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Abstract of the Thesis

Application of machine learning techniques to

recommendation system

by

Mei Gao

Master of Science in Statistics

University of California, Los Angeles, 2015

Professor Yingnian Wu, Chair

In this paper, I applied several machine learning techniques, including Latent Dirichlet allo-

cation (LDA), deep Convolutional Neural Networks (CNN) as well as Ranking SVM to build

a restaurant recommendation system using the Yelp Dataset. The idea is that, compared

to algorithms that are previously commonly used in recommendation system, i.e. Pearson

similarity and clustering algorithms, the application of machine learning techniques such as

LDA, CNN and SVM to recommendation has been a new area and not systematically studied

yet. Topic models such as LDA could allow us to learn the latent subtopics in review texts,

which then can be used in personalized recommendation. Deep CNN could be used to extract

the underlying features from food images and combined with Ranking SVM to provide users

with the best food image of a restaurant. In this paper, I made several attempts to introduce

these machine learning techniques to the construction of a restaurant recommender engine

and results have shown that the efficiency of the recommendation system could be largely

improved with these techniques.
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CHAPTER 1

Introduction to recommendation system

The goal of a Recommender System is to generate meaningful recommendations to a collec-

tion of users for items or products that might interest them [[MS10]]. Real world examples

include suggestions for books on Amazon, movies on Netflix, and news articles on Google

News. As Chris Anderson mentioned in his book ”The long tail” [[And13]], we are leaving

the age of information and entering the age of recommendation. Information is severely

overloaded at this time. People read around 10 MB worth of material a day, hear 400 MB

a day, and see 1 MB of information every second. Rather than providing a static expe-

rience in which users search all these information for something they will potentially buy,

recommender systems identify recommendations autonomously for individual users based on

past purchases and searches, and on other users’ behavior. As examples, 2/3 of the movies

watched on Netflix are recommended, recommendations on Google News generate 38% more

clickthrough and 35% sales on Amazon are from recommendations.

In a recommendation system, there are two classes of entities, which are users and items.

Users have preferences for certain items. What we need to do with a recommendation system

is to extract the preference information from the data. The data itself is represented as a

utility matrix, as shown in table 1. Given each user−item pair, a value in the utility matrix

represents what is known about the degree of preference of that user for that item. Values

may come from an ordered set, e.g., integers 1−5 representing the number of stars that the

user gave as a rating for that item. This utility matrix is typically sparse, as most users do

not rate most items. The goal here is to predict what rating a user would give to a previously

unrated item. Typically, ratings are predicted for all items that have not been observed by

1



HP1 HP2 HP3 TW SW1 SW2 SW3

A 4 5 1

B 5 5 4

C 2 4 5

D 3 3

Table 1: A utility matrix representing ratings of movies on a 1−5 scale. Blanks

represent the situation where the user has not rated the movie. The movie

names are HP1, HP2, and HP3 for Harry Potter I, II, and III, TW for Twilight,

and SW1, SW2, and SW3 for Star Wars episodes 1, 2, and 3. The users are

represented by capital letters A through D.

a user, and the highest rated items would be recommended to the user.

Most recommender systems take three basic approaches: collaborative filtering, content-

based filtering and hybrid method.

• Collaborative Filtering (CF): Items are recommended to users based on the past rat-

ings of all users collectively.

• Content-based recommending: Items recommended to users are those that are similar

in content to items the user has liked in the past, or matched to attributes of the user.

• Hybrid approaches: These methods combine both collaborative and content−based ap-

proaches.

1.1 Collaborative Filtering

In a collaborative filtering system, recommendation are made based on a model of prior user

behavior. The model can either be constructed solely from a single user’s behavior or from

the behavior of other users who have similar traits. Usually the latter approach is more

2



effective. When it takes other users’ behavior into consideration, collaborative filtering uses

group knowledge to form a recommendation based on users. In essence, recommendations

are based on an automatic collaboration of multiple users and filtered on those who exhibit

similar preferences or behaviors.

For example, suppose you’re building a website to recommend movies. By using the

information from many users who have rated different movies, you can group those users

based on their preferences. For example, you can group together users who gave similar

rating to the same movies. From this information, you identify the highest rated movies

that are rated by that group. Then, for a particular user in the group, you can recommend

the highest rated movies that he or she has never rated or watched before.

