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ABSTRACT OF THE DISSERTATION 

 

Tectonic Evolution of the  

Northeastern Tibetan Plateau 

 

by  

 

Andrew Vincent Zuza 

Doctor of Philosophy in Geology 

University of California, Los Angeles, 2016 

Professor An Yin, Chair 

 

 How the Tibetan Plateau was constructed and evolved in response to ongoing India-Asia 

convergence since 65-55 Ma is fundamental in understanding processes of continental tectonics. 

Furthermore, the kinematics and mechanisms of plateau formation and continental deformation 

have implications for the complex interactions between tectonics, erosion, and climate change in 

Earth’s most recent history. To provide insights into these processes, my research is focused on 

the development of the northern margin of the Tibetan Plateau, which is defined by the 350-km-

wide and 1300-km-long Cenozoic Qilian Shan-Nan Shan thrust belt. This active fold and thrust 

system overprinted a region that has a complex pre-Cenozoic tectonic history involving multiple 

phases of Proterozoic basement deformation and early Paleozoic orogeny. In this work, I 

integrate geologic mapping, balanced cross section construction and restoration, seismic 

reflection interpretation, geochronology, thermobarometry, geodetic data analysis, and analogue 

modeling to investigate the tectonic development of northern Tibet over a range of timescales, 
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from the Proterozoic evolution of central Asian cratons to the active deformation that is shaping 

the northern margin of the Tibetan Plateau.  

 The magnitude, style, and distribution of Cenozoic shortening strain across northern 

Tibet can be used to test competing models of continental deformation. The shortening 

distribution across the Qilian Shan-Nan Shan thrust belt, derived from surface mapping and 

subsurface seismic reflection profiles, suggests that the modern thickness and elevation of the 

northern plateau has developed as a result of southward continental underthrusting of Asia 

beneath Tibet and distributed crustal thickening. The thrust systems in northern Tibet link to the 

east with > ~1000-km-long parallel left-slip strike-slip faults (i.e., the Haiyuan, Qinling, and 

Kunlun faults). The along-strike variation of fault offsets and pervasive off-fault deformation 

along these strike-slip faults create a strain pattern that departs from the expectations of the 

classic plate-like rigid-body motion and flow-like distributed deformation models of continental 

deformation. Instead, I propose that the major strike-slip faults formed as a non-rigid bookshelf-

fault system where clockwise rotation of northern Tibet drives left-slip bookshelf faulting and 

related off-strike-slip fault deformation. In addition, I employ a stress-shadow model that uses 

the characteristic spacing of strike-slip faults and seismogenic-zone thickness estimates across 

northern Tibet and central Asia to estimate fault strength and the regional stress state. The strike-

slip faults in Asia have a low coefficient of fault friction (~0.15), which may explain why 

deformation penetrates more than 3500 km into Asia from the Himalayan collisional front, and 

why the interior of Asia is prone to large (M > 7.0) devastating earthquakes along major strike-

slip faults. 

 A well-constrained understanding of Cenozoic deformation across northern Tibet allows 

for better reconstructions of the Proterozoic and Paleozoic tectonics. Field relationships and 
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geochronologic studies reveal that the early Paleozoic Qilian suture, which bounds the southern 

margin of the North China craton, records the Ordovician-early Silurian closure of the Qilian 

Ocean via south-dipping subduction beneath the Qaidam continent. The evolution of this ocean 

and North China’s southern margin has implications for reconstructions of Neoproterozoic and 

Paleozoic Earth, including the development of the Tethyan and Paleo-Asian Oceanic Domains. 

By restoring the Phanerozoic deformation along the northern and southern margins of the Tarim 

and North China cratons, I propose and test a hypothesis that these cratons once stretched 

westward across present-day Asia, possibly as far west as Baltica, as a continuous 

Neoproterozoic continent. 
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1.1. Introduction 

 Eurasia was the only continent assembled during the Phanerozoic (e.g., Şengör and 

Natal’in, 1996), and understanding its formation and evolution greatly impacts our knowledge of 

continental tectonics (Molnar, 1988; Yin, 2010). The Eurasian continent developed through the 

Neoproterozoic to the present over a span of one billion years (Scotese and McKerrow, 1990; 

Yin and Nie, 1996; Şengör and Natal’in, 1996; Yin and Harrison, 2000). The construction of this 

continent was accomplished by several continental collisions associated with the closure of the 

Paleo-Asian and Tethyan ocean domains in north-central and southern Asia, respectively (e.g., 

Zonenshain et al. 1990; Yin and Nie, 1996; Şengör and Natal’in, 1996; Heubeck, 2001; Badarch 

et al. 2002; Stampfli and Borel, 2002; Biske and Seltmann, 2010; Wu et al., 2016) (Fig. 1.1). The 

most recent of these collisions, between the Indian and Eurasian continents, led to the 

development of the archetypal continental collision: the Himalayan-Tibetan orogen (e.g., Yin 

and Harrison, 2000; Yin, 2010). 

 This dissertation revolves around topics of intracontinental deformation, repeated 

collision and ocean closure, and the tectonic reorganization of northern Tibet, from the early 

Neoproterozoic collisions of cratons that formed the supercontinent Rodinia to the most recent 

development of the modern Tibetan Plateau. In this work, I provide insight into these events, and 

contribute to our understanding of the geology of the northeastern Tibetan Plateau, through 

detailed study of the Qilian Shan-Nan Shan thrust belt (Fig. 1.2). This active fold and thrust 

system, which presently defines the northeastern margin of the Tibetan Plateau (Figs. 1.1 and 

1.2), is one of the widest active thrust belts in Tibet. The Qilian Shan exposes Precambrian 

basement, an early Paleozoic orogen, Mesozoic extensional basins, and Cenozoic thrust and 

strike-slip fault systems. Despite its important and complex tectonic position along the northern 
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margin of the plateau, this region has not been thoroughly examined with modern structural 

methods, leaving many first-order problems unresolved. The interaction between Paleozoic and 

Cenozoic structures in this region requires a holistic approach to unravel the regional tectonic 

history. It is impossible to accurately interpret the Paleozoic history without understanding the 

more recent Cenozoic deformation and reorganizational events, and tectonic reconstructions of 

Cenozoic deformation must be made in the context of the pre-Cenozoic configuration. This 

dissertation is comprised of five main chapters, and the topics generally progress from youngest 

(i.e., active Cenozoic shortening) to oldest (i.e., Proterozoic craton reconstructions) in terms of 

the geologic history.  

 Throughout this dissertation, I use the name Qilian Shan (Shan = Mountains in Chinese) 

to refer to the geographical and physiographical region that is comprised of the northernmost 

mountain range on the Tibetan Plateau. The Qilian Shan-Nan Shan is the name given to the 

Cenozoic thrust belt that occupies the region of the Qilian Shan, and this active thrust belt is 

responsible for its present-day geomorphology of the Qilian Shan (i.e., northwest-trending ranges 

and intermontane basins). Although the Qilian Shan and associated mountains are sometimes 

referred to as the Nan Shan (Nan Shan = Southern Mountains, which were to the south of the 

Silk Road as it ran through the Hexi Corridor; Fig. 1.2) (e.g., Tapponnier and Molnar, 1977) and 

the Cenozoic thrust belt is variably given a combination of these names (e.g., Nan Shan thrust 

belt, Qilian Shan thrust belt, etc), in this dissertation I refer to the mountain range or geographic 

location as the Qilian Shan and the active Cenozoic thrust belt as the Qilian Shan-Nan Shan. The 

Qilian orogen, Qilian suture, and remnants of the Qilian Ocean refer to the early Paleozoic 

features that are distributed throughout the Qilian Shan. The exposure of these early Paleozoic 

tectonic features is the result of uplift and erosion across the Cenozoic Qilian Shan-Nan Shan 
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thrust belt. Lastly, note that the there are numerous ranges and major river valleys within the 

Qilian Shan or Qilian Shan-Nan Shan thrust belt (e.g., the Shule Nan Shan, Tuo Lai Shan, etc.), 

which I discuss in more detail in Chapter 2. 

 This dissertation is based primarily on detailed field mapping across northern Tibet, 

which included two summers of mapping in the central Qilian Shan and one two-week period of 

reconnaissance mapping where the northeastern Tibetan Plateau abuts against the North China 

craton (Figs. 1.1 and 1.2). In the summer of 2012, Robin Reith, Chen Wu, Junfeng Gong, Jinyu 

Zhang, myself, and a team of other geologists mapped the Tuo Lai and Shule river valleys in the 

central Qilian Shan. Our focus was primarily on establishing the tectonostratigraphic units, 

mapping Cenozoic thrust faults, and collecting samples for geochronology. We also completed 

several traverses across the metamorphic basement rocks. During this field season, Robin Reith 

and I focused on mapping the regionally extensive unconformities at the base of the 

Carboniferous (sometimes Permian or Triassic) strata, with the goal of using this marker horizon 

to help restore Cenozoic deformation. In addition, Chen Wu and I noted that metamorphic rocks 

in the Tuo Lai Nan Shan made up a large vertically oriented right-slip shear zone. Initially, we 

thought that this right-slip shear zone could have originally been a thrust fault from the early 

Paleozoic Qilian orogen that was rotated during Cenozoic deformation. This hypothesis was later 

refuted through focused mapping in 2013 and thermobarometry analysis. 

 During the summer of 2013, Chen Wu and I expanded our work from the previous 

summer, revisited key contacts, and focused our mapping in the Tuo Lai Shan, north of the town 

of Yanglong, which is bounded by the Tuo Lai and Heihe Rivers to the south and north, 

respectively. In this field season, we continued mapping the late Paleozoic unconformity surface 

that is regionally extensive throughout most of the central Qilian Shan. We also focused on the 
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early Paleozoic features of the Qilian orogen and suture, including Neoproterozoic passive 

continental margin rocks, Yushiguo ophiolite (e.g., Song and Su, 1998; Hou et al., 2006), and 

deformed Ordovician forearc strata.  

 On a two week field trip at the end of the summer of 2014, An Yin, Chen Wu, and I 

examined the southwestern margin of the North China craton near Wuwei and Jinchong. 

Interpretation of this field season’s data is still ongoing, but we did identify several Proterozoic 

deformational events within the North China craton (possibly Paleo- and Mesoproterozoic 

events) and a large north-facing passive margin sequence. This passive margin represents the 

southernmost boundary of the Paleo-Asian oceanic domain (Fig. 1.1). 

 

1.2. The Cenozoic evolution of the northern Tibetan Plateau (Chapters 2 and 3) 

 Although investigations of Cenozoic crustal shortening along the southern and eastern 

margins of the Tibetan Plateau have been robust (e.g., Burchfiel et al., 1995; Murphy et al., 

1997; Johnson, 2002; DeCelles et al., 2002; Robinson et al., 2006; McQuarrie et al., 2008; 

Hubbard and Shaw, 2009; Webb et al., 2011; Webb, 2013), our understanding of Cenozoic 

deformation along the northern plateau margin is lacking. Well-constrained shortening estimates 

provide a first-order test of plateau formation mechanisms (e.g., Hubbard and Shaw, 2009; Wang 

et al., 2011; Lease et al., 2012) (Fig. 1.3). Existing shortening studies across northern Tibet 

suggest a low magnitude of Cenozoic deformation across the Qilian Shan-Nan Shan thrust belt 

(Gaudemer et al., 1995; Meyer et al., 1998; Lease et al., 2012; Craddock et al., 2014). However, 

the lack of detailed structural observations in these aforementioned works, including systematic 

geologic mapping and subsurface seismic data, necessitated further examination.   
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 In Chapter 2, I present data from detailed field mapping, balanced cross section 

construction and restoration, and seismic reflection analysis to provide robust minimum 

Cenozoic shortening strain estimates across the Qilian Shan-Nan Shan thrust belt. I show that the 

North Qilian Shan thrust system and adjacent Hexi Corridor have accumulated >53% Cenozoic 

strain (>50 km shortening), whereas the interior of the Qilian Shan-Nan Shan has accommodated 

>34% Cenozoic strain (>53 km shortening). Based on this observed strain distribution across 

northern Tibet, with higher strain along the northern frontal thrust zones and lower strain within 

the thrust belt interior, I suggest that a combination of distributed crustal shortening and minor 

(<250 km) southward underthrusting of the Asian lithosphere is responsible the development of 

the northern Tibetan Plateau. About half of this chapter, related to the seismic reflection analysis 

across the northern Qilian Shan, was published in Geosphere (Zuza et al., 2016a) with Xiaogan 

Cheng and An Yin as coauthors. Thorough reviews by William Craddock and Delores Robinson, 

and the editorial handling of Raymond Russo, improved this text. 

 The kinematics of continental deformation have been related to plate-like rigid-body 

motion (e.g., Tapponnier et al., 1982; Weldon and Humphreys, 1986; Avouac and Tapponnier, 

1993; Meade, 2007) and flow-like distributed deformation via viscous flow (e.g., England and 

Houseman, 1986; Yin and Taylor, 2011). These two end-member models have been extensively 

tested in Tibet against structures created during the Cenozoic India-Eurasia collision (e.g., Yin 

and Harrison, 2000; Zhu et al., 2005; Yin, 2010; van Hinsbergen et al., 2011; Yin and Taylor, 

2011). Specifically, debates have been centered on whether the >1000-km-long east-striking left-

slip Haiyuan, Qinling, and Kunlun faults in northern Tibet (Fig. 1.2) (Molnar and Tapponnier, 

1975; Tapponnier and Molnar, 1977; Tapponnier et al., 2001; Taylor and Yin, 2009) have acted 

as rigid-block boundaries (Tapponnier et al., 1982; Avouac and Tapponnier et al., 1993; 
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Tapponnier et al., 2001) or transfer-fault structures linking dip-slip fault systems (e.g., Burchfiel 

et al., 1991; Yin, 2000; Duvall and Clark, 2010). These major strike-slip faults have a maximum 

slip in the central fault segment exceeding 10s to ~100 km but a much smaller slip magnitude 

(~< 10% of the maximum slip) at their terminations. The along-strike variation of fault offsets 

and pervasive off-fault deformation create a strain pattern that departs from the expectations of 

the classic plate-like rigid-body motion and flow-like distributed deformation approximations for 

continental deformation. 

 In Chapter 3, I present a non-rigid bookshelf-fault model for the Cenozoic development 

of northern Tibet. This model, which relates left-slip faulting to distributed off-strike-slip fault 

deformation during regional clockwise rotation, explains several puzzling features, including (1) 

clockwise rotation of east-striking left-slip faults against the northeast-striking left-slip Altyn 

Tagh fault along the northwestern margin of the Tibetan Plateau, (2) alternating fault-parallel 

extension and shortening in the off-fault regions, and (3) eastward-tapering map-view geometries 

of the Qimen Tagh, Qaidam, and Qilian Shan thrust belts that link with the three left slip faults. I 

refer to this non-rigid bookshelf fault system as passive bookshelf-faulting because the rotating 

bookshelf panels are detached from the rigid bounding domains (e.g., Tarim Basin and North 

China). Chapter 3 was originally published in Tectonophysics (Zuza and Yin, 2016) with An Yin 

as a coauthor. Paul Mann, an anonymous reviewer, and editor Jean-Philippe Avouac helped to 

clarify the ideas and logic presented in this publication and Chapter 3.  

 

1.3. Spacing and strength of active continental strike-slip faults (Chapter 4) 

 The strike-slip faults in northern Tibet are parallel and remarkably evenly spaced (~150 

km). Throughout Asia there are numerous examples of other parallel evenly-spaced strike-slip 
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fault systems, including right-slip faults across Central Asia, V-shaped conjugate faults across 

central Tibet, and right-slip faults in Iran (Fig. 1.4). Parallel strike-slip faulting occurs widely in 

nature, from a few meters to >100s km in length and spacing (e.g., Segall and Pollard, 1983; 

Davy and Cobbold, 1988; Swanson, 1988; Martel and Pollard, 1989; Dickinson, 1996; Yin, 

2010). Regularly spaced strike-slip faults are observed along plate transform boundaries (e.g., the 

San Andreas fault system; Fig. 1.4A) (e.g., Nur et al., 1986; Dickinson, 1996), across collisional 

orogens (e.g., the Himalayan-Tibetan orogen; Fig. 1.4B) (Molnar and Tapponnier, 1975; Taylor 

and Yin, 2009; Yin, 2010), in analogue experiments (e.g., Tchalenko, 1970; Freund, 1974; 

Naylor et al., 1986; Yin and Taylor, 2011), and on icy satellites (e.g., Yin et al., 2016). Despite 

their common existence, the fundamental question of what controls fault spacing remains 

unanswered.  

 In Chapter 4, I explore the above issue through analogue and numerical modeling, and 

explain strike-slip fault spacing using a stress-shadow model (e.g., Lachenbruch, 1961; Yin et 

al., 2016). I present a mechanical model for the generation of parallel strike-slip faults that 

relates fault spacing to the following parameters: brittle-crust thickness, fault strength, crustal 

strength, and the crustal stress state. Scaled analogue experiments using dry sand, crushed walnut 

shells, and viscous putty were employed to test the key assumptions of this quantitative model. I 

ultimately apply this model to crustal-scale strike-slip faults on Earth using fault spacing and the 

seismogenic-zone thickness obtained from high-resolution earthquake-location data to estimate 

absolute fault friction of active strike-slip faults in Asia and along the San Andreas fault system 

in California. I show that the average friction coefficient of strike-slip faults in the India-Asia 

collisional orogen is lower than that of faults in the San Andreas fault system. Weaker faults 

explain why deformation penetrates >3500 km into Asia from the Himalaya and why the interior 
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of Asia is prone to large (M > 7.0) devastating earthquakes along major strike-slip faults (Fig. 

1.4). 

 The ideas and stress-shadow concepts of Chapter 4 were first presented at the JPL-UCLA 

Planetary Science Workshop (Yin and Zuza, 2015), where An Yin and I modified a stress-

distribution solution for extensional jointing (Pollard and Segall, 1987) to apply to strike-slip 

faulting. The formal derivation of this stress-shadow model, as applied to Enceladus’s ice shell, 

was published in Icarus (Yin, Zuza, and Pappalardo, 2016), with An Yin and Robert Pappalardo 

as coauthors. This derivation was further modified to apply to active continental strike-slip faults 

on Earth, and the model assumptions were tested and validated through analogue experiments 

with the assistance of Jessica Lin and Ming Sun at UCLA. Our updated ideas were presented 

together at AGU in 2015 (Zuza et al., 2015; Yin et al., 2015; Lin et al., 2015).  

 Chapter 4 is currently in revision in EPSL at the time this dissertation was submitted 

(Zuza et al., 2016b), with An Yin, Jessica Lin, and Ming Sun as coauthors. The text from this 

chapter was greatly improved by comments from two anonymous reviewers and editor Peter 

Shearer. Jessica Lin and Ming Sun helped with the execution of the experimental work, and 

Robin Reith and Ivy Curren are acknowledged for setting up the Virtual Tibet analogue 

modeling apparatus (now known as the Laboratory for Analogue Modeling of Planetary Surfaces 

or “LAMP”).  

 

1.4. The Proterozoic-Paleozoic tectonic evolution of northern Tibet and central Asia 

(Chapters 5 and 6)  

 Northern Tibet represents the boundary between the Tethyan Orogenic System to the 

south and the Paleo-Asian Oceanic Domain to the north (Fig. 1.1) (e.g., Şengör and Natal’in, 
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1996; Yin and Harrison, 2000; Heubeck, 2001; Stampfli and Borel, 2002). Extensive research 

has focused on the tectonic evolution these two domains but relatively little attention has been 

paid to the tectonic history and role of the cratonal units that lie between these two orogenic 

systems (e.g., the Tarim and North China cratons). The lack of studies on the “intermediate 

units” of Şengör and Natal’in (1996) (Fig. 1.1) has limited our ability to use a process-based 

approach to reconstruct the tectonic history of the two major orogenic systems in Asia.  

 In Chapter 5, I examine the southern margin the Tarim and North China cratons. The 

Kunlun-Qaidam continent collided against this margin during the early Paleozoic Qilian orogen. 

The abundance of ophiolite-bearing mélange and blueschist assemblages across the Qilian Shan 

led early workers to suggest that this region represents the site of the closed Qilian Ocean (Wang 

and Liu, 1976; Xiao et al., 1978) that once separated North China from Qaidam. More recent 

work has shown that this ocean opened in the Neoproterozoic and closed during the early 

Paleozoic Qilian orogen (e.g., Yin and Harrison, 2000; Gehrels et al., 2003a, 2003b, 2011; Yin et 

al., 2007; Xiao et al., 2009; Song et al., 2013, 2014). There is little consensus regarding the 

timing and style (e.g., subduction polarity, number of arcs involved, relationship of continents) 

of the opening and closing of the Qilian Ocean. To better constrain the evolution of the Qilian 

orogen and resulting closure of the Qilian Ocean, I present geologic mapping across the central 

Qilian Shan integrated with U-Th-Pb zircon and monazite geochronology, whole-rock 

geochemistry of igneous rocks, thermobarometry of the metamorphosed basement rocks, and 

synthesis of existing datasets across northern Tibet. Here I show that two ocean-closure events 

affected this region—one in the early Neoproterozoic and the other in the early Paleozoic—and 

that the early Paleozoic Qilian orogen involved a single-south dipping subduction system. The 
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present-day configuration of the Qilian orogen has subsequently been tectonically modified by 

the early Paleozoic collisional event and later Cenozoic deformation.  

 Chen Wu and Yuxiu Zhang shared unpublished U-Pb zircon ages from the Qilian Shan 

that were used in my reconstruction of the early Paleozoic Qilian orogen. Carrie Menold also 

provided unpublished U-Pb zircon ages and 40Ar/39Ar cooling ages from the ultra-high pressure 

(UHP) rocks in the North Qaidam thrust belt to the south. 

 The reconstruction I present in Chapter 5 implies that the Qilian Ocean was not a major 

through-going ocean separating Laurasia from Gondwana (cf. Stampfli and Borel, 2002), but 

rather a small marginal sea that opened along an early Neoproterozoic suture zone along the 

southern margin of the linked Tarim-North China continent. However, existing supercontinent 

reconstructions treat North China, Tarim, and Qaidam as separate continents that collide in the 

Paleozoic (e.g., Li et al., 2008). Alternatively, An Yin and I speculated that these cratons were 

linked in the Neoproterozoic as part of a 6000-km-long continent (Zuza and Yin, 2013, 2014). A 

key test of this hypothesis is to restore Cenozoic and early Paleozoic deformation in the Qilian 

Shan region and evaluate whether the basement and continental margins correlate with Tarim 

and North China (e.g., Guo et al., 2005). 

 In Chapter 6, I review existing geologic literature on the Baltica, Karakum, Turan, Tarim, 

and North China cratons, including their mutual tectonic relationships and respective 

deformational histories during and after they became individual tectonic entities. I then 

systematically restore the geometry of these cratons from their present-day configuration through 

the Phanerozoic and into the Proterozoic using the Gplates software (Boyden et al., 2010). By 

removing the tectonic-distortion effects caused by intracontinental deformation and rifting 

events, I show that Baltica, Karakum, Turan, Tarim, and North China were once continuously 

11



linked in the Neoproterozoic as a long continental strip that I refer to as Balkatach (named after 

the Baltica-Karakum-Tarim-China connection of traditionally-defined Precambrian cratons). In 

this chapter I show how the contiguous Balkatach continent, and the relative motion of its 

western and eastern arms (in present-day coordinates) in the Paleozoic, played an important role 

in the tectonic evolution of Asia. Neoproterozoic rifting along Balkatach’s margins led to the 

genetically linked birth of the Paleo-Asian and Pacific Oceans, which were only separated when 

the eastern arm of the Balkatach continent wrapped around the closing Paleo-Asian Ocean in the 

latest Paleozoic. 

12



Black

Ca
sp

ia
n 

Se
a

Sea

Arabian Sea

Bay of 
Bengal

Indian Ocean

AS
Pacific Ocean

Arctic Ocean

South 
China
Sea

Sea of Okhotsk

B

INDIAN CRATON

ARABIAN
CRATON

BALTICA CRATON SIBERIA CRATON

TARIM
KARA

Central Asian
Orogenic System

SOUTH 
CHINA

NORTH 
CHINA

IY

AKM

PT

MO

SJY

TSYS

DO

U
S

MTd

T

QS-Q

JBN
DS

?

MFT

ZN
T

B

Sutures
Cenozoic

Mesozoic

Paleozoic

Precambrian

Modern subduction zone

Regional names labelled 90°E

70°E50°E

110°E 130°E

150°E

170°E

30
°N

10
°N

50
°N

Baikalides

   
   U

ra
lid

es

Paleo-Asian Domain
Altaids

Tethysides
Tethyan
     Domain

Inte rmediate units

W
estern Pacific D

om
ain

Figure 1.1. Simplified tectonic map of Asia showing cratons, sutures, and modern subduction 
zones. Teeth on are on over-riding plate. For simplicity, the structures and sutures within the 
Central Asian Orogenic System are omitted. Purple box shows the approximate location of the 
study area. Pre-Neoproterozoic sutures within cratons are not shown. Inset map shows major 
tectonic division and oceanic domains. AS—Aral Sea, B—Lake Baikal, Kara—Karakum Craton, 
MFT—Main Frontal Thrust. Labelled sutures: AKM—Anyimaqen-Kunlun-Muztagh, B—Bitlis, 
BN—Bangong- Nujiang, DO—Denisov-Oktyabrsk, DS—Dabie Shan, J—Jinsha, M— 
Magnitogorsk, MO—Mongol-Okhotsk, PT—Paleo-Tethys, S—Sakmara, SJY—Solonker-Jilin- 
Yanji, TSYS—Tian Shan-Ying Shan, T—Turketsan, Td—Timanide, U—Ural, QS-Q—Qilian 
Shan-Qinling, ZNT—Zagros-Neo-Tethys. After Yin and Nie (1996), Şengör and Natal’in (1996), 
Natal’in and Şengör (2005), Xiao et al. (2010), and Zheng et al. (2013).

Study area

13



Fi
gu

re
 1

.2
.  

(A
) M

ap
 o

f t
he

 H
im

al
ay

a-
Ti

be
ta

n 
or

og
en

 a
nd

 su
rr

ou
nd

in
g 

re
gi

on
s, 

sh
ow

in
g 

th
e 

lo
ca

tio
n 

of
 F

ig
ur

e 
1.

1B
. (

B
) R

eg
io

na
l t

ec
to

ni
c 

m
ap

 o
f t

he
 

no
rth

ea
st

er
n 

Ti
be

ta
n 

Pl
at

ea
u.

 G
re

en
 b

ox
es

 sh
ow

 lo
ca

tio
ns

 o
f s

tu
dy

 a
re

as
. 

St
ru

ct
ur

es
 a

re
 fr

om
 B

ur
ch

fie
l e

t a
l. 

(1
99

1)
, G

au
de

m
er

 e
t a

l. 
(1

99
5)

, T
ay

lo
r a

nd
 

Y
in

 (2
00

9)
, a

nd
 G

ao
 e

t a
l. 

(2
01

3)
. 

H
im

al
a

y
a

T
ib

et
an

 
P

la
te

au

Fi
g.

 1
.2

B

In
di

a

Ti
an

 S
ha

n

M
ai

n 
Fr

on
ta

l
Th

ru
st

 

10
00

 k
m

A

O
rd

os
 

B
lo

ck
Ti

an
jin

g 
 

fa
ul

t

Li
up

an
Sh

an
  

th
ru

st
be

lt 

K
un

lu
n 

 
fa

ul
t

N
or

th
C

hi
na

N
or

th
C

hi
na

Ta
rim

X
in

in
g

A
lt

yn
 T

ag
h 

 
fa

ul
t

Sh
an

xi
 g

ra
be

n 
sy

st
em

Yi
nc

hu
an

 g
ra

be
n 

sy
st

em

Q
ai

da
m

B
as

in

Lo
ng

m
en

 
Sh

an
 

th
ru

st
 b

el
t

94
° 

E

92
° 

E
90

° 
E

96
° 

E

34
° 

N

36
° 

N

38
° 

N

40
° 

N

N 20
0 

km

Q
in

lin
g 

fa
ul

t

? ? ?

?

?

H
ai

yu
an

  
fa

ul
t

98
° 

E
10

2°
 E

10
4°

 E
10

6°
 E

10
8°

 E
11

0°
 E

11
2°

 E

St
ru

ct
ur

al
 s

ym
bo

ls

Th
ru

st
 fa

ul
t

R
ig

ht
-s

lip
 s

tri
ke

-s
lip

 fa
ul

t

N
or

m
al

 fa
ul

t

Le
ft-

sl
ip

 s
tri

ke
-s

lip
 fa

ul
t

A
nt

ic
lin

e

S
ut

ur
e

S
yn

cl
in

e
32

° 
N

N
or

th
 Q

ai
da

m
 

th
ru

st
 s

ys
te

m

Q
im

en
 T

ag
h

th
ru

st
 b

el
t

K
un

lu
n-

So
ut

h 
Q

in
lin

g 
su

tu
re

 z
on

e

N
or

th
 Q

in
lin

g 
su

tu
re

 z
on

e

Q
ili

an
 s

ut
ur

e 

North
 Qilia

n

suture (?
)

La
ji 

Sh
an

G
on

gh
e 

B
as

in

Yu
m

u 
Sh

an

Ji
sh

i S
ha

n

Q
ili

an
 S

ha
n-

 
  

N
an

 S
ha

n 
th

ru
st

 b
el

t

10
0°

 E

B

Q
ili

an
 fo

re
la

nd
 

(m
ap

pe
d 

in
 2

01
4)

C
en

tr
al

 Q
ili

an
 S

ha
n

(m
ap

pe
d 

in
 2

01
2

 a
nd

 2
01

3)

14



Figure 1.3. Three end-member tectonic models for the construction of the Tibetan Plateau. 

1. Continental underthrusting

2. Distributed shortening

3. Channel flow

India

India

India Eurasia

Eurasia

Tibet

Tibet

Tibet

Eurasia

N

15



N
Tian Shan

Himalaya

Pamir

32°N

28°N

24°N

20°N

60°E 70°E 80°E 90°E 100°E 110°E

36°N

40°N

44°N

48°N

0 500 1000 km

B

Eastern Iran
139 ± 50 km

Central Tibet
92 ± 24 km

Central Asia
407 ± 99 km

North Tibet
178 ± 53 km

6

7

8

9

10

11
12

13
14

15

16

17

Los
Angeles

Garlock

 fault

  San Andreas

fault

33°N

34°N

35°N

32°N

120°W 119°W 118°W 117°W 116°W 115°W 114°W

0 50 100 km

San 
Diego

N
50 km

San 
   Francisco

A

Western San Andreas
47 ± 15 km

Eastern
 Transverse

20 ± 8 km

Mojave
16 ± 2 km

Central California
33 ± 3 km

1

3

4

2

5

Figure 1.4. Evenly-spaced strike-slip domains in (a) California and (b) Asia and their average 
fault spacing. Inset in a shows parallel faults in central California. Histograms show fault 
spacing for each domain of strike-slip faulting in (c) California and (d) Asia. Locations (shown 
as yellow stars) and magnitudes of major intracontinental earthquakes along strike-slip faults in 
California and Asia: (1) 1857 M = 7.9 Fort Tejon earthquake, (2) 1906 M = 7.8 San Francisco 
earthquake, (3) 1992 M = 7.3 Landers earthquake, (4) 1999 M = 7.1 Hector Mine earthquake, (5) 
1927 M = 7.3 Lompoc earthquake, (6) 2001 M = 8.1 Kunlun Pass earthquake, (7) 1932 M = 7.6 
Changma earthquake, (8) 1920 M = 7.8 Haiyuan earthquake, (9) 1556 M = 8.0 Shaanxi 
earthquake, (10) 1931 M = 8.0 Fuyun earthquake, (11) 1957 M = 8.1 Gobi Altai earthquake, (12) 
1905 M = 8.4 Bulnay earthquake, (13) 1679 M = 8.0 Sanhe-Pinggu earthquake, (14) 1976 M 
=7.8 Tanshan earthquake, (16) 1966 M = 7.2 Xingtai earthquake, (16) 1830 M = 7.5 Cixian 
earthquake, and (17) 1668 M = 8.0 Tancheng earthquake. 
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2.1. Abstract 

Competing models that account for the construction of the Tibetan Plateau include 

continental subduction, underthrusting, distributed shortening, channel flow, and older crustal-

structure inheritance. Well-constrained estimates of crustal shortening strain serve as a diagnostic 

test of these plateau formation models and are critical to elucidate the dominant mechanism of 

plateau development. In this chapter I estimate the magnitude of Cenozoic shortening across the 

central Qilian Shan-Nan Shan thrust belt, along the northeastern plateau margin, based on 

detailed geologic mapping, high-resolution seismic reflection profile analysis, and balanced cross 

section construction and restoration. By integrating surface and subsurface geology with the 

regional tectonic history, I show that the North Qilian Shan thrust system and adjacent Hexi 

Corridor have accumulated >53% Cenozoic strain (>50 km shortening), whereas the interior of 

the Qilian Shan-Nan Shan has accommodated >34% Cenozoic strain (>53 km shortening). Based 

on this observed strain distribution across northern Tibet, with higher strain along the northern 

frontal thrust zones and lower strain within the thrust belt interior, I suggest that a combination 

of distributed crustal shortening and minor (<250 km) southward underthrusting of the Asian 

lithosphere is responsible the development of the northern Tibetan Plateau. Overall, the Qilian 

Shan-Nan Shan, North Qaidam, and Qaidam Basin thrust systems have absorbed a minimum of 

250-350 km north-south Cenozoic shortening, which is approximately double the commonly 

cited value of ~150 km. Focused shortening along the North Qilian Shan frontal thrust system 

accommodates much of the present-day convergence between Tibet and North China, which 

suggests that the northern plateau margin may have developed in a similar manner to that of 

southern Tibet across the Himalayan thrust belt. These similar deformational styles persist 
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despite vastly different erosion- and denudation-rate boundary conditions, and thus Himalayan-

style orogeny may operate independent of climate.  

 

2.2. Introduction 

 Understanding how the Tibetan Plateau (Fig. 2.1) was constructed greatly affects our 

knowledge of continental tectonics (Molnar, 1988; Yin, 2010). End-member models for plateau 

formation and evolution include (Table 2.1) (1) Cenozoic distributed shortening of the Asian 

crust (Dewey and Bird, 1970; Dewey and Burke, 1973) or its entire lithosphere (England and 

Houseman, 1986), (2) Cenozoic underthrusting of Indian (Argand, 1924; Powell and Conaghan, 

1973; Powell, 1986; DeCelles et al., 2002; van Hinsbergen et al., 2011, 2012) and/or Asian 

lithosphere (Willett and Beaumont, 1994; Kind et al., 2002; Zhao et al., 2011; Feng et al., 2014; 

Ye et al., 2015) beneath the Tibetan Plateau, (3) Cenozoic vertical inflation of Tibetan crust by 

lateral channel flow in the middle or lower crust (Zhao and Morgan, 1987; Bird, 1991; Royden et 

al., 1997, 2008; Clark and Royden, 2000), (4) discrete Cenozoic intracontinental subduction 

coupled with lateral extrusion along major strike-slip faults (Tapponnier et al., 2001), and (5) 

pre-Cenozoic crustal thickening (e.g., Worley and Wilson, 1996; Murphy et al., 1997; Wallis et 

al., 2003). These models make specific predictions regarding the spatial distribution, magnitude, 

and temporal variation of Cenozoic strain (Table 2.1; Fig. 2.2). 

Estimates of shortening magnitude provide a quantitative and diagnostic test for 

differentiating between these tectonic models, especially along the plateau margins where the 

effects predicted by intracontinental subduction, underthrusting, and crustal inflation models are 

most pronounced (e.g., Clark and Royden, 2000; DeCelles et al., 2002; Hubbard and Shaw, 

2009; Lease et al., 2012). For example, the predictions of the lower crustal flow model of Clark 
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and Royden (2000) were initially supported by early observations of minimal east-west 

horizontal crustal shortening across the Longmen Shan along the eastern margin of the plateau 

(Fig. 2.1B) (Burchfiel et al., 1995; King et al., 1997). More recent seismic reflection analysis and 

balanced cross-section restoration indicate that crustal shortening alone is significant enough to 

generate the elevation and crustal thickness of the eastern Tibetan Plateau (Hubbard and Shaw, 

2009). In the Laji Shan-West Qinling of northeastern Tibet (Fig. 2.1B), the present-day crustal 

thickness (45-55 km) (Yue et al., 2012) can be reconciled with crustal shortening strain of 10-

12% and pure shear crustal thickening (Lease et al., 2012). 

Although investigations of Cenozoic shortening along the southern and eastern margins 

of the plateau have been robust (e.g., Burchfiel et al., 1995; Johnson, 2002; DeCelles et al., 2002; 

Robinson et al., 2006; McQuarrie et al., 2008; Hubbard and Shaw, 2009; Webb et al., 2011; 

Webb, 2013), our understanding of Cenozoic deformation along the northern plateau margin is 

lacking. This margin is defined by the 350-km-wide and 1300-km-long Qilian Shan-Nan Shan 

thrust belt (Molnar and Tapponnier, 1975; Gaudemer et al., 1995; Meyer et al., 1998; Yin and 

Harrison, 2000; Taylor and Yin, 2009), which occupies about one-fifth of the Himalayan-Tibetan 

orogen, and is one of the widest active thrust belts in the India-Asia collisional zone (Fig. 2.1) 

(Yin, 2010). The absence of detailed structural observations, including systematic geologic 

mapping and subsurface seismic data, inhibits our understanding of plateau growth mechanisms. 

The present-day development of the Qilian Shan may provide insight into how the interior of the 

plateau evolved prior to planation processes (Liu-Zeng et al., 2008), and thus this region may 

represent a snapshot of early and ongoing plateau development. The timing and magnitude of 

deformation in this region, which is located more than 1500 km north of the India-Asia 
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collisional front (Fig. 2.1), has implications for strain transfer and partitioning across the 

Tibetan-Asian lithosphere (e.g., Wang et al., 2011; Yuan et al., 2013). 

In this chapter, I present detailed geologic mapping, balanced cross section construction 

and restoration, and high-resolution seismic-reflection-profile analysis across the central Qilian 

Shan-Nan Shan thrust belt and adjacent Hexi Corridor to the north (Fig. 2.3) to constrain the 

magnitude of shortening along the Tibetan Plateau’s northern margin. Some of these constraints 

come from detailed geologic mapping (~1:50,000) and structural geology study conducted in the 

central Qilian Shan, near the Shule, Tuo Lai, and Heihe River Valleys (~38.5°N, ~98.5°E) in the 

Qinghai and Gansu Provinces of western China (Fig. 2.3). In addition, I have interpreted three 

seismic reflection profiles across the North Qilian Shan frontal thrust system (Fig. 2.1). The 

seismic profiles also image the Hexi Corridor foreland basin, which is rich in petroleum 

resources (e.g., Wang and Coward, 1993; Chen and Yang, 2010; He and Pang, 2013) and has 

been surveyed extensively by seismic reflection profiling (e.g., J. Wu et al., 2006; Yang et al., 

2007a, 2007b). Strain estimates are derived by constructing and restoring balanced cross sections 

that adhere to the known surface geology, subsurface data, and regional tectonic history. 

I integrate these shortening strain estimates with other published shortening estimates 

across northern Tibet (Figs 2.4 and 2.5; Table 2.2) to evaluate plateau construction mechanisms. 

Specifically, balanced cross sections from the interior of the Qilian Shan-Nan Shan thrust belt, 

based solely on field mapping, indicate that the region has absorbed a minimum of ~30-40% 

shortening strain, whereas seismic reflection profiling indicates that the North Qilian Shan 

frontal thrust system has absorbed a minimum of 53% shortening strain. Shortening magnitude 

estimates from the northern frontal thrust system are comparable to the results of a seismic 

reflection study ~450 km to the east (Gao et al., 2013). Other shortening studies from within the 
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Qilian Shan-Nan Shan thrust belt, mostly based on surface geologic mapping alone, yield much 

lower strain values (~5-30% strain) (e.g., Gaudemer et al., 1995; Meyer et al., 1998; Lease et al., 

2012; Craddock et al., 2014) (Figs. 2.4 and 2.5).  

These discrepancies may be due to a combination of factors. First, they may highlight the 

limitations of some regional structural studies, including the tendency for the actual shortening to 

be underestimated by surface-based studies that miss hidden structures (e.g., detachments, blind 

faults, and duplexes). Second, there may be a real difference in strain magnitude between the 

plateau margin and within the northern plateau interior, suggesting mixed plateau formation 

processes. By integrating my estimates with existing studies, I propose that the following 

mechanisms are operating in northern Tibet: (1) southward underthrusting of Asian mantle 

lithosphere by 200-250 km results in high strain (>53%) along the North Qilian Shan thrust 

system, and (2) 250-350 km of distributed crustal shortening throughout the Qaidam Basin, 

North Qaidam, and Qilian Shan-Nan Shan thrust belts (>30-45% strain) (Fig. 2.1) leads to pure-

shear crustal thickening. 

 

2.3. Regional Geology 

The high elevation (~5 km) of the Tibetan Plateau (Fielding et al., 1994) was created in 

the Cenozoic, as a result of the India-Asia collision (Yin and Harrison, 2000; Tapponnier et al., 

2001; Royden et al., 2008), or in the Mesozoic, as suggested for the southern and possibly 

eastern portions of Tibet (e.g., Worley and Wilson, 1996; Murphy et al., 1997). The average 

elevation of the northeastern plateau is slightly lower (~4.5 km) and this high topography drops 

off rapidly to <1.5 km to the northeast in the Hexi Corridor foreland (Fig. 2.1D). The present-day 

Qilian Shan-Nan Shan thrust belt is composed of northwest-trending thrust-bounded ranges and 
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intermontane basins spaced at 30-40 km (Fig. 2.1B). Crustal thickness estimates across this area 

range from 55 to 65 km (Fig. 2.1C) as constrained by receiver function (Yue et al., 2012; Ye et 

al., 2015), seismic refraction (Zhao et al., 2001), and seismic reflection (Gao et al., 2013) studies. 

The Ordos Basin, northeast of the Hexi Corridor (Fig. 2.1B), has far fewer earthquakes than the 

adjacent plateau and thus is considered a relatively stable block with an average crustal thickness 

of ~42 km (Chen et al., 2005; Liu et al., 2006; Pan and Niu, 2011).  

The Cenozoic Qilian Shan-Nan Shan thrust belt defines the northeastern margin of the 

Tibetan Plateau, more than 1500 km to the north of the Himalayan collision front, between the 

North China craton to the north and Qaidam Basin to the south (Fig. 2.1). The thrust belt is 

constructed in a region that has a complex pre-Cenozoic tectonic history involving multiple 

phases of Proterozoic basement deformation, early Paleozoic orogeny, and Jurassic-Cretaceous 

extension (e.g., Vincent and Allen, 1999; Gehrels et al., 2003a, 2003b; Yin and Harrison, 2000; 

Yin et al., 2007b). 

 

2.3.1. The early Paleozoic Qilian orogen and related basement rocks 

 The Qilian orogen records the early Paleozoic closure of the Qilian Ocean as the Kunlun-

Qaidam microcontinent collided against the southern margin of the North China craton (Yin and 

Nie, 1996; Şengör and Natal’in, 1996; Sobel and Arnaud, 1999; Yin and Harrison, 2000; Gehrels 

et al., 2003a, 2003b; Yin et al., 2007b; Xiao et al., 2009; Song et al., 2013). The Qilian orogen is 

composed of Silurian flysch sequences, Ordovician-Silurian plutonic bodies and arc-type 

assemblages, ophiolitic mélange, and low- to high-grade metamorphic rocks. 

 The distribution of ophiolitic material indicates that a Cambrian-Ordovician Qilian Ocean 

separated Qaidam and North China (Smith, 2006; Xiang et al., 2007; Tseng et al., 2007; Zhang et 
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al., 2007; Xia and Song, 2010; Song et al., 2013). The convergence of these continents was 

facilitated by middle Cambrian-Ordovician subduction and related arc magmatism (Qian et al., 

1998; Cowgill et al., 2003; Gehrels et al., 2003a; Su et al., 2004; C. Wu et al., 2004, 2006, 2010; 

Hu et al., 2005; Y.J. Liu et al., 2006; Quan et al., 2006; He et al., 2007; Tseng et al., 2009; Dang, 

2011; Xia et al., 2012; Xiong et al., 2012; Song et al., 2013); intracontinental deformation and 

ocean closure occurred in Late Ordovician-Silurian time (Song et al., 2006; Y.J. Liu et al., 2006; 

Zhang et al., 2007; Lin et al., 2010). The orogen is an important preexisting weakness that may 

have controlled Cenozoic structures in northern Tibet: the Qilian Shan-Nan Shan thrust belt and 

Haiyuan left-slip fault closely follow the surface trace of the early Paleozoic orogen and suture 

(Fig. 2.1B) (Taylor and Yin, 2009). 

 

2.3.2. Jurassic and Cretaceous extensional setting 

 The Mesozoic closure of the Paleo-Tethys and Meso-Tethys Oceans (Pullen et al., 2008; 

Zhang et al., 2014) and associated with slab rollback to the south may have led to regional 

extension that affected much of the continent to the north, including the Altyn Tagh range, 

Qaidam Basin, Qilian Shan-Nan Shan, and Hexi Corridor, from southwest to northeast, 

respectively (Fig. 2.1) (Huo and Tan, 1995; Vincent and Allen, 1999; Chen et al., 2003; Yin et 

al., 2008a, 2008b). This extension is expressed by the development of extensive Jurassic and 

Cretaceous extensional and transtensional basins in the Altyn Tagh range, Qaidam Basin, the 

Hexi Corridor, and North China (Vincent and Allen, 1999; Chen et al., 2003; Yin et al., 2008a, 

2008b). Although no confirmed extensional faults have been documented at the surface in the 

Qilian Shan, Jurassic and Cretaceous strata are widespread and record a transition from marginal 

marine and lacustrine to mostly terrestrial sedimentation. Jurassic strata consist of sandstone 
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interbedded with siltstone, carbon-rich shale, and coal (Gansu Geological Bureau, 1989; Qinghai 

BGMR, 1991). Upper Jurassic beds are often lacustrine. Cretaceous terrestrial redbed strata fine 

upward from coarse sandstone to lacustrine deposits that are prominently exposed along many 

basins in northern Tibet, from the Xining Basin in the south to the Hexi Corridor in the 

north (Fig. 2.1B) (Horton et al., 2004; Pan et al., 2004). 

 

2.3.3. Cenozoic structures 

 Cenozoic shortening in northern Tibet is accommodated in the northwest-trending Qilian 

Shan-Nan Shan, North Qaidam, and Qimen Tagh thrust belts (Jolivet et al., 2003; Yin et al., 

2007a, 2008a, 2008b), from north to south, respectively (Fig. 2.1B). These major thrust belts link 

with the active >1000-km-long east-striking Haiyuan, Qinling, and Kunlun left-slip faults (Fig. 

2.1B) (e.g., Taylor and Yin, 2009). The Haiyuan fault and Qilian Shan-Nan Shan thrust belt 

define the northeastern margin of the Tibetan Plateau, and the Hexi Corridor foreland basin 

bounds the plateau to the northeast (Fig. 2.1B). Thrusting initiated locally at 50-45 Ma in the 

southern Qilian Shan-Nan Shan and North Qaidam thrust belts, and deformation migrated 

southward to the Qimen Tagh and northward to the North Qilian Shan thrust belts by 25-20 Ma 

(Mock et al., 1999; Jolivet et al., 2001; Dupont-Nivet et al., 2004; Horton et al., 2004; Yin et al., 

2008a, 2008b; Clark et al., 2010; Duvall et al., 2011). The region underwent a major pulse of 

deformation marked by the development of left-slip fault systems by 20-15 Ma (Jolivet et al., 

2001; Craddock et al., 2011; Duvall et al., 2013; Yuan et al., 2013). Along the outer plateau 

margins, thrust initiation occurred at 10-8 Ma (Zheng et al., 2006, 2010; Godard et al., 2009). 

 Inversion of the global positioning system (GPS) velocity field across the region yields a 

N30°E contractional strain field (Zhang et al., 2004; Allmendinger et al., 2007). GPS velocity 

32



differencing between North China and Qaidam Basin suggests overall north-south convergence 

rates of ~5.5 mm yr-1 across the Qilian Shan-Nan Shan thrust belt (Zhang et al., 2004). Fault slip 

and shortening rates across the Qilian Shan-Nan Shan thrust belt range from <1 to 5 mm yr-1 

(Hetzel et al., 2004; W.J. Zheng et al., 2009, 2013; D. Zheng et al., 2010; Champagnac et al., 

2010; Yuan et al., 2011; Craddock et al., 2014). The variability and uncertainty of these rates 

arise because the magnitude of Cenozoic fault offset and total shortening remains poorly 

constrained throughout most of the Qilian Shan. A detailed description of existing Cenozoic 

crustal shortening estimates is discussed below. 

 

2.4. Testing plateau formation models with shortening estimates 

 A combination of mechanisms (Table 2.1) probably operates to generate the modern 

Tibetan Plateau (e.g., Molnar et al., 1993; Yuan et al., 2013). Geophysical studies of the 

lithosphere are valuable to understand geologic processes operating in the subsurface, but 

indirect observations and nonunique interpretations of detailed structures limit the extent to 

which hypotheses can be satisfactorily tested (e.g., Ammon et al., 1990; Brown et al., 1996; 

Makovsky and Klemperer, 1999; Vergne et al., 2002, 2003; Frederiksen et al., 2003; Sherrington 

et al., 2004). An alternative quantitative approach for distinguishing among plateau construction 

models is to evaluate the spatial and temporal variations in the magnitude and style of Cenozoic 

crustal shortening strain via balanced cross-section construction and restoration (Dahlstrom, 

1969). Although strain estimates from balanced cross-section restoration can be associated with 

large uncertainties and the solutions are often nonunique (e.g., Yin, 2006; Yin et al., 2010a; 

Judge and Allmendinger, 201l), our understanding of thrust systems (Boyer and Elliott, 1982) 

allows for well-constrained minimum strain estimates that are based on direct field observations 
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(e.g., bedding truncations, fault cutoffs, unit juxtapositions, and fault geometry requirements). 

These strain estimates place constraints on the vertical thickening and possible outward growth 

of the plateau. 

 

2.4.1. Models and implications for shortening along the plateau’s northeastern margin 

 Below I briefly summarize the proposed tectonic models for the construction of the 

Tibetan Plateau (Table 2.1), including their predictions for the distribution, magnitude, and 

timing of Cenozoic crustal strain across the Qilian Shan-Nan Shan thrust belt. The distributed 

shortening model (Fig. 2.2B) predicts vertically uniform shortening and pure shear thickening of 

the Asian crust (Dewey and Bird, 1970; Dewey and Burke, 1973) or its entire lithosphere 

(England and Houseman, 1986). Following the onset of India-Eurasian collision in the south 

(Zhu et al., 2005; van Hinsbergen et al., 2011), deformation and crustal thickening propagates 

northward, either steadily throughout the Cenozoic (England and Houseman, 1986) or rapidly 

with deformation occurring in the north soon after collision (i.e., within millions of years) (e.g., 

Horton et al., 2002; Yin et al., 2008a, 2008b; Wang et al., 2008; Dayem et al., 2009; Rohrmann 

et al., 2012). These models predict ~30-40% shortening strain throughout Tibet to explain the 

present-day crustal thickness.  

 Meyer et al. (1998) and Tapponnier et al. (2001) suggested that deformation propagates 

northward across the plateau in discrete steps. Preexisting Paleozoic and Mesozoic sutures (Fig. 

2.1B) focus deformation in zones of intracontinental subduction that are associated with post-

India-Asia collision volcanic belts that also young to the northeast. Furthermore, oblique 

convergence causes deformation to occur in a mixed mode of thrust and left-slip faulting (Fig. 

2.2C). This concept is supported by the observation that active strike-slip faults follow the trace 
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of Phanerozoic sutures (Fig. 2.1B) (Taylor and Yin, 2009). Deformation predictions of the 

intracontinental subduction model include (1) northward-propagating deformation starting in the 

south in the early Cenozoic and reaching the northeastern margin of the plateau by Pliocene-

Quaternary time, (2) focused deformation along Phanerozoic suture zones, and (3) coupled left-

slip and oblique thrust faulting (Fig. 2.2C). 

 Receiver function analyses suggest that the Asian mantle lithosphere is underthrusting 

northern Tibet (Fig. 2.2D). Large-scale underthrusting models (Kind et al., 2002; Zhao et al., 

2011) require as much as ~1400 km of crustal shortening (~80% strain) across the 350-km-wide 

Qilian Shan-Nan Shan thrust belt on the northern margin of the plateau to accommodate such 

motion of the Asian mantle lithosphere (Fig. 2.1A), whereas the smaller scale underthrusting 

models (Feng et al., 2014; Ye et al., 2015) suggest 300 km of shortening (~46% strain). Both 

iterations of these models involve a southward propagation of structures from the Hexi Corridor 

foreland and minimal Cenozoic strain in the Qaidam Basin and Qimen Tagh thrust belts to the 

south (Fig. 2.1B). 

 Several groups of models argue that a lateral pressure gradient drives lower crustal 

channel flow and vertical inflation of the crust (e.g., Zhao and Morgan, 1987; Bird, 1991; 

Royden et al., 1997, 2008; Clark and Royden, 2000; Clark et al., 2004) (Fig. 2.2E). These 

models predict the outward flux of low-viscosity material from the southern and central regions 

of the plateau and a similar outward propagation of surface uplift. Lateral channel flow should be 

decoupled from the upper crust so that Cenozoic crustal strain on the plateau surface must be 

minimal (<5%) and the upper crust undergoes only vertical motion (Fig. 2.2E). Although the 

channel flow model of Clark and Royden (2000) only predicts crustal flow in eastern Tibet and 

does not specifically refer to the Qilian Shan, the overall channel-flow process (Zhao and 
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Morgan, 1987; Bird, 1991; Royden et al., 2008) should be considered as a general mechanism 

for thickening and thinning of the Tibetan crust.  

 Although most of the present-day topography of the Tibetan Plateau (Fig. 2.1) was likely 

created in the Cenozoic as a result of the India-Asia collision (Yin and Harrison, 2000; 

Tapponnier et al., 2001; Royden et al., 2008), several regions inherited their crustal thickness 

from older collisional events (e.g., Worley and Wilson, 1996; Murphy et al., 1997). Based on the 

regional tectonic history, pre-Cenozoic crustal thickening in northern Tibet could have occurred 

either during the early Paleozoic Qilian orogen (e.g., Yin and Harrison, 2000; Gehrels et al., 

2003a, 2003b; Xiao et al., 2009; Song et al., 2013) or as a result of far-field uplift during the 

latest Paleozoic-early Mesozoic collisions between North China and South China or Qiantang 

and Asia (e.g., Yin and Nie, 1993; Pullen et al., 2008). If either case is correct, topography in the 

region must have persisted until today (Fig. 2.2F), the majority of deformational structures 

should be pre-Cenozoic, and erosion must be minimal over a period of hundreds of millions of 

years. 

 

2.4.2. Existing shortening estimates across the Qilian Shan-Nan Shan thrust belt 

 A compilation of existing Cenozoic shortening estimates across northern Tibet (Fig. 2.4) 

are listed in Table 2.2. Gaudemer et al. (1995) constructed a north-northwest-trending cross 

section in the eastern Qilian Shan based mainly on interpreted satellite images and existing 

regional geologic maps (Fig. 2.4 and 2.5A); their cross section (Fig. 2.5A) involves south-

dipping thrust faults that sole into a 10°-20° south-dipping detachment surface that merges with 

the Haiyuan fault at ~25 km depth. Gaudemer et al. (1995) estimated a minimum of 25 km 

shortening of a section that has a restored length of 100 km (~25% strain) by restoring the 
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unconformity overlying early Paleozoic and older basement rocks back to subhorizontal (Fig. 

2.5A). By using a regionally correlative marker horizon (i.e., the Paleozoic unconformity 

surface), strain within the pre-Cenozoic strata can be considered. Although the cross section is 

located near the Haiyuan fault (Fig. 2.4), out-of-plane motion (i.e., parallel to the Haiyuan fault) 

is unconstrained on the mapped faults. 

 The shortening estimates presented by Meyer et al. (1998) (Fig. 2.4) are based on two 

independent methods (Table 2.2). First, they developed several serial north-northeast-trending 

cross sections across the western Qilian Shan-Nan Shan (Fig. 2.4) using satellite image analysis 

with minor field checks. The restoration of Cretaceous and Cenozoic marker horizons yields 20-

30% shortening strain with an overall minimum of 150 km north-south shortening (>31% strain) 

across the entire Qilian Shan-Nan Shan thrust belt. Second, Meyer et al. (1998) derived bulk 

shortening estimates of 120 ± 30 km (Table 2.2) from a regional mass balance of eroded 

sediments, assuming isostatic compensation and an initial crustal thickness of 47.5 km. Meyer et 

al. (1998) noted that an unconstrained left-slip component on strike-slip faults (i.e., the Qinling 

and Haiyuan faults) adds uncertainties to their estimates.  

 In the North Qilian Shan, near the seismic-reflection profiles interpreted in this study, 

Zheng et al. (2010) used apatite (U-Th)/He (AHe) data (Fig. 2.4) to show rapid cooling ca. 10 

Ma. The preservation of a paleo-partial retention zone (PRZ) in the hanging wall and growth 

strata in the footwall (Fig. 2.5C) allowed Zheng et al. (2010) to estimate the horizontal 

shortening magnitude of 8.2 ± 1.8 km (26% strain) (Fig. 2.5C) and an average shortening rate of 

~1 mm yr-1. These estimates are based on the assumption that shortening was accommodated by 

a single 30° south-dipping planar thrust (Fig. 2.5C) initiated at ca. 10 Ma. Lease et al. (2012) 

constrained shortening across the West Qinling thrust fault using existing AHe ages (Clark et al., 
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2010) to obtain a ca. 110 Ma marker horizon in the footwall and hanging wall. The restoration of 

this horizon along a single south-dipping fault (average dip of 45°-50°) yields 4.3 km of 

horizontal shortening of a section that has a restored length of 30.3 km (~14.2% strain). 

Similarly, AHe ages were used (Lease et al., 2011, 2012) to develop a north-east-trending cross 

section across the Jishi Shan (Fig. 2.4) and to estimate 14.4 km shortening of a section that has a 

restored length of 100.6 km (~14.2% strain) (Fig. 2.5B). 

 A seismic reflection analysis across the eastern Haiyuan fault was conducted by Gao et 

al. (2013) (Fig. 2.4); they balanced and restored a 26-km-long section of a 180-km-long seismic 

reflection profile to estimate Cenozoic strain (Fig. 2.5D). The section crosses the Baiyin fault, 

and despite having no kinematic data to determine if it is a thrust or strike-slip fault, Gao et al. 

(2013) inferred this fault to be a thrust on the basis of its low-angle geometry in cross-section 

view and an oblique relationship with the left-slip Haiyuan fault in map view (Fig. 2.1B). Line-

length balancing of their cross-section model yielded a minimum of 22.3 km of shortening across 

a 25.7-km-long deformed-state section (~46% strain) (Fig. 2.5D). 

 Craddock et al. (2014) presented 10 line-length balanced north-south cross sections 

across the Qinghai and Gonghe Nan Shan, south of Qinghai Lake (Fig. 2.4), that are restored by 

bringing Neogene strata to horizontal (Fig. 2.5E). They suggested 1.5 ± 0.7 km shortening across 

the Qinghai Nan Shan. Shortening estimates in the Gonghe Nan Shan to the south are higher, 

ranging from 5.1 to 6.9 km (6.0 ± 0.9 km). These estimates were coupled with low-temperature 

thermochronologic and stratigraphic data (Craddock et al., 2011; Zhang et al., 2012) to suggest 

relatively low north-south shortening rates of ~0.2 mm yr-1 and ~0.7 mm yr-1 across the Qinghai 

and Gonghe Nan Shan, respectively. 
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 The diversity in strain and strain rate estimates across the northeastern margin of the 

plateau (Figs. 2.4 and 2.5) may be attributed to both real variations in plateau-construction and 

deformational processes and/or limitations of the balanced cross section restoration method. Due 

to the remoteness of northern Tibet, many estimates are based primarily on satellite image 

analysis and reconnaissance-scale surface mapping, which can miss important structures such as 

blind or hidden faults, detachments, and duplexes. In addition, many studies only consider slip 

estimates on faults that cut Cenozoic strata and rarely consider deformation of pre-Cretaceous 

rocks. Especially in the Qilian Shan-Nan Shan thrust belt, where deformation is often thick-

skinned and duplicates successions of the early Paleozoic Qilian arc and orogen (e.g., Yin et al., 

2007b), much of the Cenozoic strain is recorded as deformation that affects early Paleozoic and 

older metamorphic rocks. To overcome these issues, an integrated knowledge of subsurface 

geology and the regional geologic history is required to develop the most reasonable, testable, 

and restorable geologic cross-section models. 

 

2.4.3. Shortening across Qaidam Basin and the North Qaidam thrust belt 

 The Qaidam Basin and the North Qaidam thrust belts are to the south of the Qilian Shan 

(Fig. 2.1B) (Yin et al., 2008a). Balanced cross sections developed primarily from geologic 

mapping in the North Qaidam thrust belt indicate heterogeneous northeast-southwest crustal 

shortening that varies from >20% to 60% (Yin et al., 2008a) (Fig. 2.4; Table 2.2). In another 

study, Yin et al. (2008b) used seismic reflection data to develop a series of northeast-trending 

balanced cross sections across Qaidam Basin that reveal an eastward-decreasing strain gradient, 

ranging from ~35% strain in the west to >11% in the east (Fig. 2.4; Table 2.2). Both of these 
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studies suggest that Cenozoic crustal shortening is the primary mechanism for developing the 

topography and crustal thickness of Qaidam Basin and the North Qaidam thrust belt. 

 

2.5. Geologic mapping of the central Qilian Shan 

Geologic mapping was conducted in the central Qilian Shan, near the town of Yanglong 

(~38.5°N, ~98.5°E) (Figs. 2.1 and 2.3). Mapping was focused along the Shule, Tuo Lai, and 

Heihe Rivers, which drain the Tibetan Plateau to the northwest. The river valleys, at elevations 

of ~3500 m, are bounded by northwest-trending ranges with moderate relief (~0.5 to 1.0 km); 

peak elevations reach >5.5 km. The southernmost range, just north of the Hara Lake, is named 

the Shule Nan Shan. The ranges to the north have an average range spacing of 30-50 km, and are 

known as the Tuo Lai Nan Shan, Tuo Lai Shan, North Qilian Shan (e.g., Zheng et al., 2010), and 

Yumu Shan (e.g., Tapponnier et al., 1990), from south to north respectively (Fig. 2.3).  

A detailed lithostratigraphy is presented in Figure 2.6 and the geologic maps of the Shule 

Nan Shan, Tuo Lai Nan Shan, and Tuo Lai Shan are shown in Figures 2.7 and 2.8. Page-size 

limitations require the geologic maps to be presented in a dissected format (Figs. 2.7 and 2.7), 

but full-size maps are attached as a supplementary file (Supplementary Files 1 and 2). 

 

2.5.1. Map units 

The lithostratigraphic units mapped in the central Qilian Shan are shown in Figure 2.6. 

Stratigraphic age assignments of the major lithologic units are primarily from Pan et al. (2004), 

and the more detailed framework used in this study is based on Gansu Geological Bureau (1989), 

Qinghai BGMR (1991), a detailed stratigraphic review by Zhiyi and Dean (1996), unpublished 

detrital zircon data (Y. Zhang, W. Chen, A. Yin, and A. Zuza unpublished data), and my own 
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observations. Map units range in age from Mesoproterozoic to Quaternary, and are described 

below. 

 

2.5.1.1. Sedimentary units 

 The oldest sedimentary strata exposed in the central Qilian Shan consist of massive-

bedded limestone and dolostone interbedded with low-grade metamorphosed basalt and 

volcaniclastic layers. The carbonate rocks have a distinct massive blue/grey or orange 

appearance. The stratigraphic thickness of this unit possibly exceeds 3-7 km but is poorly 

constrained because its basal contact with the underlying metamorphosed basement is not 

observed and internal deformation has affected the original stratigraphy. The regional geologic 

map of Pan et al. (2004) give this unit a Changchengian age (i.e., Paleo- or Mesoproterozoic) on 

the basis of an older regional geologic survey (Gansu Bureau of Geology, 1974). However, I 

reassign a Neoproterozoic age (labelled Z) based on recent geochronology studies on the 

widespread basalt that is interbedded with carbonate strata (Mao et al., 1998; Xia et al., 1999), 

including new 600-580 Ma ages for these basalts (Xu et al., 2015). Compared to the higher-grade 

Mesoproterozoic gneiss, marble, and schist unit (discussed in section 2.5.1.2), the relatively low-

grade deformation observed in these rocks corroborates a Neoproterozoic age. 

 Ordovician rocks consist of low-grade metamorphosed sandstone, siltstone, and 

limestone with minor volcanic and volcaniclastic rocks. A distinctive blue-gray limestone unit 

(labelled Olm) appears to conformably overlie the Ordovician volcano-siliciclastic strata (labelled 

O). The lowest part of this unit is intruded by granitoid and intermediate to mafic dikes. All 

Ordovician rocks are strongly deformed and the original sedimentary relationships are obscured. 

Zhiyi and Dean (1996) state that siltstone, volcanic, and volcaniclastic rocks overlie thick 
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limestone deposits (Olm). This relationship is not directly observed in this mapping area, but it 

may be obscured by later deformation. Ordovician rocks may represent a complex mélange of 

forearc, accretionary wedge, and foreland-basin strata (Xiao et al., 2009; Zhiyi and Dean, 1996). 

Silurian strata (labelled S) are absent from the mapping area, but found elsewhere in the 

Qilian Shan. The rocks unconformably overlie Ordovician strata, and are often isoclinally folded 

and bedding is transposed. The strata consist of minor conglomerate layers interbedded with 

siltstone, shale, and sandstone (Yang et al., 2009; Yan et al., 2010). Conglomerate clasts and the 

sedimentary rocks are dominated by volcanic and granitic gneiss clasts and lithic grains 

respectively. Most of the observed sections appear to be turbidite successions with interfingering 

conglomerate beds (Yan et al., 2010). Silurian rocks are generally considered to represent a 

flysch basin that transitions into molasse deposits (Du et al., 2003).  

 Devonian strata (labelled D) are mostly absent from the central Qilian Shan, but where 

outcrops exist to the north and south, they unconformably overlie deformed Proterozoic-early 

Paleozoic rocks. They consist of terrestrial conglomerate, sandstone, mudstone, and minor 

volcanic rocks, and deposits do not exceed 300 m in thickness (Qinghai BGMR, 1991). These 

deposits are interpreted to represent molasse that was deposited in intermontane and/or foreland 

basins during the Qilian orogen (Xia et al., 2003; Yan et al., 2007), which implies that 

continental collision and deformation was occurring by this time. This unit is disconformably 

overlain by younger units. 

Carboniferous strata (labelled C) overlie Ordovician-Devonian rocks and other non-

sedimentary units as part of a regionally extensive angular unconformity. A basal coarse-grained 

quartz arenite, displaying prominent crossbedding, is overlain by quartz sandstone and 

interbedded siltstone, with minor carbon-rich shale and coal. The unit experienced strong internal 
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but localized deformation along the shaley coal layers. Carboniferous rocks are 400-500 m thick. 

Permian strata are mapped as a single unit (labelled P) that has a thickness of ~1 km. The lower 

section consists of distinctive pink-red and white-gray coarse sandstone and interbedded 

siltstone. The upper section is made up of arkosic and quartz sandstone interbedded with 

siltstone and shale, and sandy limestone.  

Conformably overlying these rocks are Triassic strata, which are thick (> 4km) and are 

divided into the lower (^1), middle (^2), and upper (^3) units. Lower Triassic (^1) rocks have a 

basal unit of massive cross-bedded grey sandstone overlain by arkosic and quartz sandstone, 

sandy limestone, siltstone, and calcareous siltstone. The middle Triassic (^1) strata are 

dominated by basal sandy conglomerate and cross-bedded arkosic and quartz sandstone with 

minor with siltstone. Upper Triassic rocks (^3) consist of a basal conglomerate with overlying 

arkosic sandstone interbedded with calcareous siltstone, darker organic-rich shale, and distinctive 

coal layers.  

The overlying Jurassic rocks (labelled J) are generally parallel to upper Triassic strata, 

although a regional disconformity between these two units exists (Yin et al., 2008b). Jurassic 

strata are 800 m thick and consist of a basal conglomerate overlain by arkosic sandstone 

interbedded with siltstone, organic-rich shale, and numerous coal beds. This unit is generally 

restricted to valleys in the central Qilian Shan and is not cliff forming. 

Cretaceous rocks (labelled K) consist of polymictic conglomerate and coarse sandstone 

that is reddish in color. This unit is exposed on both sides of the Tuo Lai Shan and its absolute 

thickness is not known. Map-view relationships require Cretaceous strata to be >270 m thick. In 

the Hexi Corridor to the north, Cretaceous rocks are observed to be >3 km thick (Zhiyi and 
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Dean, 1996). They often exhibit a growth strata geometry and are interpreted to have been 

deposited in extensional grabens or rift basins (Yin et al., 2008b). 

Cenozoic rocks are predominantly Miocene through Pliocene in age (labelled N, for 

Neogene) (Qinghai BGMR, 1991; Zhiyi and Dean, 1996; Bovet et al., 2009), although the 

southernmost deposits may be as old as late Oligocene (e.g., Zhuang et al., 2011). They consist 

of red fluvial and lacustrine sediments. Conglomerate, sandstone, and mudstone have a clay, 

marl, or limestone matrix. Gypsums is prevalent. Quaternary sediments consist of alluvial, 

fluvial, and glaciofluvial deposits (Li and Yang, 1998; Zhao et al., 2002). They are differentiated 

in my mapping as active axial river deposits (labelled Qax), active alluvial deposits (labelled 

Qaly), and inactive alluvial deposits (labelled Qalo).  

