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Abstract of the Dissertation

Dynamics of Satellites in Binary Near-Earth Asteroid

Systems: A Study Based on Radar Observations

by

Shantanu Naidu

Doctor of Philosophy in Geophysics and Space Physics

University of California, Los Angeles, 2015

Professor Jean-Luc Margot, Chair

In the past 15 years, three previously unrecognized sub-populations of near-Earth asteroids

(NEAs) have been discovered. About 15% of NEAs are binaries, at least 10% of NEAs are

contact binaries, and dozens of asteroid pairs have been identified. Numerous science ques-

tions have arisen about the formation and evolution processes of these systems and about

the inter-relationships between these groups. Addressing these questions informs us about a

wide range of important solar system processes that shape small bodies and planetesimals.

Here I have chosen to focus on providing one of the most complete characterizations of a

binary system among all known asteroid binaries, and on studying the spin-orbit interactions

in this and 8 additional binary systems. One hypothesis that has not been fully explored is

the possibility of chaotic rotation of asteroid satellites and the impact that such a state has

on the evolution of the binary systems. I examine this problem as well as the possibility of

detecting librational motions in synchronous satellites. Because the Arecibo and Goldstone

radar systems enable superb characterizations of binaries and NEAs in general, this disser-

tation makes abundant use of radar data. Radar observations provide images of asteroids at

decameter resolution, and these images can be inverted to determine the 3D shapes of the

components, which are essential to properly model the system dynamics. Radar data also

enable precise determination of the mutual orbit, which is another crucial ingredient. In the

first two chapters of the dissertation, I describe the observations and physical characteriza-

tions of asteroid 2000 ET70 and binary asteroid 2000 DP107. The characterization of 2000
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DP107 includes size, shape, spin, mass, and density of each component, making this binary

one of the best-characterized asteroid binary to date. In the last chapter of the dissertation,

I describe a computationally efficient fourth-order numerical integrator that I used to inves-

tigate the coupled spin and orbital dynamics of the satellites of NEAs. The speed of the

integrator enabled multi-year timescale simulations of 9 well-characterized binary near-Earth

asteroids. The numerical simulations illuminate a range of rotational regimes for asteroid

satellites and the conditions under which the various regimes prevail. One of the rotational

regimes is chaotic, and I find that this rotation state can substantially delay the radiative

evolution of binary systems.
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Introduction

This dissertation includes three chapters. Each chapter is a reproduction of a peer-reviewed

journal publication. The first and third chapters have been accepted for publication. The

second chapter is still in preparation for future submission. The chapters describe, in order,

how radar observations can be used to characterize the physical and dynamical properties of

near-Earth asteroids (NEAs), how they can be used to study binary systems, and how the

knowledge obtained with radar observations can be used to elucidate the spin-orbit dynamics

and evolution of binary NEAs.

Chapter 1 describes in detail the process of radar observation and physical characteriza-

tion of NEAs. This process is applied to a specific asteroid, 2000 ET70. We obtained con-

tinuous wave spectra and radar images with range resolutions as fine as 15 m using Arecibo

and Goldstone over a period of 12 days during the asteroid’s close approach to the Earth

in February 2012. We inverted the radar images to obtain a detailed shape model with an

effective spatial resolution of 100 m. The asteroid has overall dimension of 2.6×2.2×2.1 km

and spins with a period of 8.96 hours. It has two approximately parallel ridges ridges at the

north pole that enclose a valley which may contain ponded fine-grained regolith material.

The size, combined with the absolute magnitude measurement, yields an albedo of ∼2%.

The methods described for physical characterization of 2000 ET70 are applicable to other

asteroid radar datasets as well.

In Chapter 2, I describe radar observations and physical characterization of binary NEAs.

The chapter focuses specifically on binary NEA 2000 DP107. The shapes of the two compo-

nents were modeled using a method similar to that described in Chapter 1. The primary has

a spheroidal shape with an equivalent radius of about 435 m. It has a mass of 5.1× 1011 kg

and a density of 1500 kg m−3. It exhibits an equatorial ridge similar to other fast spinning

asteroids such as the primary of 1999 KW4, however the equatorial ridge in this case is not

as regular and has a large concavity (∼ 300 m diameter) on one side. The mutual orbit has

an eccentricity of about 0.015, a period of about 1.76 days, and a semi-major axis of 2.74 km.

The secondary is slightly elongated and has overall dimensions of 377 × 314 × 268 m. Its
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mass is about 0.20× 1011 kg and its density is about 1100 kg m−3.

In Chapter 3, I investigate questions related to the spin-orbit dynamics and evolution of

binary NEAs. The dynamics are dominated by exchange of angular momentum between the

mutual orbit and the spins of the components, which can only be studied with knowledge of

the shapes and masses of the components, as derived in Chapter 2 and other radar investiga-

tions. I describe our implementation of a fourth-order numerical integrator to simulate the

coupled spin and orbital motions of two rigid bodies having arbitrary mass distributions. Us-

ing this integrator, I simulate the dynamics of components in well-characterized binary and

triple near-Earth asteroid systems and use surface of section plots to map the possible spin

configurations of the satellites. For asynchronous satellites, the analysis reveals large regions

of phase space where the spin state of the satellite is chaotic. For synchronous satellites, I

show that libration amplitudes can reach detectable values even for moderately elongated

shapes. The presence of chaotic regions in the phase space has important consequences

for the evolution of binary asteroids. It may substantially increase spin synchronization

timescales, explain the observed fraction of asynchronous binaries, delay BYORP-type evo-

lution, and extend the lifetime of binaries. The variations in spin rate due to large librations

also affect the analysis and interpretation of lightcurve and radar observations.
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CHAPTER 1

Radar Imaging and Physical Characterization of

Near-Earth Asteroid (162421) 2000 ET70

Reproduced under the terms of Creative Commons Attribution License (S. P. Naidu, J. L.

Margot, M. W. Busch, P. A. Taylor, M. C. Nolan, M. Brozovic, L. A. M. Benner, J. D. Giorgini,

C. Magri, 2013, Icarus, 226, 323)

1.1 Introduction

Radar astronomy is arguably the most powerful Earth-based technique for characterizing the

physical properties of near-Earth asteroids (NEAs). Radar observations routinely provide

images with decameter spatial resolution. These images can be used to obtain accurate

astrometry, model shapes, measure near-surface radar scattering properties, and investigate

many other physical properties (e.g. sizes, spin states, masses, densities). Radar observations

have led to the discovery of asteroids exhibiting non-principal axis rotation (e.g., Ostro et al.,

1995; Benner et al., 2002), binary and triple NEAs (e.g., Margot et al., 2002; Ostro et al.,

2006; Shepard et al., 2006; Nolan et al., 2008; Brozović et al., 2011), and contact binary

asteroids (e.g., Hudson and Ostro, 1994; Benner et al., 2006; Brozovic et al., 2010). Radar-

derived shapes and spins have been used to investigate various physical processes (Yarkovsky,

YORP, BYORP, tides, librations, precession, etc.) that are important to the evolution of

NEAs (e.g., Chesley et al., 2003; Nugent et al., 2012; Lowry et al., 2007; Taylor et al., 2007;

Ostro et al., 2006; Scheeres et al., 2006; Taylor and Margot, 2011; Fang et al., 2011; Fang

and Margot, 2012).

Here we present the radar observations and detailed physical characterization of NEA
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(162421) 2000 ET70. This Aten asteroid (a=0.947 AU, e=0.124, i=22.3◦) was discovered

on March 8, 2000 by the Lincoln Near-Earth Asteroid Research (LINEAR) program in

Socorro, New Mexico. Its absolute magnitude was reported to be 18.2 (Whiteley, 2001)

which, for typical optical albedos between 0.4 and 0.04, suggests a diameter between 0.5

and 1.5 km. Recent analysis of the astrophotometry yields absolute magnitude values that

are comparable (Williams, 2012). Alvarez et al. (2012) obtained a lightcurve of the asteroid

during its close approach to the Earth in February 2012. They reported a lightcurve period

of 8.947 ± 0.001 hours and a lightcurve amplitude of 0.60 ± 0.07. Using visible photometry,

Whiteley (2001) classified 2000 ET70 as an X-type asteroid in the Tholen (1984) taxonomy.

The Tholen X class is a degenerate group of asteroids consisting of E, M, and P classes, which

are distinguished by albedo. Mike Hicks (personal communication) used visible spectroscopy

and indicated that his observations best matched a C-type or possibly an E-type. Using

spectral observations covering a wavelength range of 0.8 to 2.5 µm in addition to the visible

data, Ellen Howell (personal communication) classified it as Xk in the taxonomic system of

Bus-DeMeo (DeMeo et al., 2009).

1.2 Observations and data processing

We observed 2000 ET70 from February 12, 2012 to February 17, 2012 using the Arecibo

S-band (2380 MHz, 13 cm) radar and from February 15, 2012 to February 23, 2012 using

the Goldstone X-band (8560 MHz, 3.5 cm) radar. The asteroid moved ∼74 degrees across

the sky during this time and it came closest to Earth on February 19 at a distance of

∼0.045 Astronomical Units (AU). We observed it again in August 2012 when it made another

close approach to Earth at a distance of ∼0.15 AU.

Radar observing involved transmitting a radio wave for approximately the round-trip

light-time (RTT) to the asteroid, ∼46 seconds at closest approach, and then receiving the

echo reflected back from the target for a comparable duration. Each transmit-receive cycle is

called a run. On each day we carried out runs with a monochromatic continuous wave (CW)

to obtain Doppler spectra, followed by runs with a modulated carrier to obtain range-Doppler
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Table 1.1. 2000 ET70 Radar Observations Log

Tel UT Date MJD Eph RTT PTX δr δf N Start-Stop Runs Fig. 1.8
yyyy-mm-dd (s) (kW) (m) (Hz) hh:mm:ss-hh:mm:ss key

A 2012-02-12 55969 s41 67 828 cw 0.167 none 08:27:51-08:37:55 5
s41 15 0.075 65535 08:42:47-10:29:47 48 1-7
s41 15 0.075 8191 10:53:18-11:09:55 8

A 2012-02-13 55970 s41 62 860 cw 0.182 none 08:11:06-08:23:08 6
s43 15 0.075 65535 08:30:34-10:53:26 54 8-14

A 2012-02-14 55971 s43 58 811 cw 0.196 none 07:59:56-08:04:43 3
s43 15 0.075 65535 08:06:40-10:19:45 59 15-22

A 2012-02-15 55972 s43 54 785 cw 0.213 none 07:43:02-07:47:29 3
s43 15 0.075 65535 08:03:01-08:09:18 4
s47 15 0.075 65535 08:16:38-10:09:46 60 23-29

G 2012-02-15 55972 s43 54 420 cw none 08:55:15-09:03:27 5
s43 75 1.532 255 09:17:48-09:33:20 9
s45 37.5 255 09:46:24-11:59:24 73
s45 37.5 255 12:15:57-12:24:09 5

A 2012-02-16 55973 s51 51 760 cw 0.227 none 07:34:18-07:38:30 3
s49 15 0.075 65535 07:40:56-07:46:52 4

cw none 07:48:38-07:51:06 2
s49 15 0.075 65535 07:53:28-09:38:16 62 30-37

G 2012-02-16 55973 s49 51 420 cw none 09:15:46-09:23:30 5
s49 75 1.532 255 09:56:39-10:02:39 4
s49 37.5 0.488 none 11:35:21-11:46:33 7∗

s49 15 1.0 none 12:15:54-12:47:10 18∗ 43-44
s49 15 1.0 none 13:10:01-13:28:09 11∗ 45

images. CW data are typically used to measure total echo power and frequency extent,

whereas range-Doppler images are typically used to resolve the target in two dimensions.

Table 1.1 summarizes the CW and range-Doppler imaging runs.
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Table 1.1 (cont’d)

Tel UT Date MJD Eph RTT PTX δr δf N Start-Stop Runs Fig. 1.8
yyyy-mm-dd (s) (kW) (m) (Hz) hh:mm:ss-hh:mm:ss key

s49 15 1.0 none 13:29:04-15:29:31 70∗ 46-53

A 2012-02-17 55974 s53 48 775 cw 0.244 none 07:38:00-07:41:57 3
s53 15 0.075 65535 07:44:36-08:48:59 40 38-42

G 2012-02-17 55974 s53 48 420 cw none 07:05:53-07:13:10 5
s53 75 1.532 255 07:42:55-08:00:01 11
s53 37.5 0.977 none 08:16:57-12:24:19 152∗ 54-65

G 2012-02-18 55975 s53 47 420 cw none 07:05:51-07:12:50 5
s53 75 1.532 255 07:36:04-07:50:52 10
s53 37.5 0.977 none 08:01:15-08:31:44 20∗ 66
s53 37.5 0.977 none 08:36:51-08:45:24 6∗ 67

G 2012-02-19 55976 s55 46 420 cw none 07:05:51-07:12:41 5
s55 75 1.532 255 07:21:55-07:36:25 10
s55 37.5 0.977 none 07:46:12-11:13:58 136∗ 68-76
s55 37.5 0.977 none 11:44:10-13:07:06 55∗ 77-80

G 2012-02-20 55977 s57 46 420 cw none 07:10:51-07:17:42 5
s57 37.5 0.977 none 08:12:13-09:18:53 44∗ 81-84
s57 37.5 0.977 none 10:31:49-11:33:59 41∗ 85-87
s57 37.5 0.977 none 12:16:08-12:19:54 3∗

G 2012-02-22 55979 s59 48 420 cw none 09:48:25-09:55:42 5
s59 75 0.957 255 10:02:53-10:21:35 12
s59 37.5 0.977 none 10:32:51-10:35:14 2∗

s59 37.5 0.977 none 10:36:06-10:45:02 6∗
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Table 1.1 (cont’d)

Tel UT Date MJD Eph RTT PTX δr δf N Start-Stop Runs Fig. 1.8
yyyy-mm-dd (s) (kW) (m) (Hz) hh:mm:ss-hh:mm:ss key

G 2012-02-23 55980 s59 51 420 cw none 08:33:10-08:40:53 5
s59 75 0.957 255 08:49:48-09:09:41 12
s59 75 0.977 none 09:20:46-10:55:20 55∗ 88-90

A 2012-08-24 56163 s72 153 721 cw none 15:10:51-15:18:25 2
cw none 15:46:51-16:31:17 9
150 0.954 8191 16:36:59-17:41:01 13

A 2012-08-26 56165 s72 157 722 cw none 15:04:24-16:20:38 15

Note. — The first column indicates the telescope: Arecibo Planetary Radar (A) or Goldstone Solar System Radar at DSS-14
(G). MJD is the modified Julian date of the observation. Eph is the ephemeris solution number used (Section 1.3). RTT is the
round-trip light-time to the target. PTX is the transmitter power. δr and δf are the range and Doppler resolutions, respectively,
of the processed data. N is the number of bauds or the length of the pseudo-random code used. The timespan of the received
data is listed by their UT start and stop times. Runs is the number of transmit-receive cycles during the timespan. An asterisk
(∗) indicates chirp runs. Last column indicates the key to the image numbers shown in Fig. 1.8.

For CW runs a carrier wave at a fixed frequency was transmitted for the RTT to the

asteroid. The received echo from the asteroid was demodulated, sampled, and recorded. A

fast Fourier transform (FFT) was applied to each echo timeseries to obtain the CW spectra.

The total frequency extent (∆f) or bandwidth (BW) of the CW spectra is equal to the

sampling frequency (fs) or the reciprocal of the sampling period (Ps):

∆f = fs =
1

Ps
. (1.1)

The spectral resolution (δf) is given by:

δf =
∆f

n
, (1.2)

where n is the FFT length. Finer spectral resolution can be achieved by increasing n, however

the signal-to-noise ratio (SNR) in each frequency bin decreases as 1/
√
n. The finest possible

resolution that can be achieved is limited by the number of samples obtained in one run.

If we were recording for the full duration of the RTT, the number of samples obtained in

one run would be n = RTT× fs, and the resolution would be δf = 1/RTT. In reality we

cannot transmit for a full RTT as it takes several seconds to switch between transmission
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Figure 1.1: Sub-radar point (SRP) latitude during the primary observing period. Solid and
dashed lines show SRP latitude for the prograde and retrograde spin vectors, respectively
(Section 1.6).
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and reception, so the finest possible resolution is δf = 1/(RTT− tswitch), where tswitch is the

switching time.

For range-Doppler imaging two different pulse compression techniques were used to

achieve fine range resolution while maintaining adequate SNR (Peebles, 2007). Pulse com-

pression is a signal conditioning and processing technique used in radar systems to achieve

a high range resolution without severely compromising the ability to detect or image the

target. The range resolution achievable by a radar is proportional to the pulse duration,

or, equivalently, inversely proportional to the effective bandwidth of the transmitted signal.

