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ABSTRACT OF THE DISSERTATION 
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IImmpplleemmeennttaattiioonn  ooff  SSeeiissmmiicc  PPrrootteeccttiivvee  DDeevviicceess    

ffoorr  SSttrruuccttuurreess 
 
 

by 
 
 

Wang Xi 
 

Doctor of Philosophy in Civil Engineering 
 

University of California, Los Angeles, 2014 
 

Professor Jian Zhang, Chair 
 
 
 

In order to improve the seismic performance of structures and to reduce the total cost 

(both direct and indirect) due to earthquake damages, structural control through seismic 

protective devices in either passive or semi-active forms is essential to achieve the desired 

performance goals. This research intends to develop optimal design and placement of seismic 

protective devices for improving structural performance of buildings and bridges. This is 

accomplished by deriving (a) optimal nonlinear damping for inelastic structures, (b) hybrid 

numerical simulation framework to facilitate nonlinear structural control analysis and (c) 

efficient seismic protective scheme for bridges using base isolation, nonlinear supplemental 

damping and semi-active MR dampers. 

Supplemental energy dissipation in the form of nonlinear viscous dampers is often used 

to improve the performance of structures. The effect of nonlinear damping is a function of 

structural properties, ground motion characteristics and performance objectives. In order to 

quantify the optimal amount of nonlinear damping needed for inelastic structures, a novel 
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dimensionless nonlinear damping ratio is first proposed through dimensional analysis of inelastic 

SDOF structures. Subsequently, an equivalent SDOF inelastic system is derived to represent the 

general MDOF inelastic structures. Based on this equivalency and the help of the nonlinear 

damping ratio definition, the optimal damping and damper placement for MDOF inelastic 

structures are developed using genetic algorithms. It’s demonstrated that the added nonlinear 

damping is not always beneficial for inelastic structures, i.e. resulting in the increase of total 

acceleration response under certain ground motions. A critical structure-to-input frequency ratio 

exists, upon which an optimal nonlinear damping is needed to balance between the increase of 

total acceleration and the reduction of structural drift.  

Secondly, to facilitate the nonlinear control simulation of complex structures, an existing 

hybrid testing framework (UI_SimCor) is adopted and modified to enable the dynamic analysis 

of nonlinear structures equipped with seismic protective devices, including nonlinear viscous 

dampers, base isolators and MR dampers. Under this framework, inelastic structures can be 

modeled realistically in general FEM platform (e.g. OpenSees) while the seismic protective 

devices can be modeled numerically in a different software (e.g. Matlab). Furthermore, control 

algorithms can also be implemented easily under this hybrid simulation scheme. To validate the 

hybrid simulation approach, an experimental program is implemented on a scaled 3-story steel 

frame structure controlled by a semi-active MR damper. Both real-time hybrid simulation and 

shake table tests were performed and compared. The good agreement between them verifies the 

accuracy and efficiency of the hybrid simulation scheme. In addition, for application to bridges, 

special scheme to incorporate multi-support input earthquake motions is also developed so that 

the significant soil-structure interaction effects on bridges can be simulated.  
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Finally, the efficient seismic protective scheme for bridges is explored using the hybrid 

simulation scheme developed. A real highway bridge, the Painter Street Bridge (PSB) is modeled 

realistically in OpenSees including soil-structure interaction effects while the seismic protective 

devices and control algorithm are implemented separately in Matlab. Clipped-optimal control 

algorithm based on LQG regulator and Kalman filter is adopted to derive the optimal structural 

response of PSB with base isolation and semi-active controlled MR dampers. Eventually, an 

equivalent passive form of MR dampers is developed, which can mimic the effects of semi-

active control to achieve the optimal design of seismic protective devices for highway bridge 

applications.  
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1.  Introduction 
 

1.1  Background 
 

Buildings and bridges are vulnerable to earthquake induced damages. In particular, 

highway bridges are important components of lifeline system post earthquakes. Their loss of 

function or failure will result in loss of lives and direct economical loss, delay the 

post-earthquake recovery efforts and cause indirect economical loss. In past earthquake 

events, highway bridges have sustained damages to superstructures, foundations and, in some 

cases, being completely destroyed. 

In Great Alaska Earthquake of 1964, nearly every bridge along the partially 

completed Cooper River Highway was seriously damaged or destroyed. Seven years later, 

more than 60 highway bridges on the Golden State Freeway in California were damaged in 

the 1971 San Fernando earthquake. This earthquake cost the state approximately $100 

million in bridge repairs (Meehan 1971). Then in 1989, the Loma Prieta earthquake in 

California damaged more than 80 highway bridges, with the cost of the earthquake to 

transportation about $1.8 billion, of which $300 million was the damage to highway bridges 

(United States General Accounting office). The worst disaster of the earthquake was the 

collapse of the two-level Cypress Street Viaduct of Interstate 880 in West Oakland, which 

killed 42 people and injured many more (Tarakji 1992). Several years later, the 1994 

Northridge earthquake caused 286 highway bridges damaged and 7 of them lost their 

functionality due to severe damage (Caltrans 1994). 

Similar damages were also reported outside USA. The 1995 Kobe earthquake in 
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Japan resulted in collapses of 9 highway bridges and destructive damages of 16 bridges 

(Ministry of Construction of Japan 1995). The most extensive damage occurred at a 18-span 

viaduct of Hanshin Expressway. This bridge collapsed due to failure of RC columns resulted 

from the premature shear failure. In 1999, the Chi-Chi earthquake of Taiwan, more than 10 

bridges, including a cable-stayed bridge, were severely damaged (Chang et al. 2000). Most 

recently, during the 2008 Wenchuan earthquake in Sichuan of China, more than 328 highway 

bridges were damaged and 46 bridges of them suffered severe damages as to totally interrupt 

the traffic due to failed bridge piers or falling beams. The total losses to the transportation 

system due to the earthquake were over 10 billion dollars, most of which consisted of damage 

to bridges (Han et al. 2009).  

As mentioned above, the historical earthquakes demonstrated the devastating impact 

they can have on highway bridges that are not adequately protected against seismic forces. 

After the Northridge (1994) and Loma Prieta (1989) earthquakes, concerns have been raised 

about the safety of bridges around US. Many states, like California, New Jersey, etc., are 

designing the new bridges considering seismic specifications and have initiated many retrofit 

programs. Since then, a lot of research efforts are put in to identify, address and mitigate the 

response of highway bridges under earthquakes, which is still a leading topic today.  

 

1.2  Earthquake Damage Mechanism of Highway Bridges 
 

One of the most essential reasons of highway bridges failure by earthquakes is 

seismic shaking, which was well recognized after the 1971 San Fernando earthquake. As a 

result of seismic shaking, highway bridges suffer severe damages to structural components. 
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The following summarizes the failure mechanisms of highway bridges, including the 

observation of span collapse, structure component damages, and other structural component 

damages. 

 

1.2.1  Unseating 

Structure displacement is a major cause of highway bridge span damage and failure 

during earthquakes. Excessive displacements in the longitudinal direction can fail the bridge 

via unseating of the superstructure. Unseating failure is particularly possible for simply 

supported highway bridges if seats or corbels located at the abutments or piers don’t possess 

sufficient length. The entire superstructure span can become unseated, resulting in sudden 

bridge collapse. An example of unseating failure that happened in the 1999 Chi-Chi 

earthquake in Taiwan is shown in Fig. 1.1 (a). 

 

1.2.2  Column Flexural Failure 

Column flexural failure comes from the deficient reinforcement design for the 

unexpected seismic shaking, characterized by inadequate strength or inadequate ductility. 

Flexural failure usually occurs when the longitudinal confinement is not sufficient, which 

leads to concrete crush as strains exceed the capacity and the column is not tough to sustain 

the imposed flexural deformations without failure. Fig. 1.1 (b) shows the column flexural 

failure due to insufficient ductility in the 1995 Kobe earthquake. 

 

1.2.3 Column Shear Failure 

The column shear failure is characterized by the failure of the transverse shear 

reinforcement. Shear failure resulting from seismic shaking is more prominent in old 
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highway bridges due to insufficient shear reinforcement resulting in brittle and sudden failure. 

Such failures can occur at relatively low structural displacements, at which stage the 

longitudinal reinforcement may have not yet yielded. Examples of shear failure can be found 

in several of the historical earthquakes. Fig. 1.1 (c) illustrates the shear failure of columns in 

Hanshin Expressway. Failure of a column can result in loss of vertical load carrying capacity 

which is often the primary cause of bridge collapse. 

 

1.2.4  Joint Failure 

Joints may be exposed to critically damaging actions when the joints lie outside of the 

superstructure. Although joint failures occurred in previous earthquakes, significant attention 

was not paid to joints until several spectacular failures were observed following the 1989 

Loma Prieta earthquake. Fig. 1.1 (d) shows joint damage to the Embarcadero Viaduct in San 

Francisco during the 1989 Loma Prieta earthquake.  

   

(a) Bridge unseating failure (b) Bridge column flexural failure 

(c) Bridge column shear failure (d) Bridge joint failure 

Fig. 1.1  Highway bridge failure mechanism observed in the historical earthquakes 
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1.2.5  Soil Structure Interaction (SSI) 
 

When considering the bridge structure alone, the actual behavior of the bridge under 

seismic load may significantly differ from that from the analysis since the response of a 

bridge during an earthquake depends not only on the bridge itself, but also on the 

characteristics of the ground motion and the subsoil conditions. Particularly for soft soils, the 

foundation input motion during the earthquake differs from the so-called free-field ground 

motion that may exist in the absence of the bridge. The assumption of fixed support for a 

bridge upheld on soft soil ignores the interaction effects that result from the scattering of 

waves when reaching the foundation surface (kinematic interaction) and the flexibility and 

energy dissipation of foundation-soil system (inertial interaction). These interaction effects 

lead to dynamic responses that may differ considerably in amplitude and frequency from 

what is obtained when a fixed support is assumed. 

 

1.3  Seismic Protective Devices and Application 
 

A lot of highway bridge damages result from the particularly strong seismic shaking, 

which leads to large internal forces in the structural components. Since three decades ago, 

engineers and researchers have been giving efforts to the structure seismic response 

mitigation, which turns out to be an advanced field in structural engineering: structural 

control. A number of civil engineering structures, such as buildings and bridges, have been 

constructed or retrofitted with seismic protective devices, which has shown significant 

effectiveness in structural seismic response reduction (Housner et al. 1997). Based on the 

control mechanism and devices applied, seismic protective devices can be classified into 

three categories: passive devices, active/hybrid devices and semi-active devices. 
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1.3.1  Passive Seismic Protective Devices 

(1) Base isolation systems 
 

There are two basic types of isolation systems (Buckle and Mayes 1990). The first 

type is characterized by the use of elastomeric bearings made of rubber. With this approach, 

the structure is decoupled from the horizontal components of the earthquake ground motion 

by the rubber layer with low horizontal stiffness which is placed in between the super 

structure and the foundation. The rubber layer gives the structure a much lower fundamental 

frequency than the fixed-base one and also the predominant frequencies of the ground motion. 

Thus the energy of the high frequency component of the ground motion is isolated and cannot 

be transmitted to the superstructure (Kunde and Jangid 2003). The mechanism and device of 

the first type of base isolation system is shown in Fig. 1.2 (a) and (b). 

The second type of isolation system is characterized by the sliding system (Kawamura 

et al. 1988; Zayas et al. 1987). It limits the transfer of shear across the isolation interface. The 

well-known friction-pendulum system (FPS) is a kind of sliding system which uses a special 

interfacial material sliding on stainless steel plate. Fig. 1.2 (c) and (d) illustrate the basic 

configuration of a FPS system and its real construction. 

Base isolation technique has been used for several buildings and bridges in the United 

States, both new and retrofitted construction (Rai et al. 2009). In process of seismic 

retrofitting, some of the most prominent U.S. monuments like, Pasadena City Hall, San 

Francisco City Hall, and LA City Hall were retrofitted using base isolation systems. The 

University of Southern California (USC) hospital (Fig. 1.3), the first isolated hospital 

building, survived without damage after the 1994 Northridge earthquake (Nagarajaiah and 
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Sun 2000). The peak ground acceleration outside the building was recorded at 0.49 g while 

the accelerations inside the building were only around 0.10 to 0.13 g. The records obtained 

from the USC hospital are particularly encouraging in that they represent the most severe test 

of an isolated building to date. 

 

(a) Mechanism of rubber bearing isolation (b) Configuration of lead core rubber bearing 

(c) FPS bearing configuration (d) FPS system construction 

Fig. 1.2  LRB and FPS base isolation systems  

(After Kunde and Jangid 2003) 
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(a) USC hospital building (b) Lead rubber bearing (LRB) 

Fig. 1.3  LRB base isolation system used for buildings 
 

In highway bridges, the base isolation devices can be easily incorporated by replacing 

the conventional thermal/expansion bearings by the isolation bearings. Base isolation 

bearings serve the dual purposes of providing damping mechanism dissipating the seismic 

energy as well as protecting the bridge from dynamic loads by changing the fundamental 

period. After the 1995 Kobe earthquake in Japan, Fukae Viaduct, Hanshin Expressway was 

reconstructed by base isolation technique (Kawashima 2004), as shown in Fig. 1.4. 

 

 

(a) Fukae Viaduct under reconstruction (b) LRB used in Fukae Viaduct 

Fig. 1.4  LRB base isolation system used for highway bridges 
 

On the other hand, many sliding systems have also been proposed and used in USA. 

After the 1989 Loma Prieta earthquake, the 1905 U.S. Court of Appeals and Post Office 
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Building (Fig. 1.5) in San Francisco was seismically upgraded by FPS system (Amin and 

Mokha 1995). The project was the federal first and the world’s largest seismic or base 

isolation retrofit project with a construction cost of $24.4 million. The implemented retrofit 

will enable the historic 60,000-ton building to ride out an earthquake by gently swaying back 

and forth like a pendulum. 

 

 

(a) Building of U.S. Court of Appeals and Post Office (b) FPS base isolation system used in retrofitting 

Fig. 1.5  FPS base isolation system used for buildings 
 

(2) Energy dissipation systems  
 

Passive energy dissipation system (Fig. 1.6) uses mechanical devices to dissipate a 

portion of earthquake input energy, thus reducing structural response and possible damage. 

Typical passive energy dissipation systems are metallic yield damper, friction damper, 

visco-elastic damper and viscous fluid damper (Rai et al. 2009; Soong 1997; Aiken et al. 

1992; Datta 2003).  

(i) Metallic yield damper utilizes added metallic energy dissipaters based on inelastic 

deformation of the metals. The device uses the mild steel plates with triangular or hourglass 

shape and yielding is spread almost uniformly throughout the material. Other materials, such 

as lead and shape-memory alloys can also be used in the metallic yield damper.  
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(ii) Friction damper provides an excellent mechanism for energy dissipation. The 

friction between two solid surfaces with relative sliding dissipates energy before the primary 

structure yields. The performance of such dampers is not significantly affected by loading 

amplitude, frequency and number of cycles. Pall x-braced friction dampers have been 

installed in several newly built and retrofitted buildings.  

(iii) The visco-elastic damper consists of layers of visco-elastic material bonded with 

steel plates. Energy is dissipated through shear deformation of the material sandwiched 

between steel plates. The visco-elastic damper has been used successfully in a number of 

buildings, such as World Trade Center in New York, the Columbia Sea First Building in 

Seattle, etc. 

(iv) The viscous fluid damper is widely used in aerospace and civil engineering 

structures. It typically consists of a piston housed in silicon compound filled cylinder. The 

piston contains small orifices through which viscous fluid passes. Thus the energy is 

dissipated via movement of piston in highly viscous fluid.  

 

(a) Metallic yield damper (b) Friction damper 

Fig. 1.6  Passive energy dissipation systems (From Rai et al. 2009) 
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(c) Visco-elastic damper (d) Viscous fluid damper 

Fig. 1.6 (cont.)  Passive energy dissipation systems (From Rai et al. 2009) 
 

Viscous fluid dampers have been used on the Terminal Island Suspension Bridge in 

the Los Angeles harbor and on the San Francisco–Oakland Bay Bridge as shown in Fig. 1.7(a) 

(Roberts 2005). These dampers are designed to absorb energy and assist in resisting seismic 

forces. Fig. 1.7 (b) is the viscous fluid damper installed on the 91/5 overcrossing in Orange 

County, CA (Makris and Zhang 2004). 

 

(a) San Francisco–Oakland Bay Bridge (b) Viscous fluid damper on 91/5 Overcorssing 

Fig. 1.7  Example of viscous fluid damper application in highway bridges 
 
 

1.3.2  Active and Hybrid Seismic Protective Devices  

Because ground motions are stochastic in nature, passive systems have a limited range 
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of effectiveness. Active control systems are more efficient in reducing the structural response 

by means of control force generated from external power. Active control system is fully 

adaptive. A direct combination of passive and active control methods has been referred as 

hybrid control, which essentially utilizes the idea of active control but requires less external 

power due to the use of passive devices. 

The AMD system was the first active control system developed for the structural 

control purpose in late 1980s (Ikeda et al. 2001). The AMD device is composed of a large 

mass whose motion (displacement, velocity and acceleration) in one direction is controlled by 

an actuator (Fig. 1.8). The mass is suspended in the way allowed to move without having to 

overcome bearing surface friction. The AMD device can be designed with various mass sizes 

to obtain various control forces. More than one AMD device can be installed in a structure to 

allow engineers to control more complex oscillations by the precise interaction of the AMD 

devices.  

 

 

Fig. 1.8  Composition of AMD system (From Ikeda et al. 2001) 
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1.3.3  Semi-Active Seismic Protective Devices 

Semi-active system is a natural evolution of passive system as it incorporates adaptive 

factors to improve effectiveness of the passive system. It is often referred as controllable or 

intelligent passive system. Semi-active system requires orders of magnitude smaller external 

power than a typical active system, in which the control action is produced by the movement 

of the structure but is regulated by an external source of energy.  

A semi-active control system consists of sensors, a control computer, an actuator and 

a passive device. The sensors measure the excitation and/or structural response which are 

transmitted to the control computer for processing. The computer generates control signals 

based on the information from the sensors for the actuator. Then the actuator acts to adjust 

the behavior of the passive device. The actuator is only used to control the behavior of the 

passive device instead of applying control force directly onto the structure, thus it only 

requires a small power supply such as batteries.  
  

(1) Variable damping devices 
 

The variable damping systems that utilize variable orifice fluid dampers for structural 

systems have been developed. Symans et al. experimentally tested them at both the 

component level and within multi-story building frames and base-isolated structures (Symans 

and Constantinou 1997a, 1997b; Madden et al. 2002).  

The device consists of a fluid viscous damper combined with a variable orifice on a 

by-pass pipe containing a valve in order to control the reaction force of the device, as shown 

in Fig. 1.9(a). The damping characteristics of a variable orifice can be controlled between two 

damping values (low damping when the valve is completely opened and high damping when 
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the valve is completely closed) by varying the amount of flow passing through the by-pass 

pipe from one chamber of the piston into the other. Depending on the type of valve used, 

either two-stage (on-off) or continuously variable damping could be generated.  

 

(a) Variable orifice fluid damper  (b) MR damper 

Fig. 1.9  Variable damping devices 
 

Controllable fluid dampers possess fluids with properties which may be influenced by 

the presence of magnetic fields, which correspond to magnetorheological (MR) dampers (Fig. 

1.9(b)). When the magnetic field is applied, the behavior of fluid changes from that of a 

low-viscosity fluid to more of a semi-solid, visco-plastic behavior. Thus, effective viscosity 

of the damper is actively controlled through applying magnetic field. Recent research in MR 

fluid dampers has demonstrated their ability in the suppression of vibrations for civil 

structures due to earthquake excitation (Dyke et al. 1996, 1999; Spencer 1996; Spencer et al. 

1997). In addition, a 20-ton MR damper, discussed in (Carlson and Spencer 1996) and 

(Spencer et al. 1997), demonstrates that these devices can be scaled for civil engineering 

applications. 

The first full-scale application of MR dampers have been implemented in the Tokyo 

National Museum of Emerging Science and Innovation. Since then MR dampers have been 
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implemented in several cable stayed bridges and smart base isolated buildings. Full-scale 

implementation of MR dampers have been accomplished in two bridges in China recently. 

Ko et al. (2002) implemented 256 MR dampers (made in Lord Corporation, USA) with 

2.26kN capacity at the cables of Dongting Lake Cable-stayed Bridge as shown in Fig. 1.10(a) 

and Ou (2003) implemented 40 MR dampers with 8kN capacity at the cables of Shandong 

Binzhou Yellow River Highway Bridge as shown in Fig. 1.10(b).  

 

 

(a) Dongting Lake Bridge and MR dampers installed 

 

(b) Binzhou Yellow River Highway Bridge and MR dampers installed 

Fig. 1.10  Semi-active control system application in Highway bridges 

 

1.3.4  Cons and Pros 

The passive control system is activated by the structural motion. No external power or 
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energy is needed to sustain the control effect. Thus it is easy to operate and reliable during 

large earthquakes even when the main structure loses power supply. But they are not 

sufficiently adaptive to ever-changing external excitations. For example, TMD is only 

effective for the structural response with one dominant mode. So under some conditions, 

passive control may not reach the intended control objectives.  

On the other hand, active control system is fully adaptive and can act and adjust 

simultaneously with the change of structural and external response. It provides the structure 

‘variable’ structural properties (damping and stiffness) to efficiently overcome the damaging 

effect of the earthquake. However, except for protecting small or light weight structures, 

large active control forces are needed to implement the control purpose, resulting in the 

demand of significant external power supply and huge force generation equipment. 

Furthermore, it is vulnerable to power supply outage as a severe earthquake can damage not 

only the structural members but also the power supply system. As active control process 

inputs energy into the structure, it will destabilize the structure if unfortunately the actuator 

control computer has malfunctioned. 

As a hybrid between passive and active control, a semi-active control system has an 

adaptive system incorporated, thus can adjust according to the vibration nature of both 

structural response and external excitation. At the same time it only requires a small power 

supply such as batteries, which is a great advantage when the main power source to the 

structure fail during seismic events. Also, the actuator does not have any harmful potential 

such as destabilization of the structure as there is no direct force applied to the structure from 

the actuator. Although semi-active system is a little more complex than passive system, they 
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are still easy to manufacture, reliable to operate and capable of performing better. The control 

capacity of semi-active system is still limited as they can only operate within the capacity of 

the corresponding passive devices on which it is based. 

 
 

1.4  Hybrid Testing of Civil Engineering Structures 
 

To achieve the reproduction of dynamic behavior of large structural systems, 

researchers have been developing hybrid testing techniques, with which physical components 

of a large-scale structures are loaded in the laboratory while the computational simulations of 

the remaining structure are executed in parallel with necessary information transferred in 

between. This advanced seismic testing method can be categorized essentially into two major 

groups: pseudo-dynamic (PSD) hybrid testing and real time hybrid testing (RTHS). 

The PSD hybrid test is intended to simulate the dynamic response of a whole 

structural system, in which critical components are physically tested while the remaining 

parts of the structure, together with the inertia effects of the physical specimen, are 

numerically simulated in a computer (Nakashima et al. 1990; Darby 1999). PSD hybrid tests 

can be conducted in an extended time frame (Mahin and Shing 1985; Shing et al. 1996) when 

the computed inertia forces are applied statically or quasi-statically to the specimen. Because 

the dynamic response of the structure is only numerically simulated, the accuracy of PSD 

hybrid test result relies greatly on the numerical model of the prototype structure and the 

integration algorithm. 

On the other hand, to achieve the realistic inertia and time-dependent effects in the 

test structure (e.g. viscous dampers) and to overcome the capacity limitation of shake table 
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test, real time hybrid testing (RTHS) technique is often used to investigate the effect of 

vibration control devices on the global performance of structures, such as evaluating the 

performance of rate dependent MR dampers (Christenson et al. 2008) or nonlinear 

elastomeric dampers (Chen et al. 2009).  

Since hybrid testing provides an efficient way to isolate and physically test only the 

more complex or critical components when test of the full structure is not feasible, it has 

become one of the main research areas in earthquake engineering in recent years. Numerous 

studies have verified effectiveness of hybrid testing by comparing hybrid test results to 

numerical simulations of semi-actively controlled structures equipped with MR damper 

(Carrion et al. 2009; Castaneda et al. 2012; Christenson et al. 2008). 

UI_SimCor (Kwon et al. 2007) is a transparent and fully modular framework that 

allows for the utilization of analytical platforms alongside experimental facilities for the 

integrated simulation of a large complex system. The basic concept of the framework is that 

analytical models associated with various platforms or experimental specimens are 

considered as super-elements with many DOFs. Each of these elements is solved on a single 

computer or on different computers connected through the network of UI_SimCor. Fig. 1.11 

illustrates the overall architecture of UI-SimCor. The main routine shown in the figure 

enforces static and dynamic equilibrium and conducts dynamic time integration. 

It’s noted that UI_SimCor also allows the hybrid simulation composed of numerical 

modules only, i.e. all the substructures are simulated in computer and just computationally 

separated.  
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Fig. 1.11  Architecture of UI_SimCor (From Kwon et al. 2007) 

 

1.5  Performance Based Earthquake Engineering (PBEE) 

1.5.1  PBEE Methodology 
 

Historically, structural engineers have used allowable-stress design and 

load-and-resistance-factor design (LRFD), which focus on individual structural elements and 

connections, and seek to ensure that none will experience loads or deformation greater than it 

is capable of withstanding. PBEE, a new emerging and promising approach, attempts to 

address performances primarily at the system level, i.e. a designed highway bridge as a whole 

will perform in some predictable way, in terms of risk of collapse, fatalities, repair costs, and 

post-earthquake loss of function.  

The Structural Engineers Association of California (SEAOC) created an early sketch 

of the objectives and methodologies of PBEE, in its Vision 2000 document (Office of 
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Emergency Services 1995) and Conceptual Framework for Performance-Based Seismic 

Design (Structural Engineers Association of California 1999). SEAOC’s approach addresses 

performance in terms of a continuum from operability, to life safety, to resistance to collapse, 

under four discrete levels of seismic excitation (Fig. 1.12). Similarly, the Federal Emergency 

Management Agency (FEMA) and the American Society of Civil Engineers (ASCE) build 

their pre-standard, ASCE/FEMA 356 (Federal Emergency Management Agency 2003), 

which expresses performance in four discrete levels at four slightly different hazard levels. 

 

 

Fig. 1.12  SEAOC recommended seismic performance objectives for buildings 

 

Rather recently, PEER is producing an analysis and design methodology that 

addresses seismic performance in terms of damage-repair cost and loss-of-use duration, as 

well as operability, life-safety, and collapse potential. The objective of the methodology is to 

estimate the frequency with which a particular performance metric will exceed various levels 

for a given design at a given location. Fig. 1.13 illustrates the PEER methodology. As it 

shows, PEER’s PBEE approach involves four stages: hazard analysis, structural analysis, 

damage analysis, and loss analysis (Porter 2003).  
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Fig. 1.13  PEER PBEE methodology framework 

 
(i) Hazard analysis. In the hazard analysis, one evaluates the seismic hazard ( ][IMλ ) at 

the highway bridge considering its location, structural, architectural, and other features 

(jointly denoted by design, D). The seismic hazard describes the annual frequency with which 

seismic excitation is estimated to exceed various levels. Seismic excitation is parameterized 

by an intensity measure IM  such as )( 1TSa , the damped elastic spectral acceleration at the 

fundamental period of the structure. The hazard analysis includes the selection of a number of 

ground-motion time histories whose IM  values match different hazard levels of interest, 

such as 10%, 5%, and 2% exceedance probability in 50 years. 

(ii) Structural analysis. In the structural analysis, one creates a structural model of the 

highway bridge in order to estimate the uncertain structural response, measured in terms of a 

vector of engineering demand parameters ( EDP ), conditioned on seismic excitation 

( ]|[ IMEDPp ). EDPs  can include internal member forces and local or global deformations, 

including ground failure. The structural analysis might take the form of a series of nonlinear 

time-history structural analysis. The structural model need not be deterministic: some PEER 

analysis have included uncertainty in the mass, damping, and force-deformation 
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characteristics of the model. 

(iii) Damage analysis. EDP  is then input to a set of fragility functions that model the 

probability of various levels of physical damage (expressed by damage measures, or DM ), 

conditioned on structural response, ]|[ EDPDMp . Physical damage is described at a detailed 

level, defined relative to particular repair efforts required to restore the component to its 

undamaged state. Fragility functions currently in use give the probability of various levels of 

damage to individual beams, columns, nonstructural partitions, or pieces of laboratory 

equipment, as functions of various internal member forces, story drift, etc. They are compiled 

from laboratory or field experience. For example, PEER has compiled a library of destructive 

tests of reinforced concrete columns for this purpose (Eberhard et al. 2001). 

(iv) Loss analysis. The last stage in the analysis is the probabilistic estimation of 

performance (parameterized by various decision variables, DV ), conditioned on damage 

]|[ DMDVp . Decision variables measure the seismic performance of the highway bridge in 

terms of greatest interest to facility owners, whether in dollars, deaths, downtime, or other 

metrics. PEER’s loss models for repair cost are upon well-established principles of 

construction cost estimation.  

 

1.5.2  Structural Control in PBEE Framework 
 

The PBEE framework is simply summarized and illustrated in Fig. 1.14 (shaded 

blocks). Earthquake excitation is defined in terms of an intensity measure, IM . A structural 

model is used to predict the response, EDP , from the intensity measure. A damage model is 

then used to predict the physical damage, DM , associated with the response. Finally, a loss 

model allows prediction of loss, DV , from the physical damage.  

Structural control (SC) technologies, including passive, active and semi-active control 

strategies, can essentially be involved in the PBEE process, by varying the characteristics of 
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the structural model (structural stiffness and damping) and consequently changing the EDP , 

DM , and finally the DV . Thus, within the PBEE framework, both the intermediate outputs 

( EDP  and DM ) and the final gain ( DV ) can be adjusted to a specific level for the decision 

maker through implementation of structural control devices. The introduction of structural 

control methods has provided structural designers a powerful tool for performance based 

design.   

 

 

 

Fig. 1.14  Illustration of PBEE framework with structural control strategy 

 
 
1.6  Scope and Objectives 
 

Structures (e.g. buildings and bridges) are susceptible to various levels of damages as 

observed in past major earthquakes. The damages mainly result from insufficient force or 

displacement design capacity compared to excessive demands due to seismic shaking. This 

has imposed realistic risks for a large number of existing bridges that were designed and 

constructed before a seismic provision was adopted.  

To minimize the negative impact of damaging earthquakes, seismic protective devices, 

in either passive or adaptive passive forms, can be used to improve the seismic performances 

of new bridges in high seismicity regions or provide reliable and economical retrofitting for 

existing bridges. Careful selection of optimum stiffness and damping properties of these 

SC 

Structural control 
Structural control design optimization 
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devices is important to utilize their advantages and achieve multi-performance objectives 

when subject to earthquakes with various frequency contents and intensities. 

Despite the promises of the seismic protective devices, there are a limited number of 

seismically protected bridges existing in U.S. One major challenge hindering their practical 

applications is lack of capability of accurate and efficient assessment of seismic response of 

highway bridges equipped with these highly nonlinear protective devices. Current typical 

finite element programs (Abuqus, OpenSees, etc) have kinds of elements that can model 

complex nonlinear structural components, however, there are no well established elements 

for modelling highly nonlinear seismic protective devices and applying control algorithms 

simultaneously. Researchers have to write their own finite element code and make huge 

simplification of the structure model when there is a need for such analysis.   

UI_SimCor, which is originally developed for distributed hybrid testing, provides a 

promising way to overcome this obstacle in numerical modeling and analysis of seismically 

controlled highway bridges. Utilizing the hybrid simulation idea, the main nonlinear structure 

can be modeled in general finite element programs such as OpenSees, while the seismic 

protective devices and the control algorithms can be accurately implemented in Matlab. The 

individual substructures of the whole structure model can communicate and run 

simultaneously through platform UI_SimCor.  