 

2.5.1.2. Metamorphic and mélange units 

 Metamorphosed basement rocks are widespread in the mapping area, and are divided into 

three unit groups: gneiss, schist, and foliated granitoid. The paraschist unit (labelled sch) is 

characterized by mica ± garnet schist, quartzite, foliated garnet amphibolite, marble, and local 

phyllite and slate. These rocks have been interpreted as a Proterozoic passive margin (Gehrels et 

al., 2003a, 2003b). Detrital zircon analyses (discussed in Chapter 5) confirm a maximum 

Mesoproterozoic age. The gneiss unit (labelled gn) is composed of quartzofeldspathic gneiss, 

mylonitic orthogneiss, and paragneiss. These rocks are inferred to be Proterozoic in age based on 

previous geologic maps (Qinghai BGMR, 1991; Pan et al., 2004). Foliated granitoid rocks 

(labelled grf) intrude both the gneiss and schist units. Foliation within the foliated granitoid rocks 

is parallel to that of the other metamorphic units across their lithologic contacts. All of these 
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metamorphic rocks are inferred to have Precambrian protolith ages (Qinghai BGMR, 1991; 

Gehrels et al., 2003a; Pan et al., 2004), and I provide further age constraints in Chapter 5. 

 An ophiolite complex, referred to locally as the Yushigou ophiolite suite (Shi et al., 2004; 

Hou et al., 2006; Song et al., 2013), is exposed in the northern portion of the mapping area. This 

complex variably consists of ophiolitic mélange and fragments of an incipient oceanic arc. The 

unit has been assigned a Cambrian age based on reported fossils (Xiao et al., 1978) and 

geochronology studies (Shi et al., 2004; Song et al., 2013; see Chapter 5), and is thus labelled 

Cambrian as _ (Fig. 2.6). The unit consists of ultramafic to mafic rocks, pillow basalts, and 

limestone and quartzite-sandstone knockers with chert. In addition, there are outcrops of massive 

plagioclase-pyroxene gabbro, which were mapped separately (labelled ga). There is significant 

deformation within the complex and the lithologic contacts are highly sheared. Taken together, 

this unit represents part of the Qilian suture zone (Fig. 2.1) (e.g., Wu et al., 2016), which 

connects along its northwest strike with the Aoyougou ophiolite (Zhang et al., 2001; Xiang et al., 

2007) to the northwest and the Dongcaohe ophiolite (Tseng et al., 2007) to the southeast.  

 

2.5.1.3. Igneous units 

 Numerous early Paleozoic granitoid plutons are exposed throughout the Qilian Shan 

region. These plutons have been assigned ages ranging from 516 Ma to 345 Ma, and most are 

attributed to arc and/or orogenic magmatism (Qinghai BGMR, 1991; Qian et al., 1998; Cowgill 

et al., 2003; Gehrels et al., 2003a; Su et al., 2004; Wu et al., 2004, 2006, 2010; Hu et al., 2005; 

Liu et al., 2006; Quan et al., 2006; He et al., 2007; Tseng et al., 2009; Dang et al., 2011; Xia et 

al., 2012; Xiao et al., 2012; Xiong et al., 2012; Song et al., 2013). Several large (10-50 km2) and 

many minor (1-10 km2) plutonic bodies are exposed in the mapping area. They range in 
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composition from alkali feldspar granite to quartz monzonite. These bodies intrude the 

Proterozoic gneiss and schist complex and the Ordovician strata, but are unconformably overlain 

by Carboniferous and younger strata. This relationship places a lower-age bound on plutonism, 

such that the granitoids must be older than Carboniferous. Geochronology presented in Chapter 5 

indicates that these plutons crystallized between ~474 and ~445 Ma. One of the plutonic bodies 

has a previous K-Ar age of 345 ± 17 Ma, as reported by Qinghai BGMR (1991), but new U-Pb 

zircon ages suggest a crystallization age ~450 Ma for this same granitoid. The units are mapped 

as undifferentiated granitoid (gr), except where a crystallization age has been determined, either 

from this study or other work, in which case I assign a specific granitoid age. For example, 

Or(gr) for Ordovician granitoid. Minor dikes with compositions similar to the granitoids were 

also mapped.  

In the Tuo Lai Shan, gabbroic plutonic rocks, diabase dikes, and basaltic volcanic rocks 

are found in the Yushiguo ophiolitic complex of the Qilian suture. U-Pb zircon ages from gabbro 

range from 555 to 516 Ma (Shi et al., 2004; Song et al., 2013). Tholeiitic pillow basalts are also 

found within this mélange and whole-rock geochemical data suggests that they are enriched mid-

ocean ridge basalts (E-MORB) (Song et al., 2013).  

Foliated granitoid bodies (granodiorite to quartz diorite) (labelled grf) intrude the 

Proterozoic metamorphic rocks. This unit is variably mylonitized with well-defined stretching 

lineations. Geochronology results presented in Chapter 5 indicates that this foliated granitoid has 

a crystallization ages that span ~950-900 Ma. This age range provides a lower-age bound for the 

protolith of the metamorphic complex that it intrudes.  
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2.5.2. Regional unconformities 

Four distinct Phanerozoic unconformities are recognized in the mapping area (Figs. 2.7 

and 2.8). Herein, they are named for the unit that overlies the unconformity. These 

unconformities are important because (1) they represent periods of rock uplift (e.g., 

deformation), erosion and/or other reasons for nondeposition and (2) they can be used to 

illustrate the pre-unconformity geometries of the older rock units. For example, Carboniferous 

and Cretaceous unconformities in the Tuo Lai Shan both overlie Ordovician strata. This requires 

the Ordovician rocks to be at or near the surface in both the Carboniferous and Cretaceous times. 

Thus, these rocks were at exposed to the surface prior to Cenozoic deformation.  

The oldest unconformity, which is also the most widespread, consists of Carboniferous 

strata (locally Devonian and/or Permian) overlying Proterozoic basement and Qilian arc/orogen 

rocks (i.e., Ordovician-Silurian rocks) (Figs. 2.7 and 2.8). It is prevalent throughout the Shule 

Nan Shan, Tuo Lai Nan Shan, and Tuo Lai Shan (Figs. 2.9A and 2.9C), where Carboniferous 

strata overly the Pt, Z, and O units. Where this depositional relationships is observed, the local 

rocks must have been located at or near the surface by Carboniferous time. This unconformity is 

also a key marker horizon in the balanced cross section restorations presented in Section 2.7. 

In one locality along the southern flank of the Tuo Lai Nan Shan, Triassic rocks (^2) 

unconformably overly Carboniferous and Proterozoic rocks, including the aforementioned 

Carboniferous unconformity (Fig. 2.8). Triassic strata are discordant from the underlying 

Carboniferous strata by ~10º (Fig. 2.8). Just to the south, in the overturned anticline, Permian 

and Triassic rocks (P-^3) make up a conformable and continuous sequence. This suggests that 

this unconformity surface is at least below Permian strata in the anticline, and it cuts upsection to 

the north to its location within the Triassic rocks as a buttress unconformity. In this scenario, a 
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thin veneer of Carboniferous rocks were deposited on top of the basement that had topography 

following the early Paleozoic Qilian orogen. Deposition was restricted to topographic lows. 

Permian through lower Triassic rocks were deposited on this relatively flat surface, and there 

was either a topographic high to the north or the sediment deposition simply pinched out to the 

north. Middle and upper Triassic rocks were evenly deposited over the underlying strata. Further 

interpretation of the depositional setting of these rocks is not within the scope of this study.  

The last two unconformities—at the base of Cretaceous and Cenozoic rocks—were 

caused by regionally extensive tectonic events. The Mesozoic unconformity is related to the 

initiation of widespread extension across northern Tibet (e.g., Vincent and Allen, 1999; Chen et 

al., 2003). This unconformity primarily consists of Jurassic and/or Cretaceous rocks 

unconformably overlying Paleozoic and Proterozoic strata, with a variety of angular 

unconformities. Along the southern flank of the Tuo Lai Shan, Cretaceous rocks are 

unconformably deposited on top of Ordovician rocks and Carboniferous strata. This observation 

suggests two things. First, the Ordovician and Carboniferous rocks were both at or near the 

surface at the time of Cretaceous deposition. In addition, an event is required to tilt the 

Carboniferous unconformity and Carboniferous-Permian rocks prior to the deposition in the 

Cretaceous. This unconformity surface is folded in a northwest-trending ~1-km-wavelength 

syncline (Fig. 2.8). Cretaceous rocks were also deposited unconformably on Proterozoic-

Paleozoic rocks, along the northern flank of the same range, and the Heihe River valley makes 

up a large Cretaceous basin that stretches ~140 km to the southeast to the city of Qilian. 

Cenozoic rocks are only exposed in the southern portions of the mapping areas (Figs. 2.7 

and 2.8). They were deposited on top of Jurassic and upper Triassic strata, which indicates that 

prior to Cenozoic deformation, these Mesozoic rocks were closest to the surface. The 
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development of this unconformity represents the initiation of Cenozoic deformation related to the 

Himalayan-Tibetan orogen. 

 

2.5.3. Structural geology 

Structures generally follow a dominant northwest-southeast structural trend, including the 

general strike of sedimentary units, strike of foliations within the metamorphic units, trend of the 

ranges, and surface trace of faults. Deformation can be categorized into three distinct regimes: 

(1) Cenozoic folds and faults, (2) early Paleozoic folds, faults, and unit juxtapositions, and (3) 

early Paleozoic ductile shearing and metamorphism. There is no direct evidence of Mesozoic 

deformation or normal faulting, but the field observations are consistent with work by others that 

suggests that Jurassic and Cretaceous sedimentation was caused by regional extension (Vincent 

and Allen, 1999; Chen et al., 2003; Yin et al., 2008b), including fining-upward sequences and 

growth strata. 

 I interpret deformation of Carboniferous and younger strata to be Cenozoic in age based 

on the following observations: (1) most observed faults and folds of Carboniferous and younger 

rocks merge with present-day range-bounding thrusts, (2) these same faults truncate Cenozoic 

terrestrial deposits and Quaternary alluvium, (3) shallow-marine, lacustrine, and continental shelf 

deposition of parallel Carboniferous through Triassic strata was not associated with any 

deformational structures during these time periods, and (4) Jurassic and Cretaceous strata are 

extension related (e.g., Vincent and Allen, 1999; Chen et al., 2003; Yin et al., 2008a,b) so 

contractional structures involving these rocks must be Cenozoic in age. This also implies that 

folding and duplication of the Carboniferous unconformity occurred in the Cenozoic.  
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Presented below is a detailed structural analysis of each range, including juxtaposition 

geometries, map-view relationships, kinematic indicators, and alternative interpretations, starting 

with the Shule Nan Shan in the south and progressing to the ranges to the north (Fig. 2.3).  

 

2.5.3.1. Shule Nan Shan 

 The ranges bounding Hara Lake to the northeast and northwest expose Ordovician and 

Proterozoic basement rocks that are overlain by Carboniferous through Triassic strata (Fig. 2.7; 

Supplementary Figure 1). The Shule Nan Shan range is bounded to the southwest by NW-

striking thrust faults (Fig. 2.7) that place Proterozoic-Paleozoic rocks against Neogene-

Quaternary rocks in the Hara Lake Basin. Structures under Hara Lake were inferred by 

projecting geometric relationships and bedding attitudes observed to the northwest of the lake. 

For convenience of description, the NW- to W-striking thrust faults are labelled f1 through f6, 

from south to north respectively (Fig. 2.7), and are discussed in this order below.  

Fault 1. The WNW-striking fault dips 70° to the NE, juxtaposes Triassic rocks (^2-^3) against 

Permian-Triassic strata (P-^2), and truncates overlying Neogene sediments (Fig. 2.7). 

The observed juxtaposition must have accommodated <100s of meters of slip. The fault 

trace to the east is obscured by Hara Lake.  

Fault 2. The WNW-striking fault dips 60° NNE and places Carboniferous rocks (C) against 

Permian strata (P) (Fig. 2.7). Units beneath Carboniferous rocks are not exposed, which 

constrains the maximum fault offset on f2 to 100s of meters. 

Fault 3. This S-dipping fault has a variable E-ENE strike. In the west, the fault places a ~8-km-

wide hanging-wall anticline of Permian strata (P) over a footwall syncline of Permian-

Triassic rocks (P-^1) (Fig. 2.7). Map view relationships suggest that offset increases to 
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the east, but exposure is obscured by Hara Lake and the surrounding basin. This fault 

appears to either be truncated by, or merge with, f4, although this relationship is not 

directly observed (Fig. 2.7). 

Fault 4. The trace of this NE-dipping fault is readily identified in satellite images as a 

conspicuous fault scarp that cuts across abandoned Quaternary alluvial fans. It is also 

responsible for uplifting Neogene sediments (Fig. 2.7), and is likely an active structure. 

The fault merges with f5 to the east, and is assumed to be south-dipping and merge with 

both f5 and f6 at depth.  

Fault 5. This NW-striking NE-dipping range-bounding fault of the Shule Nan Shan places 

Carboniferous rocks over Permian strata and overlying Neogene sediments (Fig. 2.7). 

The fault merges to the east with the Haiyuan fault (Fig. 2.7) and represents the 

westernmost termination structure of this major strike-slip fault. Kilometer-scale folds are 

observed in the hanging wall of this fault, exposing Carboniferous-late Triassic rocks (C-

^3) (Fig. 2.7). Although no direct fault kinematic measurements were made for this fault, 

the fold axes are parallel to the fault strike, which may suggest that this fault is primarily 

a dip-slip structure. Fault offset must be <1 km based on the map view relationships, and 

the tight (~1 km wavelength) hanging wall folds accommodate a similar magnitude of 

shortening. This fault is possibly a splay of f6, which accommodates larger magnitude 

offset associated with the growth of the Shule Nan Shan range (Fig. 2.7).  

Fault 6. This NE-dipping thrust places the Proterozoic schist unit (Pt[sch]) over Permian rocks 

(P). The gently NE-dipping (15-20°) Carboniferous-Triassic strata are interpreted to 

parallel the hanging-wall flat of this south-directed thrust fault, and thus parallel the dip 

of the fault. A minor fault splay f6a links with f6 to the east, and truncates the Ordovician 
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granitoid unit and overlying Carboniferous strata. Fault 6a cuts the granitoid and 

overlying sedimentary strata, but offset diminishes within the granitoid. The fault trace of 

f6a to the east is covered by Quaternary sediments, but it is assumed that the fault merges 

to the east with f6 at depth.  

 

2.5.3.2. Tuo Lai Nan Shan  

 The Tuo Lai Nan Shan range bounds the Shule River valley to the north (Fig. 2.8; 

Supplementary Figure 2). Neogene outcrops are exposed along the margins of the valley, 

unconformably overlying Triassic strata (Fig. 2.8). Proterozoic-Paleozoic rocks are juxtaposed 

against the Neogene deposits by south-directed Cenozoic thrust faults. Discussion of these faults, 

which are labelled f1 through f4 from south to north respectively (Fig. 2.8), is given below. 

Fault 1. This WNW-striking N-dipping thrust fault places Triassic rocks over Neogene 

sediments and other Triassic strata (Fig. 2.8). For convenience of description, the western 

and eastern traces off these faults are denoted f1a and f1b respectively. Fault 1a places an 

anticline of Triassic strata (^3), which is likely cored by P-^2 as in the east, over 

Neogene sediments. A minor (~100 m wavelength) hanging-wall anticline forms in the 

hanging wall of this steeply dipping thrust fault. In the east, f1b branches into several 

fault splays, which variably place Triassic (^3) rocks over Neogene sediments and other 

Late Triassic rocks (^3) (Figs. 2.9E-2.9G). Offset on this fault is minor as evidenced by 

minor map-view offset of the ^3-^2 contact and the duplication of similar-aged units. 

This fault is inferred to merge to the east with the range-bounding f3. The geometry of 

f1b at depth is constrained by the focal mechanism (thrust dipping 27ºN) from a 1993 Mw 
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= 5.9 event that has been relocated by Chu et al. (2009) to have occurred at a depth of ~7 

km (Fig. 2.8). In light of this observation, it is clear that f1b is an active structure. 

Fault 2. The WNW-striking faults are anomalous in the mapping area because they involve a 

northward transport direction. In the west this fault is labelled as f2a (Fig. 2.8). It is 

south-dipping and places a hanging-wall anticline of Triassic strata (^3) over Jurassic 

rocks. Jurassic strata in the footwall of f2a are internally deformed, with numerous 100-

m-wavelngth folds and faults. Fault 2a must be relatively low angle (10-20°S) based on 

its map trace (Fig. 2.8).  

In the east, this fault is labelled as f2b. This fault merges to the west and east with 

f3. There is a prominent ~5-km-wide anticline in the hanging wall of f2b, just to the south 

of the f2b’s surface trace, which is referred to as the Shule anticline because it is exposed 

along the northern bank of the Shule River (Fig. 2.8). The anticline is overturned and 

north-verging; its northern limb is overturned to the south and its southern limb dips to 

the south (50-60°S) (Fig. 2.8). Fault 2b truncates this anticline, and cuts upsection to the 

northwest through lower Triassic to upper Triassic rocks (^1-^3). This truncation 

relationship suggests that f2b is a south-dipping thrust, the Shule anticline is the hanging-

wall anticline of this thrust, and the fault 2b accommodated top-to-the-north motion. 

However, where this fault is exposed in a north-trending drainage along the northern 

overturned limb of the Shule anticline, the fault dips to the north (Figs. 2.8 and 2.9D). At 

this locality, the fault surface dips 60°N, Jurassic strata in the hanging wall are parallel to 

the fault, and Triassic rocks in the footwall are oblique to the fault surface (Fig. 2.9D). 

This geometric relationship alone would suggest a hanging wall flat-footwall ramp in a 

north-dipping normal fault. Alternatively, this fault juxtaposition may be part of an 
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overturned thrust that was originally S-dipping and placed Triassic rocks over Jurassic 

strata. Following this interpretation, the Triassic rocks make up a hanging-wall ramp 

whereas the Jurassic strata are part the footwall flat, and the fault was overturned by 

south-directed shear. The north-verging Shule anticline and map-view truncation 

relationships support this second interpretation (Fig. 2.8), and the south-directed f3 may 

have caused this overturning of f2b. A field photograph in Figure 2.9B shows the 

overturned thrust f2b and south-directed f3. 

Fault 3. This NW-striking fault dips to the north and juxtaposes Triassic (^2) through 

Proterozoic rocks over Cenozoic-Triassic strata (N-^3). The laterally continuous fault 

crosses the entire mapping region (Fig. 2.8). The hanging wall consists middle Triassic 

strata (^2) unconformably overlying Proterozoic basement rocks (Pt[sch] and Pt[gn]). 

There is a thin veneer of Carboniferous rock beneath the Triassic strata, that also 

unconformably overly the Proterozoic rocks (Fig. 2.8). In the west, this fault juxtaposes 

Triassic rocks (^2) over Jurassic-Neogene strata (J-N). Here the fault either merges with 

or truncates f2a (Fig. 2.8). The eastern portion of this fault cuts both up- and down-

section through the Shule anticline, which requires this fault to be out-of-sequence with 

respect to north-verging f2b. I infer that these two faults merge above the erosional 

surface, or f3 crosscuts f2b, although the duplication of f2b is not observed in the 

mapping area.  

Fault 4. This N-dipping fault places metamorphic basement rocks over a syncline of Triassic 

strata (^2-^3). The surface trace of f4 is readily identifiable along the southern flank of 

the highest peaks of the Tuo Lai Nan Shan as this fault defines a sharp change in slope: 

Triassic rocks in the footwall are less resistant than the metamorphic rocks in the hanging 
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wall. The Triassic footwall syncline is truncated by f4 and map relationships suggest that 

this syncline is overturned in the west, above the erosional surface. Fault 4 splits into two 

fault splays in the west: f4a and f4b. Fault 4a places undifferentiated marble and schist 

rocks over the southern limb of the Triassic syncline (Fig. 2.8). Based on its surface trace, 

f4b must be relatively low angle (10-20°N). This fault juxtaposes Proterozoic schist and 

gneiss against undifferentiated marble and schist rocks. There are no constraints as to 

whether this fault is Cenozoic in age or older. Northeast-dipping (35-45°NE) 

Carboniferous-Permian strata unconformably overly the Pt(sch) along the southern bank 

of the Tuo Lai River (Fig. 2.8), which indicates that this this unconformity horizon 

continues above the erosional surface to the southeast.  

 

2.5.3.3. Tuo Lai Shan  

 The Tuo Lai Shan is bounded by the Tuo Lai River to the south and Heihe River to the 

north (Fig. 2.8). This range was constructed primarily by south-directed thrusting of early 

Paleozoic rocks over Cretaceous and younger strata (Fig. 2.8). Numerous fault splays within 

non-bedded and highly deformed units make precise interpretation of these faults difficult, but 

below I discuss three major thrust faults. These are labelled f5 through f8, from south to north 

respectively (Fig. 2.8).   

Fault 5. The NW-striking NE-dipping thrust fault consists of Ordovician strata and early 

Paleozoic granitoid rocks in its hanging wall (units O, O[gr], and gr) and Proterozoic 

metamorphic rocks (Pt[sch], Pt[gn], and Pt[grf]) in its footwall (Fig. 2.8). The main fault 

and related splays dip ~35-60ºNE. The fault is covered by Quaternary river deposits in 

the west, and its eastern extent is unknown (Fig. 2.8). 
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Fault 6. This label is tentatively given to the major thrust fault(s) that place inferred Precambrian 

and/or high-grade metamorphic rocks (Z and sch) over strongly deformed Ordovician 

strata and early Paleozoic granitoid rocks (units O, O[gr], and gr) (Fig. 2.8). In the west, I 

use f6a to specifically refer to the fault that juxtaposes Z(sch) against Ordovician strata 

that are intruded by early Paleozoic plutons (Fig. 2.8). This NE-dipping thrust fault also 

has Cretaceous and Carboniferous rocks in its footwall. It merges to the east with f6b, 

which specifically places the undifferentiated sch unit over the combined Ordovician 

strata-pluton unit (O and gr) (Fig. 2.8). This fault is also N-dipping and has a syncline of 

Carboniferous and Cretaceous rocks in its footwall. Fault 6b also places the ophiolite 

complex over Ordovician strata in the farthest east portion of the mapping area (Fig. 2.8). 

To the south of the ophiolite complex, several splays of f6b duplicate a suite of 

Ordovician rocks that are intruded by O(gr) and overlain by Carboniferous-Permian rocks 

(Fig. 2.8). 

Fault 7. This NW-striking SW-dipping fault places a complex of Neoproterozoic marble and 

schist and Cambrian ophiolitic rocks (Z and _) over Ordovician and late Paleozoic strata 

(O, C, and P) (Fig. 2.8). Where observed, this fault dips 40ºSW (Fig. 2.8). This fault is 

inferred to be a backthrust of f6, and thus they are expected to merge at depth. Footwall 

strata (C and P) are variably folded at wavelength of ~2-3 km. Fault 7 merges to the west 

with f6a and f8.   

Fault 8. This major NE-dipping fault brings Neoproterozoic marble and schist rocks (Z[sch] and 

Z[mb]) over footwall rocks that include Neoproterozoic and Ordovician rocks 

unconformably overlain by Carboniferous-Permian strata (Fig. 2.8). These late Paleozoic 

footwall strata are folded at a kilometer scale. In the west, several fault splays duplicate a 
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series of Neoproterozoic schist rocks overlain by Carboniferous strata (Fig. 2.8). Fault 

8’s hanging-wall rocks are unconformably overlain by Mesozoic strata (J and K) (Fig. 

2.8). Several faults observed in the hanging wall of f8 are entirely within Paleozoic or 

older rocks, and the timing of their activity is unconstrained.  

  

2.5.3.4. Structural data from the metamorphic basement  

 The Proterozoic schist and gneiss unit has strongly developed foliations and stretching 

lineations. These fabrics are inferred to have developed in the early Paleozoic as a result of the 

Qilian arc and subsequent Qilian orogen. Foliations are defined by mica layering in the mica ± 

garnet schist rocks, gneissic banding with relatively mafic (biotite and amphibole) and felsic 

(plagioclase and quartz) layers, plagioclase layering in foliated garnet amphibolite rocks, or 

weak-to-strong mineral alignment (mostly mica and amphibole grains) in the foliated granitoid 

rocks. Stretching lineations are observed within the foliation surface and stretched plagioclase is 

most evident in many outcrops. This deformation occurred in the Ordovician, and the age 

constraints are discussed in more detail in Chapter 5.  

 The foliation and stretching lineation data from the metamorphic basement rocks were 

compiled and analyzed in several stereonets (Fig. 2.8) using the Stereonet 9 software provided by 

Rick Allmendinger. In the metamorphic rocks to the north of fault 4, the foliations are all 

roughly parallel, near vertical, and strike northwest. Stretching lineations within these units are 

subhorizontal and trend northwest. South of fault 4, the data is more diverse. Foliations are 

variable, generally NW-striking, and most lineations are SE-trending and subhorizontal. 

 The attitudes of these Paleozoic fabrics have been significantly modified by later 

deformation. To examine their original orientation, I rotate the attitude data back to a pre-
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Carboniferous state (Fig. 2.8B). Structural data from south of fault 4 must first be rotated to 

account for the folding that occured in the east-trending Triassic syncline. The Triassic rocks are 

rotated back to horizontal and all of the data from beneath the Triassic strata (e.g., Carboniferous 

beds and the metamorphic rocks) are rotated accordingly. Next, the Carboniferous strata and 

underlying metamorphic rocks are rotated together so that the Carboniferous strata are 

horizontal. The pre-Carboniferous structural data are more parallel than the uncorrected data 

(Fig. 2.8B). The foliations are steep to near vertical and strike to the northwest. Stretching 

lineations are subhorizontal and trend to the southeast. 

 A similar procedure was done for the metamorphic structural data to the north of fault 4. 

In this case, all of the data was rotated in order to bring the Carboniferous-Permian strata that 

outcrop on the northern flank of the Tuo Lai Nan Shan (Fig. 2.8A) back to horizontal. The 

average foliation attitude and lineation plunge-trend observations from all of the corrected pre-

Carboniferous datasets are 126/84ºSW and 12/119, respectively (Fig. 2.8B). Kinematic 

indicators suggest that this nearly vertical shear zone had a right-slip sense of shear. 

 

2.5.4. Balanced cross sections 

 Cross sections developed from surface geology alone are non-unique tectonic models 

(e.g., Yin et al., 2010a; Judge and Allmendinger, 2011), but their uncertainty can be minimized 

by conforming to direct field observations, including bedding truncations, fault cutoffs, unit 

juxtapositions, and fault-geometry requirements. Cross section profiles were chosen along 

traverses that had the best exposure of bedded strata (i.e., Carboniferous through Cenozoic rocks) 

and a high density of field measurements. A large amount of bedding-attitude measurements help 
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to tightly constrain the fold and fault geometries, and the along-strike projection of map 

relationships also aids in interpretation of structures at depth.  

 The ultimate goal of the balanced cross section construction was to restore the sections to 

an undeformed state to estimate Cenozoic shortening. Because of the relatively thick-skinned 

deformation and large variations/uncertainties in stratigraphic thicknesses, I use the line-

balancing method to restore deformation, as opposed to an area balance (Chamberlin, 1923 Mitra 

and Namson, 1989; Judge and Allmendinger, 2011). Thus, I assume that parallel folding is 

accommodated by flexural slip along bedding horizons (Elliot, 1983; Suppe, 1983). Unlike the 

area balance technique, line-length balancing requires well-constrained knowledge of bedding 

geometry, particularly at depth below the erosional surface. I use the kink-band technique 

(Dahlstrom, 1969; Suppe, 1983) to approximate these geometries and adhere to the observed 

map relationships and empirical cross-section construction “rules” (Bally et al., 1966; Dahlstrom, 

1969; Boyer and Elliot, 1982; Elliot, 1983; Suppe, 1983). By choosing cross-section-profile lines 

where I have a high density of bedding measurements, I strive to reduce dip-domain spacing to 

approximate circular folds. 

 Bedding thickness is kept constant, except where geologic observations show otherwise 

(e.g., the pinching out of specific units). When hanging-wall cutoffs are eroded, I assume 

minimum fault offset and develop a kink-band fold that conforms to this. Further cross-section 

restoration assumptions are discussed in section 2.7 

  

2.6. Seismic reflection profiles across the North Qilian Shan 

 Three seismic reflection profiles across the North Qilian Shan frontal thrust system and 

adjacent foreland were acquired by the China National Petroleum Company (see Figs. 2.1 and 
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2.10 for their locations) (e.g., J. Wu et al., 2006; Yang et al., 2007a, 2007b). All three 

uninterpreted high-resolution seismic reflection profiles can be found in the Appendix (Fig. A.1). 

A regional geologic map was compiled from unpublished 1:200,000 scale maps, satellite analysis 

(i.e., Google Earth and Landsat images), and my own field observations (Fig. 2.10). The 

structures imaged in the seismic reflection profiles must be compatible with the local surface 

geology. Where available, age assignments in the seismic profiles are from drill hole and 

magnetostratigraphy data (e.g., Yang et al., 1993; Li, 1994; Li and Yang, 1998; Fang et al., 2004; 

J. Wu et al., 2006; Yang et al., 2007a, 2007b), or surface geology are projected onto the seismic 

profiles. 

 

2.6.1. Surface geology in the North Qilian Shan 

 The North Qilian Shan thrust system and its frontal Yumu Shan thrust ~30 km to the 

northeast (e.g., Tapponnier et al., 1990) represent the northernmost structures of the Qilian Shan-

Nan Shan thrust belt (Fig. 2.1B). The Yumu Shan is a diverging fault splay (Boyer and Elliott, 

1982) that merges with the North Qilian Shan thrust fault to the southeast (Fig. 2.1B). These 

fault systems are bounded to the north by the Hexi Corridor foreland basin (Figs. 2.1, 2.3, and 

2.10), which is dissected by several isolated backthrust systems (e.g., the Longshou Shan thrust). 

The south-dipping Qilian Shan frontal thrust system places Proterozoic-early Paleozoic rocks 

over the Cenozoic strata of the Hexi Corridor foreland basin (Figs. 5 and 6) (e.g., Li et al., 1998; 

Fang et al., 2004). Observations of downdip slickenlines and asymmetric folds indicate that the 

faults are primarily dip-slip thrust faults (e.g., Tapponnier et al., 1990). The left-slip Haiyuan 

fault is located >100 km to the south (Fig. 2.1) and does not appear to influence the local 

deformational regime of the North Qilian Shan.  
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 Hanging-wall rocks are mostly related to the early Paleozoic Qilian orogen, which 

juxtaposed Proterozoic high-grade gneiss and schist against Ordovician-Silurian low-grade 

metasediments. It is difficult to determine the age of deformational structures that are mapped 

entirely within the early Paleozoic units (Fig. 2.10), and without direct crosscutting relationships 

or more detailed mapping, these structures may be Paleozoic and/or Cenozoic in age. Ordovician 

and Silurian strata are often isoclinally folded and bedding is transposed. Early Paleozoic plutons 

are also widespread throughout the Qilian Shan (e.g., Gehrels et al., 2003a; Song et al., 2013). 

Two of the seismic profiles cross a >60-km-long Silurian granitoid intrusion, known as the 

Jinfosi pluton (Zhang et al., 1995), that intrudes Ordovician-Silurian rocks (Gehrels et al., 2003a; 

Wu et al., 2010) (Fig. 2.10). This pluton is thrust to the north over Mesozoic-Cenozoic strata and 

was the focus of a nearby AHe traverse (Zheng et al., 2010) (Fig. 2.10). The early Paleozoic 

strata and the plutonic rocks provide no reflective surfaces and are difficult to interpret with 

seismic reflection analysis because they appear transparent. Because of this issue, my analysis is 

mostly focused on the geometry of late Paleozoic and younger bedded strata that provide strong 

reflectors. 

 Carboniferous (locally Devonian) through Triassic deposits unconformably overlie early 

Paleozoic rocks (Fig. 2.10). There are limited surface exposures of Triassic rocks in the study 

area, and the sedimentary relationship between Late Triassic strata and the overlying Jurassic-

Cretaceous sediments is not directly observed in this region. Triassic strata are much more 

prevalent in the central Qilian Shan-Nan Shan to the southwest (Pan et al., 2004), where the beds 

are variably subparallel to discordant with the overlying Jurassic-Cretaceous strata. Cretaceous 

rocks often exhibit a growth strata geometry and are interpreted to have been deposited in 

extensional grabens (Yin et al., 2008b). Jurassic through Cenozoic strata (Table 2.3) display the 
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clearest reflectors in the seismic reflection profiles and are most useful for cross-section 

construction. Jurassic rocks consist of coal-rich sandstone and siltstone beds that reach a 

thickness of ~800-1000 m (Gansu Geological Bureau, 1989; Zhiyi and Dean, 1996). Lower 

Cretaceous strata are widespread along the North Qilian Shan and Hexi Corridor, consist of red 

conglomerate and coarse sandstone, and have a total thickness >2600 m. The more localized 

upper Cretaceous strata consists of fluvial and lacustrine sandstone that are generally <500 m 

thick (Zhiyi and Dean, 1996). 

 The Hexi Corridor foreland is made up of >2.5 km of Cenozoic sediments, mostly 

Miocene (locally Oligocene) through Pliocene in age (Li et al., 1998; Bovet et al., 2009; Zhuang 

et al., 2011). The Cenozoic strata are exposed along drainages and localized structural uplifts 

(e.g., Li, 1993; Bovet et al., 2009). Quaternary sediments are often >1 km thick (Zhang et al., 

1990) and consist of alluvial, fluvial, and glaciofluvial deposits (Li and Yang, 1998; Zhao et al., 

2002). 

 

2.6.2. Timing of Cenozoic deformation 

 Several lines of evidence suggest that contractional deformation and crustal shortening of 

post-Devonian units across the North Qilian Shan initiated in the middle Miocene. First, I infer 

that deformation of Carboniferous through Cretaceous strata occurred in the Cenozoic based on 

the following observations: (1) thrust faults link with the present-day range-bounding Qilian 

Shan frontal thrusts (Figs. 2.10, 2.11, and 2.14-2.16), (2) these faults truncate Cenozoic 

nonmarine deposits and offset Quaternary alluvium (Figs. 2.10 and 2.11), (3) regionally, 

Carboniferous-Triassic strata are conformable and parallel to subparallel, indicating that 

deformation involving these units was post-Triassic, and (4) Jurassic-Cretaceous strata are 
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extension related (e.g., Vincent and Allen, 1999; Chen et al., 2003; Yin et al., 2008a, 2008b), so 

contractional deformation of Jurassic-Cretaceous strata must be Cenozoic in age. Second, AHe 

apatite ages obtained along a nearby traverse (Fig. 2.10) suggest that rapid cooling across the 

Qilian Shan frontal thrust system began ca. 10 Ma (Zheng et al., 2010). Lastly, the Cenozoic 

strata in the seismic reflection profiles, generally Miocene and Pliocene sedimentary rocks, 

exhibit growth strata relationships with the frontal thrusts (see section 2.6.4) 

 

2.6.3. Approximate vertical scale of seismic sections and associated uncertainties 

 The vertical axes in the seismic profiles are two-way traveltime, and an approximate 

depth scale was created assuming an average P-wave velocity of 5.5 km/s (Liu et al., 2006; Gao 

et al., 2013). Although the use of a single average seismic velocity distorts the geometry of the 

structures, I assume these effects to be negligible given that the sections are imaging only the 

uppermost ~15 km of crust and that I am primarily interested in assessing horizontal motion and 

shortening. The sediment in the foreland may have a lower seismic velocity (e.g., He and Pang, 

2013), and therefore the seismic-reflection profiles likely overestimate the apparent thickness of 

Cenozoic sediments. However, my choice of an average seismic velocity leads to very minor 

uncertainties for the horizontal calculations. By assuming that these approximation of an upper 

crustal seismic velocity of 5.5 km/s has an associated error of ±0.5 km/s, which is reasonable 

based on other regional geophysical studies (e.g., Liu et al., 2006) and the global distribution 

upper crustal p-wave velocities (Christensen and Mooney, 1995), then these uncertainties in the 

vertical scale affect the actual length of any inclined reflectors. The magnitude of this distortion 

depends on the apparent dip angle of the reflector. The original length of reflector that dips 45° 

would be distorted by 3-4%, whereas more shallowly dipping beds would undergo less 

63



elongation. Thus, the line-length balancing analyses of horizontal shortening produce 

conservative uncertainties of 3-4%. The conversion of traveltimes to depth yields apparent bed 

thicknesses that are consistent with what is observed at the surface (see preceding description), 

strengthening the validity of this assumption.  

 

2.6.4. Seismic reflection profiles 

 Three seismic reflection profiles (Figs. 2.14-2.16) show sequences of finely laminated 

reflectors, which are interpreted to represent sedimentary strata, and zones of diffuse low 

reflectivity, which may represent either large plutons or the strongly deformed and transposed 

Ordovician-Silurian strata. The great density of highly reflective layers allows us to understand 

the subsurface geometry, and the truncation of these closely spaced reflectors is due to faulting, 

unconformable deposition, or pluton intrusion. Overall, these three profiles image a south-

dipping thrust system involving two major thrust faults that places Paleozoic and older rocks 

over a relatively undeformed Hexi Corridor foreland to the northeast (Fig. 2.10). The foreland 

consists of Mesozoic-Cenozoic sedimentary rocks unconformably overlying older bedded units. 

 Jurassic strata display the strongest and most continuous reflectors (Figs. 2.14-2.16), 

possibly because of the laterally continuous coal seams in these rocks. These beds generally are 

6-8 km below the surface of the Hexi Corridor, but also are exposed along the base of the North 

Qilian Shan range (Fig. 2.10). Cretaceous strata are subparallel to Jurassic strata and also display 

finely laminated reflectors (Figs. 2.14-2.16). Truncations of these reflectors are pronounced and 

highlight major structures. Growth strata relationships occur in both the Cretaceous and 

Cenozoic strata; sedimentary rocks thicken to the south-southwest. Sequences of strong 

reflectors that have apparent thicknesses similar to either the Jurassic or Cretaceous reflectors in 
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the undeformed foreland footwall are interpreted to be the same units in the hanging wall. No 

clear regional-scale detachment surface at depth is observed in any of the sections, although the 

hanging-wall and footwall flats are often confined to Cretaceous strata. The transparent granitoid 

and Ordovician-Silurian units are ambiguous and I refrain from overinterpreting structures 

within these units. Paleozoic units at depth cannot be subdivided further unless surface 

extrapolation is possible, and are assigned a general Paleozoic age (Pz).  

 Seismic reflection profile 1 (Fig. 2.14) (line S-S′ in Fig. 2.10) is an ~31-km-long section 

that images two south-dipping thrusts, which place the Silurian pluton on relatively undeformed 

Mesozoic-Cenozoic sedimentary rocks in the Hexi Corridor (Fig. 2.10). The set of strongest 

reflectors are interpreted to be Jurassic strata (e.g., Yang et al., 1993; Li, 1994; Li and Yang, 

1998), 6 km below the surface in the Hexi Corridor (label 1 in Fig. 2.14), which is conformably 

overlain by Cretaceous and Cenozoic rocks. Minor north-dipping faults disrupt Jurassic and 

older strata. Jurassic strata are interpreted to overlie Carboniferous-Triassic rocks with a minor 

(10°-15°) angular unconformity (between labels 1 and 6 in Fig. 2.14), although the distinct units 

beneath the Jurassic strata are not constrained. The coherent layer of Jurassic strata pinches out 

in the south end of the profile (Fig. 2.14). This interpretation is further supported by the lack of 

Jurassic rocks exposed at the surface to the south-southwest of this profile location (Fig. 2.10). 

The relatively transparent Silurian granitoid and Ordovician-Silurian metasedimentary rock 

compose most of the southern portion of the acquired image (label 5 in Fig. 2.14). The truncation 

of poorly organized, tightly folded, and diffuse reflectors represents an intrusive contact of 

granitoid against Ordovician-Silurian metasedimentary rocks. 

 This profile images two major thrust faults (Figs. 2.10 and 2.11). The most northern 

structure (f1 in Fig. 2.14) involves a nearly continuous and parallel set of south-dipping (25°-
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35°S) reflectors juxtaposed against horizontal reflectors near the middle of the image (3 and 4 in 

Fig. 2.14). I interpret this structure as a hanging-wall flat-footwall ramp thrust fault. Hanging-

wall rocks are interpreted to be Cretaceous in age based on projecting surface geology to depth 

(Figs. 2.10 and 2.14). The Jurassic strata pinch-out could alternatively be interpreted as a 

footwall-ramp truncation, which would require a matching Jurassic cutoff in the hanging wall. I 

do not prefer this interpretation because this relationship is not observed. Slip along f1 is at least 

15-20 km. The second major fault (f2 in Fig. 2.14) truncates the Cretaceous hanging-wall strata 

of fault f1 and places the relatively transparent Ordovician-Silurian units against the Cretaceous 

rocks (Fig. 2.14). Based on the observed fault geometries and unit juxtapositions, slip along this 

second fault, f2, is likely 5-10 km. Some of the observed unconformities (i.e., beneath the 

Jurassic strata) could be low-angle hanging-wall bedding-parallel thrusts, but I prefer the 

unconformity interpretation based on the regional geology and because this assumption 

minimizes estimated shortening. 

 Seismic reflection profile 2 (Fig. 2.15) (line T-T′ in Fig. 2.10) is a ~39-km-long section 

located ~40 km to the southeast of profile 1 (Fig. 2.10). This section images the same south-

dipping thrust structures and undeformed foreland observed in profile 1. Strongly reflective 

Jurassic strata are ~8 km below the surface of the Hexi Corridor (1 in Fig. 2.15) and are overlain 

by Cretaceous-Quaternary sedimentary rocks (2 in Fig. 2.15). Middle Miocene rocks at the base 

of the range (N in Fig. 2.10) are syntectonic because they unconformably overlie Cretaceous 

strata and are truncated by the current range-bounding thrust (Fig. 2.15). This supports middle 

Miocene fault initiation. Jurassic strata overlie Triassic or Paleozoic rocks with an apparent 

angular unconformity of ~15° (between 1 and 6 in Fig. 2.15), similar to profile 1 (Fig. 2.14). 

Minor south-dipping faults disrupt Paleozoic through Jurassic strata in the north. 
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 The southwestern side of the seismic profile also shows two major faults. The first brings 

Jurassic strata from a depth of ~8 km to ~5 km along a thrust fault (f1 in Fig. 2.15). This 

juxtaposition, along with the observed fault geometry, requires a minimum fault slip of ~15 km. 

The hanging-wall rocks in f1 are truncated by another major fault (f2 in Fig. 2.15) that brings 

Ordovician-Silurian and Jurassic strata over Jurassic-Cretaceous rocks (3 in Fig. 2.15), which 

requires ~10-15 km of slip. Another minor south-dipping fault transports early Paleozoic rocks 

and truncates north-dipping Jurassic strata. Slip on this fault is poorly constrained but must be 

large enough (2-4 km) to expose Silurian rocks in this range (Fig. 2.10) and to cut through and 

obscure Jurassic strata at the surface (Fig. 2.15). 

 Seismic reflection profile 3 (Fig. 2.16) (line U-U′ in Fig. 2.16) is an ~25 km-long section 

located ~10 km to the southeast of profile 2 (Fig. 2.10). This is the only section that is parallel 

and aligned with shortening in the Yumu Shan to the northeast (Figs. 2.1, 2.3, and 2.17), and the 

imaged structures may be kinematically linked with those to the north (Tapponnier et al., 1990). 

The prominent reflector sequence that is interpreted to represent Jurassic strata is located at a 

depth of 3-4 km below the Hexi Corridor (label 1 in Fig. 2.16), compared to depths of 6-8 km in 

the other two profiles (Figs. 2.14 and 2.15). Thus, Cretaceous-Cenozoic deposits in this section 

are 2-4 km thinner than the other sections, although the relative thickness of each different-aged 

deposit is ambiguous (e.g., Cretaceous versus Neogene versus Quaternary strata). This thickness 

difference may be caused by either a Cretaceous or Cenozoic paleohigh that impeded the 

deposition of Cretaceous or Cenozoic sediments, or earlier localized Cenozoic uplift that allowed 

for more erosion of the youngest sedimentary rocks. Jurassic strata overlie Triassic or Paleozoic 

rocks with an angular unconformity of ~10° (between labels 1 and 5 in Fig. 2.16). 
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 Unlike the other profiles, at least five north-dipping faults cut through Hexi Corridor 

sedimentary rocks with small-magnitude offsets. These south-directed faults may originate from 

deformation in the Yumu Shan (Figs. 2.1, 2.3, and 2.17). Two major thrusts are imaged in the 

southern portion of this profile. The first thrust (f1 in Fig. 2.16) creates the geometric 

relationship of south-dipping Cretaceous strata in the hanging wall against nearly horizontal 

strata in the footwall, near the middle of the section (4 in Fig. 2.16). This juxtaposition requires a 

minimum ~3-5 km of slip. The second major thrust (f2 in Fig. 2.16) is imaged at the southern 

edge of profile 3 and involves the movement of Jurassic-Cretaceous rocks to within 1-2 km of 

the surface along a south-dipping fault. A backthrust in the hanging wall truncates Jurassic strata, 

and only Silurian rocks are exposed at the surface along the profile surface trace (Fig. 2.10). 

Jurassic beds are exposed south of profile 3 (Fig. 2.10). 

 

2.7. Cenozoic shortening estimates across the central Qilian Shan 

 Given that contractional deformation of Carboniferous and younger rocks is interpreted 

to be Cenozoic in age, the restoration of balanced cross sections provides constraints on the 

minimum magnitude of Cenozoic shortening strain. In addition to the assumptions previously 

stated for cross section construction, the following assumptions were involved in the restoration 

of all balanced cross sections. (1) Deformation is plane strain in the north-northeast-trending 

sections; this is validated by direct field observations of dip-slip fault kinematics (e.g., fault 

slickenlines and asymmetric minor folding analysis; my own field observations), present-day 

north-northeast-south-southwest convergence as indicated by GPS velocities, and a northeast 

contractional strain field (Zhang et al., 2004; Allmendinger et al., 2007). (2) Unconformity 

surfaces that were used for section restoration have no initial relief and are restored to horizontal, 
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except when evidence suggest otherwise. (3) The pin lines are placed in the most undeformed 

strata, in the footwall or hanging wall. (4) Shortening estimates are a minimum because of 

hanging-wall erosion (Boyer and Elliott, 1982), bed-length changes during deformation 

(Groshong et al., 2012), cleavage formation, unrecognized additional detachment surfaces at 

depth (e.g., Yin et al., 2008a), and unconstrained deformation in the early Paleozoic granite and 

metasediments. (5) Although significant pre-Cenozoic deformation affected the region, 

following the logic presented here, restoration of Jurassic-Cretaceous strata provides an estimate 

of Cenozoic strain. 

 

2.7.1. Shortening based on geologic mapping of the central Qilian Shan 

The balanced and restored cross sections presented in Figures 2.12 and 2.13 are based on 

surface geological mapping alone. The deformed-state cross sections presented here adhere to 

the map-view relationships (Figs. 2.7 and 2.8) and structural observations (see section 2.5.3). 

The restoration of these sections involved restoring slip along the mapped faults to reposition the 

late Paleozoic unconformity surfaces back to horizontal. When hanging-wall cutoffs were 

eroded, minimum slip was assumed. Pinlines were placed through undeformed strata. Additional 

cross-section-specific explanations are presented along with the cross sections in Figures 2.12 

and 2.13.  

The minimum magnitude of shortening estimated in these sections was, from north to 

south, 16.5 km (26.5% strain), 15.5 km (47% strain), 6.3 km (38% strain), and 11 km (35% 

strain) (Figs. 2.3., 2.12 and 2.13; Table 2.2). The summation of these estimates, ignoring section 

C-C’ which is parallel to section D-D’ (Fig. 2.8), suggests that the mapping area accommodated 

43 km of Cenozoic shortening or ~35% strain.  
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 The section that spans E-E’ (Fig. 2.3) is totally unconstrained as I have not mapped this 

region and very little post-Silurian bedded strata are exposed to constrain fault and fold 

geometries. That said, I provide a first-order shortening estimate by applying the average strain 

estimate (i.e., 35%) for the central Qilian Shan, taken from sections A-A’ through D-D’, to 

section E-E’. This approach yields a minimum shortening magnitude of ~8.6 km (35% strain) 

(Table 2.2).  

 The summation of these balanced and restored cross sections across the central Qilian 

Shan-Nan Shan thrust belt, from Hara Lake in the south to just-south of the northern frontal 

Qilian Shan thrust system (i.e., sections A-A’, B-B’, C-C’, and E-E’) (Figs. 2.1 and 2.3), 

indicates that the region has accommodated a minimum of ~52 km of Cenozoic shortening 

(~35% strain) (Table 2.2). The precise initiation age for this deformation is not constrained. The 

most direct evidence for shortening initiation is the truncation of Miocene terrestrial strata by 

thrust faults (Figs. 2.8, 2.9F, and 2.9G). Based on similar sedimentological evidence, Zhuang et 

al. (2011) suggest an early to middle Miocene (i.e., ~23-15 Ma) deformation initiation age. 

Using this initiation age yields a shortening rate across the central Qilian Shan-Nan Shan thrust 

belt of 2.2 mm yr-1 to 3.5 mm yr-1. Alternatively, if deformation initiated early at ~50 Ma like in 

southern Qilian Shan and North Qaidam thrust belts (Yin et al., 2008a), the shortening rate 

would only be ~1.0 mm yr-1. Given the range of initiation ages, the interior of the central Qilian 

Shan-Nan Shan thrust belt experienced strain rates ranging from 2.2 × 10-16 s-1 to 7.4 × 10-16 s-1. 
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2.7.2. Shortening based on seismic reflection profiles 

 Balanced cross sections constructed from the seismic reflection profiles were assumed to 

have horizontal length errors of <4%, due to the use of a single average seismic velocity. The 

balanced and restored cross sections are presented in Figures 2.14-2.16. 

 Because the Jurassic strata in seismic reflection profile 1 (Fig. 2.14) are not observed in 

the hanging wall, either because it pinches out or is truncated by a fault, and the Cretaceous 

hanging-wall cutoff is also eroded, line-length balancing of either of these units would lead to 

large uncertainties. An alternative method is required to constrain shortening. Profile 1 is located 

within 2 km of the parallel traverse by Zheng et al. (2010) (Fig. 2.10), allowing for the use of 

their AHe data in the deformed and restored cross-section models. Their study locates a ca. 10 

Ma apatite paleo-PRZ in the hanging wall of the north-directed thrust system (e.g., Fig. 2.5C), 

which can be used to estimate the location of a ca. 10 Ma paleoland surface at ~2.6 km above the 

paleo-PRZ, assuming a typical continental geothermal gradient and reasonable AHe closure 

temperature (see discussion in Zheng et al., 2010). I place this paleo-PRZ and ca. 10 Ma 

paleoland surface in the deformed-state cross section (Figs. 2.14B-2.14C) and use it in the 

restoration to align this ca. 10 Ma marker horizon (i.e., the paleoland surface) within middle 

Miocene strata in the Hexi Corridor footwall (Fig. 2.14D). The same method was used by Zheng 

et al. (2010), but with only one fault strand and an oversimplified fault geometry. My seismic 

reflection interpretation and knowledge of the fault geometries at depth allows for a better 

constrained restoration. I restore the paleo-PRZ within the Silurian granitoid along the imaged 

thrust faults until the inferred ca. 10 Ma paleoland surface is at the same vertical position as the 

ca. 10 Ma strata in the footwall (Fig. 2.14D). This restoration requires a good vertical scale to be 

meaningful, but the vertical scale of the seismic sections is only an approximation. To overcome 
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this issue, I use three independent observations to verify the vertical position. First, I compare the 

relative scale of the cross-section model with that presented by Zheng et al. (2010) that shows 

that the paleo-PRZ in the hanging wall is located ~2.1 km above the ca. 10 Ma surface in the 

Hexi Corridor. The cross-section model shows a similar vertical relationship. Second, Cretaceous 

beds are ~3 km thick (see preceding discussion) and I can compare the apparent thickness of 

these beds in the seismic section to create a local vertical scale. Third, I note that the 

Carboniferous strata unconformably overlying the Silurian pluton (Figs. 2.10, 2.14B, and 2.14C) 

must be restored to a viable pre-Cenozoic position to avoid creating an unreasonable buttress 

unconformity, which would indicate large-scale relief during the deposition of Cretaceous strata.  

 I position the Silurian pluton to minimize shortening (Fig. 2.14D), although allowing 

more slip would give the implied unconformities a more realistic geometry with less pre-

Cenozoic relief. To the south of the Silurian pluton, the lack of bedded units and coherent 

reflectors makes restoration difficult. Silurian and Ordovician strata are involved in imbricate 

thrusting that may be either Paleozoic or Cenozoic in age (Figs. 2.10 and 2.14). With this 

restoration method, I calculate a minimum horizontal shortening magnitude of 25 km with a 

deformed section length of 21 km, which yields a minimum shortening strain of 54% (Fig. 

2.14D). Alternatively, if I ignore the AHe data and retrodeform the strata along the observed 

footwall fault geometries, minimum shortening is 22 km (53% strain). The latter method does 

not adequately restore the Carboniferous unconformity to a reasonable elevation, and so I prefer 

the former shortening estimate (i.e., 25 km or 54% strain). A line-length balance of Cretaceous 

strata yields a shortening magnitude of 15 km and a corresponding strain of 40%, which can be 

regarded as absolute minimum estimates. If the strain was accommodated over the past ~10 m.y. 
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(Zheng et al., 2010), the corresponding horizontal shortening rate and strain rate are 2.2-2.5 mm 

yr-1 and 1.7 × 10-15 s-1, respectively.  

 Profile 2 (Fig. 2.15) is retrodeformed to an undeformed pre-Cenozoic state by restoring 

the Jurassic beds (i.e., the prominent reflectors labeled 1 in Figs. 2.15A and 2.15B) to a 

continuous and horizontal position (Fig. 2.15D). The minimum magnitude of horizontal 

shortening calculated by this restoration is ~33 km across a deformed section length of ~29 km 

(Fig. 2.15D), which yields a shortening strain of 53%. The surface exposure of Jurassic strata in 

the hanging wall in the Qilian Shan range (Fig. 2.10) and the reasonably constrained location of 

Jurassic rocks in the Hexi Corridor footwall (Fig. 2.15) require a minimum vertical throw of 8-10 

km. This observation corroborates my interpretation and requires shortening of this approximate 

magnitude. Given that this strain was accommodated since ca. 10 Ma (Zheng et al., 2010), the 

corresponding horizontal shortening rate and strain rate are 3.3 mm yr-1 and 1.7 × 10-15 s-1, 

respectively. 

 Seismic reflection profile 3 (Fig. 2.16) is also restored using the Jurassic unit as a marker 

horizon (i.e., the prominent sequence of reflectors labeled 1 in Fig. 2.16). Motion on fault f2 is 

poorly constrained because of erosion of the hanging-wall cutoff, but there must be enough slip 

on fault f2 to expose Silurian strata at the surface (e.g., Fig. 2.10). The minimum magnitude of 

horizontal shortening calculated in this restoration is ~12 km across a deformed section with a 

length of 21 km, yielding a minimum strain of 36%. Assuming that deformation initiated ca. 10 

Ma (Zheng et al., 2010), the corresponding horizontal shortening rate and strain rate are 1.2 mm 

yr-1 and 1.1 × 10-15 s-1, respectively. 
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2.8. Discussion 

2.8.1. Cenozoic shortening across the northeastern Tibetan Plateau 

 Through balanced cross section construction and restoration, I have constrained north-

south shortening across the interior of the central Qilian Shan-Nan Shan thrust belt and along the 

North Qilian Shan frontal thrust system. I estimate that the total minimum magnitude of 

Cenozoic shortening across a ~98-km-long traverse of the central Qilian Shan-Nan Shan thrust 

belt, based on the surface geology alone, is ~52 km (~35% strain). This magnitude is comparable 

to regional shortening estimates across the region (Meyer et al., 1998; Yin and Harrison, 2000). 

Because the thrust belt geometry and deformational style to the southwest of Hara Lake appear 

be similar to my mapping area (Figs. 2.1 and 2.3), I tentatively suggest that the observed strain 

can be extrapolated across the entire ~350-km-wide Qilian Shan-Nan Shan thrust belt, with the 

exception of the North Qilian Shan thrust system, which experienced higher strain as discussed 

below. This approach yields a minimum shortening of ~210 km (35% strain) across all of the 

Qilian Shan ranges south of the North Qilian Shan. 

 Seismic reflection profile analysis along the North Qilian Shan frontal thrust system 

yields minimum north-south shortening estimates of 25 km (54% strain), 33 km (53% strain), 

and 12 km (36% strain), from west to east (Figs. 2.4 and 2.10). Although the seismic reflection 

interpretations, cross-section models, and section restorations are nonunique solutions, the 

geometric compatibility between the three sections adds robustness to my interpretations. All 

three profiles image two south-dipping strands of the North Qilian Shan frontal thrust system. In 

all three cross sections, Quaternary sediments cover fault 1, and fault 2 represents the range-

bounding fault (Fig. 2.10), suggesting that fault 1 is inactive and fault 2 is active. This trailing 
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imbricate system may have first exploited the relative weaknesses within the bedded Cretaceous 

rocks before cutting through early Paleozoic strata. 

 Profiles 1 and 2 yield similar shortening magnitude and strain estimates. One explanation 

for profile 3 having a lesser magnitude of Cenozoic shortening is that deformation may be 

partitioned between the Qilian Shan and Yumu Shan thrust systems, ~25 km northeast of profile 

3 (e.g., Tapponnier et al., 1990) (Fig. 2.17). Profile 3 is the only section that is directly in line 

with the Yumu Shan. Estimated north-south shortening rates across the Yumu Shan are 0.4-1.9 

mm yr-1 (Tapponnier et al., 1990) and if faulting also initiated ca. 10 Ma, the magnitude of 

shortening should be between 4 and 19 km. Summation of the shortening magnitudes and rates 

from the Yumu Shan and the Qilian Shan frontal thrust system imaged in profile 3 yields 16-31 

km (33-49% strain) and 1.6-3.1 mm yr-1, respectively, consistent with the shortening observed in 

profiles 1 and 2 to the west (Fig. 2.17). 

 Shortening estimates derived from the longest profile (i.e., profile 2; Fig. 2.15) indicate 

that the North Qilian Shan minimum Cenozoic shortening magnitude and strain were 33 ± 6 km 

and 52% ± 4%, respectively, including the uncertainties associated with using a single uniform 

seismic velocity. Other seismic reflection analyses across the North Qilian Shan frontal thrust 

system obtain comparable strain values of 40-55% (J. Wu et al., 2006; Yang et al., 2007a, 

2007b). Assuming that this strain can be applied across the width of the North Qilian Shan 

frontal range (40-50 km), a possible restored position of the northern margin of the Qilian Shan 

prior to Cenozoic shortening is shown in Figure 2.17. Note that all three profiles restore to a 

similar position.  

 The north-south shortening rate across the North Qilian Shan thrust system derived from 

this study, 3.3 ± 0.6 mm yr-1, is much higher than most other rate estimates across northern Tibet 
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(Hetzel et al., 2004; W.J. Zheng et al., 2009, 2013; D. Zheng et al., 2010; Yuan et al., 2011), but 

is consistent with the estimates of Champagnac et al. (2010) (i.e., ~2.5 mm yr-1), also along the 

North Qilian Shan frontal thrust system. If correct, these high deformation rates indicate that 

deformation is currently focused along the northern margin of the plateau, and that the North 

Qilian Shan thrust faults accommodate more than half of the entire geodetic shortening across 

the Qilian Shan-Nan Shan thrust belt (i.e., ~5.5 mm yr-1) (Zhang et al., 2004). This result 

indicates that focused deformation along the northern margin of the Tibetan Plateau is similar to 

Himalayan shortening along the southern margin of the plateau, where strain is highly 

concentrated along the Main Frontal Thrust (Lavé and Avouac, 2000; Burgess et al., 2012). 

 The remaining contemporary convergence rate must be accommodated within the interior 

of the Qilian Shan-Nan Shan thrust belt. Because the initiation age of deformation within the 

thrust belt interior is poorly constrained, there is no way to precisely calculate the shortening rate 

across this region. However, by subtracting the shortening rate across the North Qilian Shan 

thrust system (3.3 ± 0.6 mm yr-1) from the present-day convergence rate across the Qilian Shan-

Nan Shan thrust belt (i.e., ~5.5 mm yr-1) (Zhang et al., 2004), I note that 2.2-1.6 mm yr-1 of 

shortening should be accommodated across this interior. The observed minimum shortening 

magnitudes suggest shortening rates that vary, depending on the initiation age, the from ~1.0 mm 

yr-1 (i.e., ~50 Ma initiation age) to 3.5 mm yr-1 (i.e., 15 Ma initiation age), which fall within the 

expected range. In fact, the above information suggests that shortening probably started prior to 

~24 Ma (i.e., ~2.2 mm yr-1 shortening rate), or else the shortening rates would be too high across 

the entire Qilian Shan-Nan Shan thrust belt. Alternatively, it is possible that shortening rates may 

have varied in the past.  
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 The Cenozoic shortening documented in this work (Table 2.2) is generally higher than 

other estimates around the northeastern Tibetan Plateau (Fig. 2.4). This disparity may be due to 

either a heterogeneous strain distribution in northern Tibet or an artifact of the limitations of 

strain estimates that are calculated from observations of the surface geology alone. Estimates 

derived from restoring only Cenozoic strata are significantly lower (<15% strain) (e.g., Lease et 

al., 2012; Craddock et al., 2014) than those that incorporate subsurface data (>40% strain) (J. Wu 

et al., 2006; Yang et al., 2007a, 2007b; Yin et al., 2008b; Gao et al., 2013; this study). However, 

the variable topography, eastward-tapering thrust belts (Fig. 2.1B), complex interaction between 

strike-slip and thrust faulting, and heterogeneous strain estimates in different cross sections from 

the same study (e.g., Fig. 2.4) suggest that strain is not spatially constant across northern Tibet. 

By integrating my estimates with other seismic analyses, detailed field-mapping-based estimates, 

and regional bulk shortening estimates (e.g., Yin et al., 2008b; Meyer et al., 1998; Gao et 

al.,2013), I suggest that the bulk Cenozoic strain across the Qilian Shan-Nan Shan thrust system 

is >30% (215-300 km shortening) (Fig. 2.4; Table 2.2), and higher strain (>53% or ~50 km 

shortening) is concentrated in the North Qilian Shan thrust belt along the plateau margin. Thus, 

the higher strain observed along the North Qilian Shan should not be extrapolated across the 

entire Qilian Shan-Nan Shan thrust belt. 

  

2.8.2. Crustal shortening, thickening, and denudation 

 To quantitatively evaluate plateau formation mechanisms, I first determine the 

significance of distributed shortening in crustal thickening and plateau development. A well-

constrained estimate of the pre-Cenozoic crustal thickness of northern Tibet is required to assess 

the role that crustal shortening has in crustal thickening. Although such an estimate does not 
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exist, several lines of evidence suggest that the pre-Cenozoic thickness of the northern Tibet was 

~40 km. The global average thickness of modern continental crust is 41 ± 6 km (Christensen and 

Mooney, 1995). Although Mesozoic rifting is widespread across northern Tibet (Vincent and 

Allen, 1999; Chen et al., 2003) and rifted crust can be as thin as 36 ± 8 km (Christensen and 

Mooney, 1995), nonmarine Cretaceous deposits require the crust to be at least 32-34 km thick to 

be above sea level, given Airy isostatic compensation (e.g., Schubert and Sandwell, 1989). 

Furthermore, the Ordos Basin to the northeast of the plateau (Fig. 2.1) represents relatively stable 

crust, with a lack of earthquakes and a lower average elevation (i.e., ~1.3 km). Its current crustal 

thickness of ~42 km (Liu et al., 2006) is a good approximation for crustal thickness in the 

adjacent northern Tibet prior to Cenozoic deformation. 

The horizontal crustal shortening observed across northern Tibet (Table 2.2) contributes 

to crustal thickening of this initially ~40-km-thick crust, assuming that surface and mantle 

erosional processes and/or lateral material transport (i.e., not plane strain shortening) are not 

outpacing crustal thickening. Vertical thickening results from horizontal shortening assuming the 

following: (1) vertically uniform horizontal plane strain shortening of the crust (i.e., upper, 

middle, and lower crust), (2) two-dimensional (2-D) pure shear crustal thickening, and (3) minor, 

or at least well-constrained, denudation. Horizontal shortening strain, 𝜀ℎ, is defined as 𝜀ℎ =
𝑙𝑓−𝑙𝑖

𝑙𝑖
 

, where lf and li are the final and initial cross section lengths, respectively. Horizontal shortening 

strain can be converted to horizontal stretch strain, 𝑠ℎ =
𝑙𝑓

𝑙𝑖
= 𝜀ℎ + 1, which is inversely related 

to the vertical stretch strain, 𝑠𝑣 =  
1

𝑠ℎ
. The apparent present-day crustal thickness, Tf, relates to 

vertical stretch strain (sv) as 𝑇𝑓 = 𝑇𝑖 × 𝑠𝑣, where Ti is the initial crustal thickness. This same 
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approach can be used to back-calculate the apparent pre-deformational crustal thickness of the 

Tibetan Plateau (Table 2.2). 

This simple approximation excludes the effects of denudation, but as shown below, there 

has been less than 5 km of Cenozoic denudation across northern Tibet. The Silurian-

Carboniferous unconformity in the hanging wall of the North Qilian Shan frontal thrust system 

(Figs. 2.10 and 5.14) constrains how much material was removed to expose this marker horizon. 

Carboniferous-Jurassic strata are ~4-4.5 km thick and Jurassic-Cretaceous rocks record a 

transition from marginal marine to nonmarine deposits (Gansu Geological Bureau, 1989; 

Qinghai BGMR, 1991). The exposure of the base Carboniferous beds (i.e., the unconformity 

surface) requires 4-4.5 km denudation since the beginning of the Cretaceous, when terrestrial 

sedimentation began (Vincent and Allen, 1999) and erosion could have commenced. The 

magnitude of Cretaceous versus Cenozoic erosion and/or denudation is not constrained, and so 

this estimate provides a maximum Cenozoic denudation magnitude of 4.5 km. The AHe study of 

Zheng et al. (2010) shows erosion and denudation magnitudes of ~2 km since ca. 10 Ma. I 

assume a conservative maximum denudation magnitude of 5 km across the central Qilian Shan 

thrust system and assume that all of northern Tibet underwent a similar magnitude of denudation. 

Other low-temperature thermochonrology studies also indicate low magnitudes of 

denudation. Apatite fission-track (AFT) analysis across the northwestern Qilian Shan and Hexi 

Corridor by George et al. (2001) yields mostly Cretaceous and older cooling ages. AHe and AFT 

data from the western Haiyuan fault also yields Cretaceous or older ages (Duvall et al., 2013).  

These older cooling ages suggest that denudation >4-5 km did not occur across most of northern 

Tibet in the Cenozoic.  
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Assuming that the crustal thickness of northern Tibet prior to India-Asia collisions is ~40 

km, I calculate the crustal thickness that develops due to horizontal shortening (Table 2.2), and 

compare this value to the present-day crustal thickness (55-65 km) (e.g., Fig. 2.1C) of northern 

Tibet (Fig. 2.18). When crustal shortening alone generates a crustal thickness that agrees with 

modern observations, no additional mechanisms are favored for plateau development, but if the 

shortening estimates overthicken or underthicken the crust, alternative processes, including 

channel flow or underthrusting (e.g., Fig. 2.2), are required. This analysis is conducted along two 

northeast-trending cross-section lines across northern Tibet (lines J-J′ and K-K′ in Fig. 2.4) (Fig. 

2.18). 

In the west, along line J-J′ in Figure 2.4, the observed crustal shortening estimates in the 

Qimen Tagh, Qaidam Basin, and Qilian Shan-Nan Shan thrust belts can effectively explain the 

present-day crustal thickness (Fig. 2.18). The shortening observed in the seismic profiles at the 

northern edge of the Qilian Shan is high and predicts thicker crust (i.e., 75-80 km) than what is 

observed. In the east, along line K-K′ in Figure 2.4, shortening estimates south of the Haiyuan 

fault near the Gonghe Basin (Fig. 2.4) are too low to adequately explain the observed crustal 

thickness (Fig. 2.18); an extra crustal thickness of ~10 km is needed. To the north of the Haiyuan 

fault crustal shortening is sufficient to develop the observed ~50-km-thick crust (Fig. 2.18). The 

higher shortening reported by Gao et al. (2013) predicts thicker crust than what is observed (~70-

75 km) (Fig. 2.18). This integrated analysis can ascertain the importance of distributed 

shortening as a plateau formation mechanism. For most of northern Tibet, away from the plateau 

margins, distributed crustal shortening and pure shear thickening can adequately generate the 

observed 55-65 km crustal thickness (Fig. 2.18), which suggests that distributed shortening is the 

dominant crustal thickening process operating through most of this region. The higher strain 
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observed by the seismic reflection analysis along the plateau margin may result from either 

southward underthrusting of the Asian mantle lithosphere or continental subduction (Table 2.1). 

Given that this higher magnitude deformation is focused along the northern margin of the plateau 

and not along existing sutures (Fig. 2.1), the underthrusting model is favored. If the Asian mantle 

lithosphere is underthrust to a position near Qaidam Basin, as suggested by Ye et al. (2015) 

(Fig. 2.1A), ~300 km shortening (~50%) is required to accommodate this motion. 

 

2.8.3. Model for Cenozoic development of the northeastern Tibetan Plateau 

 By integrating existing work across northern Tibet, I develop a lithospheric-scale model 

for the Cenozoic construction of the northeastern Tibetan Plateau (Fig. 2.19). The crustal 

thickness and elevation of the northeastern Tibetan Plateau are the results of bulk north-south 

shortening of the Tibetan-Asian lithosphere by at least 250-350 km, from the Kunlun fault in the 

south to the Hexi Corridor in the north (Figs. 2.1 and 2.19). This shortening is accommodated by 

southward underthrusting of the Asian mantle lithosphere beneath the northern margin of the 

plateau and a similar magnitude of crustal shortening and pure shear crustal thickening (Fig. 

