we have

r∗(i) = arg min
r∈{1,...,R}

[− b
r(i)

dr(i)
] (7.40)

and then for each task i ∈ {1, . . . ,m} and each vehicle r ∈ {1, . . . , R}

xr(i) =

{
1, if r = r∗(i)

0, if r 6= r∗(i)
(7.41)

This shows that the `2-norm projection onto the non-convex set (7.16) can be solved with
a set of m parallel sorting algorithms. The complete heuristic algorithm for online vehicle
routing with sorting is as follows.
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Algorithm 13 Heuristic for Online WVRP with Sorting

Require: x1 ∈ Z, dr0(i) = 1 ∀i ∈ {1, . . .m} and ∀r ∈ {1, . . . R} and b0 = 0
1: for t = 1 to T do
2: for r = 1 to R do
3: yrt ∈ ∂f̂ rt (xrt )
4: drt = xrt + drt−1
5: brt = −yrt + brt−1
6: end for
7: xt+1 = 0
8: for i = 1 to m do
9: r∗ = arg minr∈{1,...,R}[− br(i)

dr(i)
]

10: xr
∗
t+1(i) = 1

11: end for
12: end for

As previously discussed, allowing for parallelism, Algorithm 13 calculates updates in
O(m) space and time not including the projection step. Also, we have shown that the pro-
jection step can be solved with a sorting algorithm. Using a standard sorting implementation
problem (7.40) can be solved in O(R log(R)). The algorithmic updates are coupled only by
the tasks and the projection step is coupled only by the vehicles. This shows that Algorithm
13 is highly parallelized while still enabling collaboration between vehicles.
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Chapter 8

Conclusions

We have presented subgradient based methods and online convex optimization as a
promising framework for solving online, structured and large scale optimization problems.
We presented previous work on logarithmic regret algorithms and then derived specialized
ONS and FTAL algorithms for strongly convex functions. We then extended the ONS and
FTAL algorithms for strongly convex functions to a block diagonal hessian approximation.
This allows the algorithms to be use for solving large scale problems. In addition, we demon-
strated how these algorithms can be parallelized given a summed objective function.

We applied these algorithms to online portfolio optimization with a `2-norm regularized
constant-rebalanced portfolio model that is strongly convex. Also, within a classic optimiza-
tion framework we performed numerical experiments that compared the performance of our
new algorithms to known algorithms on a set of non-smooth strongly convex test problems.
These numerical experiments show that in the majority of cases we consider our algorithms
out perform other known algorithms. We also presented a heuristic algorithm for online ve-
hicle routing. This online vehicle routing research led to and motivated our work on online
convex optimization.

8.1 Further Work

We see at least two future research directions. First, extending the algorithms to a decen-
tralized architecture that can be implemented, with theoretical guarantees, across a com-
munication network with delays. Additionally, we see the potential use of online convex
optimization to solve classical control problems.

8.1.1 Algorithm Decentralization

Although we presented parallelized algorithms, more work is necessary to fully distribute the
algorithms over a communication network with delays [2]. Given the algorithm’s quadratic
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form we suggest consideration of a Kalman Filter, or its dual the Information Filter, for
algorithm decentralization over a communication network using work such as Nettleton et
al. [68]. This approach would require a connected tree network but could result in a ro-
bust algorithm for decentralized optimization. It is also interesting to consider adapting
distributed dual averaging for convex functions to strongly convex functions [69]. The use
of strongly convex functions should result in faster convergence over a connected commu-
nication network. Finally, it may be possible to use randomized incremental subgradient
methods to extend these algorithm across a communication network [70].

8.1.2 Online Convex Optimization and Control

We recommend the consideration of the online convex optimization formalism for classic
control problems. Classical control problems include applications to the low level control
of dynamic systems, such as cars and aircraft. As discussed in Section 2.1.1, if a function
does not change through time, then an algorithm can be developed that will converge to
the optimal solution of a single convex function, that is, the bound will converge to zero.
However, if the function is allowed to change arbitrarily over time, then the regret bound
will grow at a bounded rate. What if we were to construct a model of how the function
changes over time? Can we obtain a bound that does not converge to zero, or grow to
infinity, but instead the bound changes with the function’s variation and evolves through
time? In Chapter 3 we took a first step in this direction by analyzing the case where the
strongly convex parameters change over time. Function propagation models or other highly
structured optimization formulations may result in faster methods applicable to classical real-
time control problems with time constants of ∼ 20 milliseconds. Also, inspired by the online
vehicle routing problem, it is interesting to consider generalizing online convex optimization
to a sequence of time varying convex functions with time varying convex constraints.
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Appendix A

Mathematical Background

In this chapter we present some well known mathematical tools and definitions that are
used throughout this work. For a more thorough introduction see [8, 44, 71, 72]. The natural
logarithm is denoted by log.