However, decreasing the pulse duration reduces the total transmitted energy per pulse and

hence it negatively affects the ability to detect the radar target. Pulse compression tech-

niques allow for the transmission of a long pulse while still achieving the resolution of a short

pulse.

1.2.1 Pulse compression using binary phase coding (BPC)

We used binary codes to produce range-Doppler images of the asteroid at both Arecibo

and Goldstone. In this technique we modulated the transmitted carrier with a repeating

pseudo-random code using binary phase shift keying (BPSK). The code contains N elements

or bauds and the duration of each baud is Tbaud. The duration of the code is called the pulse

repetition period (PRP=N×Tbaud). The effective bandwidth of the transmitted signal (Beff)

is given by 1/Tbaud. For each run we transmitted for approximately the RTT to the asteroid,

followed by reception for a similar duration. The received signal was demodulated and then

decoded by cross-correlating it with a replica of the transmitted code. The images span a

range (∆r) given by:

∆r =
c

2
PRP, (1.3)

and their range resolution (δr) is given by:

δr =
c

2
Tbaud =

c

2

1

Beff

, (1.4)
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where c is the speed of light. Each baud within the code eventually maps into to a particular

range bin in the image. Resolution in the frequency or Doppler dimension was obtained

in each range bin by performing a FFT on the sequence of returns corresponding to that

bin. The total frequency extent (∆f) or bandwidth (BW) of the image is equal to the pulse

repetition frequency (PRF) or the reciprocal of the PRP:

∆f = PRF =
1

PRP
. (1.5)

The frequency resolution (δf) of the image depends on the FFT length (n) as follows:

δf =
∆f

n
. (1.6)

The RTT dictates the finest frequency resolution achievable, similar to the situation with

CW spectra.

1.2.2 Pulse compression using linear frequency modulation (Chirp)

We also used a linear frequency modulation technique (Margot, 2001; Peebles, 2007) to

produce range-Doppler images of the asteroid at Goldstone. Only a fraction of the images

were obtained in this mode because this new capability is still in the commissioning phase.

Chirp waveforms allow us to maximize the bandwidth of the transmitted signal and to

obtain better range resolution than that available with BPC waveforms. They are also less

susceptible to degradation due to the Doppler spread of the targets. Finally, they are more

amenable to the application of windowing functions that can be used to trade between range

resolution and range sidelobe level (Margot, 2001).

In this technique the carrier was frequency modulated with a linear ramp signal. The

resultant signal had a frequency that varied linearly with time from ω0−ω to ω0+ω, where

ω0 is the carrier frequency and Beff = 2ω is the effective bandwidth of the signal. The

resultant signal is called a chirp. A repeating chirp was transmitted with 100% duty cycle

for the duration of the round-trip light-time to the asteroid. The time interval between the
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transmission of two consecutive chirps is the PRP. For our observations we used PRPs of

125 µs and 50 µs for chirps with Beff=2 MHz and Beff=5 MHz, respectively. The received

signal was demodulated and range compression was achieved by cross-correlating the echo

with a replica of the transmitted signal. The range extent and the range resolution of the

chirp images are given by Eq. (1.3) and Eq. (1.4), respectively. Resolution in the frequency

or Doppler dimension was obtained as in the binary coding technique. The bandwidth of

the image is given by Eq. (1.5) and the frequency resolution is given by Eq. (1.6).

1.3 Astrometry and orbit

A radar astrometric measurement consists of a range or Doppler estimate of hypothetical

echoes from the center of mass (COM) of the object at a specified coordinated universal time

(UTC). In practice we used our measurements of the position of the leading edge of the echoes

and our estimates of the object’s size to report preliminary COM range estimates and uncer-

tainties. We refined those estimates after we obtained a detailed shape model (Section 1.7).

We measured Doppler astrometry from the CW spectra. We reported 9 range estimates and

1 Doppler estimate during the course of the observing run and computed the heliocentric

orbit using the JPL on-site orbit determination software (OSOD). The ephemeris solution

was updated each time new astrometric measurements were incorporated (Table 1.1). Using

the best ephemeris solution at any given time minimizes smearing of the images.

At the end of our February observing campaign, we were using ephemeris solution 59. A

final range measurement, obtained during the asteroid’s close approach in August 2012, was

incorporated to generate orbit solution 74. After the shape model was finalized, we updated

the orbit to solution 76 by replacing the preliminary February astrometric measurements

with more accurate shape-based estimates of the range to the center of mass (Table 1.2).

Table 1.3 lists the best fit orbital parameters (solution 76) generated using 18 range

measurements and 316 optical measurements. The optical measurements span February 1977

to December 2012. However we assigned 20 arcsecond uncertainties to the two precovery

observations from the 1977 La Silla-DSS plates, effectively removing their contribution to the
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fit and reducing the optical arc to the interval 2000-2012. The 1977 observations were from

a single, hour-long, trailed exposure, and appear to have been reported with a ∼45 s timing

error, consistent with the measurers’ cautionary note “Start time and exposure length are

uncertain” (MPEC 2000-L19).

The orbit computation is reliable over a period from the year 460 to 2813. Beyond this

interval either the 3σ uncertainty of the Earth close approach time (evaluated whenever

the close approach distance is less than 0.1 AU) exceeds 10 days or the 3σ uncertainty of

the Earth close approach distance exceeds 0.1 AU. The current Minimum Orbit Intersection

Distance (MOID) with respect to Earth is 0.03154 AU, making 2000 ET70 a potentially

hazardous asteroid (PHA).

1.4 Radar scattering properties

We transmitted circularly polarized waves and used two separate channels to receive echoes

having the same circular (SC) and the opposite circular (OC) polarization as that of the

transmitted wave (Ostro, 1993). Reflections from a plane surface reverse the polarization of

the incident waves and most of the echo power is expected in the OC polarization. Echo

power in the SC polarization is due to multiple reflections or reflections from structures with

wavelength-scale roughness at the surface or sub-surface. A higher ratio of SC to OC power

therefore indicates a greater degree of near-surface wavelength-scale roughness or multiple

scattering. It is worth noting that while a larger SC to OC ratio implies a rougher surface,

there is a compositional component at well (Benner et al., 2008). This circular polarization

ratio is often denoted by µC. We measured µC for all the Arecibo spectra shown in Fig. 1.2

and computed an average value of µC = 0.21 ± 0.02, where the uncertainty is the standard

deviation of the individual estimates. Observed ratios for individual spectra deviate no more

than 0.03 from the average. This ratio is lower than that for the majority of NEAs with

known circular polarization ratios (Mean = 0.34 ± 0.25, Median = 0.26) (Benner et al.,

2008) suggesting that 2000 ET70 has a lower than average near-surface roughness at 10 cm

scales.
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Table 1.2. 2000 ET70 range measurements

Date (UTC) Range 1-σ Uncertainty Observatory
yyyy-mm-dd hh:mm:ss µs µs

2012-02-12 08:50:00 67220894.76 0.5 A
2012-02-12 10:03:00 66974197.50 0.5 A
2012-02-13 09:11:00 62452848.06 0.5 A
2012-02-13 10:00:00 62298918.42 0.5 A
2012-02-14 09:28:00 58061903.74 0.5 A
2012-02-14 10:06:00 57953990.18 0.5 A
2012-02-14 10:16:00 57925824.25 0.5 A
2012-02-15 08:30:00 54319877.92 0.5 A
2012-02-15 09:20:00 54206358.81 3.0 G
2012-02-15 09:47:00 54126135.16 0.5 A
2012-02-16 08:23:00 50979848.61 0.5 A
2012-02-16 09:30:00 50840187.02 0.5 A
2012-02-17 08:05:00 48327621.88 0.5 A
2012-02-17 08:43:00 48267222.55 0.5 A
2012-02-18 07:40:00 46481930.28 2.0 G
2012-02-19 07:30:00 45481292.56 2.0 G
2012-02-20 10:10:00 45483470.81 2.0 G
2012-08-24 17:08:00 153139162.28 3.0 A

Note. — This table lists shape-based estimates of the range to the asteroid
COM. The first column indicates the coordinated universal time (UTC) of
the measurement epoch. The second column gives the ranges expressed as
the RTT to the asteroid in microseconds (µs). The third column lists the 1σ
range uncertainty. The fourth column indicates the radar used to make the
measurement (A stands for the Arecibo Planetary Radar and G stands for
the Goldstone Solar System Radar at DSS-14).
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Table 1.3. 2000 ET70 heliocentric orbital elements (solution 76)

Element Value 1-σ Uncertainty

eccentricity 0.123620379 6.3× 10−8

semi-major axis (AU) 0.9466347364 1.2× 10−9

inclination (degrees) 22.3232174 1.2× 10−6

longitude of
ascending node (degrees) 331.16730395 9.8× 10−7

argument of
perihelion (degrees) 46.106698 1.1× 10−5

Mean anomaly (degrees) 84.37370818 4.2× 10−7

Note. — All orbital elements are specified at epoch 2012
Dec 15.0 barycentric dynamical time (TDB) in the heliocentric
ecliptic reference frame of J2000. The corresponding orbital
period is (336.41246710 ± 5.5× 10−7) days.
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Figure 1.2: Arecibo CW spectra of 2000 ET70 arranged in chronological order from left to
right and top to bottom. They were obtained on February 12-17 (MJDs 55969.35, 55970.34,
55971.33, 55972.32, 55973.32, 55974.32, respectively). The frequency resolution of each
spectrum is given at the top right of the corresponding panel. Each spectrum was produced
by choosing a frequency resolution that allowed for the incoherent sum of 10 independent
spectra, or looks, per run, and by summing over 3 runs, resulting in a total number of 30
looks. The solid and dashed lines are observed OC and SC spectra, respectively. The dot-
dashed line shows the corresponding synthetic OC spectra generated using our shape model
(Section 1.7). The circular polarization ratio (µC) values in chronological order are 0.18,
0.20, 0.24, 0.21, 0.21, and 0.24 all of which have uncertainties of 5%, where the uncertainty
is computed according to Ostro et al. (1983). The OC radar albedo values in chronological
order are 0.091, 0.063, 0.073, 0.056, 0.051, and 0.044 all of which have uncertainties of 25%.
The reduced chi-squares of the fits to the OC spectra vary between 0.69 to 0.72.
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The average radar albedo computed for the OC CW spectra shown in Fig. 1.2 is

0.063 ± 0.017, where the uncertainty is the standard deviation of individual estimates. The

radar albedo is the ratio of the radar cross-section to the geometric cross-sectional area of

the target. The radar cross-section is the projected area of a perfectly reflective isotropic

scatterer that would return the same power at the receiver as the target.

In our modeling of the shape of the asteroid (Sections 1.6 and 1.7), we used a cosine law

to represent the radar scattering properties of 2000 ET70:

dσ

dA
= R(C + 1)(cosα)2C . (1.7)

Here σ is the radar cross section, A is the target surface area, R is the Fresnel reflectivity,

C is a parameter describing the wavelength-scale roughness, and α is the incidence angle.

Values of C close to 1 represent diffuse scattering, whereas larger values represent more

specular scattering (Mitchell et al., 1996). For specular scattering, C is related to the

wavelength-scale adirectional root-mean-square (RMS) slope S0 and angle θrms of the surface

by S0 = tan (θrms) = C−1/2.

1.5 Range and Doppler extents

The range extent of the object in the radar images varies between ∼600 m and ∼1700 m

(Fig. 1.8), suggesting that the asteroid is significantly elongated. In most of the images two

distinct ridges that surround a concavity are clearly visible (e.g., Fig. 1.8, images 8-12 and

images 30-37). In images where the ridges are aligned with the Doppler axis, they span

almost the entire bandwidth extent of the asteroid (e.g., Fig. 1.8, images 11 and 34). If the

concavity is a crater then these ridges could mark its rim. At particular viewing geometries,

the trailing end of the asteroid exhibits a large outcrop with a range extent of ∼250 m (e.g.,

Fig. 1.8, image 11). These features suggest that the overall surface of the asteroid is highly

irregular at scales of hundreds of meters.
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For a spherical object, the bandwidth (B) of the radar echo is given by:

B =
4πD

λP
cos δ. (1.8)

Here D is the diameter of the object, P is its apparent spin period, λ is the radar wavelength,

and δ is the sub-radar latitude. As δ increases, B decreases. In images obtained at similar

rotational phases, the bandwidth extent of the asteroid increased from February 12 to 20,

indicating that our view was more equatorial towards the end of the observing campaign

(Fig. 1.1). For example in Fig. 1.8, images 10, 33, and 68 are at similar rotational phases

and their bandwidths (based on a 2380 MHz carrier) are ∼3.7 Hz, ∼4.9 Hz, and ∼6.3 Hz,

respectively.

1.6 Spin vector

We used the SHAPE software (Hudson, 1993; Magri et al., 2007) to fit a shape model to the

radar images and to estimate the spin vector of 2000 ET70. Since SHAPE is not particularly

effective at fitting the spin axis orientation and spin period of the shape model, we carried

out an extensive search for these parameters in an iterative manner. We performed two

iterations each in our search for the spin axis orientation and spin period, where the result

of each step provides initial conditions for the next optimization step. This approach leads

to increased confidence that a global minimum is reached.

Our initial estimate of the spin period came from the time interval between repeating

rotational phases of the object captured in the images. Fig. 1.3 shows the object at similar

orientations in images taken on different days. The time interval in two of those cases is ∼72

hours and in the third case is ∼45 hours. This indicates that the spin period of the object

is close to a common factor of the two, that is, 9 hours or a sub-multiple of 9 hours. Fig. 1.4

shows two images taken 22.5 hours apart and the object is not close to similar orientations

in these two images, ruling out all periods that are factors of 22.5 hours. Thus we are left

with a period close to 3 hours or 9 hours. Images obtained over observing runs longer than
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3 hours do not show a full rotation of the asteroid, ruling out a spin period of 3 hours.

Using an initially fixed spin period of 9 hours, we performed an extensive search for

the spin axis orientation. The search consisted of fitting shape models to the images under

various assumptions for the spin axis orientation. We covered the entire celestial sphere

with uniform angular separations of 15◦ between neighboring trial poles. At this stage we

used a subset of the images in order to decrease the computational burden. We chose images

showing sharp features that repeated on different days because they provide good constraints

on the spin state. Images obtained on February 12 and 15 satisfied these criteria and we

used images with receive times spanning MJDs 55969.426 to 55969.463 and 55972.335 to

55972.423 for this search. We started with triaxial ellipsoid shapes and allowed the least-

squares fitting procedure to adjust all three ellipsoid dimensions in order to provide the best

match between model and images. We then used shapes defined by a vertex model with 500

vertices and 996 triangular facets. The fitting procedure was allowed to adjust the positions

of the vertices to minimize the misfit. In all of these fits the spin axis orientation and the spin

rate were held constant. Radar scattering parameters R and C described in Eq. (1.7) were

allowed to float. We found the best shape model fit with the spin pole at ecliptic longitude

(λ) = 60◦ and ecliptic latitude (β) = -60◦.

Using the best fit spin pole from the previous step, we proceeded to estimate the spin

period with greater precision. We tried spin rates in increments of 2◦/day from 960◦/day

(P = 9 hours) to 970◦/day (P = 8.91 hours) to fit vertex shape models with 500 vertices to

the images. This time we used a more extensive dataset consisting of all images obtained

from Arecibo. As in the previous step, only the radar scattering parameters and the shape

parameters were allowed to float in addition to the parameter of interest. We found the best

agreement between model and observations with a spin rate of 964◦/day (Period = 8.963

hours).

The second iteration of the spin-axis orientation search was similar to the first one except

that we used a spin period of 8.963 hours and used the complete dataset consisting of all

the Arecibo and Goldstone images from February. The Arecibo images from August were

not used because of their low SNR and resolution. This procedure was very effective in
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Figure 1.3: 2000 ET70 range-Doppler images showing the asteroid at similar rotational
phases on different days. The images were obtained at MJDs 55970.40 and 55973.38 (∼72
hours apart) (top), 55971.35 and 55974.33 (∼72 hours apart) (center), 55969.46 and 55971.34
(∼45 hours apart) (bottom), suggesting a spin period of ∼9 hours or a sub-multiple of ∼9
hours. In these images radar illumination is from the top, range increases towards the
bottom, Doppler frequency increases to the right, and the asteroid spin results in counter-
clockwise rotation.
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Figure 1.4: 2000 ET70 images obtained at MJDs 55970.40 and 55971.34, or 22.5 hours apart.
The asteroid is not close to similar rotational phases in these images, ruling out spin periods
that are sub-multiples of ∼22.5 hours. A ∼4.5-hour spin period is therefore ruled out, leaving
∼9 hours as the only plausible value.

constraining the possible spin axis orientations to a small region (around λ = 79◦ and

β = −42◦) of the celestial sphere (Fig. 1.5). We performed a higher resolution search within

this region with spin poles ranging in λ from 64◦ to 104◦ and β from -60◦ to -30◦ with step

sizes of 4◦ in λ and 5◦ in β. For this step we performed triaxial ellipsoid fits followed by

spherical harmonics model fits, adjusting spherical harmonic coefficients up to degree and

order 10. Our best estimate of the spin axis orientation is λ = 80◦ and β = −50◦, with

10◦ uncertainties. Shape models with spin axis orientations within this region have similar

appearance upon visual inspection. We also attempted shape model fits with the best-fit

prograde pole at λ = 232◦ and β = 75◦. We found that we were unable to match the observed

bandwidths and ruled out the prograde solution. 2000 ET70 is a retrograde spinner, just like

the majority of NEAs (La Spina et al., 2004). Our adopted spin pole (λ = 80◦, β = −50◦)

is at an angle of ∼160◦ from the heliocentric orbit pole (λ = 241◦, β = 68◦).

