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Sensitivity Analysis of Pine Island Glacier ice flow
using ISSM and DAKOTA

E. Larour,1 J. Schiermeier,1 E. Rignot,1,2 H. Seroussi,1 M. Morlighem,2 and J. Paden3

Received 9 July 2011; revised 15 February 2012; accepted 27 February 2012; published 13 April 2012.

[1] Assessing output errors of ice flow models is a major challenge that needs to be
addressed if we are to increase our confidence level in projections of mass balance in
Antarctica and Greenland. Major inputs to ice flow models include geometry (ice thickness
and surface elevation), constitutive laws and boundary conditions (geothermal flux,
basal drag coefficient, surface temperature). These inputs can be either measured, in which
case they carry errors due to instruments, or inferred using inverse methods (such as
basal drag which is inverted using InSAR surface velocities) in which case they carry
additional errors generated by the inversion process itself. In both cases, these input errors
will result in uncertainties that propagate throughout a forward model, and that influence
output diagnostics. In order to estimate the resulting error margins on diagnostics such
as mass flux, we develop a new framework based on the Design Analysis Kit for
Optimization and Terascale Applications (DAKOTA), which we interface to the Ice Sheet
System Model (ISSM). We present results on the Pine Island Glacier, West Antarctica, for
which we evaluate error margins of mass flux across the whole glacier, given currently
known error margins on ice thickness, basal friction and ice hardness. Our results suggest
errors in these inputs propagate linearly through the ice flow model, providing a way to
1) calibrate measurement requirements for field campaigns collecting data such as bedrock
or surface topography 2) quantify uncertainties in projections of mass balance and 3) assess
the sensitivity of model outputs to input parameters. This new error propagation model
should help quantify confidence levels that we assign to model projections for the mass
balance of Antarctica and Greenland, which will ultimately improve our projections
of future sea level rise in a warming climate.

Citation: Larour, E., J. Schiermeier, E. Rignot, H. Seroussi, M. Morlighem, and J. Paden (2012), Sensitivity Analysis of Pine
Island Glacier ice flow using ISSM and DAKOTA, J. Geophys. Res., 117, F02009, doi:10.1029/2011JF002146.

1. Introduction

[2] Influx of fresh water from Antarctica and Greenland
will soon overtake steric effects as the largest contributor to
sea level rise [Rignot et al., 2010; Velicogna, 2009].
Understanding the key controls that drive the evolution of
the mass balance of these two continents is therefore
becoming critical. If we are to accurately project mass bal-
ance into the near future, we need to at least understand how
sensitive current ice flow models are to input parameters.
The goal is to be able to rank each model input in terms of its
influence on model outputs (for example, ice flow velocity
or temperature) and resulting diagnostics (such as mass flux

at the grounding line), and whether our current knowledge of
these model inputs is sufficient to significantly reduce errors
in projections of mass balance. This type of effort will also
inform data collection campaigns such as Operation Ice-
Bridge, IceSat-2, GRACE-FO or CryoSat-2, and improve
return on science by optimizing flight plans to target areas
where model inputs are not sufficiently well known.
[3] The first efforts to understand the main controls on ice

sheet flow were carried out by MacAyeal [1992, 1993],
using control methods. The goal was to invert for the basal
drag coefficient on the Siple Coast ice streams, using
adjoint-based control methods. Ice flow models used in this
type of study were based on the Shelfy-Stream Approxi-
mation (SSA) [Morland, 1987; MacAyeal, 1989], which has
the advantage of being self-adjoint in the case of linear vis-
cous flow, or nearly self-adjoint when relying on nonlinear
rheology. This advantage was exploited in later studies by
Vieli and Payne [2003], Joughin et al. [2004, 2006], Larour
[2005], Vieli et al. [2006], and Khazendar et al. [2007,
2009] to invert for basal drag on various basins of Antarctica
and Greenland, as well as ice hardness on various ice shelves
in Antarctica. Recent efforts by Morlighem et al. [2010] and
Seroussi et al. [2011] implemented such control methods on
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higher-order models [Blatter, 1995; Pattyn, 1996] including
full-Stokes [Stokes, 1845]. Such control methods are how-
ever restricted to the solution of the stress equilibrium
equations, used in a forward capability, assuming the ther-
mal regime is held constant. The adjoint state provided in
such methods was also never taken advantage of to directly
compute sensitivities.
[4] Heimbach and Bugnion [2009] were the first to com-

pute the adjoint of a full 3D Ice Sheet Model, the SImulation
COde for POLythermal Ice Sheets, SICOPOLIS [Greve,
1997a, 1997b], in order to access the sensitivity of the ice
sheet volume to variations in several parameters, including
the basal drag coefficient and the surface accumulation rate.
The approach taken relied on automatic differentiation
[Giering and Kaminski, 1998; Utke et al., 2008; Hascoët,
2004] to compute the adjoint of the ice flow model. This
kind of approach is very powerful when the complexity of
the model is such that no easy generation of the adjoint is
possible. For higher-order models, this type of approach has
not successfully been carried out yet except for plan view
vertical models such as the model by Brinkerhoff et al.
[2011]. There are several reasons for that, the main one
being the complexity and software challenge it represents.
Another reason for ice flow models relying on C/C++, such
as the Ice Sheet System Model (ISSM) [Larour et al., 2012],
is that automatic differentiation compilers such as OpenAD
[Utke et al., 2008] or Tapenade [Hascoët, 2004] are not yet
able to handle the entire spectrum of C/C++ capabilities such
as polymorphism, abstract classes and class derivation.
[5] For such models, the only viable solution so far is

based on sampling methods [Metropolis and Ulam, 1949;
McKay et al., 1979] and local reliability methods [Haldar
and Mahadevan, 2000]. Historically, sampling methods
have been used to explore the input parameter space
according to statistical distributions specified for each input
parameter. Output diagnostics (such as the Greenland Ice
Sheet volume used by Heimbach and Bugnion [2009]) are
then computed using forward model runs, for each sample of
the parameter space that is generated. Statistical output dis-
tributions are then computed, and relied upon to assess the
sensitivity to input parameters. The obvious disadvantage of
this type of method is the computational cost, because the
number of samples generated must be statistically represen-
tative in spanning the parameter space. The advantage is that
this method is robust, and can be used in a flexible way for
any type of model, irrespective of the physics involved in the
underlying model.
[6] The other approach is based on local reliability meth-

