UCSF

UC San Francisco Previously Published Works

Title

Fine mapping of Xq28: both MECP2 and IRAK1 contribute to risk for systemic lupus
erythematosus in multiple ancestral groups

Permalink

https://escholarship.org/uc/item/7m6848m7|

Journal
Annals of the Rheumatic Diseases, 72(3)

ISSN
0003-4967

Authors

Kaufman, Kenneth M
Zhao, Jian
Kelly, Jennifer A

Publication Date
2013-03-01

DOI
10.1136/annrheumdis-2012-201851

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/7m6848m7
https://escholarship.org/uc/item/7m6848m7#author
https://escholarship.org
http://www.cdlib.org/

1duasnueln Joyny vVd-HIN 1duasnueln Joyny vd-HIN

yduasnuey Joyiny vd-HIN

o WATIG,

HE

M 'NS;))\

D)

NS

NIH Public Access

Author Manuscript

Published in final edited form as:
Ann Rheum Dis. 2013 March ; 72(3): 437-444. doi:10.1136/annrheumdis-2012-201851.

Fine Mapping of Xg28: Both MECP2 and IRAK1 Contribute to
Risk for Systemic Lupus Erythematosus in Multiple Ancestral
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Abstract

Objectives—The Xg28 region containing /RAKI and MECPZhas been identified as a risk locus
for systemic lupus erythematosus (SLE) in previous genetic association studies. However, due to
the strong linkage disequilibrium between /RAKZ and MECPZ, it remains unclear which gene is
affected by the underlying causal variant(s) conferring risk of SLE.

Methods—We fine-mapped =136 SNPs in a ~227kb region on Xq28, containing /RAK,
MECP2and 7 adjacent genes (LICAM, AVPRZ, ARHGAP4, NAA10, RENBP, HCFCI and
TMEM187), for association with SLE in 15,783 case-control subjects derived from 4 different
ancestral groups.
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Results—Multiple SNPs showed strong association with SLE in European Americans, Asians
and Hispanics at A<5x1078 with consistent association in subjects with African ancestry. Of these,
6 SNPs located in the TMEM187-IRAKI-MECPZregion captured the underlying causal variant(s)
residing in a common risk haplotype shared by all 4 ancestral groups. Among them, rs1059702
best explained the Xg28 association signals in conditional testings and exhibited the strongest #
value in trans-ancestral meta-analysis (Pmeta=1.3%10727, OR=1.43), and thus was considered to be
the most-likely causal variant. The risk allele of rs1059702 results in the amino acid substitution
S196F in IRAK1 and had previously been shown to increase NF-xB activity /n vitro. We also
found that the homozygous risk genotype of rs1059702 was associated with lower mRNA levels
of MECPZ, but not /JRAK, in SLE patients (P=0.0012) and healthy controls (P=0.0064).

Conclusion—These data suggest contributions of both /RAKZ and MECP2to SLE
susceptibility.

Keywords

Systemic Lupus Erythematosus; Gene Polymorphism; Xq28; IRAK1; MECP2

INTRODUCTION

SLE (OMIM 152700), a chronic multi-organ autoimmune disease, is associated with
significant morbidity and mortality. A large body of literature supports a role for genetic,
environmental and epigenetic factors in the pathogenesis of SLE.[1-5]

Previously, single nucleotide polymorphisms (SNP) in /RAK (interleukin-1 receptor-
associated kinase 1) and its adjacent gene MECPZ (methyl CpG binding protein 2),
separated by 1.7 kb on Xq28, have been independently associated with risk of SLE, mainly
in subjects with European and Asian ancestries.[6—10] Both /RAKZ and MECPZ2 are strong
candidate genes for SLE susceptibility. IRAK1 associates with interleukin-1 receptor, up-
regulates transcription factor NF-xB [11] and activates the innate immune system which is
important in SLE pathogenesis.[12, 13] IRAK1 deficiency in mice abrogated SLE-
associated phenotypes, including IgM and 1gG autoantibodies, lymphocytic activation and
renal disease, and reversed the dendritic cell “hyperactivity” associated with the S/e3lupus
susceptibility interval.[7] MECP2 plays a role in two epigenetic repression mechanisms,
DNA methylation and histone deacetylation, leading to a chromatin configuration
inaccessible for transcription, thereby silencing gene expression.[14, 15] In both humans and
mice, defects of DNA methylation have been implicated in the pathogenesis of SLE.[2, 3]
The strong linkage disequilibrium (LD) between these two genes has led to the hypothesis
that only one or the other of /RAK or MECPZis the SLE risk gene on X(28,[16] a debate
which has not yet been solved. Furthermore, rs2269368 in ARHGAP4 has been associated
with SLE in subjects with European ancestry,[17] suggesting that genes located upstream of
the /IRAKI-MECPZregion may also contribute to SLE susceptibility.