We used the best spherical harmonics shape model from the previous search to perform

a second iteration of the spin period search. This time we fit spherical harmonics shape

models using spin periods in increments of 0.001 hours from 8.940 hours to 8.980 hours.

This final step was performed in part to quantify error bars on the spin period. The reduced

chi-squares of the shape models, computed according to the method described in (Magri
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Figure 1.5: Contour plot showing goodness of fit (reduced chi-square) of shape model fits
under various assumptions for the ecliptic longitude (λ) and ecliptic latitude (β) of the spin
axis. The spin period was fixed at 8.963 hours for the fits. We adopted a best fit spin axis
orientation of λ = 80◦ and β = −50◦ with a 10◦ uncertainty.
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Figure 1.6: Goodness of fit (reduced chi-square) of degree-and-order 10 spherical harmonics
shape models of 2000 ET70 as a function of assumed spin period. The spin pole was fixed at
λ = 80◦ and β = −50◦ for the fits. We adopted a best fit spin period of 8.960±0.01 hours.

et al., 2007), are shown in Fig. 1.6. We visually verified the quality of the fits and adopted a

spin period of 8.960 ± 0.01 hours. A 0.01 hour difference in spin period amounts to a ∼13◦

offset in rotational phase over the primary observing window which is detectable.

1.7 Shape model

As a starting point for our final shape modeling efforts we used the results of the spin state

determination (Section 1.6), specifically the best-fit spherical harmonics shape model with

a spin period of 8.960 hours and a spin pole at λ = 80◦ and β = −50◦. We proceeded to fit

all the radar images obtained in February and OC CW spectra from Fig. 1.2 with a vertex

model having 2000 vertices and 3996 facets. The number of vertices is based on experience

and the desire to reproduce detectable features without over-interpretation. At this step

22



the vertex locations and the radar scattering parameters were fit for, but the spin vector

was held fixed. Observed images were summed to improve their SNR. At Arecibo, 8 images

were typically combined. At Goldstone, 14, 9, 13, 13, 14, 12, 6, and 12 images were typically

combined on February 15, 16, 17, 18, 19, 20, 22, and 23, respectively. We cropped the images

so that sufficient sky background remained for the computation of noise statistics, but the

optimization procedure is robust against the amount of sky background. We minimized

an objective function that consists of the sum of squares of residuals between model and

actual images, plus a number of weighted penalty functions designed to favor models with

uniform density, principal axis rotation, and a reasonably smooth surface (Hudson, 1993;

Magri et al., 2007). The choice of weights in the penalty function is subjective, so the shape

model solution is not unique. We tried to restrict the weights to the minimum value at

which the penalty functions were effective. The minimization procedure with our choice of

penalty functions produced a detailed shape model for 2000 ET70 (Fig. 1.7 and Table 2.3).

The agreement between model and data is generally excellent but minor disagreements are

observed (Fig. 1.8 and Fig. 1.2). The overall shape is roughly a triaxial ellipsoid with extents

along the principal axes of ∼2.61 km, ∼2.22 km, and ∼2.04 km, which are roughly the same

as the dynamically equivalent equal volume ellipsoid (DEEVE) dimensions listed in table 2.3.

The region around the north pole has two ridges that are 1-1.5 km in length and almost

100 m higher than their surroundings. These ridges enclose a concavity that seems more

asymmetric than most impact craters. Along the negative x-axis a large protrusion is visible.

Such a feature could arise if the asteroid were made up of multiple large components resting

on each other.

NEAs in this size range for which radar shape models exist commonly exhibit irregular

features such as concavities and ridges. A few examples include Golevka (Hudson et al.,

2000), 1992 SK (Busch et al., 2006), and 1998 WT24 (Busch et al., 2008). The concavities

observed on these NEAs can not be adequately captured by convex-only shape modeling

techniques.

For this shape model, the best fit values for the radar scattering parameters, R and C,

were 1.9 and 1.4, respectively (section 1.4). This value of C indicates that 2000 ET70 is
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Figure 1.7: Best-fit vertex shape model of 2000 ET70 as seen along the three principal axes
x, y, and z. For principal axis rotation the spin axis is aligned with the z axis. Yellow regions
at the south pole have radar incidence angles > 60◦ and hence are not well constrained. The
shape model has 2000 vertices and 3996 triangular facets giving an effective surface resolution
of ∼100 m.

a diffuse scatterer, simlar to other NEAs such as Geographos (Hudson and Ostro, 1999),

Golevka (Hudson et al., 2000), and 1998 ML14 (Ostro et al., 2001). NEAs are generally

expected to be diffuse scatterers at radar wavelengths because of their small sizes and rough

surfaces. Attempts to fit the echoes with a two-component scattering law (diffuse plus

specular) did not yield significantly better results.

1.8 Gravitational environment

We used our best-fit shape model and a uniform density assumption of 2000 kg m−3, a rea-

sonable density for rubble-pile NEAs, (e.g., Ostro et al., 2006), to compute the gravity field

at the surface of the asteroid (Werner and Scheeres, 1997). The acceleration on the surface is

the sum of the gravitational acceleration due to the asteroid’s mass and the centrifugal accel-

eration due to the asteroid’s spin. An acceleration vector was computed at the center of each
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Figure 1.8: Comparison between radar range-Doppler images, corresponding synthetic radar
images generated using our best-fit shape model, and plane-of-sky (POS) projections of
the shape model. Range-Doppler images are oriented such that radar illumination is from
the top, range increases towards the bottom, Doppler frequency increases to the right, and
the asteroid spin results in counter-clockwise rotation. The POS projections are oriented
north-up and east-left. Time increases from top to bottom within each panel and from left
to right. The range and frequency resolutions of the images are given in Table 1.1. The
reduced chi-square of the fit to the images is 0.27.
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Table 1.4. 2000 ET70 shape model parameters

Parameters Value

Extents along x 2.61 ± 5%
principal axes (km) y 2.22 ± 5%

z 2.04 ± 5%

Surface Area (km2) 16.7 ± 10%

Volume (km3) 6.07 ± 15%

Moment of inertia ratios A/C 0.800 ± 10%
B/C 0.956 ± 10%

Equivalent diameter (km) 2.26 ± 5%

DEEVE extents (km) x 2.56 ± 5%
y 2.19 ± 5%
z 2.07 ± 5%

Spin pole (λ, β) (◦) (80, -50) ± 10
Sidereal spin period (hours) 8.96 ± 0.01

Note. — The shape model consists of 2000 vertices
and 3996 triangular facets, corresponding to an effec-
tive surface resolution of ∼100 m. The moment of iner-
tia ratios were calculated assuming homogeneous den-
sity. Here A, B, and C are the principal moments of
inertia, such that A < B < C. Equivalent diameter
is the diameter of a sphere having the same volume
as that of the shape model. A dynamically equivalent

equal volume ellipsoid (DEEVE) is an ellipsoid with
uniform density having the same volume and moment
of inertia ratios as the shape model.
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facet. Figure 1.9 shows the variation of the magnitude of this acceleration over the surface

of the asteroid. The acceleration on the surface varies between 0.54 mm s−2 to 0.64 mm s−2,

which is 4 orders of magnitude smaller than that experienced on Earth and 2 orders of mag-

nitude smaller than that on Vesta. Centrifugal acceleration makes a significant contribution

to the total acceleration and varies from zero at the poles to ∼0.049 mm s−2 (about 10%

of the total acceleration) on the most protruding regions of the equator. For comparison,

on Earth, centrifugal acceleration contributes less than 0.5% to the total acceleration at the

equator.

Fig. 1.10 shows the gravitational slope variation over the asteroid’s surface. The grav-

itational slope is the angle that the local gravitational acceleration vector makes with the

inward pointing surface-normal vector. The average slope is 9.5◦. Less than 1% of the

surface has slopes greater than 30◦, the approximate angle of repose of sand, indicating a

relaxed surface. Slopes on the sides of the ridges near the north pole reach up to ∼33◦, and

the sides facing the north pole are steeper than the opposite sides. As a result of the high

slopes, along-the-surface accelerations are a substantial fraction of the total acceleration,

reaching values as high as 0.34 mm s−2. One might expect mass wasting to result from this

gravitational environment: the sides of the ridges may have competent rocks exposed at the

surface, and the valley between the two ridges may be overlain by a pond of accumulated

regolith. A similar mass wasting process is hypothesized to have occurred on Eros (Zuber

et al., 2000). The accumulation of fine-grained regolith could lower the wavelength-scale

surface roughness locally and perhaps explain the lower values of µc observed at higher SRP

latitudes (Fig. 1.2). A similar trend in µc was observed in the Goldstone CW spectra.

1.9 Discussion

Whiteley (2001) and Williams (2012) estimated 2000 ET70’s absolute magnitude (H) to be

near 18.2. The geometric albedo (pV ) of an asteroid is related to its effective diameter (D)
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Figure 1.9: This figure shows the magnitude of the vector sum of acceleration due to gravity
and centrifugal acceleration computed at the center of each facet of the shape model. We
assumed a uniform density of 2000 kg m−3 and used our measured spin period value of 8.96
hours. Centrifugal acceleration makes a significant contribution to the total acceleration; at
the most protruding regions of the equator it accounts for about 10%.
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Figure 1.10: This figure shows the gravitational slopes computed at the center of each facet of
the shape model. The gravitational slope is the angle that the local gravitational acceleration
vector makes with the inward pointing surface-normal vector. We assumed a uniform density
of 2000 kg m−3 and used our measured spin period value of 8.96 hours. Sides of the ridges
near the north pole have slopes exceeding 30◦, the approximate angle of repose of sand.
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and its H value by (Pravec and Harris, 2007, and references therein):

pV =

[

1329 km× 10−0.2H

D

]2

. (1.9)

Using Whiteley (2001)’s H=18.2, the above equation yields pV=0.018±0.002 for an asteroid

with an effective diameter of 2.26 km ± 5% (Fig. 1.11). This uncertainty on pV is due to

the diameter uncertainty only. A geometric albedo near 2% is extremely low compared to

the albedos of other NEAs (Thomas et al., 2011; Stuart and Binzel, 2004). More common

values of pV would require lower values of the absolute magnitude (e.g., pV=0.04 requires

H=17.5). The range of possible H and pV values that are consistent with the radar size

estimates is shown in Fig. 1.11. We conclude that 2000 ET70 has either an extremely low

albedo or unusual phase function.

Alvarez et al. (2012) observed the asteroid between February 19 to 24, when the view was

close to the equator, and reported a lightcurve amplitude of 0.60 ± 0.07 mag. If the asteroid

was approximated by a triaxial ellipsoid with uniform albedo, this amplitude would suggest

an elongation (ratio of equatorial axes) approximately between 1.28 and 1.36. Our shape

model indicates that this ratio is ∼1.18, suggesting that either the ellipsoid approximation

is poor, the lightcurve amplitude is on the lower end of the range above, shadowing due to

the terrain is playing an important role, there are albedo variations over the surface of the

asteroid, or a combination of these factors.

Alvarez et al. (2012) also report a lightcurve period of 8.947 ± 0.001 hours. Their

reported period is a function of the intrinsic spin state of the asteroid and of the relative

motion between the asteroid, the observer, and the Sun. Therefore, it is close to but not

exactly equivalent to the synodic period, which combines the (fixed) intrinsic rotation and

the (variable) apparent rotation due to sky motion, but is independent of the position of the

Sun. If we assume that the reported lightcurve period is equivalent to the synodic period, we

can compute the corresponding sidereal periods. This transformation depends on the spin

axis orientation. In the absence of information about the spin axis orientation, a synodic

period of 8.947 maps into sidereal periods between 8.902 h and 8.992 h, i.e., a range that
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is about 100 times larger than the precision reported for the lightcurve period. This range

includes the sidereal period that we derived from the shape modeling process (8.960 ± 0.01

h). If we use our value and our best-fit spin axis orientation we can evaluate corresponding

synodic periods at various epochs. On Feb 19.0, the nominal synodic period was 8.937 hours,

whereas on Feb 25.0, the nominal synodic period was 8.943 hours. These synodic periods

are close to the reported lightcurve period, but cannot be directly compared to it as they

measure slightly different phenomena.

Arecibo and Goldstone radar observations of 2000 ET70 allowed us to provide a de-

tailed characterization of a potentially hazardous asteroid, including its size, shape, spin

state, scattering properties, and gravitational environment. These techniques are applica-

ble to a substantial fraction of known NEAs that make close approaches to Earth within

∼0.1 AU. Radar-based physical properties for this and other asteroids are available at

http://radarastronomy.org
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Figure 1.11: Absolute magnitude vs. geometric albedo for an effective diameter of 2.26 km
(dark line) and a diameter uncertainty of 5% (light lines). The horizontal dashed line corre-
sponds to the absolute magnitude (H=18.2) reported by Whiteley (2001), and the vertical
dashed lines indicate the corresponding geometric albedos. These albedo values are unusu-
ally low, suggesting an extraordinarily dark object or an object having an unusual phase
function.
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CHAPTER 2

Radar imaging and characterization of Binary

Near-Earth Asteroid (185851) 2000 DP107

(S. P. Naidu, J. L. Margot, M. W. Busch, P. A. Taylor, M. C. Nolan, M. Brozovic, L. A. M.

Benner, J. D. Giorgini, C. Magri, in preparation)

2.1 Introduction

2000 DP107 was discovered on 2000 February 29 by the Lincoln Near-Earth Asteroid Re-

search (LINEAR) program at Socorro, New Mexico. Radar observations in October that

year revealed the asteroid to be a binary system (Margot et al., 2002), the first such system

to be imaged in the near-Earth asteroid (NEA) population. Additional radar and photomet-

ric studies showed that ∼ 15% of all NEAs bigger than 200m are binary in nature (Pravec

et al., 1999; Margot et al., 2002; Pravec et al., 2006).

The presence of a satellite around the primary gives us an opportunity to secure direct

measurements of several quantities that are not normally measurable. Radar observations

enable measurements of the orbital period and orbital separation, which reveal the total

mass of the binary system through Kepler’s third law. In addition, radar observations

enable measurements of the masses of individual components by measuring the distances of

the component centers of mass (COMs) from the system COM. Using this information along

with the shape models of the two components derived from radar images, we can estimate

their densities. These are important constraints for testing models of formation and evolution

of NEAs. Radar observations of 2000 DP107 in 2000 October yielded rough estimates of

masses, sizes, and densities of the 2 components as well as their mutual orbit (Margot et al.,
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2002). In 2008 September, the asteroid made another close approach to the Earth and was

observed at ∼ 0.05 astronomical units (au) or about 20 lunar distances. Because this was

about half the distance of the 2000 encounter (∼ 0.11 au), it resulted in data sets with

signal-to-noise ratio (SNR) ∼ 20 times higher than in 2000. The high SNRs enabled us to

derive component shapes with effective resolutions of ∼ 50 m on the surface, and estimate

the component masses, volumes, and densities more accurately.

In this paper we present detailed component shape models, improved estimates of compo-

nent masses and densities, and estimates of the mutual orbit parameters using the 2000 and

the 2008 radar data. This detailed characterization of 2000 DP107 and its favorable accessi-

bility (∆v ≈ 5.9 km s−1) make it a good candidate for spacecraft rendezvous missions (e.g.,

Funase et al., 2014).

2.2 Methods

2.2.1 Observing and Data Processing

We observed 2000 DP107 using the Arecibo S-band (2380 MHz, 13 cm) radar and the

Goldstone X-band (8560 MHz, 3.5 cm) radar on 10 days between 2008 September 9 and 24,

during which the asteroid moved ∼ 60◦ across the sky. It came closest to Earth on September

11 at a distance of 0.057 au. Most of the observing time was dedicated to imaging, with the

remainder dedicated to securing continuous wave (CW) spectra. We obtained 335 range-

Doppler images and 65 continuous wave (CW) spectra using Arecibo and 534 range-Doppler

images and 67 CW spectra using Goldstone.