By this numerical hybrid simulation scheme, the accurate assessment of seismic 

response of highway bridges equipped with control devices is achieved. The results will 

further guide the optimal selection of design parameters for these seismic protective devices, 

also corresponding performance criteria can be developed. 
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On this basis, the major tasks of this comprehensive research are summarized in the 

following: 

(1) Explore the influence of supplemental damping on structural response 

The dimensional analysis is used to quantify the nonlinear damping of structures with 

nonlinear dampers, resulting in a dimensionless nonlinear damping ratio. Then the optimal 

nonlinear damping is identified for both SDOF and MDOF structures, which leads to optimal 

placement of nonlinear dampers. 

(2) Development and validation of hybrid simulation scheme for structures 

Hybrid simulation scheme is needed to facilitate the nonlinear control analysis of 

inelastic structures. Numerical models and algorithms are developed for viscous dampers, 

base isolators and semi-active MR dampers under hybrid simulation framework. The hybrid 

simulation framework is validated both experimentally and numerically. The soil structure 

interaction (SSI) effects are also incorporated in this framework. 

(3) Implementation of effective seismic protective devices for highway bridges using hybrid 

simulation scheme 

The hybrid simulation framework is applied to bridges with base isolation and MR 

dampers so as to obtain the realistic structural responses. The structural control theory is 

implemented to derive the optimal design parameters and the equivalent passive parameters. 

This will lead to performance based implementation of seismic protective devices for bridges.  

 

1.7  Organization 
 

This dissertation includes a total of 6 chapters in order to address the key issues and 
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achieve the considered objectives of this research presented in the previous section. 

Chapter 1 presents a general description of literatures on highway bridge performance 

under earthquake, structural control and hybrid simulation methodology, as well as the 

motivations and objectives of this research. 

Chapter 2 includes the investigation of seismic responses of inelastic structures with 

nonlinear viscous damping subject to pulse-type near fault ground motions using dimensional 

analysis. A novel definition of nonlinear damping ratio is proposed based on dimensional 

analysis and equivalent SDOF system analysis for MDOF structures. The genetic algorithm is 

applied to perform the optimal nonlinear damper design and quantify the optimal damping 

ratio accordingly. 

Chapter 3 proposes the hybrid numerical simulation scheme based on existing hybrid 

testing software, UI-SIMCOR. Modifications and further development of UI_SimCor is 

presented. Using a real test structure equipped with various protection devices and control 

algorithms, it demonstrates the accuracy and versatility of the hybrid numerical simulation 

scheme proposed.  

Chapter 4 focuses on experimental verification of the hybrid numerical simulation 

methodology based on UI_SimCor, In this chapter, System identification test, MR damper 

calibration test, RTHS test and Shake table test are presented. These tests are performed for a 

3 story steel frame structure controlled by a semi-actively controlled MR damper at Harbin 

Institute of Technology (HIT) in China.  

Chapter 5 presents time history analysis and structural control design of a typical 

highway bridge, Painter Street Overcrossing, utilizing the hybrid numerical simulation in 
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UI_SimCor. Base isolators and semi-actively controlled MR dampers are adopted as the 

protective devices. Clipped optimal control algorithm based on LQG regulator with a Kalman 

filter is implemented and a systematic strategy is proposed for optimal passive design of 

seismic protective devices.  

Ultimately, Chapter 6 provides the major findings and conclusions of this research 

along with the recommendations for the future work. 
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2. Optimal Nonlinear Damping for MDOF Inelastic 
Structures 
 

In the past twenty years, energy dissipation devices have been implemented to reduce 

the seismic responses and mitigate the structural damages in buildings and bridges around the 

world. A significant amount of research has been conducted since early 1990s focusing on the 

following areas: 1) effects of damping devices on seismic behavior of structures (e.g. Chang 

et al. 1995; Wanitkorkul and Filiatrault 2008); 2) placement of damping devices in structures 

(Wu et al. 1997; Shukla and Datta 1999); 3) active and semi-active control of damping 

devices (Gluck et al. 1996; Cimellaro et al. 2008); and 4) the testing and modeling of various 

damping devices (Bergman and Hanson 1993; Constantinou and Symans 1993). A detailed 

state-of-art summary of supplemental energy devices was offered by Soong and Spencer 

(2002) while a recent paper by Symans et al. (2008) concentrated on the passive energy 

dissipation devices. Dependent on their different forms, energy dissipation devices exhibit 

distinctive damping mechanisms such as viscous, rigid-plastic, elasto-plastic, visco-plastic 

and elasto-viscoplastic etc (Makris and Chang 1998).     

Among the common energy dissipation devices, viscous fluid dampers are widely 

used due to their high energy dissipation capacity and easy installation. They are used alone 

or in combination of isolation devices. In its linear form, the role of damping in isolated 

structures has been investigated in detail (Inaudi and Kelly 1993; Kelly 1999). Typically, the 

additional damping reduces the displacements at the expense of increase of inter-story drift 

and the floor accelerations (Kelly 1999) and the frequency contents of earthquake motions 
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determine the effects of damping (Inaudi and Kelly 1993). In order to limit the base shear due 

to increased damping, nonlinear viscous dampers with a low velocity exponent (say 0.5 or 

less) can be used to limit the peak damping forces and deliver slightly larger energy 

dissipation than the linear counterpart. However, for strong earthquakes, most structures 

employing viscous dampers will experience some level of inelastic response in the structural 

framing system (Symans et al. 2008). The role of the nonlinear damping is therefore function 

of the structural properties, the ground motion characteristics and the performance objectives. 

With the nonlinearity involved, it is difficult to quantify the damping since the equivalent 

damping ratio has limited meaning (Makris and Chang 1998).  

In order to determine the optimal nonlinear damping needed for a structure, the 

nonlinear damping ratio is necessary to be evaluated first. Several researchers have proposed 

the energy-based nonlinear damping ratio for linear MDOF structure equipped with nonlinear 

viscous dampers. However, due to the existence of nonlinear viscous dampers, a nonlinear 

time history analysis has to be done to obtain the maximum structural response that is needed 

for calculation of nonlinear damping ratio. In this chapter, the dimensional analysis is utilized 

to evaluate the seismic responses of inelastic structures with nonlinear viscous damping 

subject to pulse-type near fault ground motions. A novel definition of nonlinear damping ratio 

is proposed based on dimensional analysis and equivalent SDOF system analysis for MDOF 

structures in this study, which doesn’t need the structural response information beforehand 

hence can facilitate the determination of optimal nonlinear damping of MDOF structures and 

quantify the effects of nonlinear viscous damper. Under this framework, the dimensionless 

structural responses (e.g. drift and total acceleration) can be expressed explicitly as functions 
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of dimensionless Π-parameters related to the inelastic structural behavior and ground motion 

characteristics. The effects of nonlinear damping are therefore quantified, leading to optimal 

selection of damping properties. Structural nonlinearity is also easily taken into account 

under this proposed framework. 

Many applications of genetic algorithms have been made in structural engineering，

such as placement of control actuators in aerospace applications, as well as being applied to 

the problem of optimal placement of dampers in a building structure, which is adopted in this 

section. The genetic algorithm is based on that in natural selection the better individuals are 

likely to survive in a competing environment. It uses the analogy of natural evolution of a 

population of individuals through generations where the best ones dominate. Genetic 

algorithm considers simultaneously many designs which does not require any computations 

of gradients of complex functions to guide their search.  

For optimal placement of supplemental damping devices in a structure, a design is 

considered the best if a performance function associated with this design has the 

highest/lowest value. The objective is to search for the best design in the search space. In 

genetic algorithm, the parent generation takes successive evolution into future children 

generations through the process of genetic operators of crossover and mutations. In this study, 

the genetic algorithm is applied to perform the optimal nonlinear damper design and indicate 

the optimal damping ratio accordingly. 

2.1  Dimensional Analysis of SDOF Inelastic Structures Equipped with 

Nonlinear Viscous Dampers 
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     The dimensional analysis has been shown to be an effective way of interpreting the 

otherwise largely scattered inelastic structural responses from time history analysis using 

recorded ground motions (Makris and Black 2004a,b). By normalizing the inelastic 

displacement demand with respect to the energetic length scale of ground motions, the similar 

response (i.e. independent of the intensity of ground motions) can be obtained. Here the 

dimensional analysis is conducted at an inelastic SDOF structure equipped with a nonlinear 

viscous damper. The governing equation of such system can be expressed as:  

( ) ( ) ( , ) ( ) ( )s d gmu t cu t f u u f u mu t+ + + = −  (2.1)
 
where m  is the system mass, c  is the inherent structural damping (linear) and ( )gu t  is 

the ground acceleration input. The term ( , )sf u u  represents the inelastic structural force and 

can be represented by the Bouc-Wen model as shown below: 

( , ) ( ) (1 ) ( )s e e yf u u K u t K D Z tε ε= + −  (2.2)

where ε  is the post yielding stiffness ratio, eK  is the structural elastic stiffness and yD is 

the yielding displacement. The hardening parameter ( )Z t  is computed by the ordinary 

differential equation given below: 

))()()()()()((1)( 1 tutZtutZtZtu
D

tZ nn

y

−+−= − βγ  (2.3)

where 0.5γ β= = and n are model parameters. The nonlinear damping force ( )df u  in Eq. 

(2.1) is defined as: 

)()( usignucuf dd
α=  (2.4)

where dc  is the damping factor of the nonlinear damper (in the units of α)/( 1−msN ) and 

α is a constant controlling damper nonlinearity ranging from 0 to 1.  

When the near-fault ground motions are considered, simple pulses can be used to 
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represent the dominant kinematic characteristics of input motions (Makris and Chang 1998). 

These simple pulses (e.g. Type-A, Type-B and Type- Cn) contain only two input parameters, 

the acceleration amplitude, ap (or velocity amplitude, vp) and period Tp (or equivalently ωp). 

Eq. (2.1) can also be written in another form: 

),()(2)1()()(2)( 0
2

0
2

00 ppgny auusignuZDtututu ωωξωεεωξω α −=+−+++  (2.5)

where 0 /ek mω =  is the pre-yielding natural frequency of the structure, 0/ (2 )c mξ ω=  

and )2/( 0ωξ mcdn = are the damping ratio of linear and nonlinear viscous damping 

respectively. The structural response ( )u t  solving from Eq. (2.5) is therefore a function of 

eight parameters involved: 

),,,,,,,()( 0 ppyn aDftu ωεαξξω=  (2.6)

Applying the Buckingham’s Π-theorem and choosing pa  and pω  as the repeating 

variables, Eq. (2.6) can be reformulated in terms of the dimensionless parameters as: 

),,,,,( , εαξξωφ ΠΠΠΠΠΠ=Π Dynu  (2.7)

where 2( ) /u p pu t aωΠ = is the structural displacement normalized by the characteristic length 

scale of ground motion, 0 / pω ω ωΠ =  is the dimensionless frequency ratio, ξξ =Π  is the 

linear viscous damping ratio, 2 /uy y p pD aωΠ =  is normalized yielding displacement, 

αα =Π is the fractional exponent of nonlinear viscous damper and εε =Π  is the post- to 

pre-yielding ratio. Most importantly, a dimensionless nonlinear damping ratio is also 

obtained in this exercise: 
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a

 (2.8)

Similarly, one can derive the dimensionless acceleration /A pa aΠ =  ( a  is the total 
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acceleration) in terms of the dimensionless Π  parameters defined above. Recall that a 

damping ratio of a nonlinear damper can also be defined by equating the energy dissipated by 

the nonlinear viscous damper with that of an equivalent linear viscous damper (Jacobson 

1930; Symans and Constantinou 1998):  
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2

2

11
2

0 α
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ω
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= −−

+

D
m
c

e
d

d  (2.9)

where eω is the frequency of the forcing function, D  is the absolute maximum 

displacement of the structure response, and Γ is the gamma function. For pulse-type 

excitations, the forcing frequency eω  in Eq. (2.9) is essentially equal to the frequency of the 

pulse excitation pω . It is noted that Eq. (2.9) requires the knowledge of maximum structural 

response, D, which is not a-priori before an analysis is done. 

To investigate the relationship between parameters ,nξΠ  and dξ , time history 

analysis is performed on bilinear structures with nonlinear viscous dampers using a set of 

typical values of 0.25ωΠ = , 0.05ξΠ = , 0.8uyΠ = , and 0.1εΠ = . These were done for 

varying αΠ  values of 0.1 to 0.9, and varying n,ξΠ  values of 0.2 to 1.0 for each value of 

αΠ . Type-B pulse excitation is used as input motion. The damping ratios of the nonlinear 

damper calculated from Eq. (2.9), along with the n,ξΠ  values, are listed in Table 2.1. It is 

seen that n,ξΠ  and dξ  (computed with the known structural displacement D) are indeed 

very close to each other in values. This indicates that n,ξΠ  is a better measurement of the 

nonlinear damping ratio as it does not require the knowledge of structural response. 

The new dimensionless nonlinear damping ratio derived in Eq. (2.8) along with other 

dimensionless parameters fully defines the structural responses. Fig. 2.1 plots the time history 

responses (for Πω=0.5) and spectrum of the dimensionless displacement of a system subject 
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to a Type-B pulse with different frequencies and amplitudes for case Πα=0.35 and Πξ,n=0.1. 

The overlapping curves reveal that the dimensional responses are independent of the input 

motion amplitude as long as the independent Π-terms, Πξ,n and Πα (for nonlinear damper) are 

kept the same along with Πuy, Πξ and Πε (for structure). 

Table 2.1  Comparison of dξ  and n,ξΠ  for nonlinear viscous dampers 

n,ξΠ  ξd 

1.0=α  3.0=α  5.0=α  7.0=α  9.0=α  
0.2 0.18 0.18 0.18 0.19 0.20 
0.4 0.36 0.38 0.39 0.39 0.40 
0.6 0.54 0.58 0.60 0.61 0.60 
0.8 0.79 0.80 0.81 0.82 0.81 
1.0 1.21 1.07 1.06 1.05 1.02 
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Fig. 2.1  Response similarity with , 0.10nξΠ =  and 0.35αΠ =  

 

2.2  Effects of Nonlinear Viscous Damping on SDOF Inelastic Structures 

A comprehensive parametric study is conducted to evaluate the effects of nonlinear 

damping for inelastic structures. As indicated by Eq. (2.7), the dimensionless displacement 

response uΠ  and total acceleration A pa aΠ =  are functions of ,, , , ,n uyω ξ ξ αΠ Π Π Π Π  and 

εΠ . To simplify, the parameters ,ξ αΠ Π  and εΠ  are kept constant at their typical values, 

i.e. Πξ=0.03, Πα=0.35 and Πε=0.1. Numerical time history analyses are performed for 

different Πξ,n and Πuy values, as well as with the consideration of different types of pulse 
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input motions. Fig. 2.2 shows the dimensionless response spectra of Πu and ΠA as function of 

Πω under Type-B pulses for four different values of yielding displacement Πuy. 

The case of Πuy=3 is close to a linear structure case as the yielding displacement Dy is 

very large. It is seen that the structural displacement and total acceleration responses are both 

reduced if additional damping is added for linear structure. For inelastic structures, the 

dimensionless displacement decreases with the augment of nonlinear damping ratio. However, 

the dimensionless total acceleration is increased due to higher nonlinear damping. Knowing 

that the total acceleration is related to the total force of springs and dampers and inelastic 

structures generally have a very small post yielding stiffness, the change of spring force 

won’t be significant when displacement response changes. So reduction of displacement by 

adding damping will not influence the spring force too much when structure goes into 

nonlinear range. On the other hand, the damping force will be significantly enhanced if there 

is more damping involved in. As a result, the total combined force of springs and dampers is 

increased which is reason why the total acceleration becomes larger in this case. Furthermore, 

Fig. 2.2 indicates that there is a critical dimensionless frequency, Πω=2 under which larger 

damping will yield larger total acceleration responses. Therefore, it is not good to add more 

damping if acceleration is of concern. 

The effects of nonlinear damping are also evaluated for SDOF inelastic structures 

subject to real near-fault earthquake motions. Based on the velocity and acceleration 

characteristics, the near-fault ground motions can be roughly categorized into velocity and 

acceleration pulse represented (Tang and Zhang 2011). The velocity pulse represented 

motions usually have a reasonable PGV and intermediate to long pulse period while the 

acceleration pulse represented ones have reasonable PGA and relatively short period. Table 

2.2 lists the information of twenty near-fault motions selected.  
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(a) Dimensionless displacement 

 

(b) Dimensionless acceleration 

Fig. 2.2  Dimensionless displacement and total acceleration responses (Type-B) 
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Fig. 2.3 shows the response spectra for different level of nonlinear damping ration 

under Northridge earthquake. The displacement response is always reduced when damping is 

increased, yet the acceleration response is overall enlarged with a higher level of damping. 

Fig. 2.4 plots the averaged dimensionless total acceleration for two nonlinear damping ratios. 

It is seen that under acceleration pulse represented earthquakes, the critical point for Πω is 

shifted towards higher frequency range. At the same time, there is no critical point observed 

in spectra under velocity pulse represented earthquakes. Therefore, adding more nonlinear 

damping to structures subject to real earthquake motions is not good for acceleration response 

in typical range of Πω. 

Table 2.2  Characteristics of chosen pulse represented earthquakes 

Earthquake record  ap (g) vp (cm/s) Tp (s) PGA (g) PGV (cm/s) 
Velocity pulse represented earthquakes 

SAN FERNANDO,    PUL_195 0.475 101.65 1.37 1.435 116.348 
IMPERIAL VALLEY,  H-E03_233 0.0345 27.40 5.085 0.229 41.054 
CAPE MENDOCINO,  PET_260 0.118 47.55 2.58 0.615 81.789 
PALM SPRINGS,      NPS_197 0.275 54.47 1.268 0.67 73.484 
NORTHRIDGE,       LOS_032 0.112 37.26 2.13 0.466 53.063 
KOBE,              TAZ_140 0.244 62.89 1.65 0.645 76.452 
KOCAELI,           GBZ_184 0.053 40.76 4.924 0.238 51.915 
CHICHI,             TCU136_278 0.0275 39.09 9.1 0.169 51.764 
ERZIKAN,           ERZ_032 0.212 79.01 2.386 0.486 95.305 
CHICHI,             TCU103_277 0.0476 57.46 7.729 0.132 62.114 

Acceleration pulse represented earthquakes 
CHICHI,             TCU080_275 0.46 10.06  0.14 0.501 26.893 
COALINGA,          A-CPL_045 0.124 2.71  0.14 0.2 8.536 
IMPERIAL VALLEY,   H-CC4_233 0.13 13.00  0.64 0.13 14.481 
MORGAN HILL,       G06_058 0.244 7.85  0.206 0.244 35.338 
LOMA PRIETA,        NAS_038 0.14 13.12  0.6 0.222 32.12 
MAMMOTH LAKES,   C-XGR_282 0.125 6.05  0.31 0.133 11.723 
MT LEWIS,           HVR_264 0.128 9.20  0.46 0.155 19.071 
NORTHRIDGE,        SYL_032 0.611 124.60  0.38 0.733 122.644 
SIERRA MAD,         4734A-152 0.241 13.93  0.37 0.327 22.719 
TAIWAN SMART1,     05O01_019 0.0914 6.57  0.46 0.115 13.274 
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(a) Displacement spectra (b) Acceleration spectra 

Fig. 2.3  Normalized response spectra under real earthquake 

 

 
 

      (a) Acceleration pulse represented        (b) Velocity pulse represented  

Fig. 2.4  Normalized total acceleration spectra under real earthquakes 

In searching for the optimal nonlinear damping of inelastic structures, one has to 

balance the tradeoff between the reduction in displacement and the increase of acceleration 

due to increase of damping. This is different from the linear structures where larger damping 

will generally result in reduced responses. The overall response of the nonlinear structure 

depends on the relative magnitude of the structural frequency to the dominant frequency of 

the input motion (Πω), and the characteristic of the input motion as well (type A, B, or C2 
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pulses ). For different types of input motions, there is a critical point of Πω, by which the total 

acceleration response is divided into two parts: when Πω is less than the critical point, larger 

nonlinear damping ratio results in larger acceleration response and when Πω is larger than the 

critical point, larger nonlinear damping ratio yields smaller displacement and acceleration 

response.  

Fig. 2.5 summarizes the normalized system responses under different types of input 

motions, for the Πω range of [1, 2] and Πξ,n range of [0, 0.3]. The Πω range is chosen to be on 

the left side of the critical point. It is again seen that larger nonlinear damping ratio gives 

smaller relative displacement but larger total acceleration responses. So if the structure is 

determined to be within this range, designers have to decide a value of nonlinear damping 

ratio to gain a desired balance between displacement and acceleration responses. And if the 

structure is ‘located’ on the right side of the critical point, there is no optimal value for the 

nonlinear damping ratio, that is, adding damping always benefits the system response. 
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Fig. 2.5  Normalized system responses for different ωΠ  and  ,nξΠ  
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2.3 Equivalent SDOF Representation of MDOF Inelastic Structures 

Equipped with Nonlinear Viscous Dampers 

 

2.3.1  Methodology 

In order to quantify the optimal nonlinear damping for MDOF inelastic structures, one 

could utilize the optimal nonlinear damping obtained in previous section if an equivalency 

can be established between the MDOF and SDOF structure. This equivalency is established 

in several steps. First, the equivalency of nonlinear dampers is established with their linear 

counterpart for MDOF structures. The typical force displacement loop of nonlinear and linear 

viscous dampers are as presented as in Fig. 2.6. By making the energy dissipated within one 

cycle equal to each other, the damping effect of a nonlinear damper could be represented by 

its corresponding linear equivalency, as shown in Eq. (2.10) (Jacobsen 1930).  

              

     (a) Nonlinear viscous damper                       (b) Linear viscous damper 
 
Fig. 2.6  Equivalency of nonlinear viscous damper to linear viscous damper 
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the equivalent linear damper and the original nonlinear damper.  

With the equivalency between the nonlinear and linear dampers, one can establish a 

new MDOF inelastic structure with equivalent linear dampers at each floor. Subsequently an 

equivalent SDOF inelastic structure with linear damping can be derived. Utilizing the 

equivalency between the nonlinear and linear dampers again, an equivalent SDOF inelastic 

structure with nonlinear damper can be obtained. The detailed method is described below.  

Fig. 2.7 shows a general inelastic structure with N degree of freedoms and is installed 

with nonlinear viscous dampers at each floor. The fs,n is the restoring force of the nth floor 

while fd,n and fl,n are the damping force of the original nonlinear damper and equivalent linear 

damper of nth floor, respectively. Relative displacement u = [u1, u2, …, un, …, uN] is used to 

formulate the equation of motion. The variables denoted by superscript of * are the 

corresponding ones for the equivalent SDOF system. 

 

       

(a) Originally damped struc.            (b) Equi-linearly damped struc.   (c) Equivalent SDOF system 
 

Fig. 2.7  Illustration of a general N DOF inelastic structure with nonlinear dampers 

 
Although the viscous dampers installed are all nonlinear ones, we can apply 

Jacobson’s formula in Eq. (2.10) to convert them into equivalent linear viscous dampers. The 

nonlinear dampers associated with each DOF could be transformed as: 
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where 
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φ φ φ φ=Φ is the mode shape of the 1st mode. Subsequently, the 
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If we assume the MDOF structure is 1st mode dominant, an equivalent SDOF system 

can be derived (Zhang and Tang 2009). The equivalent damping coefficient for the SDOF 

structure is:   

1 1

* T
L Lc =Φ C Φ  (2.13)

 
Expend all the terms in Eq. (2.13) with Eq. (2.11) and (2.12), the equivalent linear 

damping coefficient can be obtained with the explicit form as follows: 

( )1,1 ,1 1,1

2* 2
,1 ,

2
n n

N

L L L n
n

c c cφ φ φ
−

=

= + −∑  (2.14)



  43

Substituting Eq. (2.11) into Eq. (2.14), the equivalent linear damping coefficient can 

be related to the original nonlinear damping parameters: 

( )
( )1,1 ,1 1,1

1
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L n
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⎛ ⎞= + −⎜ ⎟
⎝ ⎠

∑  (2.15)

Therefore, the original MDOF inelastic structure with nonlinear damper can be 

obtained by an equivalent SDOF inelastic structure with nonlinear damper, who is governed 

by the equation of motion as follows: 

* * * *
d s gm D f f m u+ + = −  (2.16)

where *
df   and  *

sf   are equivalent damping and restoring force of the SDOF system, and 

* * sgn( )df c D D
α

α=  (2.17)

 
* * * * * * *(1 )s yf k D k D Zε ε= + −  (2.18)

where *ε , *
eK , and *Z  are the post yielding ratio, initial stiffness and Bouc-Wen hysteresis 

parameter of the equivalent SDOF system. 
1 1

* Tm =Φ MΦ ，
1 1

* Tk =Φ KΦ are the equivalent 

mass and stiffness. *
yD  is the equivalent yielding displacement which can be calculated 

according to Chopra (2001):  

*

1 ,1

y
y

n

U
D

φ
=
Γ

 (2.19)

 
yU   is the yielding point of the pushover curve of the original MDOF structure, and 

1

1 1

1

T

TΓ =
Φ Kr
Φ MΦ

  is the 1st mode participation factor. 

The equivalent displacement D is solved by numerical analysis with Eq. (2.16). The 

top floor displacement can be computed by: 
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,11 NNu Dφ= Γ  (2.20)
 

The equivalent nonlinear damping is related to the equivalent linear damping of 

SDOF system by appliying the Jacobson’s formula (Eq. 2.10) again, which is shown below: 

( )1* *
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α
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−=  (2.21)

 

Substituting Eq. (2.15) and (2.20) into Eq. (2.21), the equivalent nonlinear damping of 

SDOF system can be related directly to the nonlinear damper parameters of the original 

MDOF inelastic structure:    
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It’s seen in Eq. (2.22) that the nonlinear damping coefficient of the equivalent SDOF 

system is only a function of the mechanical properties of the installed dampers and 1st mode 

shape of the original MDOF structure. All equivalent structural parameters appearing in the 

SDOF system (i.e. in Eq. (2.16)) are all fully defined.  

2.3.2  Verification of Proposed Equivalent SDOF System 

A 3DOF shear building structure is adopted for validating the equivalent SDOF 

method described above. The system mass matrix M and initial stiffness matrix K of the 

structure are given in Eq. (2.23) and (2.24). The yielding displacement of all floors are set to 

0.02m. 
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There are 3 nonlinear viscous dampers installed in-between the 3 floors of the 

structure. And two cases of distribution of the nonlinear dampers are considered here:  αc = 

[800 800 800] N (s/m)αi  (case 1) and  αc = [800 400 200] N (s/m)αi  (case 2).  

The nonlinear dampers are first transformed into equivalent linear dampers on the 

basis of Jacobson’s formula shown above, then modal analysis theory is used to get the 

equation of motion for the 1st mode of the structure. Under the assumption that the structure 

is first mode dominant (mass participation greater than 90%), the SDOF system represented 

in the 1st mode equation of motion could be taken as the equivalent SDOF structure of the 

original 3 DOF structure. Since the original structure is equipped with nonlinear dampers, the 

linear damping term in the 1st mode equation of motion is transferred back to nonlinear form 

by Jacobson’s formula. The parameters of the equivalent SDOF system is listed in Table 2.3. 

Table 2.3  Equivalent parameters of the SDOF system 

*m (kg) *k (N/m) 
*

yD  (m) *cα ( N (s/m)αi ) (case 1) *cα ( N (s/m)αi ) (case 2) 

351.74 44195.82 0.0365 401.76 292.51 
 

To demonstrate and for simplicity, a pulse-type motion (Type B - cosine pulse) is 

applied to the equivalent SDOF structure and the original 3DOF structure. The nonlinear 

responses are obtained and compared in Fig. 2.8. The uniform distribution of nonlinear 

damping is considered. The mass participation factor of the 1st mode for the selected 3DOF 

structure is 91.63%. Both linear and nonlinear stiffness distribution are considered. As shown 

in Fig. 2.8, for both nonlinear damper distribution cases, the top floor displacement has been 

predicted well by the equivalent SDOF system, which demonstrates that the established 

equivalency works well. 
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(a) Nonlinear damper distribution case 1          (b) Nonlinear damper distribution case 2 

 

Fig. 2.8  Comparison of top floor displacement of a 3DOF structure 
 

It is noted that there is a nonlinear damping term in the equation of motion of the 

equivalent SDOF system. This can be used directly to estimate the damping ratio (nonlinear 

one) of the equivalent SDOF system and can also be refered as the damping ratio of the 1st 

mode of the original 3DOF structure. Other researchers have proposed a method to define the 

1st mode damping ratio of a MDOF structure as following (Diotallevi et al. 2012): 
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The formula in Eq. (2.25) is also based on the 1st modal shape and modal period, 

which is similar to our proposed damping ratio definition. However, to calculate the 1st mode 

damping ratio using the above formula in Eq. (2.25), the maximum structural response Droof 

has to be determined beforehand, while the proposed damping ratio in this study doesn’t need 

any structural response information to be computed because it is only a function of structural 

mechanical properties. 

The exact dynamic response of the original 3DOF structure is solved in order to get 

the damping ratio defined by Eq. (2.25). It is compared with the damping ratios calculated by 
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the nonlinear damping ratio definition proposed in Eq. (2.8). Table 2.4 shows the comparison 

for different frictional α  values of the nonlinear viscous dampers. 

 

Table 2.4  Nonlinear damping ratio of 1st mode of a MDOF structure (%) 

α  0.2 0.4 0.6 0.8 1.0 
*

,nξΠ  35.04 16.81 8.10 3.92 1.90 

1ξ  42.44 15.65 7.25 3.65 1.90 

It’s seen that the proposed nonlinear damping ratio definition is quite comparable with 

the results from the existing formulas. However, the proposed nonlinear damping ratio 

definition has much simplified expression and doesn’t need a-priori knowledge on maximum 

structural response, i.e. the damping ratio could be calculated only based on the structural 

properties without any dynamic analysis effort. 

In order to evaluate the efficacy of the equivalent systems for system with possible 

higher mode effects, another 8DOF structure is also used as the second example to show the 

effectiveness of equivalent SDOF method. The structural properties are summarized in Table 

2.5. Both pulse type B motion and El Centro N-S earthquake record is used as the earthquake 

excitation at the base of the structure. 

Table 2.5  Structural properties of a sample 8 degree-of-freedom structure 

Story # 1 2 3 4 5 6 7 8 

Storey Mass im  

(ton) 
345.6 345.6 345.6 345.6 345.6 345.6 345.6 345.6

Storey stiffness ik  

(105KN/m) 
3.4 3.2 2.85 2.69 2.43 2.07 1.69 1.37 

Storey damping ,icα  800 800 800 800 800 800 800 800 

Storey yield disp. yiD  

(cm) 
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 
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Top floor displacement histories are show in Fig. 2.9. It’s seen that under both pulse 

type motion and earthquake input, the response obtained by equivalent SDOF method is quite 

similar to those of exact numerical solution obtained from the original 8DOF system.  
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(a) Pulse type B motion              (b) El-Centro earthquake motion 
 

Fig. 2.9  Comparison of top floor displacement of a 8DOF structure 
 

Although the above numerical studies show promising results from the equivalent 

SDOF method, there are limitations of this method, which come from the following three 

basic aspects within the aforementioned procedure: (1) The validity of equaling a nonlinear 

damper to a linear one based on Jacobson’s formula, since this formula is energy based but 

the direct equivalence in the equation of motion should be based on force; (2) The original 

damping provided by the nonlinear dampers are not classical damping, so the 1st modal 

shape factor couldn’t really diagonalize the damping matrix therefore the 1st mode equation 

of motion is not indeed decoupled with other modes; (3) The 1st mode dominant is 

appropriate for most shear buildings but not always the case. 