1.2 Content-based recommendation

Content-based approach is based on a user’s behavior. For example, this approach might use

historical information, such the ratings given by the user to the movies he or she previously

watched. If a user gives high ratings to most of the action movies he watches, then content-

based filtering can use this history to identify and recommend movies with similar content

(action). This content can be manually defined or automatically extracted based on other

similarity methods.

1.3 Hybrid

Hybrid approaches combine collaborative and content-based filtering and help to increase

the efficiency (and complexity) of recommendation systems. Incorporating the results of

collaborative and content-based filtering creates the potential for a more accurate recom-

mendation. The hybrid approach could also be used to address collaborative filtering that

starts with sparse data− known as cold start− by enabling the results to be weighted ini-

3



tially toward content-based filtering, then shifting the weight toward collaborative filtering

as the available user dataset matures.
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CHAPTER 2

Algorithms in recommendation systems

Many algorithmic approaches are available for recommendation engines. The design of such

recommendation engines depends on the domain and the particular characteristics of the

data available. Therefore results can differ based on the problem and the algorithm that is

designed to find the relationships present in the data. In this chapter I will firstly discuss some

of the previously commonly used algorithms in recommender engine, and then I will introduce

some of the machine learning techniques that I applied to the restaurant recommendation

system which will be discussed in details in next chapter.

2.1 Previously used algorithms

2.1.1 Pearson Similarity

This method computes the statistical correlation (Pearsons r) between two users common

ratings to determine their similarity [[ERK11]]. GroupLens and BellCore both used this

method [[HSR95], [RIS94]]. The correlation is computed by the following equation:

s (u, v) =

∑
i∈Iu∩Iv (ru,i − ru) (rv,i − rv)√∑

i∈Iu∩Iv (ru,i − ru)2
√∑

i∈Iu∩Iv (rv,i − rv)2
(2.1)

Pearson correlation suffers from computing high similarity between users with few ratings

in common. This can be alleviated by setting a threshold on the number of co-rated items

necessary for full agreement (correlation of 1) and scaling the similarity when the number of

5



co-rated items falls below this threshold [[HKR02], [HKB99]].

2.1.2 Clustering algorithms

Clustering algorithms are a form of unsupervised learning that can find structure in a set

of seemingly random (or unlabeled) data. In general, they work by identifying similarities

among items, such as movies, by calculating their distance from other items in a feature

space. The number of independent features defines the dimensionality of the space. If items

are ”close” together, they can be joined in a cluster.

Many clustering algorithms exist. The simplest one is k-means, which partitions items into k

clusters. Initially, the items are randomly placed into clusters. Then, a centroid (or center)

is calculated for each cluster as a function of its members. Each item’s distance from the

centroids is then checked. If an item is found to be closer to another cluster, it’s moved

to that cluster. Centroids are recalculated each time all item distances are checked. When

stability is reached (that is, when no items move during an iteration), the set is properly

clustered, and the algorithm ends. Calculating the distance between two objects can be

difficult to visualize. One common method is to treat each item as a multidimensional

vector and calculate the distance by using the Euclidean algorithm.

2.1.3 Other algorithms

Besides Pearson similarity and clustering algorithms, there exist many other algorithms for

recommendation engines. Some that have been used successfully include:

• Bayesian Belief Nets, which can be visualized as a directed acyclic graph, with arcs

representing the associated probabilities among the variables [[Kri01]].

• Markov chains, which take a similar approach to Bayesian Belief Nets but treat the

recommendation problem as sequential optimization instead of simply prediction.

6



• Rocchio classification, which exploits feedback of the item relevance to improve recom-

mendation accuracy [[Joa96]].

2.2 Introduction to Topic Modeling using LDA

Probabilistic topic modeling is a suite of algorithms that aim to discover and annotate large

archives of documents with thematic information [[Ble12]]. For example, consider using

themes to explore the content of the New York Times. At a broad level, some of the themes

might correspond to the sections of the newspaper − foreign policy, national affairs, sports.

We could zoom in on a theme of interest, such as foreign policy, to reveal various aspects of it

− Chinese foreign policy, the conflict in the Middle East, the U.S. relationship with Russia.