Leveraging different LD patterns among multiple ancestral groups, the trans-ancestral fine-
mapping approach has shown its power in identifying underlying causal variants at SLE-
associated loci.[18-20] Here, we fine mapped 9 genes in Xq28 using 136-173 SNPs and
assessed their association with SLE in subjects from 4 different ancestral groups. After
localizing the candidate causal variant, we tested its association with the mMRNA level of
IRAKI and MECP2.

Ann Rheum Dis. Author manuscript; available in PMC 2013 March 01.
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Sample collection

DNA samples used in the collaborative Large Lupus Association Study 2 (LLAS2) were
from subjects recruited by multiple participating institutions and processed at the Oklahoma
Medical Research Foundation (OMRF). Each institution had Institutional Review Board
(IRB) approval to recruit subjects and the overall study was approved by the IRB of OMRF.
Each patient met at least four of eleven 1997 American College of Rheumatology revised
criteria for the classification of SLE.[21]

Genotyping and data cleaning

Imputation

We selected potential functional SNPs, previously reported SLE-associated Xq28 SNPs and
tag SNPs based on HapMap datasets (r24) for genotyping. Fifty-five Xq28 SNPs and 347
admixture informative markers (AIMs) were successfully genotyped using an Illumina
custom array on the iISCAN instrument (San Diego, CA, USA).

Subjects with genotype missing rate >10% (due to low quality), shared identical by descent
>0.4 or showing mismatch between the reported and estimated gender were removed. The
global ancestry of each subject was estimated based on genotype of AlMs, using principal
components analysis [22] and ADMIXMAP,[23-25] as described in another LLAS2 study.
[19] Genetic outliers were removed.

Final clean data from 15,783 subjects were divided into 4 groups according to ancestry,
including EA (European Americans), AA (composed of 92.5% African Americans and 7.5%
Gullahs), AS (comprised of 74.6% of Koreans, 16.1% of Chinese and subjects from Japan
and Singapore) and HA (Hispanics enriched for the Amerindian-European admixture)
(Table S5). Some subjects were previously analyzed in two published MECPZ/IRAK1
studies (Table S6).[6,7]

To obtain genotypes of additional Xg28 SNPs, SNP genotypes of 381 Europeans, 246
Africans, 286 Asians and 181 Americans from the 1000 Genomes Project (June 2011 data
release) were used as references in imputation for our EA, AA, AS and HA subjects,
respectively. Imputation was performed using IMPUTE 2.1.2;[26] imputed SNPs with an
information score >0.9 were included for further analyses.

Statistical analyses

The same quality control criteria were applied to genotyped and imputed SNPs. SNPs with
minor allele frequency (MAF) <1% or Hardy Weinberg equilibrium ~<0.001 in controls
were excluded. SNPs with genotype missing rate >5% or showing significantly different
missing rates between cases and controls (missing rate >2% and ~<0.05) were also
excluded.