ods [Haldar and Mahadevan, 2000] which compute finite
difference partial derivatives for the output response with
respect to each input variable at their baseline values. This
type of method requires fewer iterations than sampling
methods, and can be used to compute sensitivities effi-
ciently. However, this approach is valid in general for linear
problems, or for small perturbations to the system. When
large error margins exist on the input parameters, or if the ice
flow model is highly non-linear, this type of approach breaks
down, and sampling methods are the only robust way to
approach sensitivity studies.
[7] Both methods can be used to explore the sensitivity of

an ice flow model, in the absence of a viable option to
compute the adjoint state. In terms of computation time, the

adjoint method is the fastest, as it relies on one forward run
of the adjoint model to supply sensitivities of one output
diagnostics to any model input, including entire input fields
such as ice thickness, ice rigidity or basal drag at the ice/bed
interface. Local reliability methods are considerably more
time consuming, as one forward run of the model needs to be
run for each model input. For field inputs such as thickness,
this implies one forward run for each vertex value of the
thickness, leading potentially to as many forward runs at
there are vertices in the mesh. Finally, sampling analyses are
the most time consuming, as they rely on a statistically sig-
nificant number of forward runs for each model input.
Usually, 20–30 samples are needed for each model input,
which can be computationally prohibitive.
[8] Here, we present a new integrated model, which mer-

ges the ISSM ice flow modeling capabilities with the Design
Analysis Kit for Optimization and Terascale Applications
(DAKOTA) statistical analysis capabilities. This new model
is applied to the Pine Island Glacier (PIG), West Antarctica.
Using sampling methods, we determine the uncertainty in
mass flux due to errors in ice thickness, propagated throughout
a 2D SSA ice flow model. Here, we are not interested in how
the model inputs are determined, for example using inverse
methods and InSAR surface velocities, but rather, the goal of
the study is to assess the forward propagation of errors from
model inputs to model diagnostics. We also use local reli-
ability methods to compare the sensitivity of mass flux to
three key model inputs: ice thickness, basal drag coefficient
and ice hardness. We evaluate the three inputs in terms of
their importance in contributing to mass flux errors for the
main tributaries of PIG. We also evaluate how localized the
sensitivity of mass flux is and how strongly coupled neigh-
boring tributaries are.
[9] The study is structured as follows. In the first part, we

describe the new integrated model including the ice flow
formulation, sampling and local reliability analyses, as well
as mesh partitioning methods. In the second part, we
describe the validation of the new model. In the third part,
we describe the model setup for Pine Island Glacier, as well
as the data sets used. In the fourth part, we present the results
of the sampling and local reliability analyses. In the fifth
part, we discuss our findings, and its implications for mod-
eling and data collection campaigns. We finally conclude on
the significance and perspectives that this new type of study
opens up.

2. Model

[10] The sensitivity analyses we carry out on PIG are
based on interfacing between a standard 2D ice flow model
and the DAKOTA framework. In this section, we describe
both components in detail.

2.1. Ice Flow Model

[11] PIG is a fast flowing ice stream, for which velocities
reach up to 4500 m/yr at the grounding line [Rignot, 2008].
The bulk of the ice flow occurs at velocities greater than
60 m/yr, for which shear stresses are confined mainly near
the bed. For this type of ice flow configuration, we use a
two-dimensional, vertically-integrated form of the ice flow
equations, the Shelfy-Stream Approximation (SSA), based
on that by MacAyeal [1989, 1992] where most of the ice
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flow is due to basal sliding. This model is also applicable for
ice shelf flow, where basal friction due to water is taken
equal to zero. The system of equations is discretized using
the continuous Galerkin Finite Element Method (FEM). This
model is simple and computationally efficient, and is
implemented within ISSM [Larour et al., 2012; Morlighem
et al., 2010; Seroussi et al., 2011]. The model inputs
include ice thickness, basal drag coefficient a at the ice/bed
interface and ice hardness B. The model outputs (or prog-
nostic variables) include the three components Vx, Vy and Vz

of ice flow velocity. The diagnostic of interest in this study is
the depth-averaged mass flux across fluxgates, which is
computed using the output velocity and ice thickness (see
later in this section). Some of the model inputs cannot be
measured directly, such as the basal drag coefficient a. The
latter is used in a friction law of the following type:

tb ¼ �a2Nvb ð1Þ

where vb is the basal velocity vector tangential to the glacier
base plane, N the effective pressure of the water at the glacier
base [Paterson, 1994], tb the tangential component of the
external force s ⋅ n, n the outward pointing normal vector
and a the basal drag coefficient. In order to evaluate the
effective pressure, a hydrological model is required, which is
only a work in progress [Larour et al., 2012]. As a first order
approximation, we use N = rgh [Paterson, 1994], where h is
the height of the ice sheet surface above the level at which
the ice sheet would lie if it was in hydrostatic equilibrium.
[12] Ice hardness is taken from a Norton-Hoff rheology

law [Glen, 1955]:

m ¼ B

_ɛ
n�1
n
e

ð2Þ

where m is the non-linear ice viscosity, B the ice hardness,
n Glen’s law coefficient and _ɛe the effective strain rate. In
order to compute B, which is temperature dependent
[Paterson, 1994], we rely on a thermal model presented by
Larour et al. [2012] andMorlighem et al. [2010]. The model
is run to steady state, and assumes as boundary conditions
surface temperatures at the top and geothermal heat flux at
the ice/bed interface. At the boundaries of the domain, ice is
almost stagnant and reaches almost into the ice divide. We
therefore assume that advection of cold ice is negligible. The
model captures full 3D advection and conduction in the bulk
of the ice and also includes strain induced viscous heating as
well as frictional heating at the ice/bed interface. In order to
reliably capture the viscous and frictional heating, we couple
the thermal model with an inversion of the basal drag coef-
ficient a (see Morlighem et al. [2010] for more details),
which ensures B is not capturing effects that pertain to the
mechanics of friction represented by a.
[13] One of the issues in specifying model inputs for a

forward model is the fact that some of the inputs cannot be
measured. Here, we are interested in the 2D SSA ice flow
model, for which ice thickness is the only measurable model
input. Ice hardness B and basal drag coefficient a are diffi-
cult to measure on the ground, and they are usually inferred
using inverse methods, which themselves depend on a for-
ward model and InSAR surface velocities. Here, our
approach is to model B using Glen’s flow law and a steady

state thermal model, and to invert a using inverse methods.
Ice thickness H is observed from data on the ground. This
has specific implications for uncertainty analyses. Indeed,
specifying errors for a and B is difficult, and is probably
outside the scope of the present study, as such errors would
have to be inverted from existing observations such as sur-
face velocity and observed temperatures respectively.
However, there is extensive observational data to measure
ice thickness along with corresponding errors, and the goal
of the present study is to use such data to measure the impact
on forward propagation of errors in the 2D SSA model. In
regards to B and a, we only use them for local reliability
methods, where we specify equal error margins for all input
parameters. The goal is comparatively assess which model
inputs diagnostics are most sensitive to.
[14] As alluded to before, the 2DSSAmodel can be inverted