In all of this exploration, we would be pointed to the original articles relevant to the themes.

The thematic structure would be a new kind of window through which to explore and digest

the collection. Topic modeling algorithms are statistical methods that analyze the words of

the original texts to discover the themes that run through them and how those themes are

connected to each other. Topic modeling algorithms do not require any prior annotations or

labeling of the documents − the topics emerge from the analysis of the original texts. Topic

modeling enables us to organize and summarize electronic archives at a scale that would be

impossible by human annotation.

One of the simplest topic model is latent Dirichlet allocation (LDA), The intuition behind

LDA is that documents exhibit multiple topics. An example is shown in figure 1. The

bottom part is a document from the TREC AP corpus (http://research.nii.ac.jp/

ntcir/ntcir-ws2/OnlineProceedings/Keynote-Harman.pdf). Words used in this article

are highlighted in different color. Words about ’Arts’ are highlighted in red, ’Budgets’

in green, ’Children’ in blue and ’Education’ in magenta. Therefore we can see that this

article blends ’Atrs’,’Budgets’, ’Children’ and ’Education’ in different proportions. LDA is

a statistical model of document collections that tries to capture this intuition. It is most

7
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Figure 1: An example article from the AP corpus. Each color codes a different

factor from which the word is putatively generated.

easily described by its generative process, the imaginary random process by which the model

assumes the documents arose.

We formally define a topic to be a distribution over a fixed vocabulary. We assume

that these topics are specified before any data has been generated [[Ble12]]. Now for each

document in the collection, we generate the words in a two-stage process.

• Randomly choose a distribution over topics.

• For each word in the document

8



a. Randomly choose a topic from the distribution over topics in step #1.

b. Randomly choose a word from the corresponding distribution over the vocabulary.

This statistical model reflects the intuition that documents exhibit multiple topics. Each

document exhibits the topics in different proportion (step #1); each word in each document

is drawn from one of the topics (step #2b), where the selected topic is chosen from the

per-document distribution over topics (step #2a). As we described previously, the goal of

topic modeling is to automatically discover the topics from a collection of documents. The

documents themselves are observed, while the topic structurethe topics, per-document topic

distributions, and the per-document per-word topic assignmentsis hidden structure. The

central computational problem for topic modeling is to use the observed documents to infer

the hidden topic structure.

In LDA, let K be a specified number of topics, V be the size of the vocabulary, ~α

positive K-vector, and η a scalar. We let DirV (~α) denote a V-dimensional Dirichlet with

vector parameter ~α and DirK(η) denote a K dimensional symmetric Dirichlet with scalar

parameter η.

Figure 2: A graphical model representation of the latent Dirichlet allocation

(LDA).
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• For each topic, draw a distribution over words ~βk ∼ DirK(η)

• For each document,

(a) Draw a vector of topic proportions ~θd ∼ DirV (~α)

(b) For each word,

(1) Draw a topic assignment Zd,n ∼Mult(~θd), Zd,n ∈ {1, ..., K}.

(2) Draw a word Wd,n ∼Mult(~βZd,n
), Wd,n ∈ {1, ..., V }.

This is illustrated as a directed graphical model in figure 2. The joint distribution of the

hidden and observed variables is also shown at the bottom of the figure.

2.3 Introduction to deep learning in image understanding

Since their introduction by [[LBD89]] in the early 1990s, Convolutional Networks (convnets)

have demonstrated excellent performance at tasks such as hand-written digit classification,

face detection as well as more challenging visual classification tasks [[KSH12], [SEZ13], [SZ14]

]. Features extracted from images using convolutional neural networks are proved to be be

far from random, uninterpretable patterns [[ZF14]]. Rather, they show many intuitively

desirable properties such as compositionality, increasing invariance and class discrimination

as we ascend the layers. Features extracted using convolutional neural networks increase the

non-linear operation and thus can learn more detailed information and common structure of

images. Therefore these features can be used to obtain better results in image classification.