In each ancestral group, SNPs were assessed for association with SLE under a logistic
regression model adjusting for gender and the first 3 principal components estimated using
AlIMs. Haplotype-based conditional association testings were also performed by adjusting
for gender and the first 3 principal components. The trans-ancestry meta-analysis was
conducted across all 4 ancestral groups. For each SNP, if the Cochran's Q statistic showed
no evidence of genetic heterogeneity (£>0.05), a fixed effect model was applied. Otherwise,
a random effect model was used. All analyses described above were performed using
PLINK v1.07.[27] Pairwised LD values shown in Figure S2 were calculated using
Haploview 4.2.[28]
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Real-time quantitative PCR (RT-PCR)

Total mMRNA extracted from peripheral blood mononuclear cells (PBMC) using the All Prep
DNA/RNA mini kit (QIAGEN, Valencia, CA, USA) were reverse-transcribed into cDNA
(Invitrogen, Carlsbad, CA, USA). Using RT-PCR (Applies Biosystems, Foster City, CA,
USA), the expression of /RAKZ and MECPZ, including all isoforms, were measured with
TagMan probe Hs01018347_m1 and Hs00172845_m1, respectively. The relative expression
levels of /RAK1and MECPZ, normalized to housekeeping gene RPLPO, were calculated
using the 2~2ACt method. Logg transformed /RAKI and MECPZ levels were compared
between individuals carrying different genotypes using Student's t test.

RESULTS

We genotyped 55 SNPs at Xq28, together with 347 AIMs, in 15,783 case-control subjects
from 4 ancestral groups including EA, AA, AS and HA. In addition, we imputed genotypes
for ungenotyped SNPs using reference data from the 1000 Genomes Project, resulting in 173
(EA), 157 (AA), 157 (AS) and 136 (HA) SNPs with MAF>1% that covers a =227kb region
in Xg28 containing genes LICAM, AVPRZ2, ARHGAP4, NAA10, RENBP, HCFCI,
TMEM187, IRAKI and MECPZ (Figure 1A). SNPs were assessed for the association with
SLE under a logistic regression model adjusting for gender and global ancestry. The
significance level was defined as Bonferroni-corrected £<0.05/173=2.9x10~4, using the
most stringent criterion.

Xg28 SNPs were associated with SLE in four different ancestral groups

To confirm the previously reported association of Xq28 region with SLE,[6,7,17] we firstly
performed association testing in the largest EA dataset (3,915 cases and 3,462 controls).
Eighty-six SNPs located in the region containing ARHGAP4, NAA10, RENBP, HCFCI,
TMEM187, IRAK1 and MECPZwere significantly associated with SLE, of which 61 SNPs
had P<5.0x10~8 exceeding the genome-wide association study (GWAS) significance level
and rs5945377 in RENBP exhibited the strongest association signal (P=8.4x10711,
OR=1.38) (Figure 1B, Table S1). These data confirmed that Xg28 is a risk locus for SLE in
EA.

Association of Xq28 with SLE was also confirmed in our AS (1,262 cases and 1,256
controls) and HA (1,487 cases and 807 controls) datasets. In total, 85 and 40 SNPs were
significantly associated with SLE in AS and HA, respectively, of which 48 and 10 SNPs had
P<5.0x1078 (Figure 1B, Table S2 and S3). Both datasets showed the strongest association
signal in the /RAKI-MECPZregion. SNPs in the upstream ARHGAP4-NAA10-RENBP
region did not reach the GWAS significance level.

In the AA dataset (1,674 cases and 1,920 controls), 16 SNPs showed modest association
with SLE (P<0.05) (Figure 1B, Table S4), of which SNPs in the /RAKI-MECPZregion
exhibited peak association signals but none of them reached the Bonferroni-corrected
significance level.

Comparing across EA, AS and HA, 34 SNPs located in a ~187 kb region spanning from
ARHGAP4t0o MECPZ2 were significantly associated with SLE in all 3 datasets (Table 1). Of
them, 7 SNPs (rs13397, rs4898375, rs1059702, rs2734647, rs2075596, rs1734787 and
rs1616369) were consistently associated with SLE in AA at /<0.05 (Table 1), had no
genetic heterogeneity (#£>0.05) across 4 ancestral groups, and generated a combined
Prmeta<5%1078 in trans-ancestral meta-analysis (Figure 1C, Table 1). We performed
association testing in females and males, respectively, which yielded no evidence for a
gender-specific association with SLE. Consistent association detected in EA, AS, HA and
AA indicated that Xq28 is a risk locus of SLE in all these 4 ancestral groups.