2.19). Strain observed away from the margins of the northeastern plateau is >~30-45%, which is 

sufficient to thicken an initially ~40-km-thick crust to the present-day crustal thickness solely by 

distributed crustal shortening and pure shear thickening. With this scenario, the Tibetan crust has 

thickened by ~20 km via distributed contractional folding and faulting as a result of deformation 

that transferred rapidly from the south, as early as ca. 50 Ma (Yin et al., 2008a; Duvall et al., 

2013). Localized higher strain (>53%) along the northern plateau margin results from southward 

underthrusting of the Asian mantle lithosphere to a position beneath northern Qaidam Basin. 

This is supported by receiver function studies that image the south-dipping North China mantle 
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lithosphere beneath the Tibetan Plateau (Feng et al., 2014; Ye et al., 2015). However, these 

observations are not consistent with the high magnitude of underthrusting envisioned by Kind et 

al. (2002) (Fig. 2.1A) that would require significantly more upper crustal shortening (Fig. 2.2D). 

The relatively recent initiation of faulting (Zheng et al., 2010) and high strain rates (Champagnac 

et al., 2010; this study) along the northern plateau margin suggest that this interpreted 

underthrusting is a young feature of plateau development that initiated at around 10 Ma. 

 Although most of the observed strain distribution (Fig. 2.18) can be explained by this 

lithospheric-scale model (Fig. 2.19), the low shortening magnitudes (<15%) near the Gonghe 

Basin and the Jishi-Laji Shan to the southeast require explanation (Lease et al., 2012; Craddock 

et al., 2014). These relatively low shortening estimates may be the result of shortening 

underestimation because of the lack of subsurface data, although Lease et al. (2012) argued that 

these low shortening magnitudes are sufficient to generate the observed crustal thickness from 

crust with an initial thickness of 45 ± 5 km. Alternatively, these low strain magnitudes may 

indicate that a different mechanism is operating in this eastern region of northern Tibet (Fig. 

2.1B), such as northeast-east-directed lower crustal flow around Sichuan Basin (Clark and 

Royden, 2000) that could lead to additional vertical crustal thickening without horizontal crustal 

strain at the surface. The lateral flow of low-viscosity material may be driven by the northward 

indentation of India into the Tibetan lithosphere from the south or the southward underthrusting 

of the Asian mantle lithosphere beneath northern Tibet.  

  

82



2.8.4. Accommodation mechanisms of India-Asia convergence 

There has been 2000-2500 km of convergence between India and Asia since the onset of 

collision at 65-55 Ma (e.g., Molnar and Tapponnier, 1975; Dewey et al., 1989; Le Pichon et al., 

1992; Zhu et al., 2005; van Hinsbergen et al., 2011). Efforts to document this convergence in 

crustal shortening generally come up short, with 600-900 km shortening in the Himalaya 

(DeCelles et al., 2002; Robinson et al., 2006; Yin et al., 2010b; Long et al., 2011; Webb, 2013) 

and 300-400 km of north-south shortening reported across all of Tibet (e.g., Yakovlev and Clark, 

2014). These low values for Tibetan shortening need to be reconsidered in light of detailed field 

and seismic subsurface data. By integrating my shortening estimates across the central Qilian 

Shan-Nan Shan thrust belt with other robust estimates discussed in this paper (e.g., Gaudemer et 

al., 1995; Meyer et al., 1998; Yin et al., 2008a, 2008b; Reith, 2013; Gao et al., 2013), I suggest 

that the entire 350-km-wide Qilian Shan-Nan Shan thrust belt accommodates a minimum of 215-

300 km Cenozoic shortening. Higher strain of >53% is occurring along the northern plateau 

margin, whereas lower strain of >30-45% is occurring within the thrust belt interior (Table 2.2). 

Given that similar strain magnitudes have been documented in the Qimen Tagh, Qaidam Basin, 

and North Qaidam thrust belts (Yin and Harrison, 2000; Yin et al., 2007a, 2008a, 2008b; Wang 

et al., 2011) (Figs. 2.1 and 2.4; Table 2.2), at least 250-350 km of north-south Cenozoic 

shortening may have been absorbed between Hexi Corridor and the Kunlun fault (Figs. 2.1, 2.18, 

and 2.19). These extrapolations require further testing, but demonstrate that crustal shortening 

and the construction of the northeastern Tibetan Plateau play a significant role in accommodating 

the >2000 km convergence between India and Asia. 
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2.8.5. Similar deformational styles along northern and southern plateau margins 

 The style of deformation operating along the northern margin of the Tibetan Plateau 

mimics what is inferred to be occurring along the southern margin, in the Himalaya. Although 

models for the development of the Himalaya are rigorously debated (e.g., Argand, 1924; Dewey 

and Burke, 1973; Zhao and Morgan, 1987; Burchfiel et al., 1992; Nelson, 1996; Beaumont, 

2001, 2004; DeCelles et al., 2002), it has been widely argued that the Indian mantle lithosphere 

has been underthrust beneath the Tibetan lithosphere (i.e., beneath the Tibetan Plateau) (Argand, 

1924; Powell and Conaghan, 1973; DeCelles et al., 2002). Furthermore, contemporary strain is 

highly concentrated along the Main Frontal Thrust (MFT); that is, all of the present-day 

convergence across the Himalaya (~20 mm yr-1) is accommodated by deformation along the 

MFT (Lavé and Avouac, 2000; Zhang et al., 2004; Burgess et al., 2012).  

These above similarities persist despite vastly different boundary conditions affecting 

each margin of the plateau. The magnitude of deformation and continental underthrusting are 

very different, but broadly correlate with convergence rate. The convergence rate across the 

Himalaya (~20 mm yr-1) is four times has high as the rate across the Qilian Shan-Nan Shan (~5 

mm yr-1), and the magnitude of continental underthrusting beneath the Himalaya (~800 km) is 

also about four times as the inferred magnitude of underthrusting in northern Tibet (~200 km) 

(DeCelles et al., 2002; Zhang et al., 2004; Robinson et al., 2006; Webb, 2013; Ye et al., 2015). In 

addition, the magnitudes and rates of precipitation, erosion, and denudation across northern Tibet 

are much lower than for the Himalaya. As discussed in Section 2.8.2., older cooling ages (i.e., 

Mesozoic and older) across northern Tibet imply a low magnitude and rate of denudation (e.g., 

George et al., 2001). Conversely, across the arc-length of Himalaya, a range of late Cenozoic 

cooling ages (e.g., 40Ar/39Ar mica, AFT, zircon fission track ages) indicate rather rapid erosion 
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and denudation (e.g., Thiede and Ehlers, 2013; McQuarrie and Ehlers, 2015). The cooling age 

distribution broadly correlates with climate, and the present-day climate maps show that the 

Himalaya receive an order of magnitude more precipitation than the Qilian Shan (Liu et al., 

2009). 

Over the past two decades, many workers have focused on testing the hypothesis that 

climate and erosion exert a first-order control on continental tectonics and style of continental 

deformation (e.g., Beaumont et al., 2001, 2004; Wobus et al., 2003; Thiede et al., 2004), which 

has led to the formulation of climate-driven tectonic models for the development of the Himalaya 

(e.g., Beaumont et al., 2001). The tectonic development of the Qilian Shan-Nan Shan and 

northern Tibet can represent a “dry-orogen” analogue to test of the influence, or lack thereof, of 

climate in developing a Himalayan-style orogen. To the first-order, the different climatic 

conditions acting on both the north and south margins of the plateau do not appear to influence 

continental tectonics because the style of deformation across the Qilian Shan-Nan Shan thrust 

belt mimics the Himalaya. Instead, the magnitude of deformation and continental underthrusting 

correlates with convergence magnitude and rate. Although further analysis beyond the scope of 

this current study, these insights suggest that the style of continental deformation may not be 

significantly affected by climate and erosion. Both margins of the plateau are deforming in a 

similar manner, and thus climate-driven mechanisms (e.g., Beaumont et al., 2001; Thiede et al., 

2004) for the development of a Himalayan-style orogen may not be required. 
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2.9. Conclusions 

The following conclusions can be drawn based on detailed geologic mapping, seismic-

reflection profile analysis, cross section construction and restoration, and crustal shortening 

estimation across the Qilian Shan-Nan Shan thrust belt of northern Tibet. 

(1) Existing satellite- and field-based Cenozoic shortening estimates across the Qilian Shan-Nan 

Shan thrust belt are typically low (e.g., <15-20%). I posit that these studies generally 

underestimate crustal strain across northern Tibet by missing blind structures and 

detachments. More robust studies, including those based on detailed geologic mapping, 

seismic reflection analyses, and regional bulk mass balances, suggest that strain across most 

of northern Tibet, from the Qimen Tagh in the south to the North Qilian Shan in the north, is 

a minimum of ~30-53%. 

(2) Detailed geologic mapping across four ranges in the Qilian Shan-Nan Shan thrust belt reveals 

numerous predominately north-dipping thrust faults that juxtapose high-grade metamorphic 

and early Paleozoic arc rocks against late Paleozoic and younger bedded sedimentary strata. 

These thrust sheets reactive the early Paleozoic Qilian orogen, and Cenozoic deformation is 

highly concentrated along the Qilian suture zone. 

(3) The restoration of balance cross sections along a ~98-km-long traverse across interior of the 

Qilian Shan-Nan Shan thrust belt indicate that the region has accommodated a minimum of 

~53 km Cenozoic shortening or ~35% shortening strain. This shortening is similar to regional 

shortening estimates (Meyer et al., 1998; Yin and Harrison, 2000), and I suggest that this 

strain can be extrapolated across the entire ~350-km-wide Qilian Shan-Nan Shan thrust belt, 

with the exception of the North Qilian Shan frontal thrust system that has absorbed >53% 

strain. 
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(4) Seismic reflection analysis across the North Qilian Shan reveals a south-dipping Cenozoic 

thrust system that places Paleozoic and Mesozoic strata on undeformed Mesozoic-Cenozoic 

sediments in the Hexi Corridor foreland. I estimate 25 km (54% strain), 33 km (53% strain), 

and 12 km (36% strain) of upper-crustal north-south shortening across this range. The lowest 

shortening estimate is likely due to deformation being partitioned between the Qilian Shan 

and the Yumu Shan thrusts. I prefer the values from the longest seismic reflection profile and 

suggest that the North Qilian Shan accommodates a minimum crustal shortening strain, 

shortening rate, and strain rate of ~53%, 3.3 ± 0.6 mm yr-1, and 1.7 × 10-15 s-1, respectively. 

Assuming that this shortening strain can be extrapolated across the entire frontal North Qilian 

Shan range, there has been a minimum of 50 km of north-south Cenozoic shortening across 

the northern margin of the Tibetan Plateau.  

(5) The observed strain distribution across the northern Tibetan Plateau—i.e., >50% across the 

plateau margin and >35% within the Qilian Shan-Nan Shan thrust belt interior—suggests that 

the dominant processes of plateau construction operating in northern Tibet are a combination 

of distributed crustal shortening, pure shear thickening, and southward underthrusting of the 

Asian mantle lithosphere. Most of the modern crustal thickness across the region can be 

explained by 30-45% shortening of crust with an initial thickness of ~40 km. The higher 

strain recorded along the northern plateau margin may result from the southward 

underthrusting of Asian mantle lithosphere, which is supported by recent receiver function 

analysis (Ye et al., 2015). I present a 2-D lithospheric-scale model that relates these two 

deformation mechanisms to the observed strain in north Tibet.  

(6) Accordingly, I suggest that the 350-km-wide Qilian Shan-Nan Shan thrust belt has 

accommodated a minimum of 210-300 km of Cenozoic north-south shortening. By 
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incorporating other existing shortening estimates across northern Tibet, I tentatively 

extrapolate the observed strain distribution to suggest that more than 250-350 km of north-

south Cenozoic shortening has been absorbed within the Tibetan Plateau between the Kunlun 

fault in the south and the Hexi Corridor in the north, which is almost double the commonly 

cited shortening value of ~150 km.  

(7) Most of the present-day convergence between North China and Tibet is focused along the 

northern plateau margin, similar to Himalayan shortening where strain is concentrated along 

the Main Frontal Thrust (Lavé and Avouac, 2000; Burgess et al., 2012). Although magnitude 

of deformation across the Qilian Shan-Nan Shan and Himalaya is quite different, which may 

simply reflect different magnitudes and rates of convergence across each orogen, both thrust 

systems involve continental underthrusting and focused shortening along the frontal thrust 

faults. The similarity of deformational styles along the southern and northern margins of the 

Tibetan Plateau exists despite vastly different erosion and denudation rates, which suggests 

that climate may not play a significant role in the development of a Himalayan-style orogen 

(cf. Beaumont et al., 2001; Thiede et al., 2004). 

88



Fi
gu

re
 2

.1
. C

om
pl

et
e 

ca
pt

io
n 

on
 fo

llo
w

in
g 

pa
ge

. 

H
im

al
a

y
a

T
ib

et
an

 
P

la
te

au

Fi
g.

 2
.1

B

In
di

a

Ti
an

 S
ha

n

M
ai

n 
Fr

on
ta

l
Th

ru
st

 

10
00

 k
m

A

S
ou

th
er

n 
ed

ge
 o

f A
si

an
 m

an
tle

 li
th

os
ph

er
e 

fro
m

:
K

in
d 

et
 a

l. 
(2

00
2)

Ye
 e

t a
l. 

(2
01

5)

O
rd

os
 

B
lo

ck
Ti

an
jin

g 
 

fa
ul

t

Li
up

an
Sh

an
  

th
ru

st
be

lt 

K
un

lu
n 

 
fa

ul
t

N
or

th
C

hi
na

N
or

th
C

hi
na

Ta
rim

X
in

in
g

A
lt

yn
 T

ag
h 

 
fa

ul
t

Sh
an

xi
 g

ra
be

n 
sy

st
em

Yi
nc

hu
an

 g
ra

be
n 

sy
st

em

Q
ai

da
m

B
as

in

Lo
ng

m
en

 
Sh

an
 

th
ru

st
 b

el
t

94
° 

E

92
° 

E
90

° 
E

96
° 

E

34
° 

N

36
° 

N

38
° 

N

40
° 

N

N 20
0 

km

Q
in

lin
g 

fa
ul

t

? ? ?

?

?

H
ai

yu
an

  
fa

ul
t

98
° 

E
10

2°
 E

10
4°

 E
10

6°
 E

10
8°

 E
11

0°
 E

11
2°

 E

St
ru

ct
ur

al
 s

ym
bo

ls

Th
ru

st
 fa

ul
t

R
ig

ht
-s

lip
 s

tri
ke

-s
lip

 fa
ul

t

N
or

m
al

 fa
ul

t

Le
ft-

sl
ip

 s
tri

ke
-s

lip
 fa

ul
t

A
nt

ic
lin

e

S
ut

ur
e

S
yn

cl
in

e
32

° 
N

A

A’

B

B
’

N
or

th
 Q

ai
da

m
 

th
ru

st
 s

ys
te

m

Q
im

en
 T

ag
h

th
ru

st
 b

el
t

K
un

lu
n-

So
ut

h 
Q

in
lin

g 
su

tu
re

 z
on

e

N
or

th
 Q

in
lin

g 
su

tu
re

 z
on

e

Q
ili

an
 s

ut
ur

e 

North
 Qilia

n

suture (?
)

La
ji 

Sh
an

G
on

gh
e 

B
as

in

Yu
m

u 
Sh

an

Ji
sh

i S
ha

n

Fi
gu

re
 2

.1
C

Q
ili

an
 S

ha
n-

 
  

N
an

 S
ha

n 
th

ru
st

 b
el

t

10
0°

 E

S
ei

sm
ic

 re
fle

ct
io

n
pr

of
ile

s

Fi
g.

 2
.3

B

89



Figure 2.1. (A) Map of the Himalaya-Tibetan orogen and surrounding regions, showing the 
location of Figure 2.1B. The southern edge of Asian lithosphere is from Kind et al. (2002) and Ye 
et al. (2015). (B) Regional tectonic map of the northeastern Tibetan Plateau. Also shown are the 
locations of Figures 2.1C and 2.3 and the seismic reflection profiles (Figs. 2.14-2.16). Structures 
are from Burchfiel et al. (1991), Gaudemer et al. (1995), Taylor and Yin (2009), and Gao et al. 
(2013). (C) Contoured crustal thickness estimates derived from receiver-function analysis of Yue 
et al. (2012). Also shown for comparison is the Moho depth imaged by seismic reflection 
analysis of Gao et al. (2013). (D) Topographic profiles across northeastern Tibet (profiles A-A′ 
and B-B′ in Fig. 2.1B). The digital topographic basemaps and profiles from GeoMapApp 
software (Ryan et al., 2009) are available at http:// www .geomapapp .org/.
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Figure 2.2 (continued). Competing end-member models for the continental deformation and the 
development of the northeastern Tibetan Plateau. Ci and Cf represent the initial and final 
thickness of the crust, respectively, and Mi and Mf represent the initial and final thickness of the 
mantle lithosphere, respectively (see text). Red lines indicate major detachment surfaces or 
strike-slip faults. (A) Continental lithosphere prior to deformation. (B) The distributed 
shortening model predicts vertically uniform strain, evenly spaced thrust faults, and pure shear 
thickening of the entire continental lithosphere. (C) The intracontinental subduction model 
requires subduction of the mantle lithosphere, which is decoupled from the deforming crust. The 
concentrated mixed-mode deformation (i.e., left-slip and thrust faulting) and subduction occur 
along older suture zones. (D) The underthrusting model predicts crustal shortening at the plateau 
margins to accommodate southward motion of the Asian mantle lithosphere: strain at this margin 
is either large (>60% strain) if the Asian mantle lithosphere is underthrust to central Tibet (e.g., 
Kind et al., 2002) or more minor (~50% strain) if it is only underthrust to Qaidam Basin (e.g., Ye 
et al., 2015). Little crustal shortening should occur away from the plateau margins. (E) The 
channel flow models predict lateral motion of the lower crust and little shortening in the upper 
crust. Vertical inflation of a ductile channel leads to thickening of the crustal lithosphere. (F) The 
present-day thickness may be inherited from an older pre-Cenozoic collisional event; in this 
case, the final present-day crustal thickness Cf is equal to the pre-Cenozoic crustal thickness Ci2, 
which was attained during a pre-India-Asia collision thickening process.
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Figure 2.3 (continued). (B) Regional geologic map of the central Qilian Shan-Nan Shan thrust 
belt based on Gansu Geological Bureau (1989), Qinghai BGMR (1991), Pan et al. (2004), and 
my own geologic mapping and structural interpretations. Map units from a simplified 
tectonostratigraphic scheme. Location is shown in Figure 2.3A. 
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C. Zheng et al. (2010) A A’ 
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Figure 2.5 (continued). Selected examples of existing cross sections and shortening estimates 
across northern Tibet. Locations are shown in Figure 2.4. Cross sections were redrafted in 
original style and modified only to allow comparison among them (e.g., similar-age units are the 
same color). (A) Cross section across the eastern Qilian Shan from Gaudemer et al. (1995). 
Line-length restoration of the section used the base of the Carboniferous strata as a marker 
horizon and the section was not restored across the left-slip Haiyuan fault. (B) One of three 
west-east cross sections constructed across the Xunhua Basin-Jishi Shan by Lease et al. (2012). 
The restoration involved line-length restoration of the base of the Cenozoic strata, and 
deformation within pre-Cenozoic units is not considered. Note that the depth to detachment and 
the fault kinematics (oblique versus pure dip slip) on these west-east sections remain 
unconstrained. For explanation of subscripts 1-3, please see original text of Lease et al. (2012). 
(C) Schematic cross section across the northern Qilian Shan frontal thrust zone by Zheng et al. 
(2010). The section does not incorporate kinematic data, but restores an apatite helium 
paleo–partial retention zone (PRZ) in the hanging wall and growth strata in the footwall to 
constrain vertical fault throw. The assumption of a single fault with a constant dip (30°; Yang et 
al., 2007a) yields a minimum horizontal shortening estimate. (D) Upper crustal structures 
associated with the Baiyin thrust from a regional seismic reflection profile obtained by Gao et al. 
(2013). The interpreted section was constructed by analyzing prominent reflectors and 
extrapolating surface structures to depth. Note that the depth scale assumes a seismic velocity of 
6 km/s throughout the section (e.g., Liu et al., 2006). Line-length restoration of the section, 
above and below an inferred Paleozoic unconformity, restores prominent reflectors to horizontal. 
For explanation of subscripts a-g, please see original text of Gao et al. (2013). (E) Two of three 
north-south cross sections across the Gonghe Nan Shan by Craddock et al. (2014). These 
sections assume that the tilted Cenozoic strata are forelimbs and backlimbs of fault-bend folds. 
Deformation within pre-Miocene units is not considered. Ar—Archean; C—Carboniferous; 
E—Eocene; J—Jurassic; K—Cretaceous; Mz—Mesozoic; N—Neogene; O(gr)—Ordovician 
granite; P—Paleogene; Pt—Proterozoic; Pz—Paleozoic; Q—Quaternary; S—Silurian; 
Tr—Triassic; Vp—P wave velocity.
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Figure 2.6 (continued). Lithostratigraphy of the central Qilian Shan, specific to the Tuo Lai and 
Shule Shan. Age assignments from Qinghai BGMR (1991), Pan et al. (2004), Xu et al. (2015), 
and our own observations. Also shown are U-Pb detrital zircon samples of major units (black 
stars) (Y. Zhang, unpublished data) and geochronology results from Chapter 5.
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Figure 2.7 (continued). Geologic map of the Shule Nan Shan and Hara Lake basin (see Figures 
2.1 and 2.2 for location) compiled from unpublished Chinese geologic maps, Gansu Geological 
Bureau (1989), Qinghai BGMR (1991), satellite-image analysis (e.g., Landsat 7 and 8, and 
Google Earth), and my own structural interpretations.
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Figure 2.8. (A) Geologic map of the Tuo Lai Nan Shan and Tuo Lai Shan (see Figures 2.1 and 
2.3 for location) based on compiled Chinese geologic maps (Gansu Geological Bureau, 1989; 
Qinghai BGMR, 1991), satellite-image analysis (e.g., Landsat 7 and 8, and Google Earth), and 
detailed mapping by A. Zuza, R. Reith (e.g., Reith, 2013), C. Wu, L. Wu, and J. Zhang. (B) 
Unfolded structural data (i.e., foliation and lineation attitudes) from the metamorphic basement 
units that represent the pre-Carboniferous state. Original data is in A.
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Figure 2.9. Field photographs from the central Qilian Shan. (A) Broad anticline showing 
regional unconformity at the base of the Carboniferous strata, which unconformably overlie 
Ordovician metasedimentary rocks. (B) Triassic strata thrust over a valley of Jurassic rocks from 
both the north and the south. Note that the north-vergent thrust in the south of this image places 
Lower Triassic rocks over Jurassic strata and is overturned. See Figure 2.9D for a close-up view. 
(C) The regional unconformity at the base of the Carboniferous strata, which unconformably 
overlie Proterozoic metasedimentary rocks. 
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Figure 2.17. Sketch map showing reconstruction of the pre-Cenozoic northern margin of the 
frontal Qilian Shan relative to the present-day based on the shortening estimates obtained in this 
study. This map highlights the fact that lower magnitude shortening in the east are balanced by 
an overall wider zone of deformation, as strain is also occurring in the Yumu Shan. P1, P2, and 
P3 refer to profiles 1, 2, and 3, respectively. Note that P3 is in line with the Yumu Shan. 
Reconstructed pre-Cenozoic northern margin of the frontal Qilian Shan thrust system whereas 
the other seismic profiles are not.
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Table 2.2. Cross sections and shortening estimates across northern Tibet  

Location Section label* Orientation 

Shortening  

(km) [strain %] 

Restored 

length (km) Ti (km)@ Reference 
     

 

 

Qilian Shan-Nan Shan thrust belt          

North A-A' NE-SW 8.2 [26] 31.3 41-52 Zheng et al. (2010) 

North 

S-S’ NNE-SSW 25 [54] 46 23-29 

This study (seismic profiles) T-T’ NNE-SSW 33 [53] 64 26-34 

U-U’ NNE-SSW 12 [36] 33 35-45 

Central 

A-A’ NE-SW 16.5 [26.5] 62.5 44-48 

This study (geologic cross sections) 

B-B’ NNE-SSW 15.5 [47] 33 32-34 

C-C’ NE-SW 6.3 [38] 16.6 37-40 

D-D’ NE-SW 11 [35] 31 41-45 

E-E’ NE-SW 8.6 [35] 26 41-45 

Regional 

b NE-SW 90 [22] 415 43-55 

Meyer et al. (1998) 

d NE-SW 35-45 [13-18] 258-268 46-59 

f NE-SW 50-70 [23-35] 200-220 39-50 

Composite b, d, f NE-SW 150 [31] 485 38-48 

C1 NE-SW 188.5 ± 98 [30] 630 39-49 

C2 NE-SW 141 ± 84 [26] 540 41-52 

Mass balance NE-SW 120 ± 30 [14-23] 640 45-57 

Regional - NE-SW 360 [50] 710 28-35 Yin and Harrison (2000) 

East A-A' NNW-SSE 25 [25] 100 41-53 Gaudemer et al. (1995) 

Baiyin thrust  Fig. 61 NNW-SSE 22.3 [46] 47.9 30-38 Gao et al. (2013) 

Jishi Shan 

A-A' W-E 14.3 [14.2] 100.6 47-60 

Lease et al. (2012) B-B' W-E 10.5 [10.4] 100.8 49-63 

C-C' W-E 8.4 [26] 32.4 41-52 

West Qinling D-D' NE-SW 4.3 [14.2] 30.3 47-60 Lease et al. (2012) 

Laji Shan E-E' NE-SW 5.1 [46] 11.1 30-38 Lease et al. (2011, 2012) 

Qinghai Nan 

Shan 

a NNE-SSW 2.2 [4.2] 52.2 53-67 

Craddock et al. (2014) 

b NNE-SSW 0.8 [1.6] 50.8 54-69 

c NNE-SSW 1.4 [2.7] 51.4 54-68 

d NNE-SSW 1.3 [2.5] 51.3 54-68 

e NNE-SSW 0.9 [1.8] 50.9 54-69 

f NNE-SSW 1.6 [3.1]  51.6 53-68 

g W-E 0.8 [0] 32.3 55-70 

Gonghe Nan 

Shan 

a NE-SW 5.1 [9.3] 55.1 50-63 

Craddock et al. (2014) b NE-SW 6.4 [11.3] 56.4 49-62 

c NE-SW 6.9 [12.1] 56.9 48-62 
 

    

 
 

North Qaidam thrust system          

North 

Qaidam 

(1) NE-SW 26 [34] 60 36-46 

Yin et al. (2008a) 

(2) NE-SW 19 [36] 53 35-45 

(3) NE-SW 26 [29] 91 39-50 

(4) NE-SW 10 [21] 48 43-55 

(5) NE-SW 46 [31] 149 38-48 

(6) NE-SW 29 [27] 103 40-51 

(7) NE-SW 50 [58] 86 23-29 

(8) NE-SW 40 [53] 68 26-33 

Gaoquan NE-SW 9.8 [63] 15.6 20-26 

Lulehe NE-SW 31 [63] 49 20-26 

Luliang Shan NE-SW 34 [55] 62 25-32 

Gaqiu NE-SW 22 [38]  57.5 34-43 

Xiaoqaidam NE-SW 6.5 [23] 33.5 42-53 

Lenghu-4 NE-SW 1.6 [35]  4.6 36-46 

Lenghu-4 NE-SW 16 [39] 41 34-43 
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Table 2.2 (continued). Cross sections and shortening estimates across northern Tibet 
Qaidam Basin thrust system          

Qaidam 

Basin 

1 NE-SW 84 [32.3] 257 37-47 

Yin et al. (2008b) 

2 NE-SW 68 [35.1] 270 36-45 

3 NE-SW 41 [17.7] 231 45-58 

4 NE-SW 20 [10.7] 187 49-63 

5 NE-SW 17 [12.1] 147 48-62 

6QB NE-SW 2 [1] 52 54-69 

6QS NE-SW 12 [30] 40 39-49 

Qaidam 

Basin 

2 NE-SW 13.74 [9.6] 143.06 50-63 
Zhou et al. (2006) 

6 + 9 NE-SW 19.98 [9] 219.82 50-64 

     

 
 

Qimen Tagh thrust belt           

West 7 NE-SW 25 [30] 74 39-49 Yin et al. (2008b) 

West A-D NE-SW 58 [48] 120 29-36 Yin et al. (2007a) 

West - NE-SW 270 [57] 470 24-30 Yin and Harrison (2000) 

*As reported in original reference 
@Apparent initial pre-deformational crustal thickness given shortening estimate 
1Restoration above regional Paleozoic unconformity 
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Table 2.3. Mesozoic and Cenozoic stratigraphy of the Hexi Corridor 

Unit Names Symbol Geologic time Age Description 

Quaternary 

(undifferentiated) 

Q Quaternary 2.5 Ma to present Boulders and gravels 

Yumen Formation N2-Q1 Pliocene-

Pleistocene(?) 

ca. 4 - 2 (?) Ma Pebble to boulder 

conglomerate with 

minor sands 

Shulehe Formation N1 Miocene to Pliocene 23 to ca. 4 Ma Reddish conglomerate, 

sandstone, and 

mudstone 

Baiyanghe Formaiton PE3 Oligocene ca. 28 to 23 Ma Red-orange sandstone 

mudstone with 

gypsum  

Huoshaogou Formation PE3 Oligocene 33.9 to ca. 28 Ma Red conglomerate, 

mudstone, and 

sandstone 

Xinminbao Group K Cretaceous 145 - 66 Ma Red-orange 

conglomerate and 

coarse sandstone 

Bolou/Dashankou Group J Jurassic 201 - 145 Ma Coal-rich sandstone 

and siltstone 
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-Chapter 3-

Non-rigid passive bookshelf faulting in northern Tibet 
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3.1. Abstract 

Collision-induced continental deformation commonly involves complex interactions 

between strike-slip faulting and off-fault deformation, yet this relationship has rarely been 

quantified. In northern Tibet, Cenozoic deformation is expressed by the development of the 

>1000-km-long east-striking left-slip Kunlun, Qinling, and Haiyuan faults. Each have a 

maximum slip in the central fault segment exceeding 10s to ~100 km but a much smaller slip 

magnitude (~< 10% of the maximum slip) at their terminations. The along-strike variation of 

fault offsets and pervasive off-fault deformation create a strain pattern that departs from the 

expectations of the classic plate-like rigid-body motion and flow-like distributed deformation 

end-member models for continental tectonics. Here I present a non-rigid bookshelf-fault model 

for the Cenozoic tectonic development of northern Tibet. This model, which quantitatively 

relates discrete left-slip faulting to distributed off-fault deformation during regional clockwise 

rotation, explains several puzzling features, including the: (1) clockwise rotation of east-striking 

left-slip faults against the northeast-striking left-slip Altyn Tagh fault along the northwestern 

margin of the Tibetan Plateau, (2) alternating fault-parallel extension and shortening in the off-

fault regions, and (3) eastward-tapering map-view geometries of the Qimen Tagh, Qaidam, and 

Qilian Shan thrust belts that link with the three major left-slip faults in northern Tibet. I refer to 

this specific non-rigid bookshelf-fault system as a passive bookshelf-fault system because the 

bookshelf-panels rotation is detached from the rigid bounding domains. As a consequence, the 

wallrock of the strike-slip faults deforms to accommodate both the clockwise rotation of the left-

slip faults and off-fault strain that arises at the fault ends. An important implication of this model 

is that the style and magnitude of Cenozoic deformation in northern Tibet vary drastically in the 

east-west direction. Thus, any single north-south cross section and its kinematic reconstruction 
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through the region do not properly quantify the complex deformational processes of plateau 

construction. 

 

3.2. Introduction 

The fundamental mode of continental tectonics has been characterized by two end-

member processes: plate-like rigid-body motion (e.g., Tapponnier et al., 1982; Weldon and 

Humphreys, 1986; Avouac and Tapponnier, 1993; Meade, 2007) and distributed deformation via 

viscous flow (e.g., England and Houseman, 1986; Yin and Taylor, 2011). In the rigid-plate 

model, continental deformation is quantified by rigid block rotation on a sphere about their 

respective Euler poles; the horizontal dimension of the blocks is much greater than the width of 

faults/shear zones that bound the blocks (e.g., Avouac and Tapponnier, 1993). In contrast, the 

viscous-flow model quantifies continental deformation by solving a boundary-value problem that 

requires the knowledge of lithospheric rheology (e.g., England and Houseman, 1986). This 

model envisions distributed continental deformation, with major faults approximated as zones of 

high strain within a continuum. These two end-member models have been extensively tested in 

Tibet against structures created during the Cenozoic India-Eurasia collision (e.g., Yin and 

Harrison, 2000; Zhu et al., 2005; Yin, 2010a; van Hinsbergen et al., 2011; Yin and Taylor, 

2011). Debates have been centered on whether the >1000-km-long east-striking left-slip 

Haiyuan, Qinling, and Kunlun faults in northern Tibet (Fig. 3.1) have acted as rigid-block 

boundaries (Tapponnier et al., 1982; Avouac and Tapponnier, 1993; Tapponnier et al., 2001) or 

transfer-fault structures linking dip-slip fault systems (e.g., Burchfiel et al., 1991; Yin, 2000; 

Duvall and Clark, 2010).  
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One form of rigid-block models for deformation in northern Tibet is bookshelf faulting, 

which requires that the observed left-slip faulting is driven by regional right-lateral shear 

(Cobbold and Davy, 1988; England and Molnar, 1990). Applying the classic rigid bookshelf-

fault model (Freund 1970) to explain the tectonic development of northern Tibet raises several 

important questions that have not yet been addressed. (1) Why do the parallel east-striking left-

slip faults terminate at the northeast-striking left-slip Altyn Tagh fault rather than a right-slip 

northeast-striking shear zone as required by the bookshelf-fault model (Fig. 3.1)? (2) How are 

the required lithospheric-scale “gaps” and “overlaps” at the ends of the rotating blocks 

accommodated by off-strike-slip-fault deformation (e.g., Luyendyk et al., 1980; Onderdonk, 

2005; Platt and Becker, 2013) (Fig. 3.2)? (3) What is the kinematic relationship between the east-

striking left-slip faults and the triangular eastward-tapering thrust belts at the western ends of the 

strike-slip faults (i.e., the Qimen Tagh, Qaidam, and Qilian Shan-Nan Shan thrust belts) (Fig. 

3.1)?  

In this study I propose a non-rigid bookshelf-fault model (e.g., Yin and Pappalardo, 

2015) to resolve the above issues. Specifically, I show that an eastward decrease in Cenozoic 

strain results in clockwise rotation and left-slip bookshelf faulting across northern Tibet. The 

detached rotation of these bookshelf faults against rigid bounding domains, a process which I 

refer to as passive bookshelf faulting, may explain why a left-slip bookshelf fault system is 

bounded by the left-slip Altyn Tagh fault (Fig. 3.1). Non-rigid wallrock deformation within the 

strike-slip-fault-bounded regions accommodates both the clockwise rotation of the strike-slip 

faults and the space issues that arise at the ends of the bookshelf panels. The model implies that 

thrust belt development and strike-slip faulting in the region are coeval and kinematically linked, 
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which contrasts an earlier suggestion that they represent two distinct stages of plateau 

development (e.g., Yuan et al., 2013).  

 

3.3. Cenozoic left-slip faults in northern Tibet 

The ~N110°E-striking left-slip Kunlun, Qinling, and Haiyuan faults, extending for 

~1500, ~1000, and ~1000 km respectively, are by far the longest and most continuous structures 

in northern Tibet (Fig. 3.1) (Tapponnier et al., 2001; Taylor and Yin, 2009). The faults are 

lithospheric structures (Wang et al., 2011; Gao et al., 2013) that closely follow the surface traces 

of the Paleozoic and Mesozoic Qilian, Qinling, and Kunlun suture zones (Yin and Harrison, 

2000; Wu et al., 2016) (Fig. 3.1). 

The kinematics of these major east-striking faults has been related to lateral extrusion 

(Tapponnier et al., 1982; 2001; Cheng et al., 2015), strain transfer between thrust belts (Burchfiel 

et al., 1991; Zhang et al., 1991; Duvall and Clark, 2010), and bookshelf faulting associated with 

clockwise fault rotation induced by broad and distributed north-trending right-lateral shear 

(England and Molnar, 1990; Zuza and Yin, 2013) (Fig. 3.3a). The extrusion fault model requires 

high slip rates (> 10-20 mm/yr), large fault offsets (100s km) (Tapponnier et al., 1982; Avouac 

and Tapponnier, 1993), the presence of zipper thrusts at the western end of the left-slip faults 

(Peltzer and Tapponnier, 1988; Cheng et al., 2015), and a conjugate and coeval right-slip fault 

with a similar slip magnitude to assist eastward lateral extrusion (scenario 1 in Fig. 3.3a). In 

contrast, the transfer-fault model predicts transpressional deformation at the termination thrusts 

oriented obliquely to the strike-slip faults (scenario 2 in Fig. 3.3a). Finally, the bookshelf fault 

model predicts clockwise rotation of both the left-slip faults and the fault-bounded wallrock. If 

the bookshelf panels are rigid, the model predicts the formation of “gaps” and/or “overlaps” at 
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the end of the rotating blocks (scenario 3 in Fig. 3.3a); these gaps and overlaps can be reconciled 

by fault-parallel extension and/or shortening with non-rigid off-fault deformation (scenario 4 in 

Fig. 3.3a). Proposed solutions to the space issues of rigid bookshelf faulting (scenario 3 in Fig. 

3a) include (1) extension leading to basin formation (Luyendyk et al., 1980) (Fig. 3.2b), (2) 

shortening within the terminal regions of the rotated blocks (e.g., Onderdonk, 2005) (Fig. 3.2c), 

or (3) fault-parallel stretching across the rotated blocks (e.g., Platt and Becker, 2010, 2013) (Fig. 

3.2d).  

 

3.3.1. Initiation age and along-strike variation of fault offsets and slip rates 

A summary of inferred fault initiation ages across northern Tibet is shown in Figure 3.3b 

(Yuan et al., 2013). The Haiyuan fault, which initiated at ~17-12 Ma in the west (Duvall et al., 

2013) and ~8 Ma in the east (Zheng et al., 2006; Yuan et al., 2013) (Fig. 3.3b), is estimated to 

have 95 ± 15 km left-lateral offset at the center (Gaudemer et al., 1995) and 10-15 km slip at the 

eastern end (Burchfiel et al., 1991; Zhang et al., 1991) (Fig. 3.1). Slip along the range-bounding 

thrusts at the western termination of the Haiyuan fault is < 10 km (Reith, 2013; Zuza et al., 2014, 

2016) (Fig. 3.1), requiring a significant decrease in fault slip from the center to the western end. 

The bidirectional decrease in the total fault offset along the Haiyuan fault correlates with the 

along-fault variation of Quaternary and global positional system (GPS) velocity field based slip 

rates: 11-19 mm/yr at the center (Gaudemer et al., 1995; Lasserre et al., 1999, 2002), < 5 mm/yr 

in the east (Zhang et al., 1991; Cavalié et al., 2008; Li et al., 2009), and 2-4 mm/yr in the west 

(Duvall and Clark, 2010). 

The western segment of the Qinling fault is a transpressional structure that initiated at 

~50 Ma (Duvall et al., 2013; Yuan et al., 2013) (Fig. 3.3b), whereas the eastern segment of the 
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Qinling fault is a transtensional structure initiated in the Eocene with accelerated motion in the 

late Miocene (Mercier et al., 2013) (Fig. 3.1). Slip along the central and eastern sections of the 

Qinling fault is 20-30 km (Ratschbacher et al., 2003) with a Quaternary slip rate of 7.2 ± 2.2 

mm/yr (Zhang et al., 1995). The total fault offset in the west is constrained by east-west 

shortening magnitude estimates of 10-15 km across both the Jishi Shan and Liupan Shan thrust 

belts (Fig. 3.1) (Zhang et al. 1991; Burchfiel et al. 1991; Lease et al., 2012). The Jishi Shan and 

Liupan Shan thrust belts initiated at ~13 Ma and ~8 Ma respectively (Zheng et al., 2006; Godard 

et al., 2009; Lease et al., 2012), corresponding to an average slip rate on the western Qinling 

fault of about 1-1.5 mm/yr. This is significantly less than that of the central and eastern fault 

segments. 

The Kunlun fault initiated diachronously at 35-30 Ma in the west (Mock et al., 1999; 

Jolivet et al., 2003; Clark et al., 2010), 20-15 Ma along its central segment (Yuan et al., 2006; 

Duvall et al., 2013), and ~8 Ma in the east (Duvall et al., 2013) (Fig. 3.3b). Offset along the fault 

decreases bidirectionally from ~120 km in the center (Kidd and Molnar, 1988) to <10s of km at 

the eastern and western ends when it links with minor dip-slip fault systems (Jolivet et al., 2003; 

Fu and Awata, 2007) (Fig. 3.1). Quaternary slip rates along the central Kunlun fault of 10-12 

mm/yr (Van der Woerd et al., 1998, 2000, 2002; Fu et al., 2005; Li et al., 2005) decrease to < 2 

mm/yr along the eastern segment (Kirby et al., 2007; Harkins and Kirby, 2008; Harkins et al., 

2010). Given the fault initiation age of 35-30 Ma in the west and 20-30 km of slip along the fault 

(Mock et al., 1999; Jolivet et al., 2003), the average slip rate of the Kunlun fault in the west is 

also < 2 mm/yr. Thus, slip rates along the Kunlun fault must decrease bidirectionally from the 

center. 
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These east-striking left-slip faults terminate in the west at the northwest-trending Qilian 

Shan-Nan Shan, Qaidam Basin, and Qimen Tagh thrust belts and in the east at the north-trending 

Liupan Shan and Longmen Shan thrust belts (Fig. 3.1). Thrusting first started at ~50 Ma in the 

southern Qilian Shan and northern Qaidam Basin thrust systems, which was followed by activity 

in the Qimen Tagh and the northern Qilian Shan thrust belts at 25-20 Ma (e.g., Yin et al., 2008a; 

Duvall et al., 2013; Cheng et al., 2014) (Fig. 3.3b). The Longmen Shan thrust belt, which 

involves dip-slip thrusting and minor right-slip faulting (Densmore et al., 2007; Yin, 2010b), 

began to develop at 30-25 Ma and accelerated deformation occurred at 15-10 Ma (Godard et al., 

2009; Wang et al., 2012). The Liupan Shan thrust belt initiated at ~8 Ma (Zheng et al. 2006). 

Existing studies indicate a north-south shortening magnitude of 200-450 km across the three 

northwest-trending thrust belts (i.e., the Qimen Tagh, Qaidam Basin, and Qilian Shan-Nan Shan) 

(Gaudemer et al., 1995; Meyer et al., 1998; Yin et al., 2007; Yin et al., 2008a, 2008b; Gao et al., 

2013; Cheng et al., 2014; Zuza et al., 2016), which contrasts sharply to the 10-40 km of 

shortening across the north-trending Liupan Shan and Longmen Shan thrust belts (Fig. 3.1) 

(Zhang et al., 1991; Burchfiel et al., 1995; Hubbard and Shaw, 2009).  

The major left-slip faults in northern Tibet also link with extensional zones and right-slip 

faults (Fig. 3.1). The Haiyuan fault merges with the north-trending Yinchuan rift system in the 

east and the southeast-striking right-slip Elashan and Riyueshan faults in the west (e.g., Zhang et 

al., 1998), whereas the Qinling fault links with the Shanxi rift system in the east and the right-

slip Riyueshan-Gonghe faults in the west (e.g., Zhang et al., 1998). The Kunlun fault links with 

central Tibetan rifts in the west (Yin, 2000) and the right-slip Elashan and Gonghe faults along 

its eastern segment (Fig. 3.1). Note that both the obliquely oriented western thrust belts and 

right-slip faults and the orthogonally oriented rifts and eastern thrust belts accommodate 
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stretching and shortening parallel to the east-striking left-slip faults (Fig. 3.1). This off-fault 

strain pattern is inconsistent with the extrusion and transfer-fault models for the tectonic 

development of left-slip faulting in northern Tibet (scenarios 1 and 2 in Fig. 3.3a). 

 

3.3.2. Protracted regional clockwise rotation of northern Tibet 

The restoration of a series of balanced cross sections indicates an eastward decrease in 

north-south Cenozoic shortening across the Qaidam Basin thrust belt (Yin et al., 2008a, 2008b). 

A similar eastward decrease in Cenozoic shortening strain may be inferred across the Qilian 

Shan-Nan Shan and Qimen Tagh thrust belts on the basis of an eastward decrease in the (1) 

number of thrusts, (2) thrust belt width, and (3) average elevation assuming all thrusts initiated at 

the same elevation and have experienced the same amount of erosion (Fig. 3.1). The eastward 

decrease in shortening strain implies clockwise rotation across northern Tibet throughout much 

of the Cenozoic (i.e., since thrust initiation at 50-45 Ma). This observation is consistent with 

paleomagnetic data that suggests 15º–20° total clockwise rotation across northern Tibet with 

respect to the Eurasian reference pole since the Cretaceous (Fig. 3.4b) at a rate of 0.3 to 0.5º/Ma 

(Frost et al., 1995; Halim et al., 1998, 2003; Cogné et al., 1999; Dupont-Nivet et al., 2004; Chen 

et al., 2002a, 2002b; Sun et al., 2006). Variability in clockwise rotation magnitudes, ranging 

from 0° to >20° across the region, results from heterogeneous Cenozoic deformation (Yin et al., 

2008a). 

Geodetic measurements (Gan et al., 2007) show clockwise rotation of northern Tibet 

about an Euler pole located ~500 km to the southeast of the Eastern Himalayan Syntaxis (Fig. 

3.4). Other workers have placed the rotation poles for northern Tibet in the western South China 
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Sea (Peltzer and Saucier, 1996) and southwest China (Thatcher, 2007) to fit the global positional 

system (GPS) data with clockwise rotation rates of 0.5 to 1°/Ma. 

I examined the velocity field across the region using the published GPS data of Gan et al. 

(2007) to constrain the rotation rates of the east-striking left-slip faults in northern Tibet. With 

this data, I derived the relative rotation and shear strain rates for four fault-bounded domains: the 

Qilian Shan (QS), North Qaidam (NQ), Qaidam Basin (QB), and East Central Tibet (ECT). The 

rotation rates of the above fault-bounded domains may approximate the fault rotation rates if 

present-day fault-perpendicular shortening and extension are negligible. Using the northern 

foreland of the Tibetan Plateau in the North China craton as a fixed reference frame (i.e., the star 

in Fig. 3.4b), I projected fault-perpendicular velocities (i.e., N20°E, referred to as the y-direction) 

of each fault-bounded domain onto a line trending N110°E (referred to as the x-direction) that 

approximates the strike-slip fault strike (Fig. 3.4b). Note that only stations to the north or south 

of the major left-slip faults (e.g., stations in the North Qaidam thrust belt were excluded) were 

chosen. In addition, stations that are less than ~50 km from the active strike-slip faults were 

avoided to avoid complications due to elastic behavior along locked faults (e.g., Savage and 

Burford, 1973).  

Each domain displays a relatively linear east-west velocity gradient, shear strain rate (𝛾 ̇ = 

2𝜀�̇�𝑦), and rotation rate (�̇�) (Fig. 3.4c). Clockwise rotation rates are similar for the East Central 

Tibet, Qaidam Basin, and North Qaidam domains (i.e., 0.59°/Ma, 0.66°/Ma, and 0.64°/Ma,
 

respectively) and decrease to 0.41°/Ma for the Qilian Shan domain in the north (Fig. 3.4c). The 

decrease in rotation rate across the Qilian Shan implies that central and northern Tibet are 

rotating in a clockwise sense relative to North China. The magnitudes of north-south right-lateral 

shear strain rates (𝜀�̇�𝑦) vary between 1.0×10-16 s-1 and ~2.5×10-16 s-1 (Fig. 3.4c). These present-day 
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rotation rates are similar with those that are geologically and paleomagnetically derived (see 

above), although less than 1-2°/Ma estimated by England and Molnar (1990). 

 

3.3.3. Extension and shortening within fault-bounded domains 

The wallrock of the major left-slip faults, defined as the crust bounded by the strike-slip 

faults, displays a distinctive four-quadrant strain distribution (Fig. 3.5). Each strike-slip fault can 

be divided into four quadrants that alternate between domains of fault-parallel stretching and 

domains of fault-parallel shortening (Fig. 3.5a). The northern wallrock of the Haiyuan fault 

experiences fault-parallel shortening through thrusting across the obliquely oriented Qilian Shan-

Nan Shan thrust belt in the west and fault-parallel extension across the orthogonally oriented 

Yinchuan rift in the east (Figs. 3.1 and 3.5b). The southern wallrock of the Haiyuan fault 

experiences fault-parallel stretching via right-slip faulting in the west and fault-parallel 

shortening across the Liupan Shan thrust belt in the east (Figs. 3.1 and 3.5b). The northern and 

southern wallrock panels of the Qinling fault are dominated by fault-parallel contraction across 

the Jishi Shan and Liupan Shan thrust belts in the northwest and a contractional zone bounding 

the southeastern edges of the Qinling and Daba Shan in the east (Figs. 3.1 and 3.5). In contrast, 

the Qinling wallrock is characterized by fault-parallel extension along the Shanxi rift system to 

the northeast and a right-slip fault system to the southwest (Fig. 3.5b). The Kunlun fault also 

displays a four-quadrant deformation pattern expressed by shortening across the Qimen Tagh and 

Min Shan-Longmen Shan thrust belts and extension across north-striking Tibetan rifts and right-

slip faulting (Kirby et al., 2000; Jolivet et al., 2003; Wang and Burchfiel, 2004; Yin et al., 2007, 

2008b; Duvall and Clark, 2010; Cheng et al., 2014) (Fig. 3.5b).  
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The southeast-striking right-slip Elashan, Riyueshan and Gonghe faults may represent 

secondary bookshelf faults within this larger bookshelf fault system (e.g., Duvall and Clark, 

2010) (Figs. 3.1 and 3.5b). The fault geometries and right-slip kinematics, consistent with left-

slip shear between the Kunlun and Haiyuan faults, also suggest north-south shortening and east-

west stretching (i.e., strike-slip fault-parallel extension and fault-perpendicular shortening). 

 

3.4. Non-rigid bookshelf fault model 

As summarized above, existing work across northern Tibet indicates: (1) an eastward 

decrease in Cenozoic north-south shortening accompanied by clockwise rotation of the east-

striking left-slip faults and their wallrock since the Eocene, (2) a bilateral decrease in strike-slip 

fault offset and slip rate along the left-slip faults that eventually almost disappears at the fault 

ends, and (3) a distinctive four-quadrant strain pattern in the wallrock of these faults. These 

observations can be tested against the existing models for the role of strike-slip faulting in 

accommodating India-Eurasia convergence across northern Tibet (Fig. 3.3a). The observed fault 

rotation is not explicitly required by the extrusion-fault and transfer-fault models (scenarios 1 

and 2 in Fig. 3.3a), and neither of these models predict a four-quadrant strain pattern along the 

left-slip faults (Fig. 3.5). The observed bidirectional decrease in fault slip is also inconsistent 

with these models. The extrusion-fault model (scenario 1 in Fig. 3.3a) requires conjugate faults 

with comparable slip magnitudes, which is not observed in northern or central Tibet (Fig. 3.1) 

(cf. Cheng et al., 2015). Lastly, dip-slip north-south shortening in the western Qilian Shan-Nan 

Shan thrust belt near the western end of the Haiyuan fault, as indicated by fault plane solutions 

(Fig. 3.1) (e.g., Taylor and Yin, 2009) and field observations (Yin et al., 2008a; Reith, 2013; see 
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Chapter 2), is inconsistent with the transfer fault model that predicts left-slip transpression across 

this termination thrust system (scenario 2 in Fig. 3.3a).  

At face value, the observations from northern Tibet may best be explained by a rotated-

fault model. The rigid bookshelf-fault model (England and Molnar, 1990) (scenario 3 in Fig. 

3.3a), based on the classic work on bookshelf faulting by Freund (1970), does not account for 

off-fault deformation and fails to quantify the relationship between strike-slip and dip-slip 

faulting. Below I propose a new non-rigid bookshelf-fault model for the development of linked 

left-slip faults and eastward-tapering thrust belts in northern Tibet. 

 

3.4.1. Active and passive bookshelf faulting 

Traditionally, the sense of shear within a bookshelf fault system is opposite that of the 

bounding shear zone that drives bookshelf panel rotation (Freund, 1970). For example, a left-slip 

bookshelf fault system requires a right-slip bounding shear zone to drive clockwise panel 

rotation. In this case, right-lateral shear “drags” the fault-bounded domains in a clockwise 

fashion. I herein refer to this process as active bookshelf faulting, because at least one of the 

bounding “walls” is moving to drive panel rotation (Fig. 3.6a). Alternatively, I introduce a new 

self-rotating passive bookshelf fault system, where the rotating panels are detached from the 

fixed boundary “walls” (e.g., Yin and Pappalardo, 2015) (Fig. 3.6b). In this model, the 

kinematics of the boundary shear zones and the individual bookshelf faults can be the same when 

the rotation axis is fixed in the center of the bookshelf fault system and the bounding walls are 

fixed (middle panel of Fig. 3.6b). Qualitatively, if the active bookshelf system is driven by drag 

along the edges, then the passive system is driven by a push from behind (or upward as in Fig. 
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3.6b) or rotation from below. This model predicts that the top bounding surface in Figure 3.6b 

absorbs shortening strain, and the magnitude of this strain varies laterally due to block rotation.  

Note that there are many possible variations of the passive bookshelf-fault model, 

depending on the relative magnitude of rigid-block rotation and rigid-block translation. For 

example, if the bookshelf fault system experiences both self-rotation at the panel centers and 

significant translation (upward in Fig. 3.6b), the sense of shear along one of the boundary shear 

zones may switch (bottom panel in Fig. 3.6b). Depending on the magnitude of translation, there 

may be little observable shear on the right boundary zone in Figure 3.6b.  

The geometric relationships between the initial width of the system in the x-direction 

(Lo), width of the panels in the y-direction (W), panel rotation magnitude (), translation velocity 

magnitude (v), and boundary shear slip (e.g., So, S1, S2, etc.) are quantified, assuming rigid-body 

motion, in Figure 3.6. For the active bookshelf fault system shown in Figure 3.6a, translation of 

the left wall by So relative to the right wall leads to right lateral shear strain (total shear strain of 

So/L) and clockwise panel rotation (), so that the variable width of the system (L) is 

 𝐿 = 𝑊sin + 𝐿𝑜 cos .  (1) 

Half of the corners of the bookshelf panels remain in contact with the bounding-edge of 

the walls but they may slip in the y-direction (i.e., S1 and S6 in Fig. 3.6a), so that the system can 

experience more shear than the panel rotation expresses. Given that all of left-side bookshelf 

panel corners move relative to the left boundary wall in the y-direction by S1, and S1 > 0 (Fig. 

3.6a), the slip of the other left-side corners relative to the left boundary wall is 

𝑆2 = 𝑊/(cos) − 𝑊 + 𝑆1  (2a) 

𝑆3 = 2𝑊/(cos) − 2𝑊 + 𝑆1.  (2b) 
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 Slip of the right-side corners relative to the right boundary wall is similar, except that the 

magnitudes are related to S6 instead of S1 (Fig. 3.6a).  

The width of the passive bookshelf fault system remains constant (L = Lo) (Fig. 3.6b). 

Rotation of the panels in the passive bookshelf fault system of Figure 3.6b results in boundary 

zone slip magnitudes (i.e., S1 and S2 on the left and right sides, respectively) of  

𝑆1 = (2 tan)/𝐿𝑜  (3a) 

𝑆2 = −(2 tan)/𝐿𝑜.  (3b) 

Alternatively, if there is a component of translation in the y-direction (v) (bottom panel of 

Fig. 3.6b), the resulting boundary zone slip magnitudes are described by: 

𝑆1 = (2 tan)/𝐿𝑜 + 𝑣  (4a) 

𝑆2 = −(2 tan)/𝐿𝑜 + 𝑣.  (4b) 

First-order deformation in either the passive or active systems can be quantified as 

continuous velocity fields. The idealized velocity field (i.e., no discrete faults) across an active 

bookshelf system is 

 𝑢 = 0  (5a) 

 𝑣 = −
𝑣0

ℎ
𝑥 

 (5b) 

where u and v are the velocity components in the x and y directions perpendicular and parallel to 

the shear zone, respectively, h is the width of the shear zone, and vo is the velocity on one side of 

the shear zone at x = -h relative to the other side of the shear zone (Fig. 3.7a). Note that in all of 

my derivations, the origin is placed at the right-side boundary, so that the left boundary is located 

at x = -h (Fig. 3.7). The corresponding strain-rate-tensor components are  

 
𝜀�̇�𝑥 =

𝜕𝑢

𝜕𝑥
= 0 

 (6a) 
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𝜀�̇�𝑦 =

𝜕𝑣

𝜕𝑦
= 0 

 (6b) 

 𝜀�̇�𝑦 =
1

2
(

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) = −

𝑣𝑜

2ℎ
,  (6c) 

where 𝜀�̇�𝑥 and 𝜀�̇�𝑦 are extension strain rates in the x and y directions, perpendicular and parallel 

to the shear zone, and 𝜀�̇�𝑦 is the shear strain rate (e.g., Ramsay and Huber, 1983). The rotation 

rate may be derived as follows:  

 𝜀�̇�𝑦 =  
𝛾 ̇

2
=  

tan �̇�

2
   (7a) 

 �̇� = tan−1 −𝑣𝑜

ℎ
   (7b) 

where �̇� is rotation rate and �̇� is engineering or total shear strain rate (Fig. 3.7a). 

 Deformation for the passive bookshelf system (Fig. 3.7b) can be quantified in a similar 

manner, except that the velocity in the y-direction is the sum of velocities related to translation 

and rotation (Figs. 3.6b and 3.7b), such that  

 𝑣 = 𝑣𝑟 + 𝑣𝑡   (8a) 

 𝑣𝑟 = −𝑣𝑟𝑜 (
2𝑥

ℎ
+ 1)   (8b) 

 𝑣𝑡 ≥ 0   (8c) 

where v is the velocity component in the y-direction parallel to the shear zone, h is the width of 

the shear zone, vr is velocity component related to rotation, vro is the rotation-related velocity at 

one side of the shear zone at y = -h, and vt is the velocity component related to translation. In this 

approximation, I am only considering the y-component of the rotational velocity (vr). The 

complete corresponding velocity field is 

 𝑢 = 0    (9a) 

 𝑣 = −𝑣𝑟𝑜 (
2𝑥

ℎ
+ 1) + 𝑣𝑡   (9b) 
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where u is the velocity component in the x-direction perpendicular to the shear zone, and the 

other variables are the same as above (Fig. 3.7b). The strain-rate-tensor components are as 

follows: 

 𝜀�̇�𝑥 =
𝜕𝑢

𝜕𝑥
= 0   (10a) 

 𝜀�̇�𝑦 =
𝜕𝑣

𝜕𝑦
= 0   (10b) 

 𝜀�̇�𝑦 =
1

2
(

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) =

−𝑣𝑟𝑜

ℎ
   (10c) 

from which the rotation rate is given by  

 �̇� = tan−1 −2𝑣𝑟𝑜

ℎ
.  (11) 

 

3.4.2. Non-rigid bookshelf faulting in northern Tibet: passive and stretchy 

I propose that the clockwise rotating east-striking left-slip faults in northern Tibet are part 

of a passive bookshelf system (Fig. 3.6b) because they are bounded to the northwest by the left-

slip Altyn Tagh fault (Fig. 3.1). An active left-slip bookshelf fault system (Fig. 3.6a) would 

require a right-slip bounding shear zone to drive clockwise panel rotation, whereas the passive 

system allows the panels to rotate in a clockwise fashion against a rigid boundary to the west, 

creating a left-slip shear zone. This simple model involving clockwise rotation across the region 

may explain why Tibet is bounded by a left-slip fault system to the northwest (i.e., the Altyn 

Tagh fault) and minor-to-insignificant right-slip faulting to the southeast (i.e., within the 

Longmen Shan) (Fig. 3.1), rather than the expected broad right-slip shear zones as predicted by 

the classic rigid-bookshelf model (England and Molnar, 1990).  

 The predicted velocity field from the passive bookshelf system (Equation [9]) can be 

compared to the GPS-derived velocity field across northern Tibet (Fig. 3.4). The eastern 
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boundary of northern Tibet does not have a significant north-striking strike-slip bounding fault 

like the western boundary (i.e., the Altyn Tagh fault); only minor right-slip faulting is observed 

in the Longmen Shan (Densmore et al., 2007; Yin, 2010b) (Fig. 3.1). Because of this, I infer that 

the N-S velocity due to clockwise rotation is matched by the northward translation velocity, so 

that vro is equal but opposite to vt at x = 0 (the eastern boundary) (Fig. 3.7b) in Equation (9). The 

N20°E velocity gradient plotted in Figure 3.4c shows a maximum velocity near the western 

boundary (x = -h) of ~16 mm/yr, which requires vr and vt of Equation (9) to equal ~8 mm/yr. A 

northward translational velocity (vt) of 8 mm/yr is reasonable given that the northward GPS 

velocities just south of the Kunlun fault are 7-15 mm/yr (Zhang et al., 2004; Yin and Taylor, 

2011). If I assume that the fixed width of the system h is 1400 km (Fig. 3.1), the N-S velocity 

field can be described by v = (-1.14 × 10-8)x yr-1 (Fig. 3.7b). The resulting shear strain rate and 

clockwise rotation rate are 𝜀�̇�𝑦= -1.81 × 10-16 s-1 and �̇� = 0.65 º/Ma respectively. These rates are 

comparable to the paleomagnetic, geologic, and geodetic data discussed above. 

 Since the boundary domains in the active or passive bookshelf system are relatively rigid, 

the bookshelf panels must be non-rigid to resolve the space issues that arise at the panel ends 

(Figs. 3.2 and 3.6) (e.g., Luyenduk et al., 1980; Onderdonk, 2005; Platt and Becker, 2013). The 

necessary fault-parallel stretching or shortening of the fault-bounded domains accommodates 

negligible slip at the ends of each rotating fault. The strike-slip faults in a non-rigid bookshelf 

system, bounded by deformable rather than rigid wallrock, are referred to as stretching faults 

(Means, 1989, 1990). 

Unlike the models of either Onderdonk (2005) or Platt and Becker (2013), the bookshelf 

panels in the non-rigid passive bookshelf model do not have to either all stretch or all shorten to 

accommodate rotation in a deforming material. Instead, each quadrant of wallrock deforms 
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according to the kinematics of the bounding strike-slip faults, so that off-strike-slip-fault 

wallrock deformation accommodates negligible slip at the strike-slip faults tips (Fig. 3.5). An 

example of a possible interaction along the left-most boundary is shown in Figure 3.8. Given the 

small angle of clockwise rotation of the left-slip faults (θ << 1°), the resulting left-lateral slip (d) 

must be accommodated by fault-parallel stretching and shortening strain (𝜀𝑥𝑥) in the panels 

adjacent to the strike-slip fault (i.e., panels A and B in Fig. 3.8). Assuming that the resulting 

strain is homogenous throughout one-half of the bookshelf panel and affects both panels A and B 

by the same magnitude, this strain can be written as:  

 𝜀𝐴
𝑥𝑥 =

1

2

𝑑

𝑆
   (12a) 

 𝜀𝐵
𝑥𝑥 = −

1

2

𝑑

𝑆
   (12b) 

where 𝜀𝐴
𝑥𝑥 and 𝜀𝐵

𝑥𝑥 are the extension strain in panel A and panel B, respectively, d is the left-

lateral slip, and S is the half the length of the bookshelf panel (S = L/2), all in the x-direction 

(Fig. 3.8). Because this left-slip (d) is caused by clockwise rotation, I relate this strain to rotation 

rate, and derive the resulting fault-parallel strain rate: 

 𝜀̇𝐴𝑥𝑥 =
1

2

𝑊

𝑆

tan (∆𝜃)

(∆𝑡)
   (13a) 

 𝜀̇𝐵𝑥𝑥 = −
1

2

𝑊

𝑆

tan(∆𝜃)

(∆𝑡)
   (13b) 

where W is the width of the bookshelf panel in the y-direction, Δθ is the small angle of clockwise 

rotation of the left-slip faults over a short timescale (Δt), and the other variables are the same as 

above. The corresponding velocity field may be written as  

 𝑢𝐴
𝑥 =

𝑥

2

𝑊

𝑆

tan (∆𝜃)

∆𝑡
+ 𝑐   (14a) 

 𝑢𝐵
𝑥 = −

𝑥

2

𝑊

𝑆

tan (∆𝜃)

∆𝑡
+ 𝑐    (14b) 
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where uA
x and uB

x are the velocity components in the x-direction in panels A and B respectively, 

and c is a constant of integration that may be dropped by setting the boundary condition of ux = 0 

at x = 0 (Fig. 3.8). Combining Equations (14) and (11) yields an expression for fault-parallel 

stretching rate (ux) as a function of vro: 

 𝑢𝐴
𝑥 =

𝑥

2

𝑊

𝑆
tan−1 −2𝑣𝑟𝑜

ℎ
   (15a) 

 𝑢𝐵
𝑥 = −

𝑥

2

𝑊

𝑆
tan−1 −2𝑣𝑟𝑜

ℎ
.   (15b) 

Taking vro to be 8 mm/yr (as discussed above), the bookshelf panel between the Kunlun 

and Qinling faults to have a width of 150 km and length of 1400 km (S = 700 km) (Fig. 3.1), and 

the width of the bookshelf system h as 1400 km, I arrive at fault-parallel stretching rates of ~1 

mm/yr. For the Kunlun fault, as an example, this should be accommodated by fault-parallel 

shortening in the Qimen Tagh and extension to the south in central Tibet at a rate of ~1 mm/yr 

(Fig. 3.1).  

 

3.4.3. Active bookshelf faulting: the Garlock fault in California 

 One example of an active bookshelf fault system may be the left-slip Garlock fault that is 

located adjacent to the San Andreas transform-plate boundary (Fig. 3.9). The ~150-km-long 

northeast-striking Garlock fault intersects the right-slip San Andreas fault in the west, along the 

northern edge of the Western Transverse Range. It divides the relatively high-relief Tehachapi-

Sierra Nevada and Basin and Range domains in the north from the relatively flat Mojave domain 

in the south (e.g., Davis and Burchfiel, 1973; Guest et al., 2003) (Fig. 3.9a). Observed fault 

offset is ~50 km across the central segment of this fault (Smith, 1962; Davis and Burchfiel, 

1973). GPS analysis indicates a contemporary clockwise rotation rate of 4.4 ± 0.7 º/Ma and a slip 

rate of ~6 mm/yr (Platt and Becker, 2013) (Fig. 3.9b). Another geodetic model suggests that left-
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lateral slip rate decreases from ~3 mm/yr along the central fault segment to ~1 mm/yr in the east 

(Meade and Hager, 2005). 

 There has been rigorous debate regarding the tectonic significance of the Garlock fault 

(e.g., Davis and Burchfiel, 1973; Guest et al., 2003; McGill et al., 2009), but here I suggest that 

the Garlock fault may be best explained as a non-rigid active bookshelf fault (e.g., Fig. 3.6a). 

The clockwise rotation of the fault (e.g., Platt and Becker, 2013) predicts an asymmetric strain 

distribution (e.g., Fig. 3.5a) with fault-parallel shortening in the northwest and southeast 

quadrants and fault-parallel stretching in the northeast and southwest quadrants. This distribution 

is observed. To the northwest, fault-parallel shortening is expressed as deformation in the 

Tehachapi Mountains, as well as a prominent westward bend of the San Andreas fault. To the 

southeast, the Garlock fault merges with the north-trending Avawatz Mountains (Fig. 3.9c). Late 

Cenozoic Garlock-fault-parallel shortening across this range has been documented (e.g., Chinn, 

2013a, 2013b), although the magnitude of this deformation remains unknown. Fault-parallel 

extension occurs to the northeast of the Garlock fault, as part of the larger Basin and Range 

system (Fig. 3.9c). The required extension in the southwestern quadrant of the Garlock fault has 

not been firmly established, although the northwest-striking right-slip faults would be consistent 

with east-west extension. This region, just south the Tehachapi Mountains, is a broad Cenozoic 

basin, which may have formed partly due to Garlock-fault-parallel extension (e.g., Luyendyk et 

al., 1980).  

 As opposed to the passive bookshelf fault system of northern Tibet, the Garlock fault 

must be part of an active bookshelf fault system. Right-lateral shear is prevalent across the 

Pacific-North America plate boundary, and the clockwise rotation of the left-slip Garlock fault is 
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consistent with this shear sense (Fig. 3.9). In northern Tibet, clockwise rotation of left-slip faults 

is opposite that of the shear sense of the bounding left-lateral Altyn Tagh shear zone (Fig. 3.1).  

Further interpretation of this fault system is not within the scope of this present work, but 

the Garlock fault may be an example of a non-rigid active bookshelf fault system. Several 

testable predictions emerge from this hypothesis: (1) Geodetic and geologic slip rates and offset 

magnitudes should decrease bidirectionally from the center of the Garlock fault. (2) The 

magnitude of Late Cenozoic shortening across the Avawatz Mountains and associated uplift 

should match with left-lateral offset along the eastern Garlock fault. (3) The magnitude and 

timing of extension and related basin formation in the southwest quadrant of the Garlock fault, 

just south of the Tehachepi Mountains, should be compatible with strike-slip offset. (4) The 

magnitude and rate of Garlock fault rotation should be consistent with the relative plate motion 

velocities between the Pacific and North American plates (e.g., can the ~4.5º/Ma clockwise 

rotation rate of the Garlock fault be explained within the context of ~5 cm/yr right-lateral shear 

along the western North America plate boundary?). 

