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Abstract Analysis of compression wave propagation in a poroelastic medium predicts a
peak of reflection from a high-permeability layer in the low-frequency end of the spectrum.
An explicit formula expresses the resonant frequency through the elastic moduli of the solid
skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and
the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis
of Biot’s model of poroelasticity. A review of the derivation of the main equations from the
Hooke’s law, momentum and mass balance equations, and Darcy’s law suggests an alter-
native new physical interpretation of some coefficients of the classical poroelasticity. The
velocity of wave propagation, the attenuation factor, and the wave number are expressed in
the form of power series with respect to a small dimensionless parameter. The absolute value
of this parameter is equal to the product of the kinematic reservoir fluid mobility and the
wave frequency. Retaining only the leading terms of the series leads to explicit and relatively
simple expressions for the reflection and transmission coefficients for a planar wave crossing
an interface between two permeable media, as well as wave reflection from a thin highly per-
meable layer (a lens). Practical applications of the obtained asymptotic formulae are seismic
modeling, inversion, and attribute analysis.
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This work is dedicated to the memory of V. M. Entov.

D. Silin (B)
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 90R1116, Berkeley, CA 94720, USA
e-mail: DSilin@lbl.gov

G. Goloshubin
University of Houston, 312 Science and Research Bldg 1, Houston, TX 77204-5006, USA
e-mail: ggoloshubin@uh.edu

123



234 D. Silin, G. Goloshubin

1 Introduction

The classical theory of elasticity associates anomalously high reflection from a layer in a
homogeneous medium with the tuning effect, which takes place when the thickness of the
layer is equal to one-fourth of the wavelength (White 1983). However, field observations dem-
onstrate anomalous seismic signal reflection from a thin fluid-saturated permeable layer in
the low-frequency end of the spectrum, where the thickness of the reservoir is much smaller
than a quarter of the wavelength. Moreover, frequency-dependent data analysis identifies
the most productive spots in the reservoir (Goloshubin and Bakulin 1998; Goloshubin and
Korneev 2000; Goloshubin et al. 2001, 2002, 2006, 2008; Castagna et al. 2003; Goloshubin
and Silin 2005; Wei et al. 2009). In this study, we explain this seemingly abnormal reflection
by the interaction between the elastic wave and fluid flow.

The theoretical foundations of seismic wave propagation in a fluid-saturated porous
medium have been established in the pioneer works by Frenkel, Gassmann, Biot, and others
(Frenkel 1944; Gassmann 1951; Biot 1956a,b; Kosachevskii 1961; Geertsma and Smit 1961;
Deresiewicz and Rice 1962). Nikolaevskii, see Nikolaevskii (1996) and Nikolaevskii et al.
(1970), has developed a comprehensive theory of coupling between deformation, flow, and
heat transfer in porous media. Overviews of the Frenkel, Gassmann, and Biot theories and
further development of poroelasticity are presented in Nikolaevskii, see Nikolaevskii et al.
(1970), Berryman (1982, 1999), Pride (2005), and Pride and Garambois (2005). Extensions
accounting for local heterogeneities including double-porosity or layered media have been
developed in Gurevich (1997), Carcione (1998, 2003), Berryman and Wang (2000), Pride and
Berryman (2003a,b), and Helle et al. (2003). The reflection and transmission coefficients pre-
dicted by Biot’s theory for a wave crossing a planar interface have been calculated in Dutta and
Ode (1983), Gurevich et al. (2004) and Vikhorev et al. (2005). The complexity of the expres-
sions for the reflection and transmission coefficients derived from the exact Biot’s solution
makes unclear what is the relative impact of the rock and fluid properties on the magnitudes
of the reflection and transmission coefficients. On the contrary, the simplified low-frequency
asymptotic relationships obtained in this study yield approximate but relatively simple and
practically useful expressions for the reflection and transmission coefficients.

The small parameter used in the asymptotic analysis below is equal to the product of the
reservoir fluid mobility and density, and the frequency of the signal, multiplied by an imagi-
nary unit. The velocities of the slow and fast Biot’s waves, and the respective wave numbers
and attenuation factors are expressed as power series with respect to this small parameter.
The coefficients of the series are real-valued functions of the properties of the reservoir rock
and fluid. Retaining only the leading terms of the series produce relatively simple mathe-
matical expressions, which are valid in the low-frequency end of the spectrum including the
seismic frequency band (10–100 Hz). Using these expressions, we study the reflection and
transmission coefficients for a planar wave crossing a permeable interface at a normal inci-
dent angle. We further obtain that the fast-wave reflection coefficient from a thin permeable
layer (a lens) attains a peak value. The corresponding peak frequency is expressed through
the reservoir rock and the fluid properties. The magnitude of this frequency predicted by the
obtained formulae is in agreement with the field observations (Goloshubin et al. 2006, 2008).
The practical implications of the theory developed here are seismic modeling, inversion, and
attribute analysis.

We review the equations of poroelasticity by relating them to Darcy’s law, Hooke’s law,
and momentum and mass balance equations. Although the obtained equations are essentially
the same the original Biot’s equations (Biot 1956a,b), our approach provides new physi-
cal interpretations of some poroelasticity coefficients. For instance, we demonstrate that the
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An Asymptotic Model of Seismic Reflection from a Permeable Layer 235

Biot–Willis coefficient α (Biot and Willis 1957) is related to the relative surface area of the
grains, which is not exposed to the fluid. Gassmann’s results (Gassmann 1951) appear as the
zero-frequency limit of the asymptotic solution presented in this study.

We assume that the deformations are small and the macroscopic stress–strain relationship
for the skeleton are adequately described by the Hooke’s law (Landau and Lifschitz 1986).
We have to modify Darcy’s law to account for dynamic and nonequilibrium effects in fluid
flow. We demonstrate that this modification of Darcy’s law is equivalent to a linearization
of the dynamic permeability discussed in Johnson et al. (1987), Cortis (2002), and Carcione
(2003) for a periodic oscillatory flow. The dynamic component of the modified Darcy’s law
does not enter the leading terms of the asymptotic expressions. Thus, we conclude that the
classical Darcy’s law formulation (Darcy 1856; Hubbert 1940, 1956; Barenblatt et al. 1990)
is sufficient for the low-frequency analysis.

This study, to a certain degree, is an extension of the work (Silin et al. 2006). Besides a
slightly different choice of the small parameter, we abandon the assumption of grain stiffness
employed in Silin et al. (2006). More importantly, in the study of reflection and transmission
coefficients for a permeable interface.