2.4  Optimal Nonlinear Damper Design for Shear Type MDOF Structure 

On the promise that a first mode dominated MDOF structure can be approximated by 

an equivalent SDOF system and the effects of nonlinear damping on SDOF inelastic structure 
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can be well quantified by the proposed nonlinear damping ratio, in this section, an attempt is 

carried out to identify the optimal nonlinear damper design for shear type MDOF structure, 

which includes the damping amount and damper location.  

The genetic algorithm is adopted to search for the optimal design of nonlinear viscous 

dampers for a shear type MDOF structure. The crossover and mutation are the two basic 

operators of genetic algorithm that create new designs for further evolution. After a new 

population is created, a performance index is evaluated for each new design to determine its 

fitness compared to other designs in the same generation, which is repeated for a number of 

cycles (generations) until no further improvement is obtained in the best individual in the 

subsequent generations. 

To start the genetic algorithm search, first an initial population of a chosen size is 

randomly generated. In the context of placement of devices, each individual represents a 

design with a particular scheme of placement of the devices. For example, to place 9 devices 

in a 3 story building, one possible arrangement of these devices is {2, 1, 2, 3, 2, 2, 3, 1, 1}, 

which represents an individual of the population. In this placement, the first device is placed 

in the 2nd story, the second in the 1st story, etc, that is the device locations represent the genes 

of each individual. There is no set rule to select the size of a population. A larger population 

may converge to the final solution in less number of iterations but would also require a larger 

number of performance index calculations for each iteration. 

After selecting a population size, the next step is to perform genetic operators of the 

reproduction process. For this, first performance index of each individual of the population is 

evaluated. The higher the performance index the better the individual. The individuals are 

then ranked from the best to the worst. And then they are paired for reproduction according to 

the roulette-wheel scheme. To avoid a complete domination in the pairing process by the 

individuals with highest performance indices, the performance indices are mapped into a 



  50

fitness function that modulates the relative dominance of the performance index values. In 

this section, the fitness function of 
thi  design is defined as follow (Goldberg 1989): 

 

( ) ( 1) ( )F i F i I i= − +  (2.26)
 

where F(0) = 0 and I(i) is the fitness interval which is given by: 

 

2( 1 )( )
( 1)

N iI i
N N

+ −
=

+
 (2.27)

 

where N is the population size. 

Based on the fitness function, the crossover scheme is used to produce offsprings that 

share the genetic information of the parents. For this, a gene location (i.e. device location) is 

randomly selected for each pair of individuals, above which the genes are interchanged to 

create new offsprings. This is one-point crossover.  

A small fraction of the parent population is also mutated to introduce new designs. 

The mutation introduces new genes in the population for further evolutions. This fraction is 

usually kept low to avoid too many offspring losing the genes of their parents, and thus losing 

their ability of high performance index. In this section, a one-point mutation rule is carried 

out where a randomly selected gene in a randomly selected individual is changed to take on a 

new value from the set of possible values. 

After the mutation is finished, the new generation is ranked again according to their 

performance index values and the same process is repeated until a convergence to the optimal 

solution is reached. A Matlab program is developed where a genetic algorithm is employed 

for the optimal damping device design in this section. One can get the design coefficient of 

the nonlinear damper on each DOF of the structure by this code. 

In the context of optimal damper property and location selection for a MDOF 

structure, we adopt genetic algorithm here for two purposes: (1) how much damping is 
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needed. This is usually determined roughly by the response reduction objective, for example, 

40%. Nonlinear damping ratio could be a good measurement of how much damping is added. 

(2) where to put the nonlinear dampers. This is determined by iterations through genetic 

algorithm.  

A 3DOF shear type structure used in the previous section is adopted for numerical 

study. Same mass, stiffness matrices M and K are adopted. There 120 nonlinear viscous 

dampers available to be used for the response reduction. The design objective is to reduce the 

undamped response 50% when dampers are installed. The damping coefficient of each 

nonlinear damper is 100 with a damping exponential index of 0.5. The damping coefficient is 

chosen to be so small that we can determine the number of dampers set on each floor first 

then convert them to larger size of dampers but with less counts, which would give us the 

optimal design of nonlinear dampers (damping coefficients and locations). Both type-B pulse 

and El Centro earthquake record are used as ground excitations.  

The population size is set to be 40, which means 40 damper designs are randomly 

generated as the initial generation (parent designs) for genetic algorithm. The performance 

index is chosen as the maximum top floor displacement. Time history analysis is done to 

calculate the performance indices of all the parent designs and the parent designs are 

re-ordered from the best to worst according to the performance index values. The ordered 

parent designs by rank are ready to be used for mating process.  

After the fitness function is defined, two random number between [0, 1] are generated 

to determine which two parent designs are paired to produced two child designs based on 

where the two random numbers fall on the fitness interval roulette wheel. The child designs 

are obtained by crossover and mutation. One-point crossover is used where a random gene 

location is selected above which all the genes of the parent designs are interchanged to attain 

two new children designs. Crossover is performed on 100% of the population. Then 
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one-point mutation is carried out where a random gene of a parent design is selected to be 

replaced by a new gene to obtain a new child design. Mutation is performed on 5% of the 

whole population. 

The 2nd generation (a set of new designs) is obtained when crossover and mutation is 

finished. The time history analysis is performed again to determine which design in the 2nd 

generation is the best. This procedure is repeated until not much improvement can be 

achieved from the evolution. The best design of the last generation is considered as the 

optimal design. 

The optimal design from the genetic algorithm for the 3DOF structure is listed in 

Table 2.6. The performance index for evenly distributed damping case is also listed for 

comparison purpose. It shows that putting more damping on the bottom DOFs yields a better 

design. Nonlinear damping ratio is calculated by the equivalent SDOF method proposed 

before and presented in Table 2.6 as well. Fig. 2.10 shows the structural response with 

optimal nonlinear damper design yields a better performance than the evenly distributed 

dampers case which takes the same level of damping. This comparison concludes the 

effectiveness of the optimal design with genetic algorithm.  

 

Table 2.6  Optimal design of nonlinear dampers for a 3DOF structure 

Design input Nonlinear damping coeff Performance Index (m) Damping ratio (%) 

El Centro 
Optimal [5000  4200  2800 ] 0.0225 

59.17 
Evenly [4000  4000  4000 ] 0.0263 

B-type pulse 
Optimal [4900  4600  2500 ] 0.0155 

58.89 
Evenly [4000  4000  4000 ] 0.0166 
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Fig. 2.10  Structural response with optimal nonlinear damper design 

To further illustrate the ability of the genetic algorithm in the design for damping 

devices, a 8DOF nonlinear structure is considered as case study as well. The structural 

properties are presented in Table 2.7. Meanwhile, three different indices are taken as the 

performance index: top floor displacement, top floor total acceleration and maximum 

inter-story drift. The optimal design from the genetic algorithm is listed in Table 2.8. The 

performance index for evenly distributed damping case is also listed for comparison purpose. 

Nonlinear damping ratio is calculated by the equivalent SDOF method proposed in section 2 

and presented here as well. Type-B pulse input is used as the dynamic excitation for all the 

cases. 

 
Table 2.7  Structural properties of a sample 8 degree-of-freedom structure 

Story # 1 2 3 4 5 6 7 8 

Storey Mass im  

(ton) 
345.6 345.6 345.6 345.6 345.6 345.6 345.6 345.6

Storey stiffness ik  

(105KN/m) 
3.4 3.2 2.85 2.69 2.43 2.07 1.69 1.37 

Storey yield disp. yiD  

(cm) 
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 
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Table 2.8  Optimal design of nonlinear dampers for a 8DOF structure 

Performance 
Type 

Nonlinear damping coeff ( αN (s/m)i ) (1e8) 
Performance 

Index  

Damping
ratio 
(%) 

Top flr. disp. 
(cm) 

Optimal 
[2.0239  1.8657  1.6444  1.2965   
1.6444  1.2333  1.5179  1.4230 ] 

2.20 
38.71 

Evenly 
[1.5811  1.5811  1.5811  1.5811    
1.5811  1.5811  1.5811  1.5811 ] 

2.21 

Top flr. accel. 
(m/s2) 

Optimal 
[1.5495  1.5179  1.2965  1.4863 

1.6760  1.5495  1.7076  1.8657] 
7.50 

38.71 
Evenly 

[1.5811  1.5811  1.5811  1.5811    
1.5811  1.5811  1.5811  1.5811 ] 

7.56 

Max inter drift 
(cm) 

Optimal 
[1.6128  1.2333  1.5495  1.5811 
1.4230  1.5179  1.7709  1.9606] 

0.31 
38.71 

Evenly 
[1.5811  1.5811  1.5811  1.5811    
1.5811  1.5811  1.5811  1.5811 ] 

0.34 

2.5  Concluding Remarks 

Despite the understanding of the effect of linear damping on structural response, the 

impact of nonlinear damping on structures is not fully understood. In particular, the nonlinear 

damping required to achieve the optimal performance of inelastic structures depends on the 

nonlinear structural responses and the ground motion inputs. This study intends to quantify 

the effects of nonlinear damping on inelastic structures and determine the optimal amount 

and locations of nonlinear dampers. Using dimensional analysis of inelastic structures with 

nonlinear dampers, a dimensionless damping ratio is derived, which can decisively quantify 

its effects on structural responses (e.g. drift and total acceleration). The effects of nonlinear 

damping are then studied for idealized SDOF inelastic structures under pulse-type ground 

motions. Through the parametric study using both simplified pulses and real near-fault 

ground motions, it is shown that the added nonlinear damping is not always beneficial for 

structures. Whether the larger nonlinear damping ratio benefits the structural responses 

depends on the relative frequency between the structure and the input motion (Πω), and the 
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characteristics of the input motion (e.g. pulse type). There exists a critical structure-to-pulse 

frequency, below which an optimal damping is needed to balance the reduction of structural 

drift and the increase of the total acceleration.  

To extend to the general application to MDOF inelastic structures, an equivalent 

SDOF inelastic structure is derived with equivalent structural properties and equivalent 

nonlinear dampers. Based on this equivalency, nonlinear damping ratio for MDOF inelastic 

structures is subsequently derived. Finally, the optimal damping and damper placement for 

MDOF inelastic structures are developed utilizing the nonlinear damping ratio and the 

generic algorithm. 
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3. Hybrid Numerical Simulation Platform for 
Seismic Response Analysis of Nonlinear Structures 
 
 

In light of damages of structures observed in past earthquakes, seismic protection 

strategies are needed to retrofit existing structures or to improve the design of new structures. 

In addition to the traditional strengthening/stiffening method, structural control technology 

can be implemented to improve the performance of structures, e.g. adding damping to 

structure to reduce drift and deformations during the seismic response. Structural control 

technologies are typically classified into the passive, active/hybrid and semi-active systems 

(Housner et al. 1997).  

To date, a number of passive systems have been implemented in buildings and other 

civil engineering structures. Two of the most popular approaches are to use supplemental 

energy dissipation or base isolation for vibration reduction and energy dissipation. Most 

passive seismic protective systems are based on the general idea of increasing the damping of 

structures (Constantinou et al. 1998). Because ground motions are stochastic in nature, 

passive systems might have a limited range of effectiveness. Active control systems are more 

efficient in this regard. However, except for protecting small or light weight objects, such as 

aerospace equipments, the solution on how to deliver large active counter forces is needed 

before the wide use of this technology in civil structures. Semi-active systems, such as 

magnet-orheological (MR) dampers, include smart mechanical and material components 

whose physical parameters can be modified in real-time through switching or on-off 

operations (Spencer and Nagarajaiah 2003). Due to the variability and use of passive forces, 

semi-active control is becoming a promising technology of seismic hazard mitigation for civil 

engineering structures.  

In order to optimally select the stiffness and damping values for control devices in 

design, the structural control of structures with controllable devices needs to be performed 
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first. However, for structures exhibiting nonlinearity, the structural control cannot be easily 

conducted within the typical finite element analysis program. Although current FEM 

programs typically have various elements of modelling complex nonlinear structural 

components and control devices, there is no well established approach to apply control 

algorithms in most existing commercial codes. Instead, the structural controls were often 

conducted on simplified structural models that can be generated in the same simulation 

platform for control algorithms. For example, efforts have been made to develop the 

benchmark problems for several structures to allow for a platform to compare various control 

strategies (Agrawal et al. 2009; Ohtori et al. 2004). Nevertheless, the ability to use advanced 

and realistic structural models in conjunction with structural control is currently lacking, 

which also limit the adoption of structural control.  

Hybrid simulation is a method for examining the seismic response of structures using 

a hybrid model comprised of either both physical and numerical sub-structures, or numerical 

sub-structures only (Saouma and Sivaselvan 2008). This alternative way of physical testing or 

numerical modelling of an entire system allows for numerical simulations of complex coupled 

systems performed separately on different computational platforms. In this study, a novel 

approach utilizing the hybrid simulation is proposed to take advantage of modelling ability of 

existing finite element software programs and realize the structural control algorithm at the 

same time. As shown in Fig. 3.1, a complex nonlinear structure can be modelled in any 

existing finite element software, such as OpenSees, ABAQUS, etc, while the structural 

control devices of viscous fluid dampers, base isolators or MR dampers are simulated in other 

software, such as Matlab, where the control algorithms can be easily formulated and 

implemented using the built-in toolboxes. The main nonlinear structure and the control 

devices, as two substructure parts, can communicate with each other by transferring force and 

displacement information through a platform designed for hybrid simulation: UI-SIMCOR. A 
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nonlinear structure equipped with linear fluid dampers, nonlinear fluid dampers or base 

isolators is studied using the hybrid simulation hereafter. The structural control is 

implemented and the equivalent passive parameters are derived. The study verifies the 

validity of the hybrid numerical simulation scheme in efficiently developing seismic 

protection strategies for nonlinear structures. Furthermore, the hybrid simulation scheme is 

also modified to accommodate multi-support excitation input and account for soil-structure 

interaction effects under earthquake excitations. 

 

         
    

 
Fig. 3.1  Hybrid numerical simulation scheme 

 

3.1  Hybrid Simulation Platform: UI-SIMCOR  
 

The study builds on an existing hybrid simulation platform and has implemented 

changes to enable the consideration of various nonlinear seismic protective devices. The 

UI-SIMCOR was originally developed to facilitate geographically distributed 

pseudo-dynamic (PSD) hybrid simulation. It has been widely used for PSD hybrid simulation 

and multi-platform simulation with OpenSees, Matlab, ABAQUS, etc (Kwon et al. 2008). 

UI-SIMCOR can control distributed PSD test in several sites. The simulation can be either all 

experiments, combination of experiments and analyses, or all analyses. 

 
3.1.1  Static Condensation and Effective Degree of Freedoms (DOF)  

The UI-SIMCOR program solves the equation of motion of a dynamic system 

UI-SIMCOR 
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generated by static condensation (Kwon et al. 2007). A portal frame with 16 nodes (plus 2 

constrained nodes) and 17 beam elements shown in Fig. 3.2 (a) is used for the purpose of 

illustration. Lumped masses are located at beam column joints and ground acceleration is 

applied in horizontal direction. There will be mass and stiffness matrices with 48 by 48 

elements in the equation of motion of the frame. However, the structure’s mass and stiffness 

matrix can be reduced to 6 by 6 using static condensation if the stiffness and mass matrices 

are known, as shown in Fig. 3.2 (b). 

 

                       
(a) DOFs before condensation                         (b) DOFs after condensation 

 
Fig. 3.2  Static condensation of multiple DOF structures 

 
 

The above procedure is explained mathematically here. It could be seen that certain 

DOFs can be condensed out from the equation of motion (EOM) through static condensation. 

Consider a structure subject to ground motion gu :  

 

i i ii ij ik i i i

j j ji jj jk j j j g

k k ki ij kk k k k

u
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ = −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

M u K K K u M I
0 u K K K u 0 I

0 u K K K u 0 I
 (3.1)

 

 

where u  is the structural relative displacement; M , K  and I  denotes mass, stiffness and 

ground motion influence matrix respectively. Subscriptions i corresponds to DOFs where 

mass is defined; j corresponds to interface DOFs which are of our interest and k denotes 

internal DOFs where neither is mass defined nor of our interest. Eq. (3.1) can be simplified 
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into: 

 
i i ii ij ik i i i g

j ji jj jk j j

k ki ij kk k k

u⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ = −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

M u K K K u M I
0 K K K u 0
0 K K K u 0

 (3.2)

 
Combine the mass terms to right side of the equation, one gets: 

 

ii ij ik i i i g i i

ji jj jk j j

ki ij kk k k

u⎡ ⎤ +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

K K K u M I M u
K K K u 0
K K K u 0

 (3.3)

 
Condense out ku  in the equation, one gets: 

 
1ii ij ik i i i g i i

kk ki ij
ji jj jk j j

u
−

⎛ ⎞ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤− = −⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

K K K u M I M u
K K K

K K K u 0
 (3.4)

 
Denote the stiffness part of left side of the equation by an equivalent form as: 

 
* *

* *
i i i g i iii ij

j jji jj

u +⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

u M I M uK K
u 0K K

 (3.5)

 
Now one can rearrange the EOM into: 

 
* *

* *
i i i i iii ij

g
j j j j jji jj

u
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ = −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

M u u M IK K
0 u u 0 IK K

 (3.6)

 
which can be expressed as: 
 

* * * * * *
gu+ = −M u K u M I  (3.7)

 
Thus the DOFs that have no mass defined and are not of interest are condensed out. 

UI_SimCor only solves the EOM with these remaining DOFs in analysis, and they are 

referred as ‘effective DOFs’. For hybrid simulation using UI-SIMCOR, this is very important 

concept for the preparation of input file where effective DOFs are specified.  

After defining the effective DOFs, which are the DOFs with lumped masses or zero 
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mass, the mass matrix is easily formulated. At the same time, the condensed stiffness matrix 

can be determined by applying a pre-specified displacement to each effective DOFs and 

measuring reaction forces as shown in Fig. 3.3 (a). For the hybrid simulation of a frame which 

is divided into two segments on two sites or two analysis modules, the initial stiffness of a 

certain DOF can be calculated by applying certain displacement to the segmented structure 

and take summation of reaction forces from each segment of structure as shown in Fig. 3.3 (b). 

Then the dynamic analysis can be performed for the structure using reduced DOFs. This 

concept is very important for the application of hybrid simulation and testing using 

UI-SIMCOR as well. 

 

                

(a) Sub-structuring with one module          (b) Sub-structuring with two modules 
 

Fig. 3.3  Formulation of stiffness matrix in UI-SIMCOR 

 

3.1.2  Time Integration Method Adopted in UI_SimCor 

An explicit integration algorithm of Newmark family, called α  operator splitting 

( OSα − ) method (Nakashima et al. 1990), is adopted in UI_SimCor to solve the EOM by a 

time stepping manner. The EOM of a structure with nonlinear restoring force can be 

expressed as: 

 

( ) ( ) ( ) ( )t t t t+ + =Ma Cv r f  (3.8)
 
 

where ( )ta and ( )tv  are acceleration and velocity vector; M  and C  are system mass and 
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damping matrix; ( )tf  is the external excitation and ( )tr  is the nonlinear restoring force. 

Rewrite Eq. (3.8) in discrete time form and apply the α  operator, the EOM becomes: 

1 1 1 1(1 ) (1 ) (1 )n n n n n n nα α α α α α+ + + ++ + − + + − = + −Ma Cv Cv r r f f  (3.9)

 
where n denotes the time step. The equilibrium in Eq. (3.9) is solved according to: 

(i) A predictor step 

2

1 (1 2 )
2n n n n
tt β+

Δ
= + Δ + −d d v a  

(3.10)
1 (1 )n n nt γ+ = + Δ −v v a

 
and (ii) A corrector step 

2
1 1 1n n nt β+ + += + Δd d a  

(3.11)
1 1 1n n ntγ+ + += + Δv v a

 

where parameter 2(1 ) / 4β α= −  and (1 2 ) / 2γ α= − , 1 , 0
3

α ⎡ ⎤∈ −⎢ ⎥⎣ ⎦
 allows the tuning of 

numerical damping of the method. In order to solve the equilibrium in Eq. (3.9) without 

iteration, the nonlinear unknown term 1n+r  is replaced by: 

 

( )I
1 1 1 1 1 1( ) ( )n n n n n n+ + + + + +≈ + −r d r d K d d  (3.12)

 
which is the predicted restoring force 1 1( )n n+ +r d  corrected by a linear force term that is 

related to system initial stiffness matrix IK . Based on this assumption and substituting Eq. 

(3.10) , (3.11) and (3.12) into Eq. (3.9), one can get: 

 

1 1
ˆˆ

n n+ +=Ma f  (3.13)
where  

2 Iˆ (1 ) (1 )t tγ α β α= + Δ + + Δ +M M C K  
(3.14)

                         

1 1 1

2 I
1

ˆ (1 ) (1 )

         (1 ) ( )
n n n n n

n n nt t

α α α α

α α α γ β
+ + +

+

= + − + − +

+ − + + Δ + Δ

f f f r r

Cv Cv C K a  
 

Finally the acceleration at time 1nt +  can be solved by: 
 

1
1 1

ˆˆ
n n

−
+ +=a M f  (3.15)
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1n+a  is substituted into Eq. (3.11) to update displacement and velocity at time 1nt + . 

It’s noted that the above integration scheme is linearly implicit and doesn’t need 

iteration. This is important to perform physical hybrid test because the repeated or potentially 

cyclic loading for a single time step may damage the experimental specimen.  

 

3.1.3  Development of Multiple Support Excitation Scheme in UI_SimCor 

UI_SimCor is originally developed for dynamic analysis with uniform excitation only 

as input. This could serve the analysis and simulation needs for most civil engineering 

structures, such as residential buildings, foundations and soil. However, to accurately simulate 

the dynamic response of a highway bridge under earthquake excitation, multiple support input 

has to be applied due to the ground amplification effect of approaching embankments of 

bridge, which would vary the input motions at different supports significantly. To achieve the 

goal of analyzing general highway bridge using UI_SimCor and make it a more universal 

platform, UI_SimCor is further developed by this study such that multiple support excitation 

could be accommodated in the anaylsis.  

(i) EOM for system under multiple support excitation 

The equation of motion (EOM) for structural system under multiple support input has 

the following form: 

( ) ( ) ( )t t tMX + CX + KX = 0  (3.16)
 
where M, C, K are the mass, damping and stiffness matrices, and X is the total displacement 

vector (relative to the unchangeable global coordinate system). Since there is no direct inertial 

force coming from uniform excitation, the right side of EOM is set to be 0. The M, C, K 

matrices are composed of the information from all the degree of freedoms (DOF) of the 

structural system including those at the supports, i.e. all the DOFs are taken as free and not  

constrained, which would result in free rigid body mode (0 frequency) in the eigenvalue 
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analysis. Thus K matrix is not of full rank in Eq. (3.16). 

By eliminating the rigid body motion mode in the system described by Eq. (3.16), one 

can get the equivalent EOM of the original system with that the DOFs at the supports are 

taken off from the original M, C, K matrices. At the same time, an equivalent external force is 

formulated based on the acceleration, velocity and displacement inputs at the support DOFs.  

 
( ) ( ) ( ) ( )r r r r r r et t t tM X + C X + K X = F  (3.17)

 
where Mr, Cr, and Kr are the mass, damping and stiffness matrices with support DOFs taken 

off, which are all of full rank. Xr is the corresponding total displacement vector containing 

only the DOFs that are not located at supports. Fe is the equivalent external force determined 

by boundary inputs and the components in original M, C, K matrices corresponding to DOFs 

at the supports. 

(ii) Solving the system under multiple support excitation in UI_SimCor 
 

As stated in section 3.1.2, UI_SimCor uses α operator-splitting method to solve the 

equation of motion. This method still applies for solving the EOM in Eq. (3.17), as long as the 

Mr, Cr, Kr matrices and Fe are obtained. By first defining the whole structural model including 

support DOFs, the original M, C, and K matrices can be obtained automatically from 

UI_SimCor platform, then Mr, Cr, Kr matrices could be derived through erasing the DOFs at 

the supports. In our practice, the DOFs at the structure supports are arranged in UI_SimCor in 

such a way that they all are located at the bottom of the M, C, and K matrices, as shown 

below: 

1,1

2,2

,

1, 1

,

l l

l l

N N

m
m

m
m

m

+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

I,I

II,II

0

m 0
M

0 m

0

 (3.18)
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1,1 1,2 1, 1, 1 1,

2,1 2,2 2, 2, 1 2,

,1 ,2 , , 1 ,

1,1 1,2 1, 1, 1 1,

,1 ,2 , , 1 ,

l l N

l l N

l l l l l l l N

l l l l l l l N

N N N l N l N N

c c c c c
c c c c c

c c c c c
c c c c c

c c c c c

+

+

+

+ + + + + +

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

I,I I,II

II,I II,II

c c
C

c c
 (3.19)

 
 

 
1,1 1,2 1, 1, 1 1,

2,1 2,2 2, 2, 1 2,

,1 ,2 , , 1 ,

1,1 1,2 1, 1, 1 1,
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⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥
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I,I I,II

II,I II,II

k k
K

k k
 (3.20)

 
where index l+1 ~ N indicate the DOFs corresponding to the supports, or where the excitation 

is applied. Thus, the Mr, Cr, and Kr defined in Eq. (3.17) are given as: 

 
r = I,IM m ,  r = I,IK k ,  r = I,IC C (3.21)

 
The equivalent external force Fe can be obtained utilizing this DOF arrangement as 

well: 
 

b b b
e =F Ma + Cv + Kd  (3.22)

 
where M, C and K are defined through Eq. (3.18) to (3.20). And ab, vb and db are the applied 

excitations at the boundary support DOFs l+1 ~ N, which have the form: 

 

1 20 0 0
Tb b b b

l l Na a a+ +⎡ ⎤= ⎣ ⎦a  

(3.23)1 20 0 0
Tb b b b

l l Nv v v+ +⎡ ⎤= ⎣ ⎦v  

1 20 0 0
Tb b b b

l l Nd d d+ +⎡ ⎤= ⎣ ⎦d  

 
With all the information above, the EOM in Eq. 3.17 is solved in UI_SimCor using α 

operator-splitting method which is originally built in. 
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3.2  Development of Seismic Protective Device Elements 
 

The ultimate goal of hybrid numerical simulation scheme is to accurately analyze the 

dynamic response of nonlinear structures equipped with seismic protective devices, such as 

base isolation bearings, linear/nonlinear viscous dampers and MR dampers. Utilizing the 

numerical hybrid simulation scheme based on UI_SimCor, one can accurately model the 

nonlinear structures with well developed finite element softwares, such as OpenSees, 

ABUQUS, etc. However, the seismic protective devices, which are usually highly nonlinear, 

need to be modeled separately on another computational program. In this study, Matlab is 

used to formulate computational elements for seismic protective devices in terms of Matlab 

function or direct modification of integration scheme of UI_SimCor, as introduced as follows. 

 

3.2.1  Development of Base Isolation Element 

Considering a structure with base isolators installed, the EOM in Eq. (3.8) is modified 

to contain the isolators: 

b( ) ( ) ( ) ( ) ( )t t t t t+ + + =Ma Cv r r f  (3.24)

 
where b ( )tr  is the force vector caused by base isolation device. Rewrite Eq. (3.24) in time 

discrete form: 
 

 

1 1 1 1 1(1 ) (1 ) (1 ) (1 )b b
n n n n n n n n nα α α α α α α α+ + + + ++ + − + + − + + − = + −Ma Cv Cv r r r r f f  (3.25)

 

where the only new unknown compared to the original equation of OSα −  method is 1
b

n+r , 

which is the base isolation force at time 1nt + . Similarly, 1
b

n+r  can be first evaluated by the 

predictor displacement of base isolation devices 1
b
n+d :  

 

1 1 1( )b b b
n n n+ + +=r r d  (3.26)
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Then 1
b
n+r  is corrected by a linear term that is related to the initial stiffness of base isolation 

devices I
bK  to approximate the true base isolation force:

 
 

( )I
1 1 1 1 1 1( ) ( )b b b b b b

n n n n b n n+ + + + + +≈ + −r d r d K d d  (3.27)

 
After the only unknown 1

b
n+r  is formulated, the whole structure with base isolation 

devices can be solved by the OSα −  scheme. Note that within this integration frame, an 

element that can evaluate the base isolation force in Eq. (3.26) with a predictor displacement 

input is needed. A Matlab function is written based on classical plasticity theory to model the 

kinematic hardening behavior of base isolation devices, as shown in Fig. 3.4. This element 

takes in predictor displacement of base isolator and returns reaction force to UI_SimCor to 

proceed the time integration for the whole structure by the scheme explained from Eq. 

(3.24)~(3.27). 
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Fig. 3.4  Force-displacement loop of base isolator element 

 
3.2.2  Development of Nonlinear Viscous Damper Element 
 

Due to the open source property, UI-SIMCOR can accommodate different integration 

schemes that are fit for hybrid simulation. As discussed in section 3.1.2, OSα −  method is 
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written in UI-SIMCOR for solving equation of motion and ready to be modified. The 

computational element that models a nonlinear viscous damper is incorporated in the time 

integration section of UI-SIMCOR according to their roles in the equation of motion. The 

modification of the built-in OSα −  method is shown in the following to model nonlinear 

viscous dampers. 

The following derivation is based on a nonlinear N DOF structure equipped with 

nonlinear dampers on each DOF. By setting damper force to be zero, the locations where 

dampers are installed can be adjusted accordingly. The equation of motion of this nonlinear 

system can be expressed as: 

( ) ( ) ( ) ( )dt t t t+ + =Ma f r f  (3.28)
                                                                                                 

 

where fd is the force vector of nonlinear dampers, r(t) is the structural restoring force vector 

and f(t) is the external force vector. In OSα −  method, the numerical solution of Eq. (3.28) 

is obtained by a two-step scheme: predictor step and corrector step. Knowing the 

displacement vector dn, velocity vector vn and acceleration vector an of previous time step tn, 

the predictor displacement and velocity vectors of tn+1 are expressed as: 

2

1 (1 2 )
2n n n n
tt β+

Δ
= + Δ + −d d v a  

(3.29)
1 (1 )n n nt γ+ = + Δ −v v a

  
The corrector step yields the true solution of displacement and velocity vectors of tn+1: 

 
2

1 1 1n n nt β+ + += + Δd d a  
(3.30)

1 1 1n n ntγ+ + += + Δv v a

 
where an+1 is solved from the time discretized form of Eq. (3.28) as following: 
 

1 1 , 1 1 1 1 1( ) ( ) ( ) 0n n d n n n n n+ + + + + + += + + − =F a Ma f a r a f  (3.31)

 
In general a nonlinear viscous damper can be modeled by: 



69 
 

( )d

d d d df c v sign vα=  (3.32)

 
where cd is the damping coefficient, vd is the velocity of the nonlinear damper and αd is a 

constant that controls the force-displacement loop of the damper. For a N DOF system 

including nonlinear viscous dampers, the damper forces are in the vector form: 

3 

[ ]1 2
T

d d d di dNf f f f=f  (3.33)

 
Approximating the restoring force term rn+1 as: 
 

( )I
1 1 1 1 1 1( ) ( )n n n n n n+ + + + + +≈ + −r d r d K d d  (3.34)

 
where IK is the structural initial stiffness. The derivative of Eq. (3.31) about an+1 is given by: 
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+
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. For the ith nonlinear 

damper, its derivative is given by: 
 

1didi
i di di

d i

f c v
v

αα −∂
=

∂
 (3.36)

 
where the velocity across of the ith nonlinear damper vdi can be related to global velocity 

vector v according to which two DOFs it is installed to. Once F’(an+1) is obtained, Newton’s 

iteration is applied to obtain the converged solution for an+1  
3 

11
1 1 1 1( ) ( )k k k k

n n n n

−+
+ + + +′⎡ ⎤= − ⎣ ⎦a a F a F a  (3.37)

 
The displacement and velocity vectors can then be obtained by Eq. (3.29) and (3.30) 

once the acceleration vector an+1 is solved. 
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3.2.3  Development of MR Damper Element 
 

Due to the complexity and highly nonlinear mechanical properties, MR damper is very 

difficult to simulate in the current available finite element softwares. UI_SimCor provides a 

versatile platform that allows Matlab to be used to model the MR dampers as substructure 

separately, and connect it to the main structure to perform the analysis. UI_SimCor adopts a 

time-stepping integration scheme, so any element that models history-dependent behavior 

should provide the response discretized in time domain.  