 

3.5. Discussion 

3.5.1. Driving mechanism for clockwise rotation 

Applying the passive bookshelf fault model to northern Tibet requires clockwise rotation 

of the left-slip faults and fault-bounded wallrock relative to the relatively fixed Tarim and North 

China (i.e., the top, left, and right sides of the passive bookshelf fault system in Fig. 3.6b). This 

system can be driven by either rotation of the bottom boundary (i.e., rotation of central and 

southern Tibet) or basal drag beneath the system. In the simplest case, clockwise rotation of 

southern Tibet and/or the Himalaya relative to North China (Fig. 3.10a) can drive clockwise 

165



rotation of northern Tibet. Due to the lack of paleomagnetic and GPS data across central and 

southern Tibet, this model is difficult to test with confidence (Figs. 3.1 and 3.4a). However, 

existing geologic data from central and southern Tibet suggest that the regions are actually 

experiencing counterclockwise rotation (e.g., Yin, 2006; Burgess et al., 2012), which is 

inconsistent with the model requirements.  

 Alternatively, rotation of northern Tibet could have been driven by an eastward decrease 

in gravitational potential energy (GPE) and GPE gradient in central Tibet (England and Molnar, 

1997) (Fig. 3.10b). This GPE distribution may lead to faster spreading of the thickened 

lithosphere in the west than that in the east, causing clockwise rotation of northern Tibet. One 

potential problem is that this model would require north-south extension across central Tibet that 

is not observed. However, the spreading-induced extensional strain may be overwhelmed by 

India-indentation-induced shortening strain in the region. It is also possible that fault rotation in 

northern Tibet is driven by a toroidal asthenospheric flow (Fig. 3.10c) that develops as the 

Burma trench, which is located just south of the Eastern Himalayan Syntaxis, retreats westward. 

The roll-back of the Burma slab causes poloidal flow of the asthenosphere around the slab, 

which draws in a toroidal flow around its northern edge. This inference is consistent with the 

current knowledge of mantle seismic anisotropy in the region (e.g., León Soto et al., 2012).  

 

3.5.2. Implications for the Cenozoic development of northern Tibet 

Recent work on the timing of structures in northern Tibet suggests a two-stage 

development of the region (Fig. 3.3b), with a change from thrust-dominated to strike-slip-

dominated deformation at 20 to 15 Ma (e.g., Craddock et al., 2011; Duvall et al., 2013) due to a 

change in boundary conditions and stress regime (Yuan et al., 2013). As discussed by Clark 
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(2012), the average bulk strain rate (i.e., 𝜀̇ = 𝑣/𝐿) across the Himalayan-Tibetan orogen has 

remained constant since the onset of collision (𝜀̇ = ~7 × 10-16 s-1); deformation and narrowing of 

the orogen (L) has been balanced by slowed plate convergence (v) as a result of viscous mantle 

resistance. A constant strain for a viscous medium (i.e., the Tibetan-Eurasian lithosphere) 

equates to constant contractional stress acting on it, regardless of a shift in the geodynamics (e.g., 

crustal thickness, rheology, boundary conditions). The calculated present-day shear strain rates 

and clockwise rotation rates across northern Tibet are consistent with geologic and 

paleomagnetic rotation rates. This similarity suggests that strain rates have remained constant 

throughout the Cenozoic, which is inconsistent with the discrete two-stage deformation model 

for the development of northern Tibet (e.g., Yuan et al., 2013) that requires a change in boundary 

conditions. Alternatively, the non-rigid passive bookshelf model proposed in this study implies 

that coeval and kinematically linked thrust and strike-slip faulting could have formed under a 

constant stress regime. 

 The fundamental mode of Cenozoic deformation in northern Tibet appears to be 

protracted north-trending right-lateral simple shear (England and Molnar, 1990), nearly parallel 

to the northeast-striking Altyn Tagh fault, since the onset (or soon after) of the India-Eurasian 

collision at 60-55 Ma (e.g., Zhu et al., 2005; Green et al., 2008; Dupont‐Nivet et al., 2010) (Fig. 

3.11). Right-lateral shear strain was accommodated in the Eocene-Oligocene to early Miocene by 

distributed shortening and crustal-thickening in the Qimen Tagh, Qaidam Basin, and southern 

Qilian Shan thrust belts (Fig. 3.11a). An eastward decrease in north-south shortening strain was 

associated with the passive clockwise rotation of northern Tibet against the left-slip Altyn Tagh 

fault.  

167



Crustal thickening led to a reorientation of the intermediate compressive stress 

orientation from horizontal to vertical by 20 to 15 Ma that shifted deformation to a mixed-mode 

of thrusting and left-slip faulting along preexisting weaknesses (i.e., Phanerozoic sutures) (Fig. 

3.11b). The clockwise rotation and northward translation of the east-striking left-slip Haiyuan, 

Qinling, and Kunlun faults against the left-slip Altyn Tagh bounding fault zone in the northwest 

and the Longmen Shan in the southeast operated as passive bookshelf fault system. Combined 

northward translation and clockwise rotation of northern Tibet lead to minor observable right-

slip shear along the eastern northeast-striking bounding faults (i.e., right-slip faulting within the 

thrust belt) (Figs. 3.6b and 3.11b). The rotating fault-bounded domains, surrounded by a 

relatively rigid medium (i.e., a strong Tarim and North China) (e.g., Molnar and Tapponnier, 

1981), require fault-parallel deformation to resolve the space issues at the panel ends (Fig. 

3.11c). Note that the Altyn Tagh fault is oblique to the regional shear direction, and this 

orientation results in more shortening in the west than the east as the left-slip faults rotate against 

rigid Tarim and the Altyn Tagh boundary shear zone. Wallrock deformation and subsequent fault 

stretching (Means, 1989) result in negligible fault slip at the ends of each east-striking left-slip 

fault. 

Several testable predictions emerge from this proposed model. First, the east-striking left-

slip faults should be relatively weak. The western and central sections of the faults strike at a 

high angle to the maximum compressive stress direction (Fig. 3.4b) which indicates that minimal 

shear stress is acting on the fault planes. The faults also initiated along sutures (Fig. 3.1) that are 

presumably zones of preexisting weaknesses. The orthogonal orientation of the strike-slip faults 

to the maximum compressive stress direction in the west allows for the development of thrust 

belts that obliquely merge with the left-slip faults, as opposed to the eastern thrust belts that 
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develop orthogonally to the strike-slip faults (Fig. 3.1). Second, the distinct two stages of 

deformation in northern Tibet (e.g., Yuan et al., 2013) may be apparent as a result of limited 

sampling and loose timing constraints. For example, I note that there are no direct age constraints 

for the initiation of the Haiyuan fault (Yuan et al., 2013) (Fig. 3.3b). The complex deformational 

patterns in northern Tibet make differentiating between thrust and strike-slip fault initiation 

difficult with current thermochronology techniques. Lastly, detailed studies of crustal strain can 

reveal if the fault-parallel shortening and extension in the off-fault regions equal offset on the 

strike-slip faults. There is currently little detailed structural data across the Qimen Tagh and 

Qilian Shan thrust belts (cf. Chapter 2) to convincingly test this hypothesis, and GPS stations are 

sparse in these regions (Fig. 3.4a). 

 An important implication of the non-rigid bookshelf-fault model is that the style and 

magnitude of Cenozoic deformation in northern Tibet vary considerably in the east-west 

direction. In order to understand processes of continental deformation and plateau construction, 

future geologic studies must establish along-strike variations of the structural framework along 

the left-slip faults to examine the relationship between discrete left-slip faulting and distributed 

off-fault deformation. It is clear that a single north-south cross section and its kinematic 

reconstruction across the northeastern margin of the Tibetan Plateau would not properly quantify 

the complex deformational processes of plateau formation. 

 

3.5. Conclusions 

The Cenozoic tectonic development of northern Tibet is characterized by the clockwise 

rotation of three major east-striking left-slip faults. Similar rotation and shear strain rates from 

paleomagnetic, geologic, and geodetic datasets (e.g., 𝜀𝑥𝑦̇ = ~10-16 s-1) suggest continuous 
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clockwise rotation of the region since the Eocene, which is consistent with a constant bulk strain 

rate across the Himalayan-Tibetan orogen since the onset of India-Eurasia collision (Clark, 

2012). The proposed non-rigid passive bookshelf-fault model, which relates discrete left-slip 

faulting to distributed off-fault deformation during regional clockwise rotation, accounts for the 

rotation of major left-slip faults, bidirectional decrease in slip from the central segments of these 

faults, eastward-tapering northwest-trending thrust belts, and four-quadrant strain pattern in the 

wallrock of the strike-slip faults. This model quantifies the relationship between strike-slip 

faulting and off-fault deformation during processes of continental tectonics and highlights the 

complexity of Cenozoic continental deformation in northern Tibet.  
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Figure 3.4. Full figure caption on next page. 
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Figure 3.4 (continued). (a) Global positioning system (GPS) velocity field across Tibet relative 
to stable Eurasia modified from Gan et al. (2007). Also shown is the location of Figure 3.4b. 
(b) GPS velocity field relative to stable Eurasia with data from Gan et al. (2007). Colored vectors 
represent stations from four distinct domains that are bounded by the left-slip Kunlun, Qinling, 
and Haiyuan faults, from south to north: East Central Tibet (ECT), Qaidam Basin (QB), North 
Qaidam (NQ), and Qilian Shan (QS). Paleomagnetic rotation magnitudes are shown with white 
arrows along with the lower age bound for the onset of rotation. The averaged maximum 
compressive stress directions from the World Stress Map are plotted as green lines (Heidbach et 
al., 2008). Gold star shows the reference location for analyses in Figure 3.4c. Also shown is the 
x-y coordinate system, with the x-axis parallel to N110°E. Paleomagnetic rotation data are from 
(1) Halim et al. (2003), (2) Chen et al. (2002a), (3) Chen et al. (2002b), (4) Frost et al. (1995), (5) 
Halim et al. (1998), (6) Cogné et al. (1999), (7) Dupont-Nivet et al., (2004), and (8) 
Dupont-Nivet et al. (2002). (c) GPS velocity component in the N20°E direction perpendicular to 
the general strike of the left-slip Kunlun, Qinling, and Haiyuan faults in northern Tibet. The 
N20°E velocity components relative to a fixed point in the Tibetan Plateau foreland (i.e., gold 
star in Figure 3.4b) in each fault-bounded domain (color codes corresponding to those in Figure 
3.4b) are projected onto a N110°E-trending line. Best-fit (blue, yellow and red dashed lines) 
velocity gradients are bounded by shear strain rates (εxy) of 10-16 s-1 and 5×10-16 s-1 shown as thick 
black lines.
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Figure 3.5. (a) Simplified diagram highlighting a possible four-quadrant deformation pattern 
with a strike-slip fault and its coeval termination structures. Note that fault-parallel extension can 
be accommodated by either normal or strike-slip faulting. (b) Sketch map highlighting the 
relationship between east-striking left-slip faults and off-fault wallrock deformation. The 
Haiyuan, Qinling, and Kunlun faults all display a four-quadrant strain distribution, with 
fault-parallel shortening in the northwest and southeast quadrants and fault-parallel extension in 
the southwest and northeast quadrants. Inset shows how the non-rigid bookshelf faulting can 
generate the observed four-quadrant strain distribution. Fault-perpendicular deformation 
accommodates clockwise rotation of the faults whereas fault-parallel deformation is required to 
resolve the “gap” and “overlap” issues that arise at the panel ends. Note that the specific strain 
asymmetry corresponds to a clockwise fault rotation direction.
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(1) Original configuration

(2) After rotation and slip 
on rotated faults
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Figure 3.6. (a) Conceptual model for the active bookshelf fault system (Freund, 1970) where 
shear is driven by drag along the boundary walls and the sense of shear of the bounding shear 
zones must be opposite of the slip between the bookshelf panels. (b) Conceptual model for a 
passive bookshelf fault system, where panels rotating about the center of the system are driven 
by a push from the bottom. The panels can both rotate and translate. Note that at some point 
between stages (2) and (3), the easternmost bounding fault transitions from left-slip to right slip, 
and at this point there is negligible strike-slip offset at this right-side boundary. 
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(a) Velocity field across an active
bookshelf fault system
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(b) Velocity field across a passive bookshelf fault system
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Figure 3.7. Velocity fields for the (a) active and (b) passive bookshelf fault systems. Note that 
the velocity field in the passive system involves the summation of translational (vt) and rotational 
(vr) velocities. See text for discussion. 
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xx ≈ -0.5 d/L. In this example, the angle of rotation, θ, 

is very small, such that tanθ can be approximated as θ. See text for discussion.
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Figure 3.9. Active bookshelf faulting example of the Garlock fault in California. (a) Map of 
southern California, Nevada, and western Arizona highlighting major faults within the active 
Eastern California shear zone–Walker Lane fault system from Mahan et al. (2009). The Garlock 
fault is shown in blue. GPS vectors around the Garlock faults are from Platt and Becker (2013); 
the red and green vectors correspond to GPS stations to the south and north of the Garlock fault, 
respectively. The gold star shows the reference location for the analyses shown in Fig. 3.9b. Inset 
shows simplified fault geometries. AM—Avawatz Mountains; OV—Owens Valley; DV—Death 
Valley; YM—Yucca Mountain; LV—Las Vegas; EN—Ensenada; LA—Los Angeles; SJFZ—San 
Jacinto fault zone; IFZ—Imperial fault zone; CPZ—Cerro Prieto fault zone. (b) Garlock-fault- 
perpendicular velocities projected onto a line approximating the Garlock-fault trajectory. From 
Platt and Becker (2013). The best-fit velocity gradients correspond to the shear strain rate of the 
fault and surrounding rocks, which correspond to a rotation rate of 4.0 ± 0.7 º/Ma. As in Figure 
3.9a, the red and green data points correspond to GPS stations to the south and north of the 
Garlock fault, respectively. (c) Eastern termination structures of the Garlock fault showing 
fault-parallel extension in the Basin and Range province to the northeast and fault-perpendicular 
shortening in the Avawatz Mountains to the southeast. Google Earth image is from Chinn 
(2013b). 
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Figure 3.10. Passive bookshelf faulting in northern Tibet may be driven by (a) boundary-zone 
rotation to the south, (b) gravitational spreading of thick central Tibet lithosphere with the 
distribution of gravitational potential energy after England and Molnar (1997), or (c) a toroidal 
flow in the asthenosphere (e.g., León Soto et al., 2012). See text for further discussion.
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Figure 3.11 (continued). Cenozoic tectonic evolution of northern Tibet, showing the timing of 
major fault initiation where grey structures are already active at given time interval. (a) 
Right-lateral shear, driven from the south, begins in the Eocene and is expressed by north-south 
shortening in the Qimen Tagh, North Qaidam, and southern Qilian Shan thrust belts. An eastward 
decrease in north-south shortening magnitude and thrust spacing indicates clockwise rotation of 
northern Tibet. (b) Progressive crustal thickening causes the initiation of the east-striking left-slip 
faults along preexisting weaknesses. Continued right-lateral shear drives clockwise rotation of 
these faults and their wallrock passively against the left-slip Atlyn Tagh bounding fault zone. (c) 
The left-slip faults in this passive bookshelf fault system develop a four-quadrant deformation 
pattern with domains of fault-parallel stretching and shortening. Age data from Craddock et al. 
(2011), Yuan et al. (2013), Duvall et al. (2013), and references therein.
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Spacing and strength of active continental strike-slip faults 
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4.1. Abstract 

Parallel and evenly-spaced active strike-slip faults occur widely in nature across a diverse 

range of continental settings. Despite their common existence, the fundamental question of what 

controls fault spacing remains unanswered. In this chapter I present a mechanical model for the 

generation of parallel strike-slip faults that relates fault spacing to the following parameters: 

brittle-crust thickness, fault strength, crustal strength, and the crustal stress state. Scaled analogue 

experiments using dry sand, crushed walnut shells, and viscous putty were employed to test the 

key assumptions of the quantitative model. The physical models demonstrate that fault spacing is 

linearly proportional to brittle-layer thickness, both in experiments with only brittle materials and 

two-layer trials with dry sand overlying viscous putty. Although the S/h slope in the sand-putty 

experiments may be controlled by the (1) frictional interaction at the sand-putty interface and/or 

(2) effects of distributed basal loading caused by the viscous layer (i.e., a wider basal shear zone 

with the putty layer), I demonstrate that this first effect is most important in the analogue 

experiments. I apply this quantitative model to crustal-scale strike-slip faults using fault spacing 

and the seismogenic-zone thickness obtained from high-resolution earthquake-location data to 

estimate absolute fault friction of active strike-slip faults in Asia and along the San Andreas fault 

system in California. The average friction coefficient of strike-slip faults in the India-Asia 

collisional orogen is lower than that of faults in the San Andreas fault system. Weaker faults 

explain why deformation penetrates >3500 km into Asia from the Himalaya and why the interior 

of Asia is prone to large (M > 7.0) devastating earthquakes along major strike-slip faults. This 

new approach of estimating absolute fault strength may be useful in future studies of continental 

deformation and earthquake mechanics.
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4.2. Introduction 

Parallel strike-slip faults occur widely in nature, from a few meters to >100s km in length 

and spacing (e.g., Segall and Pollard, 1983; Davy and Cobbold, 1988; Swanson, 1988; Martel 

and Pollard, 1989; Dickinson, 1996; Yin, 2010). Regularly spaced strike-slip faults are observed 

along plate transform boundaries (e.g., the San Andreas fault system; Fig. 4.1a) (e.g., Nur et al., 

1986; Dickinson, 1996), across collisional orogens (e.g., the Himalayan-Tibetan orogen; Fig. 

4.1b) (Molnar and Tapponnier, 1975; Taylor and Yin, 2009; Yin, 2010), in analogue experiments 

(e.g., Tchalenko, 1970; Freund, 1974; Naylor et al., 1986; Yin and Taylor, 2011), and on icy 

satellites (e.g., Yin et al., 2016). Irregularly spaced parallel strike-slip systems have also been 

documented, including the seismically active right-slip fault systems across northern China with 

fault spacing varying from ~100 km to ~500 km (e.g., Yin et al., 2015). The characteristic 

spacing of strike-slip faults, or lack thereof, inevitably reflects how the faults interact with one 

another and with the fault-bounded crust. Thus, this readily observed geometric parameter may 

be used to estimate fault strength and stress state across diverse tectonic settings on Earth and 

other planetary bodies. Despite being such a common feature in zones of lithospheric 

deformation, the mechanics of evenly-spaced active continental strike-slip faults has never been 

satisfactorily explained nor quantified. 

In this contribution, I develop a stress-shadow model (e.g., Lachenbruch, 1961; Yin et al., 

2016) that relates strike-slip-fault spacing to the brittle-crust thickness of the fault-hosting 

lithosphere, fault and crustal strength, and the regional stress. The model assumptions are tested 

and validated with scaled analogue experiments using dry sand, crushed walnut shells, and 

viscous putty. These models use a basal shear device to generate Riedel shears in dry granular 

materials. By experimenting with various thicknesses and viscosities of a putty layer beneath a 
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brittle layer, I also explore the effects of distributed versus localized basal shear on strike-slip 

fault spacing. 

Strike-slip fault spacing is linearly proportional to brittle-layer thickness in both the 

analogue models and for crustal-scale faults. The application of this theoretical model using 

seismogenic zone thickness and fault spacing observations allows us to estimate the effective 

coefficient of fault friction (𝜇𝑓̅̅ ̅) of strike-slip faults in actively deforming regions of on Earth. 

This method leads to the finding that the faults in the India-Asia collisional orogen are weaker 

(𝜇𝑓̅̅ ̅ = ~0.10-0.20) than faults in the San Andreas transform system (𝜇𝑓̅̅ ̅ = ~0.15-0.21) in 

California.  

 

4.3. Generating parallel strike-slip faults 

4.3.1. Existing models 

The following models have been proposed to account for the generation of parallel strike-

slip faults: (1) reactivation of preexisting extensional joints in crystalline and/or other low-

porosity rock (e.g., Segall and Pollard, 1983; Martel and Pollard, 1989), (2) deformation bands 

forming in high-porosity rocks (e.g., Aydin and Johnson, 1978; Fossen et al., 2007), and (3) 

viscoelastic models that predict strike-slip fault spacing based on the rheology contrasts of the 

upper and lower crust (Roy and Royden 2000a, 2000b). 

The first two groups of models explain faulting in specific tectonic settings (e.g., 

previously normal-faulted rocks or deformation-band generation in porous sandstone) at small 

scales (i.e., < ~1 km), and they ultimately lack generality for crustal-scale deformation. It is 

unlikely that strike-slip faulting at a range of scales (from <1 mm to >1000s km) across diverse 

lithologies (e.g., Fig. 4.1) is universally derived from the reactivation of preexisting regularly-
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spaced structures. I note that strike-slip faulting in northern Tibet and certain regions of 

California may be respectively exploiting suture zones and older normal faults (e.g., Taylor and 

Yin, 2009; Dokka, 1989), but the majority of the faults in both settings actually crosscut 

preexisting fabrics (Fig. 4.1) (Dickinson, 1996; Yin and Taylor, 2001). The deformation band 

mechanism (Aydin and Johnson, 1978) leads to strain localization and strain hardening, which in 

turn can produce through-going faults. This process predicts sequential deformation and 

deactivation of individual faults, but does not explain coeval motion of parallel strike-slip faults 

that occur independent of the fault-hosting lithology. 

The viscoelastic models of Roy and Royden (2000a; 2000b) examine the effects of 

rheologic stratification on strike-slip faulting. These studies show that fault spacing varies as a 

function of the strength of the upper crust and viscosity contrast between the upper and lower 

crusts. Two limitations hinder the applicability of these models to actual continent-scale strike-

slip faults: (1) the depth-averaged shear stress is infinity at the fault surface in their dislocation 

model and (2) when one fault is active, the other faults remain locked (i.e., total welding of the 

other faults), which implies that the faults are created sequentially but not active simultaneously. 

This last point is at odds with many strike-slip fault systems on Earth (Fig. 4.1).  

  

4.3.2. Stress-shadow model for extensional joints 

 My analysis of strike-slip fault spacing employs the stress-shadow model, which was 

originally developed to quantify the spacing of extensional joints (Lachenbruch, 1961). Rock 

under regional remote tensile stress, 𝜎𝑛 = 𝜎𝑛
𝑟, fractures if 𝜎𝑛

𝑟 exceeds the tensile strength of the 

rock T (Fig. 4.2). The presence of a new fracture imposes a low stress boundary condition; for 

extensional joints, the normal stress on the fracture surface 𝜎𝑛
𝑐 is assumed to drop to zero 
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(Pollard and Segall, 1987). This in turns casts a stress shadow within which tensile stress is 

below the tensile strength of the rock. This condition prohibits fractures from forming adjacent to 

the initial joint. Stress increases away from the fracture 𝜎𝑛(𝑥 = 0) = 𝜎𝑛
𝑐 = 0 to the regional 

tensile stress 𝜎𝑛(𝑥 = ∞) = 𝜎𝑛
𝑟 (Fig. 4.2). The distance at which 𝜎𝑛 surpasses T defines the 

stress-shadow length, S, such that 𝜎𝑛(𝑥 = 𝑆) = 𝑇 (Fig. 4.2). New fractures can only be created 

immediately outside of the stress shadows, resulting in a characteristic joint spacing. The stress 

rise in the above scenario (Fig. 4.2) can be quantified by an analytical solution of the stress-

distribution for mode-I opening cracks from linear elastic fracture mechanics (LEFM) 

(Lachenbruch, 1961; Pollard and Segall, 1987). 

 

4.3.3. Stress-shadow model for strike-slip faulting 

The stress-shadow model for strike-slip faulting used in this study is based in part on a 

derivation presented by Yin et al. (2016), which examined strike-slip fault spacing on Enceladus 

(an icy satellite of Saturn) to infer its ice shell thickness. In both Yin et al. (2016) and this study, 

I (1) treat a strike-slip fault as a mode-III crack driven by a remote fault-parallel shear stress, (2) 

seek the fault-motion-parallel shear stress distribution (e.g., Pollard and Segall, 1987), (3) regard 

the deforming lithosphere as a plastic material governed by the Coulomb fracture criterion, and 

(4) assume that crustal strength resides in the brittle crust, consistent with the stress-guide 

concept (Lister and Davis, 1989) and the current understanding of continental lithosphere 

rheology (e.g., Jackson et al., 2008).  

First, I assume that shear stress 𝜎𝑥𝑧 satisfies the following boundary conditions (Fig. 4.3): 

𝜎𝑥𝑧(𝑥 = 0) = 𝜎𝑓̅̅̅̅      (1a) 

𝜎𝑥𝑧(𝑥 = ∞) = 𝜎𝑠
𝑟  = 𝜎𝑏𝑐     (1b) 
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where x is the distance from the fault (Fig. 4.3), 𝜎𝑓̅̅̅̅  is the vertically-averaged shear stress on the 

fault plane, and 𝜎𝑠
𝑟is the regional shear stress, which I denote as 𝜎𝑏𝑐. The boundary condition in 

equation (1a) is an important departure from the stress-shadow model for extensional jointing, as 

the magnitude of the shear stress on a strike-slip fault is not zero, but rather equals the vertically 

averaged shear stress of the fault plane,  𝜎𝑓̅̅̅̅  (Fig. 4.3) (cf. Roy and Royden, 2000a, 2000b). The 

following solution for the shear stress distribution satisfies the boundary conditions in equations 

(1a) and (1b): 

 𝜎𝑥𝑧(𝑥) = 𝜎𝑏𝑐 + (𝜎𝑏𝑐 − 𝜎𝑓̅̅̅̅ ) [
|𝑥|𝑛/𝑚

(|𝑥|𝑛+ℎ𝑛)1/𝑚 − 1]    (2) 

where x is the distance from the fault,  h is the depth of the fault equal to the brittle-crust 

thickness in the y direction, n > 0, and m > 0 (Fig. 4.3). The above solution is not unique when it 

is constrained only by the boundary conditions. For example, the following solution also satisfies 

the boundary conditions shown in equations (1a) and (1b): 

𝜎𝑥𝑧(𝑥) = 𝜎𝑏𝑐 + (𝜎𝑏𝑐 − 𝜎𝑓̅̅̅̅ ) [
tan−1(𝑥)

(
𝜋

2
)

− 1]    (3) 

where tan−1(𝑥 = 0) = 0 and tan−1(𝑥 = ∞) =
𝜋

2
, thus allowing 𝜎𝑥𝑧(𝑥 = 0) = 𝜎𝑓̅̅̅̅  

and 𝜎𝑥𝑧(𝑥 = ∞) = 𝜎𝑏𝑐. However, as shown below, the solution in equation (2) permits a linear 

relationship between S and h, which is observed in the analogue experiments and continental 

strike-slip fault data (see below in sections 3 and 4), whereas equation (3) does not have this 

mathematical property.  

 Using equation (2), the length of the stress shadow S can be obtained by: 

𝜎𝑥𝑧(𝑥 = 𝑆) = �̅� = 𝜎𝑏𝑐 + (𝜎𝑏𝑐 − 𝜎𝑓̅̅̅̅ ) [
𝑆𝑛/𝑚

(𝑆𝑛+ℎ𝑛)1/𝑚 − 1]   (4) 
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where �̅� is the vertically averaged shear fracture strength within the domain of strike-slip 

faulting (Fig. 4.3). Note that �̅� is analogous to the tensile strength T in the extensional joint 

example discussed above. 

When n = m = 2, equations (2) and (4) are similar to the LEFM solution for the stress 

distribution of a mode-III crack embedded an elastic half space (Pollard and Segall, 1987). 

However, this solution is not ideal for continental strike-slip faults (e.g., Fig. 4.1) that cut 

through the entire brittle crust (e.g., Yin et al., 2016). Furthermore, a linear S-h relationship 

(validated in sections 3 and 4) requires that n = m = 1, which allows simplification of equation 

(4) to the following relationship:  

𝑆 =  
�̅�−𝜎𝑓̅̅ ̅̅

𝜎𝑏𝑐−�̅�
ℎ      (5) 

Equation (5) demonstrates that fault spacing S is a function of the (i) brittle-crust thickness h, (ii) 

regional shear stress acting on the brittle crust 𝜎𝑏𝑐, (iii) shear fracture strength of the deforming 

brittle crust �̅�, and (iv) shear stress on the fault surface  𝜎𝑓̅̅̅̅ . Fault shear stress and crustal shear 

strength are pressure-, and therefore, depth-dependent, and their mean values can be obtained by 

assuming that the normal stresses acting on the fault planes are lithostatic. From this assumption, 

I determine: 

𝜎𝑓̅̅̅̅ =
1

ℎ
∫ (𝐶1 + 𝜇𝑓̅̅ ̅𝜌𝑔𝑦)d𝑦 =

ℎ

0
𝐶1 +

1

2
𝜇𝑓̅̅ ̅𝜌𝑔ℎ    (6) 

and 

�̅� =
1

ℎ
∫ (𝐶0 + 𝜇𝜑̅̅̅̅ 𝜌𝑔𝑦)d𝑦 =

ℎ

0
𝐶0 +

1

2
𝜇𝜑̅̅̅̅ 𝜌𝑔ℎ    (7) 

where 𝜌 is the density of the deforming layer, g is the gravitational acceleration, C0 and 𝜇𝜑̅̅̅̅  are 

the cohesive strength and the effective coefficient of internal friction for the crust next to the 

fault, respectively, and C1 and 𝜇𝑓̅̅ ̅ are the cohesive strength of the fault and the effective 
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coefficient of fault friction, respectively. The effective coefficient of internal (i.e., crustal) and 

fault friction are defined respectively as 

𝜇𝜑̅̅̅̅ = (1 − 𝜆𝜑)𝜇𝜑     (8a) 

𝜇𝑓̅̅ ̅ = (1 − 𝜆𝑓)𝜇𝑓     (8b) 

where 𝜆𝜑 and 𝜇𝜑 are the pore-fluid-pressure ratio and coefficient of internal friction of the fault-

bounded domains, respectively, and 𝜆𝑓 and 𝜇𝑓 are the pore-fluid-pressure ratio and coefficient of 

fault friction, respectively.  

 Here I address the issue of quantifying the regional shear stress acting on the strike-slip 

faulting domains. First I assume that shear strength is linearly proportional to the brittle-crust 

thickness, and that the strike-slip faulting domains are bounded by stronger, thus thicker, but still 

deforming regions (Fig. 4.3). If strike-slip faulting does not occurring within these adjacent 

regions, the regional shear stress must be below the shear fracture strength of these stronger and 

thicker domains. Therefore I can assume that the regional stress 𝜎𝑏𝑐 equals the vertically 

averaged shear strength of the stronger but still deforming regions (𝑌𝐵𝑅̅̅ ̅̅ ̅) bounding the strike-slip 

faulting domain (Fig. 4.3). That is  

𝜎𝑏𝑐 = 𝑌𝐵𝑅̅̅ ̅̅ ̅ =
1

𝐻
∫ (𝐶2 + 𝜇𝜑

𝐵𝑅̅̅ ̅̅ ̅̅ ̅𝜌𝑔𝑦)d𝑦 =
𝐻

0
𝐶2 +

1

2
𝜇𝜑

𝐵𝑅̅̅ ̅̅ ̅̅ ̅𝛼𝜌𝑔ℎ  (9) 

where 𝐶2 and 𝜇𝜑
𝐵𝑅̅̅ ̅̅ ̅̅ ̅ are the cohesive strength and effective coefficient of internal friction of the 

bounding regions, respectively, H is the brittle-layer thickness of bounding regions, and 𝛼 is a 

proxy for regional-stress magnitude defined as 𝛼=H/h > 1 (Fig. 4.3). Using �̅�, 𝜎𝑓̅̅̅̅ , and 𝜎𝑏𝑐from 

equations (6), (7), and (9), and assuming 𝜇𝜑
𝐵𝑅̅̅ ̅̅ ̅̅ ̅ = 𝜇𝜑̅̅̅̅  and C0 = C2, I arrive at the following S-h 

relationship: 

 𝑆 =
(𝐶0−𝐶1)+

1

2
𝜌𝑔ℎ(𝜇𝜑̅̅ ̅̅ −𝜇𝑓̅̅ ̅̅ )

1

2
𝜌𝑔ℎ𝜇𝜑̅̅ ̅̅ (𝛼−1)

ℎ     (10) 
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 Because S is relatively insensitive to (𝐶0 − 𝐶1) (Fig. 4.4a), I simplify to: 

𝑆 =
(𝜇𝜑̅̅ ̅̅ −𝜇𝑓̅̅ ̅̅ )

𝜇𝜑̅̅ ̅̅ (𝛼−1)
ℎ         (11) 

and  

𝜇𝑓̅̅ ̅ = 𝜇𝜑̅̅̅̅ [1 −
𝑠

ℎ
(𝛼 − 1)]             (12) 

Given that 𝜇𝑓̅̅ ̅ > 0, the following relationship must also hold: 

𝛼 ≤ (
ℎ

𝑠
+ 1)                   (13) 

Equation (13) indicates that for the same brittle-crust thickness, wider fault spacing requires 

lower values of . This means that a larger stress magnitude and/or stress gradient (i.e., a larger 

 value due to stronger bounding crust or weaker deforming crust) leads to more closely spaced 

strike-slip faulting because the stress rise is more rapid from 𝜎𝑥𝑧(𝑥 = 0) = 𝜎𝑓̅̅̅̅  to 𝜎𝑥𝑧(𝑥 = 𝑆) =

�̅� (Figs. 4.3 and 4.4b). Fault strength 𝜇𝑓̅̅ ̅ also affects S; larger values of 𝜇𝑓̅̅ ̅ leads to smaller fault 

spacing S (Fig. 4.4c). 

 

4.4. Analogue modeling  

To test the above model assumptions and predictions, I conducted scaled analogue 

experiments using dry granular materials, which can simulate brittle-crust deformation (e.g., 

Davy and Cobbold, 1988). The experiments use a 12-cm-wide basal-sliding-plate device to 

generate two parallel shear zones in which Riedel shears form (see Yin and Taylor, 2011) (Fig. 

4.5). The model boundary-wall dimensions (65 cm × 70 cm) are an order of magnitude larger 

than the width of the shear zones created in the experiments, which are typically ≤6 cm (Fig. 

4.5a). 
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One set of experiments use a single layer of dry sand or crushed walnut shells to 

determine the relationship between brittle-layer thickness and fault spacing. The second set of 

experiments include a ductile putty layer underneath the frictional materials to examine the how 

a viscous layer beneath the brittle crust affects the relationship between fault spacing and brittle-

layer thickness.  

 

4.4.1. Experimental materials 

Two different granular materials were used for the brittle layer—commercially available 

dry sand and crushed walnut shells (e.g., Hubbert, 1937, 1951; Davy and Cobbold, 1988; Cruz et 

al., 2008)—for two distinct reasons. First, they have different frictional properties, which allows 

for more rigorous testing of the analytical model predictions against the observed physical 

experiments. Second, the materials have different densities (i.e., 1670 vs. 790 kg/m3 for sand and 

crushed walnut shells, respectively), which results in slightly different scaling relationships 

between the model and nature (see section 4.4.2).  

The frictional properties of the experimental materials were determined with a Hubbert-

type apparatus (Hubbert, 1951), which involves constructing a shear stress versus normal stress 

failure envelope for each of the experimental materials (e.g., Cruz et al., 2008). The shear stress 

that generates Riedel shear fractures is a function of the basal friction (𝜇𝑏) beneath the 

sand/crushed walnut shells (see section 4.4.4). Therefore I quantify 𝜇𝑏 between the (1) granular 

materials and underlying basal-sliding plate covered by P100 sandpaper (~162 μm grain size) 

and (2) dry sand and putty layer. This second interface consists of sand embedded in the putty, 

which creates a sticky sandpaper-like surface. The grain size distributions and measured 
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frictional properties of the granular materials are reported in Table 4.1 and Figure A.2. All of 

these procedures were repeated at least five times to generate statistical uncertainties. 

Putty obtained from Isokinetics Inc. was used as the viscous layer underneath the brittle 

layer. An inclined plane experiment was conducted to determine the approximate viscosity of the 

putty. The strain rate of simple-shear flow of the putty with an overlying mass on an inclined 

surface can be used to calculate the viscosity following the relationship 𝜏 = 2ηγ̇, where 𝜏 is 

shear stress, η is viscosity, and γ̇ is shear strain rate. Note that because of this relationship, the 

experiments using different viscosity putties also incorporate the effects of variable strain rates. 

The simple-shear experiments yield viscosities of 6.2×103 Pa s and 9.5×103 Pa s for the two 

types of putties.  

 

4.4.2. Scaling considerations 

 Relating the analogue experiments to crustal-scale strike-slip faults requires dynamic and 

geometric scaling governed by the following relationships (Hubbert, 1937): 

𝐶𝑚𝑜𝑑𝑒𝑙

𝐶𝑛𝑎𝑡𝑢𝑟𝑒 =
𝜎𝑉

𝑚𝑜𝑑𝑒𝑙

𝜎𝑉
𝑛𝑎𝑡𝑢𝑟𝑒 =

𝜌𝑚𝑜𝑑𝑒𝑙×𝑙𝑚𝑜𝑑𝑒𝑙×𝑔𝑚𝑜𝑑𝑒𝑙

𝜌𝑛𝑎𝑡𝑢𝑟𝑒×𝑙𝑛𝑎𝑡𝑢𝑟𝑒×𝑔𝑛𝑎𝑡𝑢𝑟𝑒
    (14) 

where superscripts model and nature denote the model and crustal parameters and l, 𝜎𝑉, , and g 

are cohesive strength, vertical thickness, vertical stress, density, and the gravitational 

acceleration at the Earth’s surface, respectively. As the densities of the model and crustal 

materials are of the same order of magnitude (e.g., 1670 kg/m3 for sand versus 2750-3100 kg/m3 

for rock), appropriate scaling depends primarily on the cohesive-strength ratio. The cohesive 

shear strength of rock varies greatly depending on rock type, ranging from 20 MPa to 110 MPa 

(Jaeger et al., 2009). The experimental materials have a cohesive strength (Cmodel) of 40-60 Pa 

(Table 4.1), and rock cohesive strength (Cnature) is 50 MPa, then I arrive at scaling relationships 
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of sand and crushed walnut shells of lmodel
sand ≈ ~1.7 × 10-6 lnature and lmodel

walnut ≈ ~3.5 × 10-6 

lnature respectively, where the superscripts sand and walnut refer to each experimental material. 

Accordingly, 1 cm model thickness using sand represents ~6 km crustal thickness. The 

experiments, which use layer thicknesses of 1-6 cm for sand and 3-7 cm for crushed walnut 

shells, can simulate deformation of the crust with overlapping thicknesses of ~6-36 km and ~3-

21 km for each material, respectively.  

 

4.4.3. Experimental procedure and results 

 The first set of experiments was run with dry granular materials (i.e., sand and crushed 

walnut shells) with thicknesses ranging from 1 cm to 7 cm. Trials run with thicknesses of <1 cm 

or >7 cm failed to produce observable shear fractures. Sandpaper was used for friction between 

the materials and the apparatus. In the second series of experiments, the viscous-putty layer was 

overlain by a sand layer. Both the viscosity and thickness of the putty were varied to observe 

their effects on fault spacing. Experiments were run with 7-mm- (Fig. 4.5c) and 13-mm-thick 

putty layers underneath a dry-sand layer with varying thicknesses (1 to 5 cm). Five trials were 

repeated for each experiment of varying thicknesses of granular materials. The perpendicular 

distance between the Riedel shears was measured and the results from all five runs were 

averaged; the calculated uncertainties are the standard deviation of my observations. Vertical-

layer-thickness uncertainty is ~1 mm.  

Results from both sets of experiments can be explained by a simple linear relationships 

between fault spacing (S) and layer thickness (h) (Figs. 4.5d and 4.5e). For the granular-material-

only trials, the following linear relationships are observed: S/h = 0.68 ± 0.1 for sand and S/h = 

0.82 ± 0.2 for crushed walnut shells (Fig. 4.5d).  
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The experiments with sand overlying a viscous-putty layer all show linear S/h 

relationships ranging from 0.45 ± 0.03 to 0.56 ± 0.05 (Fig. 4.5e). Although a linear regression 

fits the brittle-viscous experiments within the uncertainties, the observed S/h relationship in these 

trials appears to deviate slightly from the linear relationship (Fig. 4.5e). There is significant 

scatter of fault-spacing data for the thicker brittle layers (e.g., when h > ~3-4 cm), which makes 

any further interpretation of this relationship ambiguous. One possibility is that larger variability 

of fault spacing arises when the fault spacing S and experiment-model length M ratio (S/M) (Fig. 

4.5a) becomes sufficiently high enough that compression and extension along experimental 

boundaries affect strike-slip fault generation and spacing.  

 

4.4.4. Analogue experiments and the stress-shadow model 

The fault-parallel shear stress generated by basal shearing in the analogue experiments 

differs from the depth-dependent fault-parallel shear stress assumed in the analytical solutions 

(e.g., equation [11]). That is, the fault-parallel shear stress in the experiments depends on the 

basal coefficient of friction but is independent of the vertical axis. Because of this difference, the 

detailed formation processes of strike-slip faults in nature and in the experiments are slightly 

different, although the experimental results can be satisfactorily explained by the stress-shadow 

model detailed below. First, I obtain an expression for the “sidewall” shear stress (𝜎𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑙) on a 

plane perpendicular to the basal sliding plate and parallel to the sliding direction (see derivation 

in Auxiliary Text A.3): 

𝜎𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑙 = 𝜇𝑏𝜌𝑔𝑦     (15) 

where 𝜇𝑏 is the measured coefficient of friction of the experimental materials against the basal-

sliding plate covered in sandpaper (Table 4.1), and y is the axis parallel to the basal-sliding plate 
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but orthogonal to the sliding direction. I set y = 0 at the center of the basal-sliding plate (Figs. 

4.5a and 4.5b). The relationship in equation (15) states that the sidewall shear stress depends on 

the coefficient of basal friction and the density of the experimental material; it increases with its 

distance from the central dividing line of the sliding plate. 

 Although 𝜎𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑙 = 𝜇𝑏𝜌𝑔𝑦 goes to infinite as 𝑦 → ∞, its induced Riedel-shear-fracture 

parallel shear stress (𝜎𝑓𝑝) is finite. Evaluation of this value at y = d, which marks the edge of the 

Riedel shear zone (Fig. 4.5a), including a transformation of coordinates to the Riedel-shear-

parallel orientation, leads to the following expression for the effective fault-parallel shear stress 

(𝜎𝑓𝑝):  

𝜎𝑓𝑝 = 𝜇𝑏𝜌𝑔𝑑 cos (2)    (16) 

where d is a distance measured along the y-axis (Fig. 4.5a) such that 𝜎𝑓𝑝(y = d) is greater than the 

yield strength of the experimental materials and  is the angle between the basal-shear direction 

and the Riedel shear orientation (~16º in the experiments) (Figs. 4.5b and 4.5c) (Jaeger et al., 

2009; Auxiliary Text A.3).  

 

4.5. Continental strike-slip faults 

 The goal of this study is to use fault spacing to determine the mechanical properties of 

parallel strike-slip faults and fault-bounded crust in various continental settings. First I determine 

the average fault spacing of domains of strike-slip faulting in the India-Asia collisional orogen 

and along the San Andreas transform fault boundary in California (Fig. 4.1). Application of the 

stress-shadow model (i.e., equation [11]) to crustal-scale strike-slip faults requires knowledge of 

the brittle-crust thickness (i.e., h in Fig. 4.3) and coefficient of internal friction (𝜇𝜑̅̅̅̅ ). The latter 

parameter is well constrained from experimental rock mechanics (Jaeger et al., 2009). I estimate 
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brittle-crust thickness by identifying the seismogenic zone thickness (L) using high-precision 

relocated earthquake data from Asia and California. 

 

4.5.1. Strike-slip faults in California and Asia 

 Four domains of parallel strike-slip faults were investigated along the San Andreas 

system in California (e.g., Dickinson, 1996) and across the India-Asia collision zone (e.g., Yin, 

2010) (Fig. 4.1). Spacing between the faults was measured perpendicular to the fault strike. The 

average and standard deviation for fault spacing within each domain are given in Table 4.2. 

Strike-slip fault domains are observed on either side of the San Andreas fault (e.g., 

Dickinson, 1996) (Fig. 4.1a). In central California near San Francisco, four right-slip faults are 

parallel to the San Andreas fault (e.g., Savage and Lisowski, 1993), including the Hayward, 

Calaveras, and Greenville faults from west to east. These faults have an average fault spacing of 

33 ± 3 km (Fig. 4.1c). In southern California west of the San Andreas fault, nine north-striking 

right-slip faults extend from the Western Transverse Range in the north through the borderland 

region in the south. These faults have an average fault spacing of 47 ± 15 km (Fig. 4.1c), and are 

the Ferrelo, San Clemente-San Isidro, Newport-Inglewood-Rose Canyon, Elsinore, and San 

Jacinto faults, from west to east (e.g., Dickinson, 1996). East of the San Andreas fault in 

southern California, the Eastern Transverse Range is comprised of six west-striking left-slip 

faults: Mammoth Wash-Black Eagle, Salton Creek-Aztec Mines Wash, Chiriaco, Smoke Tree 

Wash-Victory Pass, Blue Cut, and Pinto Mountain fault zones (e.g., Dickinson, 1996). These 

faults have an average spacing of 20 ± 8 km (Fig. 4.1c). Also east of the San Andreas fault but 

north of the left-slip Pinto Mountain fault, there are eight north-striking right-slip faults in the 

Mojave domain (Fig. 4.1a) with an average spacing of 16 ± 2 km (Fig. 4.1c). They are, from 
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west to east, the Helendale, Lockhard-Lenwood, Gravel Hills-Camp Rock, Blackwater-Calico, 

Pisgah-Bullion, Ludlow, Bristol Mountain, and Granite Mountain faults (Dokka and Travis, 

1990).  

Active intracontinental deformation in Asia is the combined result of continental collision 

in the south and oceanic subduction in the east (e.g., Yin, 2010). A series of active right-slip 

faults occur in central Asia (e.g., Yin, 2010) (Fig 4.1b). These faults, dispersed from the Caspian 

Sea in the southwest to the southern edge of Lake Baikal in the northeast, have an average fault 

spacing of 407 ± 99 km (Fig. 4.1d). Three active east-striking left-slip faults, with an average 

fault spacing of 178 ± 53 km (Fig. 4.1d), are present across the northern Tibetan Plateau (Fig. 

4.1b): the Kunlun, Qinling, and Haiyuan faults (e.g., Taylor and Yin, 2009). The V-shaped 

conjugate strike-slip faults of central Tibet (Taylor and Yin, 2009; Yin and Taylor, 2011) consist 

of left-slip faults in the north that merge with right-slip faults to the south (Fig. 4.1b). The 

average spacing of these conjugate faults is 92 ± 24 km (Fig. 4.1d). In Iran, parallel and active 

north-northwest-striking right-slip faults (Bachmanov et al., 2004) (Fig. 4.1b) have an average 

spacing of 139 ± 50 km (Fig. 4.1d).  

 

4.5.2. Seismogenic zone thickness observations 

Relocated earthquake location data were compiled for California (Schaff and 

Waldhauser, 2005; Lin et al., 2007; Waldhauser and Schaff, 2008; Hauksson et al., 2012), 

Central Asia (Chu et al., 2009; Sloan et al., 2011), Tibet (Chu et al., 2009; Sloan et al., 2011), 

and Iran (Chu et al., 2009; Sloan et al., 2011; Maggi et al., 2000). 

Compiled earthquake location data from central California encompasses events from 

1984 to 2011 that were relocated by waveform cross correlation and double-difference methods 
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(Schaff and Waldhauser, 2005; Waldhauser and Schaff, 2008). Reported vertical depth errors are 

less than 0.7 km at 95% confidence. Earthquakes events from 1981 to 2011 are compiled in the 

southern California earthquake database of Lin et al. (2007) and Hauksson et al. (2012). The 

relative and absolute vertical depth errors are reported to be less 0.1 km and 1.25 km, 

respectively, at 90% confidence. In Asia, teleseismically relocated earthquake-location data span 

events from 1977 to 1998 (Maggi et al., 2000), 1990 to 2005 (Chu et al., 2009), and 1965 to 

2009 (Sloan et al., 2011). Reported vertical errors are < 1 km (Chu et al., 2009) and < 4km 

(Maggi et al., 2000; Sloan et al., 2011). 

The compiled earthquake events and their focal depths are plotted in Figure 4.6. I seek 

the base of the seismogenic zone, and ultimately the brittle-crust thickness, from each strike-slip 

fault domain (Fig. 4.1). Seismic events from the stronger bounding regions, where strike-slip 

faulting is not observed, were also examined (Fig. 4.6) to constrain α. I avoid earthquakes at 

mantle depths whose occurrences may have been associated with continental subduction, 

especially near the Pamirs and Tian Shan (Burtmann and Molnar, 1993).  

Events from each domain were projected onto a vertical plane perpendicular to the strike-

slip faults (Fig. 4.6). Plots of earthquake depth versus horizontal distance along this 

perpendicular plane are shown in Figure A.5, for which the cutoff depth above which 95% (D95) 

and 90% (D90) seismicity was calculated (Table 4.2). This was done in several segments along 

each profile and their average value defines the seismogenic zone thickness (Fig. A.5). 

Specifically, I use segment length of 25 km for Californian faults and 500 to 1000 km for Asian 

faults (Fig. A.5). The longer segment length for Asian domains reflects the sparse seismic data.  
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 These results show that average fault spacing in California and Asia (Fig. 4.1) is linearly 

proportional to the seismogenic zone thickness (Fig. 4.7a) (Table 4.2), with a steeper slope for 

the data from Asia and negative vertical-axis intercepts for both datasets. 

 

4.6. Discussion 

 Observations from the analogue experiments and crustal-scale strike-slip faults reveal a 

fundamental observation that fault spacing (S) is linearly proportional to brittle-layer thickness 

(h). The physical models show this relationship to hold for experiments with solely frictional 

materials (Fig. 4.5d) and for two-layer experiments with a viscous layer underlying frictional 

materials (Fig. 4.5e).  

 

4.6.1. Minimum and maximum thickness cutoffs for generating strike-slip faults 

In the analogue experiments, strike-slip faults were only generated when the thickness of 

the frictional materials was between ~1 and ~7 cm (Fig. 4.5), which suggests that a minimum 

(h0) and maximum (hmax) brittle-layer cutoff thicknesses exist for nucleating strike-slip faults. 

The regressions of continental S versus h yield negative vertical-axis intercepts for both the 

Asian and Californian datasets (Fig. 4.7a). The simplest explanation for these negative intercepts 

is that there is a minimum cutoff thickness for generating strike-slip faults. As previously 

discussed (section 4.4.4), the boundary conditions that drive strike-slip faulting in the analogue 

experiments are different from those assumed in the stress-shadow model derivation. Thus, the 

brittle-layer cutoff thickness values for each setting require different explanations. 

In the stress-shadow model for crustal-scale strike-slip faulting, the regional shear stress 

(𝜎𝑠
𝑟) and shear fracture strength (�̅�) increase linearly with depth (h). The two quantities also 
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have intercepts at the surface (h = 0), with their values equal to C0 and C2 as defined in equations 

(7) and (9). Although C0 = C2 is assumed in the stress-shadow derivation, their difference may 

explain the minimum cutoff value for the observed fault spacing in continental settings (Fig. 

4.7a). Given that the regional shear stress (𝜎𝑠
𝑟) and shear fracture strength (�̅�) also have different 

slopes, these two lines must intersect in the 𝜎𝑠
𝑟 and �̅� vs. h plot (Fig. 4.8a). Thus, the portion of 

the shear stress curve below the strength curve defines the value for the minimum fault-spacing 

cutoff (i.e., h0 in Fig. 4.8a). Although the above explanation may apply to crustal-scale strike-slip 

faults, it is clearly not applicable to the occurrence of strike-slip faults whose spacing is on the 

order of 10s to 100s m. These smaller scale faults are not controlled by the thickness of the 

brittle crust but rather local bedding thickness and/or reactivation of pre-existing factures as 

commonly observed at outcrop scales (e.g., Aydin and Johnson, 1978; Segall and Pollard, 1983; 

Martel and Pollard, 1989). 

In the analogue experiments, the effective fault-parallel shear stress (𝜎𝑓𝑝) is not depth-

dependent (Fig. 4.8c). However, the vertically averaged shear fracture strength (�̅�) of the 

sand/crushed walnut shells in the experiments does vary with h (Fig. 4.8c). For lower brittle-

layer thickness values (h < ~7 cm), 𝜎𝑓𝑝 is greater than �̅� and parallel strike-slip faulting occurs 

(Fig. 4.8d). When h exceeds some critical thickness (i.e., hmax in Fig. 4.8c), the shear fracture 

strength �̅� surpasses the fault-parallel shear stress 𝜎𝑓𝑝 (i.e., �̅� > 𝜎𝑓𝑝), and Riedel-shear fracturing 

is suppressed (Fig. 4.8d).  

The analogue experiments show that Riedel-shear fractures are not created when the 

brittle-layer thickness is < ~1 cm for sand and < ~3 cm for crushed walnut shells (Fig. 4.5d). The 

fact that this minimum thickness, hmin, varies for different density materials indicates that the 

vertical stress must play a controlling role in determining the condition that favors strike-slip 
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faulting. I tentatively suggest that the reduction of the sand/crushed walnut shell thickness leads 

to a switch of the principal stress directions, from 𝜎2 being vertical for the strike-slip regime 

when h > hmin to 𝜎2 being horizontal for dip-slip fault regime when h < hmin. I further interpret 

that the inferred dip-slip faulting was blind and concentrated immediately above the sliding-plate 

surface at the base of the experimental materials. This would have produced no observable 

surface deformation. 

The intersection of the shear fracture strength and shear stress curves in Figure 4.8c can 

be used to further verify the stress-shadow model. At h = hmax, �̅� = 𝜎𝑓𝑝 which requires 

𝐶0 +
1

2
𝜇𝜑𝜌𝑔ℎ𝑚𝑎𝑥 = 𝜇𝑏𝜌𝑔𝑑 × cos 2𝜃   (18) 

The maximum cutoff thickness for the sand and crushed walnut shell experiments were ~6 cm 

and ~7 cm respectively. By incorporating the frictional properties of the experimental materials 

(Table 4.1) into equation (18), I estimate d. For both the sand and crushed walnut shell 

experiments, the calculated d value is ~0.04 m. Figures 4.5b and 4.5c show that the boundaries 

of Riedel shear zones are 2-4 cm from basal-sliding plate center, which corroborates this result. 

 

4.6.2. Effects of a diffuse brittle-ductile transition and fault healing on brittle-crust thickness 

The seismogenic zone thickness was previously assumed to directly equate to the brittle-

crust thickness. The seismogenic zone (L) likely consists of both a purely frictional-sliding layer 

(hf) and a transitional zone (hfv) of frictional sliding and viscous creeping (Fig. 4.4), such that L = 

hf + hfv. This diffuse brittle-ductile transition zone should have a maximum thickness of a few 

kilometers. Assuming that hfv is relatively constant globally, a systematic overestimation of the 

brittle-crust thickness (h = hf) by several kilometers in both Asia and California (Fig. 4.7) would 
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affect the vertical-axis intercept of the S-h linear regression but the S/h slope should remain the 

same. 

In addition, the fault cohesive strength may be locally greater than the crustal cohesive 

strength (i.e., C1 > C0) due to fault healing effects (e.g., Tenthorey and Cox, 2006). Given 

equation (10), this condition would lead to a negative vertical-axis intercept on a S versus h plot 

(e.g., Fig. 4.7a). This seems counterintuitive but may be applicable to Asia and California where 

penetrative fracturing, expressed by the widespread off-fault seismicity (e.g., Chu et al., 2009; 

Hauksson, 2011), may have reduced the cohesive strength of the deforming crust. That is, the 

actively forming fractures away from through-going faults are mostly isolated, creating dead 

pores that are less likely to be healed by chemical precipitation than the well-connected fracture 

networks in active fault zones after major rupture events (Tenthorey and Cox, 2006). Thus, the 

seismogenic thickness L may be written more completely as L = (h’ + hFH) + hfv, where h’ is the 

effective brittle-crust thickness and hFH is the pseudo brittle-crust thickness induced by fault 

healing. Only if ℎ𝐹𝐻 = ℎ𝑓𝑣 = 0 does the seismogenic thickness L equal the brittle-crust thickness 

h’ = h. Because the effects of fault healing and a diffuse brittle-crust transition counteract each 

other, and any healing effects must be minor because the strike-slip faults are still active, I 

reasonably assume that L = h (Fig. 4.7a). 

 

4.6.3. Formation of irregularly-spaced strike-slip faults 

Northeast-striking right-slip faults in northern China are irregularly spaced at intervals 

ranging from ~100 km in the west to > 500 km in the east (Yin et al., 2015). Equation (11) 

implies that irregularly spaced faults may be generated if the (a) strengths of the parallel faults 

are different, (b) fault-bounded crust has spatially varying shear strengths, and/or (c) thickness of 
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the fault-hosting layer varies in laterally. The seismogenic thickness across North China varies 

from ~20 km in the west to >30 km in the east (Wang et al., 2013), which correlates with closer 

fault spacing in the west (Yin et al., 2015). Alternatively, spatially varying crustal strength or 

fault strength may locally affect faulting in northern China.  

Related to such heterogeneities, the role of preexisting weaknesses in controlling fault 

spacing should not be underestimated. Major fault systems will inevitably exploit preexisting 

weaknesses (e.g., Segall and Pollard, 1983; Martel and Pollard, 1989) but an overarching 

fundamental mechanism controls the observed even spacing of active crustal-scale strike-slip 

faults (Fig. 4.1). Although the strike-slip faults in northern Tibet parallel Phanerozoic sutures 

(Taylor and Yin, 2009) and some of the strike-slip faults in California exploit preexisting normal 

faults (Dokka, 1989), most of the parallel strike-slip faults discussed here crosscut the regional 

structural trend (Fig. 4.1).  

 

4.6.4. Role of the lower crust driving strike-slip faulting 

 Regional shear stress bc (or 𝜎𝑠
𝑟̅̅ ̅̅ ) is a key parameter that drives faulting in the stress-

shadow model (Fig. 4.3). In the derivation for continental strike-slip faults, I assumed that 

𝜎𝑠
𝑟̅̅ ̅̅  equals 𝑌𝑏𝑐̅̅ ̅̅̅ (Fig. 4.3). Alternatively, 𝜎𝑠

𝑟̅̅ ̅̅   may be driven by basal shear in a viscous lower 

crust (Roy and Royden, 2000a, 2000b), similar to the analogue experiments. However, the 

experiments demonstrate that neither the viscosity nor the thickness of an underlying viscous 

layer—parameters which are proportional and inversely proportional, respectively, to shear 

stress—significantly affect the spacing of brittle-layer faulting (Fig. 4.5e), which contrasts the 

viscoelastic models of Roy and Royden (2000a, 2000b). The relationships between the stress-

shadow mechanism and basal stress (see section 4.4.4 and Auxiliary Text A.3) can explain this 
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observation. Equation (16) states that the fault-parallel shear stress (𝜎𝑓𝑝) is controlled by d and 

𝜇𝑏. Basal shear of the viscous layer is expected to be relatively distributed, decreasing d and thus 

increasing the S/h slope, which is not observed (Fig. 4.5e). The coefficient of friction between 

the sand and underlying putty (i.e., 𝜇𝑏 of equation [16]) is 0.73, which is higher than for sand 

against sand paper (Table 4.1). The higher 𝜇𝑏 for the sand-putty experiments should lead to a 

reduced S/h slope, which is observed in the sand-putty experiments (Fig. 4.5e). Furthermore, all 

else being equal, equation (16) predicts that given the measured 𝜇𝑏 values for each set of 

experiments (Table 4.1), the sand-only experiments will have a S/h slope that is ~1.3 times that 

of the sand-putty experiments. This slope difference is observed: the 0.68 S/h slope for the sand-

only experiments is ~1.2-1.3 times the ~1.52 slope for the sand-putty experiments (Figs. 4.5d and 

4.5e). These results suggest that the friction coefficient at viscous-brittle layer interface (i.e., the 

coupling between the two layers) affects the strike-slip fault spacing in the brittle layer more than 

the effects of distributed basal shear.  

 

4.6.5. Estimates of absolute fault friction from fault spacing and seismogenic zone thickness 

The observed difference in S/h slope between Asia and California must reflect differences 

in how the faults interact with one another and with the fault-bounded crust. Based on equation 

(11) and assuming that the crustal internal coefficient of friction 𝜇𝜑̅̅̅̅  for both continents is the 

same, the steep S/h slope observed in Asia may result from (1) a lower magnitude of effective 

fault friction (𝜇𝑓̅̅ ̅), (2) a higher magnitude regional shear stress, or (3) a combination of factors. 

In California, the seismogenic thicknesses of the relatively stable Western Transverse and 

Central Valley-Sierra regions were compared with the L values of the adjacent deforming 

regions (Fig. 4.6) to estimates  = H/h values of 1.05 to 1.2. Using regionally averaged  = 1.1 
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and 𝜇𝜑̅̅̅̅  = 0.24 values, I find that the closely spaced faults in the eastern San Andreas fault system 

are stronger at 𝜇𝑓̅̅ ̅= 0.18-0.22 than the widely spaced faults in the western San Andreas fault 

system at 𝜇𝑓̅̅ ̅= 0.15-0.18 (Fig. 4.7b). Because of the sparser data in Asia, I was not able to resolve 

between the internal variation of seismogenic zone thickness in a single strike-slip domain (h) 

and its difference from the seismogenic zone thickness of its bounding regions (H). I take this to 

indicate 𝛼 = 𝐻/ℎ ≈1.0. Available earthquake data near the edges of the central Asia strike-slip 

domain yield an  value of ~1.03. Using this value for all the strike-slip systems in Asia, I find 

their strength to be weaker (𝜇𝑓̅̅ ̅= ~0.10-0.20) than the fault strength in the San Andreas system 

(𝜇𝑓̅̅ ̅= 0.15-0.21) (Figs. 4.7b and 4.7c). The weak faults in Asia and relatively stronger faults in 

California are consistent with fault-strength studies (e.g., Bird and Kong, 1994; Vernant and 

Chéry, 2006; Fay and Humphreys, 2006; Humphreys and Coblentz, 2007; He and Chéry, 2008).  

The San Andreas transform fault boundary and Asia both experience large strike-slip 

earthquakes (Figs. 4.1a and 4.1b). The relatively weak faults in Asia (Fig. 4.7c) may explain the 

long-puzzling observation that active deformation induced by the indentation of India extends 

~3500 km north of the Himalaya (Fig. 4.1b). Specifically, the weakest faults in Asia (i.e., in 

Central Asia and northern Tibet) (Fig. 4.7c) are also the furthest from the India-Asia collisional 

front, which permits intracontinental deformation to occur within the Asian interior. The slippery 

faults in Asia make them sensitive to minor changes in crustal stress magnitude, which explains 

why the Asian interior is prone to large (M >7.0) devastating strike-slip earthquakes (Fig. 4.1b). 

The weaker faults in both locations can be readily explained by their hosting crustal 

compositions containing friction-reducing clays and hydrated phyllosilicates (e.g., Collettini et 

al., 2009): central Asia is dominated by flysch complexes (e.g., Sengör et al., 1993) and the 
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western San Andreas system is dominated by mélange and forearc materials (e.g., Dickinson, 

1981).  

Constraining fault strength is critical in modeling continental deformation (Bird and 

Kong, 1994) and earthquake mechanics (Console et al., 2015), and this work provides an 

additional method of estimating this critical parameter. 

 

4.7. Conclusions 

In this chapter I have shown that strike-slip fault spacing is linearly proportional to 

brittle-layer thickness in nature and scaled analogue experiments. Specifically, this relationship 

can be quantified as a function of brittle-crust thickness, fault strength, and regional stress state 

with a newly developed stress-shadow model. The application of this model using seismogenic 

zone thickness and fault spacing reveals that the closely spaced faults in the eastern San Andreas 

system are stronger than the widely spaced faults in the western San Andreas system. 

Furthermore, I have shown that the average friction coefficient of active strike-slip faults in the 

India-Asia collisional orogen is lower than that of faults in the San Andreas transform system.  
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Figure 4.1. Evenly-spaced strike-slip domains in (a) California and (b) Asia and their average 
fault spacing. Inset in (a) shows parallel faults in central California. Histograms show fault 
spacing for each domain of strike-slip faulting in (c) California and (d) Asia. Locations (shown as 
yellow stars) and magnitudes of major intracontinental earthquakes along strike-slip faults in 
California and Asia: (1) 1857 M = 7.9 Fort Tejon earthquake, (2) 1906 M = 7.8 San Francisco 
earthquake, (3) 1992 M = 7.3 Landers earthquake, (4) 1999 M = 7.1 Hector Mine earthquake,  
(5) 1927 M = 7.3 Lompoc earthquake, (6) 2001 M = 8.1 Kunlun Pass earthquake, (7) 1932 M = 
7.6 Changma earthquake, (8) 1920 M = 7.8 Haiyuan earthquake, (9) 1556 M = 8.0 Shaanxi 
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Figure 4.2. Conceptual model for the formation of evenly-spaced joints due to the stress shadow 
effect. (a) A layer under regional extension with a remote normal stress = . (b) The 
presence of a fracture causes a local stress reduction and the stress-shadow effect prevents 
fractures from forming within the strength shadow, with length S. (c) This effect causes fractures 
in the deforming region to be spaced by this critical distance S. Figure is modified from Yin et al. 
(2016). 
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Figure 4.3. Model set up, model parameters, and boundary conditions for the formation of 
evenly-spaced strike-slip faults. Vertically uniform shear stress drives the formation of parallel 
strike-slip faults in a brittle layer. Off-fault shear stress �xz satisfies the boundary conditions of 
�xz (x = 0) = �� and �xz (x = ∞) =���. Parameters in the model: ��, shear stress on the fault; ������, 
vertically averaged shear strength of the fault;����, regional shear stress in the brittle crust; S, 
stress-shadow length equal to fault spacing;�� and ��, shear fracture strength and vertically 
averaged shear fracture strength of the deforming strike-slip fault domain; ��	�����, vertically 
averaged shear fracture strength of the stronger bounding region with a thickness H; h, brittle-
crust thickness in region of strike-slip faulting; L, seismogenic zone thickness that includes 
regimes of frictional sliding (hf) and transitional frictional sliding and viscous creep (hfv); � 
=H/h. Coordinate system and sign convention are shown with red arrows.  
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Figure 4.4. Effects of model parameters on the relationship between fault spacing and brittle-
crust thickness as a function of (a) the difference between fault and crustal cohesive strengths 
�� � ��, (b) � values, and (c) the effective fault friction ��			. 
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Figure 4.5 (continued). (a) Plan view of experimental setup with 12-cm-wide basal sliding plate 
that is used to create to create two parallel shear zones in which Riedel shears form. Note that the 
resulting shear zone has a length and width of M and Wsz, respectively. Also shown is the 
coordinate axis and d-value, which measures the distance from the center of the basal-sliding 
plate to the Riedel-shear zone (b) A representative experimental run showing the general 
apparatus setup and the resulting development of nearly evenly-spaced parallel Riedel shear 
fractures in two parallel distributed shear zones using crushed walnut shells (h = 30 mm). The 
basal plate moved to the right in this image, which created left- and right-slip shear zones in the 
top and bottom of the image respectively. (c) Another representative experimental run with 7-
mm-thick viscous putty (hp) overlain by dry sand (h = 20 mm). The viscosity of the putty is 6.2 x 
103 Pa s. The basal plate in this image moved to the right. (d) Plot of fault spacing versus brittle 
layer thickness of sand and crushed walnut shells obtained from this study for all experimental 
runs. The best-fit linear regression is accomplished by forcing the lines through the origin. (e) 
Plot of fault spacing versus brittle layer thickness of sand underlain by viscous putty of different 
thicknesses and viscosities. The best-fit linear regression is accomplished by forcing the lines 
through the origin. 
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Figure 4.6 (continued). Earthquake location data earthquake data from (a) California and (b) 

Asia. Domains of evenly-spaced strike-slip faults with characteristic fault spacing are outlined. 

Calculation of seismogenic zone thickness used the data outlined for each domain. The profile 

numbers correspond to those shown in Figure A3. Data from Maggi et al. (2000), Schaff and 

Waldhauser (2005), Lin et al. (2007), Waldhauser and Schaff (2008), Chu et al. (2009), Sloan et 

al. (2011), and Hauksson et al. (2012). 
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Figure 4.8 (continued). (a) Conceptual plot of dimensionless shear stress/strength versus brittle-

crust thickness showing the inferred minimum brittle-crust thickness (h0) cutoff for the formation 

of continental strike-slip faults. Strike-slip faults will only be generated when the regional shear 

stress 𝜎𝑠
𝑟, which is linearly proportional to h, exceeds the vertically integrated shear-fracture 

strength of the material (�̅�) at a critical brittle-curst thickness h0. (b) Two scenarios for the 

continental strike-slip faulting that highlight the concepts in (a). When the brittle-crust is too thin 

(h < h0), the regional shear stress is not large enough to surpass the vertically averaged shear-

fracture strength of the crust, and no strike-slip faults are formed. When the brittle-crust 

thickness is greater than the cutoff thickness, strike-slip faulting can occur. (c) Conceptual plot of 

dimensionless shear stress/strength versus brittle-crust thickness showing the minimum (hmin) 

and maximum (hmax) brittle-layer thickness cutoffs for strike-slip faulting in the analogue 

experiments. The depth-independent fault-parallel shear stress (𝜎𝑓𝑝) intersects the depth-

dependent shear-fracture strength (�̅�) curve at a critical thickness hmax. Above this thickness 

value, strike-slip faulting is suppressed by the strength of the material. Below some threshold 

thickness hmin, strike-slip faults are also not formed. (d) Three scenarios for strike-slip faulting in 

the analogue experiments. When h is too low, there is a switch of the principal stress directions, 

from 𝜎2 being vertical for the strike-slip regime when h > hmin to 𝜎2 being horizontal for dip-slip 

fault regime when h < hmin, which results in blind thrusting and folding rather than strike-slip 

faulting. Additionally, when the brittle layer is too thick (h > hmax), the vertically averaged shear 

strength (�̅�) of the brittle layer is greater than 𝜎𝑓𝑝, which suppresses strike-slip faulting. Strike-

slip faulting does occur when hmin < h < hmax. Note that the green arrows indicates the principal 

stress orientation. 
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Table 4.1. Physical and mechanical properties of experimental materials. 

