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Abstract
In this study, we consider the specific characteristics of workloads
that involve multiple real-time embedded GPU computing tasks
and design several schedulers that use alternative approaches. Then,
we compare the performance of schedulers and determine which
scheduling approach is more effective for a given workload and
why. The major conclusions of this study include: (a) Small ker-
nels benefit from running kernels concurrently. (b) The combina-
tion of small kernels, high-priority kernels with longer runtimes,
and lower-priority kernels with shorter runtimes benefits from a
CPU scheduler that dynamically changes kernel order on the Fermi
architecture. (c) Due to limitations of existing GPU architectures,
currently CPU schedulers outperform their GPU counterparts. We
also highlight the shortcomings of current GPU architectures with
regard to running multiple real-time tasks, and recommend new
features that would improve scheduling, including hardware prior-
ities, preemption, programmable scheduling, and a common time
concept and atomics across the CPU and GPU.

Keywords multitasking, real-time embedded tasks, GPU comput-
ing

1. Introduction
As Graphics Processing Units (GPUs) have become more pro-
grammable, we have been increasingly using them for data-parallel
applications beyond traditional graphics. The performance speedups
provided by GPU computing make GPUs a good fit for data-
parallel tasks, especially for those with time constraints such as
real-time applications. GPUs also provide opportunities for embed-
ded systems since they offer superior price-per-performance and
power-per-performance [7]. It is common for embedded systems to
run multiple data-parallel real-time tasks, concurrently. However,
the current programming model of GPUs poses many challenges
for multitasking of such tasks in an effective way. Hence, even
though GPUs are good fit for running real-time embedded tasks,
our ability to utilize the full potential of GPUs in embedded sys-
tems would require developing effective multitasking strategies,
our focus in this paper.

The input to our system is a workload that consists of GPU com-
puting tasks that belong to multiple real-time embedded applica-
tions. The tasks in this GPU workload specify different real-time
requirements. The output of our system is several schedulers that
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perform multitasking among the workload tasks by adhering to the
constraints specified in the real-time requirements. Since different
workloads have different characteristics, we investigate the use of
various schedulers that pursue alternative approaches instead of fo-
cusing on a specific scheduler. Hence, one of the important contri-
butions of our study is that by considering the salient characteristics
of GPU workloads, we design our schedulers by surveying a wide
spectrum of scheduling strategies for multitasking among real-time
embedded tasks.

To determine which scheduling strategy is more effective for
a given workload and why, we evaluate and compare our sched-
ulers that use alternative approaches using synthetic cases. Hence,
we generate these cases in a way that they would allow us to in-
vestigate the important factors that affect scheduler performance.
To accomplish this goal, we differ the properties of synthetic cases
from each other mainly in the workload characteristics that high-
light the discrepancies among the alternate scheduling strategies
and in the GPU architectures that are utilized to run the workloads.
To demonstrate a plausible scenario to which this study can be ap-
plied, we also provide an evaluation of our schedulers for a real-
world case. In addition, we highlight the shortcomings of current
GPU architectures with regard to running multiple real-time tasks
and recommend new features that would allow better schedulers to
be designed.

Commodity CPU-GPU systems lack support for performing
hard-real-time tasks; these typically require extensive hardware
and operating system (OS) features. Lacking this support prevents
these systems from performing schedulability analysis and provid-
ing real-time guarantees. Thus, in this study, we focus on soft-real-
time tasks, which use best-effort scheduling to meet real-time re-
quirements. Focusing on soft-real-time tasks allows us to gener-
ate schedulers at the application level instead of in lower levels
such as the driver or OS. Although working on driver/OS levels
provides better timing guarantees, implementing scheduling tech-
niques at these lower levels of programming stack is very complex.
Since precise timing guarantees are more beneficial for hard-real-
time tasks than the soft-real-time tasks that we target in this study,
the benefits of using lower-level scheduling techniques would not
make up for their complexity.

1.1 Motivation
Embedded systems usually involve several data-parallel real-time
tasks that need to run concurrently. For instance, in the automo-
tive computing domain, data-parallel tasks such as speed-limit-sign
recognition, lane departure warning system, speech recognition, in-
fotainment systems, etc. would need to run at the same time. To run
all these tasks concurrently, cars usually dedicate a custom embed-
ded processor to each of these tasks, which is not a cost-effective
solution. If we allow the GPU to multitask between disparate em-
bedded real-time tasks, we can consolidate all these customized
digital systems into a single software-programmable and inexpen-
sive GPU. This consolidation would in turn simplify the design and



reduce the cost of cars as well as allowing more vendors to compete
for providing solutions.

Similar trends can be seen in other embedded real-time domains
such as robotics or the mobile computing domain. For instance, mo-
bile devices increasingly interact with the physical world through
various data-parallel real-time applications that perform augmented
reality, face recognition, fingerprint unlocking, and so on. As the
number of concurrent real-time data-parallel applications that mo-
bile devices run increases, to take the full advantage of GPUs on
these platforms, we again need strategies that would allow GPUs
to multitask among several real-time tasks.

1.2 Challenges
The current programming model of GPUs poses several challenges
for effectively managing workloads containing multiple concur-
rent data-parallel real-time tasks. One important challenge stems
from the fact that current GPU computing research typically con-
centrates on high-performance computing applications performing
only one demanding task at a time. Although current architectures
provide some features that support running multiple GPU tasks at
the same time (e.g., asynchronous memory copy, streams, concur-
rent kernel execution), since they are not primarily designed for
multitasking among real-time tasks, these features present several
limitations for such purposes. We overcome these limitations by
developing various methods that are derived from the abovemen-
tioned features (Section 4.2).

GPUs have historically evolved to efficiently implement through-
put-oriented applications such as graphics, so they are optimized
for providing high throughput rather than low latency. However,
real-time tasks may require either low latency or high throughput,
or perhaps both. A latency-oriented task is characterized by its in-
frequent input and its expectation that the system will process its
data almost instantly (e.g., a speech recognition task that processes
a driver’s audio commands). On the other hand, a throughput-ori-
ented task is characterized by having streaming input. It expects the
system to process a certain amount of data in a given time such that
the differences between the finish times of two consecutive sub-
tasks are uniform (e.g., a video decoding task of an infotainment
system that needs to provide 30 frames per second must process
one frame every 33 milliseconds). We can say that latency-oriented
tasks focus more on response time, whereas throughput-oriented
tasks focus more on uniformly processed data per time.