The first attempt on modeling MR damper is performed by Dyke et al. (1996). The 

initial model, which combines Bouc-Wen equations proposed with a spring and dashpot in 

parallel, was sufficient enough to simulate dynamics of the prototype dampers by Lord Corp. 

As an extension of the simple Bouc-Wen model, Spencer et al. (1997) proposed a modified 

Bouc-Wen model where additional dashpot and spring elements were introduced with the aim 

to portray force-velocity characteristics of MR damper more accurately. The modified 

Bouc-Wen model is graphically illustrated in Fig. 3.5.  

 

Fig. 3.5  Modified Bouc-Wen model for MR damper 

 
The modified Bouc-Wen model can be expressed mathematically as: 

 
1 1 0( )f c y k x x= + −  (3.38)
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[ ]0 0
0 1

1 ( )y z c x k x y
c c

α= + + −
+  (3.39)

          1( ) ( ) ( )n nz t x y z z x y z A x yγ β−= − − − − + − (3.40)

 
where f is the MR damper force; α , γ , β , A  and n  are the parameters for the built-in 

Bouc-Wen relation; 0c , 1c , 0k  and 1k  are coefficients for the linear dashpots and springs 

in the model. To work compatibly with UI_SimCor integration process, the above equations 

are converted into the incremental form by Euler’s method. 

 
1 1 1 1 1 0( )N N Nf c y k x x+ + += + −  (3.41)

1 0 0
0 1

1 ( ( )N N N N N Ny y dt z c x k x y
c c

α+

⎛ ⎞
= + + + −⎜ ⎟+⎝ ⎠  

(3.42)

1
1 ( ) ( )n n

N N N N N N N N N N Nz z dt x y z z x y z A x yγ β−
+

⎡ ⎤= + − − − − + −⎣ ⎦  
(3.43)

[ ]1 1 0 1 0 1 1
0 1

1 ( )N N N N Ny z c x k x y
c c

α+ + + + += + + −
+

 (3.44)

 
A Matlab function based on Eq. (3.41)~(3.44) is developed as an element that 

provides the MR damper behaviour presented in Fig. 3.5. Note that the damper force at time 

tN+1 is essentially a function of 1Nx + and 1Nx + , the damper displacement and velocity at tN+1, 

which can be estimated by the predictor quantities of Eq. (3.29). Then the error is 

compensated with the OSα −  integration process in UI_SimCor. This element takes in 

predictor displacement and velocity of MR damper as input and returns the updated MR 

damper force. 

Before further application of this element, a numerical MR damper model based on 

ODE solver of Matlab is also developed and used to verify the accuracy of the above 

presented approach. Fig. 3.6 shows that the MR damper element proposed here yields the 

same results as ODE solver method, which validates the modelling approach. 
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             (a) Force-displacement                              (b) Force-velocity 

 
Fig. 3.6  Verification of proposed MR damper element with ODE solver in Matlab 

 
 

3.3  Validation of Hybrid Numerical Simulation Scheme 
 

To validate the hybrid numerical simulation scheme proposed above, i.e. modelling 

the main nonlinear structure in a major finite element (FE) software while modelling the 

seismic protective devices in another computational platform. In this study, OpenSees is 

chosen as the general FE software to model the nonlinear main structure, and Matlab is used 

to model the seismic protective devices as stated in section 3.2. 

A three story nonlinear frame structure considered for numerical simulation and 

verification hereafter is shown in Fig. 3.7. This model represents a test structure located in 

Harbin Institute of Technology, China, which is tested for validating the hybrid numerical 

simulation scheme experimentally. Detailed description of the structure can be found in 

Chapter 4 of this study. The beams and columns in the frame are modelled by beam-column 

elements with bilinear force-displacement material property in OpenSees.                               

The following structural control strategies are adopted to investigate the structural 

responses under earthquake excitation: (i) linear viscous dampers are installed between floors; 

(ii) nonlinear viscous damper is installed between the first floor of the structure and outside 

fixture; (iii) base isolators are installed on the structure at the base level; and (iv) MR damper 

is installed between the first floor of the structure and outside fixture. Fig. 3.7 illustrates the 
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above control strategies for the structure to be analyzed. In implementing the hybrid 

simulation scheme for this structure, two effective DOFs are selected corresponding to each 

floor (6 DOFs in total). The equation of motion is solved with the modified integration 

algorithm in UI-SIMCOR described in section 3.2. 

 

   
   

(a) Linear viscous dampers  (b) Nonlinear viscous damper 

 

 

 

        (c) Base isolation                      (d) MR damper 
 

Fig. 3.7  Structural control strategies for numerical simulation and verification 

 
The 1940 El-Centro earthquake record is used as the input ground motion for all the 

analysis reported here. For control strategies (i)~(iii), the dynamic structural response from 

the hybrid numerical simulation is compared with that of the whole OpenSees model, where 

both main structure and control devices are modelled in OpenSees. For control strategy (iv), 

preliminary experimental test result is used to verify the structural control by MR damper. 

This will be addressed in more details with a more complex model in Chapter 4. 

 

3.3.1  Verification Case I: Linear Viscous Dampers Installed Between Floors 
 

The structural response under control strategy (i) is shown in Fig. 3.8. It’s seen that the 
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hybrid numerical simulation scheme works well with the linear viscous dampers as the 

seismic protective devices.  
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    (a) 1st floor displacement history       (b) Force displacement loop of 1st floor column 

 
Fig. 3.8  Comparison of structural response under control by linear viscous dampers 

 
 
3.3.2  Verification Case II: Nonlinear Viscous Damper Installed between 
First Floor and Outside Fixture 
 

Nonlinear viscous damper is adopted as control device here. One nonlinear damper is 

installed at the first floor of the same structure. The structural response of the 1st floor and the 

nonlinear damper is plotted in Fig. 3.9. It shows that the proposed hybrid numerical 

simulation scheme yields fine results and comparable with the whole model in OpenSees.  
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    (a) 1st floor displacement history      (b) Force displacement loop of nonlinear damper 

 
Fig. 3.9  Comparison of structural response under control by nonlinear viscous dampers 
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3.3.3  Verification Case III: Base Isolators Installed at Base Level of the 
Structure  
 

The case study here shows the hybrid numerical simulation scheme can also 

accommodate the effects of base isolators well. Same structure as before is used and base 

isolators are installed under the 1st floor columns. The structural response shows base 

isolation effect could also be modeled well with the proposed method.  
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    (a) Isolator displacement history           (b) Isolator acceleration history 

 
Fig. 3.10  Comparison of structural response under control by base isolation 

 
 
3.3.4 Verification Case IV: MR Damper Installed between First Floor and 
Outside Fixture 
 

MR dampers are widely used semi-active control devices in civil engineering 

structures. Under the hybrid numerical simulation scheme, MR dampers and corresponding 

control algorithm are easily modelled in Matlab. Passive-off (minimum current applied) and 

passive-on (maximum allowable current applied) control of the MR damper are implemented 

here as examples. The structural control responses of the 1st and 3rd floor are shown and 

compared with experimental results in Fig. 3.11 and 3.12.  
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(a) 1st floor drift and absolute acceleration responses 
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(b) 3rd floor drift and absolute acceleration responses 

Fig. 3.11  Experimental verification of hybrid numerical simulation for MR dampers 

(passive-off) 
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(a) 1st floor drift and absolute acceleration responses 

0 5 1 0 1 5 2 0
- 3

- 2 .5

- 2

- 1 .5

- 1

- 0 .5

0

0 .5

1

1 .5

2
x 1 0

-3

←  0 . 0 0 1 6 9 3 4

←  - 0 . 0 0 1 7 9 9 6

D
rif

t (
m

)

D ri f t o f 3 r d f lo or  in  Y

 

0 .0 0 1 8 5 9 7  →

- 0 . 0 0 2 6 9 3 5  →

E xp e r im e n ta l m
N u m e r ic a l h y b r

       0 5 1 0 1 5 2 0
- 4

- 3

- 2

- 1

0

1

2

3

4

5

←  3 . 5 6 0 5

←  - 3 . 1 3 5 6

A
cc

el
 (m

/s2 )

A c c e ler a t ion  o f 3 r d  f lo or  in

 

4 .5 3 6 8  →

- 3 . 1 9 5 3  →

E xp e r im e n ta l m
N u m e r ic a l h y b r

 
                  T im e  (s )                                    T im e  (s )  
 

(b) 3rd floor drift and absolute acceleration responses 

Fig. 3.12  Experimental verification of hybrid numerical simulation for MR dampers 

(passive-on) 

 
3.4  Implementation of Structural Control Algorithm with Hybrid 
Numerical Simulation 
 

In the hybrid simulation scheme stated above, the control devices are modeled 

separately in Matlab and control algorithms can be applied for the design of their parameters. 

A three-storey (3DOF) shear building model excited by earthquake motion is numerically 

analyzed (shown in Figure 3.13) and the active structural control is implemented using LQR 

theory. The goal is to obtain the stiffness and damping coefficients of the passive devices 

added to the structure that can provide the response reduction effect most close to that of the 

Experimental measurement W/O fiter
Numerical hybrid simulation

Experimental measurement W/O fiter
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Experimental measurement W/O fiter
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active control method. 

 

                              
          Whole model       Main structure in OpenSees     Control devices in Matlab 
 

Fig. 3.13  Numerical example of structural control application with hybrid simulation 
 
 
3.4.1  Classical Linear Optimal Control Theory (LQR) 
 

In classical linear optimal control, the control force u(t) is chosen in such a way that a 

performance index J is minimized: 

[ ]dtttttJ ft

∫ +=
0

TT ))Ru((u))Qz((z  (3.44)

 
where z vector is the structural response in state space, Q and R are referred to as weighting 

matrices, whose magnitudes are assigned according to the relative importance attached to the 

state variables and control forces. The equation of motion with control forces applied in state 

space is: 

)Hf()Bu()Az()(z tttt ++=  (3.45)

 
where A is system matrix. B and H are location matrices specifying, respectively, the 

locations of the control forces and external excitations in the state space. f(t) is a vector 

representing external excitation. The optimal control force is given by: 

t t=u( ) Gz( )  (3.46)
 

The gain matrix G is given by: 
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PBRG T1−−=
2
1  (3.47)

 
and P  is the solution of Ricatti equation: 
 

02QPBPBR
2
1PAPA T1T =+−+ −  (3.48)

 
 
3.4.2  Equivalent Optimal Passive Control Approximation 
 

Equivalent optimal passive control theory uses LQR method in active control theory to 

design linear passive stiffness and damping devices (Gluck et al. 1996). The design is aimed 

at minimizing the difference between the control force from active control theory and those 

for passive control devices. By considering displacement and velocity feedback, both stiffness 

and damping devices are designed. 

As stated in section 3.4.1, the active control forces are obtained as 
 

)(xG)x(G)]z(G[G)Gz()u( xxxx ttttt +===  (3.49)

 
where the gain matrix G  are decomposed to two sub-matrices xG  and xG  which 

correspond to the stiffness and damping information for the control devices. If the same 

control forces are supplied by passive devices and they are denoted by 

 

)(xC)x(K)(u xx ttt +=*  (3.50)

 
where xK  and xC  are the matrices containing the stiffness and damping coefficients of the 

passive devices. Intuitively, the elements in xK  and xC  could be derived by elements in 

xG  and xG . 

Applying the least square approximation to the difference between Equation (3.49) 

and (3.50), the stiffness and damping parameters of the diagonal control devices, ikΔ  and 

icΔ , can be determined by the following two approximation approaches.  
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(1) The response spectrum approach. It includes the influence of all or several modes 

of vibration relevant. In applications involving structures in earthquakes, sometimes only one 

mode of vibration is relevant. Then the control device design are governed by 

im

j
jmij,d

i

g
k

ϕ

ϕ∑
=Δ ,     

im

j
jmdij,

i

g
c

ϕ

ϕ∑
=Δ  (3.51)

 
where ϕ  is the mass normalized modal shapes. ,ij dg  and ,ij dg  are elements in the 

transformation form of gain matrix in terms of interstory drift by multiplying the gain matrix 

with a transformation matrix T:  

TGTG x
T

d = ,     TGTG x
T

d =  (3.52)

 
(2) Truncation approach. This is a much more simplified formulation obtained if only 

a single gain factor in gain matrix of active control is considered. Design parameters can be 

obtained directly from truncating all off-diagonal terms in the transformation form of gain 

matrix in terms of interstory drift. In such case 

,diii gk =Δ ,     d,iii gc =Δ  (3.52)
 
 
3.4.3  Numerical Results 

 
A sample earthquake excitation (the 1940 El Centro record) is selected to conduct the 

time history analysis of structure equipped with the designed supplemental stiffness and 

damping. The relative displacement and total acceleration time histories are shown for 

different floors in Fig. 3.14 and 3.15 respectively. It is seen that the optimal passive control 

designs result in much better structural responses in terms of relative displacement and total 

acceleration than the uncontrolled case. Single mode design achieves close control effect as 

that of truncation design.  
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                 (a) Floor drift                      (b) Absolute acceleration 

 
Fig. 3.14  Response history of 1st floor with different control designs 
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                  (a) Floor drift                      (b) Absolute acceleration 
                                

Fig. 3.15  Response history of top floor with different control designs 
 

 

3.5  Concluding Remarks 

This chapter explores using the proposed hybrid numerical simulation scheme to 

conduct structural control of nonlinear structures so as to derive the optimal passive stiffness 

and damping values to mimic the actively controlled devices.  

In order to achieve this objective, existing hybrid simulation software (UI-SIMCOR) 

is adopted and modified to enable the integration algorithm to include nonlinear seismic 

protective devices such as nonlinear dampers, base isolation devices and MR dampers. 

While the realistic behavior of nonlinear structures can be modeled separately in 
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current finite element analysis software package (e.g. OpenSees, ABAQUS etc.), the 

nonlinear seismic protective devices can be modeled in Matlab and pieced together through 

hybrid simulation to produce the most realistic overall structural responses. The control 

algorithms can also be easily implemented under this framework.  

Using a real test structure equipped with various protection devices, the study 

demonstrated the accuracy and versatility of hybrid numerical simulation scheme. 

Furthermore, this leads to the easy application of different control algorithms that can yield 

the optimal selection of stiffness and damping values for control devices in design. The 

successful application of the hybrid numerical simulation scheme promotes its further practice 

on seismic protective device design for highway bridges. 
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4. Experimental Validation of Numerical Hybrid 
Simulation Scheme Based on UI_SimCor 
 
 

To date, a number of smart structural control systems have been implemented in 

buildings and other civil engineering structures, either in a semi-active or active way. One of 

the most popular approaches is to use viscous fluid dampers for vibration reduction and 

energy dissipation, such as magneto-rheological (MR) dampers, which include smart 

mechanical and material components whose physical parameters can be modified in real-time 

through switching or on-off operations. Due to the variability and use of passive forces, 

semi-active control is becoming a promising technology of seismic hazard mitigation for civil 

engineering structures.  

In order for optimal selection of design parameters of semi-active control devices, 

time history analysis of structures equipped with controllable devices needs to be performed 

first. However, the structural control of nonlinear structures cannot be easily conducted. 

Current typical finite element programs have various kinds of elements of modelling complex 

nonlinear structural components, but there are no well established elements for modelling 

control devices and applying control algorithms. Researchers have to write their own finite 

element code when there is a need to implement structural control technology, such as the 

work done in structural control benchmark problems (Agrawal et al. 2009; Nagarajaiah et al. 

2008; Nagarajaiah et al. 2009).  

UI_SimCor, which is originally developed for distributed hybrid testing, provides a 

promising way to overcome this obstacle in numerical modeling and analysis of semi-actively 

controlled nonlinear structures. Utilizing the hybrid simulation scheme based on UI_SimCor, 

the response of a complex nonlinear structure can be obtained by integrating various 

numerical and physical components as well as using different computational platforms, for 

example, the main structure is modeled in OpenSees while the seismic protective devices and 
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the control algorithm are implemented in Matlab. Individual substructures of the whole 

structure model can communicate and run simultaneously through the ‘data exchange and 

processing center’: UI_SimCor. By the hybrid simulation scheme proposed, the responses and 

structural control of complex nonlinear structures can be conducted. The results will further 

guide the selection of optimal passive parameters of semi-active control devices. 

Experimental verification of UI_SimCor and associated numerical hybrid simulation 

methodology is needed before its further application, especially for analysis of semi-active 

control devices, because of the fact that there are not well established computational programs 

that can model a complex nonlinear structure while accurately implementing the semi-active 

control devices at the same time. In this chapter, real time hybrid simulation (RTHS) test and 

shake table test are performed to validate the novel approach utilizing the numerical hybrid 

simulation scheme based on UI_SimCor presented in Chapter 3. 

RTHS is recognized as a powerful technique that offers the opportunity for global 

system evaluation of civil engineering structures to extreme dynamic loading. In this approach 

a physical portion of the structural system (e.g., a MR damper) is tested, while components of 

the structure that are well understood may be replaced with a computational model. This 

approach offers an alternative or enhancement to traditional shake table testing to evaluate 

global responses for earthquake inputs. Thus, it facilitates testing of larger and more complex 

structures. 

On the other hand, shake table tests have been the “golden standard” by which 

structural systems are tested for dynamic input. This method provides the most realistic 

condition for physical structure, input excitation and real time response measurements. Shake 

table test could serve as mutual validation to RTHS as well. 

In this study, both RTHS and shake table tests are performed for a 3 story steel frame 

structure controlled by a MR damper at Harbin Institute of Technology (HIT) in China. In 
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RTHS test, the MR damper would be isolated as the only physical component for 

experimental testing, while the steel frame structure and control algorithm are implemented in 

Matlab. In the shake table experiment, both the steel frame structure and the control device, 

i.e. a MR damper, are set up and tested realistically on a shake table. There are four tests 

introduced in this chapter: (i) System identification test; (ii) MR damper calibration test; (iii) 

RTHS test and (iv) Shake table test. 

 
4.1 Basic Information 
 
4.1.1 Experimental Structure 
 

The prototype structure used in the test is a three-dimensional 3 story structure located 

at Harbin Institute of Technology (HIT), China, as shown in Fig. 4.1. The floor plan 

dimension is 1.84 m by 2.04 m. Each story is 1.2 m in height and the total height is 3.6 m. 

The columns, beams and girders of the structure are made of structural steel with an elastic 

modulus of 206 GPa and shear modulus of 78 GPa. The yielding point of the material is 

assumed to be 235 MPa with a post yielding ration of 0.02. All of the members are connected 

to each other with solid welds that do not allow free rotation.  

The structure is braced in one direction (x-axis) at both sides with v-type braces as 

shown in Fig. 4.1, which causes the structure to be weak in y-axis and strong along x-axis. 

The columns are welded to 4 steel plates fixed to ground by 16 bolts, which could be taken as 

rigid base connection. At each story, a concrete slab weighting about 250 kg is attached as 

seismic mass. The total mass of the structure including the self-weight of the members is 

calculated to be 1066 kg. The mechanical and section properties of the columns, beams, 

girders and braces are all listed in Table 4.1 and 4.2.  

For passive-off (minimum constant control voltage is applied to MR damper, usually 

0V), passive-on (maximum constant control voltage is applied to MR damper, which is 

determined by the allowable current that flows through the MR damper) and semi-active 
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control tests, a MR damper is attached to the structure at first floor. A slight modification is 

performed at the first floor to connect the MR damper to the frame by adding a horizontal 

v-brace of the same size of girders in the plan of the floor. Thus, the beam, where the MR 

damper is attached, will have additional stiffness against deflection due to damper force. Fig. 

4.2 shows detail of the v-brace and the whole structure with MR damper installed for passive 

and semi-active control tests. The additional mass from the v-braces is about 45 kg which 

makes the total mass of the structure about 1110 kg.  

 

  
Fig. 4.1  Experimental structure 

 
Table 4.1   Mechanical properties of experimental structure material  

 

E 
(GPa) 

G 
(GPa) υ Post-Yielding Ratio Yielding Stress 

(MPa) 
Density 
(g/cm3) 

206 78.63 0.31 0.02 235 7.85 
 

Table 4.2  Section shapes and geometry properties of experimental structure 
 

Beam and Girder Column Brace 

A 
cm2 

IX-X 
cm4 

IY-Y 
cm4 

J 
cm4 

ρ 
Kg/m 

A 
cm2

IX-X
cm4

IY-Y
cm4

J 
cm4

ρ 
Kg/m

A 
cm2

IX-X 
cm4 

IY-Y 
cm4 

J 
cm4 

ρ 
Kg/m

12.74 198.3 25.6 223.9 10.0 4.44 10.2 10.2 20.4 3.487 2.31 3.59 3.59 7.20 1.814
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Fig. 4.2  MR damper installation configuration 

 
4.1.2 Earthquake Ground Motion Inputs  

 
Three earthquake ground motions are selected for the dynamic testing and numerical 

analysis in this study, which are: (i) 1940 El-Centro earthquake record (North-South 

component, Peknold version). The instrument used was attached to the El Centro Terminal 

Substation Building’s concrete floor. (ii) 1984 Gilroy Array #6 record (station 57383, G06) 

during Apr. 24, 1984 Morgan Hill earthquake. The original record is scaled/converted into 

fault-normal (FN) component which has an azimuth of 58 degrees. (iii) Takarazuka (TAZ) 

station record during the Jan. 16, 1995 Kobe earthquake. The original record is 

scaled/converted into fault-normal (FN) component which has an azimuth of 140 degrees.  

El-Centro earthquake is the first major earthquake to be recorded by a strong-motion 

seismograph located next to a fault rupture. It has been widely used for research, engineering 

and education purpose. the other two records are also from near-fault shaking and chosen for 

their kinematic characteristic that can be captured by a pulse in velocity or acceleration. Time 

histories of the records are illustrated in Fig. 4.3. 
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(a) 1940 El-Centro earthquake 
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(b) Takarazuka station record (1995 Kobe earthquake) 
 

Fig. 4.3  Ground motions for experimental test and numerical simulation 
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(c) Gilroy Array #6 record (1984 Morgan Hill earthquake) 
 

Fig. 4.3 (cont.)  Ground motions for experimental test and numerical simulation 
 
4.1.3 Three Dimensional Numerical Model in OpenSees 
 

Based on the section properties and system identification results, a 3D finite element 

(FE) model is generated in OpenSees. The base of the structure is fixed in translational and 

rotational direction. The seismic mass including concrete mass and self-weight of the 

members is modeled in the software. The damping matrix is determined based on the 

Rayleigh damping with a modal damping ratio of 1.5%. Displacement based element 

‘dispBeamColumn’ is adopted to simulate the structural components and each structural 

member is comprised of 10 elements. It’s considered as rigid for all the connections between 

beams, columns and foundation. All 6 DOFs of 1st floor columns are fixed at the base. 

Distributed mass is assigned along the structural elements, while lumped mass is put on the 

middle of the two beams which support the concrete slab on each floor. P-Delta effect is also 

included in the structural analysis. As for the structural nonlinear behaviour, bilinear 
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kinematic hardening with a post-yielding ratio 0.02 is assumed.  

Fig. 4.4 summarizes the first 3 modal frequencies and mode shapes of the structure in 

the weak direction (y-axis) from the OpenSees 3D model. This finite element model built in 

OpenSees would be further calibrated and adjusted for use as a substructure of the numerical 

hybrid simulation method proposed in Chapter 3 to simulate the dynamic response of the 

experimental steel frame structure controlled by a MR damper. The RTHS and shake table 

tests of this chapter would be used as a solid validation of this numerical hybrid simulation 

scheme. Time history analysis of the 3D FE model is performed to predict the structural 

response beforehand such that reasonable and conservative input motions are determined for 

the shake table test to avoid any potential and unexpected damage to the structure by 

excessive shaking. Table 4.3 and 4.4 summarize the predicted maximum structural responses 

under the input motions that would be adopted in the shake table test. 

  
(a) 1st mode in y ( 2.95 Hz) (b) 2nd mode in y (8.49 Hz) (c) 3rd mode in y ( 12.67 Hz)

 
Fig. 4.4  Mode shape of the experimental structure by 3D FE model 

 
 

Table 4.3  Maximum displacement responses 
 

EQ Name Scale 
factor 

Max Floor Drift Ratio (%) Max Top Rel. 
Disp(m) 1st 2nd 3rd 

X Y X Y X Y X Y 

El-Centro 
1 0.0017 1.5009 0.0018 1.1666 0.0014 0.7161 0.0001 0.0377 

0.5 0.0009 0.7175 0.0009 0.5921 0.0007 0.3694 0.0000 0.0186 
0.1 0.0002 0.1435 0.0002 0.1184 0.0001 0.0739 0.0000 0.0037 

Morgan 
Hill 

1 0.0012 1.0693 0.0012 0.8420 0.0009 0.4943 0.0000 0.0282 
0.5 0.0006 0.5346 0.0006 0.4208 0.0004 0.2468 0.0000 0.0141 
0.1 0.0001 0.1069 0.0001 0.0841 0.0001 0.0493 0.0000 0.0028 

Kobe 
1 0.0026 3.7604 0.0023 1.3698 0.0015 1.0273 0.0001 0.0652 

0.5 0.0013 1.4836 0.0012 1.2241 0.0008 0.7406 0.0000 0.0410 
0.1 0.0003 0.3185 0.0002 0.2685 0.0002 0.1506 0.0000 0.0087 
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Table 4.4  Maximum absolute acceleration responses 
 

EQ Name PGA  
(g) Scale factor 

Max Floor Absolute Acceleration (m/s^2) 
1st 2nd 3rd 

X Y X Y X Y 

El-Centro 
0.3188 1 3.17 9.06 3.23 12.40 3.27 14.39 
0.1594 0.5 3.15 5.62 3.18 6.52 3.20 8.01 

0.03188 0.1 3.13 3.42 3.14 3.63 3.14 3.75 

Morgan Hill 
 

0.244 1 2.37 5.96 2.35 8.11 2.37 10.33 

0.122 0.5 2.38 3.64 2.37 4.68 2.37 5.52 

0.0244 0.1 2.39 2.41 2.39 2.52 2.38 2.59 

Kobe 

0.645 1 6.38 17.24 6.39 15.09 6.45 21.30 

0.3225 0.5 6.35 10.73 6.36 13.64 6.38 16.36 

0.0645 0.1 6.33 7.07 6.34 7.26 6.34 7.05 

 
 
4.2  Theory Backgroud 
 
4.2.1 Analytical Model and State Space Formulation of the Experimental 
Structure 
 

For the experimental steel frame structure equipped with a MR damper and subjected 

to external earthquake excitation, the linear equation of motion can be written as: 

gt t t f t u t+ + = −Μx( ) Cx( ) Kx( ) Γ ( ) ΜΛ ( )  (4.1)
 

where M, C and K are, respectively, the mass, damping and stiffness matrices; x(t) = [x1, 

x2, . . . , xn]T is the n-dimensional relative displacement vector where n is the number of 

degree of freedom (DOF) of the structure; f(t) is the control force from MR damper and ( )gu t  

represents the external earthquake excitation. The 1n×  vector Γ  is the location matrix 

which defines the location of MR damper, and Λ  is the influence vector of the external 

earthquake excitation which also has the dimension of 1n× . Since the mass of the 

experimental steel frame is concentrated on each floor of the structure and the frame is 

relatively weak in one axis (no bracing in y direction), as shown in Fig. 4.1, it’s reasonable to 

simplify the steel frame to be a 3DOF structure. Thus the M, C and K could be expressed in 

the following form: 
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where the components in M and K matrices are computed based on the material and section 

properties listed in Table 4.1 and 4.2. The C  matrix can be evaluated by classical mass and 

stiffness proportional damping, such as Rayleigh damping. Γ  and Λ  vector are also 

simplified in this case: 

[ ]T1 0 0= −Γ ,  [ ]T1 1 1=Λ  (4.3)
 

Rewrite Eq. (4.1) with state-space formulation: 

( ) ( )gt t f t u t= + +z( ) Az( ) B E  (4.4)
 

where  

( )
( )
t

t
t

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x
z( )

x
, ⎥

⎦

⎤
⎢
⎣

⎡
−−

= −− CMKM
I0

A 11 , −

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1

0
B

M Γ
, ⎡ ⎤

= − ⎢ ⎥
⎣ ⎦

0
E

Λ
 (4.5)

 
The structural measurements utilized to compute the optimal control force of MR damper 

include the absolute accelerations of the three floors of the structure, and the displacement of 

the MR damper which equals to the 1st floor relative displacement according to the structural 

configuration in Fig. 4.2, i.e. the measurement vector equals to  

[ ]1 2 3 1a a ax x x x=y  (4.6)
 

where the subscript ‘a’ stands for ‘absolute’. y  can also be written in state space form: 

m( ) ( ) ( )t t f t= +y C z D                                   (4.7)
  
where  

m 1 0 0 0 0 0

− −⎡ ⎤− −
= ⎢ ⎥
⎣ ⎦

1 1M K M C
C , 

0

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1M Γ
D  (4.8)

 
Eq. (4.4) and (4.7) together define a plant for classical control problem: 
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m

( ) ( )
( ) ( ) ( )

gt t f t u t
t t f t

= + +⎧
⎨ = +⎩

z( ) Az( ) B E
y C z D

 (4.9)

 
4.2.2 Semi-active Control Algorithm of the Experimental Structure Controlled 
by A MR Damper 
 

The optimal control force from MR damper is derived in such a way that the following 

performance index is minimized: 

T 2

0
( ) ( ) ( )ft

J t t rf t dt⎡ ⎤= +⎣ ⎦∫ y Qy  (4.10)

 
where Q  and r are the weighting quantities for measured structural response and control 

force given by MR damper, respectively. The time interval [0, tf] is defined to be longer than 

that of the external excitation duration. The optimal control force is calculated by: 

c( ) ( )f t t= −K z  (4.11)
 
where ( )f t  is the desired optimal force, and cK  is the control gain matrix which can be 

computed by the command ‘lqry’ of Matlab control toolbox: 

c mlqry( , , , , , )r=K A B C D Q  (4.12)
 
It’s note that the full internal states, ( )tz , are need to estimate the optimal control 

force in Eq. (4.11). But it is hard to measure such states in reality due to instrumentation 

limitation. Fortunately, unobserved internal states can be restored with the help of observed 

states ( )ty  with a Kalman estimator (Kalman 1960). The estimation of the full internal states 

is governed by  

ˆ ˆˆ ˆ( ) ( )t t +z = Az BY  (4.13)
 

where  
m

ˆ = −A A LC ,  ˆ [   ]= −B L B LD , and [ ( );  ( )]t f t=Y y  (4.14)
 

where Kalman estimator gain matrix L can be calculated by the command ‘lqew’ of Matlab 

control toolbox : 

mlqew( , , , , , )=L A E C 0 w v  (4.15)
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where w  and v  are the disturbance covariance matrix and measurement noise covariance 

matrix, respectively. With the state estimator ˆ( )tz  obtained, one can calculates the optimal 

control force by:  

c c ˆ( ) ( )f t t= −K z  (4.16)
 

However, the force generated by the MR damper cannot be controlled directly. A 

control algorithm needs to be implemented to make MR damper approximately produce the 

optimal control force. Clipped optimal control proposed by Dyke et al. (1996) is adopted here. 