In this study, I used the convolutional networks model developed by the Visual Geometry

Group from the university of Oxford (http://www.robots.ox.ac.uk/~vgg/), which is the

basis of their ImageNet Challenge 2014 submission. Their team secured the first and the

second places in the localization and classification tracks respectively. They found that a

significant improvement on the prior-art configurations can be achieved by increasing the

depth to 16-19 weight layers, which is substantially deeper than what has been used in the

10
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Figure 3: Architecture of the 16 layer convnet model.

prior art. To reduce the number of parameters in such very deep networks, they use very

small 3×3 filters in all convolutional layers (the convolution stride is set to 1). The following

figure 3 shows the architecture of the model.

First of all, the training images are resized into 224×224 and subtracted by mean value

so that the mean of image intensity is zero. At each layer, the filter size is fixed as 3×3. For

layer 1, there are 64 filters. To keep response map having the same resolution as 224×224,

one pixel is added to response map to keep 224×224. Thus the response map is 224×224×64.

For layer 2, there are also 64 filters, and 224×224×64 response map. Layer 3 is max-pooling

layer. So 2×2 sub-sampling (max response in a 2×2 area is picked) is applied to response

map. After max-pooling, response map is 112×112×64. Both Layer 4 and layer 5 have

128 filters and response map is 112×112×128. Layer 6 is max-pooling and response map is

56×56×128. Both layer 7 and layer 8 have 256 filters. So the response map is 112×112×256.

Layer 9 is a little different, it has 256 1×1 filters. Layer 10 is max-pooling layer and response

map is 28×28×256. Layer 11 and layer 12 have 512 filters and response map is 28×28×256

and response map is 28×28×512. Layer 13 has 512×1×1 filters. Layer 14 is max-pooling

layer and response map is 14×14×512. Layer 15 and layer 16 have 512 filters and response

map is 14×14×512. Filter 17 has 512×1×1 filters. Layer 18 is max-pooling layer and

response map is 7×7×512. Finally the 7×7×512 response is connected to two layers of 4096

11



nodes to generate 4096-dimensional features.

It’s important to understand what we can learn by applying the deep Convolutional

Neural Networks (CNN). Suppose all natural images are distributed in an unknown high-

dimension manifold space. Here we want to learn the underling representation of images

with different categories. It is well known that each category of images lies on a very thin

spike of manifold (You can imagine we have a finite number of categories but represented by

4096 dimension space). Learning such a manifold is very difficult. You can also imagine the

possible distribution of observed images with unknown structure is like a haystack, and each

spike of underling distribution is like a small needle. As a metaphor, learning representation

of images is as to look for a needle in the haystack. However, with deep hierarchical abstrac-

tion and non-linear transformation, deep CNN can learn such a representation by grouping

shared structure. Therefore deep learning is usually defined as representation learning. The

learned underling representation could provide more discriminative features for ranking to

provide better recommendation. This will be further explained in the following sections.

2.4 Introduction to ranking SVM

A Ranking SVM is an application of Support Vector Machine, which is used to solve certain

ranking problems. The algorithm of ranking SVM was published by [[Joa02]]. In ranking

SVM, the data points generated by the training data are in the feature space, which also carry

the rank information (the labels). These labeled points can be used to find the boundary

(classifier) that specifies the order of them. In the linear case, such boundary (classifier) is

a vector. Suppose ci and cj are two elements in the database and denote (ci, cj) ∈ r if the

rank of ci is higher than cj in certain ranking method r. Let vector ~w be the linear classifier

candidate in the feature space. Then the ranking problem can be translated to the following

SVM classification problem.

12



minimize:

V
(
~w, ~ξ
)

=
1

2
~w · ~w + C

∑
ξi,j (2.2)

s.t.

∀ξi,j ≥ 0,∀ci > cj (2.3)

~w (xi − xj) ≥ 1− ξi,j (2.4)

C is a parameter that allows trading-off margin size against training error. Geometrically,

the margin δ is the distance between the closest two projections within all target rankings.

The algorithm is illustrated in the following figure 4. It shows an example of how the weight

vector ~w determines the ordering of four points in a two dimensional space. For any weight

vector ~w, the points are ordered by their projection onto ~w (or, equivalently, by their signed

distance to a hyperplane with normal vector ~w). This means that for ~w1 the points are

ordered (1, 2, 3, 4), while ~w2 implies the ordering (2, 3, 1, 4). The optimization problem is

very similar to the SVM model, except that the slack variable now is associated with both

point i and point j. And the constrain is that the difference in score calculated for i and j

should be larger than 1 minus the slack variable. Slack variable is used to relax the constrain

that the data has to be linearly separable.