Understanding the needs of latency- and throughput-oriented
tasks, and scheduling them in parallel, is a challenge. To address
this challenge, we use different priority assignments and perfor-
mance calculations for these two types of real-time tasks. In addi-
tion, since GPUs are optimized for throughput rather than latency,
they lack some important characteristics of real-time systems: hav-
ing a time measure synchronized with the CPU, an ability to as-
sign priorities, a preemption mechanism, and a fast interface to the
CPU. We describe how we overcome these issues in the design of
our schedulers in Section 3.

2. Background
The previous section summarizes the contributions of our study at
a high level by noting how we address the research challenges.
In this section, we discuss the differences from previous work in
order to highlight other contributions of our work. We also provide
terminology and a description of the development environment
used in this study.

2.1 Previous Work
Previous studies have provided techniques for scheduling paral-
lel task systems with GPUs in the context of out-of-core data [2],

irregular workloads [18], programmable rendering pipelines [17],
multitasking between graphics and computation applications [4], a
general purpose ray tracing engine [12], sharing the resources of
a single GPU among different CPU clients [13], and so on. This
previous work generally focuses on running one (complex) appli-
cation at a time and does not target the real-time multi-application
workloads that are the focus of this study.

In contrast, Elliott and Anderson [3] and Steinberger et al. [16]
target real-time tasks. However, like most of the related prior work
in this area [2, 17], these studies focus on integrating the GPU to
real-time multiprocessor systems as a co-processor and offloading
only parts of the work onto the GPU. On the other hand, we propose
to schedule all the available data-parallel real-time work to run on
a single GPU.

Kato et al. [5] and Rossbach et al. [15] also target real-time
tasks. They provide support for scheduling at the operating-system
and device-driver level, whereas we focus on providing this support
at the application level. In addition, like the other prior studies that
target real-time tasks [3, 16], these studies either do not provide
plausible scenarios or perform multitasking among collaborative
tasks, whereas we provide support for multitasking among non-
collaborative real-time tasks in the real-world (e.g., automotive
computing tasks).

Although previous research on multitasking among GPU tasks
used different strategies (e.g., running the scheduler on the CPU [4,
13] or the GPU [12, 18], using persistent threads and uberker-
nels [12, 13, 18], interleaving data transfers with kernel execution
using asynchronous memory copy [13] or zero-copy memory [16]
etc.), the comparison of these techniques to each other, which is
one of the main focuses of this study, is an under-researched area.

To the best to our knowledge, there is no prior study utilizing the
fairly new features of GPU architectures, i.e., concurrent kernels
and dynamic parallelism, that can be useful for multitasking among
GPU tasks. Hence, one of the contributions of this study is that
we investigate the use of both features for scheduling real-time
embedded tasks. In addition, we introduce several novel methods
which serve as building blocks for schedulers and resolve technical
difficulties that arise while implementing them.

Understanding the needs of the two different types of real-time
tasks, i.e., latency-oriented and throughput-oriented, and schedul-
ing them in parallel is a challenge. Kato et al. [5] provide two
scheduling policies that address the trade-off between response
times and throughput at the device-driver level. Our study con-
tributes to the literature by addressing this challenge at the applica-
tion level.

2.2 Terminology
The important technical terms used in this study include:

Task: In the context of this study, we define task as the fol-
lowing series of operations necessary for performing certain piece
of work: a host-to-device copy, a device kernel execution, and a
device-to-host copy. For instance, the gradient computation per-
formed by pedestrian detection and its related input/output frame
copies constitute a task. Tasks have different properties, including
input data size (which determines the copy time), data arrival inter-
val, real-time requirement type (i.e., latency or throughput), time
requirement (i.e., latency tasks specify a deadline and throughput
tasks specify a separation time, as explained in Section 4.3) and de-
pendency information. There would be a dependency relationship
between Task-A and Task-B if we need to process Task-A before
processing Task-B. Task-A would be a dependee task and Task-B
would be a dependent task. A batch of tasks is a group of tasks that
the scheduler runs together at a given time. Schedulers usually run
tasks in a batch together by interleaving/overlapping their copy/
execute operations. Task operations consist of CUDA commands
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Figure 1. Examples of workloads with unbalanced and balanced
copy-execute times: White, gray, and black boxes present host-to-
device copy, kernel execution, and device-to-host copy operations
of tasks, respectively. Assume we pursue a scheduling approach
that interleaves copy/execute operations.

involving either a data transfer or a kernel execution command pre-
ceded by synchronization and/or timing commands and followed
by a timing command.

Data: We run a task for each instance of data that arrives as an
input. For instance, we run the gradient task for each frame of the
streaming video while performing pedestrian detection. Each task
has a data list. When new data arrives, it is added to the end of the
list. The task’s data is processed in a first-in-first-out manner.

Workload characteristics: GPU workloads that include multi-
ple real-time tasks have several salient characteristics that are con-
sidered in the design of schedulers. These characteristics are de-
termined by the properties of individual tasks and the interplay
between properties of different tasks constituting the workload.
Hence, we can broadly categorize the workloads depending on the
important properties of their tasks:

The copy and execution time of tasks determines a “balanced/
unbalanced copy-execute time” categorization: Schedulers can in-
terleave data transfer of one task with the kernel run of another task
in a given batch. Hence, if the copy and execution times of tasks are
close to each other, i.e., we have balanced copy-execution time, the
overlap of copy and execute operations would be maximized and
we will achieve a good performance improvement from interleav-
ing tasks. However, if we have unbalanced copy-execution time,
the performance of running the tasks serially and the performance
of interleaving copy/execute operations would be almost the same.
Figure 1 illustrates examples of workloads with balanced and un-
balanced copy-execute times.

The kernel size of tasks determines the “small/large kernel” cat-
egorization: Kernels that are scheduled to run concurrently can ex-
ecute at the same time only if there are enough resources. When
small kernels are used, since they use a minimum amount of re-
sources, they can run at the same time and we could obtain an
optimal execution overlap. On the other hand, when large ker-
nels are used, they could not truly run concurrently since execu-
tion overlap would only occur for a small period of time when
the higher-priority kernel finishes and frees resources allowing the
lower-priority kernel to start.

The time requirements of the task determine the “latency/
throughput oriented” categorization: the ratio of latency and through-
put tasks in the workload and the duration of their time require-
ments affect system performance. For instance, if the workload
has many latency-oriented tasks with short deadlines, meeting time
requirements would be harder.