Material 

Density 

(kg/m3) 

Grain 

size (µm) ± σ C0 (Pa) ± σ µφ ± σ ϕ (º) 

Sand 1670 220 86 62.5 10.5 0.50 0.01 26.5 

Sand vs sandpaper - - - 51.5 40.5 0.53 0.03 28.1 

Sand vs putty/sand - - - - - 0.73 0.05 36.1 

Crushed walnut shells 790 332 82 36.8 10.2 0.40 0.01 21.6 

Walnut shells vs sandpaper - - - 31.0 29.0 0.51 0.04 27.1 

µφ, Coefficient of friction 
ϕ, Angle of friction 

230



Table 4.2. Observed fault spacing and seismogenic zone thickness. 

 
D95 thickness 

(km) 
± σ 

D90 thickness 

(km) 
± σ 

Fault spacing 

(km) 
± σ 

California       

Central California 14.4 1.9 12.8 1.7 33 [ref. 1] 3 

Western Southern California 15.7 1.1 14.3 1.2 47 [ref. 2] 15 

Mojave 11.9 1.1 10.9 1.3 16 [ref. 3] 2 

Eastern Transverse Range 12.1 1.5 11.0 1.2 20 [ref. 2] 8 

Best-fit linear regression of brittle-crust thickness vs. fault spacing for California 

D95: S = 7.2 (±1.5)L – 70.0 (±18.8)                  D90: S = 9.5 (± 1.9)L – 87.5 (± 22.5)               

 

Asia       

Central Asia 26.0 4.0 19.0 2.6 407 [ref. 4] 99 

Northern Tibet 14.5 0.7 13.5 2.1 178 [ref. 5] 53 

Central Tibet 10.7 0.8 9.7 0.6 92 [ref. 6] 24 

Iran 13.5 2.1 12.5 2.1 139 [ref. 7] 50 

Best-fit linear regression of brittle-crust thickness vs. fault spacing for Asia 

D95: S = 20.6 (± 6.2)L – 129.5 (± 78.9)            D90: S = 28.7 (± 8.9)L – 192.6 (± 100.5)               

Sources: [ref. 1]: Savage and Lisowski (1993); [ref. 2]: Dickinson (1996); [ref. 3]: Dokka and Travis 

(1990); [ref. 4]: Yin (2010); [ref. 5]: Taylor and Yin (2009); [ref. 6]: Yin and Taylor (2011) [ref. 7]: 

Bachmanov et al., (2004). 
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5.1. Abstract 

 The Qilian Shan of northern Tibet exposes a record of the early Paleozoic convergence 

and collision between the Kunlun-Qaidam continent and North China craton. In the central 

Qilian Shan ophiolite complexes, passive continental margin sequences, and strongly deformed 

forearc strata are juxtaposed against arc plutonic/volcanic rocks and ductilely deformed 

basement rocks as a result of the early Paleozoic Qilian orogen. To better constrain the evolution 

of the Qilian orogen and the resulting closure of the Qilian Ocean, I conducted an integrated 

investigation involving detailed geologic mapping across the central Qilian Shan, U-Th-Pb 

zircon and monazite geochronology, whole-rock geochemistry of igneous rocks, 

thermobarometry of the metamorphosed basement rocks, and synthesis of existing datasets 

across northern Tibet. The central Qilian Shan experienced two phases of arc magmatism at 

~960-870 Ma and ~475-445 Ma that were each immediately followed by periods of continental 

collision. Given the magmatic, metamorphic, and regional geologic history, I propose the 

following tectonic model for the Proterozoic through Paleozoic history of northern Tibet. (1) 

Early Neoproterozoic subduction accommodates the convergence and collision between the 

South Tarim-Qaidam and North Tarim-North China continents. (2) Late Neoproterozoic rifting 

partially separates a peninsular Qaidam continent from the southern margin of the Tarim-North 

China craton and opens the Qilian Ocean as an embayed marginal sea; this separation broadly 

follows the trace of the early Neoproterozoic suture zone. (3) South-dipping subduction along the 

northern margin of the Kunlun-Qaidam continent initiates in the Cambrian, first developing as 

the Yushigou supra-subduction zone (SSZ) ophiolite (which links along strike with the 

Aoyougou and Dongcaohe SSZ ophiolites) and then transitioning into the continental Qilian arc. 

(4) South-dipping subduction, arc magmatism, and the convergence between Qaidam and North 
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China continued throughout the Ordovician, with a trench-parallel intra-arc strike-slip fault 

system that is presently represented by the high-grade metamorphic rocks that display a 

pervasive right-lateral shear sense. (5) The closure of the Qilian Ocean occurred following the 

counter-clockwise rotation of the peninsular Qaidam continent toward North China, which is 

supported by the right-lateral kinematics of the intra-arc strike-slip fault and the westward 

tapering map-view geometry of Silurian flysch-basin strata. Continental collision at ~445-440 

Ma leads to widespread plutonism across the Qilian Shan and is recorded as the youngest 

population of monazite ages observed in this study (~450-420 Ma). This tectonic model implies 

the parallel closure of two oceans along the trace of Qilian suture zone since ~1.0 Ga. In 

addition, the Qilian Ocean was not the Proto- or Paleo-Tethys (i.e., the earliest through-going 

ocean separating Gondwana from Laurasia) as suggested by earlier studies, but rather 

represented a smaller marginal sea along the southern margin of the Laurasian continent. Lastly, 

Cenozoic deformation that results from India-Asia convergence is focused along these sites of 

repeated ocean closure. The major Cenozoic left-slip faults parallel these sutures, and Cenozoic 

shortening and continental underthrusting may have been assisted by the preexisting arc-

subduction-mélange channels.  

 

5.2. Introduction  

 The Paleo-Asian and Tethyan oceanic domains are separated by the so-called 

“Intermediate Units” of Şengör and Natal’in (1996), which consist of the Tarim and North China 

cratons in northern Tibet (Fig. 5.1). The tectonic evolution of the southern and northern margins 

of these cratons is key to the accretionary history of the Eurasian continent (Şengör and Natal’in, 

1996; Heubeck, 2001). The Tian Shan-Yin Shan and Solonker-Jilin-Yanji suture zones (Fig. 
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5.1), along the north of Tarim and North China, record the closure of the Paleo-Asian Ocean at 

the end of the Paleozoic (e.g., Xiao et al., 2003, 2004; Charvet et al., 2007; Windley et al., 2007). 

It is traditionally believed that the southern margin of the Intermediate Units experienced two 

distinct periods of ocean closure: (1) the early Paleozoic closure of the Qilian Ocean along the 

Qilian-Qinling suture zone and (2) the late Paleozoic-Mesozoic closure of the Paleo-Tethys (or 

the Neo-Kunlun Ocean of Wu et al., 2016) along the Kunlun-Dabie suture zone (Fig. 5.1B) (e.g., 

Yin and Nie, 1993; Yin et al., 2007a; Xiao et al., 2009; Song et al., 2013, 2014; cf. Wu et al., 

2016). However, the Proterozoic and Paleozoic tectonic history of this southern margin is 

particularly enigmatic because in addition to ocean-closure-related arc-continent and continent-

continent collisional events, the region was modified by later deformation including Mesozoic 

extension and Cenozoic intracontinental deformation (Yin and Harrison, 2000; Chen et al., 2003; 

Cowgill et al., 2003; Yin, 2010). Specifically, whether the Qilian Ocean is the oldest oceanic 

domain separating Gondwana from Laurasia (i.e., the Proto- or Paleo-Tethys; e.g., Hou et al., 

2006; Gehrels et al., 2011; Stampfli et al., 2013) or a embayed marginal sea along southern 

Laurasia (Guo et al., 2005; Zuza and Yin, 2014) depends on how and when the ocean was 

opened and closed. 

The Cenozoic Qilian Shan-Nan Shan and North Qaidam thrust belts (see Chapter 2) (Fig. 

5.2) presently expose the Qilian suture(s), Qilian orogen, the southern margin of the North China 

craton, and the northern Kunlun-Qaidam microcontinent (Fig. 5.1B). The abundance of 

ophiolite-bearing mélange and blueschist assemblages in the Qilian Shan led early workers to 

suggest that this region represents the site of the closed Qilian Ocean (Wang and Liu, 1976; Xiao 

et al., 1978). More recent research has shown that this ocean opened in the Neoproterozoic and 

closed during the early Paleozoic Qilian orogen (e.g., Yin and Harrison, 2000; Gehrels et al., 
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2003a, 2003b, 2011; Yin et al., 2007a; Xiao et al., 2009; Song et al., 2013, 2014; Wu et al., 

2016). The timing, subduction polarity, and nature of the Qilian arc and Qilian orogen, which 

accommodated the closure of the Qilian Ocean, remain poorly constrained.  

In this chapter I provide new insights into the tectonic evolution of the Qilian Ocean, 

Qilian orogen, and southern margin of the North China craton, which impacts reconstructions of 

Neoproterozoic and Paleozoic Earth (e.g., Heubeck, 2001; Stampfli and Borel, 2002; Li et al., 

2008; Wu et al., 2016). I conducted an integrated investigation of the central Qilian Shan that 

involved detailed geologic mapping, U-Th-Pb zircon and monazite geochronology, whole-rock 

geochemistry, thermobarometry, and synthesis of existing datasets across northern Tibet. This 

research leads to a new reconstruction of the Proterozoic-Paleozoic development of northern 

Tibet that involves the parallel closure of two oceans along the Qilian suture zone since ~1.0 Ga.  

 

5.3. Deformation history of northern Tibet 

 The early Paleozoic Qilian orogen is comprised, generally from north to south, of the 

mélange-ophiolite complex of the Qilian suture(s), the Ordovician-Silurian arc belt, and the 

intra-arc North Qaidam ultra-high pressure (UHP) metamorphic belt (Yin and Harrison, 2000; 

Yin et al., 2007a; Menold et al., 2009; Song et al., 2013, 2014) (Figs 5.1B and 5.2). The original 

configuration of the combined Qilian orogen and North Qaidam UHP metamorphic belt has been 

modified by Mesozoic extension and Cenozoic intracontinental deformation associated with the 

India-Asia collision (Vincent and Allen, 1999; Yin and Harrison, 2000; Chen et al., 2003; 

Gehrels et al., 2003a, 2003b), yet existing models of the Qilian orogen rarely consider the effects 

of this later deformation (e.g., Mattinson et al., 2007; Xiao et al., 2009; Song et al., 2013, 2014; 
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cf. Yin et al., 2007a). Below I briefly outline the important Phanerozoic tectonic events that 

affected northern Tibet. 

 

5.3.1. Cenozoic deformation 

 As discussed in Chapters 2 and 3, the eastward-tapering Cenozoic Qilian Shan-Nan Shan 

thrust belt defines the northeastern margin of the Tibetan Plateau (Fig. 5.2). The thrust belt links 

with the left-slip Haiyuan fault to the east and is bounded to the west by the left-slip Altyn Tagh 

fault (Fig. 5.2) (Burchfiel et al., 1989; Meyer et al., 1998). The thrust belt is thick skinned and 

most thrusts are northeast-dipping, with the exception of the southwest-dipping North Qilian 

Shan frontal thrust system. Cenozoic shortening juxtaposes Precambrian-Paleozoic basement 

rocks against late Paleozoic through Cenozoic strata (Meyer et al., 1998; Wang and Burchfiel, 

2004; Yin et al., 2007a; Zheng et al., 2010). As a result, restoration of this deformation is 

required to observe the pre-Cenozoic regional configuration.  

Cenozoic shortening across the Qaidam Basin, North Qaidam, and Qilian Shan-Nan Shan 

thrust belts is 250-350 km (Yin et al., 2007b, 2008a, 2008b; Zuza et al., 2016; Chapter 2). 

Because fault offset and slip rate along the Haiyuan fault is negligible (< 10 of km) at its western 

termination (Zuza and Yin, 2016; Chapter 3), east-west translation and modification of the 

Paleozoic structures is minimal. However, the left-slip Altyn Tagh fault truncates the surface 

traces of the Qilian orogen and suture (Fig. 5.2). Paleozoic UHP and suture zone rocks in the 

Altyn Tagh Range correlate with those in North Qaidam and the Qilian Shan, which indicates 

~450 km of left-lateral offset on the Altyn Tagh fault (Sobel and Arnaud, 1999; Yang et al., 

2001; Zhang et al., 2001).  
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5.3.2. Mesozoic extension 

 Mesozoic regional extension may have affected much of northern Tibet, including the 

Altyn Tagh Range, Qaidam Basin, Qilian Shan-Nan Shan, and Hexi Corridor, from southwest to 

northeast, respectively (Fig. 5.2) (Huo and Tan, 1995; Vincent and Allen, 1999; Chen et al., 

2003; Yin et al., 2008a, 2008b). This extension is expressed by the development of extensive 

Jurassic and Cretaceous extensional and transtensional basins (Vincent and Allen, 1999; Chen et 

al., 2003; Yin et al., 2008a, 2008b). Because of the limited exposure of Mesozoic rocks and 

structures, the magnitude of this extension is unconstrained. However, early Paleozoic muscovite 

40Ar/39Ar ages from the footwall of Cretaceous normal faults indicate that magnitude of 

Cretaceous normal faulting was small (< ~10 km) (Chen et al., 2003).   

 

5.3.3. Paleozoic tectonics 

The early Paleozoic Qilian orogen is the most dominant Paleozoic feature in the Qilian 

Shan, and it records the closure of the Qilian Ocean(s) as the Qaidam-Kunlun continent collided 

against the southern margin of the Tarim-North China cratons (Yin and Nie, 1996; Sengör and 

Natal’in, 1996; Sobel and Arnaud, 1999 Yin and Harrison, 2000; Gehrels et al., 2003a, 2003b; 

Yin et al., 2007a; Xiao et al., 2009; Song et al., 2013, 2014). The Qilian orogen is composed of 

flysch, arc-type assemblages, ophiolites, and low- to high-grade metamorphic rocks. Several 

important first-order problems regarding the development of the Qilian orogen remain 

unresolved (Fig. 5.3; Table 5.1). (1) How many arcs and what type of arcs (i.e., oceanic or 

continental) were involved in orogeny (e.g., Xiao et al., 2009; Yang et al., 2009, 2012; Song et 

al., 2013)? (2) Was the subduction polarity north- and/or south-dipping (e.g., Sobel and Arnaud, 

1999; Yin and Harrison, 2000; Gehrels et al., 2003a, 2003b; Yin et al., 2007a; Xiao et al., 2009; 
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Yang et al., 2009, 2012; Yan et al., 2010; Gehrels et al., 2011; Song et al., 2013)? (3) When did 

collision occur (e.g., Liu et al., 2006; Qi, 2003; Tung et al., 2007; Lin et al., 2010)? Lastly, when 

was the final closure of the Qilian ocean (i.e., Devonian or Silurian) (e.g., Xiao et al., 2009; 

Yang et al., 2012)?  

Despite these uncertainties, the following is known about the Qilian orogen. (1) An open 

ocean(s) existed from ~550 to 448 Ma as evidenced by the distribution of ophiolite fragments 

(Smith et al., 2006; Xiang et al., 2007; Tseng et al., 2007; Zhang et al., 2007; Xia and Song, 

2010; Song et al., 2013). (2) Arc magmatism, subduction, and collision occurred from ~516 Ma 

to ~400 Ma as evidenced by the distribution of arc-related and syn-collisional plutons (Qian et 

al., 1998; Cowgill et al., 2003; Gehrels et al., 2003a; Su et al., 2004; Wu et al., 2004, 2006, 2010; 

Hu et al., 2005; Liu et al., 2006; Quan et al., 2006; He et al., 2007; Tseng et al., 2009; Dang et 

al., 2011; Xia et al., 2012; Xiao et al., 2012; Xiong et al., 2012; Song et al., 2013; Wu et al., 

2016). (3) Geochronology ages for metamorphism across the Qilian Shan range from 489-684 

Ma (U-Pb zircon rim ages from Song et al., 2006; Zhang et al., 2007) to 490-470 Ma (Th-Pb in-

situ monazite ages from this study). Two distinct pulses of metamorphism are observed in the 

North Qaidam UHP rocks: the first from 490-460 Ma and the second from 440-420 Ma 

(Mattinson et al., 2006; Menold et al., 2009, 2016; Song et al., 2014). (4) Finally, high pressure 

blueschist is exposed in the northern Qilian Shan, and cooling ages range from 454-442 Ma 

(39Ar/40Ar white mica ages of Liu et al., 2006) to 415-413 Ma (39Ar/40Ar glaucophane ages of 

Lin et al., 2010). 

In the central Qilian Shan, the boundary between the Qilian arc complex and the North 

China craton is expressed as a ductile right-slip shear zone in high-grade metamorphic rocks (Qi, 

2003) juxtaposed against a low-grade metamorphosed mafic to ultramafic mélange, Ordovician 
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forearc strata, and ophiolite complexes. Silurian flysch deposits in have been attributed to both a 

back-arc (Song et al., 2013) and fore-arc setting (Yan et al., 2007, 2010). Based on similar 

lithological assemblages, the Qilian orogen and suture(s) probably connect with the Qinling 

orogen to the southeast (e.g., Xu et al., 2008; Tseng et al., 2009; Dong et al., 2011; Wu et al., 

2016), forming a >1000 km long early Paleozoic orogenic belt (Figs. 5.1 and 5.2). 

 

5.4. Regional geologic setting of the Qilian Shan  

 The primary elements of the early Paleozoic Qilian orogen include, from north to south, 

the (1) southern margin of the North China craton, including Neoproterozoic passive margin 

strata along this margin, (2) the North Qilian suture, which is a belt of discontinuously exposed 

ophiolitic material that locally experienced blueschist-facies metamorphism, (3) the South Qilian 

suture, which is a belt of variably exposed ophiolite fragments that do not record high-grade 

metamorphism, (4) a wide zone of arc volcanic and plutonic rocks associated with the Qilian arc, 

which respectively overly and intrude amphibolite-grade metamorphic rocks, (5) the North 

Qaidam ultra-high pressure (UHP) metamorphic belt with associate ophiolite complex, and (6) 

the Kunlun-Qaidam Precambrian microcontinent (e.g., Yin et al., 2007a; Xiao et al., 2009; Song 

et al., 2013, 2014; Wu et al., 2016). 

 

5.4.1. Geology of the Qilian Shan 

The southern margin of the North China craton consists of Paleoproterozoic (~2.3-1.8 

Ga) basement with a Mesoproterozoic cover sequence (Xiu et al., 2002; Tung et al., 2007; Gong 

et al., 2011; Wan et al., 2013). Some of the oldest intrusions have ~2.3 Ga magmatic zircon ages 

and ~2.85 zircon Hf model ages, which are similar to ages in the Kunlun-Qaidam continent and 
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thus the two continents may have shared a common Proterozoic history (Dan et al., 2012). The 

Neoproterozoic opening of the Paleo-Asian and Qilian Oceans along the northern and southern 

margins of the North China craton, respectively (Fig. 5.1), is evidenced by widespread passive 

margin sequences and ~825-600 Ma bimodal volcanic and intrusive rocks (Li et al., 2005; Tseng 

et al., 2006, 2007; Xu et al., 2015).  

The discontinuously exposed North Qilian suture zone (Fig. 5.2) consists of ophiolite 

complexes, high-pressure metamorphic rocks including lawsonite-bearing eclogite, volcanic arc 

rocks, a westward-tapering Silurian flysch basin, and dispersed Devonian molasse (e.g., Pan et 

al., 2004; Song et al., 2007, 2013; Zhang et al., 2007; Xiao et al., 2009). The high-pressure 

blueschist rocks yield 40Ar/39Ar cooling ages that range from 454-442 Ma (white mica ages of 

Liu et al., 2006) to 415-413 Ma (glaucophane ages of Lin et al., 2010). Ophiolite suites along this 

suture zone, which consist of gabbro, pillow basalt, diabase dikes, mafic rocks, and serpentinized 

peridotite, are exposed at the Jiugequan, Biandukou, and Laohushan localities. Zircon ages from 

gabbroic rocks or diabase dikes range from ~510 to 470 Ma, numerous inherited zircon grains in 

a single sample (Xia and Song, 2010; Lin et al., 2010; Song et al., 2013). The significant zircon 

inheritance coupled with a depleted mantle geochemical signatures suggests that the ophiolites 

are supra-subduction zone (SSZ)-type ophiolites (e.g., Shervais, 2001; Wakabayashi et al., 2010; 

Xia et al., 2012).  

The South Qilian suture zone (Fig. 5.2B) consists of suites of serpentinite, altered 

ultramafic rocks, gabbro, pillow basalt, and mélange with marl and chert that are exposed at the 

Aoyougou, Yushigou, Dongcaohe, and Yongdeng localities, from northwest to southeast 

respectively (e.g., Yang et al., 2002; Shi et al., 2004; Tseng et al., 2007; Song et al., 2013). 

Magmatic zircons from gabbroic samples yield a range of ages from 550 to 490 Ma (Yang et al., 
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2002; Shi et al., 2004; Tseng et al., 2007; Song et al., 2013). This zircon inheritance is further 

evidence that these ophiolites may be SSZ-type ophiolites. Note that the North and South Qilian 

sutures may not be separate suture zones that record separate ocean closure events. Both “belts” 

consist of sporadic outcrops of ophiolite fragments that are discontinuously exposed throughout 

the Qilian Shan (Yin and Harrison, 2000; Song et al., 2013) (Fig. 5.2B), and their exposure is 

directly controlled by Cenozoic thrusting. The surface traces of both suture zones are also 

truncated to the northwest against the left-slip Altyn Tagh fault (e.g., Sobel and Arnaud, 1999; 

Cowgill et al., 2003). The South Qilian suture appears to link to the southeast with the North 

Qinling suture zone (Fig. 5.2) (Yin and Nie, 1996; Tseng et al., 2009).   

 The Kunlun-Qaidam basement of the Qilian Shan varies from west to east. In the west, 

Mesoproterozoic cratonal and/or passive margin strata, intruded by ~960-900 Ma plutons 

(Gehrels et al., 2003a, 2003b; Wu et al., 2016; this study), are juxtaposed against an eclogite-

bearing metamorphic complex with 775-930 Ma magmatic zircons (Tseng et al., 2006; Xue et 

al., 2009; Tung et al., 2007) and paragneiss with > 880 Ma detrital zircon grains (Tung et al., 

2007). In the eastern Qilian Shan, Paleoproterozoic crystalline rocks are intruded by 1190–750 

Ma plutons and overlain by a Neoproterozoic-Cambrian shelf sequence (Guo et al., 1999; Wan et 

al., 2001, 2003; Wang et al., 2007; Tung et al., 2007). Volcanic arc plutons with ages of 516-440 

Ma are found throughout the Qilian Shan (Qian et al., 1998; Cowgill et al., 2003; Gehrels et al., 

2003a; Su et al., 2004; Wu et al., 2004, 2006, 2010; Hu et al., 2005; Liu et al., 2006; Quan et al., 

2006; He et al., 2007; Tseng et al., 2009; Dang et al., 2011; Xia et al., 2012; Xiao et al., 2012; 

Xiong et al., 2012; Tung et al., 2012; Song et al., 2013; Wu et al., 2016; this study). Silurian syn-

collisional plutons are also dispersed throughout the Qilian Shan (e.g., the ~424 Ma Jinfosi 

pluton dated by Wu et al., 2010). 
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5.4.2. Geology of the North Qaidam metamorphic belt 

 The northwest-trending early Paleozoic North Qaidam metamorphic belt is located along 

the northeastern margin of Qaidam Basin (Fig. 5.2). The metamorphic rocks, which locally 

experienced ultra-high pressure (UHP) metamorphism, are exposed in the Lüliang Shan, Xitie 

Shan, and Dulan localities (Mattinson et al., 2007; Yin et al., 2007a; Menold et al., 2009, 2016; 

Song et al., 2014). This belt is truncated to the northwest by the Altyn Tagh fault, and is 

apparently offset ~450 km left-laterally to a position in the Altyn Tagh Range (Fig. 5.2). 

Metamorphic rocks at Jianggelesayi and Bashiwake of the Altyn Tagh Range are correlative to 

those in the North Qaidam UHP metamorphic belt (Mattinson et al., 2007; Zhang et al., 2001; 

Yang et al., 2001; Yin and Harrison, 2000). Both metamorphic belts consist of orthogneiss, 

paragneiss, and marble, with lenses of eclogite and ultramafic to mafic rocks.  

 Most of metamorphic rocks in North Qaidam, including the eclogite blocks and ophioltic 

rocks, experienced (epidote-)amphibolite facies metamorphism (Menold et al., 2009). The 

eclogite-bearing rocks experienced UHP metamorphism followed by later amphibolite 

overprinting, but the ophiolite rocks do not show signs of metamorphism greater than epidote-

amphibolite facies (Menold et al., 2009). Because the ophiolite and UHP rocks are tightly folded 

together and their contacts are often transposed, the two units were probably juxtaposed in the 

middle- to lower-crust (Yin et al., 2007a; Menold et al., 2009). It is important to note that that all 

of the pre-Devonian metamorphic rocks in the North Qaidam metamorphic belt are bounded by 

north-dipping Cenozoic thrust faults, and that the exposure of the epidote-amphibolite facies and 

UHP metamorphic rocks is controlled by Cenozoic deformation (Yin et al., 2007a). This fact is 

important for my tectonic model of the Qilian Shan (see section 5.10). 
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5.4.3. Tectonic models for the Qilian orogen 

 Numerous tectonic models have been proposed to account for the geologic observations 

described above. Although the work presented in this chapter is focused on the central Qilian 

Shan, any viable model must also account for the geologic history of the Altyn Tagh Range, 

Kunlun, Qaidam Basin, North Qaidam, and the North China craton (Figs. 5.1 and 5.2). This 

includes eclogite and ultra-high pressure (UHP) metamorphism of continental and oceanic 

material exposed in the Altyn Tagh Range and North Qaidam (Sobel and Arnaud, 1999; Zhang et 

al,. 2005; Yin et al., 2007a; Menold et al., 2009; Song et al,. 2014), early Paleozoic arc-related 

granitoids throughout northern Tibet, Cambrian-aged ophiolites including supra-subduction zone 

(SSZ) ophiolites (Song et al., 2013), ophiolitic mélange dispersed throughout the Qilian Shan, 

and early Paleozoic blueschist and eclogite in the northern Qilian Shan and Altyn Tagh Range 

(e.g., Wu et al., 1993; Liu et al., 2006; Song et al., 2006, 2007; Zhang et al., 2007; Xiao et al., 

2009 ).  

The end-member models proposed for the Qilian arc and orogen (e.g., Mattinson et al., 

2007; Yin et al., 2007a) primarily differ in the number of arcs involved, what the arc(s) was 

constructed upon (i.e., oceanic or continental crust), subduction polarity, timing of collision, and 

the processes responsible for UHP metamorphism and UHP rock exhumation (Fig. 5.3; Table 

5.1). For example, a single south-dipping arc would require the arc plutons to intrude the Qaidam 

microcontinent to the south of the main Qilian suture and accretionary wedge (e.g., Sobel and 

Arnaud, 1999; Gehrels et al., 2003a, 2003b), whereas northward subduction would require the 

arc to develop north of the main suture within the North China craton (Song et al., 2006, 2013, 

2014) (Fig. 5.3). The north-dipping-subduction model implies that the UHP metamorphic rocks 

were brought to UHP-depths at the subduction zone and were exhumed 100s of km to the south 
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through the Qaidam lithosphere (e.g., Song et al., 2006, 2014) (Fig. 5.3A). This model also 

cannot account for early Paleozoic magmatism within the Qaidam continent, south of the Qilian 

suture trace(s).  

 

5.5. Geologic mapping of the central Qilian Shan 

Geologic mapping was conducted in the central Qilian Shan, near the town of Yanglong 

(~38.5°N, ~98.5°E) (Figs. 5.2), along the Shule, Tuo Lai, and Heihe Rivers. Details of this 

mapping, including a detailed lithostratigraphic column, are presented in Chapter 2. A simplified 

geologic map of the Tuo Lai Nan Shan and Tuo Lai Shan, focused on the tectonostratigraphic 

units, is given in Figures 5.5, whereas a regional-scale geologic map of the central Qilian Sha is 

provided in Figure 5.6. Full-size geologic maps are attached as a supplementary file 

(Supplementary Files 1 and 2). 

 

5.5.1. Proterozoic and Paleozoic map units 

 The important geologic relationships observed in the central Qilian Shan can be 

summarized in a simplified tectonostratigraphic column (Fig. 5.4). This column also integrates 

U-Pb zircon and Th-Pb monazite dating (see section 5.6), detrital zircon ages (Y. Zhang, C. Wu, 

A. Yin, L. Ding, and A. Zuza, unpublished data), whole-rock geochemistry data (see section 

5.7), and thermobarometry analysis (see section 5.8). General stratigraphic age assignments are 

from Pan et al. (2004), Gansu Geological Bureau (1989), Qinghai BGMR (1991), Zhiyi and 

Dean (1996), our unpublished detrital zircon data, and my own observations.  

 The metamorphosed basement rocks consist of gneiss, schist, foliated amphibolite, 

quartzite, and local phyllite, marble, and slate. These rocks have been interpreted as a 
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Proterozoic passive margin sequence (Gehrels et al., 2003a, 2003b). The youngest age 

population from our detrital zircon analysis has a weighted mean age of ~1.27 ± 0.05 Ga (Fig. 

5.4B), which supports a Mesoproterozoic age for the protolith. Foliated granitoid rocks also 

intrude the metamorphic unit. Foliations are all generally near vertical and northwest striking, 

and stretching lineations generally have a northwest trend and are subhorizontal (Fig. 5.5C). 

Kinematic indicators, including S-C fabric and mantled porphyroclasts (e.g., σ- and δ-clasts), 

suggest right-lateral shear of this entire unit (Figs. 5.6 and 6.7A-6.7C). Because the different 

metamorphic units (e.g., schist, amphibolite, and foliated granitoid) all have parallel foliations 

and stretching lineations (Fig. 5.5C), it is likely that the same deformational event affected the 

units together.   

The dating of the foliated granitoid by zircon geochronology is discussed in section 5.6, 

and the interpreted crystallization ages range from 961 Ma to 868 Ma. This confirms that the 

schist and gneiss protoliths are older than Neoproterozoic in age, and requires that regional 

deformation affected all of these units after the intrusion of the youngest granitoid at ~860 Ma.  

 The oldest sedimentary strata exposed in the central Qilian Shan consist of massive-

bedded limestone and dolostone (mostly marble) interbedded with low-grade metamorphosed 

basalt and volcaniclastic layers (Fig. 5.4A). The carbonate rocks have a distinct massive 

blue/grey or orange appearance. The regional geologic map (Pan et al., 2004) give this unit a 

Changchengian age (i.e., Paleo- or Mesoproterozoic) on the basis of an older regional geologic 

survey (Gansu Geological Bureau, 1989). However, I assign a Neoproterozoic age based on 

recent geochronology studies on the widespread basalt that is interbedded with carbonate strata 

(Mao et al., 1998; Xia et al., 1999), including new 600-580 Ma ages for these basalts (Xu et al., 
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2015). Compared to the higher-grade Mesoproterozoic gneiss and schist unit, the relatively low-

grade deformation observed in these rocks corroborates a Neoproterozoic age. 

An ophiolite complex known as the Yushigou ophiolite suite (Shi et al., 2004; Hou et al., 

2006; Song et al., 2013) is exposed in the northern portion of the mapping area (Figs. 5.5 and 

5.8). This complex is variably composed of mélange and fragments of an incipient oceanic arc. 

The unit is strongly deformed and original lithologic contacts are highly sheared. There are 

ultramafic to mafic rocks, pillow basalts, and limestone and quartzite-sandstone knockers with 

chert. In addition, there are outcrops of massive plagioclase-pyroxene gabbro. The unit has been 

assigned a Cambrian age based on reported fossils (Xiao et al., 1978) and geochronology studies 

(Shi et al., 2004; Song et al., 2013). Cross-cutting diabase dikes yield U-Pb ages that span 550-

500 Ma (discussed in section 5.6) (see also Song et al., 2013), and because of the prevalence of 

inherited zircon ages, I suggest that the Yushigou ophiolite may have formed in a supra-

subduction zone (SSZ) setting (Shervais, 2001; Wakabayashi et al., 2010) (see section 5.6 for 

further discussion). Taken together, this unit represents part of the South Qilian suture (Fig. 5.2), 

which connects along strike with the Aoyougou ophiolite (Zhang et al., 2001; Xiang et al., 2007) 

to the northwest and the Dongcaohe ophiolite (Tseng et al., 2007) to the southeast.  

Early Paleozoic rocks consist of deformed sandstone, siltstone, thinly-bedded limestone, 

and volcanoclastic rocks that are intruded by Ordovician arc plutons (Fig. 5.4A). The 

sedimentary strata are interpreted to represent forearc to foreland basin deposits (Xiao et al., 

2009; Zhiyi and Dean, 1996). Both the basement rocks and early Paleozoic strata are intruded by 

early Paleozoic plutons. The dating of these bodies via U-Pb zircon geochronology is discussed 

in section 5.6, and their interpreted crystallization ages range from 474 Ma to 445 Ma. The oldest 
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plutons (~474 Ma) are foliated, with foliations parallel to the other metamorphosed rocks, 

whereas the younger granitoids (~450-455 Ma) are undeformed.  

Taken together, the early Paleozoic and Proterozoic rocks represent the Qilian orogen. 

Following early Paleozoic orogeny, the Qilian basement rocks are unconformably overlain by 

post-orogenic cover sequences of parallel and conformable Carboniferous through Triassic strata 

(Fig. 5.4). The middle- to late-Paleozoic time represents a relatively quiescent time in northern 

Tibet, until subduction of the Paleo-Tethys and Paleo-Asian Oceans initiates to the south and 

north respectively (e.g., Wu et al., 2016; see Chapter 6).  

 

5.5.2. Field relationships 

Detailed field relationships focused on the Cenozoic tectonic evolution of the mapping 

areas are described in Chapter 2. Here, I describe geologic features that are related to the 

Proterozoic and Paleozoic history of the Qilian Shan. 

The Proterozoic basement unit has strongly developed foliations and stretching 

lineations. These fabrics are inferred to have developed in the early Paleozoic as a result of the 

Qilian arc and subsequent Qilian orogen. Foliations are defined by mica layering in the mica ± 

garnet schist rocks, gneissic banding with relatively mafic (biotite and amphibole) and felsic 

(plagioclase and quartz) layers, plagioclase layering in foliated garnet amphibolite rocks, or 

weak-to-strong mineral alignment (mostly mica and/or amphibole grains) in the foliated 

granitoid rocks. Stretching lineations are observed within the foliation surface and stretched 

quartz or plagioclase is most evident in many outcrops. 

Because this metamorphic unit has been affected by later deformation (e.g., Cenozoic 

folding and thrust faulting), it is possible that these foliation and lineation attitudes were 
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modified from their early Paleozoic configuration. For example, the near vertical foliations and 

subhorizontal lineations could have originally been part of a major early Paleozoic thrust fault 

with lineations that parallel the dip of the foliations. To constrain their original orientation, as in 

Chapter 2, I restore the foliation and lineation attitudes back to their pre-Carboniferous state by 

rotating the data so that Carboniferous strata are horizontal (Fig. 5.5C). The average foliation 

attitude and lineation plunge-trend observations from the corrected pre-Carboniferous datasets 

are 126/84ºSW and 12/119, respectively (Fig. 5.5C). Mantled porphyroclasts (e.g., σ- and δ-

clasts) and an S-C fabric indicate right-lateral shear (Figs. 5.7A-5.7C) across the entire central 

metamorphic unit (Fig. 5.6). This data suggests that the sheared basement rocks were part of an 

early Paleozoic right-slip strike-slip shear zone (Fig. 5.6). 

The Cambrian ophiolite (i.e., fragments of the Yushigou ophiolite) and mélange units 

(Fig. 5.8) are only juxtaposed against the Neoproterozoic marble unit (Figs. 5.6 and 5.7), and 

where observed, the Neoproterozoic unit is always structural beneath the ophiolite suite. 

Although this tectonic contact may have been reactivated in the Cenozoic, this relationship 

suggests that the Neoproterozoic strata were originally thrust beneath the obducted ophiolite 

suite during the Qilian orogen.  

Early Paleozoic slightly deformed to undeformed plutonic rocks are common throughout 

the mapping area (Fig. 5.5). Outcrops range in size from 10s to 1s of square kilometers. These 

granitoids, which range in composition alkali feldspar granite to quartz monzonite, intrude 

basement rocks and early Paleozoic strata. Furthermore, these plutons intrude the contact 

between the Ordovician and Proterozoic basement units (Fig. 5.5), which requires this contact to 

be pre-Ordovician. The plutons also intrude the northern schist unit in the Tuo Lai Shan (Fig. 

5.5), which presently have no independent age constraints. This requires the schist to be similar 

253



to the Proterozoic schist in the Tuo Lai Nan Shan (Fig. 5.5). It is important to note that the 

Ordovician plutons do not intrude Neoproterozoic rocks that are inferred to be part of North 

China’s passive continental margin.  

Carboniferous strata unconformably overly these plutonic rocks, Proterozoic rocks, and 

early Paleozoic strata (Fig. 5.5). This unconformity indicates that following the Qilian orogen, all 

of these rocks were at or near the surface, at least locally. I also use this unconformity surface as 

a marker horizon for cross-section restoration (see Chapter 2). 

 

5.6. Geochronology 

5.6.1. U-Pb zircon geochronology 

5.6.1.1. Methods 

Zircon grains were separated using standard crushing and density methods, including 

heavy liquid and magnetic separation, at UCLA and the Institute of Geomechanics, Chinese 

Academy of Geological Sciences (CAGS) in Beijing. Grains were mounted in 1” epoxy rounds 

along with zircon standards, and the mount was polished to 0.25 μm and coated with ~100 Å of 

gold using a sputter-coater. Prior to analysis, zircon grains were observed by a 

cathodoluminescence (CL) detector on a JEOL SuperProbe scanning electron microscope (SEM) 

to document their internal structure and guide analysis locations (Fig. A.6).  

U-Pb single shot analyses on zircon were acquired on two separate ion microprobe 

instruments, depending on the sample: analyses were performed either on the Sensitive High 

Resolution Ion Microprobe (SHRIMP) - II at the Beijing SHRIMP center, Institute of Geology, 

Chinese Academy of Geological Sciences (CAGS) in Beijing following the procedures of 

Williams (1998), or on a CAMECA IMS-270 secondary ion mass spectrometer (SIMS) at UCLA 
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using the analytical procedures of Quidelleur et al. (1997). Each instrument used different zircon 

standards. The interelement fractionation between U, Th, and Pb during analysis were corrected 

by using a linear calibration curve of 206Pb/U RSF (relative sensitivity factor) versus UO/U for 

the following zircon standards: TEM (zircon from the Middledale Gabbroic Diorite in eastern 

Australia: 416.75 ± 0.24Ma; Black et al., 2003) and AS3 (zircon from the Duluth Complex: 

1099.1 ± 0.5 Ma; Paces and Miller, 1993; Schmitz et al., 2003) at CAGS and UCLA, 

respectively. The absolute concentrations of U, Th, and Pb were calibrated using the following 

zircon standards: SL 13 (Sri Lankan zircon: 572.1 ± 0.4 Ma; Claoué-Long et al., 1995) and 

Harvard 91500 (i.e., a Canadian zircon: 1065 Ma; Wiedenbeck et al., 1995) at CAGS and 

UCLA, respectively. Analyses were made using an 8-15 nA O- primary beam focused to a spot 

of ~20 μm diameter. To enhance the secondary ionization of Pb+ and increase the measured Pb 

isotope intensity, the sample chamber was flooded with oxygen at a pressure of ~3×10-5 torr. The 

isotopic ratios were corrected for common Pb with a 204Pb correction from the model of Stacey 

and Kramers (1975). Data was reduced and processed via the in-house ZIPS 3.0.4 program 

developed by Chris Coath. Concordia plots and ages were obtained using Isoplot/Ex 4.15 

(Ludwig, 2003). 

The primary goal of U-Pb zircon analysis was to interpret a crystallization age of the 

igneous samples. To this end, I analyzed 15-25 gains from each sample (Fig. A.6) and examined 

the resulting age distribution of concordant analyses for each sample. If multiple age populations 

existed, the weighted mean age of the youngest population of zircon ages was interpreted as the 

crystallization age. Additional criteria for excluding specific analyses are given along with the 

full isotopic information in Table A.7. Most of the analyzed zircon grains are early Paleozoic in 
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age and I report their 206Pb/238U ages. For samples that yield Neoproterozoic ages (i.e., 1000-541 

Ma), their 206Pb/207Pb ages are reported. 

 

5.6.1.2. Sample description and results 

 Thirteen samples were analyzed, including six slightly deformed to undeformed samples 

from the early Paleozoic Qilian arc, two mafic dike samples from the ophiolite complex, one 

tonalitic dike sample that crosscuts Ordovician rocks, and four foliated granitoid samples from 

the metamorphic basement (Table 5.2). All of the samples were collected from the mapping area 

(Fig. 5.5B; Supplemental Fig. 2), with the exception of one that was collected from a large 

pluton ~300 km to the east of the mapping area (Table 5.2; Fig. 5.2).  

 Individual spot locations can be found in Figure A.6, and the detailed isotopic results can 

be found in Table A.7. Concordia diagrams showing the results of single shot zircon analyses 

and relative probability plots of the ages for each sample are shown in Figure 5.9. The 

interpreted crystallization age for the igneous samples is summarized in Table 5.2. 

All of the undeformed and some of the deformed plutonic bodies exposed throughout the 

central Qilian Shan (e.g., Figs. 5.5 and 5.6) are inferred to be early Paleozoic in age (Pan et al., 

2004). I dated six granitoid samples to constrain the timing of local magmatism (Table 5.2). Two 

samples were collected from a large undeformed alkali feldspar granite body in the Tuo Lai Nan 

Shan that intrudes the foliated Proterozoic gneiss (Fig. 5.5B; Supplemental Fig. 2). Sample AZ 

07-17-13 (4) was collected on the southern flank of the range. Fifteen zircons were analyzed and 

U-Pb ages range from 314 Ma to 680 Ma (Fig. 5.9B). The weighted average of twelve 

concordant analyses is 449 ± 13 Ma (MSWD = 0.99). The other analyses were excluded because 

of discordance or low radiogenic Pb. Sample RR 05-03-12 (6) was collected ~6.5 km northeast 
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of the previous sample. Twenty-five grains were analyzed, yielding ages that range from 451 Ma 

to 510 Ma (Fig. 5.9D). Twenty-two grains define the youngest age population and the weighted 

mean of these ages is 457 ± 2 Ma (MSWD = 3.5). This same plutonic body was previously 

assigned a K-Ar age of 345 ± 17 Ma in a regional 1:200,000 geologic map (Qinghai BGMR, 

1991).  

Sample AZ 04-30-12 (11) is from an undeformed syenogranite located along the 

northeastern bank of the Tuo Lai River in the Tuo Lai Shan (Fig. 5.5B; Supplemental Fig. 2). 

The pluton intrudes the Proterozoic metamorphic unit, including a strongly foliated granitoid, 

and is unconformably overlain by Carboniferous strata. Ordovician metasedimentary rocks are 

thrust over the pluton ~500 m to the northeast of the sample location. Twenty-five zircons were 

analyzed yielding twenty-two concordant ages that range from 441 Ma to 522 Ma (Fig. 5.9C). 

The four older grains are interpreted to be inherited and the weighted mean of the younger 

population of nineteen analyses is 450 ± 1 Ma (MSWD = 0.92). 

Sample AZ 05-04-12 (7) is part of a granite sill that intrudes the medium- to low-grade 

metamorphosed unit in the Tuo Lai Shan (Fig. 5.5B; Supplemental Fig. 2). Twenty-five grains 

were analyzed and all yielded concordant ages ranging 420 Ma to 511 Ma (Fig. 5.9E). Two ages 

are distinctly younger (~418 Ma), which may have resulted from Pb loss during a younger 

metamorphic event, and one population of ages is distinctly older, possibly due to older zircon-

grain inheritance. The weighted mean of the average population of nineteen ages is 474 ± 3 

(MSWD = 3.4), which I interpret as the best estimate of a crystallization age. Sample RR 05-05-

12 (5) is from a NE-SW oriented undeformed quartz monzonite dike (Fig. 5.5B; Supplemental 

Fig. 2) that crosscuts the foliations of a Proterozoic gneiss (Fig. 5.7F). I analyzed nineteen 

zircons; eighteen analyses gave concordant U-Pb ages that range from 435 Ma to 520 Ma (Fig. 
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5.9A). The oldest grains are interpreted to be inherited. The weighted mean of the youngest 

population (n = 17) yields an age of 445 ± 3 Ma (MSWD = 0.38), which is interpreted as the 

crystallization age of this granite dike.  

Sample AZ 09-14-14 (8) was collected from a granite pluton located ~300 km to the east 

of the main mapping area (Fig. 5.2). The large pluton is exposed in a restraining bend of the left-

slip Haiyuan fault. Nine grains were analyzed; one was normally discordant and one was 

reversely discordant (Fig. 5.9M). The remaining seven grains yield concordant ages that range 

from 438 Ma to 508 Ma. The weighted mean age of these concordant ages is 462 ± 14 Ma 

(MSWD = 1.2).  

Two medium-grained diabase bodies that intrude the internally deformed ophiolite 

complex were dated: AZ 05-06-12 (2) and AZ 05-03-12 (11). I analyzed twenty-five zircons 

from each sample. Sample AZ 05-06-2012 (2) yielded twenty five concordant ages that ranged 

from 511 Ma to 566 Ma (Fig. 5.9F). I interpret the weighted mean of youngest population of 

twenty analyses to best represent the crystallization age, which yields a mean age of 521 ± 2 Ma 

(MSWD = 1.3). Analysis of zircon grains from sample AZ 05-03-2012 (11) yielded twenty 

concordant yet diverse ages, ranging from an U-Pb age of 501 Ma to a Pb-Pb age of ~1670 Ma 

(Fig. 11G), which suggests significant zircon inheritance. Several distinct age populations are 

observed. I excluded the oldest populations and take the weighted mean of the middle 

populations of ages (n = 15) to represent the crystallization age of the diabase: 541 ± 6 Ma 

(MSWD = 10.1). I interpret that the youngest set of ages is possibly the result of Pb loss as fluid 

infiltration and mineral modification may have occurred within the highly deformed and altered 

ophiolite complex. Alternatively, these young 511-501 Ma ages may reflect later pulsed intrusion 

or slow cooling.  
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The two previously discussed samples are part of Yushigou ophiolite suite (e.g., Hou et 

al., 2006; Song et al., 2013). Whole-rock geochemical analysis of pillow basalts in the Yushigou 

ophiolite complex indicates that they are tholeiitic (Hou et al., 2006; Song et al., 2013). Although 

I do not further constrain the petrogenesis of these intrusive rocks via geochemical analysis, the 

prevalence of inherited zircon ages in both samples suggests that these mafic intrusions are not 

related to mid-ocean ridge basalt (MORB) and do not represent oceanic lithosphere. Unpublished 

zircon ages from gabbro samples in this complex yield concordant ages ranging from 566 Ma to 

530 Ma (Song et al., 2013), and similar inherited zircon ages are also observed in the Dongcaohe 

and Jiugequan ophiolite suites (Xia and Song, 2010; Xia et al., 2012; Song et al., 2013). In light 

of these observations, I suggest that the Yushigou ophiolite may have formed in a supra-

subduction zone (SSZ) setting (Shervais, 2001; Wakabayashi et al., 2010) and these zircon ages 

may record the period of subduction initiation (e.g., Stern, 2004). Similar conclusions have been 

made regarding the Jiugequan ophiolite complex that is exposed ~25 km to the north (Xia and 

Song, 2010). 

The high-grade metamorphic unit is intruded by several large foliated granitoid bodies 

(Fig. 5.5B). Granitoid foliations (Figs. 5.7A-5.7C), ranging from weakly foliated to mylonitized, 

are parallel to foliations of the high-grade gneiss, schist, and amphibolite rocks which they 

intrude (e.g., Fig. 5.5C). The original crystallization age of this plutonic body places an upper 

bound on the protolith age of the metamorphic unit. Two samples were collected from a 

mylonitized granitoid (quartz diorite to granodiorite) along the southern bank of the Tuo Lai 

River in the Tuo Lai Nan Shan: AZ 05-01-12 (1) and AY 09-21-11 (4) (Fig. 5.5B). The 

mylonitized granite has near-vertical NW-SE-striking foliations and subhorizontal stretching 

lineations, which are parallel to structures found throughout the Tuo Lai Nan Shan metamorphic 
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belt (Fig. 5.5). Mantled porphyroclasts (e.g., σ- and δ-clasts) and an S-C fabric indicate right-

lateral shear (Figs. 5.7A-5.7C). Twenty-five zircons were analyzed from sample AZ 05-01-12 (1) 

and one was normally discordant (Fig. 5.9K). The remaining analyses yield Pb-Pb ages that 

range from 941 Ma to 1016 Ma, with a majority of the ages clustering at ~960 Ma. The weighted 

mean Pb-Pb age of twenty-four grains is 961 ± 12 Ma (MSWD = 2.4). Seventeen grains were 

analyzed from sample AY 09-21-2011 (4), and all of the ages were concordant (Fig. 5.9I). 

Individual Pb-Pb zircon ages range from 884 Ma to 948 Ma, and the weighted mean age is 905 ± 

7 Ma (MSWD = 1.3). Across the Tuo Lai River, 3 km to the northeast, the basement granitoid is 

only weakly foliated (Fig. 5.5). Sample AZ 09-24-2013 (9) was collected from this weakly 

foliated granitoid (Fig. 5.5) and eight zircons were analyzed, yielding a range of Pb-Pb zircon 

ages from 891 Ma to 949 Ma (Fig. 11L). The weighted mean age of all of the analyses is 921 ± 

10 Ma (MSWD = 1.8).  

A similar body of strongly foliated granitoid outcrops ~20 km to the east in the Tuo Lai 

Shan. Twenty-five zircons were analyzed from sample RR 05-04-2012 (2), which was collected 

from this unit (Fig. 5.5), yielding a wide range of ages (Fig. 5.9H). The youngest grain has a U-

Pb age of 655 ± 6 Ma and a distinctly low Th/U ratio (0.04) (Table 2.2), which may be related to 

multiple zircon growth episodes or Pb loss during a later metamorphic event. By excluding both 

this youngest age and the significantly older, presumably inherited ages (~1.2-1.0 Ga), I obtain a 

weighted mean Pb-Pb age from nineteen grains of 868 ± 16 Ma (MSWD = 0.79). These ~850-

950 Ma Neoproterozoic ages for the foliated granitoid rocks indicate that the protolith for the 

paragneiss and paraschist units must be older than ~0.85 Ga because the plutons intrude these 

metasedimentary rocks. 
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Sample AZ 04-30-2012 (4) is from an east-west-trending leucocratic tonalite dike that 

intrudes the Ordovician metasedimentary rock. Sixteen zircons were analyzed and only six 

provided concordant ages, ranging from ~1.9 Ga to ~0.9 Ga (Fig. 5.9J). Although no meaningful 

crystallization age can be determined, two concordant age clusters yield weighted Pb-Pb mean 

ages of 1837 ± 18 Ma (n = 2) and 912 ± 21 Ma (n = 3), which likely reflects inheritance of wall-

rock zircons of the Proterozoic basement. Two best-fit discordia lines intercept concordia at ~0.9 

Ga: the first discordia line has a lower-intercept age of 916 ± 70 Ma and probably represents 

older inherited grains that fell off concodia as a result of Pb loss or metamorphic mineral 

overgrowth at ~0.9 Ga, whereas the second has an upper-intercept age of 915 ± 69 Ma that may 

represent an original crystallization event at ~0.9 Ga grains with subsequent Pb loss that causes 

younger ages to fall of concordia (Fig. 5.9J). These observations are consistent with the dike 

intruding through Proterozoic basement rocks. 

 

5.6.2. In-situ Th-Pb monazite geochronology 

To constrain the age of metamorphism, I conducted in-situ Th-Pb dating of monazite. 

Monazite grains appear in metasedimentary rocks near the garnet isograd (Smith and Barreiro, 

1990). Monazite dating can be complicated by the fact that monazite is a relatively reactive 

phase that readily grows new age domains during progressive or repeated metamorphism (e.g., 

Foster et al., 2000; Catlos et al., 2002; Pyle and Spear, 2003; Pyle et al., 2005; Kohn et al., 2005; 

Rasmussen and Muhling, 2007; Bosse et al., 2009). In-situ dating allows for determination of the 

relationship between monazite grains and the tectonic fabric (Harrison et al., 1995), and when 

monazite grains are included in porphyroblasts (e.g., garnet or staurolite), they are shielded from 

Pb loss and/or dissolution during retrograde metamorphism (Montel et al., 2000; Kohn et al., 
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2005; Gasser et al., 2012). Thus, the ages of included grains should represent the timing of peak 

metamorphism (Harrison et al., 1997) and matrix ages may or may not equal these ages (Catlos 

et al., 2002). Combination of the interpreted monazites ages with estimated pressure-temperature 

(P-T) conditions (e.g., Spear, 1993) allows for the metamorphic evolution of the rock to be 

constrained (i.e., the P-T-t path).  

 

5.6.2.1. Methods 

Monazite grains are too small (~5-50 μm) to be clearly identified on an optical 

microscope (e.g., Fig. 10). Doubly polished thin sections were examined first with a petrographic 

microscope to determine the metamorphic textures. Samples with synkinematic garnet growth 

were targeted because the age of a monazite included in garnet likely constrains the timing of 

when rock passed through the garnet isograd (Smith and Barreiro, 1990). Next, the thin sections 

were examined with a scanning electron microscope (SEM) in backscatter mode (Scherrer et al., 

2000) (Fig. 5.10). Monazite grains were observed in the matrix and included in garnet. They 

appear brighter than most other phases in the thin sections. Grains included in garnet were very 

small (<15-20 μm in diameter) whereas matrix grains were larger (50-15 μm in diameter). Their 

identity was qualitatively confirmed with the energy-dispersive X-ray spectroscopy (EDX) on 

the SEM. Chosen monazite grains were photographed at 50×, 100×, and 250×. The grains were 

relocated on a reflected-light microscope and photographed at 10× and 20× to aid identification 

on the microprobe optics. 

 The thin sections were cut and mounted in 1” epoxy rounds along with monazite 

standards, and the mount was polished to 0.25 μm and coated with ~100 Å of gold using a 

sputter-coater. Grains were dated in-situ, following the procedure of Harrison et al. (1995, 1999) 
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and Catlos et al. (2002) on the CAMECA IMS-270 secondary ion mass spectrometer (SIMS) at 

UCLA. A 10-15 nA O- beam was focused to a diameter of 15-20 μm.  

 The interelement fractionation between U, Th, and Pb during analysis were corrected by 

using a linear calibration curve Pb/Th versus ThO2/Th for the monazite standards. Two monazite 

standards were used during two separate analytical sessions; the first session used monazite 

standard 44069 and the second used monazite standards 44069 and 554. Monazite standard 

44069 is from the Wilmington Complex of the northeastern United States (Aleinikoff et al., 

2006). The standard has a thermal ionization mass spectrometry (TIMS) age of 424.9 ± 0.4 Ma 

and a sensitive high resolution ion microprobe (SHRIMP) age of 426 ± 3 Ma (Aleinikoff et al., 

2006). Monazite standard 554 is from a peraluminous granodiorite from Santa Catalina 

Mountains in Arizona (Force, 1997). The standard has a TIMS age of 45.3 ± 1.4 Ma (measured 

by M. Tatsumoto, as cited in Harrison et al., 1999).  

 

5.6.2.2. Sample description and results 

 Two garnet-mica schist samples were selected for in situ monazite geochronology: AY 

09-21-11 (2) and AZ 04-18-12 (4) (see Fig. 5.5B for sample locations). Both samples are 

composed garnet, biotite, white mica, minor chlorite, quartz, and plagioclase with minor amounts 

of spinel, rutile, tourmaline, zircon, and monazite. The inclusion trail patterns in many of the 

garnet grains indicate synkinematic growth (Fig. 5.10). Observed matrix monazite grains are 

relatively large (50-15 μm in diameter) whereas grains included in garnet are very small (<15-20 

μm in diameter). Many grains (~100) were identified and documented, but only twenty-three 

were analyzed, including six grains that were included in garnet and seventeen that were found in 

the matrix.  
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 Isotopic data and monazite age results can be found in Table 5.3. Both samples yield 

similar and overlapping Th-Pb ages populations for both included-in-garnet and matrix 

monazites. Although the apparent Th-Pb monazite ages can be biased by varying Th content in 

the unknown analysis as compared to the standard-grain analyses (Stern and Berman, 2001), the 

ages show no correlation between Th or U concentrations. In addition, the U-Th-Pb systematics 

are concordant on a plot of 208Pb*/206Pb* vs 248ThO/254UO (plot not shown) (e.g., Harrison et al., 

1995). All of the in-situ Th-Pb monazite ages range from 421 Ma to 772 Ma (Table 5.3). The 

oldest age analysis has very large uncertainties (772 ± 131 Ma), but this same sample yields a 

concordant U-Pb age of 401 ± 80 Ma (Table 5.3). For this analysis only, I use the U-Pb age, and 

therefore the modified monazite-age range of the entire population is 421 Ma to 576 Ma (Fig. 

5.11). 

Monazite age populations from both the matrix and those included in garnet overlap 

within error (Fig. 5.11A). The weighted mean age of included and matrix monazite grains is 498 

± 19 Ma (MSWD = 1.6) and 477 ± 5 Ma (MSWD = 4.3), respectively. Because of their 

overlapping age populations, the weighted mean age of all analyses, 479 ± 9 Ma (MSWD = 3.5) 

(Fig. 5.11A) may best represent the age of peak metamorphism. However, the high MSWD 

values suggests that either the analytical errors are too small or that the monazite ages are 

recording multiple age populations. Given that individual analysis uncertainties are ~5-10%, it is 

probable that the monazite analyses are recording multiple age populations.  

 Examination of normalized probability density plots of the monazite ages—divided into 

groups of included-in-garnet grains, matrix grains, and the total population (Fig. 5.11B)—reveals 

three distinct age populations. The lack of a correlation between age and Th or U concentrations 

suggests that these differences in apparent age are not due to monazite-grain composition 
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variation (e.g., Stern and Berman, 2001). Included-in-garnet grain ages are all older than ~455 

Ma and they show two age peaks at ~475 Ma and ~535 Ma. The oldest age peak correlates with 

a subtle age population in the matrix monazite analyses that broadly spans ~550-530 Ma. The 

weighted mean age of all monazite-grain analyses in this population is 538 ± 20 Ma (MSWD = 

0.5) (Fig. 5.11B). These grains may represent the first generation of monazite growth, possibly 

associated with the initial subduction and arc activity within the Qilian arc. The youngest age 

population of the included-in-garnet monazite grains correlates to a similar age population in the 

matrix-monazite grains. This ~490-470 Ma signature is the largest age population of all of the 

analyses. The weighted mean age of this population is 478 ± 5 Ma (MSWD = 1.3) (Fig. 5.11B). 

Because these monazite grains are included in garnet, they have been shielded from reactions 

with other phases, Pb loss, and overgrowth (e.g., DeWolf et al., 1993; Foster et al., 2000; Catlos 

et al., 2002). I interpret the 478 ± 5 Ma age to best represent the age of peak prograde 

metamorphism and synkinematic garnet growth. Note that the 478 ± 5 Ma age overlaps with the 

overall weighted mean age of all analyses, 479 ± 9 Ma (MSWD = 3.5). 

Lastly, there is a small population of younger ages from the matrix-monazite grains at 

~440 Ma (Fig. 5.11B). The weighted mean age of this population is 437 ± 17 Ma (MSWD = 

0.34). These younger matrix-monazite ages may either represent late-stage monazite overgrowth 

or Pb loss during fluid infiltration. This age range coincides with arc magmatism, igneous 

intrusion, and/or the collision age of the Qilian orogen. An undeformed ~445 Ma dike 

crosscutting the foliation of the metamorphic complex (Figs. 5. 7F and 5.11) indicates that 

ductile shearing and prograde metamorphism was complete by this time, at least locally. This 

suggests that the youngest monazite age population (i.e., ~437 Ma) may not represent any 

prograde growth, but rather late-stage Pb loss or pluton intrusion and monazite overgrowth. Note 
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that this youngest age population overlaps within error with some of the youngest zircon ages 

(see section 5.6.1); for example, sample AZ 05-04-12 (7) has two zircons with a U-Pb age cluster 

of ~420 Ma. 

 

5.7. Whole-rock geochemistry 

Major and trace element geochemistry were obtained from plutonic bodies, to determine 

their source and tectonic setting, and from metamorphic rocks for constrain their bulk 

composition for pseudosection analysis (see section 5.8). The geochemical composition of the 

metamorphic rocks also constrains their provenance and tectonic setting. Three samples were 

analyzed by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) and 

Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) at Activation Labrato ries in Ontario, 

Canada, whereas the other samples were analyzed by X-ray fluorescence (XRF) at Pomona 

College. 

 

5.7.1. Methods 

Samples were crushed and powdered to <75 μm (i.e., 200 mesh) for bulk whole-rock 

geochemical analysis. Three plutonic samples [RR 05-03-2012 (6), AZ 04-30-2012 (11), and AZ 

07-17-2013 (4)] were sent for analysis to Activation Laboratories Ltd. (Actlabs) in Ancaster, 

Ontario, Canada. Powders were dissolved via a lithium metaborate/tetraborate fusion technique. 

Major- and minor-element abundances and loss on ignition (LOI) values were measured by 

Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) with a detection limit of 

~0.01%. ICP-OES was also used to analyze the trace elements Sc, Be, V, Sr, Y, Zr, and Ba at a 

detection limit of 1 to 5 ppm. Other trace elements were analyzed by Inductively Coupled 
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Plasma-Mass Spectrometry (ICP-MS) with a detection limit of 0.05 to 5 ppm for most elements, 

except for Cr, Ni, Cu, and Zn, which have detection limits of 10 to 30 ppm. 

The remaining geochemical analyses were performed by X-ray fluorescence (XRF) at 

Pomona College following the methods of Johnson et al. (1999). Representative powdered 

samples and flux (i.e., dilithium tetraborate, Li2B4O7) were mixed at a 2:1 ratio, around 3.5 

grams powder to 7.0 grams flux. The mixture was fused to a glass bead in a graphite crucible at 

1000°C for 10 minutes, reground, and fused a second time. The bead was then polished on 

diamond laps, and analyzed. The Pomona Lab analyzes major and minor, and selected trace 

elements (V, Cr, Ni, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Nd, Cu, Pb, Zn, Th, U, Ga) on the same fused 

bead using a 3.0 kW Panalytical Axios WD-XRF equipped with PE, LiF 200, LiF 220, GE, and 

PX1 crystals. Concentrations are determined using reference calibration curves defined by fifty-

five certified reference materials that span a range of natural igneous, metamorphic, and 

sedimentary rock compositions. Initial LOI values were determined during the first analysis for 

each sample.  

 Ideally, the summation of major- and trace-element oxide abundances and the LOI 

percent should be equal ~100%. The totals for all analyses range from 98.31% to 100.4% (Table 

5.4), which suggests that these results are reliable. For sample comparison and classification, all 

measured major- and trace-element oxide abundances were normalized so that their sum equals 

100% without including LOI values (not shown in Table 5.4). Trace element data presented in 

Table 5.4 has also been normalized. 
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5.7.2. Results and discussion 

 Discussion of the analyzed samples is divided among four groups of samples: the (1) 

plutonic rocks that are inferred to represent the early Paleozoic Qilian arc (i.e., RR 05-03-12 [6], 

AZ 04-30-12 [11], and AZ 07-17-13 [4]), (2) diabase dike and serpentinite samples (i.e., AZ 05-

05-12 [7] and AZ 05-03-12 [13]), (3) ~0.9 Ga foliated granitoid samples (see section 5.6 for the 

geochronology), and (4) metamorphic samples (i.e., garnet amphibolite, garnet-mica schist, and 

gneiss rocks).  

 

Early Paleozoic granitoid samples 

Samples RR 05-03-12 (6), AZ 04-30-12 (11), and AZ 07-17-13 (4), collected from three 

separate undeformed granitoid bodies, are classified as alkali feldspar granite, granite 

(syenogranite), and alkali feldspar granite respectively, based on their normative quartz-alkali 

feldspar-plagioclase mineralogy (see Fig. 5.5B for sample locations). All of these samples are 

felsic (SiO2 63-75 wt%) and highly peraluminous (Al2O3/[Na2O + CaO + K2O] > 1.30) (Table 

5.4). Based on their weight percentage of silica and alkaline elements (SiO2 versus Na2O+K2O), 

their classifications span quartz monzonite to granite (Table 5.4). The samples are all calc-

alkaline (Fig. 5.12A). On the granite classification diagrams of Pearce (1984), samples plot 

mostly in the volcanic-arc field, with minor overlap on the syn-collisional and within-plate 

boundaries (Fig. 5.12B).   

All three samples display steep rare earth element (REE) (La/Yb > 15) patterns (Fig. 

5.13), and sample AZ 07-17-13 (4) (i.e., the alkali feldspar granite) has the highest light REE 

enrichment (La/Yb 42). This LREE enrichment suggests continental crustal melt source. 

Samples are characterized by negative Ba, Nb, P, and Ti anomalies, which is indicative of an 
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arc/subduction setting for the original melt. Two samples show weak negative Eu anomalies, 

indicating minor involvement of plagioclase in fractional melting, whereas sample AZ 04-30-12 

(11) displays no Eu anomaly (Fig. 5.13). Taken together, the geochemical data indicate that the 

undeformed plutons in our field area are likely sourced from melted continental crust in a 

volcanic-arc setting. 

 

Diabase and serpentinite samples 

The diabase dike sample AZ 05-05-12 (7) is mafic (SiO2 48 wt% and MgO 8 wt%) and 

follows a subalkaline/tholeiitic trend (Na2O + K2O 2.1 wt %) (Table 5.4). More rigorous 

geochemical analysis of similar diabase and pillow basalt samples led Song et al. (2013) to 

suggest they were formed in a supra-subduction zone (SSZ) environment.  

The serpentinite sample AZ 05-03-12 (13) has a high LOI content (15.2 wt%), and 

therefore only its normalized geochemistry is discussed (not shown in Table 5.4). The ultramafic 

rock (normalized SiO2 39 wt% and MgO 47 wt%) rock has a high Mg# value (i.e., MgO/[MgO + 

Fe2O3] × 100) of 79 and contains very low TiO2 (0.01 wt%) and alkalinity (Na2O + K2O values 

below the detection limit) (Table 5.4). The concentrations of Cr (4684 ppm) and Ni (2076 ppm) 

are very high. According to the classification scheme of Jensen (1976), this sample is an 

ultramafic komatiite (due to its high MgO values), whereas in the classification scheme of 

Winchester and Floyd (1977), it plots in the basanite/nephelinite field (Nb/Y > 2-3 and SiO > 

45). Overall, the geochemistry of this serpentinite sample indicates that it represents altered 

ultramafic rock that is part of the Yushigou ophiolite complex. 
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Foliated granitoid samples 

The foliated granitoid samples are felsic (SiO2 ~72 wt%) and highly peraluminous 

(Al2O3/[Na2O + CaO + K2O] > 1.58) (Table 5.4). The normative quartz-alkali feldspar-

plagioclase mineralogy of samples AZ 07-21-13 (7) and AY 09-21-11 (3) classifies them as 

alkali feldspar granite and quartz diorite respectively. Based on their weight percentage of silica 

and alkaline elements (SiO2 versus Na2O + K2O), they are classified as granite (Table 5.4). Both 

samples are calc-alkaline (Fig. 5.12A). On the classification diagrams of Pearce (1984), both 

samples plot in the volcanic-arc and joint volcanic arc-syn collisional granite fields (Fig. 5.12B). 

The samples display relatively flat (La/Yb 5-10) REE patterns (Fig. 5.13), characterized by 

negative Ba, Nb, P, and Ti anomalies, which is indicative of an arc/subduction setting for the 

melt. Sample AZ 07-21-13 (7) shows a negative Eu anomaly, indicating involvement of 

plagioclase in fractional melting, whereas sample AY 09-21-11 (3) has no Eu anomaly, which is 

consistent with their respective mineralogies. These granitoids were likely generated in a 

volcanic-arc setting, although more thorough geochemical analysis is required to draw more 

substantive conclusions. 

 

Metamorphic samples 

The primary purpose of obtaining whole-rock geochemical data of the metamorphic 

samples is for thermobarometry analysis (see section 5.8). However, the bulk geochemical data 

can also constrain the protolith of the metamorphic samples. The gneiss samples RR 05-05-12 

(8) and AZ 04-18-12 (4) are rather different. The first sample is felsic (SiO2 73 wt%), highly 

peraluminous (Al2O3/[Na2O + CaO + K2O] = 1.7) (Table 5.4), and plots along a calc-alkaline 

trend (Fig. 5.12A). The sample plots within the volcanic-arc field on a granite classification 
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diagram of Pearce (1984) (Fig. 5.12B) and displays a somewhat flat REE pattern (La/Yb > 6) 

(Fig. 5.13). The second gneiss sample [i.e., AZ 04-18-12 (4)] has an intermediate composition 

(SiO2 54 wt%) (Table 5.4). In metamorphic rock classification diagrams, both samples plot in the 

sedimentary-rock-protolith field (Fig. 5.14A) (Garrels and MacKenzie, 1971). The relatively 

high SiO2 and K2O wt% cause sample RR 05-05-12 (8) to plot as an arkosic sandstone deposited 

along a passive continental margin setting (Figs. 5.14B and 5.14C) (Roser and Korsch, 1986; 

Herron, 1988). The more intermediate sample AZ 04-18-12 (4) plots as an iron-rich shale 

deposited along an active margin (Figs. 5.14B and 5.14C) (Roser and Korsch, 1986; Herron, 

1988). However, according to the classification of Werner (1987), gneiss sample RR 05-05-12 

(8) plots in the igneous protolith field (P2O5/TiO2 0.45 and MgO/CaO 0.44) (not shown). These 

two samples experienced amphibolite-grade metamorphism (see section 5.8), which obscures the 

nature of the proliths, and further interpretation is beyond the scope of this study.  