A.1 Norms

Definition 3 (Norm). A norm || · || on Rn is a mapping that assigns a scalar ||x|| to every
x ∈ Rn and has the following properties

• ||x|| ≥ 0 for all x ∈ Rn

• ||cx|| = |c| · ||x|| for every c ∈ R and every x ∈ Rn

• ||x|| = 0 if and only if x = 0

• ||x + z|| ≤ ||x||+ ||z|| for all x, z ∈ Rn

Typical norms include the Euclidean norm || · ||2, the one norm || · ||1, infinity norm || · ||∞
and the general p-norm || · ||p. Two norms ||x||p and ||x||q are said to be equivalent if there
exists positive real scalars α, β ∈ R such that

α||x||p ≤ ||x||q ≤ β||x||p
For example, let x ∈ Rn then

||x||2 ≤ ||x||1 ≤
√
n||x||2

||x||∞ ≤ ||x||2 ≤
√
n||x||∞

Lemma 14 (Hölder’s Inequality). Let ||x||p and ||z||q be two norms where x, z ∈ Rn and
1
q

+ 1
p

= 1 then

|x>z| ≤ ||x||q||z||p (A.1)
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A.2 Generalized Inequalities

Assume K is a proper cone. When K = R+ the partial ordering �K is the usual ordering
≥ on R and the strict partial ordering �K is the same as the strict partial ordering > on
R. Now let the nonnegative orthant cone be denoted by K = Rn

+. Given z,x ∈ Rn and
z �K x then z(i) ≥ x(i) for all i ∈ {1, . . . , n}. Given two vectors z,x ∈ Rn the nonnegative
orthant cone is denoted as z ≥ x and the associated strict inequality is denoted as z > x.
The positive semidefinite cone Sn+ and the positive definite cone Sn++ are proper cones in the
set of symmetric matrices Sn. If A � B then A − B is positive semidefinite and similarly
if A � B then A−B is positive definite. An identity matrix of dimension n is denoted by
In ∈ Sn++.

A.3 Convex Analysis

We review a few definitions and concepts from convex analysis.

Definition 4 (Convex set). A set X ∈ Rn is convex if

θx + (1− θ)z ∈ X ∀x, z ∈ X , ∀θ ∈ [0, 1] (A.2)

Definition 5 (Convex function). Let X ∈ Rn be a convex set. A function f : X → R is
called convex if

f(θx + (1− θ)z) ≤ θf(x) + (1− θ)f(z), ∀x, z ∈ X ,∀θ ∈ [0, 1] (A.3)

The function f is strictly convex if the above inequality is strict for all x, z ∈ X such that
x 6= z and all α ∈ (0, 1).

The function f is called concave if −f is convex. Jenson’s inequality generalizes the basic
inequality for convex functions.

Lemma 15 (Jenson’s Inequality). If f : X → R is convex and x1, . . . ,xm ∈ X and
θ1, . . . , θm ≥ 0 with

∑m
i=1 θi = 1 then

f(
m∑
i=1

θixi) ≤
m∑
i=1

θif(xi) (A.4)

A.3.1 Gradients, Subgradients, Differential Sets and Optimality
Condition

A subgradient is a generalization of the gradient for convex functions and is defined as
follows.
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Definition 6 (Subgradient). A vector y ∈ ∂f(x) is a subgraident of a function f at x if

f(z) ≥ f(x) + y>(z− x) ∀z ∈ X (A.5)

where ∂f(x) is the differential set of subgradients, or subdifferential, of f at x.

A function is convex if and only if ∂f(x) is a non-empty set. If f : X → R is convex
and differentiable at x then ∂f(x) contains a single vector that is the gradient of f at x and
is denoted by ∇f(x). If a function is twice differentiable at x then the hessian is denoted
by ∇2f(x). If f : R → R and f is differentiable then the derivative f at x ∈ R is denoted
by f ′(x) and if f is twice differentiable then the second derivative is denoted by f ′′(x). We
will now present some basic properties of the subdifferential that are helpful for calculating
subgradients.

• Scaling: For θ > 0 we have ∂(θf) = θ∂f

• Addition: ∂(f1 + f2) = ∂f1 + ∂f2

• Affine transformation: Let A be a matrix, b a vector, if g(x) = f(Ax + b) then
∂g(x) = A>∂f(Ax + b)

• Pointwise maximum: If f(x) = maxi∈[1,...,m] fi(x) then ∂f(x) is the convex hull of

the set
{⋃m

i=1{∂fi(x)|fi(x) = f(x)}
}

. That is, the set of subgradients is the convex

hull of the the union of subdifferentials of active functions at x.