13



Figure 4: Example of how two weight vectors ~w1 and ~w2 rank four points.
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CHAPTER 3

Application of machine learning to Yelp restaurant

recommendation

3.1 Introduction to the restaurant recommendation system

One of the problems that bothers a lot of people including myself on a daily basis is that,

very often we don’t know what and where to eat. Even with the Yelp App, we simply don’t

know what to look for. Most of the recommendation systems make suggestions based on

users historical behavior, such as restaurants they have been to or have written reviews for.

However, since people’s preferences for food change all the time, it is sometimes very tricky

to build a restaurant recommender based on historical data. What a user whats to eat today

may not be what he or she wants to eat tomorrow. Therefore I’d like to build a recommender

system which is based on whatever that’s going on in the user’s mind at the moment when

he or she tries to make a decision, instead of on his or her historical behavior. I built

a website called ”imfeelinghungryy” (imfeelinghungryy.com), which is a Python based

web application that provides personalized restaurant recommendations without requiring

historical data from user. Since the monthly cost to maintain and deploy the website on

AWS (Amazon Web Services, https://aws.amazon.com/) is not trivial, the web application

is not active currently. But in this paper, I made screen shots of the website to show readers

the appearance and functions of this on-line restaurant recommendation application.

Before users use the website, they’ve no idea what to eat and where to go. After they

click on the site, ten words would show up (figure 5). Each of the word is associated with

15
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Figure 5: Users can choose whatever topics they are interested in or combine

multiple topics together

Figure 6: Recommendation system will return a list of most relevant restaurants

as well as the best image for each restaurant
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a specific topic generated from all the reviews using the LDA topic model. After they see

these words, they may find, for instance, yeah sushi rolls sounds great today, then they can

click on ”rolls”, and then they’ll get a list of recommended restaurants, together with the

Yelp rating, a relevance score and a best image for the restaurant chosen from all the images

on Yelp (figure 6). For each restaurant, there could be hundreds of food images uploaded by

Yelp users. The quality of these images very a lot. Helping the user to select the best food

image for each restaurant significantly improves the visualization of the recommendation. It

will not only help users to make a better decision but also improve the user experience of the

web application. If we take a closer look at the recommended restaurants, we can easily find

that all the five restaurants listed on the websites are Japanese restaurants with great sushi,

which are exactly what the users are looking for. If they didn’t like the recommendation,

they can refresh the page and get a different group of words. They can also combine food

categories with either drinks or quality of service. For example, they may want to eat some

pizza and then go to a bar. They can then click on both of these topics. The recommendation

system will then return a list of restaurants which could provide users with both categories.

As shown in figure 7, if we take a detailed look at the first restaurant in the recommended list,

Postino Arcadia (http://www.yelp.com/biz/postino-arcadia-phoenix), it is actually an

Italian restaurant with great wine bars (figure 8).

As we can see from these results, the web application provides us with very reasonable

restaurant recommendations to users. The following sections are structured as follows. First

of all, I will briefly introduce the dataset used in building this web application. Then I

will explain in details about how the different machine learning techniques are applied in

the recommendation system as well as provide evidence and measures for the accuracy and

efficiency of the recommender engine.
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Figure 7: An example of recommended restaurants when users choose topic

”Roll”

Figure 8: An example of recommended restaurants when users combine topics

”Italian” with ”bar”
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3.2 Introduction to Yelp Dataset

In this project I use the data from the Yelp dataset released by Yelp Inc. for the Yelp Dataset

Challenge (http://www.yelp.com/dataset_challenge). It is a deep dataset introduced by

Yelp for research-minded academics. It is richer and a lot larger than the previous released

Academic Dataset. Table.2 summarizes the properties of the dataset. Here business includes

a variety of different kinds of business types including restaurants, hospitals, retailer stores

etc. In this paper I only focus on restaurants. Business attributes include open hours,

parking availability, noise levels etc. for each business.

Table 2: Properties of Yelp dataset.