This article is organized as follows. In Sect. 2, we briefly overview the derivation of the
equations of poroelasticity from the basic theoretical principles of flow and deformation in
porous media. In Sect. 3, we obtain an asymptotic harmonic-wave solution valid in the low-
frequency range. In Sect. 4, we obtain explicit expressions for the reflection and transmission
coefficients for a planar compression wave crossing a permeable interface. The resonant fre-
quency of a fast wave reflection from a permeable layer is studied in Sect. 5. Finally, Sect. 6
summarizes the findings and formulates the conclusions.

2 The Model

Throughout this study, the porous medium is assumed to be homogeneous and isotropic, and
the fluid is newtonian. The linear dimensions of an elementary volume of the medium are
small relative to the linear dimensions of the entire medium, but large relative to the size of
individual pores or grains constituting the solid skeleton. The total stress in bulk medium is
the resultant of three components: the elastic stress in the solid skeleton, the fluid pressure,
and viscous friction in the fluid flow relative to the solid skeleton. In a linear approximation,
these components are decoupled; so they can be considered separately and then summed up.

2.1 Linear Elasticity of Drained Skeleton

The macroscopic stress in the drained skeleton σs is a bulk-area average of the grain-to-grain
contact forces, Fig. 1. Let u = (ux , uy, uz) denote the vector of macroscopic displacement
of the solid skeleton and � = {

ui j
}

denote the macroscopic strain tensor:

u11 = ∂ux

∂x
, u12 = 1

2

(
∂ux

∂y
+ ∂uy

∂x

)
, u13 = 1

2

(
∂ux

∂z
+ ∂uz

∂x

)
, etc. (1)

The Hooke’s law for an isotropic and uniform medium says:

σ s = K∇ · uI + 2µ

(
�− 1

3
∇ · uI

)
(2)
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236 D. Silin, G. Goloshubin

Fig. 1 Force balance at an
individual grain in a clean rock.
The force Fg at a plane
cross-section orthogonal to a unit
normal ez equals the sum of
contact forces Fi shown as solid
arrows, and fluid pressure acting
at the part of the grain surface in
located the positive with respect
to ez half-space, shown as dashed
arrows

where K and µ are the bulk and shear moduli of the drained skeleton, respectively, and I is
an identity tensor (Landau and Lifschitz 1986). Note that the macroscopic skeleton moduli
are different from the bulk and shear moduli of the grain material.

2.2 Fluid Pressure

In order to evaluate the fluid pressure contribution to the total stress, consider forces acting
in the planar cross-section, which Fig. 1 displays as the horizontal axis. We assume that
the cross-section intersects sufficiently many grains. The fluid pressure portion of the total
stress includes two components: the pore pressure and the portion of the stress in the skeleton
which is the reaction on the pore pressure. Inside the pores, the fluid pressure contribution
amounts to pφ, where p denotes the pressure of the fluid and φ is the porosity of the medium.
In an individual grain, the fluid pressure acts through the grain surface. In general, only a
portion of this surface is exposed to the fluid, whereas the remaining part is excluded from
the fluid–solid interaction by the contacts with the neighbor grains. The force Fg in Fig. 1
equilibrates the sum of contact forces, Fi , and the integral of the pressure over the portion
of the grain surface which is in contact with the pore fluid. Summing up over all grains in
the cross-section, the total action of the fluid pressure inside the skeleton is characterized by
(1 − φ)αφ p, where αφ is a dimensionless geometric factor accounting for the portion of the
average portion of the grain surface, which is excluded from a contact with the fluid. Clearly,
0 ≤ αφ ≤ 1. After adding pφ, the pore pressure contribution in the pores, one obtains:

σ p = −αpI (3)

where α = φ + αφ(1 − φ), and σ p is the entire pore pressure contribution to the total stress.
Note that φ ≤ α ≤ 1. The two extreme values of α are α = 1 and α = φ. The first one
describes a medium where the average grain-to-grain contact area is negligibly small, for
example in unconsolidated sand. The other extreme case can be represented by a medium
where the skeleton is a bundle of infinite cylindrical columns.

The argument above is not new; our approach is similar to that developed in Khristianovich
and Kovalenko (1991).

2.3 Fluid Flow

If the skeleton moves with a constant acceleration, then Darcy’s law for the flow relative to
the skeleton can be written in the form:
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An Asymptotic Model of Seismic Reflection from a Permeable Layer 237

η

κ
W = −∇ p − �f

∂2u
∂t2 (4)

where W denotes the Darcy velocity of the fluid relative to the skeleton, η and �f denote
fluid viscosity and density, respectively, and κ is the absolute permeability of the medium.
The left-hand side expresses the viscous drag force acting between the fluid and the solid
skeleton, whereas the second term on the right-hand side accounts for the body force acting
on the fluid in a non-inertial reference frame associated with the skeleton. Equation 4 is an
expression of force balance. In an oscillating system, the fluid flows relative to the skeleton
with an acceleration. Therefore, the body force on the right-hand side of Eq. 4 must include
an additional term �f

1
φ
∂W
∂t . In addition, the steady flow paths in the tortuous pore channels

establish not instantaneously, the drag force on the left-hand side depends not only on the
instantaneous Darcy velocity, but also on its variation. In a linear approximation, we write

η

κ

(
W + τ∗

∂W
∂t

)
= −∇ p − �f

∂2u
∂t2 − �f

1

φ

∂W
∂t

(5)

where τ∗ is a parameter having the dimensionality of time. Thus, finally, one obtains:

W + τ
∂W
∂t

= −κ
η

(
∇ p + �f

∂2u
∂t2

)
(6)

where parameter τ = τ∗ + κ�f
ηφ

accounts both for the nonequilibrium effects of non-
steady fluid flow and fluid inertia. We will call Eq. 6 dynamic Darcy’s law. If the motion of the
skeleton can be neglected, Eq. 6 reduces to the model of filtration with relaxation (Alishaev
and Mirzadzhanzadeh 1975). If, in addition, the flow is steady, Eq. 6 yields the classical
Darcy’s law (gravity is neglected throughout this study).

Different Darcy’s law modifications accounting for dynamic and nonsteady effects have
been developed in the past and are discussed below, after deriving the asymptotic low-fre-
quency solution. Equation 6 with τ∗ = 0 has been obtained by Frenkel (1944), Nikolaevskii,
see Nikolaevskii et al. (1970), and Nikolaevskii (1996). We have found the form of Eq. 6
most convenient for the low-frequency asymptotic analysis below. This analysis shows that
the parameter τ enters only the higher-order terms. In other words, one can assume τ = 0 in
the low-frequency end of the spectrum.