Ann Rheum Dis. Author manuscript; available in PMC 2013 March 01.
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SLE-associated SNPs shared by four different ancestral groups were localized to the
TMEM187-IRAK1-MECP2 region

Haplotypes with frequency >1% were constructed using the 34 SNPs that were significantly
associated with SLE in EA, AS and HA. Only haplotype H1 showed consistent association
with increased SLE risk in EA (frequency of 17.4% in cases vs. 13.3% in controls,
P=3.8x1079), AS (69.1% vs. 64.2%, P=1.7x107%), HA (52.1% vs. 40.1%, P=1.4x107%) and
AA (6.3% vs. 4.3%, P=4.9x1074) (Figure 2). H1 shared by these 4 ancestral groups could be
perfectly tagged by the risk allele of 6 SNPs (rs13397, rs4898375, rs1059702, rs2734647,
rs2075596 and rs1616369) in AA, which suggested that the underlying risk variant(s) of
SLE was best captured by these 6 SNPs located in the TMEMS7-IRAKI-MECPZregion in
this study.

In conditional haplotype-based association testing, after conditioning on rs13397,
rs4898375, rs1059702, rs2734647, rs2075596 and rs1616369, association signals of all other
SNPs were completely eliminated or reduced to baseline in EA, AS, HA and AA (Table S1-
S4), which supported that association signals detected in Xq28 could be attributed to these 6
SNPs.

Of note, in EA, rs2269368, rs2071129, rs2071130, rs5945377 and rs5945378 (named as
group 1) in the ARHGAP4-NAA10-RENBP region exhibited even stronger association with
SLE than rs13397, rs4898375, rs1059702, rs2734647, rs2075596 and rs1616369 (named as
group 2) in the TMEM187-IRAK1-MECPZ2region (Table 1). Genetic effects of these two
regions could not be distinguished in EA using conditional testing, in which association
signals detected at either group of SNPs were completely eliminated when conditioning on
another group (Figure S1). In contrast to EA, a stronger association with SLE was detected
at group 2 rather than group 1 SNPs in AS and HA (Table 1). In these two datasets, when
conditioning on group 2 SNPs, association signals detected at group 1 SNPs were
completely eliminated or reduced to baseline (Figure S1). Whereas, when conditioning on
group 1 SNPs, group 2 SNPs retained strong residual association signals. Thus, in AS and
HA, association signals detected at group 1 SNPs might be attributed to group 2 SNPs. In
AA, SNPs in the ARHGAP4-NAA10-RENBP region were not associated with SLE (Table
1). LD analysis showed that these two groups of SNPs were in strong LD in EA and HA
(r?>0.7), modest LD in AS (r2<0.5) and low LD in AA (r2<0.3). Taken together, these data
suggest that association signals detected in the ARHGAP4-NAA10-RENBP region are
driven by SLE-associated SNPs in the TMEM187-IRAKI-MECPZ region.

IRAK1 SNP rs1059702 could best explain association signals detected in the Xq28 region

To further localize underlying causal variant(s) in the TMEM187-IRAKI-MECPZregion,
we performed conditional testing among rs13397, rs4898375, rs1059702, rs2734647,
rs2075596 and rs1616369. In EA and AA, genetic effects of these 6 SNPs could not be
distinguished (Figure S2), probably because they were in strong LD in EA and had too low
MAFs in AA. In HA, when conditioning on rs13397, rs1059702, rs2075596 or rs1616369,
association signals of the other 5 SNPs were completely eliminated. In contrast,
conditioning on rs4898375 or rs2734647 showed residual signals at rs13397, rs1059702,
rs2075596 and rs1616369. Thus, association signals detected at rs4898375 and rs2734647
could be attributed to rs13397, rs1059702, rs2075596 and rs1616369. In AS, rs4898375 and
rs1059702 explained association signals detected at the other 4 SNPs. Taken together, only
rs1059702 could explain the association signals of the other 5 SNPs in EA, AA, HA and AS,
suggesting that rs1059702 was the most likely causal variant among the 6 SLE-associated
SNPs. In meta-analysis, rs1059702 exhibited the strongest Pvalue (Pyeta=1.3%10727,
OR=1.43) (Table 1). Furthermore, the risk minor allele of rs1059702 (S196F in exon 5) of
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IRAK1 leads to increased NF-xB activity,[29] suggesting it may confer risk of SLE by
affecting the biological function.