The two garnet-mica schist samples AZ 04-18-12 (4b) and AY 09-21-11 (2) both plot 

along the pelite trend in a K2O/Al2O3 versus Na2O/Al2O3 diagram (Garrels and MacKenzie, 

1971) (Fig. 5.14A). Additionally, protolith classification diagrams indicate that the sedimentary 

protoliths may have been deposited in an active continental margin (Figs. 5.14B and 5.14C) 

(Roser and Korsch, 1986; Herron, 1988). 

The three garnet amphibolite samples are compositionally similar to gabbro (SiO2 50-53 

wt%) and they follow a subalkaline/tholeiitic trend (Na2O + K2O <2.7 wt %) (Table 5.4; Fig. 

5.12A). In a K2O/Al2O3 versus Na2O/Al2O3 diagram, the samples plot in the field of a mafic 

igneous rock protolith (Garrels and MacKenzie, 1971) (Fig. 5.14A). The protoliths of these 

garnet amphibolites were likely mafic dikes intruding an upper-crustal sedimentary sequence. 
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5.8. Thermobarometry 

 To determine the metamorphic conditions of the high-grade rocks in the central Qilian 

Shan, thermobarometric studies were conducted on representative garnet-mica schist, garnet 

amphibolite, and garnet-bearing gneiss samples. These samples are either part of, or grade into, 

the right-slip ductile shear zone that is exposed throughout the mapping area (Fig. 5.5). The goal 

in constraining the pressure-temperature (P-T) histories of these representative samples is to 

address two questions: (1) is there any significant variation in metamorphic grade that may 

indicate that present rock exposures are part of a tilted section of the Qilian orogen, and (2) 

broadly, what part of the Qilian orogen and arc do these rocks represent? Map relationships 

indicate that these metamorphic rocks were intruded by early Paleozoic arc granites (Fig. 5.5), 

and thus they should represent part of the country rock of the Qilian arc. 

 

5.8.1. Methods 

Two thermobarometric techniques were employed to investigate the P-T conditions 

experienced by the metamorphic rocks of the central Qilian Shan: the average P-T mode of 

THERMOCALC 3.37 (Holland and Powell, 1998) and pseudosection construction using the 

Perple_X 09 software (Connolly, 2005). These quantitative techniques were preceded by 

petrographic and electron microprobe examination of thin sections from the garnet-mica schist, 

garnet amphibolite, and garnet-bearing gneiss samples. Thin sections of selected samples were 

examined through petrographic microscope to characterize the representative mineral 

assemblages and to asses which phases grew together in equilibrium. Next, doubly-polished thin 

sections were carbon coated and analyzed on the JEOL JXA-8200 electron microprobe at UCLA. 

X-ray compositional maps of Ca, Na, Mg, Mn, and K were made for selected garnet 
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porphyroblasts using an accelerating voltage of 15 kV and a current of ~100 nA with 5-10 μm 

pixels and a dwell time of 30 ms per pixel (Fig. 5.15). These maps were used to assess 

compositional zoning patterns, as well as to aid in mineral identification, especially for the garnet 

inclusions. Analytical traverses were made across the garnet to quantitatively identify zonation 

patterns, particularly in samples that have undergone retrogression (Fig. 5.15). For these 

traverses and individual mineral analysis, a <1 μm spot size was used with a 15 kV accelerating 

voltage and a current of 10 nA for all phases except Ca-rich plagioclase and the micas, which 

required a 5 μm spot size. Calibrations were performed periodically using natural and synthetic 

standards. The JEOL software applied a ZAF correction. 

P-T estimates were determined from the chemical data using the average P-T mode of 

THERMOCALC 3.37 (Holland and Powell, 1998), with the most up-to-date internally-consistent 

thermodynamic dataset (i.e., dataset 62: Holland and Powell, 2011). The program uses the 

chemical composition data of mineral phases that are apparently in equilibrium to determine the 

intersection between exchange reaction geothermometers (e.g., garnet-biotite and garnet-

hornblende; Hodges and Spear, 1982; Graham and Powell, 1984; Bhattacharya et al., 1992) and 

net transfer geobarometers (e.g., garnet-plagioclase-muscovite-biotite, garnet-plagioclase-

hornblende-quartz, and garnet-plagioclase-rutile-ilmenite-quartz; Bohlen and Liotta, 1986; Kohn 

and Spear, 1989, 1990; Dale et al., 2000) equilibria. The activity coefficients for each phase were 

calculated with the AX program (Tim Holland: 

http://www.esc.cam.ac.uk/research/researchgroups/holland/ax). Additional geothermometers, 

including the fluid-independent Ti-in-biotite calibration of Henry et al. (2005) and the 

hornblende-plagioclase geothermometer of Holland and Blundy (1994), were used to provide 

additional temperature constraints. Amphibole phases were classified using the Excel 
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spreadsheet of Locock (2014) following the latest nomenclature and classification of the 

International Mineralogical Association (IMA) published by Hawthorne et al. (2012). The 

program also estimates iron allocation between Fe2+ and Fe3+. 

The P-T conditions experienced by the rock samples were further constrained by 

pseudosection construction using the Gibbs free energy minimization software Perple_X 09 

(Connolly, 2009). Pseudosections allow for sample-specific bulk compositions to be used to 

calculate the equilibrium relationships between coexisting phases. Bulk compositions for 

samples of interest were determined by whole-rock XRF analysis (see section 5.7), and total Fe 

was input as FeO. All sections were constructed in the MnNCKFMASH(±O) system. For the 

metapelite samples, the following solution models were used: TiBio(WPH) (White et al., 2007), 

Mica(CHA) (Coggon and Holland, 2002), Gt(HP) (Holland et al., 1998), Chl(HP) (Holland et al., 

1998), Pl(h) (Newton et al., 1980), and sometimes Kf (Waldbaum and Thompson, 1968). For the 

garnet amphibolite samples, the following solution models were employed: Gt(HP) (Holland et 

al., 1998), Amph(DPW) (Dale et al., 2005), Mica(CHA) (Coggon and Holland, 2002), 

TiBio(WPH) (White et al., 2007), and Pl(h) (Newton et al., 1980). Lastly, for the garnet-bearing 

gneiss sample, the following solution models were used: Gt(HP) (Holland et al., 1998), 

TiBio(WPH) (White et al., 2007), Mica(CHA) (Coggon and Holland, 2002), Kf (Waldbaum and 

Thompson, 1968), and Pl(h) (Newton et al., 1980). All samples were assumed to be water 

saturated (aH2O = 1) and have SiO2 is in excess. Garnet isopleths for grossular, almadine, pyrope, 

and spessartine were calculated using the werami subroutine of Perple_X 09 and plotted to track 

the sample in P-T space. 
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5.8.2. Sample description and mineral composition 

 Sample locations are shown in Figure 5.5B. The representative phase compositions for all 

of the samples are listed in Auxiliary Table A.8.  

 

AY 09-21-11 (1A): garnet-mica schist 

 Sample AY 09-21-2011 (1A) was collected from a garnet-mica schist outcrop just south 

of the Tuo Lai River. The metapelite has Fe-rich garnet porphyroblasts (XMg = 0.08-0.11). 

Foliation is defined by biotite (XMg = 0.45, Ti = 0.09-0.07 apfu), white mica (XMg = 0.46-0.39, Si 

= 3.02-2.99 apfu), and minor chlorite (XMg = 0.48, Fe = 2.32 apfu). Additional present minerals 

include quartz, minor plagioclase (An18-20), spinel, rutile, and tourmaline. Garnet exhibits 

prograde growth zoning compositions that range between 79-70% almadine, 16-8% grossular, 

10-3% spessartine, and 8-4% pyrope (Fig. 5.15). Quartz is almost completely recrystallized: 

grain boundary migration has become the dominant mechanism with minor subgrain rotation 

crystallization, suggesting peak temperatures of ~500-550°C (Hirth and Tullis, 1992). Garnet 

inclusions include zircon, magnetite, and minor monazite. The prograde growth zoning in the 

garnet suggests peak temperatures of less than 650°C.  

 

AY 09-21-11 (2): garnet-mica schist 

 Sample AY 09-21-11 (2) was collected from a garnet-mica schist outcrop that is laterally 

continuous with the rocks of sample AY 09-21-11 (1A) (Fig. 5.5). The schist is composed of 

garnet, biotite, white mica, minor chlorite, quartz, and plagioclase with minor amounts of spinel, 

rutile, tourmaline, zircon, and monazite. Monazites from this sample were dated via in-situ 

techniques (see section 5.6.2) and the whole-rock geochemistry of the rock was determined by 
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XRF (see section 5.7). This sample is assumed to be similar to AY 09-21-11 (1A), and the 

constructed pseudosection from sample AY 09-21-11 (2) was compared against the phase 

compositions of AY 09-21-11 (1A) (see section 5.8.4). 

 

AZ 04-18-12 (4b): garnet-mica schist 

 Sample AZ 04-18-12 (4b) was collected from an outcrop of garnet-mica schist in the 

Proterozoic gneiss unit along the southern flank of the Tuo Lai Nan Shan (Fig. 5.5). Within this 

same outcrop was a lense of amphibolite gneiss from which sample AZ 04-18-12 (4) was 

collected. The metapelite sample AZ 04-18-12 (4b) has Fe-rich garnet porphyroblasts (XMg = 

0.13-0.15). Foliation is defined by biotite (XMg = 0.40, Ti = 0.16 apfu), white mica (not 

analyzed), and minor chlorite (not analyzed). Additional present minerals include quartz, 

plagioclase feldspar, and alkali feldspar. Garnet exhibits relatively flat compositional zoning 

with Mn enrichment at the rims (Fig. 5.15), which may indicate diffusional zoning at 

temperatures greater than 600°C and subsequent retrogression. Quartz has been fully 

recrystallized and with lobate, interfingering grain boundaries that indicate peak temperatures > 

500°C (Hirth and Tullis, 1992). Garnet compositions range between 75-72% almadine, ~4% 

grossular, 13-12% spessartine, and 13-11% pyrope (Table A.8).  

 

AZ 04-18-12 (4): garnet-epidote amphibolite gneiss 

 Sample AZ 04-18-2012 (4) was collected adjacent to sample AZ 04-18-12 (4b) from a 

lense of epidote-amphibolite gneiss (Fig. 5.5). The gneiss has Fe-rich garnet porphyroblasts (XMg 

= 0.07-0.09), and foliation is defined by bands of calcic amphibole (CaB > 1.50) and plagioclase 

(An79-82). Amphibole are classified as Fe-hornblende (XMg = ~0.45, [Na+K]A < 0.50) and Fe-
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pargasite (XMg = ~0.45, [Na+K]A > 0.50, Si < 6.5 apfu) (Fig. 5.16) (Leake et al., 2004). In the 

mafic foliation bands, plagioclase is very minor and clinozoisite is common. Additional phases 

include quartz, biotite, magnetite, and ilmenite. Amphibole hosts inclusions of zircon. Titanite 

and rutile are not observed. Garnet grains exhibit flat diffusional zoning profiles with minor Mn 

enrichment near the rims, which may indicate late retrograde metamorphism (Fig. 5.15). 

 

AY 09-21-11 (6): Garnet amphibolite 

 This sample was collected from an outcrop of foliated garnet amphibolite in the Tuo Lai 

River valley (Fig. 5.5). At this outcrop, amphibolite is interlayered with garnet-mica schist rocks. 

In thin section, this sample has a granofelsic texture with nearly equant hornblende grains, which 

suggests that this sample experienced contact metamorphism. This sample has Fe-rich garnet 

porphyroblasts (XMg = 0.15), and foliation is defined by bands of calcic amphibole (CaB > 1.50) 

and plagioclase (An60-30). Amphibole are classified as Mg-hornblende (XMg = >0.5, [Na+K]A < 

0.50) and edenite-pargasite (XMg = >0.5, [Na+K]A > 0.50) (Fig. 5.16) (Leake et al., 2004). Quartz 

is also present. Garnet compositions show very minor prograde growth zoning, but they are 

relatively flat compared to other samples (Fig. 5.15). Garnet compositions range from 59-56% 

almadine, 33-29% grossular, 3-1% spessartine, and 12-8% pyrope (Fig. 5.15). Because of the 

observed zoning profiles (Fig. 5.15), the sample likely experienced peak conditions at or greater 

than ~600°C. 

 

RR 05-05-12 (12): garnet amphibolite 

 Sample RR 05-05-2012 (12) was collected from a lense of foliated garnet amphibolite 

(Fig. 5.5). In thin section, the rock displays a nearly granofelsic texture with equant mineral 
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grains that suggests the sample experienced minor contact metamorphism. The sample consists 

of calcic amphiboles (CaB > 1.50)—classified as Mg-hornblende (XMg > 0.50, [Na+K]A < 0.50), 

edenite (XMg > 0.50, [Na+K]A > 0.50), and pargasite (XMg > 0.50, [Na+K]A > 0.50, Si > 6.5 apfu) 

(Fig 5.16) (Leake et al., 2004)—plagioclase (An54-41), quartz, minor ilmenite, and garnet (XMg = 

0.18-0.12) with diffusional zoning compositions that range between 60-55% almadine, 33-30% 

grossular, 6-1% spessartine, and 11-6% pyrope (Fig. 5.15). Quartz, amphibole, and garnet host 

fluid and solid inclusions. Garnets display prograde Mn-growth zoning (Fig. 5.15), suggesting 

peak temperatures of less than 650°C. There are only minor compositional deflections at the 

rims, which indicates that the sample experienced minor retrogression. 

 

AZ 07-21-13 (5): Garnet amphibolite 

 Sample AZ 07-21-13 (5), collected along the northern bank of the Shule River valley 

(Fig. 5.5), was part of a large outcrop of vertically foliated schist, quartzite, and amphibolite. 

Foliation is defined by plagioclase (An33-22) and calcic amphibole (CaB > 1.50), and there are 

also Fe-rich garnet porphyroblasts (XMg = 0.06-0.04). Amphibole are classified as Fe-hornblende 

(XMg < 0.50, [Na+K]A < 0.50), and Fe-edenite-pargasite (XMg < 0.50, [Na+K]A > 0.50, Si > 6.0 

apfu) (Fig 5.16) (Leake et al., 2004). Garnet compositions show minor prograde growth zoning, 

especially for Fe and Mn, however the overall compositional profile is relatively flat (Fig 5.15). 

Garnet compositions range from 62-55% almadine, 31-26% grossular, 13-7% spessartine, and 4-

3% pyrope. 
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RR 05-05-2012 (8): quartzofeldspathic mylonitic gneiss 

 Sample RR 05-05-2012 (8) is a quartzofeldspathic mylonitic gneiss, collected from the 

near the Tuo Lai Nan Shan range crest (Fig. 5.5), that exhibits well-defined stretching lineations. 

Observed phases include potassium feldspar (Or96-92), plagioclase feldspar (An27-12), biotite (XMg 

= 0.28, Ti = 018 apfu), white mica (XMg = 0.35, Si = 3.0 apfu), ilmenite, and garnet (XMg = 0.10-

0.04) with flat diffusional zoning compositions that range between 76-70% almadine, 5-4% 

grossular, 20-10% spessartine, and 8-5% pyrope. Quartz has been fully recrystallized and with 

lobate, interfingering grain boundaries that indicate peak temperatures > 500°C. Small garnet 

inclusions include quartz, plagioclase, zircon, and monazite. There is little to no compositional 

zoning in the garnets and there are minor deflections at the garnet rims (Fig 5.15), indicating 

diffusional zoning at temperatures greater than 600°C and late-stage retrogression. 

 

5.8.3. THERMOCALC P-T histories 

 Effective and accurate use the average P-T mode of THERMOCALC 3.37 (Holland and 

Powell, 1998) requires that the mineral phases of interest are in equilibrium, which was initially 

verified by petrological examination. However, this task is complicated by the fact that minerals 

may have experienced prograde and retrograde growth during metamorphism that can cause 

single mineral grains to exhibit significant compositional variation, particularly the plagioclase, 

garnet, biotite, and amphibole phases (e.g., Figs 5.15 and 5.16). In these cases, I examined the 

compositional variation within each phase to determine what compositions are representative of 

interest were recording peak, early, or late stages of metamorphism. For example, reverse zoning 

of Ca in plagioclase (i.e., Ca increases toward the rim), suggests that rim analyses are more 

representative of peak metamorphic conditions. Conversely, low-Ca plagioclase cores may 
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represent early stages of metamorphism and/or relict pre-metamorphic grains. Similarly, 

increasing Ti in biotite generally corresponds to increasing metamorphic grade (e.g., Henry et al., 

2005). For garnet, peak conditions may be best represented by spots with lowest Mn 

(spessartine) and highest Fe (almandine) (Fig. 5.15), whereas early metamorphic conditions are 

found in the cores with highest Ca (grossular) and lowest Mn (spessartine). Calculated P-T data 

for all analyzed samples are shown in Table 5.5 and the representative electron-microprobe 

analyses are given in Table A.8.  

 The metapelite sample AY 09-21-11 (1A) experienced peak metamorphic temperatures 

of 552 ± 35ºC and pressures of 7.2 ± 1.2 kbar (~26 km) (Fig. 5.17). This range overlaps the 569 

± 24ºC estimates found using the Ti-in-bt geothermometer of Henry et al. (2005) (Table 5.5). 

Preliminary data from another metapelite sample, AZ 04-18-12 (4b), shows that it experienced 

higher peak temperatures of 625 ± 23ºC. This higher temperature estimates overlaps peak P-T 

estimates of adjacent sample AZ 04-18-12 (4), a garnet-epidote amphibolite gneiss, which 

experienced peak metamorphic temperatures of 615 ± 47ºC and pressures with high uncertainties 

of 8.1 ± 2.7 kbar (~29 ± 9.5 km) (Fig. 5.17). 

 The quartofeldspathic gneiss sample RR 05-05-12 (8) experienced temperatures and 

pressures of  725 ± 85ºC and 6.8 ± 1.0 kbar (~24 km) respectively (Fig. 5.17). The Ti-in-bt 

geothermometer of Henry et al. (2005) yields a peak temperature estimate of 678 ± 24ºC, which 

corroborates the THERMOCALC results (Table 5.5). Garnet-amphibolite sample AY 09-21-11 (6) 

shows signs of early- and late-stage metamorphism. Estimates using garnet-core and early-stage 

amphibole analyses suggest early metamorphic conditions of 614 ± 49ºC and 7.2 ± 0.9 kbar (~26 

km) (Fig. 5.17). Peak metamorphic conditions involved temperatures of 725 ± 53ºC and 

pressures of 7.9 ± 0.9 kbar (~28 km) (Fig. 5.17). This nearly isobaric increase in temperature 
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correlates with the granofelsic texture of this sample; it likely experience contact metamorphism, 

possibly caused by the intrusion of nearby plutons. 

Another garnet amphibolite sample, AZ 07-21-13 (5), shows a large range of peak 

temperature estimates, and overall, this sample has large uncertainties for its P-T estimates: 576 

± 88ºC and 5.4 ± 1.6 kbar (~19 km) (Fig. 5.17). Garnet amphibolite sample RR 05-05-12 (12) 

shows the effects of early, peak, and late-retrograde metamorphic conditions. Although the 

uncertainties are large on the P-T estimates for each of these stages, due to the limited analyses 

per stage, the THERMOCALC analyses show clockwise P-T path (Fig. 5.17B). Estimated early, 

peak, and late-retrograde conditions are 650 ± 100ºC and 7.0 ± 1.7 kbar (~25 km), 791 ± 110ºC 

and 8.9 ± 1.7 kbar (~31 km), and 662 ± 95ºC and 6.2 ± 1.6 kbar (~22 km) respectively (Fig. 

5.17B). The weighted average of all of these overlapping measurements is 696 ± 41ºC and 7.3 ± 

0.8 kbar (~26 km) (Fig. 5.17B)  

Taken together, all of the THERMOCALC estimates suggest that the metamorphic basement 

units experienced amphibolite to epidote-amphibolite grade metamorphism (Fig 5.17). Despite 

some large uncertainties, most of the samples recorded pressures of 6 to 8 kbar (22-28 km 

depth). The temperature range recorded by these rocks is very large, from ~500ºC to > ~700ºC. 

Evidence from petrographic analysis and garnet-composition traverses corroborate the higher 

temperatures experienced by some of these samples. For example, all of the samples that yield 

temperature estimates above ~600ºC have diffusional zoning compositions in the garnet phases 

and recrystallized quartz grains. Given that the peak pressures are similar for all samples, these 

higher temperatures suggest nearly isobaric heating. One possibility is that localized pluton 

intrusion led to the observed temperature increase experienced by some samples, but this would 
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imply very deep (e.g., ~25 km) magma/pluton intrusion. Further constraints on the P-T 

conditions are provided in the pseudosection analysis below.  

 

5.8.4. Pseudosection P-T histories 

 Calculated pseudosections for garnet-mica schist samples AY 09-21-11 (2) and AZ 04-

18-12 (4b), amphibolite gneiss sample AZ 04-18-12 (4), garnet amphibolite sample RR 05-05-12 

(12), and gneiss sample RR 05-05-12 (8) are shown in Figure 5.18, along with the modeled bulk 

sample composition. When relevant, additional P-T constraints are plotted along with 

pseudosections, including THERMOCALC estimates from section 5.8.3., to better constrain the 

metamorphic conditions.  

 The pseudosection for garnet-mica schist sample AY 09-21-11 (2) (Fig. 5.18A), which 

was collected in the same rock unit as sample AY 09-21-11 (1A), shows that the garnet stability 

fields exist above ~490ºC. Garnet composition isopleths for pyrope and grossular are also plotted 

to track garnet-composition evolution. The observed mineral assemblage of grt-bt-ms-chl-pl-ru is 

located at approximately 480ºC and 5.4kbar (location 3 of Fig. 5.18A). However, plagioclase is 

minor and appears to be an early relict phase. I interpret that plagioclase is unstable with the 

observed peak mineral assemblages, and that these conditions occurred across the plagioclase-

out equilibria line at higher temperatures and pressures (locations 2 and 3 of Fig. 5.18A). The 

sample has not crossed the chlorite-out equilibria line because chlorite is a major phase. The 

garnet isopleths for peak conditions (~0.10 pyrope and ~0.12 grossular) intersect within this 

stability field at ~521°C and ~6.6 kbar. The THERMOCALC average P-T estimate for sample AY 

09-21-11 (1A) also overlaps the grt-bt-ms-chl-ru stability field (Fig. 5.18A), and the best 
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estimate for the peak metamorphic conditions of these two samples is the P-T space within this 

overlap: 530 ± 10°C and 7.2 ± 0.7 kbar (~26 km) (location 1 of Fig. 5.18A). 

 The pseudosection RR 05-05-12 (12) has a large stability field for the observed stable 

mineral assemblage grt-bt-amph-pl-ilm (Fig. 5.18B). The intersection of garnet isopleths for 

pyrope and grossular track a prograde metamorphism from ~600 ºC and ~6.5 kbar (23 km) to 

peak conditions at ~725ºC and ~7.6 kbar (27 km) (Fig. 5.18B). This prograde metamorphism 

range overlaps with the THERMOCALC results (see inset of Figure 5.18B). The 0.50 XMg isopleth 

for amphibole also constrains the temperature range to near ~650ºC at pressures >4 kbar (Fig. 

5.18B). Sphene is not an observed stable phase in this sample, which further constrains the 

possible P-T conditions.  

 The pseudosection for gneiss sample RR 05-05-12 (8) has a large stability field for the 

observed mineral assemblages of grt-pl-kfs-bt-ms-ilm (Fig. 5.18C). The THERMOCALC average 

P-T estimate also overlaps this stability field (Fig. 5.18C). By tracking peak and late-retrograde 

garnet isopleths for pyrope and grossular—i.e., ~0.05 grs and ~0.08 prp to ~0.05 grs and ~0.05 

prp, respectively (locations 2 and 3 in Fig. 5.18C respectively)—I observe the peak and 

retrograde P-T history of this sample. Because the peak pseudosection- and THERMOCALC-

modeled conditions do not overlap, there is some uncertainty regarding the peak pressure 

conditions (i.e., from ~7 kbar to ~5 kbar). Thus, peak conditions can only be loosely constrained 

at ~700°C and ~6 ± 1.5 kbar (~21 km). Late metamorphic conditions recorded by the garnet rims 

indicate retrograde conditions of 630°C and ~3.1 kbar (~11 km) (location 3 in Fig. 5.18C). 

 Together, the three samples discussed above [i.e., AY 09-21-11 (2), RR 05-05-12 (12), 

and RR 05-05-12 (8)] are evenly spaced along the northern slope of the Tuo Lai Nan Shan (Fig. 

5.5B). No major Cenozoic faults are observed between the samples, and therefore they may have 
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recorded similar metamorphic conditions and stages during early Paleozoic deformation. 

Samples AY 09-21-11 (2) and RR 05-05-12 (12) record prograde metamorphism from ~550-

500ºC and ~5.5 kbar to ~700-600ºC and ~7kbar (Fig. 5.18C). Sample RR 05-05-12 (12) records 

higher temperatures (>~700ºC), which may be related to the numerous early Paleozoic plutons 

that intrude the central and southern part of the Tuo Lai Nan Shan range (Fig. 5.5). The gneiss 

sample RR 05-05-12 (8) records similar peak conditions as RR 05-05-12 (12) (Fig. 5.18C). This 

sample also shows retrogression conditions to 630 °C and ~3.1 kbar (Fig. 5.18C). These three 

samples reveal an overall clockwise P-T path, which is corroborated by the THERMOCALC 

estimates for RR 05-05-12 (12) that also show this clockwise path, although the uncertainties are 

large (Fig. 5.17B). 

 The remaining pseudosections were constructed for samples collected along the southern 

flank of the Tuo Lai Na Shan range. Amphibole gneiss sample AZ 04-18-12 (4) consists of 

stable clinozoisite and minor plagioclase. Minor O2 (0.02 wt %) was added the modeled bulk-

composition input for this sample to account for the prevalence of oxides, opaque minerals (e.g., 

magnetite and ilmenite), and clinozoisite-epidote, which is required to generate Fe2O3 from FeO 

in the Perple_X software (Fig. 5.18D) (e.g., Massonne, 2012). The constructed pseudosection for 

this sample has a relatively small stability field for the clinozoisite and plagioclase phases (e.g., 

near location 2 in Fig. 5.18D). Garnet composition isopleths for pyrope, grossular, and 

almandine (Fig. 5.15) intersect within this stability field at peak- and late-stage metamorphic 

conditions of ~660ºC and ~7.0 kbar (~25 km) and ~630ºC and ~6.3 kbar (~ 23 km) respectively 

(Fig. 5.18D). The transition from 12% pyrope to 9-10% pyrope at the garnet rims most 

dominantly controls this modeled drop in metamorphic conditions. However, given uncertainties 

in pseudosection construction, these differences are not significant, and thus I suggest that the 
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modeled pseudosection more generally yields peak metamorphic conditions of 670-620ºC and 

7.1-6.0 kbar. These estimated conditions have slightly higher temperatures and lower pressures 

than the THERMOCALC results (Fig. 5.18D), and given that plagioclase is a minor phase, it is 

likely that the sample should plot closer to the plagioclase-out equilibria line (i.e., lower 

temperature) in P-T space (Fig. 5.18D).  

An additional P-T constraint for sample AZ 04-18-12 (4) was provided by the TZARS 

equilibria barometer of Kapp et al. (2009) (see inset of Fig. 5.18E). The TZARS equilibrium 

lines for two different activity ratios of rutile and titanite (i.e., aru/attn = 0.42 and aru/attn = 0.89), 

are plotted given the calculated activities of clinozoisite (acz = 0.7) and anorthite (aan = 0.85). 

Along these equilibrium lines clinozoisite and anorthite feldspar should coexist, and in this 

sample plagioclase is minor and clinozoisite is common. Kapp et al. (2009) prefer an aru/attn 

activity of 0.42 when both rutile and titanite are absent from this sample, and thus this TZARS 

equilibria line represents a useful geobarometer for this sample (see inset of Fig. 5.18E). The 

geothermometer estimates and TZARS geobarometer intersect at slightly higher pressures and 

lower temperatures then the modeled pseudosection results, and provide my preferred peak P-T 

estimate of ~620ºC and 7.5 kbar. 

The pseudosection for garnet-mica schist sample AZ 04-18-12 (4b), which was collected 

adjacent to sample AZ 04-18-12 (4b) (Fig. 5.5B), indicates that that the stability field for stable 

alkali feldspar and muscovite is relatively narrow (Fig. 5.19A). The intersection of peak-garnet 

isopleths for grossular and pyrope yield metamorphic conditions of ~700ºC and ~5 kbar (~18 

km) (Fig. 5.18D), which is slightly higher than the temperature estimates of 625 ± 23ºC from the 

Ti-in-bt geothermometer of Henry et al. (2005). 
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 Samples AZ 04-18-12 (4b) and AZ 04-18-12 (4) are from the same outcrop and should 

record the same metamorphic conditions. The garnet-mica schist sample AZ 04-18-12 (4b) 

records lower pressures yet higher temperatures and may represent late-stage metamorphic 

conditions during retrograde metamorphism and nearby pluton intrusion (see inset of Fig. 

5.18E). The prevalence of chlorite in this sample corroborates this assertion. 

 

5.9. Deformation history of the central Qilian Shan 

 Here I outline the major deformational events that affected northern Tibet and the central 

Qilian Shan, along with insights provided by the geochronological and thermobarometric 

analyses presented in this chapter (e.g., Fig. 5.19). Early Neoproterozoic (i.e., ~1.0-0.9 Ga) 

plutonism evidenced by granitoid and gneiss rocks throughout northern Tibet (Fig. 5.1B) was 

followed by following by regional metamorphism. Leucogranites and metamorphic zircon rims 

have been reported with ages of ~0.9-0.85 Ga in the Tian Shan, Tarim, and Qilian Shan (Gehrels 

et al., 2003b; Zhu et al., 2011; Kröner et al., 2013; Wang et al., 2014). This age signature is 

associated with the inferred collision between North and South Tarim along the Tarim suture 

(Guo et al., 2005).  

In the late Neoproterozoic, rifting led to the opening of the Qilian Ocean (e.g., Song et 

al., 2013). Cambrian-aged ophiolites are found throughout the Qilian Shan, and many are SSZ-

type with zircon ages ranging from 540-500 Ma (Xia and Song, 2010; Song et al., 2013; this 

study). Continental volcanic arc magmatism began by at least ~520 Ma and arc-related plutons 

have ages that range from ~520 Ma to 440 Ma (e.g., Dang et al., 2011; Xia et al., 2012; Xiao et 

al., 2012; Song et al., 2013; Wu et al., 2016). SSZ-ophiolite formation and subduction initiation 

corresponds to the oldest monazite ages obtained in this study (i.e., 538 ± 20 Ma) (Fig. 5.11). I 
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interpret that this earliest population of monazite ages is related to the development of the middle 

to late Cambrian Qilian arc. Furthermore, the development of an Andean-type active margin lead 

to crustal thickening and the early-stage P-T conditions  recorded by some of the metamorphic 

sample (Figs. 5.17 and 5.18).  

Locally, in my study area in the central Qilian Shan, the earliest recorded magmatism 

occurred at ~475 Ma (Table 5.2), which overlaps with the main population of included-in-garnet 

monazite ages at ~485-475 Ma (Fig. 5.11). Peak prograde metamorphism at this time and right-

slip shearing was operating at depths of 25-20 km (Fig. 5.19), as indicated by peak metamorphic 

conditions (Figs. 5.17-5.18). Ductile shearing of these rocks ceased by ~445 Ma, when the 

foliated metamorphic rocks are crosscut by an undeformed granitoid dike with a U-Pb age of 445 

± 3 Ma (Figs. 5.7F and 5.11; Table 5.2). The depth of dike emplacement was not determined, but 

I infer that the basement rocks and intruding dike were at depths of 10-15 km at ~445 Ma 

because (1) many arc plutons are intrude at depths of < ~15 km (e.g., Petford et al., 2000; 

Putnam et al., 2015) and (2) the lowest-grade P-T signature recorded in the metamorphic rocks 

corresponds to these depths (Figs. 5.17-5.19). 

Intrusions with ages ranging from 450 to 440 Ma are widespread throughout the Qilian 

Shan. Such extensive plutonism may correspond with continental collision between North China 

and Tarim (Wu et al., 2016), although this cannot be directly confirmed in my study area. This 

late-stage pulse of magmatism also corresponds to matrix monazite ages in the analyzed 

metapelite samples (Fig. 5.11).  

Prior to and during continental collision in the Qilian orogen, there is deposition of 

Silurian turbidite sequences to the north and south of the central Qilian Shan. These strata were 

likely deposited in back-arc and forearc-to-foreland basins as the Qilian arc transitioned to a 
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collisional orogen. They were strongly deformed during the protracted continental collision. This 

collision brought basement rocks toward the surface, and Silurian strata and Devonian terrestrial 

sediments were deposited unconformably over the exposed basement rocks. 

Widespread and laterally continuous Carboniferous shallow marine deposition indicates 

that much of the Qilian Shan was at or just below sea level at this time (Fig. 5.19). Nearly 

uninterrupted shallow marine sedimentation continued into the Triassic. The sedimentary facies 

does not vary significantly in the Carboniferous-Triassic sections, which requires either 

subsidence of the Qilian Shan or global sea level rise to accommodate the deposition of these 

strata.  

Jurassic extension brought these rocks toward the surface, and Jurassic strata were 

deposited in a marginal marine to swamp setting. Extensive Jurassic-aged coal deposits are 

widespread across the Qilian Shan. Regional extension continued into the Cretaceous, subaerial 

sedimentation requires that the Qilian Shan was above sea level at this time (Fig. 5.19). 

Terrestrial late Oligocene to Miocene deposits record the initiation of shortening across the 

central Qilian Shan  

 

5.10. Discussion 

5.10.1. Lateral extent of the Qilian suture 

 Based on similar lithological assemblages and geologic histories, it has been argued that 

the Qilian orogen and suture(s) were laterally continuous with the Qinling suture to the southeast 

(e.g., Xu et al., 2008; Tseng et al., 2009; Dong et al., 2011; Wu et al., 2016) (Fig. 5.2), forming a 

>1000 km long early Paleozoic orogenic belt. However, the northwestern termination of this 

orogen and suture is not known. Three geometrically plausible models exist for its continuation: 
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(1) it may continue into Tarim and be currently covered by Mesozoic-Cenozoic sediments, (2) it 

may veer to the south of Tarim and be overprinted by the Western Kunlun and Pamir thrust belts, 

although evidence for this suture in the Altyn Tagh Range suggests that the suture cannot be that 

far to the southwest, or (3) the Kunlun-Qaidam continent may have only partially separated from 

Tarim and the abrupt western termination of the Qilian suture represents the western extent of 

the Qilian Ocean. An additional model suggested that the Qilian suture connected to the 

northwest to the Beishan suture (Zhou and Graham, 1996d), although this idea has been 

abandoned because the Beishan suture has more recently been related to the Central Asian 

Orogenic System and the closure of the Paleo-Asian Ocean (e.g., Xiao et al., 2010; Guo et al., 

2011; Cleven et al., 2015).  

The Precambrian basement of Kunlun-Qaidam is similar to that of Tarim-North China 

(Hu et al., 2000; Gehrels et al., 2003b; Tung et al. 2007; Long et al. 2010; Zhao et al. 2012; Wu 

et al., 2016), which indicates that these two continents may have been contiguous prior to 

Neoproterozoic rifting. In addition, no Phanerozoic sutures or amalgamation structures have 

been reported between Qaidam and Tarim (Fig. 5.1), which further bolsters their Precambrian 

connection.  

Some researchers argue that the Kunlun-Qaidam continent was connected to the South 

China craton based on correlative ~950-900 Ma granites. This age signature is not a unique 

signature among Precambrian continents, as similar-aged plutons are found within North China, 

Tarim, the Tian Shan, and the CAOS microcontinents (e.g., ; Han et al., 2011; Rojas-Agramonte 

et al., 2011; Ma et al., 2012). 
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5.10.2. Nature of the Qilian arc  

 In many of the reconstructions of the Qilian orogen and suture zone, the exposures of 

discontinuous of UHP metamorphic rocks, ophiolite and mélange complexes, arc plutons, and 

blueschist rocks (Fig. 5.2) have been used as evidence to suggest that the Qilian orogen resulted 

from the collision of multiple arcs along multiple sutures in the early Paleozoic (Li et al., 1978; 

Hsü et al., 1995; Yin and Nie, 1996; Yin and Harrison, 2000; Xiao et al., 2009; Gehrels et al., 

2011; Song et al., 2013, 2014) (Table 5.1). However, the effects of Ordovician arc construction, 

protracted Silurian-Devonian continental collision, Mesozoic extension, and Cenozoic 

intracontinental deformation must have modified the original geological configuration.  

Any viable model for the Qilian arc must explain the following key observations (Fig. 

5.3; Table 5.1): (1) northward younging magmatism across northern Tibet (e.g., Zuza et al., 

2015; Wu et al., 2016), (2) Cambrian SSZ-type ophiolite and mélange material dispersed 

throughout the Qilian Shan, (3) the spatial and temporal overlap between arc magmatism and 

UHP metamorphism in North Qaidam (e.g., Yin et al., 2007), and (4) high-pressure blueschist 

rocks exposed in the northeastern Qilian Shan (e.g., Song et al., 2013) (Figs 5.1 and 5.2). The 

temporal and spatial distribution of arc plutons could fit with any of the Qilian arc models except 

the north-dipping subduction model because no Ordovician plutons intrude the North China 

craton (Fig. 5.3; Table 5.1). Given that most of the ophiolite complexes are SSZ-type ophiolites 

(e.g., Meng et al., 2010; Xia and Song, 2010; Song et al., 2013; this study), these rocks may have 

been variably obducted onto the continental arc and/or underthrust beneath the Qaidam 

continent. This suggests the ophiolite fragments were initially scattered throughout the Qaidam 

continent even before Qilian orogen-related collision, which means that the bidirectional or 
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multiple-arc models are not required to account for the extensive ophiolite-mélange distribution 

across the Qilian Shan (Fig. 5.3). 

In light of the above considerations, I suggest that a single south-dipping subduction 

system operated along the northern margin of the Qaidam continent. The distribution of 

Cambrian ophiolites and strata throughout the Qilian Shan may be the result of complex 

mélange/ophiolite obduction or ophiolite underthrusting. For example, the Mesozoic Cordilleran 

arc involved both complicated SSZ ophiolite obduction of the coast-range ophiolite (e.g., 

Wakabayashi et al., 2010) and significant mélange underthrusting/underplating as far east as the 

Rand-schist outcrops (e.g., Grove et al., 2003). Across the Qilian Shan, the wide belt of arc 

plutons that generally young to the north-northeast (e.g., Zuza et al., 2015; Wu et al., 2016) can 

be explained by northward rollback of the Qilian oceanic slab. This also explains why 

Ordovician arc plutons intrude older forearc sediments (Fig. 5.5). The blueschist rocks in the 

northeast Qilian Shan were generated in this subduction system and their early and/or Silurian 

cooling ages either record peak metamorphism or exhumation, respectively (Liu et al., 2006; Lin 

et al., 2010). This configuration is further discussed below in the tectonic model presented in 

section 5.10.3. 

 

5.10.3. Mesoproterozoic-Paleozoic tectonic evolution of northern Tibet 

Here I present a self-consistent tectonic model for the Mesoproterozoic to Paleozoic 

tectonic evolution of northern Tibet that conforms to our present understanding of the Qilian 

Shan (Fig. 5.20). In the Mesoproterozoic, cratonal shelf or passive margin strata are deposited 

along the southern margin of the linked North Tarim-North China craton (Fig. 5.20A). This 

margin faces the Tarim (or Paleo-Qilian) Ocean, and the sediments consist of ~1.8 Ga and ~1.45 
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Ga detrital zircon grains derived from the North China craton (i.e., sample AY 09-21-11 [1] in 

Fig. 5.4B) (see also Gehrels et al., 2003a). At ~1.0 Ga, north-dipping subduction along the 

southern margin of the North Tarim-North China continent accommodates the convergence of 

the continuous South Tarim-Qaidam continent and the closure of the Tarim Ocean (Fig. 5.20B) 

(e.g., Guo et al., 2005). The 1.0-0.9 Ga granitoid belt that outcrops throughout Qaidam, the 

Qilian Shan, the Altyn Tagh Range, Tarim, and Tian Shan (Fig. 5.1B) is evidence for the 

existence of the Tarim Ocean and Tarim arc (Fig. 5.20B). This subduction system generated 

blueschist rocks that are presently exposed near Aksu in Tarim (e.g., Liou et al., 1996; Zhu et al., 

2011). The inferred suture associated with the collision of the South Tarim-Qaidam and North 

Tarim-North China continents is exposed at Aksu and partially parallels and overlaps with the 

Qilian and Qinling sutures to the southeast (e.g., Guo et al., 2005; Wu et al., 2016). 

In the late Neoproterozoic, rifting of this joined continent and the opening of the Paleo-

Asian, Qilian, and Tethys Oceans initiated at variable times (Fig. 5.20C). The earliest rifting 

event was associated with the ~825 Ma Jinchuan ultramafic intrusion (Li et al., 2005), the 

deposition of the Hanmushan Group passive margin strata, and the opening of the Paleo-Asian 

Ocean to the north of the North China craton (Fig. 5.20C). Bimodal volcanism from ~775 to 600 

Ma was associated with the opening of the Qilian Ocean and the deposition of the passive margin 

Baiyangguo/Daliugou Group (Tseng et al., 2006, 2007; Xu et al., 2015) (Fig. 5.20C). This rifting 

occurred subparallel to the early Neoproterozoic Tarim suture zone. Because there is no observed 

Phanerozoic suture or amalgamation structures between Qaidam and Tarim, I infer that these 

continents remained connected during the opening of the Qilian Ocean. The Qaidam continent 

may have rotated away from North China as a peninsula that led to the opening of a westward-

tapering Qilian Ocean. This interpretation also suggests the Qilian Ocean was a relatively small 
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sea and not a thoroughgoing ocean separating Laurasia and Gondwana (cf. Stampfli and Borel, 

2002).  

In the Cambrian, the Qilian Ocean reached its maximum extent and subduction initiated 

along the southern bounds of this ocean. During nascent arc formation, the Qilian SSZ ophiolites 

were generated (~540-500 Ma) to the north of the Qaidam continent (Fig. 5.20D). Inherited 

zircon ages during this time record a complex process of recycling and influence of underlying 

and adjacent continental crust. Continental subduction begins in the early Ordovician as Qilian 

oceanic lithosphere dips to the south beneath the Qaidam continent. The Qilian SSZ ophiolite 

obducted onto Qaidam and was also simultaneously underthrust beneath the continent (e.g., 

Grove et al., 2003) (Fig. 5.20D). These dispersed ophiolites are observed throughout the present-

day Qilian Shan and North Qaidam. 

In the Ordovician, volcanic arc magmatism began as the Qilian Ocean was subducted 

beneath the Qaidam continent (Fig. 5.20E). Ordovician strata were deposited in back-arc and 

forearc settings, to the south and north of the Qilian arc respectively. During this time, fragments 

of the Qaidam continent were brought to UHP depths via the subduction channel (e.g., Yin et al., 

2007; Menold et al., 2016). The UHP rocks were later exhumed to the middle crust via either 

diapiric flow or subduction-channel flow (e.g., Mattinson et al., 2007; Yin et al., 2007a; Menold 

et al., 2016), where they were juxtaposed against amphibolite-grade SSZ ophiolite rocks 

(Menold et al., 2016). A trench-parallel intra-arc right-slip strike-slip fault developed within the 

Qilian arc, which is evidenced by the right-lateral shear zone that is exposed in the central Qilian 

Shan (Fig. 5.6). Ages from monazite grains included in garnet indicate that this shear zone was 

operating at ~480 Ma (Fig. 5.11). I envision that this strike-slip fault was similar to the present-

day Sumatra strike-slip fault (e.g., Diament et al., 1992). The kinematics of the Qilian strike-slip 
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fault suggests right-lateral obliquity during the subduction of the Qilian Ocean (Fig. 5.20E), 

which is consistent with clockwise closure of the Qilian Ocean. 

 Northward slab rollback at the south-dipping Qilian arc-subduction can explain three key 

observations (Fig. 5.20F). First, the northeastward-younging trend of arc magmatism throughout 

the Qilian Shan (e.g., Zuza et al., 2015; Wu et al., 2016). Second, the observation that late 

Ordovician arc plutons intrude Ordovician forearc strata (Fig. 5.5). Finally, this event helps to 

explain how ophiolite fragments and UHP rocks are positioned within and behind the Qilian arc. 

The arc simply propagated northeast over these features (Fig. 5.20F).  

 By ~445-440 Ma, the Tarim-North China cratons collided with the Qaidam continent 

(Fig. 5.20F). The timing of collision is not well constrained, but diffuse ~445-440 Ma plutonism 

is following by relatively little magmatism (e.g., Wu et al., 2016). Also, the youngest pulse of 

monazite ages corresponds to this time period (Fig. 5.11). Silurian strata have been classified as 

flysch deposits that transition to Devonian molasse rocks. During this collision, North China’s 

passive margin strata is juxtaposed against the accretionary wedge, mélange rocks, and ophiolite 

complex of the Qilian arc (Figs. 5.5 and 5.20F).  

 This protracted history of two major ocean-closure events in the Neoproterozoic and 

early Paleozoic was reactivated in the Cenozoic by focused strike-slip and thrust faulting. The 

major left-slip faults of northern Tibet parallel Phanerozoic sutures (Taylor and Yin, 2009; see 

Chapter 3), and the Haiyuan fault parallels the surface trace of the Qilian-Qinling suture zone 

(Fig. 5.2). In addition, the Neoproterozoic north-dipping and early Paleozoic south-dipping 

subduction zones suggested in this work would provide subduction-mélange channels to focus 

Cenozoic shortening in northern Tibet. This may help explain why significant crustal shortening 
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across the Qilian Shan occurs nearly 1500 km to the north the Himalayan collisional front (Fig. 

5.2). 

 

5.11. Conclusions 

 The Qilian Shan, North Qaidam, and Qaidam Basin of northern Tibet experienced two 

major arc/collisional events in the Neoproterozoic and early Paleozoic. Through an integrated 

investigation of the magmatic and deformational history of the central Qilian Shan, together with 

existing work across northern Tibet, I have developed a coherent tectonic model that describes 

the evolution of the southern margins of the continuous Tarim-North China craton from ~1.0 Ga 

to the present. (1) Early Neoproterozoic subduction accommodates the convergence and collision 

between South Tarim-Qaidam and North Tarim-North China continents. (2) Late Neoproterozoic 

rifting partially separates a peninsular Qaidam from North China and opens the Qilian Ocean as 

an embayed marginal sea; this separation broadly follows the trace of the early Neoproterozoic 

suture zone. (3) South-dipping subduction along the northern margin of the Kunlun-Qaidam 

continent initiates in the Cambrian, which leads to the formation of the Yushigou supra-

subduction zone (SSZ) ophiolite (which links along strike with the SSZ Aoyougou and 

Dongcaohe ophiolites) and the formation of the Qilian arc. (4) Subduction, arc magmatism, and 

the convergence between Qaidam and North China continued throughout the Ordovician, with a 

trench-parallel intra-arc strike-slip fault system that is presently represented by the high-grade 

metamorphic rocks with a pervasive right-lateral shear sense. (5) The closure of the Qilian Ocean 

occurred following the counter-clockwise rotation of a peninsular Qaidam continent toward 

North China, which is supported by the right-lateral kinematics of the intra-arc strike-slip fault 

and the westward tapering map-view geometry of Silurian flysch basins; continental collision 
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occurred at ~445-440 Ma, which lead to widespread plutonism across the Qilian Shan and is 

recorded as the youngest population of monazite ages.  

This tectonic model implies the parallel closure of two oceans along the Qilian suture 

zone since ~1.0 Ga. In addition, the Qilian Ocean was not the Proto-Tethys (i.e., the earliest 

through-going ocean separating Gondwana from Laurasia) as suggested by earlier studies, but 

rather represented a smaller marginal sea along the southern margin of the Laurasian continent. 

Lastly, Cenozoic deformation that results from India-Asia convergence is focused along these 

sites of repeated ocean closure. The major left-slip faults parallel these sutures, and Cenozoic 

shortening and continental underthrusting may have been assisted by the subduction-mélange 

channels. 
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Figure 5.1 (continued). (A) Simplified tectonic map of Asia showing cratons, sutures, and 
modern subduction zones. Teeth on are on over-riding plate. For simplicity, the structures and 
sutures within the Central Asian Orogenic System are omitted. Pre-Neoproterozoic sutures 
within cratons are not shown. Inset map shows major tectonic division and oceanic domains. 
Also shown is the location of Figure 5.1.B. AS—Aral Sea, B—Lake Baikal, Kara—Karakum 
Craton, MFT—Main Frontal Thrust. Labelled sutures: AKM— Anyimaqen-Kunlun-Muztagh, 
B—Bitlis, BN—Bangong- Nujiang, DO—Denisov-Oktyabrsk, DS—Dabie Shan, J—Jinsha, 
M—Magnitogorsk, MO—Mongol-Okhotsk, PT—Paleo-Tethys, S—Sakmara, SJY—Solonker- 
Jilin-Yanji, TSYS—Tian Shan-Ying Shan, T—Turketsan, Td—Timanide, U—Ural, 
QS-Q—Qilian Shan-Qinling, ZNT—Zagros-Neo-Tethys. After Yin and Nie (1996), Şengör and 
Natal’in (1996), Natal’in and Şengör (2005), Xiao et al. (2010), and Zheng et al. (2013). (B) 
Tectonic divisions of the Intermediate Units of Şengör and Natal’in (1996), the Central Asian 
Orogen System, and the Tethys Orogenic System. Note that the Paleo-Asian and Tethyan Oceans 
closed on either side of the Tarim-North China cratons. Boxed text indicates the major suture 
names. Also shown are the locations of intraplate ultra-high pressure (UHP) metamorphic rocks 
and 1.0-0.9 Ga gneiss. Figure after Yin and Nie (1996), Yin and Harrison (2000), and Wu et al. 
(2016).
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A. North-dipping subduction B. South-dipping subduction

C. Bidirectional subduction D. Multiple north-dipping arcs

Arc on North China or 
accretionary wedge

Arc on Qaidam or 
accretionary wedgeUltramafic/ophiolite

fragments
Ultramafic/ophiolite
fragments

North China

North China

North ChinaQaidam Qaidam

Qaidam

Qilian orogen

North China S. QaidamQilian

North China Qaidam

Qilian orogen

Arc on Qilian or 
accretionary wedge

N

N

S. Qaidam
Qilian

Arc on Qilian or 
accretionary wedgeArc on North China Island arc

N

N

Slab retreatAdvancing slab

North China

Figure 5.3. Major tectonic models for the development of the early Paleozoic Qilian orogen, 
including the implied UHP rock exhumation paths. (A) The north-dipping subduction model 
requires the Qilian arc to have been constructed primarily on the North China craton with 
northward-migrating arc magmatism caused by subduction-slab shallowing. (B) The 
south-dipping subduction model requires the Qilian arc to develop along the northern margin of 
the Qaidam microcontinent, and northward arc migration was caused by slab steepening and 
rollback. (C) The bidirectional subduction model requires the Qilian arcs to develop within the 
Qilian microcontinent. In this scenario, two suture zones should have developed, including 
seperate collisional orogens and forearc basins. (D) The multiple north-dipping arc model 
requires several arc belts, suture zones, and collisional events. The arcs may have developed on 
the North China craton, Qilian microcontinent (or North Qaidam), accretionary wedges, and/or 
oceanic lithosphere. See text and Table 5.1 for further discussion and references.

UHP exhumation path
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Figure 5.4. (A) Tectonostratigraphy of the central Qilian Shan. (B) Detrital zircon age spectra of 
the major tectonic units. Data from unpublished ages obtained by Y. Zhang, C. Wu, A. Yin, L. 
Ding, and A. Zuza, and published sources including Gehrels et al. (2003a) and Yang et al. (2010).
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Figure 5.5. (A) Simplified geologic map of the Tuo Lai Nan Shan and Tuo Lai Shan in the 
central Qilian Shan. Note that analyzed samples are omitted for map clarity. For explanation of 
the geologic symbols, see Figure 2.8 or Supplementary Figure 2.  
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Figure 5.5 (continued). (B) Simplified geologic map of the Tuo Lai Nan Shan and Tuo Lai Shan 
in the central Qilian Shan showing analyzed samples. Note that the map is the same as A, except 
that sample and field photograph locations are indicated. For explanation of the geologic 
symbols, see Figure 2.8 or Supplementary Figure 2.  
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Figure 5.5 (continued). (C) Unfolded structural data (i.e., foliation and lineation attitudes) from 
the metamorphic basement units that represent the pre-Carboniferous state.

(C) Unfolded pre-Carboniferous 
structural data

Stretching lineation (   ) 
and foliation (   ) data from:
 
 

South of f4

North of f4

All data:

Mean lineation: 12/119
Mean foliation: 126/84SW
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Figure 5.6. Regional geologic map of the central Qilian Shan-Nan Shan thrust belt based on 
Gansu Geological Bureau (1989), Qinghai BGMR (1991), Pan et al. (2004), and my own 
geologic mapping and structural interpretations. The map units are from a simplified 
tectonostratigraphic scheme presented in Figure 5.4A. Location is shown in Figure 5.2B. 
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Figure 5.7. Field photographs showing the 
deformed gneiss and schist units of the central 
Qilian Shan. The full figure caption can be 
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Figure 5.7 (continued). Field photographs showing outcrops from the deformed gneiss and schist 
units of the central Qilian Shan. (A-C) Foliated granitoid rocks, often mylonitized, showing a 
right-lateral shear sense. Rocks have a near-vertical northwest-striking foliation. (D-E) Strongly 
foliated garnet amphibolite rocks. Rocks have a near-vertical northwest-striking foliation. Note 
the plagioclase coronas rimming the garnet grains. Shear sense in these rocks is also right-lateral. 
(F) An undeformed early Paleozoic granitoid dike crosscuts the Proterozoic gneiss. The apparent 
U-Pb zircon crystallization age of the dike constrains the maximum age of metamorphism of the 
gneiss. 
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Figure 5.8. Field photographs from the ophiolitic mélange complex of the central Qilian Shan. 
(A) Serpentinite samples with light-green colored asbestos veins. (B) View of cherty-sandy 
“knockers” in mélange material. Sketched outlines highlight approximate location, size, and 
position of “knockers” within the mélange. (C) Outcrop view of limestone “knocker” within 
mélange. Location of outcrop is indicated in B. (D) Stichtite from a vein within the ultramafic 
complex. Hammer adze for scale. (E) Massive plagioclase-pyroxene gabbro (bottom) in fault 
contact with ultramafic rocks (top). Note that the hammer, for scale, is near the fault surface. (F) 
Close-up view of pillow basalt, with a rock hammer for scale. (G) Outcrop of pillow basalts. 
Note the circled jacket and rock hammer for scale. 
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Figure 5.9 (continued). Complete figure caption can be found on page following I-L.
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Figure 5.9 (continued). Complete figure caption can be found on page following I-L.
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Figure 5.9 (continued). Complete figure caption on following page.
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Figure 5.9 (continued). U-Pb concordia diagrams showing results of single shot zircon analyses 
and relative probability plots of zircon ages for each sample. Error ellipses are 2σ and grey 
shaded ellipses show individual analyses that were excluded from weighted mean calculations. 
Only concordant ages are plotted in probability distributions and crossed out peaks were not 
included in weighted mean calculation. All weighted mean ages are U-Pb ages (unless specified) 
at the 95% confidence level. See text for further discussion of rationale and Figure 5.6 for 
sample locations. Note that tonalitic dike analysis shown in (J) shows a scattered spread of ages; 
calculated weighted mean ages of two age clusters provides age constraints on the basement that 
the dike intrudes. Plots were created with Isoplot 4.1 of Ludwig (2003). 
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Figure 5.10. Scanning electron microscope (SEM) image of a representative garnet and 
monazite grains from the garnet-mica schist samples that were targeted for in situ Th-Pb 
monazite dating. (A-B) Synkinematic garnet with an included monazite grain. (C-D) Matrix 
monazite grains. Note the size difference between matrix and included-in-garnet monazite grains. 
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Figure 5.11. In-situ Pb-Th monazite dating results from metapelite samples. (A) Weighted mean 
ages of the entire population, the included-in-garnet grains, and the matrix grains. Also shown is 
the apparent U-Pb zircon crystallization age of the dike that cross cuts the foliation of the 
metamorphic complex. (B) Normalized probability density plot of the monazite ages of the 
included-in-garnet grains, matrix grains, and the total population. Interpretations of the three 
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diagrams for granites after Pearce et al. (1984). Red diamonds from Zhang et al. (2006) and the 
rest are from this study.

(A)

(B)

315



C s Ba U K C e Pr P Zr Eu Dy Yb

R b Th Nb La Pb S r Nd S m Ti Y Lu

0.
1

1
10

10
0

10
00

RR 05-03-2012 (6)

AY 09-21-2011 (3)

RR 05-05-2012 (8)

AZ 04-18-2012 (4)

AZ 04-30-2012 (11)

AZ 07-17-2013 (4)

AZ 07-21-2013 (7)

La Pr Pm E u Tb Ho Tm Lu

C e Nd S m Gd Dy E r Yb

1
10

10
0

10
00

(a)

(b)10
00

0

S
am

pl
e/

pr
im

iti
ve

 m
an

tle
S

am
pl

e/
ch

on
dr

ite
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Figure 5.15. Mn concentration maps of garnet grains and garnet compositional traverses. 
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Figure 5.18. Pseudosections and P-T plots for selected samples. (A) Pseudosection for 
garnet-mica schist sample AY 09-21-11 (2). The garnet compositions are from adjacent sample 
AY 09-21-11 (1A). Relict plagioclase may be from an early stage of metamorphism, or 
alternatively, it may have formed during late-stage retrogression. gt—garnet; and—andalusite; 
sill—sillimanite; ky—kyanite; pl—plagioclase; san—k-feldspar; ms—muscovite; bt—biotite; 
chl—chlorite; ru—rutile; sph—sphene; ilm—ilmenite.

324



(B)

Figure 5.18 (continued). Pseudosections and P-T plots 
for selected samples. (B) Pseudosection for garnet 
amphibolite sample RR 05-05-12 (12). Garnet isopleths 
may track prograde metamorphism. The absence of 
sphere in the sample is an upper bound on the P-T 
conditions. Inset shows range of THERMOCALC avPT 

results (at 1σ and 2σ) and Hbl-Pl thermometer 
constraints overlain by the pseudosection constraints 
(purple arrow). gt—garnet; bt—biotite; amp— 
amphibole; Fe-amp—Fe-amphibole; pl—plagioclase; 
sph—sphene; ilm—ilmenite; ru—rutile.
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Figure 5.18 (continued). Pseudosections and P-T plots for selected samples. 
(C) Pseudosection for gneiss sample RR 05-05-12 (8). The THERMOCALC avPT  and peak 
garnet isopleth intersection do not overlap, and thus peak conditions are only loosely constrained 
to ~700°C and ~6 ± 1.5 kbar. Late-stage garnet compositions show retrograde conditions at 
~630°C and ~3.1 kbar. gt—garnet; pl—plagioclase; kfs—K-feldpsar; ms—muscovite; bt— 
biotite;  sill—sillimanite; and—andalusite; zo—zoisite; sph—sphene; ilm—ilmenite; ru—rutile.
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Figure 5.18 (continued). Pseudosections and P-T plots for selected samples. (D) 
Pseudosection for amphibolite gneiss AZ 04-18-12 (4). gt— garnet; amp— amphibole; 
Fe-amp—Fe-amphibole; pl—plagioclase; bt—biotite; ms—muscovite; chl—chlorite; 
ep—epidote; cz—clinozoisite; ilm—ilmenite; mt—magnetite; ru—rutile. 
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(E)

Figure 5.18 (continued). Pseudosections and P-T  
plots for selected samples. (E) Pseudosection for 
garnet-mica schist RR 05-05-12 (4b). Inset shows P-T 
estimates from this pseudosection, AZ 04-18-12 (4), 
two geothermometers (Holland and Blundy, 1994; 
Henry et al., 2005), reaction curves from Plyusninia 
(1982) (blue) and Kapp et al. (2009) (black), and 
possible P-T path (purple line). gt— garnet; 
pl—plagioclase; bt—biotite; ms—muscovite; chl— 
chlorite; cz—clinozoisite; zo—zoisite; ttn—titanite; 
kfs—k-feldspar; sill—sillimanite; crd—cordierite. 2.0
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Figure 5.19. Estimated depth history for the metamorphic basement rocks of the central Qilian 
Shan from the Neoproterozoic to the present. The oldest population of monazite ages (~540 Ma) 
may correspond to the earliest stage P-T estimates. Subduction and arc magmatism thickened the 
continent, resulting in peak P-T conditions and the main population of included-in-garnet 
monazite ages (~480 Ma). Magmatism continues throughout the Silurian, and late P-T conditions 
record shallow crustal depths, possibly as a result of erosion. Metamorphic foliations are 
truncated by undeformed granite at ~445 Ma. Devonian molasse is unconformably deposited on 
basement rocks, which requires that the basement rocks were exhumed to near the surface by this 
time. Continuous shallow marine to lacustrine Carboniferous-Triassic sedimentation suggests 
that these rocks remained near the Earth’s surface. Jurassic and Cretaceous extension lead to 
progressively shallower to terrestrial sedimentation, and Cenozoic deposits are entirely terrestrial 
during intracontinental shortening. mz—monazite; avg—average; Dev.—Devonian; 
Carb.—Carboniferous; Tri.—Triassic; J—Jurassic; K.—Cretaceous.
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Figure 5.20. Block models of the tectonic evolution of north Tibet and the Qilian Shan from the 
Mesoproterozoic through Devonian. Full caption on page following panel (G). 
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Figure 5.20 (continued). Block models of the tectonic evolution of north Tibet and the Qilian 
Shan from the Mesoproterozoic through Devonian. Full caption on page following panel (G). 
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Figure 5.20 (continued). Block models of the tectonic evolution of north Tibet and the Qilian 
Shan from the Mesoproterozoic through Devonian. Note that the scale is relatively and changes 
between panels. (A) In the Mesoproterozoic, cratonal and/or passive margin deposits along the 
southern margin of a combined North Tarim-North China continent posses ~1.45 and ~1.8 Ga 
detrital zircons. (B) Early Neoproterozoic north-dipping subduction leads to the development of 
the Tarim arc (with ~1.0-0.9 Ga magmatism) which accommodates the convergence of the South 
Tarim-Qaidam and North Tarim-North China continents. (C) Late Neoproterozoic rifting leads to 
the opening of  the Qilian and Paleo-Asian Oceans. Bimodal volcanism (~830-600 Ma) occurs 
throughout Qaidam, Tarim, and North China. (D) Cambrian-aged supra-subduction zone (SSZ) 
ophiolites are generated in an incipient arc setting, as south-dipping subduction initiates just 
north of Qaidam’s northern margin. The SSZ ophiolites are obducted onto Qaidam and 
underthrust beneath the continent. (E) Continental arc magmatism initiates in earnest in the 
Ordovician, along with a trench-parallel intra-arc right-lateral strike-slip fault. Continental crust 
is brought to UHP depths along the subduction channel, and returned to mid-crustal levels by via 
diapiric flow or subduction channel flow. (F) Slab rollback causes the northward migrating arc to 
develop on older Ordovician and Cambrian strata. (G) Collision between Qaidam and North 
China occurs at ~440 Ma and is associated with a magmatic pulse at this time. Syn- and 
post-orogenic magmatism is diffuse but widespread. Continued convergence variably exposes 
ophiolites and basement rocks to surface by the Devonian. 
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Table 5.4. Whole-rock geochemistry data 
 

Sample: RR 05-03- 

12 (6) 

AZ 04-30- 

12 (11) 

AZ 07-17- 

13 (4) 

AZ 05-05- 

12 (7) 

AZ 07-21- 

13 (7) 

AY 09-21- 

11 (3) 

Rock 

type: 

Alkali 

feldspar 

granite 

Syenogranite Alkali 

feldspar 

granite 

Diabase Foliated K- 

feldspar 

granite 

Foliated 

granitoid 

          

Location: 38.49025° N  38.5745° N 38.4758° N 38.56992° N 38.75413° N 38.697° N 

 98.90364° E 98.96725° E 98.83137° E 98.91741° E 98.49783° E 98.64175° E 

  3982 m 3911 m 4290 m 3827 m 3441 m 3540 m 
       

Major and minor elements (wt %) 

SiO2 75.45 62.72 70.55 46.16 71.08 69.34 

Al2O3 13.18 14.04 14.14 13.50 13.37 15.01 

Fe2O3 1.69 4.37 2.85 14.24 3.01 2.59 

MnO 0.05 0.07 0.05 0.24 0.03 0.05 

MgO 0.34 1.93 0.73 7.69 0.47 0.84 

CaO 0.80 3.17 1.15 10.56 1.68 2.72 

Na2O 3.24 3.13 3.80 1.94 2.54 3.18 

K2O 4.65 4.42 3.97 0.12 4.82 3.06 

TiO2 0.18 0.49 0.30 1.55 0.42 0.31 

P2O5 0.05 0.17 0.12 0.12 0.08 0.07 

LOI@ 0.78 3.81 0.87 3.76 2.35 2.69 

Total# 100.4 98.31 98.51 99.88 99.85 99.86 
       

Trace elements (ppm) 

Sc 4 10 4 55 7 9 

Be 5 2 3 - - - 

V 11 88 24 408 31 45 

Cr 40 50 40 254 50 70 

Co 2 10 4 73 5 5 

Ni < 20 < 20 < 20 136 < 20 < 20 

Cu < 10 < 10 20 105 < 10 < 10 

Zn 30 40 50 147 50.0 50.0 

Ga 18 14 17 17 18.0 19.0 

Ge 2 2 2 - 2 2 

As < 5 6 < 5 8 14 7 

Rb 347 192 142 4 204 115 

Sr 101 397 310 196 82 157 

Y 27 15 11 29 39 20 

Zr 121 155 145 93 228 126 

Nb 30 18 16 16 9 7 

Mo < 2 < 2 < 2 3 0 3 

Ag 1 1.2 1.2 - 0.5 < 0.5 

In < 0.2 < 0.2 < 0.2 - < 0.2 < 0.2 

Sn 10 1 3 - 3.0 3.0 

Sb 0.6 6.2 3.4 - 0.7 0.6 

Cs 15.1 6.4 2.9 1.0 6.7 4.1 

Ba 360 1014 579 37 839 566 

La 44.7 42.8 46.7 0 39.4 13.3 

Ce 82.5 72.4 79.8 19 78.2 26.3 

Pr 8.41 7.09 7.59 2 8.3 3.0 
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Table 5.4. Whole-rock geochemistry data (continued) 
 

Sample: RR 05-03- 

12 (6) 

AZ 04-30- 

12 (11) 

AZ 07-17- 

13 (4) 

AZ 05-05- 

12 (7) 

AZ 07-21- 

13 (7) 

AY 09-21- 

11 (3) 

Rock 

type: 

Alkali 

feldspar 

granite 

Syenogranite Alkali 

feldspar 

granite 

Diabase Foliated 

alkali 

feldspar 

granite 

Foliated 

granitoid 

Location: 38.49025° N  38.5745° N 38.4758° N 38.56992° N 38.75413° N 38.697° N 

 98.90364° E 98.96725° E 98.83137° E 98.91741° E 98.49783° E 98.64175° E 

  3982 m 3911 m 4290 m 3827 m 3441 m 3540 m 

Nd 29 25 24 17 31 12 

Sm 6 4 4 4 6 3 

Eu 0.5 1.1 0.7 - 0.8 0.7 

Gd 4.2 2.9 2.4 - 6.5 2.7 

Tb 0.7 0.4 0.3 - 1.0 0.5 

Dy 4.4 2.5 1.8 - 6.1 3.1 

Ho 0.8 0.5 0.4 - 1.3 0.7 

Er 2.4 1.4 1.1 - 3.8 2.1 

Tm 0.4 0.22 0.15 - 0.6 0.4 

Yb 2.7 1.5 1.1 - 3.8 2.4 

Lu 0.4 0.24 0.17 - 0.6 0.4 

Hf 3.4 3.6 3 2.1 6.1 3.4 

Ta 3.7 1.2 1.1 7.3 1.0 0.9 

W < 1 3 4 - - - 

Tl 2.2 0.9 0.9 - 1.4 0.8 

Pb 46 19 25 5.2 33.0 25.0 

Bi < 0.4 < 0.4 < 0.4 - < 0.4 0.4 

Th 38.4 18.3 25 1.0 16.9 4.8 

U 4.8 4.2 3.3 7.3 2.3 1.6 

S - - - < dl < dl 90.4 

Ti* 1073 2944 1793 9648 2577 1910 

K* 38600 36693 32957 1034 40951 26105 

P* 218 742 524 544 358 314 
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Table 5.4. Whole-rock geochemistry data (continued) 
 

Sample: RR 05-05- 

12 (8) 

AZ 05-03- 

12 (13) 

AZ 04-18- 

12 (4) 

AZ 07-15- 

13 (5) 

AZ 04-18- 

12 (4b) 

AY 09-21- 

11 (2) 

Rock 

type: 