The data is stored in Jason format, and contains five different objects, which are business,

review, user, tip and check-in. In this paper, only two objects that are most relevant are used,

Business and Review. The following tables summarize the structure for the two objects. In

the business object, I extract basic information of each restaurant, such as location, averaging

stars and number of total review counts. In the review object, I extract information for each

review, including who wrote the review (user id) and which restaurant the review is written

for (business id) as well as the text information of the review.

I developed Python code to read the data from different objects. Due to the large size of

the data, I stored the data in SQL database. I created two tables, called business and reviews,

respectively. Business table stores the basic attributes (rating star) for each restaurant.

Reviews table stores the reviews information for each restaurant. Because of time limit and

the limit in the computational efficiency of my PC, I chose a subset of restaurants from the

whole data set. I filtered the data by choosing only ”Open” restaurants ( getting rid of the
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Table 3: Structure of the business object.

Table 4: Structure of the review object.

”Closed” ones) and choosing only restaurant with reviews (getting rid of restaurants with

zero number of reviews). This yields to 1966 restaurants in the city of Phoenix, Arizona.

3.3 Finding latent topics in restaurant review texts using LDA

I first created a corpus using the reviews from all the 1966 restaurants in the city of Phoenix.

The corpus was generated according to the following procedure. First of all, each review

for each of the 1966 restaurants is tokenized, meaning after lowercasing each words, all

the common words, numbers, as well as words that only appear once in all the reviews

are removed. Then I converted each review to vectors. I use a document representation

called bag-of-words. In this representation, each document is represented by one vector
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where each vector element represents a question-answer pair, in the style of: How many

times does the word system appear in the document? Once. Thus I can create the corpus

based on how frequent each word in the dictionary appear in each review for the 1966

restaurants. Finally I calculated the tf-idf (short for term frequency − inverse document

frequency) value for the corpus. The tf-idf value increases proportionally to the number

of times a word appears in the document, but is offset by the frequency of the word in

the corpus, which helps to adjust for the fact that some words appear more frequently in

general. It can be calculated by multiplying a local component (term frequency) with a

global component (inverse document frequency), and normalizing the resulting documents

to unit length. Formula for unnormalized weight of term i in document j in a corpus of D

documents:

weighti,j = frequencyi,j ∗ log 2(D/document freqi) (3.1)

Then I could fit the corpus tfidf constructed from these reviews to the LDA model us-

ing the gensim python package (https://radimrehurek.com/gensim/models/ldamodel.

html). The model would estimate LDA model parameters based on the corpus tfidf and

would return the word distribution for each topic. The following figure 9 shows the topics

generated using the LDA model from the corpus constructed from restaurant reviews as well

as the most frequent words that appear in each topic. When fitting the LDA model, it is

important to decide the number of topics that generate the corpus. I experimented with dif-

ferent ntopic ∈ {1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 200}. The fitness of each model could

be evaluated by comparing the perplexity for each of them. Perplexity is a measurement of

how well a probability distribution or probability model predicts a sample. It may be used

to compare probability models. What I found is that after I increase the number of topics

to more than 10, the perplexity of different models stay pretty much the same without large

variations. I also found when the number of topics are too small, words that are describing

different topics may be grouped to the same topic. While if the number of topics are set

to be too large, the results are sometimes very hard to interpret and does not make much
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sense. In this case here, I decided to choose ntopic = 15.

Figure 9: Topics generated from LDA model and the most frequent words in

each topics.

Then I observed the results from the fitted model, which outputs the distribution of

words in each topic. I manually gave a general category to each of the topic based on the

most frequent words in it and deleted three topics that I could not interpret very well so

as to define a general category. This left me with 12 topics in total, representing categories

including Japanese, Mexican, brunch, bar/atmosphere, pizza, compliment, Indian, Asian,

fast food, sweets, BBQ and services. The most commonly discussed topics are services and

compliments, followed by BBQ and Mexican good. Intuitively, when people write reviews

for restaurants, it is very likely that they would spend a lot of words commenting on the

quality of service of the restaurants, or compliment on what they like about the restaurants.

Considering that all the 1966 restaurants in our dataset are located in city of Phoenix,

Arizona, the fact that topics such as BBQ and mexican food are commonly discussed is also

easy to understand. Figure 10 shows the percentage distribution of these different topics, in
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both forms of a pie graph and a word cloud. Users should then choose among these topics

the one that they are most interested in, or combine several topics together to make a choice.