The ratio of arithmetic operations to memory operations in task
kernels determines the “compute/memory-bound” categorization:
Naturally, workloads including a balanced combination of simul-
taneously running compute-bound and memory-bound tasks would
lead to optimal scheduler performance.

There are quantifiable ways to measure the abovementioned
task properties that determine the workload characteristics. For in-
stance, kernel sizes of tasks can be measured by counting the num-
ber of instructions. Hence, we can determine whether a workload
has small/large kernels by allowing the programmer to manually
count the instructions and annotate the kernels. Alternatively, we
can determine this characteristic using a explicit profiling step or
a compile-time decision that can be changed by runtime statistics.
Similar techniques can be used for determining whether workload
has balanced/unbalanced copy-execute times.

2.3 Development Environment
In this study, we use NVIDIA’s “Fermi” [8] and newer “Ke-
pler” GPU architectures [9] and the CUDA programming frame-
work [10]. These architectures are preferable to the GPUs widely
used today in embedded systems since Fermi and Kepler intro-
duce key features that support multitasking among several tasks
such as “concurrent kernel execution” and “dynamic parallelism”.
We expect these features to appear in future embedded GPUs (in
fact they now appear in NVIDIA’s Tegra X11 [11]). In addition to
schedulers utilizing these fairly new features, we have also devel-
oped schedulers that do not utilize them, i.e., CPUTRADITIONAL
and CPUINTERLEAVE, as explained in the next section. Hence, this
study provides schedulers that can also run on today’s embedded
GPUs.

Exploring the advantages of new GPU features for multitasking
among real-time embedded tasks before they are widely available
on embedded GPUs provides insights for adding these technologies
to embedded GPUs by providing recommendations such as which
features are more important than others, what improvements can be
done to make them more effective, etc.

3. Design of Schedulers
We explore the design space of schedulers performing multitask-
ing among real-time GPU workloads with the characteristics men-
tioned in Section 2.2. We consider both techniques based on prior
research and the ones we develop using the new GPU features.
Hence, we survey a wide spectrum of possible scheduling strate-
gies, which can be summarized with the taxonomy presented in
Figure 2.

As a result of this taxonomy, we design six different sched-
ulers: CPUTRADITIONAL, CPUINTERLEAVE, CPUCONCURRENT,
CPUORDER, GPUSYNCHRONIZE, and GPUATOMICS. The first
four schedulers run the scheduler logic on the CPU, whereas the
last two schedulers run it on the GPU. CPUTRADITIONAL is a tra-
ditional scheduler performing one task at a time. It neither over-
laps data transfer/kernel execution, nor runs kernels concurrently.
CPUINTERLEAVE interleaves data transfers and kernel executions
of tasks, but it does not run kernels concurrently. CPUCONCUR-
RENT improves upon CPUINTERLEAVE and in addition to overlap-
ping data transfers with kernel executions, also runs kernels concur-
rently. Likewise, CPUORDER improves upon CPUCONCURRENT
and in addition to interleaving data transfers/kernel executions and
running kernels concurrently, it also dynamically changes the issue
order of device-to-host copy commands of tasks in a batch (i.e., to
overlap the device-to-host copy of task which finishes its kernel ex-

1 Tegra X1 currently appears in one consumer device: the Android TV
NVIDIA SHIELD; a future NVIDIA Jetson with Tegra X1 would be an
ideal platform for further work in this area.
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Figure 2. Tree that shows taxonomy of schedulers. White and
gray boxes refer to strategy and scheduler nodes, respectively. Each
scheduler uses an alternative approach which is a combination of all
strategies utilized on the path from the leaf scheduler node up to the
root node. We implement and compare the six different schedulers
that fall out of this taxonomy.

ecution first with the execution of the other task’s kernel in a batch,
it issues the the device-to-host copy operation of the former task
before the latter task). We provide pseudocodes of CPU schedulers
in the appendix.

To the best of our knowledge, no prior study utilizes concurrent
kernels and dynamic parallelism for multitasking purposes. Hence,
the schedulers that use concurrent kernels (CPUCONCURRENT and
CPUORDER) and dynamic parallelism (GPUSYNCHRONIZE and
GPUATOMICS) are contributions of this work.

Since GPU schedulers use the dynamic parallelism feature only
available on the Kepler architecture, they cannot run on Fermi.
Also, since they run the scheduling logic on the GPU, they inher-
ently interleave data transfers/kernel execution, run kernels con-
currently, and change the issue order dynamically. GPUSYNCHRO-
NIZE uses the device-side device synchronize command to deter-
mine the end of kernels. However, this command has unstable per-
formance since it is not guaranteed to wait only for the completion
of work launched by synchronizing-thread’s block. To provide sta-
ble performance, GPUATOMICS uses atomics instead of the device
synchronize command to determine the end of kernels.

The properties of all schedulers are summarized in Table 1.
All schedulers have a while-loop structure. In this structure, the
scheduler receives newly arrived data and processes these data in
batches. When all data is received and processed, the scheduler is
done, and it exits its loop. To pick the tasks to process in the next
batch, the scheduler compares the priorities of all available tasks
and selects the ones with the highest priority.

As mentioned in Section 1.2, GPUs lack some characteristics
that are typical of real-time systems. Our scheduler design ad-
dresses these challenges in the following ways: (a) Since there is no
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Table 1. Summary of properties of schedulers.

common time concept between CPU-GPU, we measure the time on
the host and device differently using events and the clock() func-
tion, respectively, and then perform a software synchronization. (b)
Since the GPU cannot assign hardware-supported priorities to en-
force the calculated task priorities, we use a certain issue order to
do so (i.e., we issue the host-to-device copy and kernel execution
commands of higher-priority tasks before the lower-priority ones
to give the former the precedence for utilizing resources). (c) Since
the GPU does not have a preemption mechanism, to reduce the re-
sponse time of the system, we schedule at most two tasks at a time.
This also allows us to better analyze overlap behavior of the sched-
ulers: it is easier to track whether operations of the two tasks are
overlapped and to develop techniques that allow more opportunities
for overlap. However, if needed, techniques introduced in this paper
can be extended to schedule more tasks at a time. (d) Since there
is a slow interface between CPU-GPU, to hide the communication
cost, we overlap the data transfers of one task with kernel execu-
tions of another task. Recently introduced system-on-chip mobile
GPUs that support GPU computing (e.g., the Tegra X1 [11]) would
alleviate the communication cost between CPU-GPU.