to infer unknown properties such as basal drag coefficient a
from observed InSAR surface velocities [Morlighem et al.,
2010; Larour et al., 2012]. Here we use this capability to
invert a on the grounded ice, in order to match surface
velocities from [Rignot, 2008] (Figure 1). The resulting model
matches velocities within 10% of observations.
[15] This initial model becomes the basis for our uncer-

tainty analyses, for which we vary first the ice thickness (for
sampling analyses) and second ice thickness, ice hardness
and basal drag coefficient (for local reliability analyses) and
compute corresponding model outputs (ice flow velocity)
along with diagnostics, specifically the mass flux through
fluxgates that are defined in Figure 1. Thirteen fluxgates are
positioned along the main tributaries of PIG, which are used
to compute the mass flux Mi for each gate i such that:

Mi ¼
Z s¼L

s¼0
riceHv � n dl ð3Þ

where s is the curvilinear coordinate along the curved flux-
gate contour, L the overall horizontal length of the fluxgate,
rice the density of ice, H the local thickness along the flux-
gate, v the depth-averaged horizontal velocity vector, n the
local downstream normal to the fluxgate contour, and dl an
elementary curvilinear increment.
[16] Mass fluxes through the thirteen gates are computed

simultaneously for each forward run, and used as diagnostics
to drive uncertainty analyses. In order to capture the mass
flux of PIG as realistically as possible, fluxgates 1 and 2 are
mapped onto the ice front and grounding line positions in
1996, and the other eleven fluxgates are positioned at the
onset of PIG’s main tributaries. Mass flux through each one
of these gates is used as a metric to estimate the sensitivity of
ice flow models on PIG. Indeed, these fluxes capture how
much mass is being advected along the tributaries and into
the main ice stream, which ultimately controls the mass
balance of the whole basin.

2.2. Sampling and Local Reliability Methods
Using DAKOTA

[17] We rely on ISSM to propagate errors from model
inputs to outputs as well as resulting diagnostics. However,
for uncertainty quantification, we rely on the DAKOTA
toolkit [Eldred et al., 2008]. This toolkit is integrated with
ISSM to drive all forward model runs based on different
types of uncertainty analysis strategies. These include

LAROUR ET AL.: PIG SENSITIVITY ANALYSIS F02009F02009

3 of 16



among others sampling analyses, such as Monte-Carlo
[Metropolis and Ulam, 1949] and Latin Hypercube [Iman
et al., 1981], and local reliability methods for evaluating
sensitivities [Haldar and Mahadevan, 2000]. Other types of
analyses which we are not interested in here include
parameter space studies, optimization and design of experi-
ments studies. Sampling analyses are well known techniques
to quantify the uncertainty in model diagnostics from errors
in model inputs. They are historically used when sensitivities
cannot be computed easily for a forward model. Similarly,
local reliability methods are used to compute local deriva-
tives of output diagnostics, using a forward model and
specified error ranges in model inputs. They integrate error
margins into sensitivity analyses in order to enable com-
parisons between model inputs that may have large errors
but low impact on the forward model and on the opposite
model inputs with small errors but large impact on the for-
ward model.
[18] For sampling analyses, model inputs are specified

within a certain error range Derr. The type of error deter-
mines the statistical distribution used to sample the model
input. For example, normal and uniform are among the most
typical distributions. These distributions can be fully
described by an average m and standard deviation s for the
normal distribution, and an average m and radius r or
diameter d for the uniform distribution. The way we cali-
brate m is straightforward, as the average is essentially the
value of the measurement. For s, we use the fact that within
a normal distribution, 99% of the values fall within the
interval [�3s : + 3s], which yields s = 1/3 Derr. For the
radius r of a uniform distribution, we just set r = Derr. In
the present study for example, we rely on Ground Penetrat-
ing Radar (GPR) measurements of ice thickness. These
measurements can be validated using cross-over errors,

which are calibrated for each point where two independent
measurements are available. The cross-over errors can then
be directly used to prescribe s or r. For ice rigidity B and a,
such measurements are not available, and we refrain from
attempting to assess the error in such model inputs. Once
distributions are prescribed, repeated analyses are run for
different values of the input variables generated from the
distributions, and statistics are calculated for the output
responses. Typically means, standard deviations, and cumu-
lative distribution functions (CDFs) are calculated, even
though the output responses need not be (and in general are
not) normal distributions.
[19] Generation of the values of the input variables is

performed in a number of ways. Probably the most common
is traditional Monte Carlo (MC), where the variables
are generated randomly according to the specified distribu-
tions. This has the disadvantage that values in the tails
may be neglected, since those probabilities are very
low; however, values in the tails are often critical in the
bounds of uncertainty quantification. A second way of
generating the input variables is Latin Hypercube Sampling
(LHS), which is a binned approach [Swiler and Wyss, 2004].
The n-dimensional variable space is divided into equal-
probability bins according to the given distributions, such
that one and only one sample occurs in each bin. This has the
advantage of forcing samples into the tails and is also a more
efficient method of sampling for a given level of statistical
accuracy. Of course, the LHS method comes with a certain
overhead in the computation of the samples as compared to
the MC sampling, because of the need to ensure uniqueness
of the samples in each bin.
[20] For a large number of input variables, the cost of

sampling analyses to decrease the confidence intervals of the
output responses to desired levels may be prohibitive, since

Figure 1. Fluxgates used to compute mass fluxes on tributaries of PIG. Each gate is numbered from 1 to
13, and corresponds to one tributary. Gate 1 coincides with the ice front, and gate 2 coincides with the
1996 grounding line [Rignot, 2008]. The gates are superimposed on an InSAR surface velocity map of
the area, in logarithmic scale [Rignot, 2008].
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the number of samples required increases geometrically with
the number of input variables. In this case, a local reliability
analysis may be performed to determine the input variables
that have the most significant effects on the output variables.
In essence, this method calculates a finite difference partial
derivative for each output response with respect to each
input variable at their baseline values, which requires only
n + 1 solutions. The variables that have the largest effects
can then be studied further, for example with sampling or
parameter methods, and those with little or no effect might
not be of interest.
[21] Local reliability methods work best when the problem

is linear in the neighborhood of the baseline solution. The
finite difference step size is typically defined by the user, so
if the function is not linear in the area, the value of the secant
will change. If the variable is of primary interest, one-
dimensional parameter studies (or different step sizes) can be
used to ascertain its behavior. The local reliability method
also considers only one variable at a time, but n-dimensional
parameter studies can be used to ascertain if any input
variables of interest have a coupling effect.
[22] For the local reliability method, given an ice flow

model M capable of computing ice velocity V from N model
inputs Xi (for example, surface and thickness at each vertex
of the mesh), one can assess the value of a response (for
example, mass flux through a fluxgate), itself function of the
model output V:

r ¼ r Vð Þ with V ¼ M X1;X2; ::;XNð Þ ð4Þ

We can define sensitivities qi as:

qi ¼ ∂r
∂Xi

ð5Þ

[23] The mean of the output responses is assumed from the
baseline value. If each of the input variables is independent,
the variance sr