Clipped optimal control compares the sign of the desired force and the measured force of MR 

damper and applies maximum voltage if the signs match, otherwise sets voltage to zero, as 

expressed in Eq. (4.17): 

( ){ }max cHv V f - f f=  (4.17)
 

where v  is command voltage of MR damper, maxV  is the maximum allowable voltage 

and { }H • is the Heaviside step function. 

4.2.3  Eigensystem Realization Algorithm (ERA) for System Identification  
 

To construct the state space matrices given in Eq. (4.9) and apply semi-active control 

algorithm, M, C and K matrices needs to be first estimated, either from the simplified 3DOF 

model presented in section 4.2.1 or derived from experimental data of system identification 

test. Considering the fact that discrepancies between the estimations and experimental data are 

often evident, implementing a system identification that reveals dynamic properties of the 

structure is essential. 

For this study, a commonly used time-domain approach, Eigensystem Realization 

Algorithm (ERA) is selected. The success of this algorithm has been verified in multiple 

studies (Caicedo 2011; Caicedo et al. 2004; Giraldo et al. 2004). Juang and Pappa (1985) 

proposed ERA to extract modal parameter and create a minimal realization model that 
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replicates the output response of a linear dynamical system when it is subjected to a unit 

impulse. The ERA procedure can be summarized in four steps. They are: (i) Hankel matrix 

assembly, (ii) singular value decomposition, (iii) state-space realization and (iv) eigenvalue 

extraction. 

In general, the impulse response of a linear system can be represented by a 

discrete-time representation of state space formulation with n-dimensional state vector, z, 

m-dimensional control input, u and p-dimensional measurement vector, y : 

m

( 1) ( )
( ) ( )

k k k
k k

+ = +⎧
⎨ =⎩

z Az( ) Bu
y C z

 (4.19)

 
where A is n × n matrix, B is n ×m matrix and Cm is p × n matrix. The matrix impulse 

response, known as Markov parameter sequence, can be derived from Eq (4.19): 

1
m( ) kY k −= C A B  (4.20)

 
where ( )Y k  is p × m matrix and ( )ijY k  is thi  output to thj  input at time step k.  

(i) Hankel matrix assembly 

As the first step of the ERA algorithm, Hankel matrix for a time step k is formed: 

( ) ( 1) ( )
( 1) ( 2) ( 1)

( 1)

( ) ( 1) ( )

Y k Y k Y k s
Y k Y k Y k s

H k

Y k r Y k r Y k s r

+ +⎡ ⎤
⎢ ⎥+ + + +⎢ ⎥− =
⎢ ⎥
⎢ ⎥+ + + + +⎣ ⎦

 (4.20)

 
For a typical application, r, row of H(k − 1) matrix should be at least 10 times the 

modes to be identified and s, column of H(k − 1) should be 2-3 times of r.  

(ii) Singular value decomposition 

A singular value decomposition is performed using H(0): 

(0) TH PDQ=  (4.20)
 
where P, Q and D are obtained by singular value decomposition. P is rp × n, Q is ms × n and 

D is n × n diagonal matrix. 
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(iii) State-space realization 

By integrating P, D, Q and H(k), a minimum realization of the identified system in Eq 

(4.19) can be derived in state space form: 

1/ 2 1/ 2

1/ 2

1/ 2
m

(1)T

T
m

T
p

D P H QD
D Q E

E PD

− −=

=

=

A
B

C

 (4.21)

 
where [ ]T0p mE I=  and [ ]T0m mE I= . 

(iv) Eigenvalue extraction 

Natural frequencies, damping ratios and mode shapes can be obtained by applying 

eigen-decomposition on state matrix, A, as given in Eq. (4.21). A typical way to obtain the 

identified parameters is prescribed below: 

[ ]

1/ 2

, ( )
ln( )

( )
2
( )

s

dE

E

T
E p

eig
s f

sf

s
s

E PD

υ λ
λ

π

ξ

υ

=

=
ℑ

=

ℜ
=

Φ =

A

 
(4.22)

 
Where υ  and λ  are eigenvectors and eigenvalues of the system in z-plane (complex plane) 

since state A is in discrete-time form, fs is the sampling rate of the system in Hz, s is the 

Laplace root of the system converted from z-plane, dEf , Eξ  and EΦ  are experimental 

damped frequency in Hz, damping ratio and complex mode shape, respectively. The 

experimental natural frequency of the system can be obtained by 

1
dE

nE
E

ff
ξ

=
−

 (4.20)

 
Most of the above calculations are automated by ‘damp’ function in Matlab.  

It’s note that mode shapes EΦ  here is complex-valued. However the later model 
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updating process requires real mode shapes (section 4.2.4). A transformation from complex to 

real mode shape is needed and it should maintain the original information of the identified 

complex mode shape to conserve dynamic characteristic of the test structure as much as 

possible (Panichacarn 2006). A rotation transformation is applied to minimize the error 

between real and complex mode shapes: 

,
(:, )(:, )
(1, )

E
E rotate

E

ii
i

Φ
Φ =

Φ
 (4.21)

 

, , ,(:, ) ( ( (:, ) )) (:, )E real E rotate E rotatei sign i iΦ = ℜ Φ Φ  (4.22)
 
where ,E rotateΦ  is the rotated complex mode shape, and ,E realΦ  is the computed real mode 

shape. Eq. (4.21) is essentially a rotation transformation where (:, )E iΦ  is normalized with 

respect to its first element. The procedure here minimizes the imaginary part of the complex 

mode shape such that Eq. (4.22) is able to produce the real values with a minimal error, i.e. 

dynamic characteristics of the test structure is conserved. This rotation transformation is 

intuitively shown in Fig. 4.5 

  

      (a)  Before ratation      (b)  After rotation 
  

 

Fig. 4.5  Effect of rotation transformation  
 

4.2.4  Analytical Model Updating of Experimental Structure Based on 
System Identification 
 

As discussed in the previous section, a state space realization of the structure can be 
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obtained using ERA procedure based on measured quantities. This state space representation 

also contains dynamic characteristics of the identified structure, i.e. natural frequencies, 

damping ratios and mode shapes. However, the ERA-obtained states do not contain any 

physical information of the structure that is not measured. Consequently, a feedback control 

algorithm cannot be developed since unmeasured structural responses remain unobservable. 

To overcome this shortcoming of ERA, Giraldo et al. (2004) proposed a model updating 

method where experimental results are combined with the analytical model. According to this 

approach, the stiffness and damping matrices are updated using identified natural frequencies 

damping ratios and mode shapes as given below: 

[ ] T
, ,2E A E real nE E realK M fπ= Φ Φ  (4.23)

 
[ ] T

, ,2 (2 )E A E real E nE E realC M fξ π= Φ Φ  (4.24)
 
where EK  and EC  are updated stiffness and damping matrices based on analytical mass 

matrix AM  that is proposed in section 4.2.1. In most cases, ,E realΦ  is not AM -orthogonal, 

i.e. T
, ,E real A E realMΦ Φ ≠ I , thus resultant EK  and EC  are not symmetric. This asymmetry 

does not comply with the Maxwell’s Reciprocal Theorem. Therefore the analytical mass 

matrix AM  needs to be modified such that the updated mass matrix can be diagonalized by 

,E realΦ . EM  can be obtained by minimizing the quadratic error between AM  and EM  as 

given below: 

Tmin ( ) ( )E A E Avec M M vec M M⎡ ⎤− −⎣ ⎦W  (4.25)
 
subject to  

T
, ,E real E E realMΦ Φ = I  (4.26)

 
where vec  is the vectorization operation and W is the weighting matrix which can be 

adjusted to give more weight to the elements in ( )E Avec M M−  that needs to be minimized. 
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At last, by replacing AM  in Eq. (4.23) and (4.24) with EM , the complete set of 

updated mass, stiffness and damping matrices are obtained, i.e. the analytical model of the 

experimental structure is updated and enhanced by the knowledge from system identification 

such that it can best represent the real structure for dynamic analysis and simulation. 

 
[ ] T

, ,2E E E real nE E realK M fπ= Φ Φ  (4.27)
 

[ ] T
, ,2 (2 )E E E real E nE E realC M fξ π= Φ Φ  (4.28)

 
 
4.3  Test Setup and Procedure 
 
4.3.1  System Identification Test  
 

A accurate numerical model is critical for structural control design and RTHS test to 

obtain the correct prediction of the system performance. A model that could accurately reflect 

the behavior of the physical experimental structure is needed to minimize the errors between 

the dynamics of the numerical model and the actual structure for a convincing RTHS test. 

Typically, models are constructed based on the design specifications and known mechanical 

properties, however, due to irregularities in material and flaws in construction, a model 

generated from these quantities may not reflect the real structure in the laboratory. In this 

sense, system identification could provide an accurate numerical model that could be used for 

structural control design and RTHS purpose, also as a standard to calibrate numerical models 

generated from traditional FEM modeling methods. 

The Eigensystem realization algorithm (ERA) is one of the well established methods 

to perform system identification, from which a complete mathematical model can be obtained 

based on the measured data of the hammer test. Using ERA, natural frequencies and mode 

shapes can be obtained from experimentally produced impulse data.  

A system identification test is proposed for the ERA procedure. The test plan consists 

of the following steps: (i) exciting the test specimen with an impact hammer at predetermined 
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locations, (ii) obtaining the responses from accelerometers that are placed on the structure at 

various places, the forces measured by the hammer and revealing transfer function between 

the output response and input excitation, (iii) developing high quality impulse response 

functions and (iv) identifying frequencies and mode shapes by applying ERA to impulse 

functions. 

(1) DAQ System 

To acquire system identification data of the test structure, NI USB-6259, a 

multi-functional data acquisition system box made by National Instruments is employed as 

shown in Fig. 4.6(a). The DAQ system has the capability to sample data up to 1.25MHz rate 

from 16 differential analog input channels at 16 bit analogto-digital conversion resolution. 

The data acquired online from DAQ system is transmitted over USB 2.0 to a Dell Inspiron 

1720 notebook to be processed by DeweSoft Dynamic Signal Analyzer v6.6 developed by 

DeweSoft as shown in Fig. 4.6(b).  

 

 

(a) NI USB-6259                (b) DeweSoft Dynamic Signal Analyzer 

Fig. 4.6  DAQ system and data processing software 

(2) Instrumentation 

The one-hand operatable modally tuned impact hammer used in the tests is made by 

Jiangsu Lianneng Electronic Technology Limited Corporation with a model #LC-01A from 
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Sinocera Piezotronics branch as shown in Fig. 4.7. The hammer is equipped with a charge 

type load cell with model #CL-YD-303 and a rubber tip on it. All together, hammer is rated to 

generate maximum thrust of 2 KN.  

Charge-type acceloremeters produced by Brüel & Kjær model #4368 with a flat 

frequency response between 0.2 Hz and 4800 Hz are used to measure acceleration response 

(Fig. 4.8(a)). Table 4.5 lists the information of the accelerometers used here. 

Table 4.5  Information of accelerometers 
 

Sensor # in test  Brand - serial #  
Charge 

Sensitivity  

Output 

Unit  

S5 Brüel & Kjær model #4368 - serial 
#0956116 4.52 pc/m s-2 cm/s2 

S4 Brüel & Kjær model #4368 - serial 
#0956117 4.46 pc/m s-2 cm/ s2 

S1 Brüel & Kjær model #4368 - serial 
#0956119 4.44 pc/m s-2 cm/ s2 

S2 Brüel & Kjær model #4368 - serial 
#0956120 4.46 pc/m s-2 cm/ s2 

S6 Brüel & Kjær model #4368 - serial 
#0956121 4.36 pc/m s-2 cm/ s2 

 

The acceleration sensors and impact hammer are powered with signal conditioners 

capable of producing velocity and displacement by integration, belonging to Sinocera 

Piezotronics branch with mode #YE5858A (Fig. 4.8(b)), which is based on Brüel & Kjær’s 

model #2635 charge amplifier. The amplifier has selectable dial gains, high-pass filter ranging 

from 0.3 Hz to 10 Hz for acceleration measurements and a low pass filter from 300 Hz to 

100000 Hz (wide-band). All filters attenuate maximum 3 dB at the cutoff frequency during 

normal operation conditions. The decay rate for low and high pass filters are 12 dB and 6 dB 

per octave, respectively.  
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Fig. 4.7  Impact hammer used in the test 
 

 

 

(a) Accelerometer                    (b) Charge amplifier 

Fig. 4.8  Accelerometer and charge amplifier 

(3) Setup and Procedure 
 

The sensor placement and hammer hit locations are presented in Fig. 4.9. From the 

experience of several trials, 3 sensors have been placed to the midpoint of the girder at each 

floor. This configuration is determined and set up to best reflect the structural response of MR 

damper controlled structure in the shake table test, where the control force from MR damper 

would be applied on 1st floor at this hammer hit location and total acceleration feedback from 

horizontal weak axis (y-axis) of each floor is sent to control core for semi-active control 

application.  

For each trial of hammer test, 25 hits are performed, each having up to 60 second time 

window in between hits to let the impact energy die out in the system substantially through 

structural damping. Theoretically, a single hit would suffice for ERA to capture system 
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dynamics. However, with noise in present, and also small-scale local and global nonlinearities 

in the structure, some performance degradation during parametric estimations such as 

erroneous minimum realization or wrong natural frequencies is expected. Performing a large 

number of impacts will manage the issues stated above to some extent, as it will provide more 

averaging for frequency domain pre-process and thus result in higher quality data. 

For each set of data, including the hammer force, 4 channels are sampled at 3000 Hz.  

Brüel&Kjær model No. 4368 and impact hammer made by Jiangsu Lianneng Electronic 

Technology Limited Corporation are used as the sensing unit. 0.1and 300 Hz are selected as 

low pass filter and high pass filter respectively for both the sensors and hammer. The test data 

can be accessed through NEEShub (Ozdagli et al. 2013a,b). 

After the data is collected, a post-processing is conducted involving dividing each 

impact responses into individual time histories associated with corresponding hammer force 

response. Transfer functions are generated from force to acceleration for all successful hits 

and averaging is performed in order to increase signal to noise ratio and eliminate structural 

nonlinearities. Using the averaged transfer functions, impulse response functions are 

developed for further ERA procedure. 500 columns and 1500 rows with a singular value of 25 

are the input parameters to ERA. 

 
 

Fig. 4.9  3D view for sensor placement and hammer hit location  
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4.3.2  MR Damper Calibration Test 
 

In order to ensure a respectable match between shake table results, pure simulations 

and real-time hybrid simulations, a good understanding of MR damper behavior is necessary. 

For the MR damper calibration test, the input is the motion applied on the damper movable 

piston and the current that controls the strength of the magnetic field of the MR fluid; the 

output is the damping force generated from the device. The ultimate goal of calibrating the 

MR damper model is to provide a set of damper parameters which can capture the damper’s 

behavior under a variety of displacement inputs and electric current inputs.  

(1) Instrumentation 

An MR damper (serial# 0409010) made by LORD Corporation with model # 

RD-1005-3 is adopted for the tests in this study. This product is a compact, 

magneto-rheological (MR) fluid damper. It’s suitable for industrial suspension and small scale 

structural applications. The continuously variable damping is controlled by the increase in 

yield strength of the MR fluid in response to magnetic field change. The response time of the 

MR damper is less than 15 milliseconds, which provides straightforward controls. The 

technical properties of the MR damper in this test are listed in Table 4.6. 

Table 4.6  Technical properties of MR damper RD-1005-3 
 

 

Compressed Length (mm) 155 Extended Length (mm) 208 

Body Diameter (mm) 41.4 Shaft Diameter (mm) 10 

Tensile Strength (N) 4448 Operating Temperature ( C° ) 71 

Damper Force (N) 
(peak-to-peak) 

5cm/sec @1A >2224 

20cm/sec @0A <667 

 
Ampere power is driven to the damper with a current driver developed by Harbin 

Institute of Technology (HIT) as given in Fig. 4.10(a). A series of constant voltages that are 

given to the current driver is provided by the dSpace 1104 (#127174) given in Fig. 4.10(b). 

The current driver voltage-current equation is A = V/1.70 when including the MR damper as a 
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closed loop, as shown in Figure 4.11. This provides a way to predict the current within the 

damper if the applied voltage is known. 

 
(a) MR damper current driver  (b) dSpace 1104 (#127174) 

   
Fig. 4.10  MR damper current driver and dSpace 1104 
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Fig. 4.11  Voltage-Current relationship of MR damper 

 

An MTS actuator with a 2500 KN capacity located at Harbin Institute of Technology 

is used to drive the MR damper in the test, as shown in Fig. 4.12(a). When all of the pumps of 

the hydraulic supply unit are turned on, the actuator velocity can reach up to 100 mm/sec. The 

MTS actuator has a built in force transducer that can measure the reaction force to the 

machine, however, the maximum output force of the MR damper tested is only 2KN, which is 

much smaller than the capacity of the actuator. To avoid inaccurate measurement due to 

sensor noise, a separate load cell is used to measure the MR damper force output. This load 
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cell (model #661.19F-03, serial #313002, charge sensitivity 0.0066667 V/N) is manufactured 

by MTS System Corporation and has a capacity of 15KN, which is shown in Fig 4.12(b). 

 
 

(a) MTS actuator with MR damper (b) MTS 15 KN force transducer 
   

Fig. 4.12  2500 KN MTS actuator and 15 KN force transducer 

 
The MTS actuator is driven by a MTS Flex GT Controller (MTS Corporation 2001a 

and b) shown in Fig. 4.13(a). It runs on Model 793.00 system software to operate and control 

the MTS actuator action. A screenshot of the software is given in Fig. 4.13(b). 

 
(a) MTS Flex GT controller  (b) Model 793.00 system software 

   
Fig. 4.13  MTS Flex GT controller and software 

 
(2) Setup and Procedure 

The experimental setup is illustrated in Fig. 4.14. It’s seen that the MR damper is 

attached to the 2500 KN loading system and driven by the actuator, along with the external 
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passive voltage command is exerted by a Matlab compatible real-time hardware dSpace 1104. 

MTS Flex GT controller controls the action of the actuator while collecting the MR damper 

displacement from the internal LVDT and the MR damper force from the 15 KN load cell at a 

sampling rate of 1000 Hz.   

 

Fig. 4.14  Experimental setup for MR damper calibration test 

 
The damper characterization test involves applying a series of sinusoidal waves at 

various constant voltage (current) levels. The amplitudes of the controlled sinusoidal 

displacement inputs here are set to be 5 mm and 10 mm, while the frequencies are chosen to 

be 2 Hz, 2.9 Hz, 4 Hz which correspond to low, resonant and high frequency response of the 

test structure according to the numerical prediction. This frequency range of calibration 

testing is supposed to fully characterize the MR damper behaviour under different conditions. 

In this test, 6 constant voltage levels are chosen, under which the resulting current in the 

circuit is in between 0A~1.01A. The input sine waves are shown in Fig. 4.15 and the loading 
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cases are summarized in Table 4.7.  

Table 4.7  Loading cases of MR damper calibration test 
 

Input frequency (Hz) Input amplitude (mm) Current in MR damper (A) 

2 5 [ 0  0.20  0.41  0.59  0.83  1.01 ]

2.9 5 [ 0  0.20  0.41  0.59  0.83  1.01 ]

4 10 [ 0  0.20  0.41  0.59  0.83  1.01 ]
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Fig. 4.15  Sine wave input of MR damper calibration test 

 
The minimum current 0A and maximum current 1.01A correspond to so-called 

‘passive-off’ and ‘passive-on’ control respectively. These two passive control concepts would 

be used throughout the later discussions of this study. With 60 sec displacement input, the 

experimental data is recorded. Based on the force response to the given displacement, a 

modified Bouc-Wen model as discussed in Chapter 3 can be developed with all the 

parameters are identified by the calibration test. Thus, the behaviour of the MR damper used 

in our test could be well described numerically.  
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4.3.3  Real Time Hybrid Simulation (RTHS) Test 
 

RTHS technique is often used to understand the effect of vibration control devices on 

the global performance of structures, in particular, for evaluating performance of rate 

dependent devices such as MR dampers. RTHS provides an efficient way to isolate and 

physically test only the more complex or critical components, where available resources do 

not allow researchers to test the full-scale structure. To verify RTHS with shake table 

responses of the three story test structure, an RTHS framework has been developed at Civil 

Engineering Laboratory at HIT. Particularly, the tests conducted on RTHS setup at HIT 

investigates performance of a newly developed Robust Integrated Actuator Controller (RIAC) 

by Purdue Univercity, as well as quality of infrastructure and flexibility of the RTHS 

configuration for future RTHS.  

(1) Instrumentation 

The instrumentations used for RTHS test is the same as MR damper calibration test. 

(2) Setup and Procedure 

The proposed experimental hybrid simulation setup is partitioned into two parts: (i) 

MR damper attached to the 2500 KN actuator as the experimental substructure and (ii) 

Analytical 3-story structure model updated by system identification test as the numerical 

substructure. The diagram of the setup including DAQ system and controllers are shown in 

Fig. 4.16. 

dSpace 1104 is used to realize control over MR damper. This is achieved by the 

following steps: (i) The updated analytical model of the 3-story structure and control 

algorithm are edited in Simulink of Matlab and downloaded to dSpace computational unit; (ii) 

dSpace computes the control displacement based on the equilibrium of the numerical 

substructure to MTS Flex GT controller to drive the MTS actuator to apply the displacement 

to MR damper; at the same time, dSpace also determines the control voltage by the control 
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algorithm and apply it to the current driver of MR damper to activate the magnetic field and 

enhance its damping. (iii) Displacement and reaction force of the MR damper are sent back 

from MTS Flex GT controller to dSpace as inputs for control algorithm and equilibrium of the 

numerical substructure; (iv) dSpace takes both MR damper force feedback and analytical 

earthquake excitation to compute and send the control displacement, along with the updated 

control voltage, to MTS Flex GT controller for next time step execution. This process is also 

illustrated in Fig. 4.16. 

RTHS test is repeated for the 3 earthquake excitation inputs mentioned in section 4.1.2: 

historical 1940 El Centro earthquake, velocity-dominant 1995 Kobe earthquake and 

acceleration dominant 1984 Morgan Hill earthquake. For each earthquake, passive-off, 

passive-on and semi-active control tests are performed. 

 

Fig. 4.16  Experimental setup for RTHS test 

(3) MTS Actuator Control Compensation 
 

To obtain the most accurate results from RTHS test, a new Robust Integrated Actuator 

Control (RIAC) strategy is proposed by Purdue University and implemented in this test. The 

RIAC has three key components; (i) the loop shaping feedback control based on H∞  
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optimization; (ii) an additional Kalman filter for feedback estimation and (iii) noise reduction 

and a pure delay feed-forward block for control performance enhancement. The combination 

of the aforementioned blocks provides flexible designs according to different evaluation 

criterion. The efficacy of the proposed strategy is demonstrated through tracking tests of MTS 

actuator-MR damper system. 

Validation of RIAC is first done through two tracking tests with a band-limited white 

noise with band width of 15Hz and a sinusoid input of 3Hz which is closed to structure first 

mode, as shown in Fig. 4.17. 
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(a)  Sinewave input 

Fig. 4.17  Validation of RIAC strategy by theoretical inputs 
 
 

Validation of RIAC is also performed through the tracking test of the actuator-damper 

system with a 35% scale Kobe earthquake. Both MR damper passive-off and passive-on case 
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are studied, as shown in Fig. 4.18. 

8 10 12 14 16 18 20
-20

-10

0

10

20

time (sec)

di
sp

la
ce

m
en

t (
m

m
)

 

 
desired
filtered
measured

 
(a)  Passive-off 
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(b)  Passive-on 

Fig. 4.18  Validation of RIAC strategy by earthquake input 

 
It’s seen that for all the cases the RIAC tracking is very accurate except for the 

passive-off case with Kobe earthquake. This is due to the fact that the hydraulic servo valve 

reached the velocity limitations. Based on RIAC strategy, both control performance and 

robustness can be granted even with large noise/signal condition and it compensates uncertain 

dynamics in terms of small time delay that simulation is failed to capture. The RIAC strategy 

implementation for RTHS test ensures MTS actuator to exactly follow the displacement 

control command by dSpace in the test setup.  

4.3.4  Shake Table Test 
 

As for model verification, the structure is tested experimentally on the shake table and 

the results are compared to analytical simulations performed with the updated model. 
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(1) Instrumentation 

The shake table located in Harbin institute of Technology is a unidirectional shake 

table constructed in 1987. It is 3 meters wide in off-direction and 4 meters long in shaking 

direction. A picture of shake table is given in Fig. 4.19. The actuator attached to the shake 

table is made by Schenck. The actuator has a force capacity of 250 KN and it can drive the 

shake table with a peak acceleration of ±1.33g, peak velocity of ±600 mm/s within a stroke of 

±125 mm. The maximum payload and maximum overturning moment of the shake table is 

limited to 12 t and 30 t-m, respectively. The frequency of the excitation input is bounded 

between 0-30 Hz. The parameters and capacities of the shaking table are listed in the Table 

4.8 and the actuator is shown in Fig.4.20. 

 

Fig. 4.19  Shake table located at HIT 

Table 4.8  Shake table parameters and capacities 
 

Size 3m×4m (shaking direction) 
Peak acceleration: bare table ±1.33g 

Peak velocity ±600 mm/s 
Stroke ±125 mm 

Maximum gravity (vertical) payload 12t 
Force capacity of actuators 200kN 

Maximum overturning moment 30 t-m 
Frequency bandwidth 0-30 Hz 
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Fig. 4.20  Schenck actuator of the shake table 

The controller that drives the actuator is MTS Flex GT Controller running on Model 

793.00 system software which is the same as that for MR damper calibration test and RTHS 

test. 

All accelerometers used here is the same as system identification test, which is of 

Brüel&Kjær Model 4368. For data acquisition, a 16-bit, 16 channel China made DongHua 

dynamic data acquisition system with model # DH5922 is used, as shown in Fig 4.21. The 

MR damper, current driver, 15KN load cell and dSpace 1104 board that is used to implement 

control algorithm and apply control voltage, are the same as MR damper calibration test and 

RTHS test. 

 

Fig. 4.21  DongHua dynamic data acquisition system DH5922 
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For displacement record, LVDT and Laser sensors are used. The first floor 

displacement is measured relative to the shake table with a short stroke 50 mm LVDT. 

Second and third floors are measured as absolute displacement with +/- 100 mm stroke laser 

sensors (Fig. 4.22(a)). The laser sensors are powered up by LK-G3001V Controller (Fig. 

4.22(b)). A filter that cannot be deactivated is setup at 300 Hz at controller level.    

 
 

(a)  Laser sensor (b)  Laser sensor controller 
 

Fig. 4.22  Keyence laser displacement sensor and controller 

(2) Setup and Procedure 

Shake table test of a 3-story steel frame equipped with a MR damper is performed at 

HIT. The test structure is shown in Fig. 4.23. 

 
 

(a) Test structure   (b) MR damper installation 
   

Fig. 4.23  Shake table test structure and MR damper 
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Before starting the shake table test, Keyence laser displacement sensors and the LVDT 

on 1st floor are calibrated by measuring the static movement of shake table with an increment 

displacement of 20mm in the range of [-70  90]mm of shake table coordinate system. The 

calibration results are shown in Fig. 4.24. The linear relations shown in the figure between 

measured voltage and displacement would serve as sensitivity numbers for the Keyence laser 

displacement sensors and the LVDT in the shake table test. Another two accelerometers and 

one laser displacement sensor are set on shake table and the 1st floor respectively for check 

purpose. The information of the laser sensors and LVDT is listed in Table 4.9.  

Table 4.9  Information of displacement sensors 
 

 Sensor # in test Make - serial # Charge sensitivity Output 
unit 

Actuator LVDT Schenck  100 mV/mm mm  

LT4 Beijing Haiquan Sensor Technology 
Co model #DA-50 - serial #K3284 -100.3 mV/mm mm  

LT0 Beijing Haiquan Sensor Technology 
Co model #DA-150 - serial #K3258 -33.372 mV/mm mm  

LS1 Keyence LK-G405 - serial #1380541 -100.792 mV/mm mm  

LS2 Keyence LK-G400 -101.239 mV/mm mm  

 

The actuator of the shake table at HIT is controlled on the software level only with 

PID control. Earthquake excitation inputs are selected as historical 1940 El Centro earthquake, 

velocity-dominant 1995 Kobe earthquake and acceleration-dominant 1984 Morgan Hill 

earthquake.  
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(a)  3rd floor laser sensor 
 

 
 

(b)  2nd floor laser sensor 
 

 
 

(c)  1st floor LVDT 
 

Fig. 4.24  Calibration of Keyence laser sensor and LVDT 
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The ultimate aim of these series of shake table tests is comparing the results with 

numerical hybrid simulation scheme and RTHS test results. Dynamic response of the 

structure is investigated under uncontrolled (with no MR damper), passive-off, passive-on and 

semi-active cases. To realize control over MR damper, dspace1104 is used to compute the 

control voltage of MR damper at each time step with structural response feedback using the 

control algorithm downloaded. The input voltage to MR damper which is calculated by 

dSpace is sent to the current driver that activates the magnetic field in MR damper to enhance 

its damping. The shake table test setup is shown and explained in Fig. 4.25. 

(a) Sensor layout   (b) Shake table test illustration 
   

Fig. 4.25  Shake table test setup 

(3) Ground motion scaling  

Due to repeated use of the frame structure for different test purposes, the ground 

motion inputs for the shake table test are scaled in such a way that the frame structure would 

stay in linear region and not have any damage. Based on the dynamic numerical analysis with 

the 3D OpenSees model as shown in Table 4.4 and 4.5, 50% of the original El-Centro 

earthquake record, 35% of the original Kobe earthquake record and 105% of the original 

Morgan Hill earthquake record are used for shake table test. 

 



119 
 

4.4  Numerical Simulation Methodology and Platforms 
 

In this study, MR damper is adopted to be the passive/semi-active control device and 

applied to a 3 story steel frame structure to investigate the control effect and algorithm. Full 

structure plus MR damper shake table test and RTHS test with MR damper as the 

experimental substructure are carried out as previously introduced.  

A numerical model that could mimic the shake table test mathematically is needed for 

the purpose of simulation on structure with control devices to fix the gap between lack of 

capability of current general finite element software and the need of numerically simulating 

structure with control devices and implementing associated control algorithm. There are 3 

platforms established for this purpose in the study: (i) Matlab Simulink based (ii) Matlab 

ODE solver based and (iii) Numerical hybrid scheme based on UI_SimCor. The platform (i) 

is developed by Purdue University and, platform (ii) and (iii) are developed by this study. A 

3D FE model of the steel frame structure in OpenSees as shown in section 4.1.3 is developed 

for hybrid and general simulation purpose. 

4.4.1  Simulation Platform Based on Simulink of Matlab 

Purdue University developed a numerical simulation platform based on Simulink of 

Matlab. The MR damper is modelled by modified Bouc-Wen model and the system dynamic 

response is solved in Simulink as well with a discrete time manner. Fig. 4.26 shows the 

modelling scheme in Simulink for the simulation platform by Purdue University. 
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Figure 4.26  Numerical modeling of MR damper in Simulink 
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4.4.2  Simulation Platform Based on Matlab ODE Solver 

After the system identification test is performed, a MCK model is obtained with the 

complete information of the mass (M), damping (C) and stiffness (K) property of the structure. 

An MR damper model is established in ODE solver combined with the MCK model from 

hammer test to simulate the whole structure with the control device. The illustration of 

modified Bouc-wen model of MR damper is shown in Fig. 3.5. The ODE simulation platform 

is basically solving the following dynamic system with a MR damper force f: 

- gf uMX + CX + KX + = M                                  (4.29)
 

where M, C, K are the mass, damping and stiffness matrices of the structure obtained from 

system identification test and f is the control force from the MR damper whose model 

parameters are determined by the damper calibration test. The output force of MR damper is 

governed by the modified Bouc-Wen model introduced in Chapter 3. 