Mylonitic 

gneiss 

Serpentinite Gneiss Garnet 

amphibolite 

Garnet mica 

schist 

Garnet mica 

schist 
          

Location: 38.58889° N 38.60758° N  38.50647° N  38.4625° N  38.5065° N  38.7131° N  

 98.5402° E 98.99772° E 98.6993° E 98.8036° E 98.69933° E 98.60619° E 

  4215 m 4360 m 4314 m 4170 m 4314 m 3516 m 
       

Major and minor elements (wt %) 

SiO2 72.62 33.28 53.37 48.1 61.76 63.43 

Al2O3 13.11 0.91 13.24 11.42 15.86 19.42 

Fe2O3 2.91 10.57 13.89 17.37 7.46 5.41 

MnO 0.11 0.07 0.21 0.26 0.17 0.10 

MgO 0.55 39.36 5.01 4.93 2.35 1.41 

CaO 1.24 0.03 7.31 9.15 2.30 0.51 

Na2O 1.74 0.00 0.83 2.06 2.73 1.75 

K2O 4.61 0.00 1.06 0.47 2.27 3.90 

TiO2 0.33 0.01 1.64 2.52 0.97 0.78 

P2O5 0.15 0.00 0.20 0.24 0.06 0.06 

LOI@ 2.44 15.24 3.07 3.31 3.92 3.09 

Total# 99.81 99.47 99.83 99.93 99.85 99.86 
       

Trace elements (ppm) 

Sc 10 4 40 47 20 17 

Be - - - - - - 

V 44 22 352 451 123 116 

Cr 70 4684 105 27 118 92 

Co 5 185 55 77 37 4 

Ni 5 2076 28 328 27 29 

Cu 37 27 122 147 88 34 

Zn 50 122 108 105 47 88 

Ga 17 1 20 21 22 24 

Ge 2 - - - - - 

As < 5 0 7 2 5 5 

Rb 170 0 49 18 143 185 

Sr 102 0 135 123 151 102 

Y 37 2 35 52 41 35 

Zr 135 13 133 182 258 174 

Nb 8 9 20 24 23 18 

Mo 3 2 2 0 2 1 

Ag < 0.5 - - - - - 

In < 0.2 - - - - - 

Sn 3.0 - - - - - 

Sb 0.8 - - - - - 

Cs 7.1 2.4 11.3 0.0 11.4 15.5 

Ba 822.0 0.0 157.8 95.1 525.2 707.3 

La 32.0 0.0 25.8 11.4 44.7 55.7 

Ce 67.4 0.0 49.5 34.1 115.4 113.4 

Pr 7.4 3.5 5.2 3.1 13.5 12.4 
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Table 5.4. Whole-rock geochemistry data (continued) 
 

Sample: RR 05-05- 

12 (8) 

AZ 05-03- 

12 (13) 

AZ 04-18- 

12 (4) 

AZ 07-15- 

13 (5) 

AZ 04-18- 

12 (4b) 

AY 09-21- 

11 (2) 

Rock 

type: 

Mylonitic 

gneiss 

Serpentinite Gneiss Garnet 

amphibolite 

Garnet mica 

schist 

Garnet mica 

schist 

Location: 38.58889° N 38.60758° N  38.50647° N  38.4625° N  38.5065° N  38.7131° N  

 98.5402° E 98.99772° E 98.6993° E 98.8036° E 98.69933° E 98.60619° E 

  4215 m 4360 m 4314 m 4170 m 4314 m 3516 m 

Nd 28 13 23 19 51 45 

Sm 6 1 4 5 8 8 

Eu 1 - - - - - 

Gd 6 - - - - - 

Tb 1 - - - - - 

Dy 6 - - - - - 

Ho 1 - - - - - 

Er 4 - - - - - 

Tm 1 - - - - - 

Yb 5 - - - - - 

Lu 1 - - - - - 

Hf 4 0 3 2 6 6 

Ta 1 0 0 0 0 1 

W - - - - - - 

Tl 1 - - - - - 

Pb 39 0 5 0 30 37 

Bi < 0.4 - - - - - 

Th 16 0 4.1 00 18 23 

U 3 0 2.1 3 3 6 

S 238 712 232 64 < dl < dl 

Ti* 2028 71 10142 15618 6047 4821 

K* 39228 0 9078 4034 19598 33381 

P* 671 0 900 1083 272 270 
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Table 5.4. Whole-rock geochemistry data (continued) 
 

Sample: RR 05-05- 

12 (12) 

AY 09-21- 

11 (6) 

Rock 

type: 

Garnet 

amphibolite 

Garnet 

amphibolite 
    

Location: 38.66430° N 38.65617° N 

 98.56219° E 98.76244° E 

  3725 m 3693 m 
       

Major and minor elements (wt %) 

SiO2 49.76 52.1 

Al2O3 1.63 1.59 

Fe2O3 15.02 12.63 

MnO 12.49 14.39 

MgO 0.22 0.24 

CaO 5.41 5.19 

Na2O 10.26 9.03 

K2O 2.16 1.82 

TiO2 0.40 0.59 

P2O5 0.15 0.16 

LOI@ 2.41 2.17 

Total# 99.91 99.91 
       

Trace elements (ppm) 

Sc 44 43 

Be - - 

V 343 372 

Cr 82 39 

Co 72 73 

Ni 176 127 

Cu 108 118 

Zn 34 118 

Ga 20 18 

Ge - - 

As 9 13 

Rb 17 20 

Sr 190 132 

Y 37 37 

Zr 126 131 

Nb 16 18 

Mo 0 0 

Ag - - 

In - - 

Sn - - 

Sb - - 

Cs 4 0 

Ba 75 104 

La 22 17 

Ce 34 39 

Pr 2 1 
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Table 5.4. Whole-rock geochemistry data (continued)  
 

Sample: RR 05-05- 

12 (12) 

AY 09-21- 

11 (6) 

Rock 

type: 

Garnet 

amphibolite 

Garnet 

amphibolite 

Location: 38.66430° N 38.65617° N 

 98.56219° E 98.76244° E 

  3725 m 3693 m 

Nd 14 10 

Sm 4 6 

Eu - - 

Gd - - 

Tb - - 

Dy - - 

Ho - - 

Er - - 

Tm - - 

Yb - - 

Lu - - 

Hf 4 3 

Ta 0 0 

W - - 

Tl - - 

Pb 5 7 

Bi - - 

Th 0 2 

U 3 5 

S < dl < dl 

Ti* 10004 9736 

K* 3400 5003 

P* 670 713 
 

"< dl" Below lower detection limit 

“-“ Not measured or below detection limit 

*Calculated from oxide wt % 
@ Loss on ignition (LOI) values 
# Summed major-element oxide abundances, including LOI values 

Trace element concentrations have been normalized 
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Table 5.5. P-T data from THERMOCALC for selected metamorphic rocks 

                  

Sample  Location& Minerals T (°C) S.D. P (kbar) S.D.  Corr@ 

AY 09-21-11 (1A) grt3b_p Grt Bt Ms Pl 490 83 7.4 1.4  0.813 

Garnet-mica schist 
grt3a_p 

Grt Bt Ms Pl 591 80 8.3 1.3  0.729 

 Grt Bt Ms Pl 531 90 7.8 1.5  0.757 

 grt4_p Grt Chl Ms Pl H2O* 555 19 6.2 1.0  0.595 

 
grt5_p 

Grt Bt Ms Pl 450 153 7.0 2.6  0.865 

 Ti-in-Bt1 569 24 - -  - 

  Weighted average (95% confidence)% 552 35 7.2 1.2  0.724 

*XH2O=0.68; no water gives 561±72°C and 5.1±1.1 kbar       

         

AZ 04-18-12 (4b) grt1_p Grt Bt 589 23 - -   

Garnet-mica schist grt4_p Grt Bt 674 23 - -   

 grt1 Ti-in-Bt1 572 24 - -   

 grt4 Ti-in-Bt1 662 24 - -   

  Weighted average (95% confidence) 625 23         

         

RR 05-05-12 (8) 

grt1_p 
Grt Bt Ms Pl H2O 

714 27 6.1 1.1  0.722 

Quartzofeldspathic 

gneiss 
730 29 6.5 1.1  0.727 

Ti-in-Bt1 692 24 - -  - 

 

grt2_p 
Grt Bt Ms Pl Kf H2O 

748 29 7.4 1.1  0.716 

 733 28 6.7 1.1  0.722 

 Ti-in-Bt1 678 24 - -  - 

 grt3_p Grt Bt Ms Pl Kf H2O 728 27 7 1.1  0.726 

  Weighted average (95% confidence)% 725 85 6.8 1.0  0.723 

         

AY 09-21-11 (6A) 
grt1_p Grt Pl Qtz Hbl 

748 93 7.8 1.5  0.607 

Garnet amphibolite 872 101 9.8 1.6  0.725 

 

grt2_p Grt Pl Qtz Hbl 

685 73 7.6 1.2  0.635 

 664 89 7.2 1.5  0.698 

 699 72 7.9 1.2  0.635 

 738 80 8.1 1.3  0.645 

 

grt4_p Grt Pl Qtz Hbl 

638 65 6.4 1.0  0.585 

 799 90 9 1.4  0.673 

 838 95 9.7 1.5  0.689 

 Weighted average (95% confidence) 725 53 7.9 0.9  0.655 

 
grt1_c Grt Pl Qtz Hbl 

635 68 6.7 1.2  0.664 

 638 69 6.7 1.2  0.659 

 
grt2_c Grt Pl Qtz Hbl 

591 63 6.8 1.1  0.670 

 634 68 6.5 1.1  0.641 

 

grt4_c Grt Pl Qtz Hbl 

601 64 7.6 1.2  0.672 

 601 64 8.2 1.3  0.671 

 607 65 7.9 1.2  0.675 

  Weighted average (95% confidence) 614 49 7.2 0.9  0.665 
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Table 5.5. P-T data from THERMOCALC for selected metamorphic rocks (continued) 

Sample  Location Minerals T (°C) S.D. P (kbar) S.D.   Corr 

RR 05-05-12 (12) 

grt1_c Grt Pl Qtz Hbl 

629 135 6.7 2.2  0.555 

Garnet amphibolite 613 161 6 2.6  0.515 

 605 157 6.3 2.6  0.531 

 grt4_c Grt Pl Qtz Hbl 669 67 7.3 1.1  0.540 

 Weighted average (95% confidence) 650 100 7 1.7  0.535 

 
grt1_p Grt Pl Qtz Hbl 

772 91 9 1.5  0.683 

 825 96 10.1 1.6  0.644 

 
grt4_p Grt Pl Qtz Hbl 

788 138 7.8 2.1  0.591 

 772 123 7.9 1.9  0.589 

 grt1 Hbl-Pl2 695 35 - -  - 

 Weighted average (95% confidence)% 791 110 8.9 1.7  0.627 

 grt1_r Grt Pl Qtz Hbl 667 68 6.3 1.1  0.558 

 grt4_r Grt Pl Qtz Hbl 658 67 6 1.1  0.550 

  Weighted average (95% confidence) 662 95 6.2 1.6  0.554 

 Overall weighted average (95% confidence) 696 41 7.3 0.8  0.575 

        

AZ 07-21-13 (5) grt1_c 

Grt Pl Qtz Hbl 

574 102 4.6 1.8  0.590 

Garnet amphibolite grt1_p 574 71 5.2 1.3  0.587 

 grt1_r 578 68 6.1 1.3  0.573 

  Weighted average (95% confidence) 576 88 5.4 1.6  0.583 

         

AZ 04-18-12 (4) grtb1_p Hbl-Pl2 611 24 - -   

Garnet-epidote 

amphibolite gneiss 
grt1a_p Grt Pl Qtz Hbl Ep 686 133 8.2 1.9  0.867 

grt1b_p Grt Pl Qtz Hbl Ep 683 145 8.1 2.0  0.873 

 Weighted average (95% confidence) 615 47 8.1 2.7  0.870 
 

% Average of THERMOCALC data only 
@ Corr is correlation coefficient from THERMOCALC 
& Location within the thin section (e.g., the specific garnet grain); r is retrogressed rim, p is inferred peak-

metamorphism position based on garnet compositional zoning, and c is early metamorphism recorded in the core of 

the garnet grain 
1 Ti-in-biotite geothermometer of Henry et al. (2005) 
2 Geothermometer for coexisting hornblende and plagioclase of Holland and Blundy (1994) 
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The tectonic history of central Asia: The Balkatach hypothesis and a new 

model for the evolution of the Paleo-Pacific, Tethyan, and Paleo-Asian Oceans  
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6.1. Abstract 

The Phanerozoic history of the Paleo-Asian, Tethyan, and Pacific oceanic domains is key 

to unraveling the tectonic evolution and development of the Eurasian continent. The validity of 

existing models that account for the growth and closure of the Paleo-Asian and Tethyan Oceans 

critically depends on the assumed initial configuration and relative positions of the Precambrian 

cratons that separate the two oceanic domains, including the North China, Tarim, Karakum, 

Turan, and Baltica cratons. Existing studies largely neglect the Phanerozoic tectonic 

modification of these Precambrian cratons (e.g., the effects of India-Eurasia convergence and 

post-Rodinia rifting). In this chapter, I systematically restore these effects and evaluate the 

tectonic relationships of these important cratons to test the hypothesis that Baltica, Turan, 

Karakum, Tarim, and North China were linked as a single continental strip, with variable along-

strike widths, in the Neoproterozoic. Because most of the tectonic boundaries currently 

separating these cratons postdate the closure of the Paleo-Asian and Tethyan Oceans, I am able 

to establish a > 6000 km-long Neoproterozoic continental strip referred to here as Balkatach (i.e., 

after the Baltica-Karakum-Tarim-China connection). By focusing on the regional geologic 

history of the margins of a continuous Balkatach continent, I propose the following tectonic 

model for development and evolution of the Paleo-Asian, Tethyan, and Pacific Oceans and the 

protracted growth of the Eurasia continent. (1) The early Neoproterozoic collision of the 

combined Baltica-Turan-Karakum-South Tarim continents with the linked North Tarim-North 

China cratons led to the formation of a coherent Balkatach continent. (2) Rifting along 

Balkatach’s margins in the late Neoproterozoic lead to the opening of the Tethyan Ocean and 

unified Paleo-Asian-Pacific Oceans, and released numerous Balkatach-derived microcontinents 

within the Paleo-Asian Ocean. (3) These rifted microcontinents acted as nuclei for subduction to 
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develop within the Paleo-Asian Ocean during the evolution of the Central Asian Orogenic 

System (CAOS), which assisted the closure of the Paleo-Asian Ocean. The subduction of this 

ocean within an archipelago arc system accommodated the oroclinal bending of Balkatach 

around the CAOS. (4) Initial collision of central Balkatach and the CAOS in the mid-

Carboniferous was followed by a bi-directional propagation of suturing to the northwest and east, 

in present-day coordinates. (5) The complete closure of the Paleo-Asian Ocean in the Permian 

was accompanied by a magmatic flare up, which may have been related to the avalanche of the 

subducted oceanic slabs of the Paleo-Asian Ocean across the 660 km phase boundary in the 

mantle. (6) The closure of the Paleo-Tethys, against the southern margin of Balkatach, proceeded 

diachronously, from west to east, in the Triassic-Jurassic. 

 

6.2. Introduction  

Eurasia, the largest and youngest continent on Earth, was assembled mostly through the 

Neoproterozoic to the present over a time span of ~1.0 Ga (Scotese and McKerrow, 1990). The 

three major oceanic domains of Eurasia—the Paleo-Asian, Tethyan, and Pacific Oceans—

represent three large Phanerozoic oceans that were intimately related with the assembly and 

evolution of the Eurasian continent (Fig. 6.1) (e.g., Zonenshain et al., 1990; Yin and Nie, 1996; 

Şengör and Natal’in, 1996; Heubeck, 2001; Badarch et al., 2002; Stampfli and Borel, 2002; Sone 

and Metcalf, 2008; Biske and Seltmann, 2010; Gehrels et al., 2011). Decades of research have 

generated a wealth of geologic data, yet the processes responsible for the opening and closing of 

these major ocean systems remain debated. For example, researchers have variably attributed the 

evolution of the Paleo-Asian Ocean to (1) lateral expansion of juvenile continental crust via 

protracted trench retreat and strike-slip duplexing of a long-lived continental-margin arc derived 
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from Siberia or Baltica (Şengör et al., 1993; Yakubchuk, 2002), (2) accretion of multiple intra-

oceanic and/or continental-margin arcs onto the continents bounding the Paleo-Asian oceans 

(i.e., the multi-arc model) (e.g., Zonenshain et al., 1990; Hsü and Chen, 1999; Filippova et al., 

2001; Badarch et al., 2002; Windley et al., 2007; Xiao et al., 2008), and (3) redistribution and 

entrapment of pre-existing microcontinents within the Paleo-Asian oceans (e.g., Kröner et al., 

2013). Similarly, the provenance of tectonic continents/terranes in the Tethyan orogenic system 

is also enigmatic: were they derived from (1) the northern margin of Gondwana (Stampfli et al., 

2013), (2) the southern margin of Laurasia (at least partially) (Sengör et al., 1993; Yakubchuk, 

2002), or (3) a continent located within the Paleozoic-early Mesozoic Tethyan oceans (Şengör, 

1984)?   

Although past research has focused on the evolution of the Central Asian and Tethyan 

orogens, relatively little attention has been paid to the tectonic history and role of the cratonal 

units that lie between these two orogenic systems, including the Baltica, Karakum, Turan, Tarim, 

and North China cratons. This may be attributed to (1) poor exposure of bedrock in the region 

(e.g., Turan, Karakum, and Tarim are extensively covered by Mesozoic-Cenozoic sand-desert 

deposits) and (2) significant tectonic modification that occurred during and after the closure of 

the Paleo-Asian and Tethyan oceans throughout the Phanerozoic. The lack of studies on these 

“intermediate units” of Şengör and Natal’in (1996) (Fig. 6.1) has limited our ability to use a 

process-based approach to reconstruct the tectonic history of the Paleo-Asian and Tethyan 

orogenic systems in Asia. 

In this chapter, I first thoroughly review the geology of the Precambrian cratons that 

separate the Paleo-Asian and Tethyan oceanic domains, which includes their mutual tectonic 

relationships and their deformational history during and after they became individual tectonic 
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entities. Most of the tectonic boundaries currently separating these cratons postdate the closure of 

the Paleo-Asian and Tethyan Oceans, and thus I systematically restore the geometry of these 

cratons from their present-day configuration through the Phanerozoic and into the Proterozoic. 

By removing the tectonic distortion effects on the shape of the cratons, I ultimately show that 

Baltica, Karakum, Turan, Tarim, and North China were once linked continuously in the 

Neoproterozoic as a ~6,000-km-long continental strip. I herein refer to this contiguous strip of 

Precambrian continental lithosphere as Balkatach (named after the Baltica-Karakum-Tarim-

China connection of traditionally-defined Precambrian cratons).  

The proposed Balkatach hypothesis has implications for the boundary conditions of the 

development of the three major Phanerozoic Oceans, and affects reconstructions of the 

Proterozoic-Phanerozoic tectonic evolution of Asia. Furthermore, the newly established 

Neoproterozoic continuity of this long continental strip provides new constraints on global 

supercontinent reconstructions (i.e., Columbia and Rodinia) (e.g., Li et al., 2008; Santosh, 2010). 

I show how the rifting of this continent during the breakup of Rodinia opened the twin Paleo-

Asian and Pacific Oceans. This rifting event also provided a source for the Central Asian 

microcontinents (Fig. 6.2), which subsequently acted as nucleation points for subduction and 

destruction of the Paleo-Asian Ocean as part of the Central Asian Orogenic System (CAOS) 

(e.g., Briggs et al., 2007). Initial collision of central Balkatach and the CAOS in the mid-

Carboniferous was followed by bi-directional suturing and “double zipper” closure of the Paleo-

Asian Ocean. On the other hand, closure of the Paleo-Tethys Ocean along the southern margin of 

Balkatach was diachronous, proceeding from west to east in the Triassic-Jurassic. My model fits 

the Wilson-cycle evolution of the southern margin of Asia (Wu et al., 2016) into a global 

tectonic setting.  
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6.3. Methods and regional tectonic analysis 

Paleogeographic reconstructions rely on multiple lines of evidence, including sea floor, 

paleomagnetic, geologic, geochronological, paleotonological, conjugate margin, and geophysical 

datasets (e.g., Meert, 2014). Although Mesozoic and younger reconstructions can often use 

reliable seafloor magnetic anomaly data, paleomagnetic poles, and apparent polar wander paths 

(APW), the lack or limitation of these quantitative tools in the Paleozoic and Precambrian 

requires a careful integration of other geologic methods. 

 

6.3.1. Data handling 

This review takes into account decades of existing work in central Asia, including a 

compilation of geochronologic, sedimentary, stratigraphic, paleomagnetic, biostratigraphic, and 

structural datasets, which were integrated with existing paleogeographic maps and geodynamical 

models. Data was organized for each of the geologically significant tectonic domains (e.g., 

Baltica, Karakum, Turan, Tarim, and North China) (Fig. 6.2) and specific attention was given to 

the accretion/collision histories along the margins of these domains. Events affecting the margins 

of the cratons are displayed in Figure 6.3, including collisional orogens, arc magmatism, and 

passive margin sedimentation. Although I attempt to conform to all existing geologic datasets, 

the weight of each geologic data point varies significantly depending on its integration into 

coherent geologic processes. When contrasting structural models can explain the geologic 

observations, the simplest, globally consistent reconstruction was chosen. As discussed below, I 

do not infer structures or geologic features (e.g., sutures, transform faults, rift events) without 

direct observational basis for such. Because of the non-uniqueness regarding the above data, I 

take an iterative, process-based approach to develop our paleogeographic reconstruction, so that 
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each step can proceed forwards and backwards in time and be explained by established geologic 

processes.  

The reconstruction presented here uses the updated geologic timescale of the Chinese 

Geological Survey (2014). In this timescale, Phanerozoic Periods are similar to the timescale of 

Gradstein et al. (2012), which is often used for North American geology. However, Proterozoic 

era subdivisions in the Chinese literature (e.g., Wang et al., 2013) are different (Table 6.1). The 

Mesoproterozoic is divided into the Changcheng Period (1.8-1.6 Ga), Jixian Period (1.6-1.4 Ga), 

and a currently-unnamed period (1.4-1.0 Ga). The Neoproterozoic is divided into the Qingbaikou 

(1000-780 Ma), Nanhua (780-635 Ma), and Sinian (635-541 Ma) Periods. The Nanhua Period is 

broadly correlative to the Cryogenian (Gradstein et al., 2012), and is further subdivided into the 

Lower (730-725 Ma), Middle (725-660 Ma), and Upper Nanhua (660-635 Ma) Periods 

The reconstruction and kinematic tectonic model were developed using the using the 

Gplates software (www.gplate.org) (Boyden et al., 2010). Eurasian continents were first digitized 

as undeformable polygons using their present-day shape or estimated geologic boundaries (Fig. 

6.2) (Ren et al., 2013). Deformable regions were constructed with separate lines that demarcate 

the geologic boundaries; motion of these lines with respect to time allowed for the restoration of 

the deformed area along the margins of these polygons, following observed geologic constraints. 

When applicable, structural information, including the magnitude, timing, and style of 

deformation, was used to provide a context for the other geological datasets, and when possible, 

known deformation was restored. 
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6.3.2. Assembly of tectonic domains 

The recognition and interpretation of suture zones (Dewey, 1977) is critical in evaluating 

the evolution of the continents. A suture refers to a zone along which the collision of two 

preexisting pieces of lithosphere and the destruction of an interlying oceanic lithosphere has 

occurred (e.g., Burke et al., 1976; Şengör and Natal’in, 1996). Implicit in this definition, the 

convergence and amalgamation of two continents requires: 

(1) A subduction zone that consumes the interlying oceanic lithosphere, possibly with a 

subduction-accretion complex. 

(2) A calc-alkaline volcanic-plutonic belt that results from the subduction of oceanic 

lithosphere. 

(3) A collisional orogen—complete with an accretionary wedge-mélange zone, foreland 

basin, fold-and-thrust belt, and Barrovian metamorphic core—that results from the 

docking of two continents. 

(4) A regional unconformity and/or a transition to terrestrial sedimentation due uplift 

associated with this collision. 

Every verified Phanerozoic continent-continent and arc-continent collision consists of 

these features (e.g., Taiwan, Himalaya-Tibet, Uralides, Laramide). It has been demonstrated that 

the presence of oceanic material alone is not enough to demarcate a unique suture that juxtaposes 

distinct pieces of lithosphere (e.g., Yin, 2002; Kapp et al., 2003; Yin et al., 2007a) and the 

tectonic setting must be fully realized. If the package of the aforementioned suture features is 

missing, an amalgamation of two distinct continental lithospheres cannot be inferred without an 

adequate alternative explanation. As an example, which I discuss in more detail below, there is 

no geologic evidence for a Phanerozoic collision between Karakum, Tarim, and North China. In 
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light of this, the simplest explanation is best. Thus, I may infer that these continents were 

contiguous by the start of the Phanerozoic or must propose an alternative model.  

Large-scale transform faults and intracontinental shear zones can reposition continental 

lithosphere without the direct closure of an ocean (e.g., the Cenozoic translation of southeast 

Asia and the San Andreas Fault in the western United States) although all of these present-day 

examples are related to nearby subduction-collision tectonics. Without direct evidence for such 

structures, they should not be inferred. Although the primary prediction for Şengör et al. (1993)’s 

strike-slip duplication of the Kipchak arc within the Central Asian Orogenic System is numerous 

lithospheric-scale strike-slip faults, faults that were previously inferred to be strike-slip faults 

have more recently been interpreted as thrust faults (Briggs et al., 2007, 2009; cf. Şengör et al., 

2014). Of course, the plate tectonics cycle may be nonuniformitarian and a different process may 

have operated in the Proterozoic (Kröner, 1983), although recent work has revealed the 

importance of Archean and Proterozoic plate tectonics with subduction of oceanic lithosphere 

(Cawood et al., 2006). 

 

6.3.3. Tectonic modification of Precambrian cratons 

 An important issue for Proterozoic tectonic reconstructions is the effect of later 

Neoproterozoic-Phanerozoic tectonic modification on the original shape and configuration of 

Precambrian cratons. These effects include post-Rodinia rifting and drifting of microcontinents 

and intracontinental deformation as induced by continental collision and ocean-closure 

orogenies, which are particularly significant in modifying the Neoproterozoic shape of the North 

China, Tarim, and Karakum cratons (Fig. 6.2). The shape and position of the North China craton 

in popular Rodinia reconstructions (Zhang et al., 2006b; Pei et al., 2006; Whitmeyer et al., 2007; 
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Li et al., 2008; Chen et al., 2013) provides a striking example of this oversight. North China is 

placed outside of the inferred Rodinia supercontinent and its shape is limited to the current 

geographically defined northern China, north of the Qinling-Dabie orogenic belt (Fig. 6.1). Three 

fundamental issues exist with this configuration: (1) North China was much larger in the 

Precambrian, stretching as far west (in present coordinates) as Karakum or Baltica (Fig. 6.2) 

(Yin and Nie, 1996; Heubeck, 2001) (this issue is further discussed in this chapter), (2) 

Phanerozoic deformation (e.g., arc-continent accretionary and collisional events in the Paleozoic 

across central Asia and large-scale intracontinental deformation associated with the India-Asia 

collision) (Şengör and Natalín, 1996; Yin, 2010) significantly modified the original shape of the 

craton, and (3) Paleoproterozoic and Mesoproterozoic structures are inexplicably truncated by 

Neoproterozoic rifts and passive margins (Zonenshain et al., 1990; Guo et al., 2005; Zhao et al., 

2005; Kusky et al., 2007), which requires the North China craton to fit into a larger continental 

assemblage prior to this time. 

 

6.3.4. Paleomagnetic considerations 

Although many reconstructions consider paleomagnetism as the principle line of 

evidence for assessing the paleogeographic location of Precambrian continents (e.g., Li et al., 

2008; Evans, 2009; Meert, 2014), the goal of this work is to focus on geologic relationships. 

Issues of ambiguous hemisphere polarity, unconstrained latitude, poor temporal resolution, and 

rigid-block approximation make paleomagnetic analysis an invalid primary approach to 

reconstructing the internally-deformed units of central Asia back into the Proterozoic. Future 

work may improve the spatial and temporal resolution of paleopoles and may lead to better 

constrained paleopositions. Regardless, my reconstruction and continental configuration are fit 
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within existing paleomagnetic datasets (Table 6.2). Ultimately, there are too few reliable 

paleomagnetic poles for the continents within Balkatach to draw significant quantitative 

conclusions. 

 

6.4. Geology of the major pre-Mesozoic tectonic domains of central Asia 

 

The assembly of present-day central Asia has progressed through the Proterozoic and 

Phanerozoic as an amalgamation of numerous cratons, continental blocks, island-arc fragments, 

and accretionary complexes (e.g., Şengör et al., 1993; Yin and Nie, 1996; Şengör and Natal’in, 

1996). Şengör and Natal’in (1996) divided Central Asia into the Altaids (or Central Asian 

Orogenic System, CAOS) (e.g., Briggs et al., 2007, 2009; Kelty et al., 2008) and the Tethysides, 

in the north and south respectively, with “intermediate units” occupying the space between (Fig. 

6.1). These units are surrounded by three large Phanerozoic oceans: the Paleozoic Paleo-Asian to 

the north, Tethyan to the south, and present-day Pacific Oceans to the east (Fig. 6.1) (Stampfli, 

2000; Zheng et al., 2013). This spatial division is also a temporal one, as the “intermediate units” 

docked with Eurasia after the predominantly Paleozoic assembly of the CAOS but prior their 

collision with the Mesozoic Tethysides. 

Below I outline the regional geologic framework of each of the “intermediate units” 

while focusing on (1) the Precambrian and Paleozoic assemblage history of the basement and (2) 

the later tectonic modification of each unit throughout the Phanerozoic. I only provide cursory 

discussion of Mesozoic and Cenozoic events, as this most-recent time period is substantially 

covered in the literature (e.g., Molnar and Tapponnier, 1975; Tapponnier et al., 1982; Hendrix et 

al., 1992; Yin and Harrison, 2000; Yin, 2010; van Hinsbergen et al., 2011). The following review 

begins the Central Asian Orogenic System (CAOS)—because many of the other continent 
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descriptions reference this region—continues with the western margin of Baltica in western Asia 

and progresses eastward to the North China craton (Figs. 6.1 and 6.2). 

 

6.4.1. The Central Asian Orogenic System (CAOS) 

The Central Asian Orogenic System (CAOS) (Briggs et al., 2007, 2009; Kelty et al., 

2008)—also referred to as the Altaids (Suess, 1901; Şengör et al., 1993; Şengör and Natal’in, 

1996; Xiao et al., 2008, 2009a, 2009b, 2010), the Central Asia Foldbelt (Zonenshain et al., 1990; 

Filippova et al., 2001), and the Central Asian Orogenic Belt (e.g., Mossakovsky et al., 1993; 

Jahn et al., 2002; Xiao et al., 2003; Windley et al., 2007)—is the largest Phanerozoic 

accretionary orogen on Earth. This immense collage is bounded to the north and south by the 

Siberia and North China-Tarim cratons, respectively, and extends from the Urals and Baltica in 

the west to the Pacific Ocean in the east (Figs. 6.1 and 6.2). Most models for the development of 

the CAOS involve a complicated and long-lived arc-continent collisional process that involves 

the successive amalgamation of Precambrian microcontinents and island-arcs that began at ~1.0 

Ga (Khain et al., 2002) and concluded by the Late Permian (e.g., Flipova et al., 2001; Windley et 

al., 2007; Xiao et al., 2003).  

The various tectonic reconstructions of the CAOS can be summarized by two distinct 

models: (1) duplication and expansion of single long-lived arc (Sengör et al., 1993; Yakubchuk, 

2002) or (2) multiple microcontinents and arcs within the Paleo-Asian Ocean (Zonenshain et al., 

1990; Filippova et al., 2001; Badarch et al., 2002). The first model requires Siberia and Baltica to 

be linked in the Neoproterozoic and the Precambrian basement rocks within the CAOS to be 

derived from Siberia or Baltica to the north (present-day coordinates), whereas the second 
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requires Neoproterozoic Baltica and Siberia to be separate and that the CAOS microcontinents 

are predominately derived from Gondwana or Tarim.  

Some of these major Archean to Proterozoic microcontinents within the CAOS include, 

from west to east, the Kazakhstan, Tian Shan, Tuva-Mongol, Baydaric (Dzabkhan), Erguna, 

Xing’an, and Songliao (Fig. 6.2), as well as other less substantiated fragments (e.g., Avdeev, 

1984; Windley et al., 2007; Demoux et al., 2009). These microcontinents may have been derived 

from Siberia, Tarim, North China, or the northern margin of Gondwana (e.g., Zonenshain et al., 

1990; Kheraskova et al., 2003, 2010; Khain et al., 2003; Li et al., 2006; de Jong et al., 2006; 

Dobretsov and Buslov, 2007; Zhou et al., 2009; Levashova et al., 2010, 2011; Han et al., 2011; 

Meert et al., 2011; Zhou et al., 2011). Kazakhstan is often considered to be a large 

conglomeration of several microcontinents that developed toward the end of the CAOS’s activity 

(Zonenshain et al., 1990; Flipova et al., 2001; Windley et al., 2007). Modeling the collision of 

Baltica, Tarim, and Karakum against a single Kazakhstan is a useful simplifying assumption in 

global reconstructions (e.g., Ziegler, 1989; Flipova et al., 2001; Windley et al., 2007; Xiao et al., 

2015).  

Similarities between many of the microcontinents include (1) Archean-Mesoproterozoic 

basement, (2) regional metamorphism at ~1.85-1.80 Ga, (3) magmatic activity at ~950 Ma, (4) 

rift features from 790-750 Ma, and (5) the development of circumscribing passive margins by the 

Cambrian. Detrital zircon ages shown in Figure 6.4 (Han et al., 2011; Rojas-Agramonte et al., 

2011) highlight similar age signatures between the microcontinents. The oldest exposed rocks of 

Lesser Karatau block of Kazakstan (Levashova et al., 2011) consist of Paleoproterozoic flysch 

(Sovetov et al., 1990). The Tuva-Mongol microcontinent consists of several Archean-

Paleoproterozoic granulite-grade terranes covered by lower-grade Mesoproterozoic to Cambrian 
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schist, marble, and quartzite cover (Badarch et al., 2002). The oldest gneiss in this collage has a 

whole-rock Rb-Sr isochron age of 3153 ± 57 Ma (Aktanov et al., 1992), and basement rocks 

have U-Pb zircon ages of 2650 to 2364 Ma (Kotov et al., 1995; Kozakov et al., 1999). Granulite-

grade metamorphism, as determined U-Pb zircon rim ages, occurred at 1839.8 ± 0.6 Ma (Kröner 

et al., 2001). The Baydaric microcontinent, to the south of the Tuva-Mongol microcontinent, 

consists of tonalitic gneiss with a U-Pb zircon age of 2646 ± 45 (Kozakov et al., 1993) overlain 

by Paleoproterozoic metasedimentary rock. This basement is intruded by Paleoproterozoic 

granite (Kotov et al., 1995) and the region experienced granulite-facies metamorphism at 1850-

1800 Ma (Khain et al., 2003). The microcontinents to the east within China (e.g., Erguna, 

Xing’an, and Songliao) are made up of younger Mesoproterozoic to Paleozoic basement (e.g., 

Han et al., 2011). 

Qingbaikou magmatism and metamorphism (970-910 Ma) is observed in many of the 

CAOS microcontinents (Fig. 6.4). Subsequently, Nanhua-age (late Neoproterozoic) bimodal 

volcanism (e.g., Zonenshain et al., 1990; Kuzmichev et al., 2005) and passive margin deposition 

(e.g., Markova, 1982; Alexeiev et al., 2000; Cook et al., 2002) occurred on all of the 

microcontinents and are inferred to be rift related (Fig. 6.5) (e.g., Meert et al., 2011; Rojas-

Agramonte et al., 2011). The microcontinents are presently surrounded by Neoproterozoic to 

Early Cambrian ophiolites, ophiolite mélanges, and/or shelf carbonates, which suggests that they 

were surrounded by an open ocean at this time (i.e., the Paleo-Asian Ocean) (Ren et al., 1999; 

Khain et al., 2003; Demoux et al., 2009). Nanhua-aged (Cryogenian-Ediacaran) glacial tillite-

bearing deposits have been documented in the Dzabkhan terrane (Lindsay et al., 1996; 

Macdonald et al., 2009; Meert et al., 2011) (Fig. 6.5). Many of the microcontinents with early 

Paleozoic passive margin cover were juxtaposed by subduction-accretion processes, as 
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evidenced by the intervening Paleozoic accretionary complexes, subduction-related volcanics, 

and flysch deposits. 

Detrital zircon age distributions reveal significant age populations at ~2.5 Ga, 1.85-1.8 

Ga, 970-910 Ma, and 790-750 Ma that are common to all of microcontinents (Fig. 6.4). The 

peaks at ~2.5 Ga correspond to a global period of continental growth at the end of the Archean 

(Kröneret al., 2005; Condie et al., 2009; Yao et al., 2011). The 1.85-1.80 Ga and 970-910 Ma 

(Qingbaikou-age) peaks may have correlations with other Asian continents (e.g., Tarim, Qilian-

Qaidam, and South China) (Ling et al., 2003; Gehrels et al., 2003a, 2003b; Wang et al., 2006; Li 

et al., 2009; Tung et al., 2013), and the Nanhua ages correspond to the rifting of these 

microcontinents (Fig. 6.5). 

A Precambrian link between Tarim and Central Tian Shan has been proposed based on 

stratigraphy and additional detrital zircon age data (Fig. 6.4) (Shu et al., 2011; Gao et al., 1998; 

Charvet et al., 2007; Lei et al., 2011; Meert et al., 2011; Ma et al., 2011, 2012) (cf. Hu et al., 

2000; Liu et al., 2004; Xiao et al., 2013). Granitic orthogneisses in the Tian Shan yield U-Pb 

zircon ages of 948-919 Ma (Qingbaikou-age) (Chen et al., 2009; Hu et al., 2010), which may be 

correlative to Tarim and the Qilian-Qaidam-Kunlun regions, as discussed below.  

 

6.4.2. Baltica 

The 3000-km-wide Baltica craton is typically defined with its core as the East European 

platform (e.g., Zonenshain et al., 1990; Filippova et al., 2001), which consists of a collage of 

Precambrian basement (i.e., the Fennoscandia, Sarmatia and Volgo-Uralia blocks) (Bogdanova et 

al., 2008), and its surrounding Neoproterozoic-Phanerozoic margins (e.g., Torsvik et al., 1996), 

including the Uralide and Caledonian orogens. The craton was affixed to Laurentia once in the 
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Neoproterozoic as part of Rodinia (e.g., Hartz and Torsvik, 2002; Li et al., 2008; Pease et al., 

2008) and also in the Paleozoic as part of Laurussia (e.g., Ziegler, 1989; Cocks and Torsvik, 

2011). 

An in-depth review of this craton is not within the scope of this chapter (see Bogdanova 

et al., 2008 and references therein), and subsequent focus will be solely on the eastern margin of 

Baltica, which has been suggested to extend to the southeast to the Scythian domain and 

underneath the Peri-Caspian Basin (Pease et al., 2008). Geology in much of this region is 

exposed as a result of the late Paleozoic-early Mesozoic Uralide orogen, which records the 

collision between Baltica, Siberia, and Kazakhstan.  

 The 2000-km-long Uralides consist of several longitudinal terranes that run parallel to the 

eastern margin of Baltica. These tectonic domains are variably divided, from west to east, as the 

(1) undeformed foreland basin, (2) foreland fold and thrust belt, (3) Tagil-Magnitogorsk Zone, 

and (4) East Uralian Zone (Maslov et al., 1997; Puchkov, 2009, 2013; Brown et al., 2011). These 

zones record Paleozoic subduction, arc magmatism, island arc amalgamation, and the final 

collision of Baltica with Siberia and Kazakhstan. Preexisting structures within the Precambrian 

basement are at a high angle to these tectonics domains. A NW-SE structural trend within 

Archean and Proterozoic rocks is comprised of several basement highs and lows, including the 

Mid-Russian aulacogen, Perm-Bashkir Arch, Kaltasin (or Kama-Belsk) Aulacogen, Tatar Arch, 

Sernovodsk-Abdulino Aulacogen, and Orenburg Arch, from north to south (Bogdanova et al., 

2008; Brown et al., 2011). The aulacogens are filled with up to 15 km of Proterozoic sediments 

that record ~200 Ma of variably interrupted intracontinental rifting during the Qingbaikou Period 

(Maslov et al., 1997; Brown et al., 1999). 
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Early Mesoproterozoic rifting led to initial formation of these aulacogens and the entire 

region remained an east facing passive margin on the western margin of the Proto-Urals Ocean 

(present coordinates) (Mossakovsky et al., 1998; Kheraskova et al., 2001). Throughout the 

Neoproterozoic, accretion-deformational events affected this eastern margin as several (?) 

terranes and/or continents collided against eastern Baltica (e.g., Brown et al., 1996, Glasmacher 

et al., 2001); these events are poorly-constrained as they were later overprinted by late 

Neoproterozoic-Early Paleozoic rifting and later Uralide deformation (Fig. 6.6) (Brown et al., 

1996). Most workers suggest that one or two terranes (e.g., the Bashkirian terrane) accreted to 

the region to form the Proto-Ural orogen prior to Timanian orogen along the north-northeastern 

margin at 615-575 Ma (Puchkov, 1997; Glasmacher et al., 1999). As the geologic relationships 

of these features are not well understood, it is also possible that these accreted terranes were part 

of a larger continent that later rifted from Baltica in the latest Neoproterozoic to Early 

Proterozoic.  

Sinian-Cambrian rifting (Khain, 1985) and associated bimodal volcanism (e.g., Abdullin 

et al., 1977; Zonenshain et al., 1984) led to the opening of the Ural Ocean by the early 

Ordovician (Zonenshain et al., 1984; Burtman et al., 2000). Ophiolites with ages of 670 Ma and 

580 Ma (Khain et al., 1999; Scarrow et al., 2001; Remizov and Pease, 2004) (Fig. 6.6) have been 

reported in this region and may represent oceanic crust that obducted during the later Uralide 

orogen. Early Paleozoic sediments along this margin are typical shelf-passive margin sequences.  

The northern margin of Baltica was affected by the late Neoproterozoic-early Cambrian 

Timanide orogen, when the inferred continent Arctida (Zonenshain et al., 1990) collided with 

Baltica (e.g., Gee and Pease, 2004; Gee et al., 2006; Kuznetsov et al., 2007, 2009, 2010). The 
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Cambrian collision is predated by calc-alkaline magmastism in the Bolshezemel domain of 

Arctida (i.e., the Bolshezemel arc), with ages ranging from 700 Ma to 560 Ma.  

Baltica’s eastern margin along the Ural Ocean remained passive, with the exception of 

several poorly understood arc accretion events (Fig. 6.6). The Tagil and Magnitogorsk oceanic 

arcs collided with the eastern margin of Baltica in the Devonian and Carboniferous, respectively 

(Fig. 6.6) (e.g., Herrington et al., 2002; Brown et al., 2006, 2011). In the Late Carboniferous, the 

Ural Ocean began to subduct underneath Kazakhstan to the east (Bea et al., 2002); thick 

andesitic volcanic deposits in the Balkash area of Kazakhstan (Dercourt et al., 2000) record the 

initiation of subduction magmatism as part of the Valerianovsky arc (Fig. 6.6). This subduction 

system accommodated the convergence of Kazakhstan and Baltica, which led collision and 

closure of the Ural Ocean at ~320 Ma (Artyushkov and Baer, 1983; Ronov et al., 1984; 

Zonenshain et al., 1984) (Fig. 6.3). This collision was diachronous (Zonenshain et al., 1984; 

Ronov et al., 1984), initiating by ~320 Ma in the south (Puchkov, 2000) and propagating 

northward to the Novaya Zemlya foreland basin by ~280 Ma (Heafford, 1988). Syn-collisional 

granite ages also young northward, from 305-290 Ma in the south to ~265 Ma in the central 

Urals (Fig. 6.6) (Fershtater et al., 2007; Fershtater, 2013). An extensive, west-migrating foreland 

basin developed in the Late Carboniferous and persisted through the Early Permian (Nikishin et 

al., 1996; Proust et al., 1998; Chuvachov and Crasquin-Soleau, 2000), and Permian flysch 

transitioned to late Permian-early Triassic molasses and continental deposits. The Taimyr fold 

belt to the north records the collision of Baltica with Siberia during the same time (Vernikovsky, 

1997; Torsvik and Andersen, 2002), and it is possible that this subduction system connected to 

the North American Cordilleran arc-trench system (e.g., Zonenshain et al., 1987; Miller et al., 

2011). 
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6.4.3. Turan 

 The Turan Platform lies east-northeast of the Caspian Sea and stretches from the CAOS 

in the north to the Kopet Dagh or Alborz Mountains in the south (Fig. 6.2) (Alavi, 1991; Thomas 

et al., 1999a; Natal’in and Şengör, 2005). The pre-Mesozoic basement in this region is known as 

the Turan domain (Thomas et al., 1999a), where the Turan platform demarcates the extent of 

Mesozoic-Cenozoic sedimentary cover. The limited basement exposure in this region has led to 

inconsistencies in the literature regarding the tectonic boundaries and geologic context of the 

domain. The Karakum craton is to the east-southeast and Scythian domain is to the west, and 

some have suggested that the Turan and Scythian domains were connected throughout the 

Paleozoic (e.g., Natal’in and Şengör, 2005). However, as described below, I suggest that the two 

domains were separate (e.g., Brunet et al., 1999; Volozh et al., 2003). The divide between these 

units is poorly exposed and is often arbitrarily set geographically as the Caspian Sea, rather than 

geologically (e.g., a suture or transform zone), although structures appear to connect through the 

Caspian Sea (Fig. 6.7).  

For the purposes of this synthesis, I suggest that the Permian ophiolites in the Alborz 

Range (Alavi, 1991), and related outcrops along strike that are associated with the closure of the 

Paleo-Tethys, demarcate the southern margin of both the Turan and Scythian domains. Although 

a Paleozoic connection between Scythian and Turan domains is still debated, a meaningful 

divide between the two domains is the northwest-trending Karpinsky Swell and Mangyshlak-

Ustyurt foldbelt that stretch to the Kopet Dagh Moutains in the southeast (e.g., Zonenshain et al., 

1990; Volozh et al., 2003) (Fig. 6.7). This division is corroborated by a strong fabric of 

northwest-trending magnetic and gravity anomalies (e.g., Volvovsky et al., 1966; Litvinova, 

2000) and documented late Paleozoic thrust faults (Volozh et al., 1999). Following this 
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demarcation, the Turan domain stretches from the CAOS in the north-northeast to the 

Mangyshlak-Ustyurt foldbelt in the southwest (Fig. 6.7). No collision/convergence structures 

between the Turan domain and Karakum to the southeast have been observed. 

Turan was partially covered by the Turkestan Ocean (part of the Paleo-Asian Ocean) in 

the northeast for much of the Paleozoic, and is covered by regionally extensive late Silurian to 

Devonian carbonate rocks (Zonenshain et al., 1990; Kurenkov and Aristov, 1995; Garzanti and 

Gaetani, 2002). Northward subduction of the Turkestan Ocean underneath the CAOS 

(specifically Kazakhstan and its associated microcontinents) led to its eventual closure in the 

Late Carboniferous (Fig. 6.3) (e.g., Zonenshain et al., 1990; Filippova et al., 2001). Devonian 

extension recorded in the Karpinsky Swell (Volozh et al., 1999) was followed by north-

northeastward subduction of the Paleo-Tethys under the Turan domain. Associated arc 

magmatism began in the Carboniferous and continued into the Mesozoic (Garzanti and Gaetani, 

2002), and a back-arc basin developed in the Triassic (Gaetani et al., 1998; Thomas et al., 

1999a). This subduction accommodated the collision of Turan and Iran-Lut to the south, which 

may have been linked with the Scythian domain, as part of the Late Triassic Eo-Cimmerian 

orogen in northern Iran (Zanchi et al., 2009). This collision may be expressed in the 

Mangyshlak-Ustyurt foldbelt (Fig. 6.7). Deformed Permian-Triassic flysch in the Mangyshlak 

anticlinorium are unconformable overlain by Jurassic shallow-marine sandstone (Marcinowski et 

al., 1996; Ulmishek, 2001). In the Kopet Dagh Mountains to the southeast, strongly deformed 

Permian volcanic and sedimentary strata are intruded by 207-180 Ma leucogranites (Belov, 

1981). Additionally, 227-200 Ma K-Ar ages from greenschist rocks have been documented 

(Lemaire et al., 1997). A regional unconformity in the latest Triassic (Saidi et al., 1997) is 

followed by Jurassic deltaic strata that record the unroofing of this orogen (Garzanti and Gaetani, 
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2002). Cretaceous carbonates covered the region as part of an interior seaway across the Baltica 

craton (Marcinowski et al., 1996; Baraboshkin et al., 2003). The Jurassic-Tertiary deposits to the 

north of the Mangyshlak-Ustyurt foldbelt are important oil reservoirs of the Ushyurt Basin (e.g., 

Ulmishek, 2001). 

 

6.4.4. Karakum 

Karakum is covered by thick Mesozoic-Cenozoic sediments, but Cenozoic deformation 

in the southwestern Tian Shan thrust belt locally exposes basement rocks in the Baisun and Garm 

massifs of eastern Karakum (Burtman, 1976; Biske, 1996). The oldest rocks are gneisses, 

migmatites, and amphibolites with Pb isochron ages of 3.0-2.6 Ga (Budanov, 1993), which are 

covered by Proterozoic schist and marble. This Precambrian basement experienced rifting and 

diffuse alkali and tholeiitic basaltic magmatism in the Neoproterozoic (Volkova and Budanov, 

1999; Bakirov and Maksumova, 2001; Biske and Seltmann, 2010). Meta-basalt exposed in the 

Garm massif (Volkova and Budanov, 1999) have Pb isochron ages of 745 to 583 Ma (Baratov et 

al., 1983). The northern and southern margins of Karakum experienced relatively uninterrupted 

Neoproterozoic-Cambrian to early Carboniferous marine transgression (Biske and Seltmann, 

2010). Ordovician volcanic rocks in southern Karakum (Mukhin et al., 1991; Dalimov et al., 

1993) suggest a south-facing arc system may have developed along this margin in the early 

Paleozoic. Ordovician-Silurian seamounts and mid-oceanic ridge basalt (MORB) (Volkova and 

Budnov, 1999) corroborate this assertion, and may have been part of the Paleo-Tethys Ocean. 

Along the northern margin of Karakum, early Carboniferous ophiolitic fragments of the 

Hissar suture (Portnyagin, 1974; Burtman, 1976, 2006) are thought to represent oceanic 

lithosphere of the Turkestan Ocean (part of the larger Paleo-Asian Ocean) to the north. 
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Carboniferous to Permian arc-related plutons are found throughout Karakum (Brookfield, 2000; 

Konopelko et al., 2007; Seltmann et al., 2011). Carboniferous volcanic arc rocks, including 

lightly metamorphosed rhyolite, dacite, and andesite, and synorogenic clastic sediments, rest 

unconformably on oceanic lithosphere, and represent a transition from a passive to an active 

margin with south-dipping subduction of Turkestan Ocean (part of the Paleo-Asian Ocean) at 

this time (Zonenshan et al., 1990; Brookfield, 2000). This subduction system accommodated the 

convergence of Kazakhstan and the eventual closure of the Paleo-Asian Ocean (Chen et al., 

1999; Charvet et al., 2007). Collision of Karakum with Kazakhstan began at ~320 Ma and the 

intervening Turkestan Ocean was completely closed by 295-290 Ma (Biske and Seltmann, 2010) 

(Fig. 6.3). Northward subduction of the Paleo-Tethys Ocean initiated during this collision, which 

explains the presence of seamount and oceanic lithosphere that accreted onto the southern 

margin of Karakum. The absence of Permian strata indicate that the region was above sea level 

for most of this time (Cook et al., 1994). Mesozoic northward subduction of the Paleo-Tethys 

may have stretched from Turan to Qinling as part of the Silk Road Arc (Natal’in and Şengör, 

2005). Early Cimmerian deformation affected the southern margin as Iran-Lut collided with 

Karakum by the end of the Triassic (Saidi et al., 1997; Zanchi et al., 2009). 

 

6.4.5. Tarim 

 Although Tarim Basin’s very thick (>15 km) Cenozoic sedimentary cover obscures much 

of the basement, the earliest studies along the margins of the basin recognized cratonic basement 

underlying these younger sediments (Fig. 6.8A) (e.g., Argand, 1924; Norin, 1937, 1946). The 

Precambrian geology of Tarim is inferred from bedrock outcrops along the basins’ margins (i.e., 

Quruqtagh, Altyn Tagh, Dunhuang, and Tieklik uplifts) and substantial subsurface data (i.e., 
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well, seismic reflection, seismic refraction, gravity, and magnetic studies). Archean orthogneiss, 

tonalite–trondhjemite–granodiorite (TTG) gneiss, and amphibolite enclaves are found in the 

Quruqtagh, Altyn Tagh Range, and Tieklik regions (Fig. 6.8A). U-Pb zircon ages from these 

suites indicate a long-lived period of crustal growth at ~2.8-2.55 Ga (Lu, 1992; Mei et al., 1998; 

Lu and Yuan, 2003; Lu et al., 2006). The oldest ages come from the Altyn Tagh Range, where 

xenocrystic zircons have U-Pb ages of ~3.6 Ga (Lu et al., 2008).  

Paleoproterozoic metapelites unconformably overlie Archean basement (Gao et al., 

1993), and early Paleoproterozoic magmatism occurred throughout Tarim, with observed ages 

ranging from 2.45-2.35 Ga (Lu, 2002; Lu and Yuan, 2003; Lu et al., 2006, 2008). Granitoids 

with zircon ages of ~1.94-1.93 intrude the Quruqtagh region (Ge et al., 2015), and subsequently 

North Tarim experienced amphibolite- to granulite-facies metamorphism at 1.92-1.91 Ga as 

documented by U-Pb zircon ages of metamorphic zircons or zircon rims (Lu et al., 2006, 2008; 

Ge et al., 2015). The timing of these magmatic and metamorphic events is similar to that of the 

~1.95 Ga Khondalite orogen in North China (e.g., Zhao et al., 2005; Santosh et al., 2006, 2007; 

Zhao, 2009). The presence of ~1.85 Ga mafic dikes (Lu et al., 2008) and ~1.77 Ga rapakivi-type 

granite and mafic dike swarms (Xiao et al., 2003; Lu et al., 2006) suggests an extensional setting 

at this time (Lu et al., 2006). 

 The Mesoproterozoic Ailiankate Group of southern Tarim consists of calc-alkaline basalt, 

andesite, and rhyolite, and is inferred to represent an accreted island arc (Guo et al., 2004). 

Although outcrop exposure is poor, this island-arc collisional event contrasts the geologic history 

of North Tarim, where a thick Mesoproterozoic basal conglomerate unconformably overlies 

Paleoproterozoic rocks, and is subsequently stratigraphically overlain by siliciclastic garnet 
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schist and marble (Wang et al., 2004). North Tarim is inferred to have been an undisturbed 

passive margin throughout most of the Mesoproterozoic. 

High-pressure, low-temperature glaucophane-muscovite blueschist near Aksu and 

chlorite-rich greenschist near Wushi (Liou et al., 1989; Nakajima et al., 1990; Turner, 2010), 

both in northwest Tarim (Fig. 6.8A) may represent a relic subduction system between the North 

and South Tarim craton (Guo et al., 1999, 2005). Dating efforts of the blueschist yield a range of 

ages, including K-Ar glaucophane ages of 718 ± 22 Ma and 710 ± 21 Ma, Rb–Sr phengite ages 

of 698 ± 26 Ma and 714 ± 24 Ma (Nakajima et al., 1990), and 40Ar/39Ar phengite ages of ~750 

Ma (Yong et al., 2013). However, these ages must be questions because undeformed crosscutting 

dikes have an older U-Pb zircon age of 807 ± 12 Ma (unpublished data in Chen et al., 2004). In 

addition, unpublished 40Ar/39Ar ages from glaucophane show peak metamorphism occurring at 

872-862 Ma (e.g., Chen et al., 2004). Many of these thermochronometric ages may have been 

reset by later heating because, as discussed below, the Tarim continent experienced long-lived 

and extensive bimodal volcanism from ~870 Ma to ~630 Ma.  

The interlying ocean involved in the Aksu suture is evidenced by the occurrence of 

metabasalts, which have an enriched mid-ocean ridge basalt (E-MORB) protoliths with a Sm-Nd 

isochron age of 890 ± 23Ma (Zheng et al., 2010). Prior to the collision of North and South 

Tarim, a subduction system must have facilitated the convergence of these two blocks. This 

system may be have generated the Qingbaiku-aged granitoids (970-910 Ma) northeast of this 

inferred suture (Fig. 6.8A) in the Altyn Tagh Range (Cowgill et al., 2003; Gehrels et al., 2003a), 

the Qilian Shan (Gehrels et al., 2003a; Tung et al., 2007, 2013; Wu et al., 2016), and the Qinling 

(Chen et al., 2006) which suggests that this subduction zone was part of a northeast-dipping 

Tarim arc. This arc would have stretched from Tarim through the Qaidam and Qilian Shan to 
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present-day Qinling (Fig. 6.8B) (see Chapter 5; Wu et al., 2016). Although no Precambrian 

suture has been reported in Qaidam, the Qilian Shan, or Qinling, Neoproterozoic rifting 

(discussed below) or extensive Cenozoic basin deposits may obscure such findings (Fig. 6.8B). It 

is also possible that the ophiolite, eclogite, and mélange exposures found in the Altyn Tagh 

Range, North Qaidam, and the Qilian Shan (e.g., Sobel and Arnaud, 1999; Xiao et al., 2009c; 

Song et al., 2013, 2014) may contain fragments of this Precambrian suture, which have been 

mistakenly grouped with the early Paleozoic Qilian suture. 

Following these early Neoproterozoic events, the area experienced regional rifting and 

the development of extensive passive margins (Turner, 2010). Evidence for Neoproterozoic rift 

activity along Tarim’s northern and southern margins includes mafic dike intrusions, alkaline 

plutonism, bimodal volcanism, rift basin development, and passive margin sedimentation (Fig. 

6.5). In northern Tarim, two or three distinct pulses of rift-related magmatic and/or plume 

activity occurred at 830-800 Ma, 790-740 Ma, and 650-630 Ma (e.g., Zhang et al., 2007; Lu et 

al., 2008; Zhu et al., 2008; Shu et al., 2011) (e.g., Fig. 6.4), which are generally associated with 

the opening of the Paleo-Asian Ocean. The 830-800 Ma plutons in northern Tarim may either be 

related to an initial phased of rift-development (Lu et al., 2008; Zhu et al., 2008) or arc 

subduction and collision along the Tarim arc (e.g., Fig. 6.8), but the lack of geochemical analysis 

and observed bimodal volcanism makes this assertion uncertain. The second distinct pulse of 

magmatic activity, from 790 to 740 Ma, was accompanied by bimodal volcanism and has been 

related to rifting (Lu et al., 2002, Guo et al., 2005, Xu et al., 2005, Zhang et al., 2006a). The 650-

630 Ma Korla dikes indicate that rift-related magmatism continued into the Upper Nanhua 

(~Ediacaran) (Zhu et al., 2008; Zheng et al., 2010). This latest stage of volcanism (Xu et al., 
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2009; Xu et al., 2013) may be related to the opening of the more minor Qilian Ocean to the 

southeast (e.g., Xu et al., 2015). 

In southern Tarim, specifically in the Tiekelik region, bimodal volcanism and rift-basin 

development at 900-870 Ma (Wang et al., 2015a, 2015b) indicates that rifting along Tarim’s 

southern margin initiated earlier than in the north. This requires rifting to immediately follow 

collision along the Tarim suture. This event is associated with the opening of the (Paleo-)Tethys 

Ocean.  

Following the rifting along Tarim’s margins, the region is overlain by thick successions 

of latest Neoproterozoic to Cambrian passive continental margin deposits (Jia, 1997; Zhang et 

al., 2000; Jia et al., 2004; Huang et al., 2005; Xu et al., 2005; Biske and Seltmann, 2010; Turner, 

2010; Shu et al., 2011) (Fig. 6.5). The northern margin remained a passive continental shelf 

throughout much the Paleozoic (Graham et al., 1993; Carroll et al., 1995, 2001), but two regional 

unconformities truncate the sedimentary record. The first occurred in the early Paleozoic, where 

Silurian-Devonian siliciclastic strata, sourced from the southeast, unconformably overlie 

Ordovician rocks (Carroll et al., 2001). Overlying Carboniferous strata are separated from 

Silurian-Devonian rocks by a sharp angular unconformity (Lin et al., 2014). These unconformity 

pulses and siliciclastic sediments are related to the Qilian orogen to the southeast, as the Qaidam 

continent collided with the southern margin of Tarim and North China. The thick deposits of 

Carboniferous through Lower Permian strata are truncated by a major angular unconformity 

(Carroll et al., 2001). This event is related to the collision of the Tian Shan and CAOS 

microcontinents along the northern margin of Tarim, and the closure of the Paleo-Asian Ocean.  

Late Paleozoic-Mesozoic arc magmatism observed along the southern margin of Tarim in 

the Western Kunlun Range (Cowgill et al., 2003; Xiao et al., 2005) is related to northward 
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subduction of the Paleo-Tethys Ocean and arc development along the southern margin of Tarim. 

This magmatic arc represents the westward continuation of the Paleozoic-Mesozoic Kunlun 

magmatic arc that is located to southeast in Eastern Kunlun Range of the Qilian-Qaidam-Kunlun 

continent (Jiang et al., 1992; Cowgill et al., 2003; Wu et al., 2016). 

 

6.4.6. The Qilian-Qaidam-Kunlun (Qinling-Dabie) continent and orogens 

 The Qilian-Qaidam-Kunlun (QQK) continent, which represents the northern margin of 

the Tibetan Plateau, experienced progressive subduction, arc-magmatism, and orogeny 

throughout the Paleozoic and Mesozoic (see Chapter 5) (e.g., Yin et al., 2007a, 2008; Xiao et al., 

2009c; Gehrels et al., 2011; Song et al., 2013, 2014; Wu et al., 2016), as evidenced by the 

widespread exposure of ophiolitic mélange (Wang and Liu, 1976, 1981; Xiao et al., 1978; Feng 

and He, 1995), ultra-high pressure (UHP) rocks (Yin et al., 2007a; Menold et al., 2009; Song et 

al., 2014), blueschist rocks (Xiao et al., 1974; Liu et al., 2006; Lin et al., 2010), and plutons 

(Gehrels et al., 2003a, 2003b, 2011; Wu et al., 2016). The Qilian Shan-Nan Shan, North Qaidam, 

and Kunlun-Qimen Tagh thrust belts bound the Qaidam Basin to the north and south 

respectively. 

The heterogeneous basement consists of Mesoproterozoic passive-margin strata in the 

west and Archean to Proterozoic crystalline rocks to the east (e.g., Qinghai BGMR, 1991; Guo et 

al., 1999; Gehrels et al., 2003b; Pan et al., 2004). The Quanji Massif, the most well studied 

Precambrian basement in the Qilian Shan (Lu, 2002; Wan et al., 2006; Wang et al., 2008; Gong 

et al., 2012), consists of medium- to high-grade metamorphic rocks of the Delingha, 

Dakendaban, and Wandonggou Groups unconformably overlain by Neoproterozoic strata 

(Qinghai BGMR, 1991). The Delingha Group is composed of Paleoproterozoic granitic gneiss 
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with zircon ages of 2.39-2.37 Ga (Lu, 2002; Lu et al., 2006, 2008). The granite protoliths are 

interpreted to have formed in a rift setting, possibly related to the breakup of the Kenorland 

supercontinent (e.g., Gong et al., 2012). The Dakendaban Group was deposited after ~2.47 Ga 

but before ~2.43 Ga, based on a detrital zircon analyses and a cross-cutting pegmatite (Wang et 

al., 2008), whereas the Wandonggou Group was deposited between 2.24 and 1.95 Ga (Huang et 

al., 2011). The complex underwent amphibolite facies metamorphism at ~1.95-1.93 (Hao et al., 

2004; Wang et al., 2008; Chen et al., 2009) and was subsequently intruded by 1.83 Ga mafic 

dikes (Liao et al., 2014) and ~1.8 rapakivi granite (Lu et al., 2006; Chen et al., 2012). 

Mesoproterozoic meta-sedimentary rocks are poorly understood (Lu et al., 2006) and are 

overlain by the tillite-bearing siliciclastic- and carbonate-dominated Quanji Group (Shen et al., 

2010; Wang et al., 2013) (Fig. 6.5).  

The Qilian Shan, Qaidam, and Kunlun regions were intruded by 970-910 Ma plutons, 

which suggests that the region was contiguous by the start of the Neoproterozoic (Fig. 6.9A) 

(Gehrels et al., 2003b; Tung et al., 2013; Wu et al., 2016). Similar-aged plutons have been 

documented in the Altyn Tagh Range, Tarim, and the Tian Shan (Cowgill et al., 2003; Gehrels et 

al., 2003b; Lu et al., 2008; He et al., 2014). As previously discussed, these ~970-910 Ma plutons 

to the west and southeast (i.e., Tarim and the Altyn Tagh Range to the west, and Qinling to the 

southeast), suggest the existence of a south-facing Proterozoic subduction zone that stretched 

from Tarim to Qinling (e.g., Guo et al., 2005; Tseng et al., 2009a). The ~1.0-0.9 Ga plutons and 

zircon signature within Proterozoic strata of QQK (Fig. 6.4) may correlate with either the Tarim-

North China (Gehrels et al., 2003a, 2011) or South China cratons (Tung et al., 2013). 

The occurrence of 790–750 Ma intrusions in the Qilian Shan has been attributed to the 

rifting of the Qilian-Qaidam continent from another continent (North or South China) and the 
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opening of the Qilian Ocean (Tseng et al., 2006; Song et al., 2013; Wu et al., 2016). 

Alternatively, the ~600 Ma basalt interbedded with thick marble rocks in the Qiqing Group may 

indicate later rifting and opening of the Qilian Ocean (Xu et al., 2015) (Fig. 6.5). The region was 

subsequently overlain by Neoproterozoic passive margin deposits (e.g., Guo et al., 1999; Wan et 

al., 2001, 2003a; Cowgill et al., 2003; Gehrels et al., 2003a, 2003b). If QQK was indeed derived 

from Tarim or North China, the Qilian Ocean is distinct from the proto-Tethys (or any Tethyan 

Ocean) (cf. Gehrels et al., 2011) because the Tethyan oceanic domain (Fig. 6.1) was originally 

defined as the ocean between Laurasia and Gondwana (Sengör, 1984), whereas the Qilian Ocean 

opened with the rifting of QQK from Tarim-North China. 

The collision between Qilian-Qaidam, interlying arc(s), and the Tarim-North China 

craton is expressed as the early Paleozoic Qilian orogen (Yin and Nie, 1996; Sengör and 

Natal’in, 1996; Sobel and Arnaud, 1999; Yin and Harrison, 2000; Gehrels et al., 2003a, 2003b; 

Yin et al., 2007a; Xiao et al., 2009c; Song et al., 2013). The Qilian orogen is composed of flysch 

sequences, arc-type assemblages, ophiolites, and low- to high-grade metamorphic rocks. 

Unresolved first-order problems regarding the Qilian orogen include: (1) how many arcs and 

what type of arcs (i.e., oceanic or continental) were involved in orogeny (e.g., Xiao et al., 2009c; 

Yang et al., 2009, 2012a; Song et al., 2013)? (2) was the subduction north- and/or south-dipping 

(e.g., Sobel and Arnaud, 1999; Yin and Harrison, 2000; Gehrels et al., 2003a, 200b; Yin et al., 

2007a; Xiao et al., 2009c; J. Yang et al., 2009, 2012a; Yan et al., 2010; Gehrels et al., 2011; 

Song et al., 2013, 2014)? (3) when did collision and closure of the Qilian Ocean occur (e.g., Liu 

et al., 2006; Qi, 2003; Tung et al., 2007; Xiao et al., 2009c; Lin et al., 2010)? 

Regardless of the above uncertainties, the following is known about the Qilian orogen. 

An open ocean(s) existed from at last 550M to 448 Ma, as evidenced by the widespread 
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distribution of ophiolite fragments (Shi et al., 2004; Smith, 2006; Xiang et al., 2007; Tseng et al., 

2007; Zhang et al., 2007; Xia and Song, 2010; Song et al., 2013). Widespread arc-related plutons 

indicate that a major subduction system initiated by ~515 Ma and continued throughout the 

Ordovician; younger accretion -related magmatism may have persisted until 345 Ma (Qinghai 

BGMR, 1991; Qian et al., 1998; Cowgill et al., 2003; Gehrels et al., 2003a; Su et al., 2004; Wu 

et al., 2004, 2006, 2010; Hu et al., 205; Liu et al., 2006; Quan et al., 2006; He et al., 2007; Tseng 

et al., 2009; Xiong et al., 2012; Song et al., 2013). The youngest major pulse of magmatism at 

~445 Ma (e.g., Wu et al., 2016), ~454-442 Ma 39Ar/40Ar mica cooling ages (Liu et al., 2006), and 

Silurian foreland basin deposits (Yan et al., 2007, 2010) suggest that collision between Qaidam 

and North China probably occurred at ~445-440 Ma. Silurian cooling ages and ~400 Ma zircon 

rim growth are consistent with intracontinental deformation due to collision at this time (Qi, 200; 

Lin et al., 2010). 