2 of the output response can be computed from
the well-known error propagation equation [Coleman and
Steele, 1989]:

s2
r ¼

XN
i¼1

q2i � s2
i ð6Þ

where the si
2 are the specified variances of each input vari-

able. Importance factors Fi for each input variable may be
calculated by dividing each right-side term of the equation
by sr

2:

Fi ¼ q2i � s2
i

s2
r

ð7Þ

These importance factors provide non-dimensional quanti-
ties that add up to unity and therefore can be used to rank the
contribution of the input variables.
[24] Computation of the importance factors is carried out

by DAKOTA. Ice flow modeling is carried out by ISSM.
The way both capabilities interact is shown in Figure 2.
ISSM deals with processing the input parameters, specifying
the nature of the statistical distribution of inputs, and feeding
the corresponding characteristics (for example, mean and
standard deviation in the case of a normally distributed
parameter) to DAKOTA. The latter then generates samples
which are fed back to ISSM. Each sample input is then used
to update relevant properties of the model. This is straight-
forward for a and B, which are direct inputs to the model,
but less so for thickness H, which controls the position of the
bed and surface of the ice . We adopt the following strategy
to update the latter: if a vertex is on the ice shelf, then ice
thickness is hydrostatically distributed for each update; if a

Figure 2. Software architecture of the coupled ISSM-DAKOTA capability, for uncertainty analysis and
local reliability analysis, including the CHACO mesh partitioner.
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vertex is on the ice sheet, the bedrock is updated so as to
leave the surface of the ice intact. In this study, we are
therefore interested in the response of the model to errors in
the bed position on the grounded part, and errors in the
thickness on the floating part.
[25] Once all updates have been carried out, we run the

forward model (here, our 2D SSA ice flow model) to gen-
erate outputs (here the mass flux through our fluxgates
specified in Figure 1). This process is repeated each time
DAKOTA samples the inputs. Once all the runs have been
carried out, output statistics are generated by DAKOTA,
usually assuming that the output statistical distribution is
normal (which may not be the case). In the case of local
reliability methods, importance factors are also generated,
which are then used to study the sensitivity of model outputs
to input parameters.

2.3. Mesh Partitioning

[26] Both the sampling and the local reliability methods
are based on updates of input variables, according to their
statistical distribution. For a spatially distributed input vari-
able which covers the entire mesh domain, such as the
thickness or basal drag coefficient, the domain must be
partitioned into a number of discrete regions to be updated.
The finite element mesh provides a convenient discretization
of the domain; however, varying the input variable for each
finite element node or element would be prohibitive for very
large problems. In addition, there is the problem of area
coverage. For anisotropic meshes where local element areas
vary widely, some variables would have an inordinate con-
tribution to the response given the physical areas over which
they extend.
[27] For each partition surface, a statistical distribution is

specified for the field being sampled. As an example, if
thickness is being considered, error margins on thickness
measurements from GPR can be used to specify the 3s
standard deviation for that particular partition. Also, the
average value of thickness over the partition nodes can be
used to specify the mean value of the input variable. Each
node of the mesh that belongs to the partition area will
behave according to this statistical distribution. Since the
thicknesses are specified at the nodes, they will be linear
over the elements between the partitions with no dis-
continuities, as in a customary finite element analysis.
[28] Sampling will therefore be carried out, not over the

entire field, but one field partition at a time. In effect, this
solves the problem of sampling an entire two-dimensional
field by distributing the field over multiple partitions, and
considering each partition as a unique sampled variable.
[29] In order to partition a mesh into equal-area surfaces,

each of which must have at least one node, partitioning
algorithms are used, based on the CHACO Software for
Partitioning Graphs [Hendrickson and Leland, 1995]. This
partitioner was initially designed with the goal of reducing
parallel computing time for matrix solutions in finite element
analysis or other computational areas. It allows for a wide
variety of parallel machine architectures, and performs par-
titioning based on a nodal graph of the finite element con-
nectivity, as well as geometrical information. Specifically,
CHACO relies on the coordinates of the nodes to split
meshes into equal area partitions. It has three primary global

partitioning methods: Kernighan-Lin (K-L), inertial, and
spectral, all of which can be used recursively. In order to
facilitate a seamless integration of its partitioning routines
into ISSM, CHACO was reworked and integrated as a
module (see Figure 2). This ensures that partitioning is
entirely consistent with the ISSM generated meshes, and fed
to the DAKOTA software though the ISSM I/O routines.
[30] In our study, we use CHACO’s inertial method,

which produces the most regularly shaped partitions, in the
shortest amount of time. In order to take into account the size
of the elements, which CHACO relies on, each element area
of the anisotropic mesh is divided by its number of nodes,
and that area is assigned to the weighting of each node for
partitioning. CHACO then computes the principal mesh axis
using the nodal locations and weights, and then divides the
structure into equal parts by planes orthogonal to the prin-
cipal axis. One, three, or seven planes, denoted by bisection,
quadrisection, or octasection, respectively, may be used.
This leads to a banded appearance for the global partition-
ing, but when coupled with the Kernighan-Lin local opti-
mization, this can be significantly improved. The process is
recursive depending on the number of partitions requested.
[31] The effect of the weighting can be shown with respect

to a reduced size anisotropic mesh of PIG. In Figures 3a–3c,
the mesh is partitioned without equal-area weighting. As a
result, the partitions, shown in red, vary widely in area, and
the accompanying histograms show that while the partitions
each have nearly the same number of nodes, the areas vary by
30% from smallest to largest. In contrast, in Figures 3d–3f,
the mesh is partitioned with equal-area weighting. Conse-
quently the partitions (in red) look visually similar, and the
accompanying histograms show that the partitions have a
number of nodes that also varies by almost 30% while the
areas are approximately the same.