Figure 10: Percentage distribution of topics.

The next step is to infer topic distributions for each restaurants. To do this I collected

all the reviews for each restaurants, and then apply the trained LDA model from previous

step to the reviews. This would give me the distribution of topics in the reviews for each

restaurant, which is exactly what I need in my recommendation system. For example, if a

user choose category Japanese, then the system would search among all the 1966 restaurants,

and return the ones where the percentage of topic ”Japanese” is the highest among all the

other topics in the reviews of each specific restaurant. Meaning that, words which belong to

topic ”Japanese” constitute most part of the reviews for these selected restaurants. Therefore

these restaurants would be recommended to the user. In cases when user chooses multiple

topics, I came up with a way to give a different weight to each topic. First of all I classified

restaurants into ”good” and ”bad” ones based on their Yelp rating. If the averaging star
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is higher than 3.5, then it would be classified as a ”good” restaurants. While if it is lower

than 3.5, it will be classified as a ”bad” restaurants. Then I trained a classification model

to classify the 1966 restaurants. The features used in the model is a 12 dimension vector

which represents the distribution of the 12 topics in the reviews of each restaurant. As for

the algorithms used in the classification model, I tried linear SVM, logistic regression as well

as random forest. After tuning the parameters in different cases, it turned out that results

from logistic regression yield the highest classification accuracy in the validation set. The

following table shows the cross validation accuracy for each model.

Table 5: Classification accuracy for linear SVM, logistic regression, random for-

est.

Among different topics, I also want to understand the relative importance of each topic in

determining the quality of each restaurants. Figure 11 below shows the relative importance

for the 12 topics. As we can find from the figure, compliments have the strongest relative

importance contributing to a ”good” restaurant. Intuitively, compliment words in reviews

have very positive impact on the ratings of restaurants. It is followed by topics such as

bar/atmosphere, BBQ and Japanese. This is indicating that for people in Arizona, when

they talk more about bars and atmospheres, or BBQ and Japanese food in their reviews, it is

more likely that they would give a high rating to the restaurant they commented on. While

complains about services yield the largest negative impact on ratings because those words

in reviews may lead people to give very low rating for the restaurants. Therefore, in cases

when user chooses multiple topics, the weight I put on each topic is calculated from their

relative importance to ensure that restaurants recommended are with the highest quality.

24



Figure 11: Relative importance of each topic in determining the quality of restau-

rants.

3.4 Extracting image features using deep CNN and ranking im-

ages with Ranking SVM

For each of the recommended restaurant, I would also like to select the best food photos

of that restaurant from Yelp. This is a very hard task because the quality of food photos

on Yelp vary a lot and it is also difficult to determine what would be the best criteria for

a ”good” image. This is exactly where machine learning techniques such as convolutional

neural network and ranking SVM come into play in the recommendation system.

As described in chapter 2, the food images are originally lying in a 224×224 high dimen-

sional spaces. In order to reduce dimension as well as to learn the underlying structures of

these images, I applied the very deep (16 layers) convolutional networks model (pre-trained

using the ImageNet data) to extract image features. The following figure 12 helps to visualize

the logic we describe above and in previous sessions.

The next question is how to determine whether an image is good or not for recommenda-
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Figure 12: Application of deep hierarchical abstraction to learn the structure of

images.

tion. One of the criteria that could directly reflect an image’s popularity among users is by

looking at the number of ”likes” or the number of ”votes” for each image. However, the prob-

lem here is that users on Yelp are not actively voting for or liking the food photos. Therefore

most of the photo has zero or only a few number of ”likes”, which is not suitable to be used

as label to train the model and could also lead to biased model results. In order to solve

for this problem, I decided to use the food images from Flickr (https://www.flickr.com/)

instead. On Flickr, users are very active in ”liking” photos, and therefore could provide us

with a very good data source to train the Ranking SVM model. I collected around 28,000

images including sushi, coffee, burger, barbecue, ice cream and so forth from Flickr and use

the number of likes of each photo on Flickr as the label to rank them when I trained the