2.4 Flow-Imposed Shear Stress

A shear wave preserves the volume and porosity, and does not affect the pore pressure. The
viscose friction between the fluid flowing in the pores and the skeleton develops a distributed
drag force proportional to the Darcy velocity of the fluid relative to the skeleton. The Darcy
velocity is orthogonal to the wave propagation, see Fig. 2. Interaction of the porous layer
between planes with coordinates x and x + dx with the rest of the formation includes the
shear stress in the skeleton, and the drag force by the fluid flowing relative to the skeleton
on both sides of the layer. Since the Darcy velocities of the fluid at the two sides of the layer
are different, the drag forces are different as well. Therefore, in addition to the shear stress
in the skeleton, there is a component coming from the Darcy velocity variation in direction
orthogonal to the wave propagation. We denote this stress by σ f .
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238 D. Silin, G. Goloshubin

Fig. 2 Darcy velocity direction
and variation in a shear wave
propagating in direction x

More generally, the shear stress σ f is a linear function of the following tensor:

σ f = −ϕ

⎛

⎜
⎜
⎝

0 ∂Wy
∂x + ∂Wx

∂y
∂Wx
∂z + ∂Wz

∂x
∂Wy
∂x + ∂Wx

∂y 0 ∂Wy
∂z + ∂Wz

∂y
∂Wx
∂z + ∂Wz

∂x
∂Wy
∂z + ∂Wz

∂y 0

⎞

⎟
⎟
⎠ (7)

The coefficient ϕ is a function of the fluid viscosity η and the geometry of the pore space.
Dimensional considerations suggest that ϕ = ϕ0η, where ϕ0 is a dimensionless shape factor.

Equation 7 has been written down by analogy with the classical fluid mechanics (Landau
and Lifschitz 1959). The stress σ f acts on saturated porous medium, whereas the flow is
governed by Darcy’s law. Therefore, this is different from the shear stress in the Brinkman
model (Brinkman 1947). We do not know any experimental data on stress σ f . The asymp-
totic analysis below shows that σ f enters only higher-order terms and can be ignored in the
low-frequency range.

2.5 Momentum Balance in a Planar Wave

From the previous sections, the total stress, σ t , is the sum of all three stresses components
defined in Eqs. 2, 3, and 7: σ t = σ s + σ p + σ f . Let us denote by �g the density of the
solid constituent, so that the bulk density is equal to �b = φ�f + (1 − φ)�g. The linearized
momentum balance equation has the following form

�b
∂2u
∂t2 + �f

∂W
∂t

= ∇ · σ t (8)

For a planar wave propagating in direction x , all the derivatives with respect to y and z vanish.
A substitution of equations 2, 3, and 7 reduces Eq. 8 to

�b
∂2ux

∂t2 + �f
∂Wx

∂t
= M

∂2ux

∂x2 − α
∂p

∂x

�b
∂2uy

∂t2 + �f
∂Wy

∂t
= µ

∂2uy

∂x2 − ϕ
∂2Wy

∂x2 (9)

�b
∂2uz

∂t2 + �f
∂Wz

∂t
= µ

∂2uz

∂x2 − ϕ
∂2Wz

∂x2

where M = K + 4
3µ.
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An Asymptotic Model of Seismic Reflection from a Permeable Layer 239

2.6 Mass Balance

The variation of the fluid mass in an elementary volume due to the deformation of the skel-
eton and fluid compression equals the total mass flux through the boundary of the volume.
Assuming adiabatic linear fluid compressibility and retaining only the first-order terms, one
obtains

βfφ
∂p

∂t
+ ∂φ

∂t
+ ∇ · W + φ∇ · ∂u

∂t
= 0 (10)

Here βf is the coefficient of adiabatic compressibility of the fluid: d�f
�f

= βf dp. The linearized
mass balance equation for the skeleton is:

(1 − φ)
1

�g

∂�g

∂t
− ∂φ

∂t
= −(1 − φ)∇ · ∂u

∂t
(11)

We assume that the compression of the grains is determined by the component of the skeleton
stress coming from the volumetric strain (described by the term K∇ · u in Eq. 2) and the
fluid pressure variations. In a linearized form, one obtains:

1

� g
d�g = − 1

Ksg
K∇ · u + 1

Kfg
dp (12)

Here Ksg and Kfg are the elastic moduli quantifying the compression of the grains by the
volumetric strain of the skeleton and the fluid pressure variations, respectively. Thus, in terms
of time derivatives, one obtains

1

� g

∂�g

∂t
= − K

Ksg
∇ · ∂u

∂t
+ 1

Kfg

∂p

∂t
(13)

The time derivative of the porosity can be eliminated from Eqs. 10 and 11. After gathering
similar terms, one obtains:

γβ

K

∂p

∂t
+ γK ∇ · ∂u

∂t
+ ∇ · W = 0 (14)

where the dimensionless coefficients γK and γβ are defined by

γβ = K

(
βfφ + 1 − φ

Kfg

)
and γK = 1 − (1 − φ)K

Ksg
(15)

2.7 Some Remarks

The skeleton is less stiff than the grain material: K ≤ Kv. Thus, φ ≤ γK ≤ 1. At vanishing
porosity, φ → 0, the skeleton strength approaches that of the grain material, K/Ksg → 1.
Therefore, if the transition to the zero porosity is smooth, which according to Hashin (1964)
and Budiansky (1965) holds true for a variety of heterogeneous media, then

γK ∼ φ as φ → 0 (16)

Equation 15 implies that γβ ≥ Kβfφ. The compressibility of the fluid, βf , is independent
of the porosity, whereas the bulk modulus of the skeleton, K , converges to that of the grain
material as φ → 0. Thus, the product Kβf does not vanish and Eq. 16 implies that

γβ � φ2 ∼ γ 2
K as φ → 0 (17)

This estimate will be used below.
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240 D. Silin, G. Goloshubin

To compare the introduced coefficients to those of Biot and Willis (1957), one can intro-
duce a fluid displacement vector, w, as the integral of the Darcy velocity:

W = d

dt
w (18)

Integration of Eq. 14 with respect to t yields

p = − KγK

γβ
∇ · u − K

γβ
∇ · w (19)

The divergence in the last term, ∇ ·w, is equal to the fluid content parameter (Biot and Willis
1957; Berryman 1981; Detournay and Chang 1993). A comparison of the last equation to
equation (Biot and Willis 1957, (31)) shows that

αBW = γK , and MBW = K

γβ
(20)

where the subscript BW refers to the Biot–Willis coefficients in the notations of Biot and
Willis (1957), and γK and γβ are defined in Eq. 15. Equation 32 below shows that in fact
γK = α, where α is the geometric factor in Eqs. 3 and 9.