3. Validation

[32] ISSM, DAKOTA and CHACO are all thoroughly ver-
ified (ensuring that the equations in the software are correctly
solved for) and validated (ensuring that the model accurately
reproduces observations of processes it is designed to capture).
[33] To extend this level of confidence to the new capa-

bility, we carry out two sets of tests (presented in Table 2)
based on a synthetic square ice sheet/ice shelf (1000 km �
1000 km) of thickness 1000 m at the ice divide, decreasing
constantly to 300 m at the ice front. Ice flow is constrained
on three sides, with an ice front on the fourth side. Ice
becomes afloat 500 km downstream of the ice divide. Mass
flux is computed through a 600 km across-flow fluxgate at
the grounding line. Sampling is carried out on the ice
thickness, assuming a relative standard deviation s of 1%.
The test mesh comprises 68 elements and 44 vertices, which
is small enough that a large number of samples can be
considered in the test. With this mesh, a maximum number
of partitions of 44 can be chosen, which corresponds to the
number of vertices in the mesh.
[34] Two tests are carried out, one where the number of

partitions is kept constant and equal to 20 and the number of
samples is increased from 2 to 1000; and another one where
the number of samples per partition is kept constant and
equal to 20 and the number of partitions is increased from
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2 to 44. For both tests, we compute the mass flux average
and standard deviation in Gt/yr at the grounding line. The
first test shows how our Monte-Carlo simulation converges
to constant averages and standard deviations between 200 to
500 samples, i.e. between 10 to 25 samples per partition.
The second test demonstrates strong convergence of the
Monte-Carlo simulation when the number of partitions is
increased toward its maximum, which is the number of
vertices in the mesh.
[35] A final test is also carried out to analytically verify

our new capability. We use ISSM in stand-alone mode to
compute importance factors for mass fluxes, using hand
derived input parameter distributions. With this test, we can
verify and validate the computations of statistics by

DAKOTA, and the correct implementation of I/O between
ISSM and DAKOTA.

4. Data and Model Setup

[36] InSAR surface velocities are available for the PIG
area from Rignot [2008]. These velocities were processed for
the year 1996, and coverage is extensive and of good qual-
ity, making inversion of unknown parameters such as the
basal drag coefficient reliable [Morlighem et al., 2010].
Thicknesses are also available extensively, thanks to the
2004/05 AGASEA/BBAS survey [Holt et al., 2006;
Vaughan et al., 2006] and the 2009 Operation IceBridge
campaign [Allen, 2009]. Model setup is therefore possible

Figure 3. (a) Partitioning (in red) of PIG mesh into 100 partitions using CHACO and a non-weighted
algorithm. (b) Number of nodes in each partition. (c) Total area weight of each partition (d, e, and f). Ditto
using a weighted algorithm.
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for the entire PIG basin. Other data sets used to initialize the
ice flow model, which can be found summarized in Table 1,
include the geothermal heat flux from Shapiro and Ritzwoller
[2004] and surface temperatures from Ettema et al. [2009].
These data sets are used to carry out a steady state thermal
model of PIG, which is used to compute the ice hardness B.
An inversion for the basal drag coefficient a is then carried
out, for which the temperature is kept constant. H, B and a
are shown in Figures 4a, 4c, and 4d. These three model
results are then used as input parameters for sampling and
local reliability analyses. The anisotropic mesh used for the
study comprises 89,000 elements, with resolutions ranging
from 3 km in the interior of the basin, to 1km at the shear
margins and near the grounding line.
[37] For ice thickness, Ground Penetrating Radar (GPR)

cross-over errors measurements are available from the 2009

Operation IceBridge campaign, and are provided by the
Center for Remote Sensing of Ice Sheet (CReSIS). These
cross-over errors do not cover the entire PIG basin, but they
are the only reliable estimate of thickness measurement
errors available in the area. We extrapolate them wherever
CReSIS thickness measurements are missing, and where
AGASEA thicknesses are used. The resulting error distri-
bution is shown in Figure 4b. The cross-over errors are also
filtered to discard extreme values in locations where thick-
nesses are very small, and for which ice flow is essentially
stagnant, such as in mountainous areas. These cross-over
errors are then used to calibrate the 3s value for a normal
distribution of the thickness parameter, and the diameter for
a uniform distribution of the thickness parameter. Examples
of the statistical distributions of ice thickness are shown in
Figure 5 for locations adjacent to fluxgates 2, 3 and 4
respectively. Similar statistical distributions are used for
each partition of the mesh. Not knowing the statistical type
of distribution for thickness, we choose to run two sampling
analyses, one with a normal distribution, another one with a
uniform distribution. Two thousand sample runs are carried
out for both types of distributions, using 100 partitions. This
is equivalent to approximately 20 samples per partition. As
seen in Figure 5, this number of samples is statistically sig-
nificant, as it is capable of capturing the tails of the normal
and uniform distributions. It also corresponds to the number
of samples per partitions for which our verification model

Table 1. Data Sets Used for the PIG Model Setupa

Field Data Set Origin

Surface Velocity and Grounding
Lines

Rignot [2008]

Thickness, Surface and Bed Holt et al. [2006], Vaughan et al.
[2006], Allen [2009]

Geothermal Flux Shapiro and Ritzwoller [2004]
Surface Temperatures Ettema et al. [2009]

aFirst column shows the field of interest. Second column shows the origin
of data set.

Figure 4. Parameter inputs for ice flow model on PIG: (a) thickness H in m, (b) cross over errors (in %)
from CReSIS center, (c) inverted basal drag coefficient a in (m/s)�1/2 and (d) depth-averaged ice hardness
B in kPa.yr�1/3.
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converges (Table 2). The runs are carried out on the NASA
Advanced Supercomputing (NAS) Pleiades cluster, using
Westmere type Intel CPUS (160 cpus), each run taking
approximately 2 hours to complete. In addition, given the
performance of the runs, we are able to analyze the impact of
increased noise in the observations, by augmenting the
standard deviation 3, 5, 7 and 10 times respectively, and
running the corresponding sampling analyses.
[38] Finally, we carry out a local reliability analysis of

PIG, using as model inputs, ice thickness H, basal drag
coefficient a and ice hardness B. Normal distributions are
specified for all three parameters, using standard deviations
of 5 %. The goal is to evaluate the sensitivity of mass outflux
at the thirteen gates described in Figure 1, with respect to all
three model inputs. Choosing identical standard deviations
also ensures that we can carry out meaningful input-to-input
comparisons, and conclude on which parameter mass flux is
most sensitive to.