4. Implementation
We implement the scheduling strategies by constructing several
methods that leverage particular features of our GPU target ar-
chitectures, listed below. This section describes important methods
that we have used to implement our schedulers. Muyan-Özçelik [6]
provides a complete list of methods and implementation details of
schedulers. This section also provides our priority and performance
calculations.

4.1 Features
Although they are not specifically designed for multitasking among
real-time tasks, current GPU architectures provide several software
and hardware features that can be used as building blocks for
constructing methods that allow this multitasking. These features
are related to: (1) overlapping multiple tasks (interleaving data
transfers with kernel executions and concurrently running different
kernels) such as asynchronous memory copy, stream, concurrent
kernel execution, hardware queue, Hyper-Q, and atomic; (2) timing
individual task operations such as the clock() device function
and event; and (3) running the scheduler logic on the GPU using
features such as persistent kernel, zero-copy memory, and dynamic
parallelism. The CUDA documentation [10] provides details of all
the abovementioned features. We provide here brief descriptions of
the subset of these features:



Stream: A stream is a sequence of commands performed on the
GPU in a given issue order, which is an order of commands in the
program. Different streams, on the other hand, may execute their
commands out of order with respect to one another. Commands
in different streams can be overlapped. For instance, kernel execu-
tion of one stream can be interleaved with data transfer of another
stream, or kernel executions of different streams can run concur-
rently.

Hardware queue: Commands sent to the device are dispatched
to the hardware queues in the given issue order. There are two types
of queues: copy and execution.

Hyper-Q: The Fermi architecture has one execution queue,
whereas the Hyper-Q feature introduced in the Kepler architecture
provides 32 execution queues. Hence, in Fermi, execution com-
mands of all streams are placed in the same queue, whereas in Ke-
pler, each stream usually has its own execution queue. Likewise,
in Fermi, data transfers of all streams are placed in the same copy
queue, whereas in Kepler, we have multiple copy queues, and data
transfers of the different streams are not placed in the same queue.

Atomic: An atomic function performs a read-modify-write
atomic operation on a variable residing in global or shared mem-
ory. The operation is atomic in the sense that it is guaranteed to be
performed without interference from other threads. In other words,
no other thread can access this address until the operation is com-
pleted.

Event: Events can be recorded at any point in the program.
Events recorded on a stream are completed when all commands in
that stream preceding the event are completed. We can query when
these events are completed and thus, we can measure the runtime
of specific operations or perform synchronization between different
streams.

Persistent kernel: The persistent kernel feature is the combi-
nation of persistent threads and uberkernels. The persistent threads
feature advocates launching only enough GPU threads to fully oc-
cupy the GPU and keeping them alive until there is no more data
left to be processed. A uberkernel allows running different opera-
tions in parallel by fusing together multiple kernels into one single
kernel. In this study, we use persistent threads to bypass the hard-
ware scheduler and continuously make scheduling decisions on the
GPU until all the tasks in the workload are done. We also use an
uberkernel since the persistent threads feature restricts us to use a
single kernel, and the only way to perform two operations required
by GPU schedulers, i.e., making decisions and launching tasks, at
the same time using a single kernel is through the adoption of the
uberkernel method.

Zero-copy memory: Zero-copy memory is a pinned memory
mapped into the CUDA address space. GPU kernels can directly
access this memory and kernel-originated data transfers utilizing
zero-copy memory automatically overlap kernel executions.

Dynamic parallelism: The Kepler architecture introduces the
dynamic parallelism feature that enables kernels to launch new ker-
nels directly from the GPU. If they are launched from different
streams and there are enough resources, kernels can run concur-
rently.

4.2 Methods
We use the abovementioned features to construct methods that
implement different scheduling strategies. Most of the methods we
present here are either new techniques proposed in this work or
combine existing techniques in novel ways.

Some methods are used as building blocks for schedulers. For
instance, to run scheduling logic on the GPU, we use methods that
(1) allow communication between the CPU and GPU utilizing zero-
copy memory (communication is needed to transfer newly arrived
data to the GPU and to copy produced results to the CPU) and
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copy stream 

of task_1

time
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Figure 3. Each task operation is mapped to different streams and
overlapped with operations of other tasks. Here we assume we pur-
sue a scheduling approach that interleaves copy/execute operations
and runs kernels concurrently.

(2) fuse a kernel that make scheduling decisions with a kernel that
launches tasks into a persistent kernel (threads of the kernel that
launch tasks use dynamic parallelism).

Beyond serving as building blocks, these methods also resolve
technical difficulties that arise while implementing our schedulers.
Several methods resolve technical problems that arise due to false
dependencies caused by the events that are used to measure copy
and execute times of tasks in all the scheduling strategies. Data
copy and kernel execution commands are placed in copy and execu-
tion queues, relatively. As long as there are no dependencies, execu-
tions of commands in different queues can be overlapped (e.g., the
copy command of one task can be interleaved with execution com-
mand of another task). However, blocked commands cause false
dependencies between independent commands.

Just like any other command, events are also placed in hardware
queues. However, which queue they will be placed is device/driver-
dependent. In the Fermi architecture, they are by default placed in
the same queue as the previous command in the same stream. De-
pending on in which queue they are placed, events can be blocked
and cause false dependencies. We fix some of these false depen-
dencies by enforcing events that are used to measure runtime of
copy and execute operations to be placed in the copy and execution
queues, respectively. It enforces these requirements by dedicating
different streams to each operation of the task and initializing copy
and execute streams with dummy copy and dummy execute com-
mands, respectively. This method is a new method pioneered by
this study. Resolving false dependencies by using different streams
allows schedulers to overlap operations of different tasks. Figure 3
illustrates how we map two tasks to different streams and overlap
operations of these tasks.

Another method that deals with false dependencies caused by
the events involves not issuing a stop event between concurrent ker-
nel launches. As indicated in the CUDA Programming Guide [10],
while devices of compute capability 3.0 or lower run kernels con-
currently, an operation that requires a dependency check to see if
a streamed kernel launch is completed (e.g., command within the
same stream as the launch being checked) blocks all later kernel
launches from any stream until the kernel launch being checked
is completed. That is why the stop event of the first-issued kernel
inserted between the launches of kernels intended to be run concur-
rently causes a false dependency. The CUDA Programming Guide
recommends issuing all independent operations before dependent
operations to improve the potential for concurrent kernel execu-
tions. Following this recommendation, to avoid false dependencies
and allow concurrent execution of kernels, we insert the stop event
of the first-issued kernel after issuing concurrent kernel launches.