Radar observations were carried out according to the methods described in Naidu et al.

(2013). Briefly, radar imaging was carried out by transmitting a repeating pseudo-random

code modulated over a circularly polarized carrier wave, using a binary phase shift keying

scheme (Proakis and Salehi, 2007). In each run, the waveform was transmitted for approx-

imately the round-trip light-time before switching over to the receiver. The received signal

was demodulated and then decoded by cross-correlating it with a replica of the transmitted
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Table 2.1. Radar Observations of (185851) 2000 DP107

Tel UT Date MJD Eph RTT PTX SNR Baud Prim. res. Sec. res. Code Start-Stop Runs
yyyy-mm-dd s kW µs Hz Hz hhmmss-hhmmss

G 2008-09-09 54718 85 59 445 1.0 127 114323-114719 3
87 1.0 127 121534-152227 96

cw 1.0 none 153128-154316 7

G 2008-09-10 54719 89 58 445 cw 1.0 none 100115-100907 5
0.5 8191 102915-152812 153
cw 1.0 none 153412-154908 7

A 2008-09-10 54719 89 58 628 2243 cw 0.2 none 101757-102635 5
611 0.2 0.08 0.04 65535 102829-114008 37
561 2569 cw 0.2 none 114159-115234 6

A 2008-09-11 54720 89 58 630 1800 cw 0.2 none 094357-095235 5
616 0.2 0.08 0.04 65535 095452-112810 48
580 2283 cw 0.2 none 113030-114115 6

G 2008-09-12 54721 89 58 430 cw 1.0 none 095102-100843 10
0.5 0.04 8191 101952-142936 128
cw 1.0 none 143725-145705 11

A 2008-09-13 54722 89 59 603 1728 cw 0.2 none 084405-085301 5
0.2 0.08 0.04 65535 085548-105703 57

570 1656 cw 0.2 none 105927-110823 5

G 2008-09-13 54722 89 59 432 cw 1.0 none 091304-092304 5
1.0 8191 103240-124441 67
cw 1.0 none 125127-131326 12

code, yielding a range resolution equal to the baud length of the transmitted code. In each

range bin, consecutive returns were fast Fourier transformed (FFT) to obtain the received

signal power as a function of Doppler frequency. The end product is a two-dimensional array

or image showing the echo power as a function of range and Doppler frequency. Table 2.1

summarizes our observations. Because of the smaller antenna size and transmitter power,

the Goldstone data have much lower SNRs (∼ 1/20) compared to the Arecibo data. Six to

eight consecutive Goldstone runs were summed incoherently in order to improve the SNR.
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Table 2.1 (cont’d)

Tel UT Date MJD Eph RTT PTX SNR Baud Prim. res. Sec. res. Code Start-Stop Runs
yyyy-mm-dd s kW µs Hz Hz hhmmss-hhmmss

G 2008-09-14 54723 89 60 432 cw 1.0 none 092211-094047 10
1.0 8191 095318-112614 47
1.0 8191 114209-130244 40

A 2008-09-15 54724 89 63 ∼ 604 1320 cw 0.2 none 075347-080310 5
0.2 0.08 0.04 65535 080616-102000 56

585 1444 cw 0.2 none 102236-102952 4

A 2008-09-18 54727 89 70 595 813 cw 0.2 none 065646-070944 6
0.5 0.24 0.08 8191 071531-092200 54

828 cw 0.2 none 092751-093340 3

A 2008-09-21 54730 89 81 590 530 cw 0.2 none 060205-061410 5
624 0.5 0.24 0.08 8191 062313-082654 45

A 2008-09-24 54733 89 93 660 434 cw 0.2 none 052205-053607 5
680 1.0 8191 053910-073632 38
605 383 cw 0.2 none 073910-075312 5

Note. — The first column indicates the telescope: Arecibo (A) or Goldstone (G). MJD is the modified Julian
date of the observation. Eph is the ephemeris solution number used. RTT is the round-trip light-time to the
target. PTX is the transmitter power. SNR is the predicted signal-to-noise ratio per run. Baud and Res are
the delay (i.e., range) and frequency (i.e., Doppler) resolutions, respectively, of the processed data. Code is the
length of the pseudo-random code used. The time-span of the received data are listed by their UT start and
stop times. The last column indicates the number of runs acquired in each configuration.

2.2.2 Mutual Orbit

We used a least squares procedure to fit Keplerian orbits to the positions of the secondary

COM with respect to the primary COM, using data from 2000 October and 2008 September.

We obtained range-Doppler separations between the primary and secondary COMs using two

different techniques. In the first approach we estimated the COM locations in the images by

measuring the positions of the leading and trailing edges of the components. In the second

approach we relied on shape models obtained with the SHAPE software (Hudson, 1993;

Magri et al., 2007) to locate the component COMs. If the shape models are accurate, the

second technique can yield superior estimates of the COM positions, and therefore of the

mutual orbit parameters. Sections 2.2.3 and 2.2.4 describe shape modeling details.

For the first, edge-based approach, we defined leading edges (LE) and trailing edges (TE)
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in the images on the basis of a 3σ signal threshold, where σ is the standard deviation of

the background noise. The LE was defined as the first range bin where the object had a

signal higher than 3σ whereas the TE was defined as the last range bin where at least half of

the pixels along the Doppler extent exceeded the 3σ threshold. The primary and secondary

were assumed to be roughly spherical and their radii were estimated from radar images to

be roughly 450 m and 150 m respectively. With these assumptions the range coordinates of

the component COMs were taken to be 450 m and 150 m behind their respective leading

edges. The Doppler coordinates of the COMs were assumed to be located in the middle of

the Doppler extent on the trailing edge. Conservative uncertainties of 2-3 times the range

and Doppler resolutions were assigned to the range-Doppler separations. The observational

basis from the 2000 data for our estimate of the mutual orbit included 2-4 images on each

day from September 30 to October 7, or 20 measurement epochs spanning 8 days, yielding

20 range separations and 20 Doppler separations. For the 2008 data set, we measured the

component COM separations in 10 Arecibo images on each day of Arecibo observations, and

in 6, 3, 6, 2, and 8 Goldstone images on September 9, 10, 11, 12, and 13 respectively, giving

us a total of 95 measurement epochs spanning 16 days, or 190 measurements (range and

Doppler separations).

For the second, SHAPE-based approach, we used the shape modeling software to locate

the component COMs under a uniform density assumption. SHAPE aligns the synthetic

radar images derived from the shape models with the observed radar images, and outputs the

COM positions used for the alignment with sub-pixel precision. Uncertainties on the order

of the image resolution were assigned to the SHAPE-based range and Doppler separations.

We computed the COM separations at the same epochs as those used in the edge-based

approach.

Since the observed images from 2000 had to be summed over ∼ 30 minutes to get sufficient

SNR for SHAPE to perform a reliable alignment, there is some smearing in the summed

images, mostly due to the rotation of the primary and to small errors in the ephemeris. Errors

in the ephemeris used for data acquisition in 2000 cause the COM to drift by ∼ 100 m in a 30-

minute period, resulting in some range smear in the summed images. This smearing causes
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errors in the alignment of the synthetic images with the summed images since the synthetic

radar images were generated only at the mid-point of the time interval corresponding to

the summed images. Larger uncertainties, on the order of 150 m, were assigned to these

separation measurements in order to account for this smearing.

We fit the mutual orbit and component shapes in an iterative manner. Each iteration

started with mutual orbit fitting followed by component shape modeling. In the first iter-

ation, we used the edge-based approach to determine preliminary mutual orbits and used

the orbit solutions to inform our component shape modeling (Sections 2.2.3 and 2.2.4). For

the second iteration, the best-fit component shapes from the first iteration were used to

refine the COM separation estimates using the SHAPE-based approach. These improved

primary-secondary separation estimates were used to refine the mutual orbit fit.

2.2.3 Primary Shape

We used the SHAPE software (Hudson, 1993; Magri et al., 2007) to invert the sequence

of range-Doppler images and CW spectra from 2008 to obtain a 3D shape model for the

primary. Our data set consisted of 278 Arecibo range-Doppler images and 95 CW spectra

from both Arecibo and Goldstone covering a 16-day period between 2008 September 9 and

24. We left out the low-resolution Goldstone and Arecibo images as they did not improve

the quality of the fit and slowed down the shape modeling process. Because we modeled

the primary and secondary separately, we vignetted the images and spectra to exclude the

contribution of the other component to the echoes.

Shape modeling was generally carried out in three steps. First we fit a triaxial ellipsoid

model to the data to get the overall extents of the object. We then moved on to a spherical

harmonics model with 8 degrees to fit for the long-wavelength features seen in the images.

Finally, in order to fit for the small-scale features, we used a vertex model with 1000 vertices

and 1996 triangular facets. In each step weighted penalty functions were used to favor models

having uniform density, principal axis rotation, and a reasonably smooth surface. We used
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a cosine law to model the radar scattering from the surface of the asteroid:

dσ

dA
= R(C + 1)(cosα)2C . (2.1)

Here σ is the radar cross section, A is the target surface area, R is the Fresnel reflectivity, C

is a parameter related to the near-surface roughness of the asteroid at the radar wavelength

scales, and α is the incidence angle of the wave. Values of C close to 1 represent diffuse

scattering, whereas larger values represent more specular scattering (Mitchell et al., 1996).

Because the minimization procedure in SHAPE is not particularly effective at fitting the

spin axis orientation of the shape models, we carried out an extensive grid search for the

best-fit spin axis orientation during the ellipsoid and spherical harmonics shape modeling

stages. We assumed that the lightcurve period of 2.775 hours (Pravec et al., 2006) provided a

good approximation to the sidereal spin period and we fit shape models to the data using spin

axis orientations in increments of 15◦ in ecliptic longitude (λ) and 15◦ in ecliptic latitude

(β). For each case, we performed an ellipsoid model fit followed by a 8-degree spherical

harmonics model fit. Only the shape parameters, semi-axes in the ellipsoid fit and spherical

harmonic coefficients in the spherical harmonic fit, the initial rotational phase of the object,

and the radar scattering parameter R were allowed to change. The spin rate, the spin axis

orientation, and the radar scattering parameter C were kept fixed. The grid search was

repeated for C=0.6, 0.8, 1.0, and 1.2. We defined a somewhat arbitrary threshold separating

acceptable fits from poorer solutions by visually comparing the synthetic and observed images

and using a χ2
ν threshold of 0.6655.

Our mutual orbit pole estimates lie in the region where spin axis orientations were con-

sidered acceptable on the basis of the shape model fits. Because we did not obtain a tight

constraint on our spin pole using the shape model search, we used the best-fit mutual orbit

pole as the preferred spin pole for shape modeling. For a binary formed by a spin-up pro-

cess one would expect the primary spin pole to be roughly aligned with the mutual orbit

pole, and tidal processes are expected to damp any residual inclination. With this spin pole

assumption we fit 8-degree spherical harmonics models to the data in the same way as we
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did in the grid search. Here we tried values of C ranging from 0.5 to 1.5 in steps of 0.1. As

explained in section 2.2.2, the shape modeling was done in tandem with the mutual orbit

fits: Mutual orbit fits were followed by shape model fits. In the second/final iteration, we

performed the spherical harmonics shape model fit followed by a vertex model fit. At each

step, we verified the quality of the fit by visually comparing the synthetic data generated by

SHAPE with the corresponding observed data.

For the vertex model fit we used as initial conditions the best-fit spin state and spher-

ical harmonics shape model determined at the previous step. Once again, only the shape

parameters (location of the vertices), the initial rotational phase, and the radar scattering

parameter R were allowed to change and all the other parameters were kept fixed.

2.2.4 Secondary Shape

Shape modeling of the secondary component was performed using a method similar to the

one described in section 2.2.3. The data set for modeling the shape and rotation of the

secondary consisted of 180 Arecibo images taken between 2008 September 10 and 15. The

images from September 18 and 21 with range resolutions of 75 m, were left out. Although

the primary was resolved in these images with 5-6 pixels along the range axis, the secondary

was barely resolved and had only about 2 pixels along the range axis. These images did

not improve the quality of the secondary shape model fits however they slowed down the

shape modeling process significantly. This time it was the primary that was vignetted out of

the images. The CW spectra were not used because it is not possible to completely remove

the contribution of the primary from the total echo power. We fit an ovoid shape model1,

followed by a 5-degree spherical harmonic model. We then fit a vertex model with 150

vertices and 296 facets.

Periodicities detected in photometric data suggest that the secondary spin period may be

close to 1.76 days (Pravec et al., 2006). This can be used as a guide in our shape modeling

process, being mindful that lightcurve periods are neither sidereal nor synodic, whereas the

1An ovoid is a distorted triaxial ellipsoid such that it has a wide and a narrow end.
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SHAPE software relies on sidereal spin periods. This periodicity is close to the 1.75 day

orbital period (Table 2.2), confirming the finding that the secondary is locked in a 1:1 spin-

orbit resonance (Margot et al., 2002). We used the radar-derived, sidereal orbital period as

the nominal spin period of the secondary for the purpose of shape modeling. Because of the

small size and lack of good rotational phase coverage of the secondary, a grid search does

not lead to a conclusive result about the spin axis orientation. However for a tidally evolved

secondary, one would expect the spin pole to be closely aligned with the mutual orbit pole,

so we used the mutual orbit pole as the spin pole of the secondary. This can be verified

by computing the obliquity of the Cassini state 1 (Peale, 1969), which is the state towards

which tides drive the satellite spin pole. The other cassini states are either unstable or the

spin of satellite is unstable at those cassini states (Gladman et al., 1996). The obliquity

can be computed by using the following equation derived from (Gladman et al., 1996) for a

synchronous secondary:
3

2

(C − A+B
2

C

)[ sin θ cos θ

sin (θ ± i)

]

=
(Ω̇

ω

)

. (2.2)

Here A < B < C are the the principal moments of inertia of the secondary, θ is the obliquity

of the secondary spin pole with respect to the mutual orbit pole, i is the inclination of

the mutual orbit with respect to the invariable plane (in this case it is approximately the

equatorial plane of the primary), Ω̇ is the precession rate of the mutual orbit, and ω is the

spin rate of the secondary. Once the mutual orbit and the primary and the secondary shapes

were fit (Sections 2.3.1, 2.3.2, and 2.3.3), we plugged in the relevant values and found that

θ < 1◦.

The initial rotation phase was set to a value such that the secondary was oriented with its

minimum Moment of Inertia (MOI) principal axis pointing towards the primary at pericenter.

The same radar scattering law as the one used for the primary was used. We allowed the

shape parameters and the radar scattering parameter R to change. The spin rate, the spin

axis orientation, and the radar scattering parameter C were kept fixed.

An elongated and synchronous secondary in an eccentric orbit about the primary exhibits

librations, which are oscillations about uniform rotation (e.g., Murray and Dermott, 1999).
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A tidally evolved satellite is expected to exhibit a relaxed-mode libration (Naidu and Margot,

2014), which is equivalent to a forced libration (Murray and Dermott, 1999) when the spin-

orbit coupling is negligible. This libration is roughly sinusoidal for small eccentricities and

its amplitude as a function of the satellite elongation was estimated by Naidu and Margot

(2014) using numerical simulations.

Because the mutual orbit is eccentric and the secondary is elongated, we allowed for the

possibility of relaxed-mode libration in longitude in the rotational model. The description of

our implementation of the librational model is given in the Appendix (p. 67). We repeated

the ovoid and spherical harmonics shape model fits with libration amplitudes ranging from

0◦ to 10◦ in steps of 1◦. We tried all possible libration phases in steps of 4◦ in order to cover

the libration phase uncertainty which arises due to an almost circular orbit. The libration

amplitudes and phases were held at fixed values in each of these fits.

2.2.5 Mass Ratio, Component Masses, and Densities

The COMs of the two components follow roughly Keplerian orbits around the system COM,

while the system COM or barycenter orbits the Sun. The motion of the primary COM

relative to the system COM is called the reflex motion of the primary. We estimated the

mass ratio of the components and the reflex motion of the primary by quantifying the

goodness of fit of heliocentric orbit fits using astrometry of the system COM under various

mass ratio assumptions.

The system COM lies on the line joining the component COMs at a distance of dp

from the primary and a distance of ds from the secondary. The ratio of these distances

(ds/dp) is equal to the primary-to-secondary mass ratio (Mp/Ms). For a given mass ratio

assumption, we calculated the ratio ds/dp and estimated the system COM location along

the line joining the component COMs in each of the 278 images that were used for shape

modeling. This provided a precise estimate of the two-way range to the system COM, where

we once again used the SHAPE-based component COMs determined to sub-pixel accuracy.