5. Results

[39] Results of sampling and local reliability studies on
PIG are shown in Figures 6, 7, 8 and 9. Figure 6 shows the
statistical distribution of mass flux through each gate, carried
out for sampling of the thickness using a uniform (in red)
and normal statistical distribution (in blue) respectively.
Mass flux average m and standard deviation s are also pro-
vided for each distribution. Both m and s are computed
by fitting normal distributions to the output results. This fit
is good for most fluxgates, with the notable exception of
gate 10, for which mass flux is clearly uniformly distributed
in the case of a uniform perturbation in ice thickness.
The thirteen gates used for mass flux computations are

distributed along the tributaries, as shown in Figure 1. For
each one of these gates, average mass flux ranges from
2.8 Gt/yr for the smallest upstream tributaries to 66 Gt/yr
along the main glacier. As expected, these values are iden-
tical irrespective of the type of noise specified for the input
thickness. They also provide independent validation of our
new sampling capability. The standard deviations for each
fluxgate ranges from 5.2e–4% to 3.3% (here, % is with
respect to the input average m) for a uniform distribution of
the ice thickness, and from 3.2e–4% to 1.8% for a normal

Figure 5. Thickness histograms for uniform (red) and normal (blue) statistical distributions near flux-
gates 2, 3 and 4 (see Figure 1). All three distributions were calibrated using the thickness data sets from
Operation IceBridge [Allen, 2009] and corresponding cross-over errors. For normal distributions, the 3s
deviation was taken equal to half the cross-over errors. For uniform distributions, the diameter was taken
equal to the cross-over errors. The x-axis of each histogram represents ice thickness H in m and the y-axis
represents the frequency F (between 0 and 1). Each histogram contains 2000 samples for 20 bins of
100 samples each.

Table 2. Verification of Sampling Capabilities for the ISSM-
DAKOTA Integrated Modela

Number of
Samples m (Gt/yr) s (Gt/yr)

Number of
Partitions m (Gt/yr) s (Gt/yr)

2 398.3 8.410 2 395.1 5.070
5 395.4 3.297 5 395.1 4.701
10 395.0 4.543 10 395.1 3.901
20 395.1 3.097 20 395.1 3.542
50 395.1 3.505 44 395.1 3.476
100 395.1 3.568
200 395.1 3.502
500 395.1 3.521
1000 395.1 3.525

aThis test is for a square synthetic ice sheet/ice shelf system, (1000 km �
1000 km) of thickness 1000 m at the ice divide, decreasing constantly to
300 m at the ice front (see text for more details). Mass flux averages m
and standard deviations s are computed first for sampling analyses with
increasing number of samples per partition (first, second and third
column) and second for sampling analyses with increasing number of
partitions at equal number of overall samples (fourth, fifth and sixth
columns). Averages and standard deviations are in Gt/yr, computed at the
grounding line of the ice sheet/ice shelf system.
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Figure 6. Histograms for mass flux computations across gates specified in Figure 1. For these runs, ice
thickness is sampled using a normal distribution (blue color) and a uniform distribution (red color). For the
normal distribution, the 3s deviation is taken equal to half the thickness cross-over errors. For the uniform
distribution, the radius is taken equal to half the cross-over errors. Mean and standard deviations are sup-
plied for each gate and for each type of distribution. Mass fluxes M are expressed in Gt/yr and frequencies
F are between 0 and 1.
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distribution of the ice thickness. For a given fluxgate, the
standard deviation corresponding to a uniform thickness
distribution is on average twice the standard deviation
corresponding to a normal distribution. This is also observed
in the shape of the mass flux tails. For a uniform thickness
distribution, these tails are more elongated, which implies
that extreme values are not filtered out as much.
[40] Overall, the response of the SSA ice flow model to

input errors is surprisingly smooth. For almost all fluxgates,
the mass flux distribution is normal in nature, with standard
deviations on the order of 2%. This result indicates that
regardless of the noise level in the thickness, the mass flux
response over the entire basin clusters around the ice flow
average behavior. Of course, the nature of the noise (uniform
vs normal) introduces differences in the system response, but
not to the extent that one would have expected. Indeed, the
ice flow model acts as a filter in which extreme responses to
input noise are smoothed out.
[41] Figure 7 shows how the mass flux standard deviation

scales when the thickness standard deviation is increased
uniformly across the entire basin. As observed, the standard
deviation scales linearly for most fluxgates. Even when the
noise level reaches 100% of the input thickness, the model
still responds in a linear manner. The only exception is
found at the ice front (gate 1) , where we suspect the number
of samples is not sufficient. The result is a mass flux distri-
bution for which the average m is significantly different for
high values of the input standard deviation.
[42] Figure 8 shows local reliability results for the mass

flux advecting through the 1996 PIG grounding line. The
same results are displayed in Figure 9 for fluxgate 10.
Importance factors are computed for ice thickness H
(Figure 8a), basal drag coefficient a (Figure 8b), and ice
hardness B (Figure 8c). Ratios of importance factors are

computed for ice thickness to basal drag coefficient
(Figure 8d), ice thickness to ice hardness (Figure 8e), and
basal drag coefficient to ice hardness (Figure 8f). All results
are displayed using a logarithmic scale. For each parameter,
the importance factor represents how sensitive the mass flux
is to local variations in the input parameter. As expected,
mass flux is significantly sensitive to each input parameter.
This sensitivity decreases exponentially with distance to the
fluxgate, and is channeled along flowlines, upstream and
downstream of the fluxgate. At a distance of 100 km from
the fluxgate, upstream or downstream, sensitivity decreases
by almost 3 orders of magnitude. This result quantifies
exactly how far sensitivity to input parameters noise reaches
out, and how diffuse this area of influence is around the
fluxgate being considered.
[43] Differences between sensitivities to H, a and B are

important. The parameter to which mass flux is most sensi-
tive is ice thickness, followed equally by a and B. Sensi-
tivity to a naturally goes to zero at the ice shelf, which is
expected given that basal friction under an ice shelf is equal
to zero. The extent to which mass flux is sensitive to thick-
ness is large indeed, going upstream almost 250 km. The
sensitivity to a and B does not extend as much. This is a
significant difference between all three input parameters,
which was not obvious given the seemingly equal roles H, a
and B play in the equations of ice flow for the SSA model.
Ratios of importance factors further confirm this conclusion:
mass flux is at least 100 times more sensitive to ice thickness
than to basal drag coefficient or ice hardness. For distances
larger than 50 km from the fluxgate, this ratio increases to
1000. The only exception to this result is found on the PIG
ice shelf, for which mass flux is equally sensitive to ice
hardness and thickness (Figures 8e and 9e), and not sensitive
at all to the basal drag coefficient, as explained above.