The risk allele of rs1059702 was associated with lower mRNA levels of MECP2

Using RT-PCR, we measured mRNA levels of /RAKZ and MECPZin PBMCs from 70 SLE
cases (56 females and 14 males) and 73 healthy controls (32 females and 41 males) and
assessed their association with rs1059702 genotypes. To exclude the influence of X-
inactivation, EA males or females carrying a homozygous rs1059702 genotype were used.
Compared to those carrying the non-risk GG or G genotype, subjects carrying the SLE-risk
AA or A genotype had decreased MECPZ, but not /RAK1, levels in both cases (P=0.0012)
and controls (£=0.0064) (Figure 3). These data suggested that rs1059702, or other SLE-risk
variants tagged by rs1059702, may confer risk of SLE by affecting expression of MECP2.

DISCUSSION

We comprehensively investigated the genetic association between Xq28 and SLE
susceptibility. In addition to previously reported /RAK1, MECP2and ARHGAP4, 6 other
genes on Xq28 were assessed. We identified SLE-associated SNPs in the TMEM187-
IRAKI-MECPZ2region in 4 different ancestral groups, and identified rs1059702 (S196F) in
IRAK1 as the most likely causal variant. Furthermore, we showed that the SLE-risk
genotype of rs1059702 was associated with lower mMRNA levels of MECPZ. Thus, our data
suggested that both /RAKZ and MECPZ2 are SLE risk genes on Xq28.

The successful localization of a causal variant in our study should be attributed to
conducting fine-mapping using high-density SNP markers and performing association
testing in subjects with African ancestry. Using fine-mapping, we identified multiple Xq28
SNPs that were strongly associated with SLE in EA, AS and HA. However, these SNPs
spanned a ~187 kb region from ARHGAP4t0o MECPZand their independent effects were
difficult to distinguish due to strong LD. Compared to EA, AS and HA, the weaker LD at
Xg28 in AA helped us localize association signals to a narrower region. Based on the
findings that 6 SNPs in the TMEM187-IRAK1-MECPZ region were associated with SLE in
EA, AS, HA and AA with similar odds ratios and they could explain association signals of
other Xg28 SNPs, we concluded that these 6 SNPs captured the underlying risk variant(s)
shared by 4 ancestral groups. Because the risk allele frequency of these 6 SNPs are much
lower in AA (~5%) than in EA (~15%), HA (40%) and AS (~75%), the association signals
in AA did not reach the Bonferroni-corrected significance level.

IRAK1 plays a pivotal role in the activation of NF-xB. We identified the minor allele of
rs1059702 on /RAKI, resulting in a serine to phenylalanine substitution at amino acid 196,
as a likely causal variant for SLE. Previous functional study has shown that 196F IRAK1
variant confers increased NF-xB activity /n vitro,[29] which is consistent with abrogation of
all SLE-associated phenotypes in a IRAK1 deficient mouse lupus model.[7] Of note, the
minor allele of rs1059703 (L532S) in exon 12 of /RAK1 also confers increased NF-xB
activity in vitro,[29] and minor alleles of both rs1059702 and rs1059703 have been
associated with worse outcomes in sepsis [30] and increased risk of systemic sclerosis [31]
in European-derived subjects. In this study, rs1059703 was associated with SLE in EA, AS
and HA (Table 1), but not in AA (MAF of 34.7% in cases vs. 34.6% in controls, £=0.897.
This Pvalue was not shown in Table 1 and S4, because rs1059703 had a genotype missing
rate of 6.7% in AA which exceeded our threshold of 5%). LD analysis showed that
rs1059703 and rs1059702 were in strong LD in EA (r2=0.94), AS (r?=0.92) and HA
(r?=0.86), but in low LD in AA (r?=0.10), suggesting that the association of rs1059703 with
SLE in EA, AS and HA might be attributed to rs1059702. IRAK regulates signal
transduction of IL-1R and toll-like receptors (TLR), playing a pivotal role in innate
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immunity and autoimmunity. Of interest, IRAK-M, which mediates suppression of TLR7
signalling, has also been shown as a genetic risk for murine lupus.[32]