Lemma 16 (Optimality Condition). Let f : X → R be a convex and differentiable function.
Then x∗ is a global optimal if and only if x∗ ∈ X and

∇f(x∗)>(x− x∗) ≥ 0 ∀x ∈ X (A.6)

A.3.2 Strong Convexity

Strong convexity is formally defined as follows.

Definition 7 (Strong Convexity). A continuous function f : X → R is H-strongly convex
with respect to a norm || · || if for all z,x ∈ X and θ ∈ [0, 1] we have

f(θz + (1− θ)x) ≤ θf(z) + (1− θ)f(x)− H

2
θ(1− θ)||z− x||2 (A.7)

If a strongly convex function is twice differentiable then there exists a H > 0 such that
∇2f(x) � InH. The addition of a differentiable strongly convex function and a convex
function results in a strongly convex function as stated in Lemma 17. Lemma 17 follows
from [36].
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Lemma 17. Assume that f : X → R is differentiable and H-strongly convex with respect to
|| · || such that H > 0 and h : X → R is convex. If g = h + f then g is H-strongly convex
with respect to || · ||.

Proof (Lemma 17). Let x, z ∈ X and y2 ∈ ∂g(x). Since ∂g(x) = ∂h(x)+∂f(x) there exists
a y1 ∈ ∂h(x) such that y2 = y1 +∇f(x). Using the convexity of h and g we have

g(z)− g(x)− y>2 (z− x) ≥ f(z)− f(x)−∇f(x)>(z− x) (A.8)

using that f is H-strongly convex we have

g(z)− g(x)− y>2 (z− x) ≥ f(z)− f(x)−∇f(x)>(z− x) (A.9)

≥ H

2
||z− x||2 (A.10)

and therefore g is H-strongly convex with respect to || · || where H > 0.
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Appendix B

Technical Lemmas

The following results of Hazan et al. [14] are used throughout this work and are presented
here for completeness.

Lemma 18. Let vt ∈ Rn and ||vt||2 ≤ dt for all t ∈ {1, . . . , T} and QT =
∑T

t=1 vtv
>
t + εIn

then

T∑
t=1

v>t Q−1t vt ≤ n log

(
1

ε

T∑
t=1

d2t + 1

)
(B.1)

Proof (Lemma 18). Let A,B ∈ Sn++ be positive definite matrices such that A � B � 0
then given Lemma 12 of [14] we have

trace(A−1[A−B]) ≤ log

(
det(A)

det(B)

)
(B.2)

now consider

T∑
t=1

v>t Q−1t vt =
T∑
t=1

trace(v>t Q−1t vt) (B.3)

=
T∑
t=1

trace(Q−1t vtv
>
t ) (B.4)

=
T∑
t=1

trace(Q−1t [Qt −Qt−1]) (B.5)

≤
T∑
t=1

log

(
det(Qt)

det(Qt−1)

)
(B.6)

= log

(
det(QT )

det(Q0)

)
(B.7)
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Given that QT =
∑T

t=1 vtv
>
t +εIn and ||vt||2 ≤ dt then λmax(QT ) ≤

∑T
t=1 d

2
t +ε and therefore

det(QT ) ≤ (
∑T

t=1 d
2
t + ε)n resulting in

T∑
t=1

v>t Q−1t vt ≤ log

(
(
∑T

t=1 d
2
t + ε)n

εn

)
(B.8)

≤ n log

(
1

ε

T∑
t=1

d2t + 1

)
(B.9)

giving our result.

Lemma 19. Let X ⊆ Rn be a convex set, z ∈ Rn and x = ΠQ
X (z) be the projection of z onto

X according to the positive semidefinite matrix Q � 0. Then for any point u ∈ X

(z− u)>Q(z− u) ≥ (x− u)>Q(x− u) (B.10)

Proof (Lemma 19). Let g : X → R be a convex function such that g(u) = (z−u)>Q(z−u).
By definition of the projection x = ΠQ

X (z) the point x minimizes the convex function g over
a convex set and therefore using Lemma 16 we have

∇g(x)>(u− x) ≥ 0 ∀u ∈ X (B.11)

which implies

2(x− z)>Q(u− x) ≥ 0 (B.12)

and then

2(x− z)>Qu ≥ 2(x− z)>Qx (B.13)

now consider the relation

(z− u)>Q(z− u)− (x− u)>Q(x− u) = z>Qz− x>Qx + 2u>Q(x− z) (B.14)

≥ z>Qz− x>Qx + 2x>Q(x− z) (B.15)

= z>Qz + x>Qx− 2x>Qz (B.16)

= (x− z)>Q(x− z) (B.17)

Finally given that Q � 0 we have our result.