The numerical modeling of MR damper based on ODE solver in Matlab is mutually 

verified with the numerical model based on Simulink developed by Purdue University.  

Figure 4.27 demonstrates the ODE MR damper numerical model has the exact same behavior 

as the Simulink based model. These two simulation platforms are expected to give the same 

results when used for future simulation. 

 
 

Fig. 4.27  Mutual verification of ODE based and Simulink Based MR damper model 
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4.4.3  Simulation Platform Based on UI_SimCor 

Numerical hybrid scheme for simulation based on UI_SimCor is introduced in 

Chapter 3. This hybrid modeling of an entire system allows for numerical simulations of 

complex coupled systems performed separately on different computational platforms. In this 

study, the numerical hybrid simulation scheme introduced in Chapter 3 is proposed to take 

advantage of modeling ability of existing finite element software and realize the structural 

control algorithm at the same time. The experimental structure here is modelled with 

nonlinear elements in OpenSees, while the structural control device MR damper is simulated 

in Matlab, where the control algorithm can be easily formulated and implemented using the 

built-in toolboxes. The experimental structure and the MR damper, as two substructure parts, 

can communicate with each other by transferring force and displacement information through 

the platform UI-SIMCOR. With shake table test/RTHS test, this study aims at verifying the 

validity of the proposed numerical hybrid simulation scheme based on UI_SimCor in 

efficiently developing seismic protection strategies for nonlinear structures.   

 
4.5  Test Results and Discussion 
 
4.5.1  System Identification test 
 
(1) Identified modal properties 
 

With the ERA procedure stated in section 4.2.3, 11 modes have been identified in the 

test, however only first three modes along the weak axis are of our interest since the later 

shake table test is only performed in this direction, and higher modes that are associated with 

torsion of the structure would not be triggered. The identified modal frequencies and damping 

ratios are determined as 2.88 Hz, 8.10Hz and 12.34 Hz; 0.57%, 0.21% and 0.15%, 

respectively, as listed in Table 4.10. 
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Table 4.10  Modal frequency and damping from system identification  
 

  1st mode in y-axis 2nd mode in y-axis 3rd mode in y-axis 

Modal freq. (Hz) 2.88 8.10 12.34 

Modal damping (%) 0.57 0.21 0.15 

 
Transfer functions of experimental data are compared to those generated with ERA in 

Fig. 4.28. The identified mode shapes for first 3 modes in y-axis are compared with analytical 

solution from OpenSees 3D model is shown in Fig. 4.29. As seen from comparisons of 

transfer function and identified mode shapes, there is no significant difference between results, 

i.e. the identified system and the OpenSees 3D model are both fine approximation of the test 

structure. 

 

 
 

 
Fig. 4.28  Transfer function comparison of experimental data and ERA result 

  
 

   
2.95 Hz 8.49 Hz 12.67 Hz 

   

(a)  Analytical solution 
 

Fig. 4.29  First 3 modes in y-axis comparison of experimental and analytical solution 



123 
 

 
2.88 Hz 8.10 Hz 12.34 Hz 

   
(b) System identification result 

 
Fig. 4.29 (cont.)  First 3 modes in y-axis comparison of experimental and analytical solution 

 
 

(2) Model updating 
 

Due to the fact that the mass of the experimental steel frame is concentrated on each 

floor of the structure and the frame is relatively weak in one axis (no bracing in y direction), 

the test structure can be simplified as a 3DOF lumped mass structure. Knowing the lateral 

stiffness of a fix-end column is 3

12EI
l

 and the material/section property of the structure, the 

analytical mass and stiffness matrices of the simplified 3DOF system can be expressed as: 

400.1 0 0
0 355.3 0 kg
0 0 355.3

A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M ,  
1222.2 611.1 0

611.1 1222.2 611.1 KN/m
0 611.1 611.1

A

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

K  (4.30)

 
The analytical mass and stiffness matrices can be updated by the model updating 

method stated in section 4.2.4 with Eq. 4.25~4.27. The updated mass and stiffness matrices 

are computed to be: 

 
419.5 4.4 2.2
4.4 364.5 10.0 kg
2.2 10.0 319.5

E

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M ,  
1432.5 721.4 37.4

721.4 1306.5 607.0 KN/m
37.4 607.0 547.2

E

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

K  (4.31)

 
The updated damping matrix can be determined by Eq. 4.28, which is computed to be: 
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88.1 4.1 1.8
4.129 74.3 4.5 N s/m

1.8 4.5 61.1
E

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

C i  (4.32)

 
The matrices EM , EC  and EK  formulate an updated simplified 3DOF system 

which can well capture the characteristics of the test structure since they are derived from the 

system identification results. This updated 3DOF system is referred as ‘3DOF model’ 

hereafter and would be used to model the test structure in RTHS and shake table tests for 

control algorithm implementation. 

With the updated 3DOF model, the 3D finite element model in OpenSees is also 

updated by adjusting the mass distribution and column stiffness, such that it can give as close 

results as the updated 3DOF model. Fig. 4.30(a) shows the comparison of the first floor drift 

and total acceleration time histories with the updated 3DOF model and updated 3D OpenSees 

model; Fig. 4.30(b) shows the comparison of the normalized frequency response spectra for 

first floor drift and total acceleration, which concludes that the updated 3D OpenSees model 

can capture the main structural response at 1st natural frequency in both time and frequency 

domain. Thus the updated 3D OpenSees model is an accurate representation of the test steel 

frame and could be used as the substructure in the numerical hybrid simulation based on 

UI-SimCor as stated in section 4.4.3.  
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Fig. 4.30  Comparison of updated 3D OpenSees model with updated 3DOF model 
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(b) Frequency response comparison 
 

Fig. 4.30(cont.) Comparison of updated 3D OpenSees model with updated 3DOF model 

 
4.5.2  MR Damper Calibration Test 
 

In the MR damper calibration test, 2Hz, 2.9Hz and 4Hz are chosen as the frequency 

for the input sine wave motions. 2Hz and 4Hz test results represent the MR damper behaviour 

under low and high frequency inputs respectively, and the 2.9 Hz test results represent the MR 

damper behaviour when the experimental steel frame structure vibrates around its natural 

frequency. The input magnitudes for 2 Hz test is 10mm while 5mm magnitude is taken for 2.9 

Hz and 4 Hz tests, to make full use of the capacity of MTS actuator. The force-displacement 

and force-velocity relation curves for different test cases are summarized in Fig. 4.31.  
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(a) Frequency = 4 Hz and amplitude = 5mm of input motion 

 
Fig. 4.31  Force-displacement and force-velocity loops by MR damper calibration test 
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(b) Frequency = 2.9 Hz and amplitude = 5mm of input motion 
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(c) Frequency = 2 Hz and amplitude = 10mm of input motion 

 
Fig. 4.31(cont.)  Force-displacement and force-velocity loops by MR damper calibration test 

 
It’s seen from the force-displacement and force-velocity loops that the behaviour of 

MR damper is highly nonlinear. An accurate numerical model of this device is essential to 

exploit the damping feature of it for future implementation of numerical simulation. Modified 

Bouc-Wen Model introduced is adopted here to model the MR damper in the test.  

Recall that among the parameters of Modified Bouc-Wen model for MR damper, 0x , 

0k , 1k , γ , β , A  and n  are evaluated as constants, while 0c , 1c  and α  are linear 

function of the voltage υ  that is applied to the MR damper:  

0 0 0a bc c c υ= + ,   1 1 1a bc c c υ= + ,   a bα α α υ= +  (4.33)
 

A least square optimization algorithm is written in Matlab and used to generate the 

MR damper model parameters, 0x , 0k , 1k , γ , β , A , n , 0c , 1c  and α , by applying 

the calibration test data to this algorithm. By looking into the force-velocity curve in Fig. 4.31, 
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one can observe that for different frequencies of movement, the MR damper yields similar 

level of force output when operated at the same velocity, for example, the MR damper output 

force is around 1100N and 200N when applied current is 1.01A (passive-on) and 0A 

(passive-off), which is true for all input frequencies 2Hz, 2.9Hz and 4Hz. Therefore, only the 

test data with 2.9 Hz input is used to calculate the MR damper parameters, since 2.9 Hz is 

quite close to the natural frequency of the test structure.  

Moreover, the test data of passive-off (minimum control voltage and current) and 

passive-on (maximum allowable control voltage and current) from 2.9 Hz input case is used 

to get two sets of MR damper parameters. 0x , 0k , 1k , γ , β , A , n , 0c  and 1c  values 

of these two sets are almost the same as each other because of the fact that they are 

independent of control voltage/current of MR damper while 0c , 1c  and α  values are 

different for passive-off and passive-on cases. The two sets of 0c , 1c  and α  are further 

used to determine the parameters in Eq. 4.33 by solving corresponding two linear equations with two 

unknowns. Though derived only based on passive-off and passive-on test data, the parameters 

obtained here are supposed to have a good fit for other cases with an input voltage/current in between 

passive-off and passive-on. Table 4.11 lists the resultant parameters and Fig. 4.32 shows the 

validity of this numerical MR damper model for passive-off and passive-on cases with a sine 

input of 2.9Hz in frequency and 5mm in magnitude. The good agreement with the test data 

makes this set of MR damper parameters suitable for future numerical simulation 

applications.  

Table 4.11  Modified Bouc-Wen model parameters for MR damper 
 

0x (in) 0k (lb/in) 1k (lb/in) γ ( 2in− ) β ( 2in− ) A (1) n (1) 

0.0 11.08 0.009 23.44 23.44 155.32 2 

aα (lb) bα (lb/V) 0ac (lb-s/in) 0bc (lb-s/in/V) 1ac (lb-s/in) 1bc (lb-s/in/V) 

15.65 57.16 1.00 9.76 19.15 139.96 
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Fig. 4.32  Numerical model VS test data of MR damper 
 
 
4.5.3  RTHS and Shake Table Tests 
 

Real-time hybrid simulation provides the capability to isolate and physically test 

critical components of a semi-active controlled structure. The tests are conducted in real-time 

to fully capture any rate dependencies. RTHS allows for repeatable tests to be conducted to 

examine various control strategies and a range of seismic inputs in an efficient manner. In this 

study, the MR damper is isolated as the physical experimental component and all the other 

parts of the structure are simulated numerically in Matlab with the simplified 3DOF model. 

Clipped optimal algorithm is implemented for MR damper control design.  

Two key points are essential to ensure a successful RTHS test: (i) A realistic 

numerical model that can best capture the dynamic characteristics of the test structure to 

provide accurate structural response prediction and effective semi-active control design; (ii) A 
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fine actuator compensation scheme that ensures the desired control displacement to be 

implemented on MR damper. These two points are achieved by the updated 3DOF model 

based on hammer test and the RIAC actuator control compensation strategy. Therefore, the 

output from RTHS test here is supposed to be in good agreement with that from the shake 

table test. Fig. 4.33~4.38 certainly certify this expectation. These figures address the 

comparisons of structural relative displacement to shake table surface and total acceleration 

between RTHS and shake table tests for passive-off and semi-active control under El-Centro, 

Kobe and Morgan Hill earthquake records as inputs.  
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Fig. 4.33  Structural response comparison for passive-off control, El-Centro 
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Fig. 4.34  Structural response comparison for semi-active control, El-Centro 
 
 
 



132 
 

 
 
 

0 5 10 15
-0.04

-0.02

0

0.02

0.04

3r
d 

flr
 re

l. 
di

sp
. (

m
)

Relative displacement

 

 

0 5 10 15
-10

-5

0

5

10

3r
d 

flr
 a

bs
. a

cc
el

. (
m

/s
2 )

Total acceleration

 

 

0 5 10 15
-0.04

-0.02

0

0.02

0.04

2n
d 

flr
 re

l. 
di

sp
. (

m
)

 

 

0 5 10 15
-10

-5

0

5

10

2n
d 

flr
 a

bs
. a

cc
el

. (
m

/s
2 )

 

 

0 5 10 15
-0.02

-0.01

0

0.01

0.02

1s
t f

lr 
re

l. 
di

sp
. (

m
)

Time (s)

 

 

0 5 10 15
-5

0

5

10

1s
t f

lr 
ab

s.
 a

cc
el

. (
m

/s
2 )

Time (s)

 

 

RTHS

Shake table

RTHS

Shake table

RTHS
Shake table

RTHS
Shake table

RTHS
Shake table

RTHS
Shake table

 
Fig. 4.35  Structural response comparison for passive-off control, Kobe 
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Fig. 4.36  Structural response comparison for semi-active control, Kobe 
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Fig. 4.37  Structural response comparison for passive-off control, Morgan Hill 
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Fig. 4.38  Structural response comparison for semi-active control, Morgan Hill 

 
 
 
 



136 
 

4.5.4 Verification of Numerical Simulation Platforms 
 

Shake table test could serve as a solid and standard validation for numerical 

simulations. In section 4.4, three numerical simulation platforms are introduced for the 

application of simulating the structural response of the test steel frame controlled by a MR 

damper under earthquake excitation: Matlab Simulink based platform by Purdue University, 

Matlab ODE solver based platform by this study, and numerical hybrid scheme based on 

UI_SimCor.  

The first two platforms only work with the simplified 3DOF model and have their 

limitation of not being capable to simulate complex nonlinear structures. The numerical 

hybrid simulation platform introduced here, on the other hand, is more flexible and universal 

for the simulation of structures with control devices, since the main structure and the control 

devices are modeled separately and combined together by UI_SimCor to make full advantage 

of the modeling capability of different computational programs, such as in this study, the test 

structure is modeled in OpenSees with general nonlinear elements and the MR damper 

modeling with control algorithm implementation is fulfilled in Matlab.  

The numerical simulation results from the above platforms are compared with shake 

table test in Fig. 4.39~4.41 for displacement and acceleration response of the structure under 

different control strategies (passive-off, passive-on and semi-active), which positively verifies 

the validity of the proposed numerical hybrid simulation scheme in efficiently developing 

seismic protection strategies for complex nonlinear structures.   
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(a) Relative displacement response 
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Fig. 4.39  Comparison of numerical models with shake table test (Passive-off) 
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Fig. 4.40  Comparison of numerical models with shake table test (Passive-on) 
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Fig. 4.41  Comparison of numerical models with shake table test (Semi-active) 
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4.6  Concluding Remarks 
 

MR damper in structural control shows great potential for hazard mitigation in civil 

structures. Due to the complexity of MR damper, it is almost not possible to model it 

accurately in current FE software. The numerical hybrid simulation scheme proposed here 

provides an approach to isolate the MR damper to be modelled in a software that can fully 

simulate its behaviour while keeping other parts of a nonlinear structure numerically modelled 

in general FEM platform. Thus accurate numerical prediction of structural performance of 

complex nonlinear structures with seismic control devices and corresponding selection of 

optimal design parameters become possible. 

UI_SimCor, which is originally developed for distributed hybrid testing, can provide 

an efficient way to overcome the obstacle in numerical modeling and analysis of 

semi-actively controlled nonlinear structures utilizing the methodology of modelling the 

control devices and main structure separately on different computational platforms and 

integrating them back together.  

Four experiments on a 3-story steel frame structure are carried out in this chapter: (i) 

System identification test; (ii) MR damper calibration test; (iii) RTHS test and (iv) Shake 

table test. Numerical models used in simulation are updated according to the results of these 

tests. Shake table test provides the most realistic condition for physical structure and external 

excitation and serves as a standard for validation of the proposed numerical hybrid simulation 

scheme based on UI_SimCor. 

It’s validated by the shake table test and other numerical simulation platforms that the 

numerical hybrid simulation scheme proposed has a high level of accuracy and is a powerful 

tool to predict the dynamic response of nonlinear structure with control devices, such as MR 

dampers. Thus this methodology can be utilized for further structural application, i.e. 

numerical analysis and optimal seismic control device design for complex nonlinear 



141 
 

structures.  
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5.  Implementation of Hybrid Simulation for Seismic 
Protection Design of Highway Bridges 
 
 

Highway bridges are susceptible to various levels of damages as observed in past major 

earthquakes. The damages can result from insufficient force or displacement design capacity 

compared to excessive demands due to seismic shaking. This has imposed realistic risks for a 

large number of existing bridges that were designed and constructed. To minimize the negative 

impact of damaging earthquakes, seismic protective devices, in either passive or adaptive passive 

forms, can be used to improve the seismic performances of new bridges in high seismicity 

regions or provide reliable retrofitting for existing bridges. Thus, optimal selection of design 

parameters for these devices is important to utilize their advantages and achieve multi-

performance objectives when subject to earthquakes with various frequency contents and 

intensities. 

The major challenge preventing the practical application of seismic protective devices is 

to systematically evaluate their performance and illustrate fully the relative benefits of various 

devices with consistent criteria. To realize a reliable design, the properties of the seismic 

protective devices need to be selected carefully based on the ground motion characteristics, 

nonlinear dynamic behavior of structural and foundation components, soil-structure interaction, 

performance objectives and the consideration of inherent uncertainties.  

To achieve the optimal responses using seismic protective devices, one could adopt 

active control theory to guide the selection of mechanical properties of passive devices. The 

structural control of nonlinear structures can not be easily conducted due to the difficulties in 

modeling of complex structures and in implementing the control algorithms within the typical 

finite element programs. Utilizing the hybrid simulation, the response of a complex nonlinear 
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structure can be obtained by integrating various numerical and physical components as well as 

using different computational platforms, for example, the structure is modeled in OpenSees 

while the seismic protective devices and the control algorithm are implemented in Matlab. 

Through the hybrid simulation scheme proposed in this study, time history analysis and adaptive 

structural control of the structures can be conducted. The result will guide the selection of 

passive devices for the structure to roughly mimic the behavior exhibited by adaptive devices. 

Taking the structural responses resulting from these control algorithms as the design target of the 

passive and semi-active control devices, mechanical properties of the control devices, such as 

damping coefficient and force hysteresis loop are determined, which is that the equivalent 

optimal design of passive devices is achieved. 

One efficient strategy for seismic protection of bridges that the California Department of 

Transportation (Caltrans) is investigating through these years is the implementation of seismic 

protection devices such as isolation bearings and fluid dampers. The first overcrossing equipped 

with fluid dampers in United States is the 91/5 HOV Connector/Separator bridge in Orange 

County, California. There are four fluid dampers installed in addition to the elastomeric bearing 

pads at each end-abutment. 

Concrete box girder bridges are the most common type of bridges in California. They are 

often used as overcrossings in highway intersections. In most cases, they are two-span 

overcrossings with their end-abutments supported on approaching earth-embankments and center 

bents supported by pile foundations. The Painter Street Bridge and Meloland Road Bridge are 

typical highway overcrossings of this kind. 

The strong-motion response data of these two representative bridges which have been 

instrumented by the Strong Motion Instrumentation Program (SMIP) of the California Division 
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of Mines and Geology are available to the public: Painter Street Bridge that was subjected to the 

1992 Petrolia earthquake and Meloland Road Bridge that was subjected to the 1979 Imperial 

Valley earthquake.  

In this chapter the Painter Street Bridge is adopted along with its recorded data to develop 

and validate a procedure to analyze the seismic response of freeway overcrossings and optimally 

select the design parameters of their seismic protection devices. A novel methodology is 

developed and presented here for this purpose. Such implementation is based on accurate 

response assessments of bridges using nonlinear time history analysis accounting for soil-

structure interaction. By establishing the relationship between the stiffness and damping 

properties of seismic protective devices with system level performance criteria of bridges, the 

optimal design is achieved with structural control theory.  

The objectives of this chapter are to: 1) conduct accurate and efficient seismic response 

assessments of bridges; 2) develop the hybrid simulation methodology to effectively conduct the 

structural control of nonlinear bridge models with seismic protective devices; 3) establish the 

framework for optimal design of adaptive stiffness and damping properties of seismic protective 

devices. Through developing new methodology, simulation tools and design procedures, the 

performance-based implementation of seismic protective devices is achieved 

 
 
5.1  Introduction of Painter Street Bridge 
 
5.1.1  Geometry and Instrumentation 
 

The Painter Street Overcrossing is located near Rio Dell in northern California. It is a 

reinforced-concrete bridge, with two spans, monolithic abutments, bent pier columns, and pile 

foundations for both abutments and pier columns. Its sketch is shown in Fig. 5.1. Each of the two 
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pier columns is supported with pile foundation consisting of 4×5 pile group and pile cap above 

the piles. The single pile is with 0.36m diameter and 8.0m depth, spaced with 0.91m center to 

center distance. The pile cap is 4.6m by 3.7m cross section, 1.1m thick, and embedded in soil 

with about 1.0m thick soil layer above the top of it. West abutment foundation has 1×16 pile 

group under the abutment wall which is 3.0m in depth, 20.6m in length and 1.0m thick in the 

longitudinal direction. East abutment wall has the same size but with 1×14 pile group. These 

abutment foundation piles are with same diameter 0.36m as those pier foundation piles. The 

bridge is with a 39° skew alignment for both bent and abutments axis. Accelerometers that were 

installed on the bridge are denoted in Fig. 5.1 by red characters as well. 

 

Fig. 5.1  Configuration sketch of Painter Street Bridge 

 
On April 25, 1992, the bridge was severely shaken by the Petrolia earthquake ( 7.1LM = , 

distance to the fault 18R km= ) with a peak transverse acceleration of 0.92g recorded on the 

bridge deck. Fig. 5.2 shows the plan view of the Painter Street Bridge together with the location 

of accelerometers. Motions were recorded in all accelerometers shown herein. Fig. 5.3 shows the 

free-field motions recorded with channel 12 (C12 for short) of east-west direction, C14 of north-
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south direction and C13 of vertical direction. The Petrolia earthquake would be used as the 

external excitation for all the numerical analysis in this chapter. 

 

Fig. 5.2  Plan view of Painter Street Bridge and recording channel setup 
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Fig. 5.3  Free field ground motion of 1992 Petrolia earthquake 
 
 
5.1.2  Soil Structure  Interaction (SSI) & Kinematic Response of Embankments 
 

Dynamic responses of pile foundation and embankment that supports the end abutment 

significantly affect the dynamic response of the bridge deck during strong ground shaking due to 
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the effect of soil structure interaction. Zhang and Makris (2001, 2002) proposed a systematic 

approach to derive the stiffness and damping parameters of the pile foundations and 

embankments of highway bridge to account for the interaction of the bridge superstructure with 

its foundation and the surrounding soil. In Zhang and Makris’ study, the presence of 

embankment and the pile foundation of the abutment is approximated by springs and dashpots, 

while the pile foundation at the center bent is approximated by an equivalent flexural-shear beam. 

This method is also adopted in this study to take into account the effect of soil structure 

interaction (SSI).  

Other than introducing in stiffness and damping, the kinematic response of approaching 

embankments of highway bridge also amplifies the excitation input onto the structure. Recorded 

motions at the abutments of Painter Street Bridge reveals that the amplified motions by 

embankments could be as 2 times as the motions recorded at the pile cap of the center bent and 

the free field ground motion. Fig. 5.4 shows the comparison of the free field ground motion with 

the recorded motions at west and east abutments of Painter Street Bridge.  

Since the excitation inputs at the abutments are quite different than the input at piles of 

center bent, multiple-support type of excitations must be used for dynamic analysis of highway 

bridges to achieve more accurate results than uniform-excitation type of input is adopted. 

Multiple-support type of inputs are used in this study, i.e. the inputs to west abutment for 

numerical analysis of Painter Street Bridge are taken as the recorded motions by channel 18, 

channel 19 and channel 20; inputs to the east abutment are taken as recorded motions by channel 

15, channel 16 and channel 17.  The inputs to center bent pile foundation could be taken as free 

field ground motion, since the amplification at this location is not significant. 
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(b)  East abutment 

 
Fig. 5.4  Amplification effect of kinematic response of embankment 
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5.2  Finite Element (FE) Modeling: Platform and Methodology 
 
5.2.1  FE Model of Original Painter Street Bridge 
 

Several researchers have carried out numerical analysis for Painter Street Bridge through 

finite element simulation. Maragakis and Jennings (1987) introduced a “stick model” enhanced 

with bilinear “springs” and “dashpots” at its support of skewed overpasses to take into account 

the effects on bridge dynamic response from soil-structure interaction (SSI). Another 

comprehensive study by McCallen and Romstad (1994) established the validity of the stick 

model through computing the natural frequencies, mode shapes and response time histories of 

the Painter Street Bridge. Other researchers (Zhang and Makris 2001) also practiced with more 

complex and detailed 3D model by ABAQUS and compared the analysis results with those from 

the stick model. The comparison revealed the effectiveness and simplicity of the stick model by 

showing a good agreement with the analysis of detailed 3D models. In this study, general 

purpose finite element software OpenSees is adopted to construct a similar stick type FE model 

for all numerical analysis and simulation of Painter Street Bridge herein. 

Among the main structure of Painter Street Bridge, including pier columns, bent beams, 

deck and abutments, pier columns are modeled with ‘dispBeamColumn’ element, while all the 

others are modeled with ‘elasticBeamColumn’ element in OpenSees. The presence of pile 

foundations and approach embankments of the abutments is approximated by rate-independent 

springs and dashpots to take soil structure interaction into account. Particularly, the pile 

foundations of the pier columns are modeled as equivalent flexural-shear beams (Zhang and 

Makris 2001). Fig. 5.5 sketches the stick type finite element model of Painter Street Bridge used 

in this study and the property of SSI springs and dashpots is summarized in Table 5.1.  
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Fig. 5.5  Finite element stick model of Painter Street Bridge 

 
Table 5.1  SSI springs and dashpots of Painter Street Bridge 

 

Location 
West abutment East abutment 

 (MN / m)K (MN s / m)C i (MN / m)K (MN s / m)C i  

Translational 317.0 17.5 317.0 17.5 

Longitudinal 317.0 18.1 317.0 18.1 

Vertical 1360.0 73.2 1360.0 73.2 

 
 
5.2.2 FE model of Painter Street Bridge with Base Isolation 
 

Based on the knowledge in the previous section, a FE model is developed to simulate the 

Painter Street Bridge equipped with base isolation devices. The isolation devices are installed at 

the top of the pier columns and abutments, thus the superstructure (deck + bent beams) is 

isolated from the underneath supporting elements. As a result, the forces due to strong ground 

shaking is isolated from the supporting elements as well, which gives significant response 

benefits for both pier columns and the deck, i.e. relative displacement reduction of pier columns 

and total acceleration reduction of deck. Fig. 5.6 illustrates the setup of base isolation devices in 

Painter Street Bridge. 
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Fig. 5.6  Base isolator setup for Painter Street Bridge 
 

As demonstrated in Chapter 3, hybrid simulation scheme can be implemented to simulate 

structures with seismic protective devices. This would provide us a more flexible way to model 

any kind of devices separately utilizing specialized tools for certain purpose, such as control 

toolbox in Matlab for structural control application. In this study, hybrid simulation scheme 

based on UI_SimCor platform is used to model Painter Street Bridge equipped with base 

isolators. The main structure of this hybrid simulation, which is modeled in OpenSees, contains 

all the elements from the original bridge except that the deck is separated from the piers and 

abutments due to base isolation. The base isolators are modeled separately in Matlab as the 

substructure. The main structure and substructure connect and communicate with each other 

during numerical simulation process through platform UI_SimCor. Fig. 5.7 illustrates this hybrid 

simulation scheme to model base isolated Painter Street Bridge. 

 

UI_SimCor

Isolators in Matlab +  
Main structure in OpenSees 

Fig. 5.7  Hybrid model of Painter Street Bridge with base isolators 
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5.2.3  FE model of Painter Street Bridge with Base Isolation & MR damper 
 

While base isolation has been in structural application for years, supplemental damping 

devices are being considered as an effective fellow technique together with base isolation to 

create more robust resistance to strong earthquake for civil engineering structures. Chang et al. 

(2002) examined the effects of base isolation along with fluid dampers on rigid structures 

experimentally and analytically. The study found supplemental damping to be effective in 

reducing both displacement and base shear for structures that have moderately long periods. In 

this study, MR dampers and semi-active control technique are applied to the base isolated Painter 

Street Bridge shown in the previous section to further improve the structural response. Fig. 5.8 

illustrates the base isolators and MR dampers set on this model. It’s seen that each isolator is 

associated with 2 MR dampers, which are distributed in transverse and longitudinal direction 

respectively.  

 

Fig. 5.8  Base isolator and MR damper setup for Painter Street Bridge 
 
 

Similarly, hybrid simulation scheme is implemented to analyze the seismically protected 

Painter Street Bridge in Fig. 5.8. Again, the main structure of this hybrid simulation, which is 

modeled in OpenSees, contains all the elements from the original bridge except that the deck is 

separated from the piers and abutments. The base isolators and MR dampers are modeled 
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separately in Matlab as the substructure. The main structure and substructure connect and 

communicate with each other in simulation through UI_SimCor. Fig. 5.9 illustrates this hybrid 

simulation scheme to model the bridge equipped with both base isolators and MR dampers. 

 

 UI_SimCor

Isolators and MR dampers in Matlab +  
Main structure in OpenSees 

Fig. 5.9  Hybrid model of Painter Street Bridge with base isolators and MR dampers 

 
5.3  Validation of the Stick Type FE model of Painter Street Bridge 
 

A hybrid simulation scheme is introduced in section 5.2 for modeling Painter Street 

Bridge of different protective device configurations. It’s noted that the bridge itself is modeled in 

OpenSees throughout the numerical analysis of hybrid simulation in this chapter. Therefore, it’s 

necessary to verify the validity and accuracy of the stick type FE model by OpenSees for the 

bridge. 

5.3.1  Validation by ABAQUS 
 

A stick type FE model of Painter Street Bridge is separately established in the general 

finite element software ABAQUS. This serves as the 1st validation for the model by OpenSees. 

Fig. 5.10 shows the comparison of the structural responses from these two computational 

platforms, in terms of total displacement and total acceleration at the deck-center and east deck-

end. The good agreement for both transverse (along global X axis) and longitudinal (along global 

Y axis) direction certifies that the OpenSees model is valid in the sense of FE simulation.  
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(b) East deck end 

Fig. 5.10  Total displacement and acceleration response comparison 
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5.3.2  Validation by Recorded Motion 
 

As shown in Fig. 5.2, channel 4 (C4) recorded the transverse (global X axis) acceleration 

near the west deck end; channel 7 (C7) recorded the transverse (global X axis) acceleration near 

the deck center; C9 and C11 recorded the transverse and longitudinal (global Y axis) 

accelerations near the east deck end respectively. The structural response computed by the stick 

type FE model in OpenSees is compared with these four sets of recorded data in Fig. 5.11. The 

velocity and displacement with legend ‘Recorded’ in the figure are calculated through numerical 

integration of corresponding directly measured acceleration data. It’s seen from all the record 

channels that the recorded motions at different locations all take good agreement with those 

computed by the stick type FE model adopted in OpenSees. Thus, we can conclude that the stick 

model by OpenSees is valid and accurate for the future application of hybrid simulation.  
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(a)  Channel 4 

Fig. 5.11  Verification of numerical simulation results with recorded motions 
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(b)  Channel 7 
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(c)  Channel 9 

Fig. 5.11(cont.)  Verification of numerical simulation results with recorded motions 
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(d)  Channel 11 

Fig. 5.11(cont.)  Verification of numerical simulation results with recorded motions 

 

5.4  Design of Base Isolation of Painter Street Bridge 
 
5.4.1 Bilinear Model of Base Isolation Devices 
 

Seismic isolation devices show significant effectiveness in improving the seismic 

response of bridges. Three most common types of isolation device are elastomeric bearing (ERB), 

lead-rubber bearing (LRB) and friction pendulum bearing (FPS). Fig. 5.12 shows the basic 

configuration and the corresponding cyclic behavior of these isolation devices. Although their 

behaviors are different from each other, one can use a bilinear model as shown in Fig. 5.13 to 

represent their behavior (Naeim and Kelly 1999). The bilinear model can be completely 

described by the elastic stiffness K1, characteristic strength Q and post-yielding stiffness K2. 
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(a) Elastomeric bearing (b) Lead core rubber bearing (c) Friction pendulum bearing 
   

Fig. 5.12  Configuration and cyclic loop of commonly used base isolators 
 
 

K1:  Elastic stiffness 
 
K2:  Post-yielding stiffness 
 
Q:  Characteristic strength 

   
Fig. 5.13  Bilinear cyclic model for base isolators 

 
 

The approach to determine the parameters of bilinear model for commonly used isolators 

is summarized hereafter. The ratio between the elastic stiffness K1 and post-yielding stiffness K2  

is referred as post-yielding ratio denoted by N=K1/K2. This parameter varies for different kinds 

of  isolation devices. 