We explored mass ratio assumptions from Mp/Ms=15 to 30 in steps of 0.1 to determine the

50



corresponding two-way ranges to the system COM and assigned uncertainties equal to the

range resolution. For each mass ratio assumption we then performed a fit for the heliocentric

orbit to all available optical astrometry and the sytem COM ranges. The best overall fit, as

indicated by the lowest sum of squares of residuals, yielded an estimate of the actual mass

ratio of the system.

We used the mass ratio to apportion the total mass of the system, estimated from the

mutual orbit, to the primary and the secondary. These mass estimates were divided by the

corresponding component volume estimates, obtained from shape models, to yield component

density estimates.

2.2.6 Gravitational Environment

We used the primary shape model and density estimate to compute the gravity field on the

surface of the primary. The acceleration on the surface is the vector sum of the gravitational

acceleration due to the primary’s mass and the centrifugal acceleration due to its spin. An

acceleration vector was computed at the center of each facet using the method described in

Werner and Scheeres (1997). The angle that the acceleration vector makes with the local

inward-pointing surface-normal vector is called the gravitational slope. The gravitational

slope corresponding to each acceleration vector was also computed.

2.3 Results

2.3.1 Mutual Orbit

The mutual orbit has a semi-major axis a = 2.741 ± 0.08 km and a sidereal orbital period

P = 1.7565 ± 0.005 days. Kepler’s third law yields GMT = 35.33 ± 3.00 m3 s−2, where

G is the gravitational constant and MT is the total mass of the system. Substituting G =

6.67 × 10−11 m3 kg−1 s−2, we find MT = 5.296 ± 0.45 × 1011 kg. Table 2.2 lists the best-fit

orbital parameters obtained using the combined 2000 and 2008 data and compares it to the

values published in Margot et al. (2002). The values from both works are consistent with
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Table 2.2. Mutual orbit parameters for 2000 DP107

Parameter Value from Value from
Margot et al. (2002) this work

Semi-major axis (km) 2.62 ± 0.16 2.742 ± 0.08
Period (days) 1.755± 0.007 1.7565± 0.005
Eccentricity 0.01 ± 0.01 0.015 ± 0.01
System mass (×1011kg) 4.6± 0.5 5.296 ± 0.45
Longitude of pericenter (◦) 10 ± 27 188.4 ± 5
Inclination (◦) 17± 7 −34.3± 5
Argument of Pericenter (◦) 7± 39 −39.3± 5
Pericenter passage (MJD) 51820.475 ± 0.3 51810.598 ± 0.3
Reduced χ2 0.32 0.208

each other.

2.3.2 Primary Shape and Spin State

The result of our grid search for the best-fit spin pole is illustrated in Figure 2.1, which

shows a contour plot of the χ2
ν values of the shape model fits for various orientations of the

spin pole. Figure 2.1 shows the result for C = 0.8, which gave lower overall χ2
ν values than

the other values of C that we tried. However the general χ2
ν patterns are similar irrespective

of the value of C.

As explained in section 2.2.3, we assumed the spin pole to be aligned with the mutual

orbit pole at λ = 294◦ and β = 78◦. At this stage, C = 0.7 yielded the shape model with

the lowest χ2
ν . Figure 2.2 shows the vertex shape model produced under this assumption,

Table 2.3 lists the associated parameters, and Figure 2.3 shows examples of the observed

images and the fits using this model. The model shows very good agreement with the

data, however minor disagreements are observed. The primary is roughly spheroidal and is

assumed to be spinning in principal axis mode (spin axis aligned with the highest moment

of inertia axis). A penalty function was used to impose this assumption on the shape model.

The χ2
ν ’s of the shape model with and without this penalty function are identical (0.66083

and 0.66075 respectively), indicating that they are equally good fits. If the primary spin

deviated significantly from the principal axis, imposing the penalty function would have led

to a significantly higher χ2
ν .
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Figure 2.1: Contour plot of goodness of fit (χ2
ν) of shape models with different spin axis

orientations on a polar stereographic projection of the celestial sphere, looking down the
ecliptic North. Numbers indicate ecliptic longitudes (λ) and latitudes (β). Region enclosed
by solid black contour line (χ2

ν = 0.6655) shows acceptable shape model fits. Plus sign shows
our mutual orbit pole estimate.
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Figure 2.2: Vertex shape model of the primary as seen along the three principal axes x, y,
and z. For principal axis rotation the spin axis is aligned with the z axis. Yellow regions
have radar incidence angles > 60◦ and hence are not well constrained. The shape model has
1000 vertices and 1996 triangular facets. The effective surface resolution is ∼ 55 m.

The lightcurve period of 2.775 hours (Pravec et al., 2006) is consistent with the rotational

phases observed in images of the primary. An equatorial ridge similar to the one found on

the 1999 KW4 primary (Ostro et al., 2006) is clearly seen. However, the ridge is not as

regular and has a ∼ 300 meter concavity on one side.

The shape model shows another ridge-like structure forming a ring around the south pole.

This feature produces some of bright features seen behind the leading edge of the object in

the radar images (e.g., Figure 2.3 images 5, 6, 7).

2.3.3 Secondary Shape

We found that including longitudinal libration in the secondary spin model did not improve

the shape model fits significantly, so we adopted the shape model fit with no libration as the

nominal shape model. The lack of a detection may be due to: 1) The amplitude of libration

may be too small to be detectable. The relaxed-mode libration amplitude estimated by
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Table 2.3. Primary and secondary shape model parameters

Parameters Primary Secondary

Extents along x 0.992 ± 6% 0.379 ± 6%
principal axes (km) y 0.950 ± 6% 0.334 ± 6%

z 0.951 ± 6% 0.270 ± 6%

Surface area (km2) 2.496 ± 12% 0.329 ± 12%

Volume (km3) 0.342 ± 18% 0.017 ± 18%

Moment of inertia ratios A/C 0.915 ± 10% 0.708 ± 10%
B/C 0.950 ± 10% 0.888 ± 10%

Equivalent diameter (km) 0.867 ± 6% 0.316 ± 6%

DEEVE extents (km) x 0.904 ± 6% 0.377 ± 6%
y 0.874 ± 6% 0.314 ± 6%
z 0.827 ± 6% 0.268 ± 6%

Spin pole (λ, β) (◦) (294, 78) ± 10 (294, 78) ± 10

Note. — The shape model of the primary consists of 1000 vertices and
1996 triangular facets, corresponding to an effective surface resolution of
∼ 57 m. The shape model of the secondary consists of 150 vertices and
296 facets; it has an effective surface resolution of ∼52 m. The moment of
inertia ratios were calculated assuming homogeneous density. A, B, and
C are the principal moments of inertia, such that A < B < C. Equivalent
diameter is the diameter of a sphere having the same volume as that of the
shape model. A dynamically equivalent equal volume ellipsoid (DEEVE)
is an ellipsoid with uniform density having the same volume and moment
of inertia ratios as the shape model. The spin poles are assumed to be
aligned with the mutual orbit pole. Surface area is the surface area of the
shape model.
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Figure 2.3: Examples of images and fits for the primary. Each row (from left to right) shows
the observed image, the corresponding synthetic image generated using the shape model, and
the corresponding plane of sky (POS) view of the shape model. The images were obtained
on (from top to bottom) September 10, 10, 11, 11, 13, 15, 15, 18, 21.
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Naidu and Margot (2014) corresponds to a surface displacement of ∼ 15 m, which is the

finest range resolution of the dataset. 2) The temporal coverage of the secondary may not be

sufficient to enable the detection of librations. Radar images are available only on 4 epochs

and they do not cover all sub-observer longitudes.

Figure 2.5 shows the best-fit secondary vertex shape model, Table 2.3 lists the shape

model parameters, and Figure 2.4 shows some examples of the observed images and the

fits using this model. There is good agreement between the model and the data but minor

differences are seen. The secondary has a triangular pole-on-silhouette with Dynamically

Equivalent Equal Volume Ellipsoid (DEEVE) dimensions of 377× 314× 268 m. A spin rate

that is equal to the mutual orbit mean motion and an orientation such that the longest

principal-axis of the secondary points towards the primary on average are consistent with

the radar data. The spin pole of the secondary is assumed to be aligned with the mutual

orbit pole.

2.3.4 Mass Ratio, Component Masses and Densities

Direct estimation of the mass ratio using the method described in section 2.2.5 yielded a mass

ratio (Mp/Ms) of 26.2 ± 2. This mass ratio corresponds to a reflex motion of the primary of

101 ± 8 m, consistent with the estimate of 140 ± 40 m of Margot et al. (2002), and with the

apparent motion observed directly in the images. Figure 2.6 shows a plot of the χ2 values of

the heliocentric orbit fits to the optical and radar astrometry. The latter uses two-way ranges

to the system COM as determined under various mass ratio assumptions. Using this mass

ratio we can apportion the total mass of the system (MT ) to the two components. We find the

mass of the primary and the secondary to be 5.101±0.44×1011 kg and 0.195±0.024×1011 kg,

respectively. Dividing the masses by the volumes of the corresponding shape models, we find

densities for the primary and secondary to be 1491 ± 268 kg m−3 and 1147 ± 235 kg m−3,

respectively. The densities are similar, pointing towards a similar composition and porosity.
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Figure 2.4: Examples of images and fits for the secondary. Each row (from left to right)
shows the observed image, the corresponding synthetic image generated using the shape
model, and the corresponding plane of sky (POS) view of the shape model. The images were
obtained on (from top to bottom) September 10, 10, 11, 11, 13, 13, 15, 15, and 15.
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Figure 2.5: Secondary shape model as seen along the three principal axes. Top right view
is along the positive spin axis. Yellow regions have radar incidence angles > 60◦ and hence
are not well constrained. The shape model has 150 vertices and 296 triangular facets. The
effective surface resolution is ∼ 52 m.
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Figure 2.6: Points show χ2 values of heliocentric orbit fits to optical and radar astrometric
observations. Radar astrometry includes two-way ranges to the system COM under various
mass ratio assumptions. Solid curve shows the best fit parabola to the χ2’s. The horizontal
lines show the minimum χ2 on the parabola and the χ2 corresponding to the 1σ uncertainty,
respectively. The minimum χ2 corresponds to a primary-to-secondary mass ratio of 26.2 ±
2.
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Figure 2.7: This figure shows the magnitudes of the vector sum of accelerations due to gravity
and centrifugal accelerations computed at the centers of the facets of the primary shape
model. We assumed a uniform density of 1491 kg m−3, which was obtained in section 2.3.4,
and a spin period of 2.775 hours. At the equator, these values are close to zero, indicating that
the magnitude of centrifugal acceleration is almost equal to the magnitude of acceleration
due to the asteroid’s mass.
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Figure 2.8: This figure shows the gravitational slopes computed at the centers of the facets
of the primary shape model. We assumed a uniform density of 1491 kg m−3, obtained in
section 2.3.4, and a spin period of 2.775 hours. Slopes vary from ∼ 0◦ at the poles and
equator to ∼ 180◦ at some regions at the equator. Most regions at mid-latitudes have slopes
between 40◦ and 60◦.
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2.3.5 Primary Gravitational Environment

The acceleration map on the surface of the primary shape model shows that, for nominal

values of mass, spin period, and shape parameters, the net acceleration on the equatorial

ridge is very close to zero (Fig 2.7), which implies that the centrifugal acceleration on the

ridge almost cancels out the acceleration due to the primary’s mass. As we move to higher

latitudes, and hence closer to the spin axis, the magnitude of the centrifugal acceleration

decreases, causing the magnitude of the net acceleration to increase and reach values up to

172 µm s−2 at the poles. This value is about 2×10−5 times that on Earth.

The gravitational slopes near the poles are close to zero (Figure 2.8). Around the mid-

latitudes, the slopes are higher and most regions here have values between 40◦ and 60◦.

Regions on the equatorial ridge have slopes close to 180◦, implying that the magnitude of

centrifugal acceleration is greater than the magnitude of acceleration due to mass. Inside the

concavity on the equatorial ridge the slopes are close to 0◦. These slopes provide clues to the

mechanical properties of the asteroid material. The implications are discussed in section 2.4.

2.4 Discussion

2.4.1 Primary shape and gravitational environment

The primary shape is similar to shapes of some other radar-characterized asteroids such as

1999 KW4, 1994 CC, 2008 EV5, Bennu, etc. (Ostro et al., 2006; Brozović et al., 2011; Busch

et al., 2011; Nolan et al., 2013, respectively). This commonly observed top-shaped structure

is an indication that the asteroid has undergone reshaping, most likely due to the spin-up of

the primary (e.g., Harris et al., 2009). The shape and the gravitational field provide clues

about the mechanical properties of the material of the primary. Figure 2.8 shows that the

gravitational slopes around the mid-latitudes are mostly between 40◦ and 60◦. Some of these

values are greater than the angle of repose of sand on Earth which has values between 30◦

and 50◦. A possible explanation of such high angles is that cohesive van der Waals forces

between the particles play an important role on the surfaces of the asteroids as proposed
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by Scheeres et al. (2010). These cohesive forces could be comparable in magnitude to the

ambient gravitational force (Scheeres et al., 2010), resulting in much higher effective angles

of repose that the material can sustain (e.g., Rognon et al., 2008). Figure 2.8 shows that

slopes at the equator of the primary are > 90◦, implying that centrifugal force is greater

than the gravitational pull at the equator. In the absence of other forces, this imbalance will

cause material to escape from the primary at the equator. Cohesion between particles could

balance the excess centrifugal force and prevent such an escape. Nevertheless, the regions

in the mid-latitudes having the highest slopes might be devoid of fine grained material, as

the material would slide off to lower potential areas. Some of the regions on the equatorial

ridge with slopes close to 180◦ might also be paths through which material is shed off from

the primary. The slope values are sensitive to the size, the density, and the spin period of

the asteroid. Scaling down the asteroid by ∼ 4%, which is within the size uncertainty of

5%, and keeping the mass unchanged (effectively increasing its density by ∼ 16%) yields

slopes close to zero on most regions at the equator and slopes lower than 40◦ on most of the

surface of the asteroid. If tides and/or YORP spin down the asteroid, there will be a global

decrease in the slopes. A similar spin down might have led to the overall low slopes seen on

2008 EV5 (Busch et al., 2011).

Assuming a grain density of 3000 kg m−3, the observed densities of the primary and

secondary can be explained by ∼ 50% and ∼ 60% porosity, respectively. Dilation of cohesive

materials during avalanching flows seen in numerical simulations and laboratory experiments

(e.g., Alexander et al., 2006; Rognon et al., 2008) could also explain the high porosity needed

to match the low densities of the primary and the secondary.

The equatorial ridge has an approximately 300 m concavity on it. The concavity could

just be a void left over after the asteroid attained its current shape or it could be an impact

crater. Jacobson and Scheeres (2011a) hypothesized that a secondary fission event can take

place during the post-fission dynamics following the binary formation process, and that one of

the fragments may impact the primary. Secondary fission refers to the rotational fission of the

secondary as it is torqued by spin-orbit coupling while in a chaotic rotation state (Jacobson

and Scheeres, 2011a; Naidu and Margot, 2014). Gravitational pull dominates the centrifugal
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force in the interior of the concavity, so ponding of fine grained material transported from

higher latitudes can be expected inside the crater.

2.4.2 Mutual orbit

The eccentricity of the mutual orbit, e ≈ 0.015, translates to a variation between the primary-

secondary distance of 2ae ≈ 81 m during each orbit. While this variation is detectable in

the radar data from 2008, which has a range resolution of 15 m, it is barely detectable in the

radar data obtained in 2000, which has a range resolution of 75 m. Our determination of

the longitude of pericenter therefore relies on the 2008 data only. Our method does not rule

out substantial pericenter precession during 2000-2008. We performed numerical simulations

using the method developed by Naidu and Margot (2014) to estimate pericenter precession

rates under various gravitational perturbations: the non-spherical mass distribution of the

primary causes pericenter precession of about 90◦/year, whereas the non-spherical mass dis-

tribution of the secondary contributes about −15◦/year. The combined effect causes the

pericenter to precess by about 75◦/year in a prograde direction with respect to the mutual

orbit. Additionally, the gravitational perturbations from the Sun cause the pericenter to

precess by about 10◦/year. The combined effect of these three gravitational perturbations

is a secular apsidal precession rate of about 85◦/year, but there are significant short-term

variations in the precession rate, making detection of apsidal precession difficult. Gravita-

tional perturbations from planets and radiative forces from the Sun complicate the dynamics

further.