3 Asymptotic Harmonic Wave Solution

Let us seek a harmonic planar-wave solution to the obtained system of equations. That is, put

u = U0ei(ωt−kx x), W = W0ei(ωt−kx x), and p = p0ei(ωt−kx x) (21)

Here kx denotes the x-component of the complex-valued wave vector: k = (kx , 0, 0). A
substitution of Eq. 21 into Eqs. 9, 6, and 10 yields

− ω2�bU0x + iω�f W0x = −Mk2
xU0x + ikxαp0

−ω2�bU0y + i�fωW0y = −µk2
xU0y + ϕk2

x W0y

−ω2�bU0z + i�fωW0z = −µk2
xU0z + ϕk2

x W0z

W0x + iωτW0x = κ

η

(
ikx p0 + ω2�fU0x

)

W0y + iωτW0y = κ

η
ω2�fU0y (22)

W0z + iωτW0z = κ

η
ω2�fU0z

iω
γβ

M
p0 + γK kxωU0x = ikx W0x

Like in the classical case, the compression and shear waves decouple and each component
of the solution can be calculated separately.
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3.1 Compression Wave

The system of compression wave equations consists of only those equations (22), which
involve the x-components of the skeleton displacement and the Darcy velocity:

− ω2�bU0x + i�fωW0x = −Mk2
xU0x + ikxαp0

W0x + iωτW0x = κ

η

(
ikx p0 + ω2�fU0x

)
(23)

iω
γβ

M
p0 + γK kxωU0x = ikx W0x

For low frequencies, formula ε = iλω defines a dimensionless small parameter, where the
quantity λ = �f

κ
η

can be called kinematic reservoir fluid mobility. Let us define unknown
dimensionless parameters:

ζ = v2

v2
f

, ξ = −i
p0

kx MU0x
, and χ = i

W0x

ωU0x
(24)

Here v2 = ω2

k2
x

and v2
f = M

�f
. Then, the system of equations (23) takes on the form:

γ�ζ − ζχ − αξ = 1 (25)

ε(ζ − ϑζχ − ξ)− ζχ = 0 (26)

γβξ + χ = γK (27)

where γ� = �b
�f

and ϑ = τ
λ

. We seek a solution to the system (25)–(27) in the form of power
series in ε:

ζ = ζ0 + ζ1ε + ζ2ε
2 + · · · , χ = χ0 + χ1ε + χ2ε

2 + · · · ,
ξ = ξ0 + ξ1ε + ξ2ε

2 + · · · (28)

where “· · ·” denotes the higher-order terms.
At ε = 0, Eq. 26 implies ζ0χ0 = 0. One obtains two zero-order solutions:

ζ S
0 = 0 ζ F

0 = αγK +γβ
γβγ�

ξS
0 = − 1

α
ξF

0 = γK
γβ

χS
0 = γK + γβ

α
χF

0 = 0

(29)

The superscripts S and F stand for the slow and fast waves. To determine the first-order terms,
one has to solve the following system of equations:

γ�ζ1 − ζ0χ1 − χ0ζ1 − αξ1 = 0

ζ0χ1 + χ0ζ1 = ζ0 − ϑχ0ζ0 − ξ0 (30)

γβξ1 + χ1 = 0

Note that ϑ is the only dimensionless parameter depending on the parameter τ in the dynamic
Darcy’s law, Eq. 6. Since χ0ζ0 = 0, the term involving ϑ vanishes both for the slow-wave
and the fast-wave solutions. Consequently, the classical steady-state Darcy’s law formulation
is sufficient for the first-order asymptotic analysis.
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242 D. Silin, G. Goloshubin

The solution to the system of equations (31) is:

ζ S
1 = 1

αγK +γβ ζ F
1 = ζF

0 − α
γβ

γ�ζ
F
0

(
ζ F

0 − ξF
0

)

ξS
1 = 1

α

γ�
αγK +γβ − 1

α
ξF

1 = γK γ�
(αγK +γβ)γβ − 1

γβ

χS
1 = − 1

α

γ�γβ
αγK +γβ + γβ

α
χF

1 = 1 − γK γ�
αγK +γβ

(31)

From equations (29), ζ F
0 > 0. The solution is physically sensible only if ζ F

1 is a positive
quantity. This requirement is fulfilled for an arbitrary ζ F

0 only if α
γβ

= ξF
0 . Substituting the

expression for ξF
0 from Eq. 29, one obtains:

α = γK = 1 − (1 − φ)K

Ksg
(32)

Finally, Eqs. 29 and 31 can be rewritten in the form:

ζ S
0 = 0 ζ F

0 = γK
2+γβ
γβγ�

ξS
0 = − 1

γ K
ξF

0 = γK
γβ

χS
0 = γK

2+γβ
γK

χF
0 = 0

(33)

and

ζ S
1 = 1

γK
2+γβ ζ F

1 = 1
γβ(γK

2+γβ)
(
γK

2+γβ
γ�

− γK

)2

ξS
1 = 1

γK

γ�

γK
2+γβ − 1

γK
ξF

1 = γK γ�

(γK
2+γβ)γβ − 1

γβ

χS
1 = − 1

γK

γ�γβ

γK
2+γβ + γβ

γK
χF

1 = 1 − γK γ�

γK
2+γβ

(34)

From the leftmost equation (24), k2
x = �f

Mζ ω
2. Hence, for the fast wave,

kF
x = ω

vb

√
γβ

γβ + γK
2

(

1 − ζ F
1

2ζ F
0

ε + O(|ε|2)
)

(35)

where v2
b = M

�b
. For the slow wave,

kS
x = ω

vf

√
γK

2 + γβ

2 |ε| (1 − i) (1 + O(|ε|)) (36)

In the last equation, the branch of the square root has been selected to guarantee that
Im(kS

x ) < 0, that is,
√
ε = 1+i√

2

√|ε| = √|ε|ei π4 . Equations 35 and 36 can be rearranged into
the from:

kF
x = ω

(
kF

0 + kF
1 ε + O(|ε|2)) (37)

kS
x = ω

(
kS

0
1√
ε

+ kS
1
√
ε + O(|ε|3/2)

)
(38)

where

kF
0 = 1

vb

√
γβ

γβ + γK
2 and kS

0 = 1

vf

√
γβ + γK

2 (39)
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Note that the estimate in Eq. 17 implies kF
0 ≈ 1

vb
asφ → 0. The velocities and attenuation

factors for the fast and slow waves are

V F = vb

√

1 + γK
2

γβ

(
1 + O(|ε|2)) (40)

V S = vF

√
2 |ε|

γβ + γK
2 (1 + O(|ε|)) (41)

aF = ω

vb

√
γβ

γβ + γK
2

ζ F
1

2ζ F
0

|ε| (
1 + O(|ε|2)) (42)

aS = ω

vf

√
γβ + γK

2

2 |ε| (1 + O(|ε|)) (43)