We also implement methods that resolve the difficulties of de-
termining the end of kernels running concurrently, which would
allow for better overlap opportunities. Once we detect that the ker-
nel execution of one task is finished, we can immediately start its
device-to-host data transfer; hence, we allow this transfer to over-
lap with the execution of the other kernel that has been running



concurrently. However, to implement the CPU scheduling strategy
that changes the issue order (i.e., CPUORDER), we cannot use the
“stream query” command to determine the end of concurrent ker-
nels, since stream query blocks the concurrent kernel streams un-
til the longest running kernel finishes. We call this difficulty the
“blocking-query” problem. Hence, instead of using stream query,
CPUORDER determines the end of kernels using a method that uti-
lizes atomic operations. As we noted in Section 3, we utilize a sim-
ilar method that uses atomics to implement GPUATOMICS to solve
the unstable performance problem caused by the device-side device
synchronize command while determining the end of kernels. These
methods use atomic-counter versions of kernels instead of regular
kernels. In these versions of kernels, an atomic counter is increased
when the thread is done. When this counter is equal to the number
of threads that are launched, it means that the kernel is done. In the
CPU schedulers, the host reads this counter via zero-copy mem-
ory. Hence, this method combines different existing methods (i.e.,
atomics and zero-copy) in a novel way.

In addition, we develop a method that resolves a difficulty of
dictating the execution order while overlapping tasks. Schedulers
execute the tasks in priority order to meet the time requirements
in the best way they can. Hence, it is important to set the execu-
tion order of commands. Since the Hyper-Q feature introduced in
Kepler allows us to have more than one queue for each type of
command (e.g., Kepler has multiple host-to-device copy queues),
issue order does not always lead to execution order. For instance,
since tasks use different streams, copy commands of two overlap-
ping tasks would be placed in different copy queues, and since the
hardware can execute a ready-to-execute command from any copy
queue, issue order would not dictate execution order. Our method
ensures execution order follows issue order by inserting a stream-
wait-event command between the task operations that are supposed
to execute in order. In this way, the start of the second-issued task
operation would wait until the first-issued task operation is finished.
Thus, this method uses the stream-wait-event command for a novel
purpose (i.e., to ensure execution order follows issue order).

Finally, with the following method, we resolve a difficulty
with flushing zero-copy memory. Our findings show that when the
schedulers run on the Windows operating system, the host cannot
see the changes the device makes on the zero-copy memory with-
out calling host-side device synchronization. However, we cannot
utilize this command since it hurts the overlap of task operations in
CPU schedulers and causes a deadlock in GPU schedulers. Instead,
to flush zero-copy memory, we use the stream query command
on any of the streams executing concurrently with the kernel that
is updating the zero-copy memory. When we use this method in
our CPU schedulers, we record the stop event of the first-finished
kernel on the device-to-host copy stream instead of the kernel exe-
cution stream to resolve the blocking-query problem that is caused
by the use of stream query command. This method is another new
method pioneered by this study.

4.3 Priority Calculations
All schedulers use the same logic for priority calculations. These
calculations include determining the tasks that are ready to execute,
calculating priority values for these tasks, and sorting them accord-
ing to these values. A task is considered ready to execute if both of
the following conditions are met: (a) it has data that has not been
processed, and (b) it does not have any dependee or if it does, the
related data of its dependee is already processed. Ready-to-execute
tasks with precedence are assigned higher priority values.

We use different priority calculations for latency- and through-
put-oriented tasks (Equation 1). These calculations are based on
the time requirements of tasks, which are specified differently for
latency- and throughput-oriented tasks. As a time requirement,
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Figure 4. Time definitions for latency- and throughput-oriented
tasks.

latency tasks specify a “deadline” that indicates the time period
in which the system should respond to a task’s newly arrived
data. On the other hand, throughput tasks specify a “separation
time” that indicates the difference between the finish times of two
consecutively-arriving data instances. Figure 4 illustrates the dead-
line and separation time. In Equation 1, “elapsed time” indicates
the time since the first data in a task’s data list was received, and
“time since last done” is the time since the last processed data of
the task is finished. To assign a priority value, schedulers also need
to know the “average runtime” of tasks. Hence, before running
the schedulers, we perform a profiling run to calculate the average
runtime of the tasks.

priority of latency task = (1)

(elapsed time + average runtime)− deadline

priority of throughput task =

(time since last done + average runtime)− separation time

4.4 Performance Calculations
We compute scheduler performance as a function of a value that
accumulates the slack time of each data. For latency tasks, slack
is calculated as the difference between the “total time” and the
deadline, where total time is the difference between the arrival and
finish times of data. For throughput-oriented tasks, slack time is the
difference between “time to previous data” and separation time,
where time to previous data is the difference between the finish
times of previous and current data. Figure 4 illustrates the total time
and time to previous data.

To compare the schedulers in a standard way, we scale scheduler
performance to a baseline. To assign performance values, we first
calculate an ideal accumulated slack time value by assuming that
the system has the ability to respond to all data as soon as they
are ready to execute. Then, we calculate performance values for
all the schedulers by shifting their accumulated slack time values
according to an ideal accumulated slack time value and taking the
shifted value of CPUTRADITIONAL as the basis for the comparison.
Hence, the performance value for the scheduler can be computed as
indicated in Equation 2.



performance of scheduler = (2)
accumulated slack time of CPUTRADITIONAL − ideal accumulated slack time

accumulated slack time of scheduler − ideal accumulated slack time

As can be seen from the above formula, the performance of
CPUTRADITIONAL would always be 1. Schedulers that perform
better than CPUTRADITIONAL would have a performance value
greater than 1, e.g., if the scaled performance of the scheduler is 2,
it means that the performance of the scheduler is two times better
than that of CPUTRADITIONAL.

5. Experiments
As explained in Section 1, one of the important contributions of
our study is investigating the use of various schedulers that pursue
alternative approaches rather than focusing on a specific scheduler.
We evaluate and compare these alternative schedulers by conduct-
ing experiments on synthetic cases. A synthetic case consists of a
workload that involves artificial tasks and a GPU architecture that
schedulers use to process this workload. From these experiments,
we conclude which strategy is more effective for a given workload
and why.