2.4.3 Binary YORP

Binary YORP is a radiative torque which is hypothesized to alter the mutual orbit of syn-

chronous binary systems (Ćuk and Burns, 2005). A synchronous satellite has a fixed leading

and trailing side with respect to the direction of its orbital motion, so an asymmetric re-

radiation from the surface of the satellite will lead to a net torque on the mutual orbit. A

potentially observable signature of such a torqued orbit is a quadratic change in the mean
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anomaly of the satellite (McMahon and Scheeres, 2010). Detecting a quadratic change in

mean anomaly requires measurements of the mean anomaly on a minimum of 3 widely

separated epochs. Additional measurements will be required to model the complicated dy-

namics described in the previous section. 2000 DP107 is a prime candidate for the detection

of binary YORP since it presents repeated opportunities for observations and has already

been observed in 2000 and 2008 by radar and in 2000, 2008, 2011, and 2013 by optical

telescopes. McMahon and Scheeres (2010) provided a mean anomaly drift rate prediction

for 2000 DP107 by scaling the results obtained from the radar-derived shape model of the

satellite of 1999 KW4. Those predictions can now be updated using the secondary shape

model. Depending on the direction of the binary YORP torque, the mutual orbit could

either expand, contract, or remain unchanged. The outcomes of these scenarios were studied

in detail by Jacobson and Scheeres (2011a). An expanding mutual orbit could lead to the

formation of binary pairs or an asynchronous satellite, whereas a contracting mutual orbit

could create a contact binary asteroid (e.g., Taylor and Margot, 2011). A contracting binary

YORP torque could also be balanced by an equal and opposite tidal torque implying a binary

asteroid in a stable equilibrium as hypothesized by Jacobson and Scheeres (2011b). Future

observations of this system may provide a detection of binary YORP evolution.

2.5 Conclusion

The radar observations of 2000 DP107 allowed us to produce shape models of the primary

and secondary, estimate their masses and densities, compute the gravitational environment of

the primary, and estimate the mutual orbit parameters. The shape model and gravitational

environment of the primary provide important clues about the material properties of the

asteroid. The shape model of the secondary can be used to estimate the evolution of the

mutual orbit under the binary YORP torque. Future radar and photometric observations of

the system may provide measurements of the evolution of the mutual orbit.
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2.A Libration model

For small amplitudes of forced librations and small orbital eccentricities, the deviation of the

secondary orientation from regular circular motion (δφ) can be approximated as,

δφ ≈ Alib sin [ω(t− t0) + π], (2.3)

where Alib is the amplitude of the forced librations, ω is the forcing frequency which is equal

to the mean orbital motion (n = 2π/P ), and t0 is the time of pericenter passage which we

obtained from our mutual orbit determination. The additional phase of π appears because

for a synchronous secondary whose natural frequency is smaller than the forcing frequency,

the librational phase is expected to be 180◦ at pericenter (Murray and Dermott, 1999).
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CHAPTER 3

Near-Earth Asteroid Satellite Spins Under Spin-Orbit

Coupling

Reproduced by permission of the AAS (S. P. Naidu, J. L. Margot, 2015, The Astronomical

Journal, in press)

3.1 Introduction

Binary near-Earth asteroids (NEAs) are numerous in the asteroid population. Both radar

and lightcurve data have shown that ∼ 16% of NEAs larger than ∼200 m diameter have

satellites (Pravec et al., 1999; Margot et al., 2002; Pravec et al., 2006). It is now widely

accepted that binary NEAs form by a spin-up process (Margot et al., 2002) and that the

specific spin-up mechanism is the YORP torque (Rubincam, 2000). Binary NEA systems

exhibit interesting post-fission and spin-orbit dynamics (e.g. Ostro et al., 2006; Scheeres

et al., 2006; Fahnestock and Scheeres, 2008; McMahon and Scheeres, 2013) that profoundly

affect their evolution (e.g. Jacobson and Scheeres, 2011; Fang and Margot, 2012a; Jacobson

et al., 2014), but the range of dynamical regimes has not been fully explored.

In this paper, we develop a method for simulating the coupled spin and orbital motions of

two rigid bodies with arbitrary mass distributions. This technique is significantly faster than

a similar implementation by Fahnestock and Scheeres (2006), because in our implementa-

tion the computationally expensive volume integrals over the two bodies are computed only

once before the integration, as opposed to once per time step. We use our technique to

perform a survey of the dynamics of all well-characterized binary NEA systems and map the

range of dynamical behaviors, including the spin configurations of asteroid satellites. These
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results provide important insights for modeling the physical properties of binaries and for

understanding the long term evolution of the binary systems.

The sample of well-characterized binaries includes all NEA systems with known estimates

of system mass, semi-major axis, eccentricity, and component sizes. In practice, only systems

observed with radar fall in this class. Over 35 binary NEAs have been observed with radar,

but only about ten have sufficient data to yield mutual orbits and component size estimates.

We apply our technique to these systems.

Sections 3.2 and 3.3 describe the implementation of our coupled spin-orbit integrator and

cover energy and angular momentum conservation properties. Section 3.4 explains different

kinds of satellite spin librations and sets up the notation used in subsequent sections. In

section 3.5, we examine the spin-orbit coupling effect and compare numerical and analytical

estimates of libration amplitudes. Section 3.6 introduces surface of section plots which are

used to identify resonant, chaotic, and non-resonant quasi-periodic trajectories. We examine

the trajectories and spin configurations of satellites in well-characterized binary and triple

near-Earth asteroid systems in section 3.7 and show that large chaotic zones exist in the

phase space of known asynchronous satellites. We also compute libration amplitudes for

synchronous satellites. We discuss implications of the results in section 3.8.

3.2 Numerical Integration

We numerically investigate the coupled spin and orbital dynamics of two extended rigid

objects under their mutual gravitational influence. We neglect the translational motion of

the system barycenter and use the 6 first-order differential equations of motion (EOMs)

derived by Maciejewski (1995). Here we express these EOMs in the body-fixed frame of the

primary:
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Ṗ = P ×Ω1 −
∂V

∂R
, Ṙ = R×Ω1 +

P

m
,

Γ̇2 = Γ2 ×Ω1 + µ2, Γ̇1 = Γ1 ×Ω1 + µ1,

Ṡ = SΩ̂2 − Ω̂1S, Ṡ1 = S1Ω̂1. (3.1)

Here R and P are the relative position and linear momentum vectors of the secondary with

respect to the primary, respectively, m = mpms/(mp+ms) is the reduced mass of the system,

where mp and ms are the masses of the primary and secondary, respectively, V is the mutual

gravitational potential, µ’s are the torque vectors acting on the two components, Ω’s are

their angular velocity vectors, and Γ’s are their angular momentum vectors. Subscripts 1

and 2 denote quantities that refer to the primary and the secondary, respectively. Further, S

and S1 are attitude rotation matrices: the former mapping from the secondary frame to the

primary frame, and the latter mapping from the primary frame to the inertial frame. A hat

(ˆ) symbol above a vector specifies an operator that maps a 3-vector (e.g., v = [vx, vy, vz])

to an antisymmetric 3x3 matrix, as follows:

v̂ =











0 −vz vy

vz 0 −vx
−vy vx 0











. (3.2)

The term ∂V/∂R is the gradient of the mutual gravitational potential, which is the grav-

itational force (vector) between the two components. All vectors in equations (3.1) are

expressed in the body-fixed frame of the primary. However, when computing Ω̂2, one must

express Ω2 in the body-fixed frame of the secondary.

The gravitational force and torques are computed at each time step according to the

method detailed in Ashenberg (2007). They are functions of R, S, and the inertia integrals

of the two bodies. The inertia integrals encode the mass distribution information of a body
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and are of the form:

Ixpyqzr =

∫

B

xpyqzrdm, (3.3)

where dm is a mass element of body B at body-fixed coordinates (x, y, z) and the integral

is a volume integral over the entire body. The body-fixed coordinate system is aligned with

the principal axes and its origin is at the center of mass of B. The exponents p, q, and r

are either 0 or positive integers, such that p + q + r > 0. We use inertia integrals up to

fourth order in the integrations, where the order of an inertia integral is given by the sum

of exponents, i.e., p + q + r. The inertia integrals depend only on the mass distribution of

the object and remain constant throughout the integration, so we compute them only once

before the integration. At each time step, current values of R and S from the integrator are

passed as arguments to the modules that compute force and torques.

Because detailed 3D shape models of both the primary and secondary are generally not

available and their density distributions are unknown, we model the primary and secondary

as triaxial ellipsoids (semi-axes a, b, and c) with uniform density in this paper. These restric-

tions can be easily lifted as knowledge progresses. The uniform-density ellipsoid assumption

simplifies the computation of inertia integrals (Boué and Laskar, 2009): they are zero for odd

p, q, or r, and the non-zero integrals are simple functions of principal moments of inertia.

The fourth-order inertia integrals can be found in Boué and Laskar (2009), and the non-zero

second-order inertia integrals are listed below:

Ix2 =

∫

x2dm =
(−A+B + C)

2
,

Iy2 =

∫

y2dm =
(A− B + C)

2
,

Iz2 =

∫

z2dm =
(A+B − C)

2
. (3.4)

Here, A ≤ B ≤ C are the principal moments of inertia of the object about the x, y, and z

axes, respectively.

We use the Cash-Karp method (Cash and Karp, 1990) to integrate equations (3.1). It is

a fifth-order Runge-Kutta integrator with adaptive stepsize control which uses an embedded
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fourth-order Runge-Kutta formula to compute errors. We use the implementation provided

by Press et al. (1992) and set the fractional error tolerance to 10−15.

In all simulations, we assume a planar system, i.e., both bodies are in principal axis

rotation about their z (shortest) axes and their equatorial planes are aligned with the mutual

orbit at all times. We start all simulations at the pericenter of the osculating mutual orbit

and with the longest axis of each body pointing towards each other. The system parameters

and initial osculating mutual orbital parameters for all simulations are given in Table 3.1.

3.3 Energy and Angular Momentum Conservation

In this section, we describe results of tests designed to evaluate the energy and angular

momentum conservation properties of the integrator. Figure 3.1 illustrates a representative

test run with the parameters given in the first line of Table 3.1. For this test case, we used

triaxial ellipsoids with principal axis half-lengths of a = 600, b = 500, and c = 400 m for the

primary, and a = 252, b = 229, c = 190 m for the secondary. The initial spin periods of the

primary and the secondary are 2.775 h and 32.59 h, respectively.

The total energy is conserved at a level of 10−2 Joules per year, which is about 10−11 times

the mean orbital energy and less than 10−8 times the magnitude of the energy exchanged

between the binary components and the mutual orbit.

Angular momentum is conserved at a level of 220 kg m2 s−1 per year, which is less than

10−11 times the total angular momentum of the system (∼ 1014 kg m2 s−1) and less than

10−8 times the angular momentum exchanged between the component spins and the mutual

orbit.

3.4 Notation and Libration Concepts

Figure 3.2 illustrates the various angles used throughout the paper. θ is the angle between

the secondary’s long axis and the line of apsides of the the osculating mutual orbit, and θ̇

is its time rate of change. If the apsidal precession rate were zero, θ̇ would correspond to
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Figure 3.1: Energy (top) and angular momentum (bottom) variations over the course of five
days for a typical binary NEA (first entry in Table 1). Lines of different colors represent
quantities associated with the mutual orbit (red), the primary spin (green), the secondary
spin (blue), and the sum of all three (black).

Table 3.1. Simulation Parameters

Primary Secondary Mutual Orbit
Fig. Object Rp ρp c ab a/b ω0 ρs a e

m kg m−3 m m2 kg m−3 m

3.1 Test 493 1581 190 57600 1.10 0.53 2618 3300 0.05
3.3 (1991 VH)d 600 1581 190 57600 1.50 1.07 various 3300 0.05
3.4 (1991 VH)l 600 1581 190 57600 1.01 0.17 2618 3300 0.05
3.5 (1991 VH)m 600 1581 190 57600 1.06 0.42 2618 3300 0.05
3.7 (1991 VH) 600 1581 190 57600 1.50 1.07 2618 3300 0.05
3.8 (2003 YT1) 550 2712 88 11025 1.30 0.88 3248 3930 0.18
3.9 (2004 DC) 180 1461 26 900 1.30 0.88 2000 750 0.30
3.10 (Didymos) 400 1955 65 5625 various various 2252 1180 0.04
3.10 (2000 DP107) 400 1791 100 22500 various various 2122 2692 0.03
3.10 (2002 CE26) 1750 966 100 22500 various various 1454 4870 0.025
3.10 (2001 SN263#1) 1300 996 190 52900 various various 2320 3800 0.016
3.10 (1994 CC#1) 310 2076 48 3249 various various 8870 1730 0.002
3.10 (1999 KW4) 659 1970 190 51076 1.30 0.88 3321 2548 0.0004

Note. — Most physical and orbital characteristics of binary and triple NEAs are adopted or derived from Fang
and Margot (2012a). Mass and radius uncertainties are ∼10% and ∼20%, respectively. See text for prescription
for a, b, and c values. The first column reports the number of the figure illustrating the corresponding results.
“Object” indicates the asteroid name or designation. The next two columns list parameters related to the primary:
Rp and ρp are the equivalent radius and mass density of the primary. The next five columns describe parameters
related to the secondary (assumed to be an ellipsoid with semi-axes a, b, and c). With our choice of simulation
parameters (Section 3.7), it is convenient to tabulate the quantities c, ab, and the elongation a/b. The fourth
parameter describing the secondary, ω0, is related to the secondary elongation (Refer to section 3.4 for definition).
The fifth parameter is the mass density ρs. The last two columns give the initial osculating semimajor axis and
eccentricity of the mutual orbit. For testing purposes, we use several modified versions of binary NEA 1991 VH:
d for various densities, l for low secondary elongation, m for moderate secondary elongation.
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Figure 3.2: Illustration of the osculating mutual orbit and notation for angles.

the spin rate of the satellite. The instantaneous values at pericenter are denoted with a

subscript p: θp, θ̇p. The angle θ is related to the angle between the satellite’s long axis and

the primary-secondary line, α, by θ + α = f , where f is the true anomaly of the mutual

orbit. At pericenter, f = 0, so θp = −α.

Oscillations of the secondary orientation with respect to the primary-to-secondary line

are called librations. In order to illustrate librations, let us first examine a situation in which

the amount of angular momentum exchanged between the spin of the secondary and the

mutual orbit is negligible. In this situation, we can treat the spin and orbit to be decoupled.

A common approach to analyze the spin of the secondary is to assume the secondary to

be a triaxial ellipsoid on a fixed Kelperian mutual orbit about a spherical primary. The

secondary spin is affected by the gravitational torques exerted by the primary(e.g., Murray

and Dermott, 1999). In this situation, the angle α is the sum of free, forced, and optical

libration angles. Free libration is easiest to understand in the case of a circular mutual

orbit and a synchronously spinning secondary, i.e., a secondary whose average spin rate is

equal to the mutual orbit mean motion. The minimum energy configuration for this system

is for the long axis of the secondary to always point towards the primary, such that its

instantaneous spin rate is always equal to the mean motion. If the secondary is disturbed
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from this configuration, its long axis oscillates about the primary-secondary line due to

torques exerted by the primary on the elongated secondary. This oscillation is called free

libration and its frequency depends on the shape of the secondary and the mutual orbit

parameters. Generally, free libration damps out on short timescales due to tidal friction

(Murray and Dermott, 1999).

If the mutual orbit is eccentric, the secondary exhibits optical and forced librations about

the primary-secondary line even if the free libration is damped out. Optical libration is the

torque-free oscillation of the long axis of a uniformly spinning secondary about the primary-

secondary line. This oscillation would occur even in the case of a spherical secondary as the

orbital velocity varies over the course of the orbit. We use φ to represent the component

of α that is due to optical librations. The amplitude of optical libration depends only on

the shape of the mutual orbit and is ∼ 2e, where e is the eccentricity of the mutual orbit

(Murray and Dermott, 1999). In the case of an elongated secondary, the primary exerts a

periodically reversing torque on it due to the misalignment of the secondary long axis from

the primary-secondary line, which results in an oscillation of the secondary about uniform

rotation called forced libration. We use γ to represent the component of α that is due to

forced librations. Forced and optical librations have the same frequency (equal to the mean

motion). They are in phase if ω0 =
√

3(B − A)/C < 1 and 180◦ out of phase if ω0 > 1.

We use ψ to represent the sum of forced and optical librations, i.e., ψ = γ + φ, and ψA to

represent the libration amplitude.

For most binary near-Earth asteroid systems, a decoupled framework does not accurately

capture the system dynamics. Nevertheless, even in the fully coupled problem around an

axially symmetric primary, the secondary exhibits libration behavior similar to the free,

forced, and optical librations of the decoupled spin problem. There are two modes of libration

in the coupled spin-orbit problem, which we call the relaxed mode and excited mode of

libration. The relaxed mode has the same frequency as the orbital frequency, similar to

forced+optical libration in the decoupled spin problem. The excited mode of libration has a

different frequency that depends on the shape of the secondary. This libration mode is similar

to free libration in the decoupled spin problem. By exploring a range of initial conditions,

79



we can minimize the excited-mode librations so that its amplitude is close 0◦, leaving the

secondary librating in the relaxed mode. The relaxed mode disappears only when the system

is in an equilibrium state, i.e., when the mutual orbit is circular and the long axis of the

secondary always points towards the primary.