By the definition of ε, the angular frequency ω is present both in the numerator and the
denominator in the last equation. It is useful to rewrite it in an alternative from

aS = η

κ

√
γβ + γ 2

K

2M�f

√|ε| (44)

Clearly, V F � V S = O
(√|ε|) and aF 
 aS as ε → 0. Equation 16 also implies that, for

φ → 0, the fast compressive wave velocity approaches the velocity of sound in a medium
whose density is equal to the density of the grains and elastic moduli are those of the drained
skeleton. Finally, the power series asymptotic expressions for the Darcy velocity and the fluid
pressure have the following forms:

W F
0x = −iωε

(
χF

1 + O(|ε|)) U F
0x (45)

W S
0x = −iω

γβ + γK
2

γK

(

1 + χS
1

χS
0

ε + O(|ε|2)
)

U S
0x (46)

pF
0 = ω

[
kF

0 + (kF
1 ξ

F
0 + kF

0 ξ
F
1 )ε + O(|ε|2)] MU F

0x (47)

pS
0 = ω√|ε|

[
kS

0 + (kS
1 ξ

S
0 + kS

0 ξ
S
1 )ε + O(|ε|2)] MU S

0x (48)

3.2 Shear Wave

The shear waves in the directions y and z are analogous to each other; so we consider in
detail only the shear wave in the direction y. Since shear deformation includes zero volumet-
ric strain, the mass balance equation (14) is an identity. Thus, the following system of two
equations needs to be solved:

−ω2�bU0y + i�fωW0y = µkx
2U0y − χkx

2W0y

W0y + iωτW0y = κ

η
ω2�fU0y

(49)

A convenient set of dimensionless variables is provided by the first and last equations (24),
where the x-components are replaced with the respective y-components. The system of
equations (49) transforms into the following:

γ�ζ − ζχ + ε
χη

µ�fκ
χ = 1

χ + εϑχ = ε
(50)
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which is equivalent to Eqs. 25–26 if one puts ξ = 0 and replaces M with µ. The solution to
the system (50) is:

ζ =
1 − ε2

1+εϑ
χη
µ�fκ

γ� − ε
1+εϑ

and χ = ε

1 + εϑ
(51)

In the form of a power series in ε, this solution takes on the form:

ζ = 1

γ�
+ 1

γ�2 ε + O(|ε|2), χ = ε(1 − ϑε + O(|ε|2)) (52)

Note that the shear wave solution has no slow-wave component.
Returning to the physical quantities, one obtains

kH
x =

√
�b

µ
ω

(
1 − 1

2γ�
ε + O

(|ε|2)
)

(53)

where the superscript H denotes a shear wave. Thus, kH
0 = √

�b/µ in the power-series expan-
sion kH = ω

(
kH

0 + kH
1 ε + O(|ε|2)). For the attenuation factor, aH, and the velocity, V H, one

obtains

aH =
√
�b

µ

|ε|
2γ�

ω
(
1 + O

(|ε|2)) , V H =
√
µ

�b

(
1 + O

(|ε|2)) (54)

3.3 Further Remarks

Let us demonstrate that the equations above are consistent with the classical theory of poro-
elasticity.

3.3.1 Dynamic Darcy’s Law and Flow-Imposed Shear Stress

For an oscillatory fluid flow in a porous medium, Johnson et al. (1987) have obtained a mod-
ification of Darcy’s law, in which the coefficient of permeability depends on the frequency
of the oscillations:

W = − κ̃(ω)
η

∇ P (55)

At the zero frequency limit, the frequency-dependent coefficient of permeability must be
equal to the classical Darcy permeability: κ̃(0) = κ . Therefore, one can write:

A(iω)̃κ(ω) = κ with A(0) = 1 (56)

Using Taylor expansion, A(iω) = 1 + A′(0)iω+ · · ·, and truncating the higher-order terms,
one obtains from Eq. 55:

W + A′(0)iωW = −κ
η

∇ P (57)

The last equation is equivalent to Eq. 6 for τ = A′(0).
Equations 29, 31, and 52 imply that both, the dynamic term in the dynamic Darcy’s law,

Eq. 6, and the flow-induced shear stress, affect only the power series terms of the order of
O(|ε|2) or higher. Thus, the classical steady-state formulation of Darcy’s law is sufficient
for the first-order asymptotic approximation of the compression wave solution.
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3.3.2 Elastic Moduli

The compressibility of the fluid and the moduli of drained skeleton can be determined in
laboratory tests. The other two moduli introduces in Eq. 12 also can be determined experi-
mentally. For the first test, one can change the pore pressure by injecting or withdrawing fluid
while maintaining the total stress constant. From the fluid compressibility and the variation
of the fluid volume, one can evaluate the variation of the pore volume and, consequently,
the variation of the total volume of the solid grains. Hence, from the known mass of the
solid skeleton one obtains the variation of the average density of the grains. In an undrained
uniaxial test, one also can measure the variation of the fluid pressure and the total volume
of the saturated sample. Therefore, the variation of the average density of the grains can be
calculated as well. Thus, knowing K from independent measurements, one obtains a system
of two equations, which can be solved for the moduli Ksg and Kfg.

3.3.3 Biot’s Equations

Equations 32 and 20 show that the coefficient α introduced in Sect. 3 and the Biot–Willis
coefficients α are the same. Further on, Eq. 19 makes possible to eliminate the fluid pressure
p from the first Eqs. 9 and 6. Thus, using the notation (18), one obtains:

�b
∂2ux

∂t2 + �f
∂2wx

∂t2 =
[

K

(
1 + γK

2

γβ

)
+ 4

3
µ

]
∂2ux

∂x2 + KγK

γβ

∂2w

∂x2 (58)

�f
∂2ux

∂t2 + τ
η

κ

∂2wx

∂t2 = KγK

γβ

∂2ux

∂x2 + K

γβ

∂2w

∂x2 − η

κ

∂wx

∂t
(59)

The last system of equations is equivalent to Biot’s equations (Biot 1962) with the following
mapping rule:

A ↔ K
(

1 + γK
2

γβ

)
+ 4

3µ M11 ↔ KγK
γβ

M ↔ K
γβ

m ↔ τ
η
κ

(60)

The notations and the parameters on the left-hand sides of these relationships are from Biot
(1962).

In some works, parameter m is associated with the formation resistivity factor (Brown
1980). In any case, parameter τ does not affect the zero- and first-order terms in the asymptotic
analysis above.