Scheduler performance is affected the most by the workload
characteristics that highlight the differences in the strategies used.
“Balanced/unbalanced copy-execute time” and “small/large ker-
nel” categorizations focus on the differences in interleaving-copy/
execution and running-kernels-concurrently strategies, respec-
tively. On the other hand, “latency/throughput oriented” and “com-
pute/memory bound” categorizations do not highlight any salient
differences due to the fact that the schedulers use the same prior-
ity calculations and the same hardware, respectively. Hence, the
synthetic cases we describe here focus on the former two catego-
rizations.

Scheduler performance also depends on the target GPU archi-
tecture, here Fermi or Kepler. Kepler introduces dynamic paral-
lelism and Hyper-Q features lacking in Fermi. Dynamic parallelism
coupled with persistent kernel and zero-copy features allow us to
run the scheduling logic on the GPU and launch kernels directly
from the device. On the other hand, since the Hyper-Q feature dras-
tically increases the number of available hardware queues, it min-
imizes the occurrence of false dependencies. In addition, since it
allows each execution stream to have its own execution queue and
prevents all copy streams to be placed in the same queue, it elim-
inates the need for a strategy that changes the issue order dynam-
ically. Also, Hyper-Q improves the performance of the approach
that runs kernels concurrently by preventing the occurrence of “de-
layed-signal” phenomena [14] (a condition that delays device-to-
host copies until all concurrent kernels are done and prevents in-
terleaving of kernel executions with device-to-host copies), which
occurs when single execution queue and large kernels are used.

If a workload consists of small kernels, schedulers that run the
kernels concurrently can truly run them at the same time. In this
case, if the higher-priority task has a longer kernel runtime than
the lower-priority task, the later-launched, lower-priority kernel
would finish first, creating a special condition that affects scheduler
performance. Our synthetic cases also investigate the effects of this
special condition.

We provide the list of synthetic cases and the performance of
the schedulers for these cases in Table 2. We calculate the perfor-
mance values using the technique introduced in Section 4.4. Com-
parison of performance values are only meaningful within a case
and should not be compared across cases. It is because, in each
case shifted accumulated slack time values of CPUTRADITIONAL
is taken as a base (i.e., performance of CPUTRADITIONAL is al-
ways assigned to 1) to calculate performance of other schedulers
and this value changes across cases. Hence, for instance, if one

case has larger performance value than another case for a partic-
ular scheduler, it does not mean that the scheduler performs better
in the former case.

Cases
Scheduler 1 2 3 4 5 6
CPUTRADITIONAL 1.00 1.00 1.00 1.00 1.00 1.00
CPUINTERLEAVE 1.92 2.83 3.34 1.75 2.59 1.13
CPUCONCURRENT 3.57 3.55 4.37 1.78 1.54 0.82
CPUORDER 3.57 4.26 4.32 0.66 0.11 0.29
GPUSYNCHRONIZE 3.12 — — 1.70 — —
GPUATOMICS 3.22 — — 0.63 — —

Case-1: small kernels, balanced operations, on Kepler, higher-priority tasks have
longer kernel runtimes
Case-2: Case-1 workload on Fermi
Case-3: same as Case-2, except higher-priority tasks have shorter kernel runtimes
Case-4: similar to Case-1, but with large kernels
Case-5: similar workload to Case-4 on Fermi
Case-6: similar to Case-5, but with unbalanced operations

Table 2. Performance of the schedulers for all cases (the best
performance value for each case is indicated in bold).

6. Summary and Conclusions
Based on the results of the experiments, we make the following
conclusions (where P[X] denotes the performance of a scheduler
X):

(1) Approaches that run kernels concurrently are advantageous
when small kernels are used. If large kernels run concurrently, the
performance does not change on Kepler and degrades on Fermi.

As explained in Section 2.2, large kernels cannot truly run
concurrently. Hence, if large kernels and the approach that runs
kernels concurrently are used, the performance on Kepler would
be the same as the performance when the approach that does
not run kernels concurrently is used (P[CPUCONCURRENT] ≈
P[CPUINTERLEAVE] in Case-4). When large kernels are used, the
performance degrades on Fermi due to the delayed-signal phe-
nomenon (P[CPUCONCURRENT] < P[CPUINTERLEAVE] in Case-
5). According to our observations, this phenomenon does not oc-
cur when small kernels are used on Fermi. In addition, this phe-
nomenon does not occur on Kepler due to its support of Hyper-
Q. If small/medium kernels are used, the approach that runs ker-
nels concurrently improves performance both on Fermi and Kepler
(P[CPUCONCURRENT] > P[CPUINTERLEAVE] in Case-1, Case-2,
and Case-3).

(2) If we have unbalanced copy-execute times in addition to
large kernels, the approach that runs kernels concurrently performs
even worse than the approach that does not overlap tasks on Fermi.

Since we have unbalanced copy-execute times, the performance
improvement gained from interleaving host-to-device copies with
kernel executions would be minimal; moreover, it would be can-
celed out by the performance degradation stemming from the de-
layed-signal phenomenon (P[CPUCONCURRENT] <
P[CPUTRADITIONAL] in Case-6).

(3) The approach using atomics that changes the issue order
only improves results on Fermi for the workloads with small
kernels and when the kernel runtime of higher-priority tasks are
longer. With larger kernels, using atomics is disadvantageous both
on Fermi and Kepler.

If we have small kernels, changing the issue order approach
used by a CPU scheduler (which utilizes atomics) does not improve
performance on Kepler (since it has Hyper-Q). Hence, the perfor-
mance of the CPU scheduler that uses atomics and changes issue



order would be the same as its counterpart that does not do them
(P[CPUORDER] = P[CPUCONCURRENT] in Case-1). When small
kernels are used, the performance of the GPU scheduler that uti-
lizes atomics would also be the same as its counterpart not utilizing
atomics (P[GPUSYNCHRONIZE] ≈ P[GPUATOMICS] in Case-1).
In CPU schedulers, by default, the higher-priority task’s device-to-
host copy is issued before that of the lower-priority task. Hence, if
the runtime of higher-priority task is shorter than that of the lower-
priority task, changing issue order would not improve performance
(P[CPUORDER] ≈ P[CPUCONCURRENT] in Case-3). However, if
the runtime of higher-priority task is longer, to get the best overlap
on Fermi, we need to switch the default issue order (P[CPUORDER]
> P[CPUCONCURRENT] in Case-2).

With respect to atomic operations, we find that they are ex-
pensive when large kernels are used; when using strategies with
atomics, the runtime of kernels would increase and the perfor-
mance of their CPU/GPU schedulers would decrease both on
Kepler and Fermi. (P[CPUTRADITIONAL] > P[CPUORDER] ≈
P[GPUATOMICS] in Case-4 and P[CPUTRADITIONAL] >
P[CPUORDER] in Case-5 and Case-6).