For ERB, the post-yielding stiffness K2 is determined by the area (A), total thickness 

( rt∑ ) and shear modulus (G) of rubber slices, i.e. 2 / rK GA t= ∑ ; the characteristic strength Q 



159 
 

can be obtained by assuming a yielding displacement uy=(0.05~0.1) rt∑ ; the post yielding ratio 

is often taken as 1/15~1/5.  

For LRB, the Q can be calculated from yielding strength of lead core Fy. The post-

yielding stiffness K2 is similar to that of the elastomeric bearing but multiplied by a factor 

between (1.15~1.20) to account for the additional stiffness contribution from the lead core; the 

elastic stiffness K1 is usually 15~30 times of the post-yielding stiffness K2, i.e. N=1/30~1/15. 

For FPS, the friction coefficient (μs) and sliding surface radius (R) determines the 

characteristic strength, Q=μsW and post-yielding stiffness K2=W/R, where W is the vertical load 

or structural weight. The FPS has a very rigid pre-yielding stiffness, which is often taken as 

50~100 times the post-yielding stiffness K2. 

 
5.4.2  Eigenvalues And mode Shapes of Painter Street Bridge 
 

Zhang and Makris (2001) performed eigenvalue analysis with the stick FE model and the 

first six modes and modal frequencies of the stick model are summarized in Fig. 5.14. As shown 

in Fig. 5.14, the 1st mode exhibits transverse and anti-symmetric vertical shape; the 2nd mode 

exhibits anti-symmetric vertical and torsion about vertical axis; the 3rd mode exhibits torsion 

about vertical axis and symmetric vertical; the 4th mode exhibits symmetric vertical and 

longitudinal; the 5th mode exhibits longitudinal; and the 6th mode exhibits second transverse and 

torsion about longitudinal axis. Since the 1st mode contains the first transverse structural 

response, the base isolator design in the later section would be based on this mode only. 

 
5.4.3 Preliminary Design of Base Isolation Device  
 

Base isolation of bridge in general aims at two main structural benefits: reduction of total 

acceleration of bridge deck, and the drift/relative displacement of bridge piers. A preliminary 
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base isolation design is presented in this section. The base isolators is designed towards the 1st 

mode of the bridge since it’s the first transverse mode informed by the eigenvalue analysis of 

Painter Street Bridge. Fig. 5.7 shows the base isolation device layout: two base isolators are 

installed on the top of the piers which isolate the piers from the above bent beams; another two 

base isolators are installed on top of the abutments which separate the abutments from the above 

bridge deck. 

 

1 11.16 (rad/s)ω =  2 14.41 (rad/s)ω =  

 

3 16.37 (rad/s)ω =  4 20.69 (rad/s)ω =  

5 21.55 (rad/s)ω =  6 31.16 (rad/s)ω =  

Fig. 5.14  Modal shape and frequency of Painter Street Overcrossing 
 

 Since the base isolators are designed based on the 1st transverse mode of Painter Street 

Bridge, it’s reasonable to assume the based isolated bridge to be a single degree of freedom 
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structure supported by the bridge piers. Thus, one can have the following relation: 

2
c 1

2
b2 tgt

K
K

ω
ω

=  (5.1)

 
where cK  is the total initial stiffness of the piers, b2K  is the total post-yielding stiffness of the 4 

isolators, 1ω  is the 1st mode frequency of the bridge and tgtω  is the target frequency of the bridge 

that is base isolated.  cK  can be obtained by a pushover analysis of the bridge piers in OpenSees. 

The pushover response of the piers is illustrated in Fig. 5.15. cK  reads as the initial slope of the 

pushover curve.  
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Fig. 5.15  Pushover analysis of piers in Painter Street Overcrossing 

 
In equation (5.1), 1ω  and cK are known from the pushover and eigenvalue analysis, if one 

selects the target frequency towards which the base isolated bridge is designed, the total post-

yielding stiffness of the isolators b2K  can be calculated accordingly by equation (5.1). Here the 

target frequency tgtω  is selected in such a way that the correspondent target period takes the 

value of 1s and 2s, which yields a stiffer and a softer design for base isolation devices.  

cK



162 
 

The complete definition of the bilinear curve for modeling the base isolators as shown in 

Fig. 5.13 requires also the evaluation of elastic stiffness Kb1 and characteristic strength Q. The Q 

value can be calculated by equation (5.2) which provides a reasonable distribution of seismic 

forces along the structure with good control of displacements (Ghobarah and Ali 1988) 

 
0.05Q W= (5.2)

 
where 41.70 10  KNW = ×  is the weight of superstructure (deck + bent beams) above the bearings 

for Painter Street Bridge. By further assuming the post-yielding ratio of the bearings to be 

0.1N = , the bilinear cyclic behavior of the bearings is completely defined. Table 5.2 lists the 

modeling parameters for the bearings used for numerical simulation in this study. In the table, 

Kb1, uy and Fy are the elastic stiffness, yielding displacement and yielding force of the bearings, 

respectively. 

Table 5.2  Modeling parameters of base isolators 
 

Target period Ttgt 
(s) 

Kc 
(KN/m)

Kb2 
(KN/m)

Kb1 
(KN/m) 

Q  
(KN) 

uy  
(m) 

Fy  
(KN) 

1 117200 37148.77 371487.67 849.04 0.003 943.37 
2 117200 9287.19 92871.92 849.04 0.010 943.37 

 
5.4.4  Numerical Simulation of Base Isolated Painter Street Bridge 
 

With the isolator properties obtained in section 5.4.3, numerical analysis is performed for 

Painter Street Bridge equipped with base isolators as shown in Fig. 5.5. The analysis is 

completed by two approaches: (1) the whole bridge including base isolators is modeled 

completely in OpenSees; (2) the analysis is done with the hybrid simulation scheme illustrated in 

Fig. 5.6. The results from these two methods are expected to echo each other and serve as a 

validation of the proposed hybrid simulation scheme. Numerical analysis here is based on two 

design cases defined in the previous section: Ttgt = 1s (referred as case I hereafter) and Ttgt = 2s 

(referred as case II hereafter). 
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Fig. 5.16 presents the base isolator responses, while Fig. 5.17 compares pier drift and 

deck center total acceleration from the hybrid simulation with that of the complete OpenSees 

model, for design case II. Excellent agreement is observed of these two methods, which shows 

the validity of the hybrid simulation scheme proposed here.  
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Fig. 5.16  Base isolator response of design case II 
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Fig. 5.17  Pier and deck response of design case II 
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Fig. 5.18 and 5.19 present the same structural responses but with the comparison between 

base isolation design case I and II. The target period of design case II is 2 seconds which is twice 

as that of design case I. This leads to a softer isolation design under which the seismic forces 

transferred to both superstructure and substructure are limited to a low level, resulting in 

reduction of both pier drift and deck acceleration. Although it best addresses our interest, the cost 

of higher level of protection for the main structure is that the isolation devices would experience 

significantly larger deformation which is not practical in certain situations. Therefore, the 

effectiveness of base isolation on bridges is limited to the allowable deformation of base isolators. 

 

-0.05 0 0.05
-2000

-1000

0

1000

2000

Disp. in X dir.(m)

Fo
rc

e 
in

 X
 d

ir.
 (K

N
)

Response of north pier isolator

-0.1 -0.05 0 0.05 0.1
-2000

-1000

0

1000

2000

Disp. in Y dir.(m)

Fo
rc

e 
in

 Y
 d

ir.
 (K

N
)

-0.05 0 0.05 0.1 0.15
-2000

-1000

0

1000

2000

Disp. in X dir.(m)

Fo
rc

e 
in

 X
 d

ir.
 (K

N
)

Response of east abutment isolator

 

 

-0.05 0 0.05
-2000

-1000

0

1000

2000

Disp. in Y dir.(m)

Fo
rc

e 
in

 Y
 d

ir.
 (K

N
)

 

 

Case I
Case II

Case I
Case II

 

Fig. 5.18  Base isolator response comparison of design case I and II 
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Fig. 5.19  Pier and deck response comparison of design case I and II 

  

5.5  MR Damper Design of Base Isolated Painter Street Bridge: Semi-active 
Control Development and Application 
 

In this section, seismically protected Painter Street Bridge by base isolation and MR 

dampers, as illustrated in Fig. 5.8, is modeled and analyzed with hybrid simulation scheme in 

UI_SimCor. The base isolation devices, MR dampers along with a semi-active control algorithm, 

are implemented in Matlab, while the main bridge structure is modeled in OpenSees as the 

previous applications. Total eight MR dampers are installed to four locations of the bridge 

associated with the base isolators. Each location has two MR dampers built in X and Y direction 

respectively. The locations on the bridge of MR damper #1~#8 are explained in Table 5.3. 
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Table 5.3  MR damper installation location 
 

 

 
 
 
 
5.5.1  Derivation of Optimal Control Force for MR Dampers 
 

Assuming the highway bridge equipped with MR dampers is kept in linear region, the 

equation of motion (EOM) can be written in a general form as follow: 

mr( ) ( ) ( ) ( ) ( )t t t t t+MX + CX + KX = Ef ΓF  (5.3)
 

where M, C, K are the mass, damping and stiffness matrices, and X  is the total displacement  

vector. This total displacement representation is used when ground excitation takes a multiple- 

support form. ( )tf  is the external force vector computed based on input excitations. E is the 

coefficient matrix of ( )tf  which equals to identity matrix if X  is total displacement. mr ( )tF  is the 

MR damper force vector whose each component represents a force of a MR damper in the 

structure. Γ  matrix reflects the installation locations of the MR dampers through distributing the 

MR damper forces to corresponding structural degree of freedoms.  

When base isolation devices are installed on the bridge, their effect can be included by 

adding their initial stiffness to the global stiffness matrix K . Rewrite Eq. (5.3) into state space 

formulation with state vector ( )tZ , we get: 

mr( ) ( ) ( ) ( )t t t t+ +Z = AZ BF Gf ,   ( )
( )

( )
t

t
t

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

X
Z

X
 (5.4)

 
where the matrices A , B  and G  have the following forms: 
 

⎥
⎦

⎤
⎢
⎣

⎡
−−

= −− CMKM
I0

A 11 ,  −

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1

0
B

M Γ
,  −

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1

0
G

M E
 (5.5)

 

Set in X dir.
#1 #3 #5 #7 

@ north pier @ south pier @ west abutment @ east abutment 

Set in Y dir.
#2 #4 #6 #8 

@ north pier @ south pier @ west abutment @ east abutment 
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Structural control design requires acquisition of partial measurement of the structural 

response in terms of displacement and acceleration. The measurement vector ( )ty  could be 

written as: 

m mr( ) ( ) ( ) ( )t t t t= + +y C Z DF Hf  (5.6)
 

where the components of matrices mC , D  and H  are determined by what measurements of 

structural response are set in the measurement vector ( )ty . Eq. (5.4) and (5.6) constitute the 

general form of a LQG control design problem, whose system plant is expressed as: 

mr

mr

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )m

t t t t
t t t t

⎧ + +
⎨

= + +⎩

Z = AZ BF Gf
y C Z DF Hf

 (5.7)

 
where ( )tf  serves as the disturbance in the LQG control process, and mr ( )tF  serves as the control 

force for which we want to design and obtain its optimization.  The optimal control force from 

MR damper is derived in such a way that the following performance index is minimized: 

T T
mr mr0

( ) ( ) ( ) ( )ft
J t t t t dt⎡ ⎤= +⎣ ⎦∫ y Qy F RF  (5.8)

 
where Q  and R  are the weighting matrices for measured structural response and control force 

given by MR damper, respectively. The time interval [0, tf] is defined to be longer than that of 

the external excitation duration. The optimal control force is calculated by: 

mr,c c( ) ( )t t= −F K Z  (5.9)
 
where mr,cF  is the desired optimal force vector, and cK  is the LQG design gain matrix which can 

be computed by the command ‘lqry’ of Matlab control toolbox: 

 

c mlqry( , , , , , )=K A B C D Q R  (5.10)
 

In Eq. (5.9), it’s noted that the state vector ( )tZ  is required to calculate the optimal 

control force during the control process. However, the complete knowledge of the structural 
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response in a control process is most likely not available due to the limitation of measurements. 

Therefore it’s necessary to get an optimal estimation of the state vector using the known 

information, i.e., available measurements at certain locations of the structure: ( )ty . Kalman filter 

(also known as Kalman estimator) can provide an optimal estimation of the state vector ( )tZ  

with the input of mr[ ( );  ( )]t ty F . The state estimation ˆ ( )tZ  is obtained through:  

ˆˆ ˆ ˆ( ) ( )t t +Z = AZ BY  (5.11)
 

where Â , B̂  and Y  are given by 
 

m
ˆ = −A A LC ,  ˆ [   ]= −B L B LD , and mr[ ( );  ( )]t t=Y y F  (5.12)

 
 

Kalman observation gain matrix L can be calculated by the command ‘lqew’ of Matlab 

control toolbox : 

mlqew( , , , , , )=L A G C H W V  (5.13)
 

where W  and V  are the disturbance covariance matrix and measurement noise covariance 

matrix, respectively. They can be determined by trials for maximum control effectiveness.  

With the state estimator ˆ ( )tZ  obtained, one can now calculate the optimal control force 

by the estimation of the true state ˆ ( )tZ :  

mr,c c
ˆ( ) ( )t t= −F K Z  (5.14)

 
The above procedure can be explained intuitively by Fig. 5.20. 

 
 
5.5.2  Semi-active Control Algorithm of MR Damper:  Clipped-Optimal Control 
 

Although derived with the background of highway bridge controlled by MR dampers, the 

optimal control force in section 5.5.1 takes a general form that applies to any linear system 
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regulated by fully adaptive control forces. However, control force generated by MR damper still 

holds the passive characteristics which cannot provide the exact desired optimal control force 

stated in Eq. (5.14). To induce MR damper to generate approximately the demanded optimal 

force, a type of clipped-optimal controller based on acceleration feedback is adopted herein. This 

control algorithm has shown its success in many structural control applications of civil 

engineering (Dyke et al. 1996). 

 

 
 
 

Fig. 5.20  Optimal control force estimation process 

 

  Accelerometers can provide reliable and inexpensive measurement of accelerations at 

arbitrary locations on the structure. In this study, the measurements used for control force 

determination are the accelerations of selected points on the structure, the displacements of the 

MR dampers and the measurements of the control forces provided by the MR dampers.  

Clipped-Optimal control algorithm is to append a force feedback loop to induce the MR 

damper to produce approximately a desired control force. It’s noted that the force generated by 

the MR damper cannot be commanded; only the voltage applied to the current driver for the MR 
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damper can be directly changed. To induce the MR damper to generate approximately the 

desired optimal control force, the command signal is selected as follows: when the MR damper is 

providing the desired optimal force, the voltage applied to the damper should remain at the 

present level; if the magnitude of the force produced by the damper is smaller than the magnitude 

of the desired optimal force and the two forces have the same sign, the voltage applied to the 

current driver is increased to the maximum level so as to increase the force produced by the 

damper to match the desired control force. Otherwise, the commanded voltage is set to zero. This 

Clipped-Optimal control algorithm can be stated as  

( ){ }max mr,c mr mrHU -=υ F F F  (5.15)
 
where υ  is command voltage vector, mr,cF  is the desired optimal force vector and mrF  is the 

corresponding true measurement. Umax is the voltage to the current driver associated with 

saturation of the magnetic field in the MR dampers and { }H • is the Heaviside step function.  

 
5.5.3  Evaluation of System Matrices/Vectors  Required in Optimal Controller 
Design 
 

As stated previously, Matlab is used to design the optimal controller for the bridge with 

MR dampers as control devices. Several system matrices or vectors need to be evaluated or 

determined before one can perform the controller design. They are: 

m, , ,  , , , , , ,  and A B Y C D G H Q R W V  (5.16)
 

The meanings of the above matrices/vectors have been explained in the correspondent 

sections of this chapter.  Among all these matrices/vectors: 

A and B  are calculated by Eq. (5.5) with system matrices M , C  and K which can be 

generated in the simulation platform UI_SimCor. 
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−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1

0
G

M E
 where E equals to identity matrix I when system EOM is expressed in the 

way of total displacement.  

mr

( )
( )
t
t

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

y
Y

F
 where ( )ty  and mr ( )tF  are evaluated as follows: 

Deck center total acceleration in X direction
Deck center total acceleration in Y direction

West abutment total acceleration in X direction
West abutment total acceleration in Y direction
East abutme

( )t =y

nt total acceleration in X direction
East abutment total acceleration in Y direction

Displacement of MR damper located at north pier in X direction  
Displacement of MR damper located at north pier in Y direction
Displacement of MR damper located at south pier in X direction
Displacement of MR damper located at south pier in Y direction

Displacement of MR damper located at west abutment in X direction
Displacement of MR damper located at west abutment in Y direction
Displacement of MR damper located at east abutment in X direction
Displacement of MR damper located at east abutment in Y direction

North pier drift in X direction
North pier drift in Y direction
South pier drift in X direction
South pier drift in Y direction 18 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦ ×

 

(5.17)

 
 

mr

Force of MR damper located at north pier in X direction 
Force of MR damper located at north pier in Y direction
Force of MR damper located at south pier in X direction
Force of MR damper located 

( )t =F
at south pier in Y direction

Force of MR damper located at west abutment in X direction
Force of MR damper located at west abutment in Y direction
Force of MR damper located at east abutment in X direction
Force of MR damper located at east abutment in Y direction 8 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦ ×

 
(5.18)

 

mr ( )tF  and ( )ty  are measured in real time and feedback to the Kalman filter to estimate 

the state vector which is further used to evaluate the optimal control force in Eq. (5.14). The 
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components of ( )ty  are chosen based on two criteria: (1) Easy to measure and available in the 

physical real world, such as the total acceleration and MR damper displacement components; (2) 

Aim to minimize, such as the deck center accelerations and pier drifts. Since ( )ty  is used to 

estimate the whole state vector ( )tZ , it should include as many measurements as possible in the 

real world application. mr ( )tF  has the dimension of 8 1×  because there are total 8 MR dampers 

are set on the bridge model. 

m , , and C D H  are dependent of the components in ( )ty  and derived reversely by 

making the equilibrium m mr( ) ( ) ( ) ( )t t t t= + +y C Z DF Hf  satisfied.  

Weighting/covariance matrices , ,  and Q R W V can be determined by trials and evaluated 

with values that result in the best structural response.  

 
5.5.4  Numerical Simulation of Semi-active Control of MR Dampers on Painter 
Street Bridge 
 

Recall those discussed in Chapter 3 and illustrated in Fig. 5.21 again, modified Bouc-

Wen model gives good approximation of MR damper behavior and can be used to model MR 

dampers numerically.  

 
 

Fig. 5.21  Modified Bouc-Wen model of  MR damper 
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1 1 0( )F c y k x x= + − (5.19)

[ ]0 0
0 1

1 ( )y z c x k x y
c c

α= + + −
+

(5.20)

1( ) ( ) ( )n nz t x y z z x y z A x yγ β−= − − − − + −
 

(5.21)
 

Among the parameters contained in Eq. (5.19)~(5.21), 0x , 0k , 1k , γ , β , A  and n  are 

evaluated as constants, while 0c , 1c  and α  are linear function of the voltage ( )tυ  that is applied 

to the current driver of MR damper.  

0 0 0( ) ( )a bc t c c tυ= + ,    1 1 1( ) ( )a bc t c c tυ= + ,   ( ) ( )a bt tα α α υ= +  (5.22)
 

where all the parameters with subscript a  or b are constants and directly related to their mother 

variables that have no subscript of a  or b . 

For simplicity, all the MR dampers set on Painter Street Overcrossing share the same 

parameters in the simulation of this section. The voltage dependent MR damper parameters are 

listed in Table 5.4 and the constant ones are listed in Table 5.5. The maximum and minimum 

applied voltage to MR damper here is assumed to be maxU  = 1.5V and minU  = 0V 

respectively. 

Table 5.4  Voltage dependent modeling parameters of MR damper 
 

0c  
(KN-s/m) 

1c  
(KN-s/m) 

α  
(KN) 

0ac  0bc  1ac  1bc  aα  bα  
175.1 1709.2 3502.4 24516.5 2731.8 9999.2 

 
Table 5.5  Constant modeling parameters of MR damper 

 

 
 
 
 
 

0x
(m)

0k  
(KN/m) 

1k  
(KN/m)

γ  
( 2m− ) 

β  
( 2m− ) 

A  
(1) 

n  
(1) 

0.0 1926.3 1.8 35650.1 35650.1 155.0 2.0 
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In section 5.4.3, two base isolation designs are developed aiming at target period 

1tgtT s= and 2tgtT s= . Table 5.2 lists the base isolator properties corresponding to these two cases. 

To investigate the structural response of semi-actively controlled Painter Street Overcrossing 

with base isolation, MR dampers are added to the bridge and work together with the base 

isolators as illustrated in Fig. 5.8.   

Fig. 5.22(a) and (b) plot the structural response of deck center accelerations and pier 

drifts for 1tgtT s=  and 2tgtT s=  respectively. The correspondent results from analysis of the 

original bridge and base isolated bridge are also plotted on the same figure for comparison. B.I. 

in the legend is the short for ‘base isolation.’  It’s seen that semi-active control of the bridge 

yields the same level of performance as that of base isolation only, i.e. significant reduction of 

pier drifts and deck center accelerations. The promising advantage of semi-active control is that 

while keeping the level of overall structural performance, it also reduces the bearing 

displacements remarkably due to the participation of MR dampers, which is clearly observed in 

Fig. 5.23 of base isolator responses. The bearings are even drawn into linear region for the softer 

bearing design case ( 2tgtT s= ). Therefore, the semi-active structural response can be considered 

as the optimal standard or criteria for passive design of MR dampers. The combination of MR 

damper plus base isolator designed towards 2tgtT s=  turns out to be the better one out of the two 

designs. 

Fig. 5.24 (a) and (b) plot the MR damper responses of the devices set on north pier and 

east abutment for 1tgtT s=  and 2tgtT s=  respectively. The time history of the associated control 

voltage input to corresponding MR damper is also plotted in the figure. One can see the ‘on-off-

on’ nature of the control voltage input, which results from the successful application of clipped 
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optimal control algorithm. The control voltage is an essential factor that would be used for 

equivalent optimal passive design of MR damper in the following section.  
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(a)  1tgtT s=  
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(b)  2tgtT s=  

Fig. 5.22  Comparison of structural responses of different control strategies  
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(b)  2tgtT s=  

Fig. 5.23  Comparison of base isolator responses of different control strategies 
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(b)  2tgtT s=  

Fig. 5.24  MR damper response and control voltage input of clipped optimal control 
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5.6  Equivalent Optimal Passive Control Design 

Although semi-active control of MR damper could provide structure the optimal response 

by actively adjusting damping property, it still has the risk of failure under strong ground motion 

because of the fact that any active or semi-active control involves the participation of a 

computational core that processes the structural measurements and sends out the control 

command. Therefore a passive design of MR damper that can mimic the behavior of semi-active 

control would be the first choice in practice.  

Recall that 0c , 1c  and α  parameters vary the property of MR damper, i.e. change and 

determine its damping behavior, thus define the design of a MR damper. In this section, a novel 

equivalent optimal passive control is proposed and the corresponding optimal passive design of 

MR damper is expressed in terms of 0c , 1c  and α values. 

Note that 0c , 1c  and α are linear function of control voltage υ  input to MR damper, they 

are expressed by: 

0 0 0( ) ( )a bc t c c tυ= + ,    1 1 1( ) ( )a bc t c c tυ= + ,   ( ) ( )a bt tα α α υ= +  (5.23)
 

Integrate Eq. (5.23) over the control time duration [0, tf] and divided by the time interval 

tf, one can get the average of 0 ( )c t , 1( )c t  and ( )tα  over the control time duration, respectively: 

[ ]f f f

0 0 00 0 0
0,ep 0 0

f f f

( ) ( ) ( )
t t t

a b
a b

c t dt c c t dt t dt
c c c

t t t

υ υ+
= = = +∫ ∫ ∫

 

 (5.24)[ ]f f f

1 1 10 0 0
1,ep 1 1

f f f

( ) ( ) ( )
t t t

a b
a b

c t dt c c t dt t dt
c c c

t t t

υ υ+
= = = +∫ ∫ ∫

 

[ ]f f f

0 0 0
ep

f f f

( ) ( ) ( )
t t t

a b
a b

t dt t dt t dt

t t t

α α α υ υ
α α α

+
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179 
 

Since 0,epc , 1,epc  and epα  are averaged over control time duration of 0 ( )c t , 1( )c t  and 

( )tα , it’s reasonable to take them as the equivalent constant parameters for the passive design of 

MR damper. Subscription ‘ep’ here stands for ‘equivalent passive.’ Thus, if the time history 

analysis of a semi-active control process with MR damper can be performed and consequently 

the histories of 0 ( )c t , 1( )c t  and ( )tα  are obtained, the above stated equivalent passive design 

parameters 0,epc , 1,epc  and epα  can be evaluated.   

Eq. (5.24) shows that all the equivalent passive parameters are function of  
f

0

f

( )
t

t dt

t

υ∫ , 

which is related to time history of control voltage input to MR damper ( )tυ  directly. So the 

average over control time duration of  ( )tυ  should be evaluated first in order to compute 0,epc , 

1,epc  and epα  for equivalent passive design of MR damper.  

The procedure for the proposed equivalent optimal passive design of MR damper is 

summarized as follows: 

Step 1.  Perform time history analysis of the structure with semi-actively controlled MR dampers; 

Step 2.  Get the time history of control voltage ( )tυ  of each MR damper; 

Step 3.  Calculate the average voltage over control time duration of ( )tυ  for each MR damper by 
f

0
ep

f

( )
t

t dt

t

υ
υ = ∫ , as illustrated in Fig. 5.25; 

Step 4.  Take the average voltage over time epυ obtained from Step 3 of each MR damper as the 

equivalent passive constant voltage and apply it to corresponding MR damper as a ‘passive-on’ 

control command; 

Step 5.  Calculate the equivalent passive parameters 0,epc , 1,epc  and epα for each MR damper by  
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0,ep 0 0 epa bc c c υ= + ,    1,ep 1 1 epa bc c c υ= + ,    ep epa bα α α υ= +  (5.25)
 
which concludes the equivalent optimal passive design of a MR damper; 
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Fig. 5.25  Equivalent passive-on voltage based on semi-active control history 

 

Step 6. (as needed) Re-perform the time history analysis with each MR damper controlled 

passively by the equivalent constant control voltage epυ  to obtain the structural response under 

equivalent optimal passive control. 

Following the above procedure, numerical analysis is performed for 1tgtT s=  and 2tgtT s=  

of the base isolated Painter Street Bridge by hybrid simulation scheme using UI_SimCor. The 

equivalent optimal passive parameters of each MR damper are listed in Table 5.6. Locations on 

the bridge of MR damper #1~#8 are explained in Table 5.3.  
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Table 5.6 (a)  Equivalent optimal passive design parameters of MR damper (Ttgt = 1s) 
 

MR damper # 1 2 3 4 5 6 7 8 

0,epc (KN-s/m)  283.0  1333.4 283.3 1333.1 215.3 1236.0 222.8  1206.6 

1,epc (KN-s/m) 5049.4  20117.2 5054.3 20112.3 4078.5 18719.8 4186.4  18298.1 

epα (KN) 3362.8  9508.3 3364.8 9506.3 2966.8 8938.4 3010.8  8766.4 

 
 

Table 5.6 (b)  Equivalent optimal passive design parameters of MR damper (Ttgt = 2s) 
 

MR damper # 1 2 3 4 5 6 7 8 

0,epc (KN-s/m)  245.9  1178.6 245.9 1178.4 223.3 1085.1 227.8  1079.3 

1,epc (KN-s/m) 4517.3  17896.0 4517.3 17893.6 4193.7 16555.0 4257.5  16471.6 

epα (KN) 3145.8  8602.4 3145.8 8601.4 3013.8 8055.4 3039.8  8021.4 

 
Fig. 5.26~5.28 compare the structural responses of the bridge and seismic protective 

devices (base isolators plus MR dampers) of semi-active control with those of the equivalent 

passive control design of MR damper. It’s shown that the proposed equivalent optimal passive 

control produces almost the same response of that from the semi-active control scheme, which 

verifies and validates that the proposed optimal passive design method is applicable and could 

serve as a direction for optimal passive design of MR dampers.  

Table 5.7 presents the average of the figures in Table 5.6(a) and 5.6(b). Since the two 

optimal passive designs in Table 5.6(a) and 5.6(b) are towards the base isolation target period Ttgt 

= 1s and Ttgt = 2s respectively, it’s reasonable to assume that the passive design represented by 

the parameters in Table 5.7 is an approximately optimal for all the base isolation designs whose 

target period falls in between 1s and 2s.  Therefore, if the design parameters of MR dampers in 

Table 5.7 are adopted, one can further optimize the property of base isolation devices within 

[ ]1  2 stgtT =  by well established methods, such as the approach proposed by Zhang and Huo 

(2009), such that both optimal designs of base isolation and MR dampers are achieved at the 

same time. 
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Table 5.7  Equivalent optimal passive design parameters of MR damper (for Ttgt = [1 2]s) 
 

MR damper # 1 2 3 4 5 6 7 8 

0,epc (KN-s/m)  264.4  1256.0 264.6 1255.7 219.3 1160.5 225.3  1142.9 

1,epc (KN-s/m) 4783.4  19006.6 4785.8 19002.9 4136.1 17637.4 4221.9  17384.9 

epα (KN) 3254.3  9055.4 3255.3 9053.9 2990.3 8496.9 3025.3  8393.9 
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(b)  2tgtT s=  

Fig. 5.26  Comparison of structural response by semi-active and its equivalent passive control 
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Fig. 5.27  Comparison of bearing response by semi-active and its equivalent passive control 
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(b)  2tgtT s=  

Fig. 5.28  Comparison of MR damper response by semi-active and its equivalent passive control 
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5.7  Practical Optimal Passive Control Design of MR dampers 

In practice, there are inherent variabilities and uncertainties in the seismic response of 

highway bridges associated with both earthquake motion characteristics and soil structure 

interactions between the bridge and the approach embankments. Designing the seismic protective 

devices with a single earthquake motion would apparently limit the robustness of the design. In 

order to account for this complexity, ten strong ground motions that have been recorded in 

California relatively close to the fault of major earthquakes are used for designing the seismic 

protective devices of Painter Street Bridge in this section. A nonlinear time history analyses of 

the seismically protected Painter Street Bridge (Fig. 5.8) is performed and the correspondent 

equivalent optimal passive design of the MR dampers is obtained for each earthquake and base 

isolation configuration ( 1tgtT s=  and 2tgtT s= ) utilizing the method proposed in the previous 

section. Table 5.8 lists in historic order the ten free field records together with their magnitudes 

and distance of the accelerograph from the causative fault. 