For systems in which the exchange of angular momentum in the system is small, the

coupled spin-orbit problem approaches the decoupled problem and the relaxed-mode and

excited-mode librations become similar to the forced+optical and free librations, respectively.

Because most of our simulations include some amount of spin-orbit coupling, we use the

relaxed/excited mode terminology as opposed to the free/forced mode terminology of the

decoupled problem.

3.5 Effect of Spin-Orbit Coupling on Libration

In this section, we study the effects of spin-orbit coupling on the relaxed-mode libration

amplitude of the secondary. Under the assumptions of a fixed orbit around a spherical or

point-mass primary, the amplitudes of forced+optical librations (ψA) in the decoupled case

can be estimated with (e.g., Tiscareno et al., 2009):

ψA =
2e

ω2
0 − 1

, (3.5)

where e is the eccentricity of the mutual orbit and ω0 =
√

3(B −A)/C is the natural

frequency of libration of the satellite normalized by the mean motion (n) of the mutual

orbit. In the coupled problem, the amplitude of the librations depends on the primary-to-

secondary mass ratio, which we quantify with our fully coupled spin and orbit integrator.

Figure 3.3 shows results of simulations in which we vary the primary-secondary mass

ratio for a binary system based on NEA 1991 VH (row 2 of Table 3.1, nominal mass ratio

≈ 12). We vary the density of the secondary while keeping other shape parameters constant,

and we use initial conditions that make the excited-mode libration amplitude ∼ 0◦. The

corresponding analytical estimates (equation (3.5)) yield ψA = 37.2◦ for ω0 = 1.07 and
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Figure 3.3: Influence of spin-orbit coupling on relaxed-mode libration amplitude. Plus sym-
bols (connected by a solid line) show amplitudes of relaxed-mode libration as a function of
primary-to-secondary mass ratio. Dot-dashed line shows corresponding analytical estimates
of forced+optical libration computed using equation (3.5). System parameters for this sim-
ulation are based on asteroid 1991 VH and are given in the second row of Table 3.1. The
elongation of the secondary, a/b = 1.5, corresponds to ω0 = 1.07.

e = 0.05. At low values of the primary-to-secondary mass ratio, the libration amplitudes are

considerably smaller than the analytical estimate, suggesting that spin-orbit coupling tends

to damp libration amplitudes.

3.6 Surface of Section

It is useful to visualize the dynamics with surface of section plots similar to those in Wisdom

et al. (1984). At every pericenter passage of the secondary, we plot the angle between the

long axis and the line of apsides of the mutual orbit, θp, against its time derivative, θ̇p,
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normalized by the mean motion, n. In order to identify pericenter passage, we use Keplerian

elements to describe the osculating mutual orbit at each time step. These elements vary on

timescales shorter than the orbital period because the orbit is not Keplerian.

It is easy to differentiate between regular and chaotic trajectories on surface of section

plots: regular trajectories fall on smooth curves, whereas chaotic trajectories fill up an area

of the phase space over successive visits (Wisdom et al., 1984). Figure 3.4 shows different

types of trajectories of a slightly elongated secondary in this phase space. The system

parameters for this plot are based on radar-derived estimates for near-Earth asteroid (NEA)

1991 VH (Margot et al., 2008; Naidu et al., 2012) and are given in row 3 of Table 3.1. The

plot looks symmetric about θp = 90◦ because we use triaxial ellipsoids for the simulations,

so θp = 0◦ is equivalent to θp = 180◦. Seven trajectories with different initial conditions

are shown in this figure. Throughout a simulation, the secondary remains on the trajectory

it started on. The red and green trajectories are regular quasi-periodic, whereas the blue

trajectories are chaotic.

On a resonant (red color) trajectory, the secondary librates in a spin-orbit resonance

region. For the red trajectory surrounding θ̇p/n = 1.5, the secondary spins three times for

every two orbits, so it is in a 3:2 spin-orbit resonance. Mercury is the only known object in

a 3:2 spin-orbit resonance. For the red trajectory surrounding θ̇p/n = 1, the secondary is

in a 1:1 spin-orbit resonance, i.e., it spins synchronously (e.g., the Earth’s moon). Similar

trajectories with islands centered exclusively on θp = 0◦ and θp = 180◦ exist near half-integer

values of θ̇p/n (2, 2.5, 3, etc.). The horizontal extent of the trajectory around θp = 0◦ gives

the amplitude of excited-mode libration (equivalent to free libration in the decoupled spin

problem). For example, on the red trajectory in the 1:1 resonance region, the secondary has

an excited mode libration amplitude of ∼ 37◦. A trajectory with only relaxed-mode libration

plots as a point on the y-axis, which we call the center of the resonance region (not shown

in the figure). The relaxed-mode libration is not detectable in the horizontal dimension of

the surface of section plots because we sample the spin state of the secondary at pericenter,

where the relaxed-mode libration is always at 0◦ phase. However, the relaxed-mode libration

is detectable in the vertical dimension of the surface of section plots because it contributes to
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the angular velocity of the secondary at pericenter. The centers of the resonance regions are

displaced vertically from their nominal positions in the absence of relaxed-mode libration.

These offsets can be seen clearly for relaxed-mode librations with larger amplitudes (Figures

3.7 and 3.8). They are strictly due to torques on the permanent deformation of the satellite

and are unrelated to the tidally induced pseudo-synchronous rotation described by, e.g.,

Ferraz-Mello (2013) for nearly spherical satellites on eccentric orbits.

A chaotic (blue color) trajectory marks the boundary of a resonance region and is called

a separatrix. On a separatrix the secondary explores the entire range of θp values and the

trajectory fills up a region of phase space, indicating that the trajectory is chaotic.

Secondary spin rates that are further away from the resonance regions put the secondary

on a trajectory similar to one of the non-resonant quasi-periodic (green) trajectories. On

these trajectories the secondary is not in a spin-orbit resonance and circulates through all θp

values in a quasi-periodic manner. These trajectories are called quasi-periodic because they

exhibit at least one non-commensurate frequency in addition to the frequency at which the

motion is sampled.

Wisdom et al. (1984) assumed that the secondary spin is decoupled from the mutual orbit,

a reasonable assumption for the Saturn-Hyperion system because Hyperion has negligible

angular momentum compared to the mutual orbit. Under this approximation, they derive

the half-widths of the resonance regions (equation (3.6), in units of the mean motion) and of

the chaotic separatrix surrounding the 1:1 spin-orbit resonance (equation (3.7), in the energy

domain):

1

2
RW = ω0

√

|H(p, e)|; (3.6)

1

2
SW =

∆E

E0

≈ 14πe

ω3
0

e−(π/2ω0). (3.7)

Here, H are functions tabulated in Cayley (1861) and p is the spin-orbit resonance ratio,

e.g., p = 3/2 for a 3:2 spin-orbit resonance. ∆E represents energy variations on the chaotic
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Figure 3.4: Surface of section plot for a secondary elongation a/b = 1.01, corresponding to
ω0 = 0.17, and mutual orbit eccentricity e = 0.05. Other system parameters are listed in
Table 3.1. Seven trajectories with initial θ̇p/n values of 1.08, 1.15, 1.28, 1.55, 1.57, 1.68, and
1.78 are plotted. Initial θp values are 0 in all cases. Red, blue, and green colors indicate
resonant, chaotic, and non-resonant quasi-periodic trajectories, respectively.
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separatrix and E0 comes from the first integral of the averaged equation of motion of libration

(Wisdom et al., 1984). It is the energy at which the libration angle begins to circulate:

E0 =
1

4
n2ω2

0C, (3.8)

where C is the moment of inertia about the spin axis. In the averaged equation of motion,

the higher frequency terms that give rise to chaos are ignored, so the separatrix is regular.

The width of the resonance and of the chaotic regions grow larger with ω0 and e. For

large enough values, neighboring resonance regions overlap, resulting in a large chaotic zone

surrounding the overlapping resonances. The resonance overlap criterion for the 1:1 and 3:2

spin-orbit resonances is given by (Wisdom et al., 1984):

ωRO
0 =

1

2 +
√
14e

. (3.9)

Overlap occurs when ω0 > ωRO
0 .

These equations were derived under the assumption that the secondary spin has no feed-

back on the mutual orbit, and we investigate whether the analytical formulation (equation

(3.9)) matches the results of our coupled integrator. For a system based on 1991 VH (Ta-

ble 3.1), we varied the elongation in steps of 0.01 and determined when resonance overlap

occurred. We find that it does not occur for a/b = 1.03 (ω0 = 0.30) but that it does occur

for a/b ≥ 1.04 (ω0 ≥ 0.34). The analytical estimate, which does not take the width of the

separatrix into account, places the onset of chaos at ωRO
0 = 0.35 for e = 0.05. The small

difference between the analytical and numerical estimates for the onset of chaos suggests

that equation (3.9) provides a reasonable approximation even in the presence of spin-orbit

coupling. In subsequent sections, we will confirm this finding by providing values for both

estimates for a variety of orbital eccentricities. Note that Wisdom et al. (1984) also observed

a small difference between analytical and numerical estimates, even in the fully decoupled

case. To illustrate resonance overlap, we generate a surface of section for a value of a/b = 1.06

and e = 0.05 such that ω0 = 0.42 > ωRO
0 = 0.35 (Figure 3.5). The overlap wipes out the
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non-resonant quasi-periodic trajectories between the overlapping resonances and results in

smaller 1:1 and 3:2 spin-orbit resonance regions and a large chaotic zone surrounding the

resonances.

Substituting e = 0 in equation (3.9) yields ωRO
0 = 0.5 which corresponds to a/b ≈ 1.09.

This value is low compared to typical elongations observed in asteroids (e.g., Hudson and

Ostro, 1995; Hudson et al., 2000; Naidu et al., 2013). The secondary of 1999 KW4 has an

elongation of 1.3 (Ostro et al., 2006). This suggests that resonance overlaps are quite likely

to happen in binary near-Earth asteroids. However, for small eccentricities the width of the

chaotic separatrix remains small as dictated by equation (3.7), so resonance overlaps do not

result in large chaotic regions. The resonance overlap threshold of a/b as a function of e

(equation (3.9)) and the width of the chaotic separatrix (∆E/E0) as a function of e and a/b

(equation (3.7)) are plotted in Figure 3.6. The figure illustrates that the size of the chaotic

zone increases with eccentricity.

In the next section, we examine the surface of section plots for well-characterized binary

and triple systems.

3.7 Well-Characterized binary and triple NEA Systems

We simulate the spins and orbits of well-characterized binaries and triples listed in Fang and

Margot (2012a), which includes both synchronous (〈θ̇/n〉 = 1) and asynchronous (〈θ̇/n〉 6=
1) systems, where 〈.〉 indicates values averaged over one orbit. We use our integrator to

determine the minimum elongation at which resonance overlap occurs and, for synchronous

satellites, the amplitude of relaxed-mode libration. We also plot surfaces of section for each

system to examine the variety of dynamical regimes. When satellite elongations are not

known, we assume a value of 1.3, which corresponds to that of the 1999 KW4 satellite.

Equivalent radii for the components and mutual orbital parameters are obtained from Fang

and Margot (2012a), unless otherwise indicated.

In all cases, we assume the primaries to be spherical and the secondaries to be triaxial

ellipsoids. We need a prescription for choosing the axial dimensions such that they conform
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Figure 3.5: Surface of section plot illustrating the partial overlap of the 1:1 and 3:2 spin-
orbit resonances for a secondary elongation a/b = 1.06, corresponding to ω0 = 0.42, and a
mutual orbit eccentricity e = 0.05. Other system parameters are given in Table 3.1. Four
trajectories with initial θ̇p/n values of 1.13, 1.63, 1.70, and 1.78 are plotted. Initial θp values
are 0 in all cases. Color scheme as in Figure 3.4.
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Figure 3.6: Contour plot showing the half-width of the chaotic separatrix ∆E/E0 as a
function of a/b and e (equation (3.7)). According to the resonance overlap criterion of
equation (3.9), overlap will occur in systems that lie above the solid line.
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to the radius and mass of the secondary described in the literature. a and b are chosen to

satisfy two conditions: 1) a × b = R2
s, where Rs is the radius of the secondary, and 2) a/b

equals the desired elongation. c is chosen in a way that ensures A < B < C. The choice of c

is not crucial because the dynamics are mostly sensitive to the value of ω0 =
√

3(B −A)/C

which, for a triaxial ellipsoid, is equal to
√

3(a2 − b2)/(a2 + b2)). The adopted density of

the satellite is based on the observed mass of the satellite and on the volume of the triaxial

ellipsoid. Because the choice of c is arbitrary, the densities used in the simulations are not

identical to the nominal densities, but the masses used in the simulations do conform to the

nominal masses. We verified the robustness of our results by running simulations with up to

20% changes in the values of c and found no appreciable difference in the surface of section

plots.

3.7.1 1991 VH

As mentioned in section 3.6, the overlap of the 1:1 and 3:2 spin-orbit resonances of the 1991

VH secondary happens for a/b > 1.04. Radar images show that its equatorial elongation

is about 1.5 (Naidu et al., 2012). Figure 3.7 shows a surface of section plot for e = 0.05

and a/b = 1.5 (other parameters are listed in Table 3.1). At these values, the chaotic zone

completely wipes out the 3:2 spin-orbit resonance but a large stable 1:1 spin-orbit resonance

region still exists. The center of the sychronous region (as defined in section 3.6) is on the

y-axis in Figure 3.7, in the region bounded by the smaller red trajectory close to θ̇p/n = 0.5.

It is shifted down from θ̇p/n = 1 due to relaxed-mode libration which makes a non-zero

contribution to θ̇ at pericenter. We measure the relaxed-mode libration amplitude at the

resonance center to be about 35◦.

The synchronous region is surrounded by a chaotic zone. This has implications for

synchronous capture that are discussed in section 3.8. If the secondary gets captured in the

synchronous region, tides are expected to damp the excited-mode libration of the secondary,

driving its trajectory towards the center of the synchronous region, where it exhibits only

relaxed-mode libration. Since the spin is coupled to the orbit, energy removed from the
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secondary spin will gradually change the orbit, the surface of section map, and the relaxed-

mode libration amplitude and frequency. Throughout this evolution, the secondary remains

in the same dynamical regime close to the center of the synchronous region. The next

higher order stable resonance is the 2:1 resonance, however probability of capture into this

resonance is low (∼ 10−3 using equation 5.110 of Murray and Dermott (1999)). Similar to

the synchronous region, the 2:1 resonance region is shifted vertically from θ̇p/n = 2. The

shift in this case is upwards because the instantaneous satellite spin rate at pericenter is

greater than its orbit-averaged value of 2n.

Preliminary measurements of the Doppler extents (or bandwidths) of the secondary in

radar images (Margot et al., 2008; Naidu et al., 2012) are consistent with chaotic behavior,

but because of the large amplitude libration at the resonance center and corresponding spin

rate variations (Section 3.8.2), we cannot entirely rule out the possibility of synchronous

spin.

3.7.2 2003 YT1

This system’s component sizes are Rp ≈ 550 m and Rs ≈ 105 m, so the primary is similar

to that of 1991 VH but the secondary is a few times smaller. The orbit (a/Rp ∼ 7) is

somewhat wider than that of 1991 VH (a/Rp ∼ 5.5), and it is also more eccentric (e = 0.18

vs. e = 0.05). The smaller secondary and wider mutual orbit mean that spin and orbit are

less coupled in this system than in 1991 VH. Substituting e = 0.18 in equation (3.9), we get

a theoretical threshold for resonance overlap ωRO
0 = 0.30, which corresponds to a/b = 1.03.

Using our simulations we find that the resonance overlap threshold lies between ω0 = 0.24

(a/b = 1.02) and ω0 = 0.30 (a/b = 1.03). The elongation of the satellite is unknown. For

our simulations (Figure 3.8), we chose an elongation of 1.3.

The 1:1 spin-orbit resonance region is not as prominent in this plot as it is in Figure 3.7

due to the higher eccentricity. Despite the higher eccentricity, the y-axis location of the

synchronous region center is similar to that of 1991 VH, because of the smaller satellite

elongation. The chaotic region is much bigger than that of 1991 VH and extends to θ̇p/n ≈ 3.