3.3.4 Nikolaevskii’s Model

Nikolaevskii, see Nikolaevskii et al. (1970) and Nikolaevskii (1996), has developed a gen-
eral model of poroelasticity based on mass, momentum, and energy balance. Besides purely
mechanical deformation, his model accounts for the impact of heating on stress and defor-
mation. For isothermal creeping flow, the model developed here is consistent with the
Nikolaevskii model. The mass balance equations (10) and (11) are equivalent to equations
(Nikolaevskii 1996, (2.1)–(2.2)). We neglect the gravity; therefore, the momentum balance
equation for the bulk medium, Eq. 8, is equivalent to the linearized equation (Nikolaevskii
1996, (2.3)). Let us demonstrate that Eq. 6 is equivalent to linearized Nikolaevskii’s equation
of momentum balance for the fluid in an isotropic medium. In our notations, a linearization
of equation (Nikolaevskii 1996, (2.5)) yields:
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∂

∂t

(
�f W + �fφ

∂u
∂t

)
= −φ∇ p + R (61)

where R is called the viscose resistance to the fluid flow (Nikolaevskii 1996). In an isotro-
pic medium, linearized equations (Nikolaevskii 1996, (2.31), (2.65)) imply the following
expression for R:

R = −φ2 η

κ

(
1

φ
W

)
(62)

Since the Darcy velocity and skeleton displacement are small, a substitution of Eq. 62
into (61), after canceling φ, gives:

W + �fκ

ηφ

∂W
∂t

= −κ
η

(
∇ p + �f

∂2u
∂t2

)
(63)

The latter equation is identical to Eq. 6 if one puts τ∗ = 0 and τ = �fκ
ηφ

.

3.3.5 Gassmann’s Model

The two elastic moduli, Ksg and Kfg, defined in Eq. 12 relate the grain volumetric strain to
the skeleton stress and fluid pressure, respectively. If the relationships

Ksg = Kg

1 − φ
and Kfg = Kg

1 − K
Kg

(64)

hold true, then the expression K
(

1 + γK
2

γβ

)
yields Gassmann’s bulk modulus (Gassmann

1951; Pelissier et al. 2007).

3.4 Vanishing Attenuation

For some combinations of parameters, the coefficient ζ F
1 defined in Eq. 31 can vanish. In

such a case, the first-order approximation of the fast wave attenuation, Eq. 42, is equal to
zero. For example, ζ F

1 = 0 if γK = √
γβ and γ� = 2γK simultaneously.

4 Normal Reflection of a Compression Wave

Let two poroelastic media labeled by the superscripts 1 and 2 have a permeable plane interface
at x = 0. A fast or slow incident wave generates four waves: fast and slow reflected waves,
and fast and slow transmitted waves, Fig. 3. Let us consider fast and slow incident waves
separately.

4.1 Fast Incident Wave

A fast incident wave arriving from the half-space x < 0 generates four waves: the fast and
slow reflected waves and the fast and slow transmitted waves. Thus, in the medium 1, the
displacement can be characterized as

u1(t, x) = U0ei(ωt−k1Fx) + RFFU0ei(ωt+k1Fx) + RFSU0ei(ωt+k1Sx) (65)

123



An Asymptotic Model of Seismic Reflection from a Permeable Layer 247

Fig. 3 Fast or slow incident
normal wave generates four
waves at a planar interface: a
reflected and transmitted fast
wave, and a reflected and
transmitted slow wave

whereas in Medium 2, the skeleton displacement is

u2(t, x) = T FFU0ei(ωt−k2F x) + T FSU0ei(ωt−k2Sx) (66)

Here RFF, RFS, T FF, and T FS are the respective reflection and transmission coefficients. The
first letter in the superscript denotes the fast incident wave, whereas the second one denotes
the fast or slow reflected or transmitted wave.

The mass and momentum balance imply that the skeleton displacement, the Darcy veloc-
ity of the fluid, the total stress, and the fluid pressure must be continuous at the interface.
Using notations (24), one obtains the following system of boundary conditions

1 + RFF + RFS = T FF + T FS (67)

χ1F(1 + RFF)+ χ1S RFS = χ2FT FF + χ2ST FS (68)

M1k1F(1 + γ 1
K ξ

1F)(1 − RFF)− M1k1S(1 + γ 1
K ξ

1S)RFS

= M2k2F(1 + γ 2
K ξ

2F)T FF + M2k2S(1 + γ 2
K ξ

2S)T FS (69)

M1k1Fξ1F(1 − RFF)− M1k1Sξ1S RFS

= M2k2Fξ2FT FF + M2k2Sξ2ST FS (70)

To obtain asymptotic expressions for the reflection and transmission coefficients, we rewrite
Eqs. 67–70 in an approximate form, retaining only the leading zero-order and the next after
zero-order terms. For the first two equations, these terms are the constant ones and the ones
which are linear in ε. For the last two equations, these terms are the constant ones and the
ones proportional to

√|ε|. One obtains:

1 + RFF + RFS = T FF + T FS (71)

εχ1F
1 (1 + RFF)+ (χ1S

0 + εχ1S
1 )RFS = γκεχ

2F
1 T FF + (χ2S

0 + χ2S
1 γκε)T

FS (72)
√
εM1k1F

0

(
1 + γ 1

K ξ
1F
0

)
(1 − RFF)− M1k1S

0

(
1 + γ 1

K ξ
1S
0

)
RFS

= √
εM2k2F

0 (1 + γ 2
K ξ

2F
0 )T FF + 1√

γκ
M2k2S

0 (1 + γ 2
K ξ

2S
0 )T FS (73)

√
εM1k1F

0 ξ
1F
0 (1 − RFF)− M1k1S

0 ξ
1S
0 RFS

= √
εM2k2F

0 ξ
2F
0 T FF + 1√

γκ
M2k2S

0 ξ
2S
0 T FS (74)

Here

γκ = ε2

ε1
= κ2

κ1
= 1 + κ2 − κ1

κ1
(75)
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By virtue of equations (33),

1 + γ i
K ξ

i F
0 = γ i

β + (
γ i

K

)2

γ i
β

and 1 + γ i
K ξ

1S
0 = 0, i = 1, 2 (76)

Thus, the slow-wave reflection and transmission terms vanish in Eq. 73. Taking into account
Eq. 39, Eq. 73 reduces to

Z1(1 − RFF) = Z2T FF (77)

where Zi , i = 1, 2 are the modified acoustic impedances:

Zi = Mi

vi
b

√√
√
√γ i

β + (γ i
K )

2

γ i
β

(78)

We seek asymptotic expressions for the transmission and reflection coefficients in the form

R = R0 + R1
√
ε + R2ε + · · · and T = T0 + T1

√
ε + T2ε + · · · (79)

We limit our calculations to the two leading terms only. Putting ε = 0 yields:

RFS
0 = T FS

0 = 0 (80)

RFF
0 = Z1 − Z2

Z1 + Z2
and T FF

0 = 2Z1

Z1 + Z2
(81)