Figure 7. Evolution of mass flux standard deviation sM when thickness error margins are increased from
an initial standard deviation sH0 to a larger standard deviation sH, for fluxgates 1, 4 and 10 (see Figure 1).
Each sM has been scaled, so as to make the comparison between fluxgates easier. Fluxgates 1, 4 and 10 are
representative of the trends in variations observed for all other gates.
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[44] Figure 9 is interesting in that it shows how mass flux
sensitivity for a tributary of the main glacier extends over
several tributaries. From gate 10, mass flux sensitivity to
variations in input parameters reaches gates 5, 6, 7 and 8.
This is a surprising result that tends to show how one trib-
utary is strongly coupled to the flow of its surrounding
tributaries. This is especially the case for sensitivity to

variations in thickness, which reaches far upstream of
neighboring tributaries, almost 200 km away.

6. Discussion

[45] The results presented here are surprising in several
ways, with important implications for improving projections

Figure 8. Importance factors (from equation (7)) for the mass outflux at the 1996 grounding line (gate 2
in Figure 1, outlined in blue on all frames), for (a) thickness, (b) basal drag coefficient and (c) ice rigidity.
(d) Ratio of thickness to basal drag coefficient importance factor. (e) Ratio of thickness to ice hardness
importance factor. (f) Ratio of basal drag coefficient to ice hardness importance factor.

LAROUR ET AL.: PIG SENSITIVITY ANALYSIS F02009F02009

12 of 16



of future mass balance for PIG, and for ice streams across
Antarctica in general.
[46] First, the SSA model is stable with respect to errors in

the ice thickness and their impact on mass fluxes. This
conclusion holds irrespective of the nature of the noise
(normal or uniform) or location of the fluxgate. The mass
flux histograms cluster around an average mass flux deter-
mined by the average modeled ice flow, with distribution

tails that are consistently small. The stability of the SSA
model with respect to uncertainties in ice thickness is such
that diagnostic studies of the mass balance of PIG are pos-
sible, even given the large uncertainties in thickness data
sets. This conclusion is surprising in that a more non-linear
response would have been expected, given the highly non-
linear behavior of ice [Glen, 1955]. However, the reason the
SSA model behaves as it does probably lies in the fact that it

Figure 9. Importance factors (from equation (7)) for the mass outflux at gate 10 in Figure 1 (outlined in
blue on all frames) for (a) thickness, (b) basal drag coefficient and (c) ice rigidity. (d) Ratio of thickness to
basal drag coefficient importance factor. (e) Ratio of thickness to ice hardness importance factor. (f) Ratio
of basal drag coefficient to ice hardness importance factor.
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is linearly dependent on ice thickness because it vertically
averages the stress equilibrium equations. This will tend to
average responses to input variations in thickness. However,
this result could also indicate that SSA is not a valid model
for application to the entire Pine Island Glacier, and that the
assumption of plug-flow made here is the issue. To answer
this question, we computed the magnitude of the deflection
(in m/yr) between the bed and the surface for a full-Stokes
model, based on the results from Morlighem et al. [2010].
For all our fluxgates, the deflection was less than 1% of
the overall depth-averaged velocity, except for fluxgates 10
and 11, where it reached from 1% to 5% of the depth-
averaged velocity. This means that for PIG, the SSA model
misses less than 1% of the mass flux at almost all the flux
gates, even the ones positioned far inland in the tributaries.
This effectively demonstrates that our results are not an
artifact of the SSA model, and that the conclusions presented
here are robust. For fluxgates 10 and 11, and for locations
more inland, the SSA model should probably be improved
upon, either using a full-Stokes model [Morlighem et al.,
2010] or, if computational considerations are important
such as here for sampling analyses, using a hybrid model
such as the [Pollard and DeConto, 2009; Hindmarsh, 2004].
Another aspect that could somewhat impact our conclusions
is the lack of transient representation in the thermal model
used to initialize B, due to the intense computational
requirements of basal inversions. As suggested by Larour
et al. [2012], the type of temperature offset to observations
incurred by this approach is at least 2�C for an ice sheet such
as the Greenland Ice Sheet. A simple forward run of the PIG
model shows that such a temperature differential would result
in an increase in depth-averaged velocity (and therefore in
mass flux) of 6 to 9%. This is significant compared to the
errors presented in Figure 6, and shows that further study is
required if conclusions of our study are to be extended to
transient ice flow models.
[47] Our scalability study shown in Figure 7 confirms our

findings for steady state regimes of ice flow, and demon-
strates a linear response of the model to a linear increase in
the error margins specified for the input thickness. Further
studies are required to extend this conclusion to higher-order
models such as the Blatter/Pattyn model (BP) [Blatter, 1995;
Pattyn, 1996], or the full-Stokes model (FS) [Stokes, 1845],
especially given the sensitivity of the latter to vertical
bridging effects near the grounding line [Morlighem et al.,
2010]. Another issue that will arise in transient models is
the coupling between the stress-equilibrium and mass con-
servation equations [Larour et al., 2012]. Mass conservation
is not included in the model at all, and this new component
will impact mass fluxes heavily. In particular, the grounding
line area will need to be correctly retreated or advanced
[Schoof, 2007b, 2007b; Durand et al., 2009; Nowicki and
Wingham, 2008], as there is a strong link between the
mass flux and the ice thickness in this area. Indeed, we
believe our results will be significantly different in the lower
parts of the ice sheet, where dynamic ice flow acceleration
from ungrounding of the ice stream are most susceptible to
be the driver of mass flux changes. Similarly, another con-
clusion of our analysis is that error analyses of simple ice
flow models such as 2D SSA can probably be carried out
using simpler surrogate models. Indeed, as shown by our
scaling analysis in Figure 7, the diagnostic response to

increased errors in model inputs scales linearly. This result is
significant in that it allows for a rapid assessment of the error
propagated from inputs to diagnostics, without relying on
expensive sampling analyses.
[48] Indeed, we show here that the SSA model tends to