90



Figure 3.7: Surface of section plot for the 1991 VH secondary using the radar-derived sec-
ondary elongation a/b = 1.5, corresponding to ω0 = 1.07, and the mutual orbit eccentricity
e = 0.05. Other system parameters are given in Table 3.1. Five trajectories with initial θ̇p/n
values of 0.43, 0.83, 1.63, 2.31, and 2.53 are plotted. Initial θp values are 0 in all cases. Color
scheme is the same as in figure 3.4.
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Figure 3.8: Surface of section plot for the 2003 YT1 secondary assuming the secondary
elongation a/b = 1.3, corresponding to ω0 = 0.88, and the mutual orbit eccentricity e = 0.18.
Other system parameters are given in Table 3.1. Six trajectories with initial θ̇p/n values of
0.75, 1.29, 2.85, 3.15, 3.5, and 3.69 are plotted. Initial θp values are 0 in all cases. Color
scheme is the same as in Figure 3.4.

The first higher order stable resonance is the 5:2 spin-orbit resonance. This resonance region

is shifted upwards from θ̇p/n = 2.5, similar to the upward shift of the 2:1 resonance region

of 1991 VH. The amplitude of the relaxed-mode libration measured at the center of the

synchronous region is about 45◦.

3.7.3 2004 DC

2004 DC has the smallest primary (Rp ≈ 180 m), secondary (Rs ≈ 30 m), and mutual

orbit semimajor axis (750 m) in our sample, but it has the most eccentric mutual orbit

(e ≈ 0.3) (Table 3.1). The resonance overlap criterion (equation 3.9) gives ωRO
0 = 0.25,
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Figure 3.9: Surface of section plot for the 2004 DC secondary assuming the secondary elon-
gation a/b = 1.3, corresponding to ω0 = 0.88, and the mutual orbit eccentricity e = 0.3.
Other system parameters are given in Table 3.1. Four trajectories with initial θ̇p/n values
of 1.39, 4.29, 4.49, and 5.39 are plotted. Initial θp values are 0 in all cases. Color scheme is
the same as in Figure 3.4.

which corresponds to an elongation of a/b = 1.02. Using our simulations we find that the

resonance overlap threshold lies between a/b = 1.01 (ω0 = 0.17) and 1.02 (ω0 = 0.24),

roughly consistent with the analytical estimate. The shape of the secondary is not known,

however its appearance in the radar images suggest that a/b ≤ 1.3 (Patrick Taylor, personal

communication). Figure 3.9 shows the surface of section plot for a secondary having an

elongation of 1.3 (system parameters in Table 3.1). The chaotic region is so large that

even the 1:1 resonance region disappears and the lowest-order stable resonance region is the

4:1 spin-orbit resonance. In fact the synchronous island is absent for all values of satellite

elongations ≥ 1.1.
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3.7.4 Synchronous Satellites

Radar data show that the satellites of 2000 DP107, 2002 CE26, 2001 SN263 (Gamma),

1999 KW4, and 1994 CC (Beta) are synchronous (Margot et al., 2002; Shepard et al., 2006;

Nolan et al., 2008; Ostro et al., 2006; Brozović et al., 2011, respectively). Didymos may also

be synchronous (Benner et al., 2010); for our purposes we assume that it is. We use radar-

derived mutual orbital parameters, component radii, and component masses for simulating

these systems. These parameters are given in Table 3.1. For satellites whose elongations

are not well known, we perform simulations using a/b=1.01, 1.05, 1.1, 1.2, and 1.3. Each

simulation is performed with initial conditions that put the trajectory at the center of the

synchronous island. We identify the center of the synchronous island by varying the values of

initial θ̇ until the horizontal extent of the trajectory on the surface of section becomes ∼0. As

mentioned in section 3.7.1, the excited-mode libration amplitude is zero at the center of the

synchronous island, which is what is expected for a tidally evolved satellite. In this case, the

satellite exhibits only the relaxed-mode libration, which we measure as the angle between

the long axis of the secondary and the line joining the primary and secondary centers of

masses (In the decoupled terminology, this is the optical+forced libration). The libration

amplitudes, i.e., the maximum values of the libration angles, are plotted as a function of

elongation in Figure 3.10. The analytical estimates of the libration amplitudes, assuming

the decoupled spin-orbit problem, are given by equation (3.5).

Since shape and spin state modeling are tied to each other (e.g., Ostro et al., 2006;

Naidu et al., 2013), calculations such as those shown in Figure 3.10 are useful for shape

modeling of asteroid satellites. These estimates are also useful for modeling binary YORP

torques (Ćuk and Burns, 2005) on synchronous satellites. If a system exhibits excited-mode

libration in addition to the relaxed-mode libration, the two librations will add up and create

a beating pattern. Because the amplitudes and frequencies of excited-mode libration can

span a wide range of values, 3D reconstruction and binary YORP modeling of dynamically

excited satellites is complicated.
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Figure 3.10: Numerical estimates of relaxed-mode libration amplitude as a function of satel-
lite elongation for synchronous satellites among well-characterized binary and triple systems.
For 1999 KW4, we plot a single point corresponding to the known elongation of the satellite.
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3.8 Implications

3.8.1 Presence of chaotic regions and synchronous capture

In section 3.7, we showed that resonance overlap is likely to occur for asynchronous satellites

in our sample and that large chaotic zones are expected in their phase spaces. This behavior

can be expected in other, similar systems. Let us consider the evolution of a satellite formed

with a high initial spin rate such that its trajectory in phase space is in or above the chaotic

zone, the situation expected for most satellites in the formation model of Jacobson and

Scheeres (2011). It is possible for YORP to increase the spin rate of the satellite, but we

focus on the spin-down evolution under the influence of tidal and YORP forces. Satellites

that start above the chaotic region will most likely encounter the chaotic zone on their way

to the 1:1 spin-orbit resonance region. In the chaotic zone, the satellite is acted upon by

tides, YORP, and torques on its permanent shape, which cause the chaotic spin. Since the

spin of the satellite is coupled to the mutual orbit, angular momentum removed or added

to the secondary spin by tides and YORP will also affect the mutual orbit and cause the

surface of section map of the secondary to vary. However, for binary NEAs, the angular

momentum of the mutual orbit is much greater than that of the secondary spin, so the effect

is expected to be small. We neglect this effect for the following discussion and assume the

surface of section map to be roughly constant during the evolution of the secondary spin in

the chaotic zone.

If the chaotic separatrix around the 1:1 spin-orbit resonance region is extremely thin, as

is the case for satellites having almost spherical shapes, then the torques on the permanent

shape will be small, allowing tides or YORP to easily drive the satellite spin across the

separatrix and into the synchronous region. For satellites having larger chaotic zones, like

the asynchronous satellites in section 3.7, tides or YORP cannot simply sweep the satellite

across the chaotic region because torques on the permanent shape can increase as well as

decrease the spin rate of the satellite in a random manner. The synchronous capture process

is essentially stochastic in nature. For capture to occur, the satellite has to spend enough

time near the boundary of the synchronous region for tides or YORP to torque the satellite
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into resonance. Such a process was discussed by Wisdom et al. (1984). The details of

this capture process are not known and are difficult to model, however the probability of

this happening will depend on the relative magnitude of ∆E/E0 compared to the energy

dissipated due to tides (δEtides/E0) or YORP (δEYORP/E0).

Simulations and equation 3.7 show that values of chaotic spin energy variations (∆E/E0)

for the asynchronous satellites are within an order of magnitude of 1. We estimate the

magnitude of tidal dissipation in one orbit using the following equation from Murray and

Dermott (1999):

δEtides = π
3

2

k2
Q

n4

G
R5

s. (3.10)

Here k2 is the love number, Q is the tidal dissipation factor, n is the mean motion, G is

the gravitational constant, and Rs is the radius of the secondary. We approximate energy

dissipation due to YORP in one orbit by multiplying the YORP torque given in Steinberg

and Sari (2011) by the satellite rotation over one orbit, 4π assuming 2 satellite rotations per

orbit:

δEYORP =
2πR3

sL⊙fY

3cd2
√

1− e2⊙
. (3.11)

Here L⊙ is the solar luminosity, fY is the YORP torque efficiency, c is the speed of light,

d and e⊙ are the semimajor axis and eccentricity of the heliocentric orbit, respectively. In

order to compare the tidal and YORP energy dissipation with ∆E/E0, we normalize δEtides

and δEYORP using E0 from equation 3.8.

For computing δEtides we assume Q = 100 and estimate k2 values using three different

models. In the rubble pile model of Goldreich and Sari (2009), k2 = 10−5Rs, where Rs is

in km. Using the system parameters from Table 3.1, we determine δEtides/E0 for all the

asynchronous satellites to be between 10−9 and 10−8. Assuming the monolith model of

Goldreich and Sari (2009) for the secondary yields lower values of δEtides because a monolith

is more rigid than a rubble pile of the same size and has a lower value of k2. ? derived

a different relation between love number and radius, k2 = 2.5 × 10−5R−1
s , by assuming

that orbits of observed synchronous asteroid satellites are in an equilibrium state such that

tidal torques balance binary YORP torques. Subsituting k2 values from this relation in
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equation (3.10) yields δEtides/E0 between 10−7 and 10−5. We compute δEYORP by assuming

fy = 5 × 10−4, the estimated value for asteroid YORP (Taylor et al., 2007; Lowry et al.,

2007). δEYORP/E0 values for 1991 VH, 2003 YT1, and 2004 DC are 5× 10−7, 3× 10−6, and

2× 10−5, respectively.

Unknown values of Q, k2, and fy introduce uncertainties of a few orders of magnitude

in δEtides and δEYORP but these energy dissipation values are several orders of magnitudes

smaller than ∆E/E0, suggesting that chaotic variations in energy dominate tidal and YORP

dissipations in these systems. This may substantially delay spin synchronization and, there-

fore, BYORP-type evolution.

If the timescale for synchronous capture is long, then tides may damp the mutual orbit

eccentricity significantly before spin synchronization. This will reduce the size of the chaotic

zone as dictated by equation 3.7 and make it easier for tides or YORP to torque the sec-

ondary into the synchronous region. Tidal damping of eccentricity is not a very effective

process and timescales may be quite long. Fang and Margot (2012a) estimated timescales

in the range 107 to 1010 years for the asynchronous satellites, but these may be in error be-

cause the underlying formalism by ? assumes synchronous rotators. It is likely that energy

dissipates faster in the case of satellites that are torqued and tidally deformed in a chaotic

manner, but the nature and characteristic timescale of the eccentricity evolution remain

poorly known. Complicating the picture is the fact that other mechanisms such as solar

perturbations (Scheeres et al., 2006) or planetary flybys (Farinella, 1992; Fang and Margot,

2012b) may also be effective at damping or exciting eccentricities. Although there is un-

certainty related to the eccentricity-damping timescale, BYORP-type evolution cannot take

place until the spin period is synchronized to the orbital period. Asteroid binaries may enjoy

extended lives because their chaotically spinning secondaries prevent BYORP evolution.

3.8.2 Interpretation of observational data

Our results have implications for radar and lightcurve data interpretation. In radar observa-

tions (images and spectra), the Doppler extent (or bandwidth) of an object is proportional to
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its apparent, instantaneous spin rate (inversely proportional to its spin period). Lightcurves

show variations in the object’s brightness as it spins. If the object is spinning at a constant

rate, the brightness variations will be approximately periodic. The primary periodicity in

the lightcurve (e.g., Pravec et al., 2006) is often used as a proxy for the object’s spin rate,

even though the signal is affected by changes in relative positions between the Sun, the

object, and the observer. We showed in section 3.7 that asteroid satellite spin rates can be

time-variable. When the lightcurve data are of sufficient quality and when Rs/Rp & 0.2, it

is sometimes possible to distinguish the signal of the secondary from that of the primary.

In radar data, where the secondary is typically easily detectable, the spinning satellite will

exhibit approximately periodic bandwidth variations. However, in both cases, a variable

spin rate severely complicates the analysis. Understanding the time-varying nature of the

satellite spin is important when analyzing radar and lightcurve data.

Figure 3.11 shows spin rate as a function of time for four trajectories of 1991 VH. The

top panel shows a trajectory at the center of the synchronous island. Even though it would

plot as a point on a surface of section, the satellite spin rate exhibits a large oscillation at

the orbital rate with an amplitude slightly greater than the mean motion, n. As mentioned

in section 3.6, this oscillation is the relaxed-mode libration of the satellite.

The second panel in Figure 3.11 shows a chaotic trajectory. The spin rate variations

span a similar, but slightly larger, range of values than that in the synchronous case. If

observations (radar or photometric) were sparse, it would be difficult or even impossible

to ascertain whether a trajectory was periodic or chaotic. With a sufficient number of

data points sampled at a sufficiently fast cadence, one could examine the distribution of

spin rate values to identify the type of trajectory, as the distributions for resonant and

chaotic trajectories are different. Spin rate variations on the synchronous trajectory resemble

a sinusoid, so the distribution of spin rates looks approximately bimodal. The spin rate

distribution of the satellite in the chaotic region cannot be generalized and depends on

specific system parameters.

The third and fourth panels show the 3:2 resonant trajectory (red) and the quasi-periodic

(green) trajectory of Figure 3.7, respectively. In these cases, the variations are much smaller
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Figure 3.11: Satellite spin rate variations for 4 possible trajectories of 1991 VH. From top
to bottom, the initial values of satellite spin rate, normalized by n, are 0.45, 1.70, 2.38,2.60.

than the previous two trajectories. These rotational regimes are easier to identify because

large-scale chaotic variations are not present.

In radar data analysis, modeling the spin state and shape of objects are tied to each

other (e.g., Ostro et al., 2006; Naidu et al., 2013). Incorrect spin state assumptions may

yield incorrect shape models. Our results indicate that in some cases it will be impossible

to identify the spin state of the satellite, whereas in other cases an appropriate rotational

model will provide a good fit to the data. A simple model of uniform rotation may not be

sufficient, as libration amplitudes can cause displacements that exceed the image resolution.

We recommend using a model that includes librations for the 3D reconstruction of asteroid

satellites with even moderate eccentricity and elongation.
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3.9 Conclusions

We examined the rotational regimes of asteroid satellites using surfaces of section. The

trajectories can be broadly classified as resonant, non-resonant quasi-periodic, and chaotic.

In order to identify the specific type of spin behavior, a dense time sampling of the satellite

spin state is necessary (section 3.8.2), however such datasets are seldom available. Even

densely sampled lightcurves, for instance, do not yield measurements of the instantaneous

spin state due to the necessity of observing ∼1 full period to estimate the spin period. In

section 3.8.2, we showed that even synchronous satellites can undergo large variations in

spin rates, potentially masquerading as asynchronous satellites. Careful analysis of the data

along with coupled spin-orbit simulations can be used to correctly identify the spin behavior.

Identifying the spin configurations is essential for obtaining accurate physical models of the

satellites.

The spin configurations of satellites play a crucial role in the secular evolution of bi-

nary/triple systems under the influence of forces such as tides and binary YORP. For exam-

ple, the binary YORP torque acts only on satellites whose spin periods are integer multiples

of their orbital periods (Ćuk and Burns, 2005) and some estimates suggest that this torque

could disrupt binary systems in just a few tens of thousands of years (Ćuk and Nesvorný,

2010; McMahon and Scheeres, 2010). Thus understanding the process of spin synchroniza-

tion is essential for understanding the evolution of binaries. In section 3.8.1, we showed

that satellites may have significantly longer spin synchronization timescales than those es-

timated by considering tidal and/or YORP forces only. This would increase the fraction

of asynchronous binaries in the observed population beyond what one would expect on the

basis of tidal despinning timescales. The corresponding delay in the onset of binary YORP

implies that the lifetimes of binary asteroids can be significantly longer than the few tens of

thousands of years suggested by binary YORP models.
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3.10 Future Work

We examined the results of spin-orbit coupling in the planar case. However, Wisdom et al.

(1984), using 3D simulations, showed that seemingly stable configurations in planar simu-

lations can be attitude unstable. Future work will involve studying inclined/oblique binary

systems in order to test the attitude stability of satellites in various regions of phase space.

Our integrator can also be used for studying the secular evolution of binary asteroids. This

will require implemention of radiation pressure and tidal forces.
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M. Ćuk and J. A. Burns. Effects of thermal radiation on the dynamics of binary NEAs.

Icarus, 176:418–431, August 2005. doi: 10.1016/j.icarus.2005.02.001.
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querdo, N. Kaiser, Z. Krzeminski, D. P. Pray, B. D. Warner, A. W. Harris, M. C. Nolan,

E. S. Howell, L. A. M. Benner, J.-L. Margot, A. Galád, W. Holliday, M. D. Hicks, Y. N.

Krugly, D. Tholen, R. Whiteley, F. Marchis, D. R. DeGraff, A. Grauer, S. Larson, F. P.

Velichko, W. R. Cooney, R. Stephens, J. Zhu, K. Kirsch, R. Dyvig, L. Snyder, V. Reddy,
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