Equations 73 and 74 imply

(γ 1
K )

2 + γ 1
β

γ 1
K

RFS
1 − (γ 2

K )
2 + γ 2

β

γ 2
K

T FS
1 = 0 (82)

M1

v1
F

√
(γ 1

K )
2 + γ 1

β

γ 1
K

RFS
1 + 1√

γκ

M2

v2
F

√
(γ 2

K )
2 + γ 2

β

γ 2
K

T FS
1

= M1k1F
0 ξ

1F
0 (1 − RFF

0 )− M2k2F
0 ξ

2F
0 T FF

0 (83)

The determinant of the linear system of Eqs. 82–83

D = 1√
γκ

M2

v2
F

(γ 1
K )

2 + γ 1
β

γ 1
K

√
(γ 2

K )
2 + γ 2

β

γ 2
K

+ M1

v1
F

(γ 2
K )

2 + γ 2
β

γ 2
K

√
(γ 1

K )
2 + γ 1

β

γ 1
K

(84)

is obviously positive: D > 0. Hence,

RFS
1 = A

D

(γ 2
K )

2 + γ 2
β

γ 2
K

and T FS
1 = A

D

(γ 1
K )

2 + γ 1
β

γ 1
K

(85)

where

A =
[

γ 1
K

(γ 1
K )

2 + γ 1
β

− γ 2
K

(γ 2
K )

2 + γ 2
β

]
2 Z1 Z2

Z1 + Z2
(86)
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For the next terms of the fast wave reflection and transmission coefficients, one obtains

RFF
1 = Z2(T FS

1 − RFS
1 )

Z1 + Z2
and T FF

1 = Z1(RFS
1 − T FS

1 )

Z1 + Z2
(87)

Finally,

RFF = ZF
1 − ZF

2

ZF
1 + ZF

2

+ RFF
1

1 + i√
2

√|ε| + · · · (88)

T FF = 1 + ZF
1 − ZF

2

ZF
1 + ZF

2

+ T FF
1

1 + i√
2

√|ε| + · · · (89)

4.2 Slow Incident Wave

A slow incident wave also generates four waves: the fast and slow reflected waves and the
fast and slow transmitted waves. In the Medium 1, for a slow incident wave, one obtains

u1(t, x) = U0ei(ωt−k1Sx) + RSSU0ei(ωt+k1Sx) + RSFU0ei(ωt+k1Fx) (90)

whereas in the Medium 2,

u2(t, x) = T SFU0ei(ωt−k2F x) + T SSU0ei(ωt−k2Sx) (91)

Here RSS, RSF, T SF, and T SS are the respective reflection and transmission coefficients.
Equations 67–70 transform into

1 + RSS + RSF = T SF + T SS (92)

χ1S(1 + RSS)+ χ1F RSF = χ2FT SF + χ2ST SS (93)

−M1k1F(1 + γ 1
K ξ

1F)RSF + M1k1S(1 + γ 1
K ξ

1S)(1 − RSS)

= M2k2F(1 + γ 2
K ξ

2F)T SF + M2k2S(1 + γ 2
K ξ

2S)T SS (94)

−M1k1Fξ1F RSF + M1k1Sξ1S(1 − RSS)

= M2k2Fξ2FT SF + M2k2Sξ2ST SS (95)

After dropping the higher-order terms, one obtains

1 + RSS + RSF = T SF + T SS (96)

εχ1F
1 RSF + (χ1S

0 + εχ1S
1 )(1 + RSS)

= γκεχ
2F
1 T SF(χ2S

0 + χ2S
1 γκε)T

SS (97)

−Z1 RSF = Z2T SF (98)

−√
εM1k1F

0 ξ
1F
0 RSF + M1k1S

0 ξ
1S
0 (1 − RSS)

= √
εM2k2F

0 ξ
2F
0 T SF + 1√

γκ
M2k2S

0 ξ
2S
0 T SS (99)

As in the previous subsection, we seek asymptotic expressions for the transmission and
reflection coefficients in the form (79) limiting our analysis by the two leading terms only.
Putting ε = 0 yields:
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Fig. 4 Reflection from a
permeable layer of type 2
sandwiched between media of
type 1. A fast incident wave
generates two coherent reflected
fast wave

RSS
0 =

−χ1S
0

1√
γκ

M2k2S
0 ξ

2S
0 + χ2S

0 M1k1S
0 ξ

1S
0

χ1S
0

1√
γκ

M2k2S
0 ξ

2S
0 + χ2S

0 M1k1S
0 ξ

1S
0

(100)

T SS
0 =

χ2S
0

1√
γκ

M2k2S
0 ξ

2S
0 + χ1S

0 M1k1S
0 ξ

1S
0

χ1S
0

1√
γκ

M2k2S
0 ξ

2S
0 + χ2S

0 M1k1S
0 ξ

1S
0

(101)

Hence, using Eqs. 96 and 98, we obtain

RSF
0 = Z2(−1 − RSS

0 + T SS
0 )

Z1 + Z2
, T SF

0 = −Z1(−1 − RSS
0 + T SS

0 )

Z1 + Z2
(102)

Equations 80–81 show that a fast incident wave generates reflected and transmitted slow
waves of the first order in ε. On the contrary, by virtues of equations (102), the slow and the
fast waves generated by a slow incident wave are both of the zero order.

5 Reflection from a Permeable Layer

Consider reflection of a fast incident wave from a permeable layer of thickness H . Let this
layer, labeled by the superscript2, be sandwiched between two media whose properties will
be labeled by the superscript1, Fig. 4.

Both at the top and at the bottom of the layer, an incident wave generates two pairs of trans-
mitted and reflected slow and fast waves. We consider two signals generated by reflection of
an incident fast wave from the layer. In the first case, the signal is transmitted into the layer
as a slow wave, reflected from the bottom of the layer as a fast wave, and further transmitted
back into the upper medium 1 as a fast wave. In the second case, the signal is transmitted
into the layer as a fast wave, reflected from the bottom as a slow wave, and transmitted into
the upper medium as a fast wave. Figure 4 shows schematically the path of the signal for
each of the two configurations. In both cases, the slow wave constitutes only one of the four
segments of the whole path. Since the fast wave reflections from the top and bottom of the
layer cancel each other, the considered paths generate reflected signals neglecting multiple
reflections.