dampen strong perturbations in the system. The same type of
conclusions was reached for applications of control methods
to the inversion of basal friction in the Ross Ice Shelf ice
streams [MacAyeal, 1989, 1992]. In this type of studies, it
was shown that noise in surface velocity observations does
not perturb inversion results for the basal friction. Similarly,
our sampling analysis demonstrates that the range of error
margins in modeled mass flux is less than 3%, despite error
margins specified for the input thickness parameter ranging
from �30 to +30% (Figure 4b). Furthermore, these results
appear to remain valid near the grounding line, where the
largest errors in the CReSIS thickness data set are concen-
trated and despite the fact that this area is one of the most
sensitive to changes in the ice thickness, as demonstrated by
Schoof [2007a, 2007b], Nowicki and Wingham [2008] and
Durand et al. [2009] in this type of study. Our model does
not include grounding line dynamics, but it still takes the
hydrostatic equilibrium of the ice shelf into account, and one
would therefore expect larger error ranges. Our results seem
to indicate that in forward mode, such errors in ice thickness
do not significantly affect mass flux at the grounding line.
The hope is that such results would extend to transient ice
flow simulations. If it is the case, then current thickness
observations would prove sufficient to project the mass
balance of PIG in the near future. Further sampling studies in
prognostic mode are therefore required.
[49] Second, we demonstrate that thickness is the most

important parameter to specify when relying on the SSA ice
flow model for capturing the mass balance of PIG. Our
results show that mass flux is most sensitive to errors in the
thickness parameter. This sensitivity extends over a large
spatial area, which reaches far upstream and downstream of
each considered fluxgate. The model is of course also sen-
sitive to variations in local basal friction and ice hardness,
but to a lesser extent. The only exception, as remarked in the
results, is on the PIG ice shelf, where mass flux is equally
sensitive to ice hardness and ice thickness, and not sensitive
to basal friction. When looking at the ice flow equations of
the SSA model [MacAyeal, 1989], this conclusion is not so
obvious given the strong non-linearity present in the ice
rheology (cubic dependence of viscosity on stress) and basal
friction law. Of course, this conclusion is reached while
assuming equally distributed errors in the input parameters
H, a and B (5% standard deviation), and normal statistical
distributions. This assumption came from our lack of
knowledge of the type of errors that influences ice hardness
and basal friction, and from the need to compare sensitivities
between parameters with equivalent error margins. A thor-
ough analysis of the error margins affecting B and a are
outside the scope of the present study, but this preliminary
analysis is in line with current understanding of what para-
meterizations of an ice sheet model are most critical
[Joughin et al., 2010; Seroussi et al., 2011].
[50] The implications for ongoing and future data collec-

tion campaigns such as Operation IceBridge, IceSat-2 or
Cryosat-2 among others are important. Our results can be
used to quantify the impact of current data measurements on

LAROUR ET AL.: PIG SENSITIVITY ANALYSIS F02009F02009

14 of 16



the quality of ice flow models, especially with respect to the
thickness of the ice sheet, or equivalently, the bedrock
position. They indicate that for equivalent error margins,
thickness is the most important parameter to measure. On ice
shelves, this conclusion is less certain, and the thermal
regime of the ice shelf, as well as the ice fabrics [Paterson,
1994] could play an important role in controlling ice flow.
These results also have to be tempered by the fact that
comprehensive knowledge of the uncertainties in the speci-
fication of ice hardness as well as basal friction is currently
unavailable. If we were to assume larger error margins for
ice hardness, which is probably in order given the large
uncertainties in the specification of the geothermal flux
[Shapiro and Ritzwoller, 2004], our results could be signif-
icantly different. In addition, ice thickness errors are only
specified at the locations were cross-over errors are avail-
able. This does not preclude such errors being much larger
on flight tracks located between cross-overs. Presently, there
does not exist a comprehensive error propagation model for
the IceBridge data set used in this study, which makes it
impossible to assess the validity of cross-over errors as a
proxy for the rest of the glacier. However, it is to be noted
that the shape of the ice sheet/ice shelf is not free of physical
constraints, and that mass conservation acts as a strong
bound on the shape of the glacier [Morlighem et al., 2011],
so that wide variations between cross-over locations is not
likely to occur. Further study is definitely required to
understand whether mass conservation could be used in
conjunction with cross-overs to build an error model of ice
thickness over the whole of PIG, for use in uncertainty
quantification of ice flow models.
[51] Another implication stemming from our results is that

modeling the mass flux of a certain gate cannot be done
using a flowline approach, in which thickness is measured
upstream and downstream of the gate only. Neighboring
tributaries are very influential in the mass flux evolution of a
local gate. A mechanism of entrainment seems most proba-
ble to explain this effect, where variations in ice flow from a
neighboring tributary impacts ice flow downstream of the
fluxgate, which then increases driving stress locally, hence
modifying ice flow at the fluxgate. This type of effect was
used to try and explain the propagation of kinematic waves
upstream of a glacier, following major perturbation events
such as calving of an ice front, or collapse of an ice shelf
[Payne et al., 2004; Howat et al., 2007]. This again has
implications for data collection campaigns, as it tends to
show that model improvements for the mass balance of an
ice stream cannot be reached by targeting specific flow lines
only. Spatial coverage of thickness measurements needs to
be extensive, reaching areas that extend hundreds of kilo-
meters from the point of interest. More specifically, if we
take Figures 8 and 9 and a threshold of If = 0.001 (If the
importance factor) to quantify the extent of the area where
mass flux is sensitive to model inputs, we measure an area of
150 km around the fluxgate for ice thickness H, 50 km for
the basal drag coefficient a and 30 km for ice hardness B.

7. Conclusions

[52] We present a new integrated model that merges
ice flow modeling capabilities from ISSM with sampling
and local reliability methods from DAKOTA. This new

capability helps quantify the sensitivity of ice flow models to
input parameters such as thickness, basal friction or ice
hardness. We apply this new approach to the Pine Island
Glacier, for which we demonstrate that, given equal error
margins in the input data sets (ice thickness, ice hardness and
basal friction at the ice/bed interface), ice thickness is the
most critical model input for modeling mass balance. We
show that the SSA model, which is widely used to model
fast flowing ice streams, acts as a filter to dampen noise
found in thickness observations. This filter scales linearly
with the magnitude of the noise in the input parameters. We
also show that in order to model mass flux efficiently, a large
extent must be considered in the specification of model
inputs, and that a flowline approach cannot capture such
extent efficiently. Our results are directly applicable to air-
borne data collection campaigns, for which scientific
requirements are difficult to establish because they tend to
rely on the knowledge we have of underlying processes
controlling ice flow and the mass balance of glaciers. Our
results also seem to suggest that current error margins in data
collected by airborne campaigns may be sufficiently precise
for short-term projections of mass balance in large ice
streams of Antarctica or Greenland. We also demonstrate the
need to further quantify the increase in uncertainties due to
dynamic effects in transient models (especially near the
grounding line) and to improve the specification of model
inputs such as ice hardness and basal friction, which cannot
be measured but only modeled.
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