It is well recognized that rare variants in MECPZ cause neurodevelopmental disorder Rett
syndrome.[33] In this study, the SLE-risk genotype of rs1059702 was associated with lower
mRNA levels of MECPZbut not /RAKZ in both cases and controls. Consistent with our
results, the risk minor allele of rs1059702 was associated with lower mRNA levels of
MECPZin an eQTL study using peripheral blood from 1,469 unrelated European subjects,
[34] in which the minor allele of rs1059702 was also associated with lower levels of RENBP
and 7TMEM187but at less significant levels. The finding suggests that lower MECP2 levels
may have consequences similar to hypomethylation at CpG islands in genes that are
regulated epigenetically leading to dysregulated expression of SLE-risk genes. The SLE-risk
haplotype tagged by the minor allele of rs1059702 has been associated with the up-
regulation of 13 interferon signature genes in B cell lines from female SLE patients.[10] The
biological mechanism by which rs1059702 may alter the expression of MECPZ is not known
at present. Due to the strong LD in the Xg28 region, it is possible that rs1059702 tags a
functional SNP that affects the expression of MECPZ, but whether that SNP predisposes to
SLE awaits confirmation in subjects from non-EA ancestral groups.

SNPs in the ARHGAP4-NAA10-RENBP region exhibited peak association with SLE in EA,
although this strong association pattern was not replicated in AS, HA and AA. Based on our
data, we favor the explanation that association signals detected in the ARHGAP4-NAAI0-
RENBP region are driven by SLE-associated SNPs in the TMEM187-IRAKI-MECP2
region. However, it is also possible that SNPs used in this study failed to capture underlying
causal variant(s) in the ARHGAP4-NAA10-RENBPregion in AS, HA and AA due to
different LD patterns in these ancestral groups. ARHGAP4 is a hematopoietic specific gene
that belongs to the RhoGAP familiy. A deletion spanning AVPRZ2and ARHGAP4 causes
congenital nephrogenic diabetes insipidus and has been associated with severe
immumodeficiency.[35] NAAI0encodes the catalytic subunit of the major human N-
terminal acetyltrasferase.[36] NAA10 knockdown reduced the growth rate in human cancer
cell lines.[37] NAAIOvariant Ser37Pro results in an X-linked lethal disorder of infancy due
to N-terminal acetyltransferase deficiency.[38] RENBP inhibits the activity of renin, [39]
and the renin-angiotensinogen system has been implicated in SLE susceptibility.[40]
Whether ARHGAP4, NAAI0and RENBP are SLE susceptibility genes will need further
investigation.

In conclusion, by taking advantage of the power of trans-ancestral mapping, we identified
rs1059702 as the likely causal variant predisposing to SLE susceptibility in 4 different
ancestral groups. This SNP leads to an amino acid change on /RAKI (S196F), with known
function of increasing NF-xB activity, and is associated with lower levels of MECPZ,
suggesting both /RAKZ and MECPZare SLE susceptibility genes.
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Figure 1. Association of SNPsin the Xq28 region with SLE

A) The genomic structure of the Xq28 region and the location of all SNPs are indicated. B)
Association signals (-log1gP) are plotted against the position of each SNP in EA, AS, HA
and AA, respectively. Genotyped and imputed SNPs are indicated as circles and triangles,
respectively. SNPs are highlighted using different colors according to their LD strength (r2)
with rs1059702 (shown as a black circle). An arrowhead is used to indicate the position of
rs1059702. The dashed line represents the significance level after Bonferroni correction. C)
Trans-ancestry meta-analysis P value generated using fixed and random model are
highlighted as red and blue, respectively. The dashed line represents the significance level of
5x1078,
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Figure 3. Association of rs1059702 genotype with |RAK1 and MECP2 mRNA levels
Expression levels of /RAKZ and MECPZ (total level of all isoforms) were measured in
PBMCs of SLE patients and healthy controls with European ancestry using real-time
quantitative PCR. The expression level of housekeeping gene RPLPOwas used as an
endogenous control. Logl10 value of relative mRNA levels of /RAKZ and MECP2 were
compared between different genotypes of rs1059702 (G+GG vs. A+AA) in SLE and control
groups, respectively, using t test. Females are highlighted as black.
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