Both paths are similar to each other, so we consider in detail only the first one.
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Fig. 5 The permeability-based reflection factor ψ , Eq. 105, attains a peak value at a low seismic frequency

Let U0 be the amplitude of the incident fast wave. Then, by virtue of Eqs. 80 and 85, the
amplitude of the transmitted slow wave inside the layer is equal to U 1f 2s

0 = T FS
1

√|ε|U0. The
amplitude of the fast wave reflected from the bottom of the layer is equal to

U 1f 2s2f
0 = RSF

0 T FS
1

√|ε|e−aSHU0 (103)

The exponential function in the last equation comes from the slow-wave attenuation. The
fast-wave attenuation factor, aF, is small of higher order relative to aS, see Eq. 42. Note that
the indices 1 and 2 must be permutated in the left equation (102) for a correct evaluation
of the reflection coefficient from the bottom RSF

0 . Finally, for the amplitude of the signal
reflected from the layer, one obtains the following expression through the amplitude of the
original incident wave:

U 1f 2s2f 1f
0 = T FF

0 RSF
0 T FS

1

√|ε|e−aSHU0 (104)

For a correct evaluation of T FF
0 , the transmission coefficient for the signal reflected from the

bottom and crossing the top interface, the indices 1 and 2 must be permutated in Eq. 81.
Using Eq. 44, the ε-dependent factors in the product on the right-hand side of Eq. 104 can
be gathered in the form:

ψ(|ε|) = √|ε|e− η
κ

√
γβ+γK

2

2M�f

√|ε| H
(105)

This function is the permeability-based reflection factor. It attains a maximum value of

ψmax = 1

H

κ

η

√
2M�f

γβ + γK
2 e−1 at

√|ε|max = 1

H

κ

η

√
2M�f

γβ + γK
2 (106)

The peak frequency is

νmax = κ

2πηH2

2M

γβ + γK
2 (107)
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For example, if M = 10+10 Pa, γβ + γ 2
K ≈ 2.5, κ = 1 Darcy, η = 10−3 Pa s, and

H = 0.5 m, then νmax ≈ 8 Hz, Fig. 5. This estimate is in agreement with field observations
of the low-frequency gas shadow (Castagna et al. 2003).

Similarly, for the second path, the reflected signal amplitude is

U 1f 2f 2s1f
0 = T FF

0 RFS
1 T SF

0 ψ(|ε|)U0 (108)

The transmission coefficients T FF
0 in Eqs. 103 and 104 correspond to different direction of

wave propagation through the top interface and, in general, are different.
The travel times for both paths are the same (approximately 30 ms for the numerical

parameters mentioned above), as well as the peak frequencies. The phase shifts due to the
travel times also are the same. Therefore, in the superposition of the reflected signals, the
amplitudes (104) and (108) sum up.

5.1 Reflection from a Layered Reservoir

Due to the factor of
√|ε|, the absolute value of the reflection coefficient is not large. However,

frequently, a reservoir has a layered structure, where the permeability can differ between the
layers by orders of magnitude. Summation of the reflections from multiple layer enhances the
peak reflection effect with a noticeable time delay relative to the first arrival. In the numerical
example below, such a summation produces a noticeable effect on the reflection coefficient.

For evaluation of the impedance contrasts and reflection coefficients for thick lay-
ered porous media, the conventional seismic amplitude analysis relies on Gassmann’s
model (Gassmann 1951). The relative easiness of assigning sensible values to the
parameters in Gassmann’s equation makes this model popular among exploration geophys-
icists (Hilterman 2001). In case of thin-layered heterogeneous reservoir, especially with
significant variation of the porosity and permeability of the rock between the layers, the
situation may be different. At the end of Sect. 3, we have demonstrated that Gassmann’s
equation can be obtained as the zero-frequency limit of the asymptotical solution obtained
in the same section.

To evaluate the influence of the first-order terms on the reflection coefficients from a thin-
layered reservoir, we consider a model of a 22-m thick reservoir consisting of 22 one-meter
thick layers of different porosities and permeabilities. Figure 6a shows a plot of the computed
fast-wave reflection coefficient, R, versus two-way travel time from reservoir surface. The
calculation accounts for the multiple reflections and the fast-slow and slow-fast wave con-
versions at the interfaces, using Eqs. 80–81, 85–89, and 100–102. There is remarkable 10%
difference between the result of application of asymptotic analysis and the result of calcula-
tion based solely on the zero-order terms (Gassmann’s model), see Fig. 6b. This difference
is due the first-order terms in the expressions for asymptotic reflection coefficients and it is
a product of the fluid motion relatively skeleton.

6 Summary and Conclusions

A review of the derivation of Biot’s equations of poroelasticity from the basic principles:
momentum and mass balance equations, Hooke’s law, and Darcy’s law, suggests new phys-
ical interpretations for some coefficients of the classical poroelasticity. For example, the
Biot-Willis coefficient α is related to the distribution of the surface of the grains between
grain-to-grain and grain-to fluid contact.
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Fig. 6 Example of an inhomogeneous 22-m thick layered reservoir model. a Reflection coefficient R com-
puted using Eqs. 80–81, 85–89, and 100–102 versus two-way travel time from the reservoir surface. b The
difference R between R and the reflection coefficients evaluated from the zero-order approximation (Gass-
mann’s model)

Asymptotic analysis of a plane-wave solution at low frequencies leads to explicit rela-
tively simple expressions for the velocity and attenuation of the fast and slow waves. The
small parameter is a dimensionless quantity proportional to the product of the fluid mobility,
density, and the frequency of the signal. The wave number, velocity, and attenuation factor
are expressed as power series with respect to this parameter. The calculations yield that all
the coefficients in the power series depend on the mechanical properties of the medium, but
neither on the fluid mobility nor on the signal frequency.

The obtained asymptotic solutions lead to power-series expressions of the reflection and
transmission coefficients for an elastic compression wave normally crossing a permeable
planar interface between two media. It turns out that the leading frequency-dependent term is
proportional to the square root of the frequency of the signal. The zero-order terms have been
expressed through the acoustic impedances of the media, similarly to the classical theory.

Analysis of the reflection coefficient from a permeable layer (a lens) shows that the
reflection of an incident fast wave including one slow-wave segment inside the layer is fre-
quency-dependent and has a peak. The asymptotic relationships make possible an explicit
evaluation of the maximum reflection coefficient and the peak-reflection frequency. For a
realistic set of parameters, the maximum is attained at a low seismic frequency. Although the
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amplitude of the reflected signal is proportional to the absolute value of the small parameter
and is small, the reflection from a number of such lenses can produce a noticeable effect.
Such frequencies have been successfully used for imaging the most permeable areas of a
hydrocarbon-bearing reservoir (Goloshubin et al. 2006, 2008). The results of asymptotic
analysis have been applied for numerical evaluation of the reflection coefficient in a model of
layered reservoir with variable permeability. Calculations with account for multiple reflec-
tions show a significant contribution of the frequency-dependent part of the asymptotic
expansion. The practical applications of the theory developed here are seismic modeling,
inversion, and attribute analysis.
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