(4) Approaches that perform GPU scheduling perform worse
than their counterparts that perform CPU scheduling, due to the
limitations of current GPU architectures.

GPU schedulers perform worse than their CPU counterparts.
The counterpart of GPUSYNCHRONIZE is CPUCONCURRENT
since neither of them use atomics (P[GPUSYNCHRONIZE] <
P[CPUCONCURRENT] in Case-1). Likewise, the counterpart of
GPUATOMICS is CPUORDER since both of them use atomics
(P[GPUATOMICS] < P[CPUORDER] in Case-1). This is perhaps
the most important conclusion, and stems from the following obser-
vations: (a) running serial scheduler logic on a parallel GPU is not
efficient; (b) to enforce priority between tasks, the GPU schedulers
cannot use the benefit of launching kernels in parallel from the de-
vice (instead of using this benefit provided by dynamic parallelism,
to give precedence of using compute resources to higher-priority
tasks, just like the host-side kernel launches, we launch device-side
kernels serially); (c) the GPU schedulers require transferring extra
scheduling messages using zero-copy memory between the host
and device, whereas the CPU schedulers do not need to spend time
and resources for such transfers; and (d) since small amounts of
device resources are occupied by the GPU scheduler, processing
tasks takes slightly longer.

7. A Real-world Case
To demonstrate a plausible scenario to which this study can
be applied, we now analyze a workload constructed from real-
world tasks from four different automotive computing applica-
tions: pedestrian detection, blind-spot tracking, road-sign detec-
tion, and collision avoidance. The code for the tasks are derived
from the GPU-accelerated computer vision samples of the OpenCV
library [1].

This real-world case includes six tasks: (1) A pedestrian detec-
tion application task, based upon the kernel that computes the gra-
dient of a given image. This kernel is part of the HOG (Histogram
of Oriented Gradients) detector used for detecting people. (2) A
blind-spot tracking application task, based upon a kernel that scales
a vector by a scalar. This kernel is part of the optical-flow opera-
tor used for tracking objects. (3) A road-sign detection application
task, based upon the kernel that performs thresholding with hys-
teresis to trace edges through an image. This kernel is part of the
Canny edge detector, a pre-processing step applied by the Hough
Lines transform that is used for finding straight lines in an image.
(4) Another road-sign detection application task, based upon the
kernel that builds point lists from a given image. This kernel is
part of the Hough Lines transform used for finding straight lines in

an image. (5) A collision avoidance application task, based upon
the kernel that calculates a disparity map from a pair of images.
This kernel is part of the stereo-matching operator used for getting
depth information for the objects in the scene. (6) Another collision
avoidance application task, based upon the kernel that performs low
textureness filtering, which is a post-processing step applied by the
stereo-matching operator used for getting depth information for the
objects in the scene.

We include dependency relationships between tasks belonging
to the same application. Tasks belonging to the pedestrian and road-
sign detection applications are throughput-oriented; the others are
latency-oriented. The workload has balanced copy/execute times.
In addition, unlike the synthetic cases, in this study the kernel
sizes are small enough that kernels can truly run concurrently but
big enough that the use of atomics would increase the runtime of
kernels.

To provide a comparison of results across all 6 of our sched-
ulers, we run this real-world workload on a Kepler GPU, which
allows running GPU schedulers as well as CPU ones. Comparison
of the scheduler performance is as follows (performance values,
which are calculated using the technique introduced in Section 4.4,
are provided in parenthesis): CPUTRADITIONAL (1.00) < CPUIN-
TERLEAVE (1.13) < GPUATOMICS (1.47) < CPUORDER (1.63) <
GPUSYNCHRONIZE (2.04) < CPUCONCURRENT (2.45).

These results are consistent with the conclusions provided in
the previous section: Since kernel sizes are small enough that
kernels can truly run concurrently, as indicated in conclusion-
1, the approach that runs kernels concurrently is advantageous
(P[CPUCONCURRENT] > P[CPUINTERLEAVE]). The approach
that does not overlap tasks performs worst (P[CPUTRADITIONAL]
is worst) because the workload has balanced copy/execute times
and thus interleaving host-to-device copies with kernel execu-
tions would be advantageous (related to conclusion-2). Since ker-
nel sizes are big enough that the use of atomics would increase
runtime of kernels (unlike Case-1 which has small kernels), in
accordance with conclusion-3, the schedulers utilizing atomics
would be disadvantaged compared to their atomicless counterparts
(P[CPUORDER] < P[CPUCONCURRENT] and P[GPUATOMICS] <
P[GPUSYNCHRONIZE]). However, since the kernels are not very
big, these schedulers would still perform better than the approach
that does not overlap task operations (P[CPUTRADITIONAL] <
P[GPUATOMICS] ≈ P[CPUORDER). Finally, due to the reasons
explained in conclusion-4, GPU schedulers perform worse than
their CPU counterparts. We would like to stress that conclu-
sion-4 does not mean that CPU scheduling approaches will al-
ways be better than GPU scheduling approaches. Instead it indi-
cates that a CPU scheduler will be better than its GPU “coun-
terpart” which use the same strategy (P[GPUSYNCHRONIZE] <
P[CPUCONCURRENT] and P[GPUATOMICS] < P[CPUORDER]).
Since kernel sizes are big enough that the use of atomics would
increase runtime of kernels, in accordance with conclusion-3,
the CPU scheduling approach that uses atomics performs worse
than the GPU scheduling approach that does not use atomics
(P[CPUORDER] < P[GPUSYNCHRONIZE]).

8. Recommendations
Finally, we recommend the following features that address the
shortcomings of current GPU architectures with respect to real-
time multitasking. We believe adding these features to upcoming
architectures would improve the performance of future schedulers.

Hardware priority: The current programming system only
guarantees that a program will function correctly; it is unable to
guarantee execution order, which is crucial for scheduling time-
sensitive real-time tasks with priorities.



Preemption: Kernels run to completion and GPUs do not have
access to an interrupt mechanism that would allow us to put a run-
ning kernel to sleep and wake it up again later. Having a preemption
mechanism is especially important for addressing the time require-
ments of very low-latency real-time tasks.