Based on similar lithological assemblages and geologic histories, the Qilian orogen and 

suture(s) likely connect with the Qinling orogen (Fig. 6.1) to the southeast (e.g., Xu et al., 2008; 

Tseng et al., 2009; Dong et al., 2011; Wu et al., 2016), forming a >1000 km long Early Paleozoic 

orogenic belt. The western termination of this orogen and suture is not known, and three 

geometrically plausible models exist for its westward continuation (Fig. 6.9): (1) it may continue 

into Tarim and be currently covered by Mesozoic-Cenozoic sediments, (2) it may veer to the 

south of Tarim and be overprinted by the Western Kunlun and Pamir thrust belts, although 

evidence for this suture in the Altyn Tagh Range suggests that the suture cannot be that far to the 

southwest, or (3) the Qilian-Qaidam-Kunlun block may have only partially separated from 

Balkatach and the abrupt western termination of the Qilian suture represents the western extent 

of the Qilian Ocean. An additional model suggested that the Qilian suture connected to the 
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northwest to the Beishan suture (Zhou and Graham, 1996a), although this idea has mostly been 

abandoned because the Beishan suture has been related to the CAOS and the closure of the 

Paleo-Asian Ocean (e.g., Xiao et al., 2010; Guo et al., 2011; Cleven et al., 2015). Each model 

has implications for the nature of the Qilian-Qaidam-Kunlun continent, including its size, 

geometry, origin, and tectonic relationships between constituent blocks (Fig. 6.9C). For example, 

the first model requires the southern portion of Tarim to have linked with QQK in the 

Precambrian and that an early Paleozoic suture runs across Tarim. The second model is the only 

one that predicts QQK to be an individual entity surrounded entirely by oceans, and therefore 

presently surrounded by suture zones, whereas the third model requires a Precambrian linkage 

between QQK and Tarim.  

Northward subduction of the Paleo-Tethys led to the development of the Kunlun 

magmatic arc along the southern margin of Tarim and Kunlun-Qaidam, which initiated by the 

Devonian (Li et al., 1991; Jiang et al., 1992; Wang et al., 1993; Wu et al., 2016) and 

accommodated the northward convergence of the Qiantang terrane and the South China craton. 

The Songpan-Ganzi flysch basin developed to the west as the North and South China cratons 

collided (Yin and Nie, 1993; Nie et al., 1994; Zhou and Graham, 1996b; Enkelmann et al., 2007; 

Pullen et al., 2008). Final closure of the Palo-Tethys occurred by the latest Triassic (Fig. 6.3), 

which is demarcated by the Jinsha and Anyimaqen-Kunlun-Muztagh suture zones (Fig. 6.1). 

 

6.4.7. North China  

The wedge-shaped North China craton, also referred to as the Sino-Korean craton or 

platform, is bounded to the west-southwest by the early Paleozoic Qilian-Qinling orogen, to the 

north by the late Paleozoic Central Asian Orogenic System (CAOS), and to the south by the 
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Mesozoic Qinling-Dabie Shan orogen (Figs. 6.1 and 6.2). The craton is traditionally divided into 

two major Archean-Proterozoic blocks (i.e., the Eastern and Western Blocks) separated by the 

~1500-km-long north-trending Paleoproterozoic (?) Trans-North China Orogen (TNCO) (e.g., 

Zhao et al., 1998, 2005, 2012; Trap et al., 2012) (Fig. 6.10A), which is also referred to as the 

Central Orogenic Belt (e.g., Kusky and Li, 2003; Kusky et al., 2007). Following this division, the 

Eastern Block is made up of the Langrim and Lonngang Blocks that joined along the 

Paleoproterozoic Liao-Liao-Ji orogen (e.g., Zhao et al., 2005; Tam et al., 2011), which contains 

3.8-2.6 Ga gneiss and greenstone belts overlain by 2.6-2.5 Ga metasedimentary cover. The 

Western Block consists of the Ordos Block and Yinshan Block, which coalesced at ~1.92 Ga 

during the Khondalite orogen (e.g., Zhao et al., 2005; Santosh et al., 2006, 2007; Zhao, 2009).  

 The tectonic framework and timing of the collision between the Western and Eastern 

Blocks (Fig. 6.10A) has long been debated and two competing hypotheses have emerged. The 

primary difference between the two groups of models is the collisional age: ~1.85 Ga (e.g., 

Kröner et al., 2005a, 2005b, 2006; Zhang et al., 2007; Zhao et al., 1998, 1999, 2000a, 2005b, 

2001a, 2001b, 2004b, 2005, 2007, 2010, 2012; Faure et al., 2007; Trap et al., 2007, 2008, 2009a, 

2001b, 2011, 2012; Xiao et al., 2011; Zhao and Cawoord, 2012) or ~2.5 Ga (Li et al., 2000a, 

2000b; Kusky and Li, 2003; Polat et al., 2005, 2006; Li and Kusky, 2007; Kusky et al., 2007; 

Kusky and Santosh, 2009; Kusky, 2011). However, it is becoming increasingly clear that both 

the 2.5 and 1.85 Ga events involved widespread intracontinental deformation that were not 

restricted to such narrow linear belts (e.g., Kusky and Li, 2003). Instead, the present-day 

exposure of these orogens is probably related to later tectonics. For example, the apparently 

north-trending TNCO is primarily exposed along Mesozoic-Cenozoic rift shoulders that are 

bounded by thick rift basins (e.g., Davis et al., 1996, 2001; Graham et al., 2012). Research on 
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Paleoproterozoic orogens in North America is undergoing a similar renaissance; orogens that 

were once considered narrow deformational belts are increasingly being reinterpreted as parts of 

broader zones of intracontinental deformation (e.g., Vervoort et al., 2016). I do not attempt to 

further interpret the Archean-early Proterozoic North China orogens, and for the purpose of my 

reconstruction, I assume that the North China craton was established by ~1.8 Ga. 

Following the latest Paleoproterozoic event, near continuous Mesoproterozoic-

Neoproterozoic sedimentation is observed in the Jixian County region of North China. The strata 

can be divided into four distinct successions—the Changcheng (1.8-1.6 Ga), Jixian (1.6-1.4 Ga), 

and Qingbaikou (1.4-0.85 Ga) Groups (Wan et al., 2011; Sun et al., 2012) (Table 6.1) (Fig. 

6.10B)—although two more distinct groups may exist from 1.4 to 1.0 Ga (H. Li et al., 2013). A 

Changchengian rift event is evidenced by the Yan-Liao aulacogen, continental margin rift 

deposits (Figure 6.10B), and anorthosite-rapakivi granite (Li et al., 2000; Yang et al., 2005). 

Within the in Yan-Liao aulacogen, the oldest Changcheng Group deposits (i.e., ~1.8 Ga zircon 

ages of Wan et al., 2003b) unconformably overlie Paleoproterozoic orthogneiss, transitioning 

upward from conglomerate and sandstones at the base to shale and dolomite (Cheng et al., 1981). 

Jixian-aged sediments consist of ~4.5 km thick deposits of dolomite, minor limestone, 

mudstones, and shale deposited in an active (?) rift basin (Hebei BGMR, 1989; Wan et al., 2011; 

Ying et al., 2011). The Qingbaikou Group unconformably overlies the Jixian sections and 

consists of <500 m of predominantly siliciclastic rocks (Ying et al., 2011). 

There are no Sinian (i.e., middle to late Neoproterozoic: 850-550 Ma) deposits in the 

Jixian region of North China, and only minor sections in the Hu-Huai and Lushan-Ruyang 

regions (Zhang et al., 2006b) to the south and the Liaodong Peninsula (Chang, 1980) to the east 

have reported strata of this age. These purported late Neoproterozoic deposits were determined 
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by biostratigraphy, regional correlations, and old isotopic dating techniques, with some 

formations dated to be out of stratigraphic order (Zhang et al., 2006b); more modern techniques 

(e.g., detrital zircon ages or cross cutting igneous rock ages) are needed verify these findings. 

The general absence of Sinian strata is problematic as there is no regional geologic record of 

several important events that may have affected the region, including the breakup of the Rodinia 

supercontinent (e.g., Li et al., 2008) or possible global (?) Neoproterozoic glaciations (e.g., 

Hoffman et al., 1998; Allen et al., 2008; Li et al., 2013). The lack of Neoproterozoic rift deposits 

along the northern margin of North China has been used as evidence against the craton’s 

involvement in Rodinia, but these deposits may have also been eroded away. 

Neoproterozoic rift-related ultramafic or bimodal intrusions and volcanic rocks are 

documented along the southern margin of the North China craton, including the ~825 Ma 

Jinchuan intrusion Li et al., 2005), the 1.0-0.84 Ga Qin’an dikes (Liu et al., 2012), and the ~830 

Ma Luanchuan gabbros (Wang et al., 2011b). These ages correlate with rift-related rocks in 

southern Qaidam (Fig. 6.5). 

Early Cambrian rocks unconformably overlie the uppermost section of Qingbaikou 

Group rocks in the Jixian region (i.e., the Jing’eryu Formation) (Ying et al., 2011; Sun et al., 

2012). Widespread Cambrian shelf limestones (Meng et al., 1997; Myrow et al., 2015) indicate 

that North China was surrounded to the north and south by open oceans (i.e., the Paleo-Asian 

and Paleo-Tethys Oceans respectively). Some researchers suggest that North China and Tarim 

were linked to the northern margin of Gondwana in the Cambrian (McKenzie et al., 2011; 

Myrow et al., 2015; Han et al., 2016). However, this configuration is impossible as it does not 

allow for the collision of Qilian-Qaidam with the southern margin of North China in the Silurian. 

In the reconstruction of Han et al. (2016), the Paleo-Tethys is predicted to open in the same 
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location that the Qilian-Qinling collisional orogen is inferred to have occurred. In addition, a 

Cambrian linkage along North China’s southern margin requires an additional unidentified pre-

Mesozoic rifting event to create space for the collision of Songpan-Ganzi-South China with 

North China (Yin and Nie, 1993; cf. Han et al., 2016). On the other hand, passive margin 

sedimentation along the southern margin of the Eastern Kunlun range may have been related to 

the opening of the Paleo-Tethys (Neo-Kunlun) Oceans (Wu et al., 2016). 

Collision between South China and North China (Yin and Nie, 1993; Zhang, 1997; 

Hacker et al., 2004, 2006; Wu et al., 2016) (Fig. 6.1) began in the latest Permian and concluded 

in the Triassic (Zhao and Coe, 1987; Ratschbacher et al., 2003; Hacker et al., 2006), and is 

demarcated by the Qinling-Dabie suture. Erosion of this orogen may have deposited thick clastic 

sediments in the Songpan-Ganzi remnant ocean basin (Zhou and Graham, 1996b; Enkelmann et 

al., 2007; Pullen et al., 2008). North China’s northern margin remained quiescent until the 

Carboniferous-Permian initiation of south-directed subduction of the Paleo-Asian Ocean, which 

eventually led to a late Permian to Early Triassic collision against the CAOS that continued into 

the Jurassic (Xiao et al., 2003, 2009; Eizenhöfer et al., 2014).  

 

6.5. Systematic restoration of central Asia and evidence for the Neoproterozoic Balkatach 

continent 

Here I describe my tectonic restoration of central Asia from the present through the 

Phanerozoic to the Proterozoic. Emphasis is placed on providing evidence for the 

Neoproterozoic Balkatach at its maximum extent at ~870 Ma, when the Western and Eastern 

Domains collided along the Tarim suture (Fig. 6.8). I systematically restore the significant 

intracontinental deformation and tectonic calving of microcontinents that have distorted this 
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Precambrian continent. 

This restoration is based on the most up-to-date Geological Map of Asia (Ren et al., 

2013). The reconstructions presented here (Fig. 6.11) makes no attempt to restore the polar 

region distortion, but the final restored shape files were produced by undeforming polygons 

using GPlates software (www.gplates.org) (Boyden et al., 2010). Polar distortion effects are not 

significant because the general trend of the Balkatach is east-west. I start by restoring the most 

recent tectonic events that affected the geometry of Asia (i.e., Cenozoic deformation) and 

progress to older events in the Mesoproterozoic (Fig. 6.11). Reconstruction information is 

presented based on preset-day geographic location, moving from west to east (i.e., Baltica to 

eastern China). 

 

6.5.1. Late Mesozoic-Cenozoic intracontinental deformation 

 First I restore intracontinental deformation associated with the Cenozoic India-Asia 

collision, which initiated at ~55 Ma (e.g., Le Fort, 1996; Zhu et al., 2005; Green et al., 2008; 

Dupont‐Nivet et al., 2010a; Najman et al., 2010; Wang et al., 2011a), and the Mesozoic-

Cenozoic development of the western Pacific subduction system (Figs. 6.1 and 6.11A). 

 

The Tian Shan, Pamirs, and Kopet Dagh 

 Cenozoic crustal shortening across in the ~2,000-km-long east-trending Tian Shan thrust 

belt decreases from ~200 km in the west to almost zero in the east (Avouac et al., 1993; Yin et 

al., 1998), consistent with the westward increase of the width of the belt. The Pamir and Western 

Kunlun Shan accommodate southward continental subduction of Tarim (Cowgill et al., 2003) to 

depths of greater than 100 km (Burtman and Molnar, 1993). Crustal shortening of ~100 km has 

been estimated by balanced cross-section construction in the Western Kunlun Shan (Cowgill, 
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2001) and isostatic equilibrium calculations (Lyon‐Caen and Molnar, 1984). The Kopet Dagh 

range is thrust to the northeast over the Turan Domain (Jackson and McKenzie, 1984; Thomas et 

al., 1999b) with crustal shortening estimates of ~70-75 km (Lyberis et al., 1998). I restore this 

deformation by assuming that the pre-Cenozoic sutures on both sides of the Parmirs were 

oriented as straight traces along great circles in the east-west direction (present coordinates) prior 

to the India-Asia collision. In order to accommodate the restoration of Cenozoic deformation in 

the westernmost Tian Shan (Avouac et al., 1993), the Pamir Mountains (Burtman and Molnar, 

1993), and the western Kunlun Shan (Cowgill et al., 2003), the Tarim craton must extend 

westward and its geology can be traced through Tajikistan to the Karakum craton (e.g., Biske 

and Seltmann, 2010). Seismic-reflection profiles across the Junggar basin to the north (Song, 

2006; Yang et al., 2012b) also suggest that post-Permian crustal shortening of at least 10s km 

may have occurred.  

The Neoproterozoic connection between Tarim, Karakum, Turan, and Baltica is largely 

speculative due to >90 % Mesozoic-Cenozoic cover, but the available geologic datasets (Figs. 

6.3, 6.4, 6.5, 6.7 and 6.8) are consistent with these blocks sharing a common Phanerozoic 

history.  

 

The Altyn Tagh, Qaidam, and Qilian Shan 

Cenozoic left-lateral motion along the Alytn Tagh fault was restored ~400 km based on 

offset piercing-point estimates by Yin and Harrison (2000), Yang et al. (2001), Gehrels et al. 

(2003b), and Cowgill et al. (2003). This restoration places the Paleoproterozoic basement of 

Dunhuang (Zong et al., 2012) alongside similar-aged basement in the North China craton (Zhang 

et al. 2012, 2013; cf. Long et al., 2014). In addition, geologic mapping (Yin et al., 2008; Reith, 
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2013; see Chapter 2), analysis of seismic reflection profiles (Gao et al., 2013; Wang et al., 2014; 

Zuza et al., 2016), and geodetic data (Duvall and Clark, 2010; Zuza and Yin, 2016) reveals a 

Cenozoic strain gradient across the North Qaidam and Qilian Shan-Nan Shan thrust belts, from 

~50% in the west to 25% in east, which is restored in this reconstruction (Fig. 5.11A). Little 

work has been done in the Qimen Tagh thrust belt, but I assume that the strain magnitude in this 

region is similar to the Qaidam region (Yin et al., 2007b).  

The Haiyuan and Kunlun strike-slip faults, and the their terminal thrust belts to the east 

(i.e., the Liupan Shan and Longmen Shan thrust belts), are prominent features on the Tibetan 

Plateau today, but their contribution to modifying the pre-existing geology is minimal (Zuza and 

Yin, 2016; see Chapter 3). Offsets on the Kunlun fault vary from ~100 km in the west to <10 km 

in the east (Van der Woerd et al., 2000, 2002; Fu et al., 2005; Kirby et al., 2007), and offsets 

along the Haiyuan fault vary from ~90 km in the west to <15 km in the east (Burchfiel et al., 

1991; Ding et al., 2004; Gaudemer et al., 1995). Based on my present understanding (Zuza and 

Yin, 2016), these faults result from crustal block rotation, and as they both parallel Phanerozoic 

sutures, they are no responsible for obscuring or distorting any earlier tectonic event or 

geometry.  

 

North China and eastern Asia 

 From the Late Jurassic to the Tertiary, widespread extension has affected much of eastern 

Asia (e.g., Mongolia, northeast China, and the western Pacific) as the western Pacific trench 

system migrated eastward (e.g., Traynor and Sladen, 1995; Ren et al., 2002; Yin, 2010). 

Subduction rollback, postorogenic collapse, and regional extension began soon after 120 Ma 

(Davis et al., 1996, 2001; Graham et al., 2012), which is expressed by the formation of northeast- 
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to north-northeast-trending rift (or transtensional) basins with synrift volcanic rocks (Traynor 

and Sladen, 1995; Deng et al., 1999; S. Zhang et al., 2014) and marginal sea basins in the 

western Pacific. Extensional detachment faults have exposed mid-crustal rocks throughout 

eastern Asia (Zheng et al., 1991; Davis et al., 1996; Webb et al., 1999; Davis et al., 2001; G. Zhu 

et al., 2012). Based on the widespread exposure of mid-crustal rocks and rift basins, I assume 

that a total magnitude of 100% extensional strain affected the Huabei-Korea-Japan domain (see 

Yin, 2010) since ~120 Ma (Davis et al., 2001); I restore approximately 550 km of extension 

during this time (Fig. 6.11A). 

 

6.5.2. Late Paleozoic-Mesozoic intracontinental deformation and ocean closure 

As the Paleo-Asian Ocean closed against Balkatach in the Late Paleozoic (Fig. 6.3), the 

northern passive margin rocks of Balkatach were deformed. In the Uralides, an unknown 

magnitude of the eastern passive margin of Baltica subducted beneath Kazakhstan (Brown et al., 

2011); similar events occurred along the Tian Shan-Ying Shan and Solonker-Jilin-Yanji sutures 

(Fig. 6.1). The northern continental margin of the Tarim basin may have subducted below a 

Devonian arc (Charvet et al., 2011), making its original size larger than it is exposed today. 

Restoration of these margins is highly speculative, and thus I only restore 10s of km to the 

margins that show signs of continental subduction (i.e., the Uralides and the Tian Shan) (Fig. 

6.11A). 

The magnitude of deformation associated with the closure of the Paleo-Tethys along the 

southern margin of Balkatach is also poorly understood. I do not restore any shortening 

associated with the collision of the Qiangtang terrane and South China with Balkatach, but 

acknowledge that shortening along these margins may be on the order of 100s of km.  
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6.5.3. Neoproterozoic rifting and Paleozoic orogeny 

As discussed above, restoration of Cenozoic intracontinental deformation shows that 

Tarim and North China were contiguous prior to the Mesozoic, and the late Paleozoic Kunlun arc 

suggests that Qilian-Qaidam-Kunlun and Tarim were linked at this time, which requires North 

China to also be linked with QQK. The belt of ~1.0-0.9 Ga granites found in Tarim and QQK 

further supports their Neoproterozoic linkage (e.g., Figs. 6.8 and 6.9). 

 The abundant Neoproterozoic rift and Cambrian passive margin deposits found along a 

majority of Balkatach’s margins suggest that the continent was involved in the global-scale 

breakup of the Rodinia supercontinent (Fig. 6.5). Rifting was followed by several Paleozoic 

orogens as separate microcontinents collided against Balkatach, including the Qilian-Qinling, 

Tagil, and Magnitogorsk microcontinents and arcs. Coevally, several microcontinents were 

involved in the initiation and evolution of the CAOS throughout the Paleozoic. This major 

transition from rifting to collisional orogeny fundamentally depends on whether the colliding 

microcontinents are exotic or genetically related to Balkatach. In the first scenario, 

Neoproterozoic rifting must allow for the conjugate continents and microcontinents to travel far 

enough away from Balkatach to allow for exotic blocks to collide against its margins in the 

Paleozoic. This is envisioned in the reconstruction by Stampfli and Borel (2002), where 

following Neoproterozoic rifting, Gondwana-derived ribbons of continental crust crossed the 

Paleo-Tethys and collided with the southern margin of Balkatach and Laurasia (e.g., the Hunia 

and Galatia continents; see also von Raumer and Stampfli, 2008; Stampfli et al., 2011, 2013).  

An alternative model is that Neoproterozoic rifting may have caused several large 

continents to separate and drift away from Balkatach, but some microcontinents broke off 

(partially and/or completely) to remain nearby within the Paleo-Asian and Tethyan Oceans. It is 
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these continents that collided against Balkatach in the Paleozoic and also served as nuclei for the 

initiation of the CAOS. Below I provide evidence and rationale for this second model.  

6.5.4. The origin of Qaidam-Qilian-Kunlun and CAOS microcontinents 

The early Paleozoic Qilian suture indicates that a late Neoproterozoic-early Paleozoic 

Ocean separated North China and QQK, but as previously discussed, there is no documented 

suture that divides QQK from Tarim (Fig. 6.9). The additional observation that Qaidam 

Precambrian basement is similar to the basement of Tarim-North China (e.g., Gehrels et al., 

2003b; Wu et al., 2016) suggests that QQK was originally part of Tarim-North China and only a 

continental strip partially rifted from the North China margin in the Neoproterozoic (scenario 3 

in Fig. 6.9C). Other researchers argue that QQK was derived from the South China craton based 

on correlative ~950-900 Ma granites, but it clear that this is not a unique signature among 

Precambrian crustal continents, as similar-aged plutons are found within North China, Tarim, the 

Tian Shan, and the CAOS microcontinents (Fig. 6.4).  

As previously discussed, there is evidence that the Precambrian Tian Shan 

microcontinent was derived from Tarim. Several workers have also suggested the connection 

between some of the Mongolian CAOS microcontinents and Tarim-North China (e.g., Rojas-

Agramonte et al., 2011; Levashova et al., 2011) on the basis of detrital zircon age distributions. 

Examination of the pre-800 Ma detrital zircon age distribution reveals that similar age peaks at 

~2.5 Ga, 1.85-1.8 Ga, ~970-910 Ma, and 790-750 Ma (Fig. 6.4). The northeastern Gondwana 

margin also shares similar age peaks (Fig. 6.4) and a Gondwana origin for these microcontinents 

cannot be ruled out, but I follow the suggestion of Rojas-Agramonte et al. (2011) and favor a 

Tarim origin. Similarly, Han et al. (2011) suggested that the Erguna-Xing’an-Songliao 
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microcontinents in northern China were derived from Tarim on the basis of U-Pb detrital zircon 

ages (Fig. 6.4).  

6.5.5. Paleomagnetic data 

The apparent polar wander (APW) paths from paleomagnetic poles are often used to 

develop and test plate-tectonic reconstructions. The goal of this study is to focus on the geologic 

histories and relationships of each continent to assess its paleogeographic location. However, 

preliminary paleomagnetic analysis presented in Figure 6.12 and Table 6.2 was used to constrain 

the tectonic reconstruction presented in section 6.6 and to test its viability. Ultimately, there are 

too few reliable paleomagnetic poles for the Balkatach continents to draw significant quantitative 

conclusions, but this high-quality paleomagnetic data places important paleolatitude bounds. 

The connections between the CAOS microcontinents and Tarim-North China discussed 

above in section 6.5.5 are supported by paleomagnetic data. The estimated Precambrian 

paleolatitude of the Karatau and Baydaric microcontinents (Fig. 6.2) is similar to North China 

and Tarim but not Siberia at 805-770 Ma (Fig. 6.12) (Levashova et al., 2010, 2011). The 

apparent separation of Baltica and Tarim-North China at ~550 Ma and ~750 Ma (Fig. 6.12) can 

be explained by the elongate geometry of Balkatach. The ~25° separation corresponds to a 

distance of ~2800 km on Earth’s surface, and given that Balkatach has a length of 4000-5000 

km, this paleolatitude data may reveals that the continent may have had a north-trending 

orientation. Any apparent separation may the result of the distance between paleomagnetic 

sample sites. In fact, these datasets may provide insights into the orientation of this long 

continent; the continent was oriented mostly N-S at ~750 Ma but rotated to W-E at the start of 
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the Cambrian. Further examination of paleomagnetic datasets and apparent polar wander paths in 

the context of the Balkatach hypothesis is necessary to interpret any of these observations. 

6.6. Tectonic evolution of Balkatach 

I now retro-deform central Asia, with emphasis on the evolution of Balkatach, from the 

Proterozoic to the present. Here I provide 11 time slices from the Mesoproterozoic (~late Jixian) 

to the preset in Figures 6.13-6.15 and 6.17, with higher spatial and temporal resolution 

progressing through time. Note that this reconstruction focuses more heavily on the eastern 

segment of Balkatach (i.e., east of Tarim), which is due to the scarcity of geologic data in west. 

Although there are numerous localized reconstructions that focus on one (or several) specific 

region(s) (e.g., Tarim, the Qilian orogen, North China, and the CAOS) (Filippova et al., 2001; 

Biske and Seltmann, 2010; Zhao and Zhai, 2013; Song et al., 2013, 2014: Xiao et al., 2013), 

none show how all of these regions relate and evolve through time and space. This model is first-

order attempt at constraining the evolution of Balkatach and its constituent cratons, and adheres 

to our current knowledge of later tectonic modification. Quantitative paleopositions are not given 

for the Mesoproterozoic time, but are for later reconstructions. The evolution of the CAOS is 

largely after Filippova et al. (2001), with considerations of Windley et al. (2007) and Xiao et al. 

(2013).  

6.6.1. Paleoproterozoic  

Eastern Balkatach (North Tarim and North China) 

By the Paleoproterozoic, Archean crustal fragments consisting of orthogneiss, TTG 

gneiss, metamorphosed supracrustal rocks, and greenstone belts as old as 3.8 Ga were 
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amalgamated into the North China craton. The Neoarchean crust of North Tarim formed 

separately from North China (Long et al., 2010, 2014), although I postulate that they joined by 

the Paleoproterozoic as no later collisional events are observed (cf. Yuan and Yang, 2013). At 

the Paleoproterozoic start of this reconstruction, North Tarim and North China are together. 

   

Western Balkatach (Baltica, Turan, Karakum, and South Tarim) 

The collision and amalgamation of Samatia, Fennoscandia, and Volgo-Uralia of Baltica 

was complete by ~1.8 Ga (Bogdanova et al., 2006; Shchipansky et al., 2007). Turan, Karakum, 

and South Tarim were also connected to a unified Baltica craton. 

  

6.6.2. Mesoproterozoic (Fig. 6.13) 

 Intracratonic rifting and aulacogen formation affected both the western and eastern 

domains Balkatach throughout the Mesoproterozoic, which suggests that other unknown 

continents were affixed to their respective margins prior to continental breakup. The eastern 

margin of Western Balkatch (i.e., the Ural-side) and southern margin of Eastern Balkatach 

witnessed a transition to passive margins, suggesting that these margins separated from their 

conjugate continents, although it is unclear if Balkatach entirely separated from other continents 

at this time.  

 

6.6.3. Neoproterozoic (Fig. 6.14) 

Subduction of the Tarim-Proto Urals Ocean underneath the East Balkatach led to the 

development of the 970-910 Ma Tarim arc, which stretched from the Qinling-Qilian-Qaidam-

Kunlun regions through Tarim into an unknown continent. This subduction system 

403



accommodated the convergence of the West and East Balkatach, which collided along the Tarim 

suture (e.g., Guo et al., 2005) by ~870 Ma, at which point Balkatach reached its full extent. The 

combined Songpan-Ganzi and South China cratons collided against the southern margin 

(present-day coordinates) of Balkatach at a similar time (Wu et al., 2016), although this collision 

must have occurred prior to the initiation of bimodal volcanism documented in southern Tarim at 

~900 Ma (e.g., Wang et al., 2015a, 2015b). 

Immediately after and/or during the collision of West and East Balkatach, rifting 

commenced along the continent’s northern and southern margins. Several aulacogens developed 

obliquely to the inferred continental margins: in the east the Helan and Manjiaer aulacogens 

formed on either side of Balkatach (Lin et al., 1995, 2014) and in the west syn-rift sedimentation 

was more diffuse and several Mesoproterozoic aulacogens were reactivated as rift basins (e.g. 

Kaltasin and Sernovodsk-Abdulino Aulacogens in Baltica). Rifting of Balkatach from an 

unknown continent to the north and the Songpan-Ganzi-South China continent to the south (Wu 

et al., 2016) respectively opened the Paleo-Asian Ocean at ~800 Ma and the Paleo-Tethys Ocean 

(Paleo-Kunlun Ocean) at ~830 Ma.  

The rifting process was complex and relatively long-lived, leading to protracted rift-

related volcanism and volcanic passive margin development. The warmed lithosphere ultimately 

led to tectonic calving (e.g., Müller et al., 2001) (discussed further in section 6.7.2) of the CAOS 

microcontinents and the partial incomplete opening of the Qilian Ocean from 750-650 Ma. These 

rift events may be analogous to the continental fragments that rifted from northern Australia in 

the Mesozoic-Cenozoic (e.g., Hall, 2011; Metcalfe, 2011).  
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6.6.4. Early-Middle Paleozoic (Fig. 6.15) 

 The Paleo-Asian Ocean persisted throughout the Paleozoic, and may have been divided 

into up to four interconnected oceans by the Kazakshtan continent. In this reconstruction, I 

follow the archipelago models of Filippova et al. (2001), and envision Balkatach wrapping 

around these accretionary arcs (e.g., Abrajevitch et al., 2008; Xiao and Santosh, 2014).  

Much of the northern and southern margins of Balkatach, bounding the Paleo-Asian and 

Paleo-Tethys Oceans respectively, remained passive throughout most of the Paleozoic (Fig. 6.5), 

although western Balkatach experienced two arc-continent collision events as the Tagil and 

Magnitogorsk arcs collided with the proto-Urals in Devonian-Early Carboniferous. The closure 

of the Qilian Ocean in the earliest Silurian occurred during the Qilian-Qinling orogen. This 

collision progressed from west to east, consistent with the closure of a peninsular QQK rotating 

counter-clockwise. The north-dipping Paleo-Kunlun arc was constructed on the southern margin 

of Qaidam and may have stretched as far west as Karakum. Intra-arc extension led to the 

deposition of several Devonian basins in the Karakum and Kunlun regions.  

Middle Carboniferous collision of central Western Balkatach with Kazakstan occurred 

during the southern Uralide orogen. Following collision, bi-directional suturing propagated 

northward (relative to the strike of the Urals), as Balkatach wrapped around the CAOS toward 

Siberia, and eastward, as the Paleo-Asian Ocean was consumed along the Solonker-Jilin-Yanji 

suture (Figs. 6.3, 6.15C, and 6.16).  

 

6.6.5. Late Paleozoic (Fig. 6.16) 

 The bidirectional closure of the Paleo-Asian Ocean continued along the northern margin 

of Balkatach into the late Paleozoic (Fig. 6.3), and by ~300 Ma the Pacific Ocean was separated 
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from the Paleo-Asian Ocean (Fig. 6.15C). The complete closure of the Paleo-Asian Ocean in the 

Permian was accompanied by a widespread magmatic flare-up, which may have been related to 

the avalanche of subducted oceanic slabs of the Paleo-Asian Ocean across the 660 km phase 

boundary in the mantle (e.g., Schubert and Tackley, 1995; Cina, 2011) (Fig. 6.16). There was an 

enormous amount of oceanic crust that subducted in the CAOS and the closure of the Paleo-

Asian Ocean. If these slabs stagnated at the 660 km phase transition (Schubert and Tackley, 

1995) before simultaneously breaking through this phase-transition boundary, there would be a 

significant amount of asthenospheric upwelling that could melt the metasomatized lithospheric 

mantle and trigger widespread Permian magmatism across central Asia (Fig. 6.16).  

 

6.6.6. Mesozoic-Cenozoic (Fig. 6.17) 

 Collision between Balkatach and the CAOS continued from central Balkatach (i.e., 

Karakum and Turan) eastward, with continued northward subduction under the CAOS (e.g., 

Kazakshstan and other microcontinents). This lead to the progressive destruction of the 

Turkestan, Asiatic, and Solonker Ocean—parts of the Paleo-Asian Oceans—which are 

demarcated by the Denisov-Oktyabrsk, Turkestan, and Solonker-Jilin-Yanji sutures (Fig.6.1). 

Collision and ocean closure was completed by the Triassic.  

 Northward subduction of the Paleo-Tethys under the southern margin of Balkatach 

continued in the Permian, as expressed by a Permian-Triassic Kunlun-Yidun-Earlangping-

Qinling magmatic arcs, which accommodated the convergence of the South China craton and 

numerous other terranes (e.g., Qiangtang and Lhasa). Collision between South China and eastern 

Balkatach (i.e., North China) began in the latest Permian and concluded by the Triassic, and is 

demarcated by the Qinling-Dabie suture. The Paleo-Tethys was concurrently subducting to the 
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south under the Qiangtang-Indochina terranes, which collided with Balktach and South China in 

the late Triassic and led to the cessation of arc magmatism in the Kunlun arc (e.g., Wu et al., 

2016). By the Late Triassic, the Lhasa block to the south, collided with the Qiangtang terrane 

along the Bangong-Nujiang suture following the closure of the Meso-Tethys (Yin et al., 1994; 

Murphy et al., 1997). The Middle Cretaceous initiation of northward subduction of the Neo-

Tethys under Lhasa accommodated convergence of India toward Asia, which led to the 

formation of an Andean arc and the development of the Gangdese batholith (Allégre et al., 1984, 

Harrison et al., 1992). The Indus-Yarlung suture zone separates Lhasa from the Himalaya and 

demarcates the destruction of the Neo-Tethys.  

 Intracontinental deformation that resulted from the collision between India and Asia at 

~55 Ma (e.g., Le Fort, 1996; Zhu et al., 2005; Green et al., 2008; Dupont‐Nivet et al., 2010a; 

Najman et al., 2010; Wang et al., 2011a) modified the existing configuration of Asia. In addition 

to the Himalayan orogen, crustal shortening occurred in the Tian Shan, West Kunlun, Qimen 

Tagh, North Qaidam, and Qilian Shan-Nan Shan thrust belts. Continental subduction in the 

Pamirs and strike-slip offset along the Altyn Tagh fault obscured many of the pre-Cenozoic 

structures. Eastward extension of Asia along the western margin of the Pacific Ocean also 

continued at this time. 

 

6.7. Discussion 

The above reconstruction conforms to existing geological observations, but in doing so, it 

raises the following questions: 

(1) What continents were affixed to the margins of Balkatach in the Proterozoic? This long 

cratonal strip, with Archean and Proterozoic structures inexplicably truncated by 
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Neoproterozoic passive margin successions, must have fit into a larger continental 

assemblage prior to this time (cf. Li et al., 2008).  

(2) Where does the Precambrian Tarim arc (i.e., 1.0-0.9 Ga granitoids and gneiss) and suture

extend to the north and south of Tarim (Fig. 6.14)? It is not likely that this arc could have

laterally terminated within Tarim, and so there should be evidence of its continuation on

another continent that was rifted away from Balkatach in the Neoproterozoic.

(3) Although this chapter is focused specifically on the tectonic evolution of central Asian,

Baltica’s proposed connection within Balkatach has implications for the development of

both Rodinia and Laurasia. In most reconstructions, Baltica collided with Laurentia twice

since the Neoproterozoic (e.g., Ziegler, 1989; Scotese and McKerrow, 1990). My

proposed Baltica-Balkatach connection represents a fundamental difference from the

model of Şengör et al. (1993), where pre-Uralide and Baykalide subduction system (i.e.,

the Urals and southern Siberia) were connected at the end of the Neoproterozoic. Instead,

the northern margin of Balkatach may have linked with the North American Cordilleran

arc-trench system (e.g., Zonenshain et al., 1987; Miller et al., 2011).

6.7.1 Neoproterozoic Balkatach in Rodinia 

Balkatach must be reconsidered in the context of the supercontinents Columbia and 

Rodinia. For example, in the popular Rodinia reconstruction of Li et al. (2008), the North China, 

Tarim, and Baltica cratons are positioned separately along the outskirts of the supercontinent, 

even though Proterozoic structures truncated by rift-features along their margins (e.g., 

aulacogens and transitions to passive margin sequences) require their involvement in a larger 

continental assemblage. For reconstructions of Columbia, North China is often connected with 
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India on the basis of linking the Trans-North China Orogen with the Central Indian tectonic zone 

(Zhao et al., 2003, 2004). This connection may still be valid, but should be pursued further 

considering the dimensions of Eastern Balkatach in the Proterozoic (e.g., North Tarm to North 

China, with several CAOS microcontinents) (Figs. 6.13-6.14). The long, relatively thin aspect 

ratio of Balkatach readily allows for continents to be affixed to be affixed to either side. I 

envision that the continent may serve as an alternative “missing link” between already postulated 

connections (e.g., Li et al., 1995). 

The well documented truncation of Archean and Paleoproterozoic structures in western 

Laurentia (e.g., Taltson-Buffalo Head, Vulcan, and Great Falls Tectonic Zones) by a thick 

Neoproterozoic succession of miogeoclinal sediments led early workers to develop the 

hypothesis that a Precambrian continent had to have rifted away (e.g., Stewart, 1972, 1976; 

Burchfiel and Davis, 1972; Monger et al., 1972; Sears and Price, 1978). A similar situation exists 

for Balkatach yet paleogeographic reconstructions of Balkatach’s constituent cratons, especially 

North China and Tarim, do not consider this issue.  

One possibility is that the proposed Balkatach continent was affixed to the western 

margin of Laurentia in the Proterozoic (Zuza and Yin, 2013, 2014), with Siberia positioned to the 

north of Laurentia following Rainbird et al. (1998) (e.g., Evans and Mitchell, 2011; Ernst et al., 

2016). The ~6000-km length of Balkatach is equivalent to the north-south length of western 

Laurentia from the northern tip of Alaska to the southern tip of the Gulf of California. This 

hypothesis is based on the following lines of observations: 

(1) Proterozoic subduction and collision: The ~1.85 Ga Trans-North China Orogen and 

Great Falls Tectonic Zone of western Laurentia (e.g., Goreman et al., 2002; Ross et al., 

2002; Mueller et al., 2002; Foster et al., 2006) have similar arc-subduction-collision 
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histories that accommodated the convergence of Archean blocks. The exposed 

Paleoproterozoic basement in Karakum and Turan would link with the 1.9-1.85 Ga Fort 

Simpson belt (Ross et al., 2002) in western Canada. 

(2) Mesoproterozoic strata: The Belt-Purcell Supergroup spatially and temporally correlates 

with Jixian deposits in North China (Hebei BGMR, 1989; Ross et al., 1992; Ross and 

Villeneuve, 2003; Zhai et al., 2015); both groups are thick (i.e., >10 km), and consist of 

carbonate and mudrocks deposited in active margin-bounded rift troughs. In addition, the 

Belt-Purcell rocks possess 1610-1500 Ma zircons that are rare in western Laurentia; it has 

long been postulated that a separate continent must provide a western source for these 

zircon grains (Ross et al., 1992; Ross and Villeneuve, 2003). North China has rapakivi 

granites with this age signature (e.g., Zhang et al., 2007). 

(3) Neoproterozic rift histories: Rifting and the development of a Neoproterozoic-Cambrian 

passive margin sequences occurred along the northern margin of Balkatach and the 

western margin of Laurentia (e.g., Lund et al., 2010; Levashova et al., 2010, 2011; Meert 

et al., 2011; Shu et al., 2011, Han et al., 2011; Balgord et al., 2013). Additionally, 

similar-age (i.e., ~710 Ma, ~655 Ma, and ~630 Ma) diamictites have been reported in in 

the Windermere Group of North America (Lund et al., 2003; Balgord et al., 2013), 

Qurutagh Group of Tarim (Xu et al., 2005; Shu et al., 2011), and Central Asian 

microcontinents (Levashova et al., 2011; Meert et al., 2011). 

 

6.7.2. Tectonic calving and CAOS microcontinent formation 

A central component of my reconstruction is that the microcontinents in the CAOS and 

the QQK continent are both genetically linked with the margins of Balkatach. This implies that 

410



these continents detached from Balkatach during Neoproterozoic rifting. This detachment was 

either partial, like for the peninsular Kunlun-Qaidam continent, or entire, like for the CAOS 

microcontinents. However, in both cases, the continents remain near to the Balkatach continent 

following rifting and collide with it in Paleozoic. These rifted microcontinents may be 

analogous to the continental fragments that rifted from northern Australia in the Mesozoic-

Cenozoic (e.g., Hill and Hall, 2003; Hall, 2011; Metcalfe, 2011). I envision that these rifted 

microcontinents are the result of “tectonic calving” during rift development, akin to glacial 

calving.  

An issue with microcontinent development during regional rifting is that extension 

should be isolated to the developing mid-ocean, which has a relatively low yield strength 

compared to the continental crust (Bodine et al., 1981). A rheological weakness must develop to 

concentrate rifting away from a nearby mid-ocean ridge and allow a microcontinent to separate 

from the rest of the continental lithosphere. Increasing the temperature of the lithosphere may be 

one mechanism to generate this weakness (Müller et al., 2001). For Balkatach, especially around 

Tarim, there are three lines of evidence that suggest there was a warmed lithosphere in the 

Neoproterozoic: (1) subduction, arc-magmatism from ~970-910 Ma, and collision by ~870 Ma 

along the Tarim suture would have led to elevated heat flow; (2) long-lived magmatism (i.e., 

from 840 to 680 Ma) (e.g., Shu et al., 2011) predates, accompanies, and follows the main stages 

of rifting; and (3) there is evidence for a Neoproterozoic plume beneath Tarim (e.g., Li et al., 

2003; Lu et al., 2008; Long et al., 2011). 

Continental break-up involving a hotter lithosphere is generally associated with the 

development of a volcanic passive margin, or volcanic rift margins (Gernigon et al., 2004; 

Geoffrey, 2005). If distinct segments of Balkatach’s rifted margins involved volcanic passive 
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margin development, the associated large volume of warmer, weaker continental crust would 

allow extension and mid-ocean spreading to jump among zones of weakness. During the rifting 

of several large continents, smaller continental fragments could also rift away but they would 

remain nearby as local spreading centers shutoff and spreading eventually concentrates within a 

single and central mid-ocean ridge. Proterozoic volcanic passive margins have not been well 

identified or studied, and geophysical data would be needed to verify the presence of 

characteristic thick igneous layers in the lower crust or continent-ward dipping normal faults.  

 

6.8. Conclusions 

 By removing the tectonic-distortion effects in central Asia caused by intracontinental 

deformation and rifting events, I have shown that a continuous continent once stretched from the 

North China craton to Baltica in the west. I refer to this continent as Balkatach based on the 

linkage between the Baltica, Karakum, Tarim, and North China cratons. This continent, and the 

relative motion of its western and eastern arms (in present-day coordinates) in the Paleozoic, 

played an important role in the tectonic evolution of Asia. Neoproterozoic rifting along 

Balkatach’s margins led to the opening of Paleo-Asian, Pacific, and Tethyan Oceans. 

Archipelago development and subduction within the Paleo-Asian Ocean accommodated the 

oroclinal bending of Balkatach around this ocean. The initial collision of central Balkatach and 

the CAOS in the mid-Carboniferous was followed by bi-directional suturing and “double zipper” 

closure of the Paleo-Asian Ocean by the Permian. The closure of the Paleo-Tethys Ocean along 

Balkatach’s southern margin proceeded diachronously from west to east, during the Permian-

Triassic. 
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The restored ~6000-km-long Balkatach continent must fit in Neoproterozoic Earth and 

Rodinia reconstructions. This tectonic reconstruction presented here is at odds with current 

Neoproterozoic models that place each of Balkatach’s constituent continents separately along the 

outskirts of the Rodina supercontinent (e.g., Li et al., 2008). I tentatively propose that Balkatach 

was affixed to the western margin of Laurentia in the Proterozoic, with Siberia positioned to the 

north of Laurentia following Rainbird et al. (1998). More work is needed to test this hypothesis. 
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Figure 6.2. Simplified tectonic map of Central Asia showing the terranes and cratons of the 
proposed Balkatach continent (shown with white stripes). See Figure 6.1 for location. 

415



Q
ili

an
O

ce
an

Q
ili

an
or

og
en

Q
ili

an
or

og
en

Q
ili

an
O

ce
an

U
ra

lid
e

or
og

en

Tu
rk

e-
st

an
O

ce
an

P
ro

to
 - 

U
ra

ls
O

ce
an

S
ak

m
ar

ia
n-

M
ag

ni
to

go
rs

k 
ar

c

P
al

eo
-

Te
th

ys
O

ce
an

P
al

eo
-

Te
th

ys
O

ce
an

K
un

lu
n

ar
c

P
al

eo
-

Te
th

ys
O

ce
an

P
al

eo
-

A
si

an
O

ce
an

P
al

eo
-

Te
th

ys
O

ce
an

K
un

lu
n

ar
c

E
-Q

M
ia

n-
lu

e
ar

c

P
al

eo
-

Te
th

ys
O

ce
an

Tu
rk

e-
st

an
O

ce
an

Tu
rk

e-
st

an
O

ce
an

S
ilk

R
oa

d 
ar

c

Q
ili

an
O

ce
an

Q
ili

an
or

og
en

Q
ili

an
ar

c
Q

in
lin

g
ar

c

M
an

g-
ys

hl
ak

-
U

st
yu

rt
E

o-
C

Q
-D

Q
-D

Ti
m

an
id

es

U
ra

lia
n 

O
ce

an

Ta
gi

l a
rc

O
pe

n 
oc

ea
n 

al
on

g 
m

ar
gi

n 
R

ift
in

g
A

rc
/s

ub
du

ct
io

n 
zo

ne
*

C
ol

lis
io

n/
or

og
en

* 
R

ep
re

se
nt

s 
an

 a
rc

 d
ev

el
op

in
g 

w
ith

in
 o

r a
pp

ro
ac

hi
ng

 B
al

ka
tc

h 
co

nt
in

en
t

P
al

eo
-

A
si

an
O

ce
an

W
es

te
rn

P
ac

ifi
c 

ex
te

ns
io

n

W
es

t
P

ac
ifi

c 
ex

te
n-

si
on

U
ra

lid
e

or
og

en

S
JY

A
K

M
A

K
M

Ti
an

S
ha

n

S
JY

Q
ili

an
ar

c

P
al

eo
-

K
un

lu
n

ar
c

P
al

eo
-

K
un

lu
n

O
ce

an

Fi
gu

re
 6

.3
. C

om
pl

et
e 

ca
pt

io
n 

on
 fo

llo
w

in
g 

pa
ge

.

Ti
m

e 
(M

a)
U

ra
ls S

N
S

N
S

N
S

N
S

N
E

W
S

N
S

N

Tu
ra

n
K

ar
ak

um
Ta

rim
Q

-Q
-K

C
A

O
S

Q
in

lin
g

N
 C

hi
na

Tertiary Cretaceous Jurassic Triassic Permian Carbonif. Devonian Sil Ordo Cambrian Neoproterozoic Mesoproterozoic

3 65 14
6

20
0

25
1

29
9

35
9

41
6

44
4

48
8

54
2

sc
al

e 
ch

an
ge

60
0

80
0

10
00

12
00

14
00

16
00

C
lo

su
re

 o
f 

P
al

eo
-A

si
an

 
O

ce
an

C
lo

su
re

 o
f 

P
al

eo
-T

et
hy

s 
O

ce
an

D
is

ta
nc

e 
al

on
g 

st
rik

e 
(k

m
)

Time (Ma)
0

20
00

40
00

60
00

80
00

20
0

15
0

25
0

30
0

35
0

416



Figure 6.3 (continued). Tectonic correlation chart displaying major tectonic events along the 
northern (N) and southern (S) margins of the constituent cratons of Balkatach. Inset shows 
approximate closure time of the Paleo-Asian and Tethyan Oceans, to the north and south of 
Balkatach respectively, which are based on the earliest collisional ages observed in the geologic 
record. Abbreviations: AKM--Anyimaqen-Kunlun-Muztagh, CAOS--Central Asian Orogenic 
System,  E-Q--Earlangping-Qinling arc, Eo-C--Eo-Cimmerian,Q-D--Qinling-Dabie Shan orogen, 
Q-Q-K--Qilian-Qaidam-Kunlun, and SJY--Solonker-Jilin-Yanji. Sources are discussed in text.
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Figure 6.4. Normalized probability plot of zircon ages older than 775 Ma from the Qilian Shan, 
Mongolian and Chinese microcontinents, Tarim, North China, northeast Gondwana, and 
southern Siberia. U-Pb ages were used for zircons younger than 1000 Ma and Pb-Pb ages were 
used for older zircons. Grey shaded zones denote prominent age peaks around 790-760 Ma, 
970-910 Ma, 1850-1800 Ma, and 2500-2450 Ma, which correspond to widespread tectonic 
events as discussed in the text. Chinese microcontinent ages from Han et al. (2011) and 
Mongolian microcontinent data from Rojas-Agramonte et al. (2011). Qilian Shan data is a 
compilation of our own unpublished work and Xu et al. (2010). Tarim, North China, and 
southern Siberia data compiled by Rojas-Agramonte et al. (2011). Northeast Gondwana data 
compiled by Squire et al. (2006).
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Figure 6.6. Timing of major Paleozoic events relative to west-east position in the Urals, based 
on geochronology, thermochronology, and sedimentological studies. Dashed boxes are timing 
constraints from the sedimentary record. Primary data sources include Bea et al. (1997, 2002), 
Fershtater et al. (1997, 2007), Savelieva et al. (2002), and Fershtater (2013).
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Figure 6.8. (A) Simplified tectonic map of the Tarim Basin, Qaidam Basin, Qilian Shan, and 
surrounding areas (after Guo et al., 2005). Also shown is the inferred Precambrian subduction 
system of Guo et al. (2005) and the location of Central Tarim Geologic Survey Well (TC-1). 
Note the truncated magnetic anomaly and locations of reported 970-910 Ma granitoids (Cowgill 
et al., 2003; Gehrels et al., 2003a; Wu et al., 2016; Chapter 5). (B) Tectonic evolution of the 
central Tarim basin and its surrounding regions as proposed by Guo et al. (2005): (1) Northward 
subduction under North Tarim formed the Precambrian Tarim arc, which led to the formation of 
970-910 Ma granitoids and a blueschist belt along the subduction zone; (2) closure of the 
interlying ocean basin led to a collision between North and South Tarim; (3) Neoproterozoic 
rifting and continental breakup was followed by the deposition of passive continental margin 
sequences over Tarim and surrounding regions; and (4) most recent Cenozoic deformation 
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Figure 6.10. (A) Tectonic domains of the North China craton. Abbreviated metamorphic 
complexes: CD—Chengde; DF—Dengfeng;  EH—Eastern Hebei; ES—Eastern Shandong; 
FP—Fuping; GY—Guyang; HA—Huai’an; HL—Helanshan; HS—Hengshan; JN—Jining; 
LG—Langrim; LL—Lüliang; MY—Miyun; NH—Northern Hebei; NL—Northern Liaoning; 
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Daqingshan; WL—Western Liaoning; WS—Western Shandong; WT—Wutai; XH—Xuanhua; 
ZH—Zanhuang; and ZT—Zhongtiao. From Zhao et al. (2005, 2012). (B) Sketch maps showing 
the distribution of the Proterozoic Changcheng, Jixian, and Qingbaikou Groups within the North 
China craton. There are no significant Sinan deposits in North China. Compiled from Wang et al. 
(1985), Lu et al. (2002), Wan et al. (2003b), and Meng et al. (2011). Note that intracontinental 
deformation and other later tectonic modification have not been restored in neither (A) nor (B).
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Figure 6.14. Neoproterozoic-Early Cambrian tectonic evolution of Balkatach. (A) Convergence 
of Eastern and Western Balkatach is accommodated by the ~1.0-0.9 Ga Tarim arc. Eastern 
Balkatach is connected to an unknown continent to the southwest during this time. The 
combined South China-Songpan-Ganzi continent approaches the northern margin of Balkatach 
(Wu et al., 2016). 3D globe projection and latitude/longitude lines are in 30° intervals. 
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margin of the Songpan-Ganzi terrane (Wu et al., 2016). (C) Rifting along the southwestern and 
northeastern margins of the Balktach continent leads to the opening of the Paleo-Asian and 
Paleo-Tethys Oceans respectively. The CAOS microcontinents are dispersed throughout the 
Paleo-Asian Ocean. (D) Late-stage rifting causes the Qilian-Qaidam-Kunlun microcontinent to 
separate from the North China-Tarim, causing the peninsular opening of the Qilian Ocean in the 
late Neoproterozoic-early Cambrian. The Bolshezemel arc accommodates the convergence of the 
Arctida continent with the eastern margin of Balkatach (Kuznetsov et al., 2010). 3D globe 
projection and latitude/longitude lines are in 30° intervals. 
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Figure 6.15. Full caption on following page.
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Figure 6.15 (continued). Paleozoic tectonic evolution of Balkatach and the Paleo-Asian Ocean 
domain. (A) Subduction of the Paleo-Asian Ocean within the Central Asian Orogenic System 
causes Balkatach to wrap around the Paleo-Asian ocean. (B) Continued closure of the 
Paleo-Asian Ocean accommodates Balktach’s convergence with the Kazakhstan microcontinent 
conglomeration. (C) Collision between Balkatach and Kazakhstan in. This figure is modified 
from Filippova et al. (2001), Abrajevitch et al. (2008), and Xiao and Santosh (2014). 3D globe 
projection and latitude/longitude lines are in 30° intervals.
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Figure 6.17. (A) Middle Cretaceous and (B, C) Cenozoic evolution of Central Asia as restored in 
this reconstruction. Note that the colors of the tectonic units are changed from Figures 6.13-6.15 
to match those in Figure 6.2. 3D globe projection and latitude/longitude lines are in 30° intervals. 
Proposed Balkatach continent is shown with white stripes.
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Table 6.2. Selected paleomagnetic poles and paleolatitudes for Central Asian continents. 

  Pole    

Rock unit Age (Ma) (°N) (°E) A95 (°) Paleolatitude (°) Reference 

North China       

Fengfeng/Pingliang 

Formations 

480 37.4 324.3 8.5 -10 Huang et al. (1999) 

Changshan/Gushan 

Formations 

500 31.7 329.6 5.1 -13 Huang et al. (1999) 

Zhangxia/ Xuzhuang 

Formations 

520 37.0 326.7 5.5 -10 Huang et al. (1999) 

Dongjia Formation 650 -60.8 97.4 6.7 10 Zhang et al. (2006) 

Huaibi Group 700 -42.9 107.0 5.7 8 Zhang et al. (2006) 

Nanfen Formation 800 to 780 -16.5 121.1 11.1 35 Zhang et al. (2006) 

Wangshan Formation 890 52.6 330.0 5.3 0 to 5 Fu et al. (2015) 

Jingeryu Formation 950 -41.0 44.8 11.3 10 Zhang et al. (2006) 

       

North Tarim       

Sugetbrak/Chigebrak 

Formations 

600 19.1 149.7 9.3 27 Zhang et al. (2007) 

Qiaoenbrak Formation 730 30.4 246.1 11.0 6.3 ± 39 Wen et al. (2013) 

Baiyixi Formation 740 17 194 4 6 Huang et al. (2005) 

Wushi Formation 800 to 590 -55 53 7.9 8 ± 6 Li et al. (1991) 

Aksu dikes 807 ± 12 19 128 6 43 Chen et al. (2004) 

       

CAOS 

microcontinents 

      

Baydaric 805 to 770 - - - 47 ± 14 Levashova et al. (2010) 

Karatau 766 ± 7 - - - 34.2 ± 5.3 Levashova et al. (2011) 

       

Siberia       

Karagas Series 850-740 -12 97 10 22 to 8 Metelkin et al. (2005) 

Nersinsky Complex 740 -37 122 11 2 to -19 Metelkin et al. (2005) 

       

Baltica       

Zigan Formation 550 -15.4 107.7 4.3 7.8 ± 2.5 Levashova et al. (2013) 

Average* 560 to 550 - - - 30-40 From Meert (2014) 

Kildinskaya Formation 750 -26 13 7.2 ~0 Torsvik et al. (1995) 

*Average paleolatitude from numerous datasets. 
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Figure A.2. Physical and mechanical properties of experimental materials. (a) Measured grain 

size distributions for dry crushed walnut shells and dry sand using the methods of Blott and Pye 

(2001). (b) Measured relationships between shear stress and normal stress for both dry crushed 

walnut shells and dry sand again P100 sandpaper. (c) Measure relationship between shear stress 

and normal stress for dry crushed walnut shells and dry sand. For both (b) and (c), the best-fit 

linear regression for each material yields the cohesive strength, coefficient of internal friction, 

and angle of internal friction, which are shown in Table 4.1 of the main text. Previous studies 

report an angle of internal friction (ϕ) of 30.3–32.8º and a cohesive strength (C0) of 80 ± 22 Pa 

for dry sand (Maillot and Koyi, 2006) and ϕ and C0 of 38.5-40.8º and 23-13 Pa for crushed 

walnut shells (Cruz et al., 2008). The procedure of the Hubbert-type experiments in (b) and (c) 

are described in greater detail by Hubbert (1951), Schellart (2000), Maillot and Koyi (2006), and 

Cruz et al. (2008). 
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Text A.3. The stress-shadow model applied to the analogue experiments 

 First I determine the shear stress on a vertical plane parallel to the movement direction of 

the sliding plate (Fig. A2). The stress equilibrium equation in the sliding plate direction x can be 

written as  

 
𝜕𝜎𝑥𝑥

𝜕𝑥
+

𝜕𝜎𝑥𝑦

𝜕𝑦
+

𝜕𝜎𝑧𝑥

𝜕𝑧
= 0     (A1) 

where 𝜎𝑥𝑥 is the normal stress on vertical planes perpendicular to the sliding plate, 𝜎𝑥𝑦 is the 

shear stress on vertical planes parallel to the movement direction of the sliding plate, and 𝜎𝑧𝑥 is 

the shear stress on planes parallel to the sliding plate and in the direction of the sliding plate 

motion (Fig. A.3a). Assuming that 𝜎𝑥𝑥 is in a state of lithostatic stress, 𝜎𝑥𝑥 = −𝜌𝑔𝑧 (using the 

sign convention that compressive stress is negative). Based on the symmetry of the problem, 

𝜎𝑥𝑦(𝑦 = 0) = 0 (i.e., on the vertical plane along the middle dividing line of the sliding plate) 

because on the vertical plane of 𝑦 = 0 the shear sense switches. Finally, the measurements of the 

frictional properties between sand/crushed walnut shells against the underlying sand paper 

require that 𝜎𝑧𝑥= −𝜇𝑏𝜌𝑔𝑧 − 𝐶𝑏, and 𝜎𝑧𝑥(𝑧 = ℎ) = −𝜇𝑏𝜌𝑔ℎ − 𝐶𝑏, where 𝜇𝑏 is the friction 

coefficient of sand/crushed walnut shells against the sand paper, and 𝐶𝑏 is the corresponding 

cohesive strength of the dry sand/crushed walnut shells. The negative signs in the expression of 

𝜎𝑧𝑥= −𝜇𝑏𝜌𝑔𝑧 − 𝐶𝑏 are the results of our assigned sign convention.  

Under the aforementioned conditions, one can solve equation (A1) and obtain the 

“sidewall” shear stress on a plane perpendicular to the sliding plate and parallel to the movement 

direction of the sliding plate (Fig. A2a). Specifically,  

 
𝜕𝜎𝑥𝑥

𝜕𝑥
= 0      (A2) 

 
𝜕𝜎𝑧𝑥

𝜕𝑧
= −𝜇𝑏𝜌𝑔      (A3) 

Inserting (A2) and (A3) into equation (A1), we have   

 
𝜕𝜎𝑥𝑦

𝜕𝑦
= −𝜇𝑏𝜌𝑔      (A4) 

Equation (A4) yields  

 𝜎𝑥𝑦 = −𝜇𝑏𝜌𝑔𝑦 + 𝑓(𝑥, 𝑧) + 𝑎0     (A5) 

where 𝑓(𝑥, 𝑧) is an arbitrary function of x and z when solving 𝜎𝑥𝑦 and 𝑎0 is a constant. The 

boundary condition of 𝜎𝑥𝑦(𝑦 = 0) = 0 requires that 𝑓(𝑥, 𝑧) + 𝑎0 = 0, which leads to a 

simplified equation (A5) as  

 𝜎𝑥𝑦 = 𝜎𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑙 = 𝜇𝑏𝜌𝑔𝑦     (A6) 

The above equation, which is given as equation (15) in the Chapter 4, indicates that the sidewall 

shear stress depends on the coefficient of basal friction, the density of the experimental material, 

and the surface gravity. Equation (A6) also shows that the sidewall shear stress increases with its 
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distance from the central dividing line of the sliding plate, where 𝑦 = 0 (Fig. A.3). I wish to 

determine the magnitude of the shear stress parallel to the Riedel shears, which trend at an angle 

of  from 𝜎𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑙 (Fig. A.3b). A transformation of coordinates allows us to determine the “fault 

parallel” stress, 𝜎𝑓𝑝. The shear stress applied on planes parallel to the Riedel shear fractures can 

be expressed as  

𝜎𝑓𝑝
𝑠𝑎𝑛𝑑 = 𝜎𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑙

𝑠𝑎𝑛𝑑 × cos2      (A7) 

and 

𝜎𝑓𝑝
𝑤𝑎𝑙𝑛𝑢𝑡 = 𝜎𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑙

𝑤𝑎𝑙𝑛𝑢𝑡 × cos2      (A8) 

where  ≈ 16° as observed in the experiments (i.e., the angle between the sliding direction and 

the trend of the Riedel shear fractures) (Fig. A.3b). Although 𝜎𝑥𝑦 = 𝜎𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑙 = 𝜇𝑏𝜌𝑔𝑦 goes to 

infinite as 𝑦 → ∞ (Fig. A2c), its induced shear stress 𝜎𝑓𝑝 parallel to the Riedel shear stress is 

finite. This finite value can evaluated at 𝑦 = 𝑑, which marks the edge of the shear zone (Fig. 

A.3): 

 𝜎𝑓𝑝
𝑠𝑎𝑛𝑑/𝑤𝑎𝑙𝑛𝑢𝑡

= 𝜎𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑙
𝑠𝑎𝑛𝑑/𝑤𝑎𝑙𝑛𝑢𝑡(𝑦 = 𝑑) × cos (2) = 𝜇𝑏𝜌𝑔𝑑 cos (2)   (A9) 

where 𝜎𝑓𝑝(𝑦 = 𝑑) is greater than the yield strength of the experimental material, creating a shear 

zone in which Riedel shear fractures are created (Figs. A.3c and A.3d). In the above 

interpretation, 𝜎𝑓𝑝 is equivalent to the regional stress 𝜎𝑠
𝑟 = 𝜎𝑏𝑐 used in equation (1b) of Chapter 

4. 

 As the dry sand/crushed walnut shells are both Coulomb materials, their shear strengths 

increase with normal stress and thus depth. That is, at the surface, the shear strengths of the dry 

sand/crushed walnut shells are the lowest and equal to the cohesive strength of the experimental 

materials (Table 4.1). On the other hand, the shear stress generated by the basal shearing that is 

parallel to the Riedel shear fractures is vertically uniform, as expressed by 𝜎𝑓𝑝 =

𝜇𝑏𝜌𝑔𝑑 cos (2), which is independent of z. Under such a stress state, Riedel shear fractures will 

break first at the surfaces, where the yield strengths of the experimental Coulomb materials are 

weakest and equal to the cohesive strengths. In this scenario, our stress shadow model from 

equation (5) of the Chapter 4, relating fault spacing S to brittle layer thickness h, may be written 

as  

 𝑆 =  
�̅�−𝜎𝑓̅̅ ̅̅

𝜎𝑏𝑐−�̅�
ℎ =  

𝐶𝑌−𝐶𝑓

𝜎𝑓𝑝−𝐶𝑌
ℎ    (A10) 

where 𝜎𝑓𝑝 = 𝜇𝑏𝜌𝑔𝑑 cos (2) is the fault-parallel regional shear stress, 𝐶𝑌 is the cohesive 

strength of the experimental material (same as 𝐶0 in equation [7] in Chapter 4), and 𝐶𝑓 is the 

cohesive strength of the Riedel shear fractures (equal to 𝐶1 in equation (6) in Chapter 4). The 

interpretation that the spacing of the observed Riedel shear spacing is controlled by the cohesive 

strength only, as expressed in equation (A10), explains why the S/h ratio is constant in the 

experiments regardless of changes in the thickness of the experimental materials (i.e., h). This 

would not be the case if a frictional term depending on h is involved in equation (A10).  
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 The values of 𝐶𝑌 for dry sand and crushed walnut shells were measured in the study 

(Table 4.1), whereas the values of 𝐶𝑓 are unknown for both experimental materials. However, 

from equation (A10), I can estimate 𝐶𝑓 if the S/h ratio defined in equation (A10) is known.  

 Based on our experiments with only granular materials, the S/h ratio is ~0.68 for dry sand 

and ~0.82 for crushed walnut shells, respectively (Fig. 4.5d). In the sand and viscous putty 

experiments, the S/h ratio is 0.45-0.56 (average 0.51). Visual observations indicate that 𝑑 ≈

𝑊/3 ≈ 2 cm, which defines the position of the inner boundary of the shear zone, where fault-

parallel shear stress (𝜎𝑓𝑝) exceeds the yield strength of the experimental materials leading to the 

formation of the Riedel shear fractures. In the experiments, the shear zone boundary location 𝑦 =

𝑑 can be determined by the bending segments of the originally straight reference lines that were 

perpendicular to the movement direction of the sliding plate (e.g., Fig. 4.5c). This estimate is 

likely a maximum value.  

Using 𝑑 = 2 cm, 𝜇𝑏 = 0.53 (Table 4.1), a sand density of 1670 kg/m3,  = 16°, and 𝑔 =

9.8 m/s2, we obtain  

 𝜎𝑓𝑝 = 𝜇𝑏𝜌𝑔𝑑 cos(2) = 147 Pa     (A11) 

Rearranging equation (A10) and inserting known 𝐶𝑌 = 62.5 Pa (Table 4.1), 𝜎𝑓𝑝 = 147 Pa from 

(A11), and 𝑆/ℎ = 0.68 from Fig. 4.5d, I estimate the cohesive strength of the Riedel shear 

fractures formed in our dry sand experiments as:  

 𝐶𝑓
𝑠𝑎𝑛𝑑 =  𝐶𝑌 −  

𝑆

ℎ
(𝜎𝑓𝑝 − 𝐶𝑌) = 5 Pa    (A12) 

For the sand-putty experiments 𝜇𝑏 is ~0.73 (Table 4.1) and d is expected to be smaller because of 

the effects of distributed basal shear. Using S/h = 0.52, 𝜇𝑏 = 0.73, 𝑑 = 1.5 cm, a sand density of 

1670 kg/m3,  = 16°, and 𝑔 = 9.8 m/s2, and 𝐶𝑌 = 62.5 Pa, we estimate 𝐶𝑓
𝑠𝑎𝑛𝑑_𝑝𝑢𝑡𝑡𝑦

 = 15 Pa.  

For crushed walnut shell experiments, I use 𝜇𝑏 = 0.51 (Table4.1), a density of 800 kg/m3, 

 = 16º, and 𝑔 = 9.8 m/s2 to calculate the fault parallel shear stress as  

 𝜎𝑓𝑝 = 𝜇𝑏𝜌𝑔𝑑 cos(2) = 68 Pa     (A13) 

Using a 𝑆/ℎ ratio of 0.82 (Fig. 4.5d) and a cohesive strength of 36.8 Pa (Table 4.1), I obtain the 

corresponding cohesive strength of the Riedel shears that formed in the crushed walnut shells 

under basal shearing as 

 𝐶𝑓
𝑤𝑎𝑙𝑛𝑢𝑡 =  𝐶𝑌 −  

𝑆

ℎ
(𝜎𝑓𝑝 − 𝐶𝑌) = 11 Pa   (A14) 

I believe that the estimated cohesive strengths of the newly created fractures in both dry sand and 

crushed walnut shells are reasonable: (1) they are all positive values, and (2) they are smaller 

than the cohesive strength of materials in which the shear fractures formed. The above 

consistency provides validation of the proposed stress-shadow model in Chapter 4. 
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Figure A.4. (a) Coordinate system of reference. The box represents the region occupied by the 

experimental materials (i.e., dry sand and crushed walnut shells). h, thickness of the experimental 

material; W, the half width of the basal sliding plate; x-y plane lies at the base of the 

experimental set up and y = 0 represents the central dividing line of the sliding plate. (b) Plan 

view of the sidewall shear stress on a vertical plane at the edge of the shear zone that is parallel 

to the sliding plate direction and perpendicular to the basal plane. Also shown is the angular 

relationship between the sidewall shear stress and the fault-parallel shear stress.  The location of 

the inner boundary of the shear zone is marked by y = d. Lines I-I’ and II-II’ are cross sections 

along which the stress distributions are shown in (c) and (d). (c) Postulated magnitude 

distribution of the sidewall shear stress across the shear zone. (d) Postulated magnitude 

distribution of the fault-parallel shear stress across the Riedel shear fractures in the shear zone. 
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Figure A.5. Earthquake depth plotted as a function of horizontal distance along a profile line 

perpendicular to the fault strike of each domain from (a) California and (b) Asia. For this plot, 

the cutoff depth above which 95% (D95) and 90% (D90) seismicity is contained in the crust was 

calculated (e.g., Sibson, 1982) (Table 4.2 of main text). Dashed lines represent the bulk averaged 

D90 (orange) and D95 (pink) depths without dividing each profile into segments. In contrast, the 

solid lines represent D90 (orange) and D95 (pink) depths in each segment with a segment length 

l. 
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Figure A.6. Cathodoluminescence (CL) images of zircon and locations of U-Pb spot analyses.
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Figure A.6 (continued). Cathodoluminescence (CL) images of zircon and locations of 
U-Pb spot analyses.
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