Ranking SVM model. After I obtained the trained model using Flickr images, I applied the

trained model to food images on Yelp for each of the 1966 restaurants in my dataset. Again

the features of the Yelp images are extracted using the 16 layer very deep CNN model. As

a result, for each Yelp restaurant, the image with the highest rank is returned and provided

to the user. The following flow chart (figure 13) provides a visual description of the above

steps.
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Figure 13: Ranking of best images for each restaurant on Yelp.
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CHAPTER 4

Model validation

Traditionally most recommendation systems have been evaluated and ranked on their pre-

diction power, i.e. their ability to accurately predict the user’s choices. The easiest way is to

perform off line experiments using existing data sets and a protocol that models user behavior

to estimate recommender performance measures [[SG11]]. A more expensive option is a user

study, where a small set of users is asked to perform a set of tasks using the system, typically

answering questions afterwards about their experience. In this paper, since I do not have

the resource to conduct user study experiments, I will use off line experiment to validate the

efficiency of the recommendation system. In the paper [[SG11]], they provided an overview of

a large set of properties that can be used to evaluate the success of recommendation system,

and explained how candidate recommenders can be ranked with respect to these properties.

The properties include root mean squared error (RMSE), precision and recall, area under

the ROC curve (AUC), etc. In this paper, I used a metric which is specifically designed to

measure the performance of a ranking system, the Normalized Distance-based Performance

Measure (NDPM). Let ri and rj be the system ranking of item i and j, and r̃i , r̃j be the

reference ranking of item i and j (the ground truth), then NDPM score could be calculated

using the following equations:

NDPM =
1

2×
∑

ij sgn 2 (ri − rj)

(∑
ij

sgn 2 (ri − rj)−

∑
ij

sgn (ri − rj) sgn (r̃i − r̃j)−
∑
ij

sgn (ri − rj) sgn (r̃j − r̃i)

) (4.1)
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The NDPM measure gives a perfect score of 0 to systems that correctly predicts every

preference relation asserted by the reference. The worst score of 1 is assigned to systems

that contradict every reference preference relation. Not predicting a reference preference

relation is penalized only half as much as contradicting it. Predicting preferences that the

reference does not order (i.e. when we do not know the users true preference) is not penalized.

Figure 14: NDPM score for ten selected users for restaurant recommendation.

I used NDPM to evaluate the performance of both restaurant recommendation and the

image recommendation. For the restaurant recommendation, I selected ten representative

users from my dataset and collect the reviews from these ten users. I applied the LDA model

to these reviews. This would output the most frequently discussed topics for each user. Then

I assume each of the ten user would choose these topics when they use the web application.

The ranking of the recommended restaurants was then compared to the ground truth, which

is the actual ranking of the restaurants by each of the ten users according to the ratings they

gave to them. Eventually I could calculate the NDPM score for each user and the results

are shown in figure 14. The goal here is really to minimize the NDPM score. In figure 14,
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red columns are scores for the recommendation system built with topic modeling techniques,

yellow columns are scores from a system that purely recommends restaurants according to

their average rating, while blue columns are scores for random recommendation. As we can

see from the figure, NDPM scores are much lower for the topic modeling recommendation

system, compared to both ranking by ratings and random recommendation, meaning that the

application of topic modeling to building recommendation system could efficiently improve

the prediction accuracy of user choices.

Figure 15: NDPM score for ten selected users for restaurant recommendation.

Similarly, I also calculated the NDPM score for the image recommendation. After training

the ranking SVM model on the training set, I calculated the NDPM score on the validation

set. The actual ranking (ground truth) is the ranking of the images by the number of likes

Flicker. Since I trained a different SVM model for each food categories, the above figure 15

shows the NDPM score for each category. Again results are compared with random recom-

mendation. As shown in figure 15, the performance of image recommendation with the deep

learning and ranking algorithm has superiorly exceeded that of random recommendation.
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CHAPTER 5

Conclusion

This paper explores the application of different machine learning techniques to recommen-

dation system. LDA, CNN and ranking SVM have not been widely used in building rec-

ommender engine, nor have they been systematically studied to improve the efficiency of

such recommender. This paper made several attempts to be the first to apply these tech-

niques to the construction of a restaurant recommendation. All these techniques allow us

to make full use of the information in the review texts and food images for each restaurant

and hence efficiently improve the recommendation results. Further studies on how to apply

these techniques to dataset of a larger scale should be necessary.
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