 

Table 5.8  Earthquake records selected for seismic protective device design 
 

Record Station Earthquake Magnitude
Mw 

Dist. to fault
(km) 

Peak Accel. 
(g) 

Peak Vel. 
(m/s) 

Pacoima Dam 1971 San Fernando 6.6 8.5 1.17 (1.08) 1.14(0.57) 

El Centro Array #5 1979 Imperial Valley 6.4 30.4 0.38 (0.53) 0.99(0.52) 
 

El Centro Array #6 1979 Imperial Valley 6.4 29.8 0.44 (0.34) 1.13(0.68) 

El Centro Array #7 1979 Imperial Valley 6.4 29.4 0.46 (0.34) 1.13(0.55)

Parachute Test Site 1987 Superstition Hills 6.6 7.2 0.45(0.38) 1.12(0.44) 

Los Gatos 1989 Loma Prieta 7.0 6.1 0.56(0.61) 0.95(0.51) 

Cape Mendocino 1992 Petrolia 7.0 3.8 1.50 (1.04) 1.25(0.41) 

Rinaldi 1994 Northridge 6.7 9.9 0.89 (0.39) 1.75(0.60) 

Sylmar 1994 Northridge 6.7 12.3 0.73 (0.60) 1.22(0.54) 

Newhall 1994 Northridge 6.7 20.2 0.59 (0.58) 0.96(0.75) 

* Peak acceleration values are for the fault normal component. The values of the fault parallel component are 
offered in parentheses. 
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As discussed and demonstrated in section 5.1.2, approach embankments are long 

deformable bodies that can amplify considerably the free-field earthquake motions and interact 

strongly with the bridge structure. In this study, a shear-wedge model (Zhang 2002), as 

illustrated in Fig. 5.29, is adopted to estimate the amplification of ground motion at bridge 

abutments due to kinematic response of the approach embankments.  
 

 
 

Fig. 5.29  Shear-wedge model of bridge embankments 

Based on this shear-wedge model, the amplified input motion to bridge abutments is 

given by the following equivalent linear approach (Zhang 2002): 

1( ) ( ) ( )
2

c b i tu t I u e dωω ω ω
π

∞

−∞
= ∫  (5.26)

 
where ( )cu t  is the resultant motion at the crest of the embankment, bu  is the free field ground 

motion and ( )I ω  is the kinematic response function that captures the ground motion 

amplification which is given by: 
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0 1 0 0 2 0 0

0 0

( ) ( ) ( )( ) 1 x

g g

u z c J kz c Y kzI
u u

ω +
= + =  (5.27)

 
where 0z  is the coordinate of embankment crest; 0gu  is the magnitude of the harmonic input 

0( ) i t
g gu t u e ω= ; 0J  and 0Y  are the zero-order Bessel functions of the first and second kind 

respectively; / sk Vω=  with sV  is the shear wave velocity of the soil; and 1c  and 2c  are 

integration constants given by: 

0 1 0
1 2 1

1 0 1 0
0 0 0 0

1 0

( )1 ,  ( ) ( )( ( )) ( ( ))
( )

gu J kzc c cJ kz Y kzJ k z H Y k z H
Y kz

= + = −
+ − +

 (5.28)

 
where 1J  and 1Y  are the first-order Bessel functions of the first and second kind respectively, 

and H is the embankment height.  

In calculation of the kinematic response function ( )I ω  and the amplified motion at 

embankment crest ( )cu t , the shear wave velocity of soil material sV  is determined by:  

( ) /sV G γ ρ=  (5.29)
 
where ( )G γ are ρ are the shear modulus and density of the soil material, and γ  is the average 

shear strain over height of the embankment in the scenario of shear-wedge model. It’s noted that 

( )G γ  is dependent of the average shear strain γ   that is directly determined by the maximum 

crest relative displacement of the embankment max( )c bu u− , therefore iterations are needed to 

compute the amplified motion at embankment crest in Eq. (5.26) to achieve a converged γ  value. 

The G -γ  relation needed in the iteration is adopted from the work of Seed and Idriss (1970), 

Iwasaki et al. (1978), Tatsuoka et al. (1978), Vucetic and Dobry (1991), among others, as shown 

in Fig. 5.30(a). The darker line represents an averaged curve of these reported curves, and is the 
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curve used for iteration in this study. When a converged shear strain is obtained, the hysteretic 

damping coefficient ( )η γ  can be determined by the average curve in Fig. 5.30(b) at the same 

time.  

 
 

(a) G -γ  relation 

 
(b) η -γ  relation 

 
Fig. 5.30  Normalized soil shear modulus and damping coefficient as function of shear strain 
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Amplified motion at the embankment crest is computed for each free field earthquake 

motion record in Table 5.8. The converged values for shear modulus, damping coefficient, and 

average shear strain that result from the shear-wedge analysis are shown in Table 5.9. It’s plotted 

in Fig. 5.31 the free filed ground motion and the amplified motion at embankment crest with 

Pacoima Dam record for illustration purpose. It’s concluded in Zhang’s research work (2002) 

that the kinematic response function along the transverse direction obtained with the shear-

wedge approximation can also capture most of the amplification generated due to a longitudinal 

excitation. So a single kinematic response function is used for both fault-normal (FN) and fault-

parallel (FP) motions here. In the simulations, the fault-normal (FN) components of the 

earthquake records are taken as inputs in X direction and the fault-parallel (FP) components are 

taken as inputs in Y direction. 
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Fig. 5.31  Kinematic response of embankments under Pacoima Dam record 
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Fig. 5.31(cont.)  Kinematic response of embankments under Pacoima Dam record 

 
The amplified motions from the shear-wedge analysis are used as input motions to the 

bridge abutments in the simulations for design of seismic protective devices on Painter Street 

Bridge. On the other hand, input motions at the pile foundations of the center pier columns are 

assumed to be equal to that of the free-field ground motions due to the fact that the kinematic 

response factors of pile foundations are close to unity in most cases of excitation. 

Besides the kinematic response, soil structure interaction between the approach 

embankments and bridge structure needs to be considered. In view of the variability in soil 

strains and frequency content during ground shaking, macroscopic longitudinal and transverse 

springs and dashpots are used to approximate the presence of embankments. Dynamic stiffness 

of bridge embankments with a unit width for rigid supporting soil condition is given by: 
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[ ] [ ]
[ ] [ ]

1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

( ) ( ) ( ) ( )ˆ ( ) (1 )
( ) ( ) ( ) ( )x c c

J kz Y k z H J k z H Y kz
k G i B L k

Y k z H J kz J k z H Y kz
ω η

+ − +
= +

+ − +
 (5.30)

 
where G and η  are the converged shear modulus and strain of the soil from the kinematic 

response analysis; cB  is the width of embankment crest; and cL  is the estimation of critical 

length of the embankment which is computed by: 

0.7c cL SB H≈  (5.31)
 
where 1/ 2S =  is the embankment slope of Painter Street Bridge. 

 
Table 5.9  Converged values of the shear modulus, damping coefficient and shear strain under 

selected strong motion records 
 

Earthquakes G (MPa) η  γ  (10-3) 

Pacoima Dam (FN), 1971 San Fernando 7.89 0.51 4.95 

Pacoima Dam (FP), 1971 San Fernando 6.48 0.53 6.55 

El Centro #5 (FN), 1979 Imperial Valley 11.10 0.47 3.07 

El Centro #5 (FP), 1979 Imperial Valley 24.64 0.32 0.81 

El Centro #6 (FN), 1979 Imperial Valley 22.30 0.35 0.99 

El Centro #6 (FP), 1979 Imperial Valley 23.10 0.34 0.92 

El Centro #7 (FN), 1979 Imperial Valley 19.52 0.37 1.26 

El Centro #7 (FP), 1979 Imperial Valley 25.46 0.31 0.76 

Parachute Test Site (FN), 1987 Superstition Hills 19.04 0.38 1.32 

Parachute Test Site (FP), 1987 Superstition Hills 21.11 0.36 1.10

Los Gatos (FN), 1989 Loma Prieta 15.73 0.42 1.82 

Los Gatos (FP), 1989 Loma Prieta 17.30 0.40 1.55 

Cape Mendocino (FN), 1992 Petrolia 6.26 0.53 6.89 

Cape Mendocino (FP), 1992 Petrolia 14.74 0.43 2.01 

Rinaldi (FN), 1994 Northridge 5.13 0.55 9.27 

Rinaldi (FP), 1994 Northridge 15.28 0.42 1.90 

Sylmar (FN), 1994 Northridge 8.21 0.50 4.70 

Sylmar (FP), 1994 Northridge 7.18 0.52 5.67

Newhall (N-S), 1994 Northridge 11.43 0.46 2.94 

Newhall (E-W), 1994 Northridge 9.83 0.48 3.65 
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The real and imaginary parts of Eq. (5.30) represent the storage stiffness and loss 

stiffness of the embankment soil respectively. One can pick up a practical spring and dashpot 

value by passing a line through the real and imaginary part as illustrated by the darker lines in 

Fig. 5.32.  

 

 

Fig. 5.32  Selection of practical spring and dashpot values of approach embankment 



193 
 

Based on the numerical simulation trials, the spring and dashpot values at east and west 

abutments only differ slightly from each other due to the different pile group configurations. For 

simplicity, it is assumed that both abutments adopt the spring and dashpot values of the east 

abutment. The spring and dashpot values that represent the presence of bridge embankments for 

simulations under each earthquake record are listed in Table 5.10. The stiffness and dashpot 

contribution from the pile foundations of embankments which are determined by the method 

proposed by Zhang (2002) is also shown in Table 5.10. 

 

Table 5.10  Spring and dashpot values that approximate the presence of the approach 
embankments and pile foundations of Painter Street Bridge 

 

 Earthquakes 

Embankment + Pile foundations 

xK  

( MN/m )
yK  

( MN/m )
xC  

( MN s/mi ) 
yC  

( MN s/mi )

1 Pacoima Dam, 1971 San Fernando 120+174 99+150 11+9 9+8 

2 El Centro #5, 1979 Imperial Valley 169 +224 375+403 12+9 53+11 

3 El Centro #6, 1979 Imperial Valley 339+375 352+385 29+11 38+11 

4 El Centro #7, 1979 Imperial Valley 297+340 388+413 6+10 59+11 

5 Parachute Test Site,  
1987 Superstition Hills 290+334 321+360 4+10 16+11 

6 Los Gatos, 1989 Loma Prieta 239+290 263+311 12+10 6+10 

7 Cape Mendocino, 1992 Petrolia 95+146 224+276 9+8 15+10 

8 Rinaldi, 1994 Northridge 78+126 233+284 9+8 14+10 

9 Sylmar, 1994 Northridge 125+179 109+162 11+9 10+8 

10 Newhall, 1994 Northridge 174+229 150+205 13+9 11+9 
 

With taking into account the kinematic response of embankments and the soil bridge 

interaction effects, nonlinear time history analysis of the seismically protected Painter Street 

Bridge (Fig. 5.8) is performed for each strong ground motion record and the resultant equivalent 

optimal passive designs of MR dampers are listed in Table 5.11and 5.12, for the two base 
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isolation configurations ( 1tgtT s=  and 2tgtT s= ) respectively. The maximum structural responses, 

i.e, deck center absolute acceleration and north pier drift, are shown in Fig. 5.33~5.34 for each 

ground motion record and each base isolation configuration. The horizontal axis of Fig. 

5.33~5.34 represents the record number of the ground motions that follow the historic order as 

listed in Table 5.10, e.g. #1 record is Pacoima Dam record and #10 record is Newhall record.  

Table 5.13 and 5.14 contain the average values of ten designs that correspond to ten 

strong ground motion input cases, for base isolation target period 1tgtT s=  and 2tgtT s=  

respectively.  The average design values in Table 5.13 and 5.14 can be taken as the overall 

optimal passive design of MR dampers with consideration of the uncertainties from different 

ground motion input scenarios, for base isolation target period 1tgtT s=  and 2tgtT s=  respectively. 

If further averaging the design values in Table 5.13 and 5.14, as shown in Table 5.15, the 

resultant values can be considered as the final optimal passive design of MR dampers on Painter 

Street Bridge that accounts for uncertainties from both ground motions and base isolation 

configurations (ranging from 1tgtT s=  to 2tgtT s= ). 

 

 

 

 

 

 

 

 

 



195 
 

1 2 3 4 5 6 7 8 9 10
5

6

7

8

9

10

11

12

13

14

Earthquake record number

M
ax

 d
ec

k 
ce

nt
er

 a
bs

. a
cc

el
. (

m
/s

2 )

1 2 3 4 5 6 7 8 9 10

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Earthquake record number

M
ax

 n
or

th
 p

ie
r d

rif
t (

cm
)

 
 

(a)  Responses in X direction 

1 2 3 4 5 6 7 8 9 10
4

4.5

5

5.5

6

6.5

7

7.5

Earthquake record number

M
ax

 d
ec

k 
ce

nt
er

 a
bs

. a
cc

el
. (

m
/s

2 )

1 2 3 4 5 6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Earthquake record number

M
ax

 n
or

th
 p

ie
r d

rif
t (

cm
)

 
 

(b)  Responses in Y direction 
 

Fig. 5.33  Maximum structural responses under selected earthquake records ( 1tgtT s= ) 
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Fig. 5.34  Maximum structural responses under selected earthquake records ( 2tgtT s= ) 
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Table 5.11  Equivalent optimal passive design of MR dampers for ten ground motions (Ttgt = 1s) 
 

MR damper # 1 2 3 4 5 6 7 8 

Pacoima Dam, 1971 San Fernando 

0,epc (KN-s/m) 442.4 1443.7 442.4 1446.0 333.7 1225.6 336.8 1221.8

1,epc (KN-s/m) 7336.7 21698.5 7336.7 21732.9 5777.5 18570.2 5821.6 18516.3

epα (KN) 4295.7 10153.3 4295.7 10167.3 3659.8 8877.4 3677.8 8855.4

El Centro #5, 1979 Imperial Valley 

0,epc (KN-s/m) 204.9 1290.2 205.2 1289.5 193.2 1115.5 195.6 1117.5

1,epc (KN-s/m) 3928.9 19496.9 3933.9 19487.1 3762.2 16991.4 3796.6 17020.8

epα (KN) 2905.8 9255.3 2907.8 9251.3 2837.8 8233.4 2851.8 8245.4

El Centro #6, 1979 Imperial Valley 

0,epc (KN-s/m) 646.2 1743.8 646.2 1743.8 395.9 1527.1 420.6 1517.1

1,epc (KN-s/m) 10259.1 26003.6 10259.1 26003.6 6669.9 22894.9 7022.9 22752.7

epα (KN) 5487.6 11909.1 5487.6 11909.1 4023.7 10641.2 4167.7 10583.2

El Centro #7, 1979 Imperial Valley 

0,epc (KN-s/m) 657.1 1809.4 656.8 1809.8 514.6 1642.3 528.9 1640.9

1,epc (KN-s/m) 10416.0 26945.1 10411.1 26950.0 8371.3 24547.4 8577.3 24527.7

epα (KN) 5551.6 12293.1 5549.6 12295.1 4717.7 11315.2 4801.7 11307.2

Parachute Test Site, 1987 Superstition Hills 

0,epc (KN-s/m) 349.8 1533.2 350.5 1533.6 226.7 1383.5 229.1 1379.0

1,epc (KN-s/m) 6008.0 22983.2 6017.8 22988.1 4242.8 20835.6 4277.1 20771.8

epα (KN) 3753.8 10677.2 3757.8 10679.2 3033.8 9801.3 3047.8 9775.3
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Table 5.11 (cont.)  Equivalent optimal passive design of MR dampers for ten ground motions 
(Ttgt = 1s) 

 

MR damper # 1 2 3 4 5 6 7 8 

Los Gatos, 1989 Loma Prieta 

0,epc (KN-s/m) 366.5 1473.7 366.5 1473.0 283.1 1371.5 301.9 1370.8

1,epc (KN-s/m) 6248.2 22130.0 6248.2 22120.2 5051.8 20663.9 5321.5 20654.1

epα (KN) 3851.8 10329.3 3851.8 10325.3 3363.8 9731.3 3473.8 9727.3

Cape Mendocino, 1992 Petrolia 

0,epc (KN-s/m) 510.5 1702.8 510.1 1702.8 375.1 1575.6 367.2 1563.0

1,epc (KN-s/m) 8312.5 25415.2 8307.6 25415.2 6370.8 23591.2 6258.0 23409.8

epα (KN) 4693.7 11669.2 4691.7 11669.2 3901.8 10925.2 3855.8 10851.2

Rinaldi, 1994 Northridge 

0,epc (KN-s/m) 305.4 1461.1 305.0 1461.1 230.8 1234.8 246.9 1231.7

1,epc (KN-s/m) 5370.5 21948.6 5365.6 21948.6 4301.6 18702.6 4532.1 18658.5

epα (KN) 3493.8 10255.3 3491.8 10255.3 3057.8 8931.4 3151.8 8913.4

Sylmar, 1994 Northridge 

0,epc (KN-s/m) 404.1 1234.5 404.1 1234.5 317.3 1302.8 332.0 1303.2

1,epc (KN-s/m) 6787.6 18697.7 6787.6 18697.7 5542.1 19678.4 5753.0 19683.3

epα (KN) 4071.7 8929.4 4071.7 8929.4 3563.8 9329.3 3649.8 9331.3

Newhall, 1994 Northridge 

0,epc (KN-s/m) 363.8 1546.2 363.8 1545.9 268.8 1406.7 271.5 1402.6

1,epc (KN-s/m) 6209.0 23169.5 6209.0 23164.6 4845.9 21169.0 4885.1 21110.1

epα (KN) 3835.8 10753.2 3835.8 10751.2 3279.8 9937.3 3295.8 9913.3
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Table 5.12  Equivalent optimal passive design of MR dampers for ten ground motions (Ttgt = 2s) 
 

MR damper # 1 2 3 4 5 6 7 8 

Pacoima Dam, 1971 San Fernando 

0,epc (KN-s/m) 405.2 1430.7 405.2 1430.3 288.9 1192.1 289.6 1186.9

1,epc (KN-s/m) 6802.3 21512.2 6802.3 21507.3 5135.2 18089.7 5145.0 18016.2

epα (KN) 4077.7 10077.3 4077.7 10075.3 3397.8 8681.4 3401.8 8651.4

El Centro #5, 1979 Imperial Valley 

0,epc (KN-s/m) 203.8 854.7 204.2 855.0 187.4 719.3 194.9 718.3 

1,epc (KN-s/m) 3914.2 13250.1 3919.1 13255.0 3678.9 11308.4 3786.8 11293.7

epα (KN) 2899.8 6707.5 2901.8 6709.5 2803.8 5915.6 2847.8 5909.6

El Centro #6, 1979 Imperial Valley 

0,epc (KN-s/m) 602.1 1618.0 602.7 1618.0 407.2 1521.2 442.8 1520.2

1,epc (KN-s/m) 9626.6 24199.2 9636.4 24199.2 6831.7 22811.6 7341.7 22796.9

epα (KN) 5229.7 11173.2 5233.7 11173.2 4089.7 10607.2 4297.7 10601.2

El Centro #7, 1979 Imperial Valley 

0,epc (KN-s/m) 602.7 1859.7 602.7 1859.7 568.9 1789.2 583.3 1789.2

1,epc (KN-s/m) 9636.4 27665.9 9636.4 27665.9 9151.0 26655.8 9356.9 26655.8

epα (KN) 5233.7 12587.1 5233.7 12587.1 5035.7 12175.1 5119.7 12175.1

Parachute Test Site, 1987 Superstition Hills 

0,epc (KN-s/m) 281.1 1388.6 281.4 1389.0 239.0 1235.1 249.3 1233.4

1,epc (KN-s/m) 5022.4 20909.1 5027.3 20914.0 4419.3 18707.5 4566.4 18683.0

epα (KN) 3351.8 9831.3 3353.8 9833.3 3105.8 8933.4 3165.8 8923.4
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Table 5.12 (cont.)  Equivalent optimal passive design of MR dampers for ten ground motions 
(Ttgt = 2s) 

 

MR damper # 1 2 3 4 5 6 7 8 

Los Gatos, 1989 Loma Prieta 

0,epc (KN-s/m) 353.2 1395.8 353.2 1395.1 279.7 1292.9 280.1 1305.6

1,epc (KN-s/m) 6057.0 21012.1 6057.0 21002.3 5002.8 19536.2 5007.7 19717.6

epα (KN) 3773.8 9873.3 3773.8 9869.3 3343.8 9271.3 3345.8 9345.3

Cape Mendocino, 1992 Petrolia 

0,epc (KN-s/m) 430.5 1761.2 429.1 1761.6 402.4 1491.8 413.4 1477.8

1,epc (KN-s/m) 7165.1 26253.7 7145.5 26258.6 6763.1 22389.9 6920.0 22188.9

epα (KN) 4225.7 12011.1 4217.7 12013.1 4061.7 10435.3 4125.7 10353.3

Rinaldi, 1994 Northridge 

0,epc (KN-s/m) 283.1 1377.3 282.8 1377.7 240.4 1177.0 236.0 1176.0

1,epc (KN-s/m) 5051.8 20747.3 5046.9 20752.2 4438.9 17874.0 4375.2 17859.2

epα (KN) 3363.8 9765.3 3361.8 9767.3 3113.8 8593.4 3087.8 8587.4

Sylmar, 1994 Northridge 

0,epc (KN-s/m) 308.4 1207.8 307.7 1207.1 283.5 1093.6 292.7 1097.4

1,epc (KN-s/m) 5414.7 18315.3 5404.8 18305.4 5056.7 16677.5 5189.1 16731.5

epα (KN) 3511.8 8773.4 3507.8 8769.4 3365.8 8105.4 3419.8 8127.4

Newhall, 1994 Northridge 

0,epc (KN-s/m) 366.2 1313.1 365.9 1312.7 260.9 1246.1 274.2 1250.2

1,epc (KN-s/m) 6243.3 19825.5 6238.4 19820.6 4733.1 18864.4 4924.3 18923.3

epα (KN) 3849.8 9389.3 3847.8 9387.3 3233.8 8997.4 3311.8 9021.4
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Table 5.13  Practical optimal passive design of MR dampers (Ttgt = 1s) 
 

MR damper # 1 2 3 4 5 6 7 8 

0,epc (KN-s/m) 425.1 1523.9 425.1 1524.0 313.9 1378.5 323.1 1374.8

1,epc (KN-s/m) 7087.7 22848.8 7087.7 22850.8 5493.6 20764.5 5624.5 20710.5

epα (KN) 4194.1 10622.4 4194.1 10623.2 3544.0 9772.3 3597.4 9750.3
 
 

Table 5.14  Practical optimal passive design of MR dampers (Ttgt = 2s) 
 

MR damper # 1 2 3 4 5 6 7 8 

0,epc (KN-s/m) 383.6 1420.7 383.5 1420.6 315.8 1275.8 325.6 1275.5

1,epc (KN-s/m) 6493.4 21369.0 6491.4 21368.1 5521.1 19291.5 5661.3 19286.6

epα (KN) 3951.8 10018.9 3951.0 10018.5 3555.2 9171.6 3612.4 9169.6

 

Table 5.15  Final optimal passive design parameters of MR dampers for Ttgt = [1 2]s 
 

MR damper # 1 2 3 4 5 6 7 8 

0,epc (KN-s/m) 404.4 1472.3 404.3 1472.3 314.9 1327.2 324.3 1325.1

1,epc (KN-s/m) 6790.5 22108.9 6789.5 22109.4 5507.3 20028.0 5642.9 19998.6

epα (KN) 4072.9 10320.7 4072.5 10320.9 3549.6 9471.9 3604.9 9459.9

 

5.8  Concluding Remarks 

Highway bridges are susceptible to various levels of damages as observed in past major 

earthquakes. Seismic protective devices, in either passive or adaptive forms, such as base 

isolators and MR dampers, can be used to improve the seismic performances.  

Utilizing the hybrid simulation in UI_SimCor, time history analysis of a typical highway 

bridge, Painter Street Overcrossing, is performed through integrating the main structure modeled 

in OpenSees and the seismic protective devices and control algorithm implemented in Matlab. 

This methodology allows convenient modeling of complex nonlinear elements and application of 

structural control algorithm that are not available in common commercial FE softwares. 
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With classical structural control theory, LQG regulator with Kalman filter, the optimal 

control force is obtained and leads to the optimal structural response of base isolated Painter 

Street Bridge equipped with semi-actively controlled MR dampers through clipped optimal 

control algorithm. The structural response from semi-active control serves as the standard/target 

to optimally design the passive parameters of MR dampers.  

A novel approach to perform optimal passive design of MR dampers is proposed in this 

study. It’s achieved by replacing the time-varying control voltage command of MR damper with 

an equivalent constant input which is the average over time of the control voltage history given 

by numerical analysis of the semi-actively controlled structure. The equivalent passive design is 

able to closely mimic the effects of the adaptive semi-active control and is more reliable and 

feasible in real world application. 

There exists inherent variability and uncertainties in the seismic response of highway 

bridges due to earthquake motion characteristics and soil-structure-interaction effects. In practice, 

one can account for this complexity by performing nonlinear time history analysis with a group 

of ground motion records and appropriately modeling the bridge embankments and foundations 

to reflect the kinematic and inertial soil-bridge interactions. On this basis, the equivalent passive 

design procedure proposed by this study can be applied and lead to optimal selection of the 

design parameters of seismic protective devices on the highway bridge. 
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6.  Conclusions and Future Work 
 
 
6.1  Conclusions 
 

Buildings and bridges are susceptible to various levels of damages as observed in past 

major earthquakes. The damages can result from insufficient force or displacement design 

capacity compared to excessive demands due to seismic shaking. Structural control through 

seismic protective devices is essential to achieve certain performance goal and realize structural 

response reduction in terms of eliminating excessive displacement and acceleration. 

Seismic protective devices, in either passive or adaptive passive forms, can be used to 

improve the seismic performances of highway bridges in high seismicity regions. However, 

careful selection of optimum stiffness and damping properties of these devices is important to 

fulfill their advantages and achieve multi-performance objectives when subject to earthquakes 

that have various frequency contents and intensities. 

Supplemental energy dissipation in the form of nonlinear viscous dampers is often used 

to improve the performance of structures. The optimal amount of nonlinear damping is needed to 

achieve the desired performance of inelastic structures. Through numerical investigation using 

dimensional analysis, the nonlinear damping required to achieve the optimal performance of 

inelastic structures is quantified. A dimensionless nonlinear damping ratio is proposed which 

decisively quantifies the effects of nonlinear damping devices, such as nonlinear viscous 

dampers, on structural responses (e.g. drift and total acceleration) of inelastic structures subject 

to pulse-type near-fault ground motions. It is demonstrated that the added nonlinear damping is 

not always beneficial for inelastic structures, resulting in the increase of their total accelerations 

under certain ground motions.  
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A critical structure-to-pulse frequency ratio exists, under which an optimal nonlinear 

damping needs to balance between the increases of total acceleration and the reductions of the 

structural drift. The optimal damping for inelastic structures is a function of both nonlinear 

structural behavior and the ground motion properties, i.e. whether larger nonlinear damping is 

beneficial depends on the relative frequency between the structure and the input motion. By 

finding the equivalent SDOF system for a MDOF inelastic structure, the nonlinear damping ratio 

is generalized to characterize more realistic structures and could be applied for seismic protective 

device design, such as optimally determining the amount and position of nonlinear viscous 

dampers in a MDOF inelastic structure. 

Alternatively, to achieve the optimal responses using seismic protective devices, one 

could use active or semi-active control theory to guide the selection of mechanical properties of 

passive devices, such that the effects of active or semi-active control are duplicated. However, 

the structural control of nonlinear structures cannot be easily conducted due to the difficulties in 

modeling of complex structures and in implementing the control algorithms within the typical 

finite element programs.  

An existing hybrid simulation software (UI-SIMCOR) is adopted and modified to 

perform the dynamic analysis of nonlinear structures equipped with seismic protective devices. 

This hybrid scheme provides an approach to isolate the nonlinear seismic protective devices to 

be modeled in a software that can fully simulate its behavior while keeping other parts of a 

nonlinear structure numerically modeled in general FEM platform. Utilizing the hybrid 

numerical simulation scheme proposed based on UI_SimCor, the response of a highway bridge 

can be obtained by integrating various numerical and physical components as well as using 

different computational platforms. The commonly used seismic protective devices, including 
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nonlinear viscous dampers, base isolators and MR dampers, are implemented to numerically 

investigate their validity under this hybrid simulation framework.  UI_SimCor is also updated by 

this study to accommodate more realistic scenarios such as consideration of multiple support 

excitations.  

In particular, this study adopts OpenSees to model the nonlinear main structure while the 

seismic protective devices and the control algorithms are implemented in Matlab. Through the 

hybrid simulation scheme proposed, the advantages of these two computational programs are 

fully utilized, i.e. the practice of modeling complex nonlinear structures in OpenSees and 

characterizing seismic control devices which cannot be modeled in general FEM softwares in 

Matlab enables the accurate and realistic seismic response assessment of highway bridges with 

control devices.  

An experimental program is finished to verify the numerical results and structural 

performance by hybrid numerical simulation scheme. RTHS and shake table tests are performed 

with a 3-story steel frame structure controlled by a MR damper. It’s validated by the 

experimental study that the numerical hybrid simulation scheme proposed has a high level of 

accuracy and efficiency, thus this methodology can be utilized for further analysis and design of 

seismic control devices to optimally select the device parameters. 

A 3D global dynamic analysis is employed in this study for a highway bridge, Painter 

Street Overcrossing, where the nonlinear structure is built in OpenSees including the soil-

structure interaction elements while the seismic protective devices and control algorithms are 

implemented in Matlab. LQG regulator with Kalman filter is adopted to obtain the optimal 

structural response of base isolated Painter Street Bridge equipped with semi-actively controlled 

MR dampers through clipped optimal control algorithm. The structural response from semi-
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active control serves as the standard/target to optimally design the passive parameters of MR 

dampers. Hybrid simulation scheme makes the convenient application of structural control 

algorithm that is not available in common commercial FEM softwares possible.  

A novel approach to perform optimal passive design of MR dampers is proposed for 

highway bridge application. It’s achieved by replacing the time-varying control voltage 

command of MR damper with an equivalent constant input which is the average over time of the 

control voltage history given by numerical analysis of the semi-actively controlled bridge. The 

equivalent passive design is able to closely mimic the effects of the adaptive semi-active control 

and is more reliable and feasible in real world application. A comprehensive implementation 

strategy and procedure are developed to provide the required stiffness and damping properties 

(within practical/achievable range) of MR dampers for optimal structural responses of highway 

bridges.  

 
 
6.2  Recommendations for Future Work 
 

Through the findings of this research, a number of important areas related to the optimal 

design of seismic control devices and risk evaluation of highway bridges can be further studied. 

Recommendations for future research directions are as follows: 

(i) Define different levels of performance index for highway bridge system with 

components of various importance levels and output requirements to fulfill engineering and 

statistic need in design of highway bridges under a variety of excitation types, structural 

configurations and soil properties. 

(ii) Implement other nonlinear control theories on the control and design procedure. This 

study adopts clipped optimal control based on LQG regulator, which is developed for a linear 
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based system. In the future application, other nonlinear control theories, such as Sliding Mode 

Control (SMC) for nonlinear system, can be accommodated in the application of seismic control 

device design.  

(iii) Consider comprehensive uncertainties by applying fragility function to address the 

probability of failure and meet the performance objective. Further identify the effects of stiffness 

and damping properties of seismic protective devices by comparing the damage potential for 

given earthquake intensity (as manifested by the fragility functions). 

(iv) Develop a comprehensive design scheme and strategy for passive control devices 

under PBEE framework. Given certain performance objective of highway bridges, the design 

scheme will lead to the determination of optimal mechanical properties and locations of the 

seismic protective devices such that general engineering or social objectives could be achieved. 
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