Programmable GPU scheduler: The GPU’s hardware sched-
uler manages all blocks by automatically assigning them to com-
pute resources, hiding all scheduling decisions from the user. A
programmable scheduler would better address the requirements of
real-time task by allowing fine-grained management of resources
and reservation of specific resources for particular blocks.

Common time concept: GPUs have no support for a common
time measure on the host (CPU) and the device (GPU). Having a
common time concept across the CPU and GPU would allow mea-
suring time more precisely since we would be able to synchronize
time between the host and device.

Atomics across the CPU and GPU: GPU schedulers use extra
scheduling messages to cope with race conditions that might arise
when both the CPU and GPU attempt to update the zero-copy
memory at the same time. If atomics across the host and device
were supported, we would avoid the need for such messages, and
the performance of GPU schedulers would be improved.

Solutions to technical difficulties: For performance reasons,
the minor issues we have identified while implementing our sched-
ulers (e.g., avoiding false dependencies caused by events, deter-
mining the end of concurrent kernels, flushing zero-copy mem-
ory, dealing with “delayed-signal” phenomena) would be better
solved at the programming-system level rather than with the var-
ious workarounds we have developed in the course of this work.

9. Future Work
We would like to extend this work in four main ways, building on
the first author’s dissertation [6]:

• We wish to further explore and compare to related work in
this area, including application-defined schedulers, program-
ming frameworks, and driver/operating system support, with an
emphasis on how they implement important parts of scheduling
systems such as work division/time slicing, work queuing, and
timing.

• We would like to extend Section 3 and Section 4 by providing
implementation details of schedulers (e.g., adding pseudocode
for GPU schedulers) and extended descriptions of a complete
list of our methods. We hope to discuss these methods in the
following contexts: the technical problem each method aims
to address, the high-level solution to this problem, and the
implementation details of the method.

• We hope to provide further discussion on the properties and
results of individual cases that are used in the experiments and
on the motivations and insights of recommendations that are
made for upcoming GPU architectures.

• Finally, we would like to explore the implications of system-
on-chip architectures for scheduling multiple tasks. In these
architectures, since CPU and GPU use a common memory,
there is no need to copy data, results, or messages back and
forth between the host and device. This, in turn, has several
implications for the scheduling strategies used in our study.
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A. Pseudocodes of CPU Schedulers
CPU schedulers differ mostly from each other in the way they pro-
cess tasks. Algorithms 1-4 provide comparison of how CPU sched-
ulers process tasks by listing their pseudocodes. Each algorithm
highlights the part of the implementation that realizes alternative
strategies and shows the methods used by the scheduler to carry
out these strategies.

Performing a task operation mentioned in pseudocodes consists
of data copy or kernel execution commands preceded by synchro-
nization and/or timing commands and followed by timing com-
mands. Synchronization and timing commands are stream wait
event and event recording commands, respectively. In addition, the
list of ready-to-execute tasks mentioned in pseudocodes refers to
tasks that have data to be processed and have no dependee or tasks
that have a dependee and related data of this dependee is already
processed. Hence, this list holds tasks whose first data in their data
list is ready to be executed.

for first two tasks, t1 and t2, in a list of ready-to-execute tasks
sorted by their priority do

assign host to device copy and kernel execution streams
of t2 to s2 and s4, respectively;
perform host to device copy operation of t1;
// make sure execution order would follow

issue order
make s2 wait on the stop event of host to device copy of
t1;
perform host to device copy operation of t2 on s2;
perform kernel execution operation of t1;
// do not allow concurrent run

make s4 wait on the stop event of kernel execution of t1;
perform kernel execution operation of t2 on s4;
perform device to host copy operation of t1;
perform device to host copy operation of t2;

end
Algorithm 1: Pseudocode for CPUINTERLEAVE.

for first two tasks, t1 and t2, in a list of ready-to-execute tasks
sorted by their priority do

assign host to device stream of t2 to s2;
perform host to device copy operation of t1;
// make sure execution order would follow

issue order
make s2 wait on the stop event of host to device copy of
t1;
perform host to device copy operation of t2;
record the start event of kernel execution of t1;
launch kernel execution of t1;
record the start event of kernel execution of t2;
launch kernel execution of t2;
// issue the stop event of kernel execution

of t1 after kernel launches to avoid the
false dependency that breaks concurrent
run

record the stop event of kernel execution of t1;
record the stop event of kernel execution of t2;
perform device to host copy operation of t1;
perform device to host copy operation of t2;

end
Algorithm 2: Pseudocode for CPUCONCURRENT.



for first two tasks, t1 and t2, in a list of ready-to-execute tasks
sorted by their priority do

assign kernel execution stream of t1 to s3 and host to
device copy stream of t2 to s2;
perform host to device copy operation of t1;
// make sure execution order would follow

issue order
make s2 wait on the stop event of host to device copy of
t1;
perform host to device copy operation of t2;
record the start event of kernel execution of t1, which
uses atomic version of the kernel;
launch kernel execution of t1, which uses atomic version
of the kernel, on s3;
record the start event of kernel execution of t2, which
uses atomic version of the kernel;
launch kernel execution of t2, which uses atomic version
of the kernel;
// see changes the device makes on

zero-copy memory without synchronization

cudaSteamQuery(s3);
while true do

// poll on zero-copy memory to determine

which kernel has finished first

if finish flag of t1 is set then
1st finished task = t1;
2nd finished task = t2;

end
if finish flag of t2 is set then

1st finished task = t2;
2nd finished task = t1;

end
end
assign device to host copy stream of 1st finished task to
s7;
// issue stop event of kernel execution of

1st finished task before that of
2nd finished task, handle the
blocking-query problem (caused by the
above stream query command) by recording
this event on device to host copy stream
instead of kernel execution stream

record the stop event of kernel execution of
1st finished task, which uses atomic version of the
kernel, on s7;
record the stop event of kernel execution of
2nd finished task, which uses atomic version of the
kernel;
// issue device to host copy of

1st finished task before that of
2nd finished task

perform device to host copy operation of
1st finished task on s7;
perform device to host copy operation of
2nd finished task;

end
Algorithm 3: Pseudocode for CPUORDER.

for each task, t, in a list of ready-to-execute tasks sorted by
their priority do

perform host to device copy operation of t;
perform kernel execution operation of t;
perform device to host copy operation of t;

end
Algorithm 4: Pseudocode for CPUTRADITIONAL.
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[6] P. Muyan-Özçelik. Running Real-time Tasks on Embedded Systems
Using GPU computing. PhD thesis, Dept. of Computer Science,
University of California, Davis, 2014.
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