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EPIGRAPH

You follow drugs, you get drug addicts and drug dealers. But you start to follow the

money, and you don’t know where the fuck it’s gonna take you.

—Lester Freamon
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ABSTRACT OF THE DISSERTATION

Characterizing Internet Scams through Underground Infrastructure Infiltration

by

Christopher William Kanich

Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Professor Stefan Savage, Co-Chair
Professor Geoffrey M. Voelker, Co-Chair

Modern unsolicited bulk email, or spam, is ultimately driven by product sales:

goods purchased by customers online. While this model is easy to state in the abstract,

our understanding of the concrete business environment—how many orders, of what kind,

from which customers, for how much—is poor at best. This situation is unsurprising since

such sellers typically operate under questionable legal footing, with ground truth data

rarely available to the public. However, absent quantifiable empirical data, “guesstimates”

operate unchecked and can distort both policy making and our choice of appropriate

technical interventions.

This dissertation presents new methodologies for and results from experiments

that characterize and quantify the economics of email based scams. The methodology

xv



relies on infrastructure infiltration to gain a view of the mechanisms and revenues of

these operations from the point of view of the perpetrators themselves. Through multiple

research efforts, we are able to capitalize on the weaknesses of the perpetrators’ security

to collect information that provides insight into the way these scams work.

The first effort investigates the proportion of spam recipients that act upon the

spam messages they receive - the “conversion rate” of spam. Using a parasitic infiltration

of an existing botnet’s infrastructure, we analyze two spam campaigns comprised of

nearly half a billion email messages: one campaign designed to propagate a malware

Trojan, the other campaign marketing on-line pharmaceuticals. We identify the number

that are successfully delivered, the number that pass through popular anti-spam filters,

the number that elicit user visits to the advertised sites, and the number of “sales” and

“infections” produced.

The second effort uses two inference techniques to peer inside the business

operations of spam-advertised enterprises: purchase pair and basket inference. Using these

methodologies, I provide informed estimates on order volumes, product sales distribution,

customer makeup and total revenues for a range of spam-advertised businesses.

The results from these studies demonstrate that infiltration of Internet criminal

infrastructure allows collection of useful information that can improve our understanding

of the operations and economics of adversaries on the Internet. This information informs

both technical and policy based defenses so that they can take into consideration the

business realities of economically motivated Internet adversaries.

xvi



Chapter 1

Introduction

Email is a near-ubiquitous staple of modern life and one of the great success

stories of the Internet. Its global reach, infinitesimal cost, and near-instant delivery have

transformed communication. Yet these desirable properties have attracted those who wish

to profit through abusing the system, including supposed Nigerian princes promising

millions of dollars, scammers sending malware purporting to be funny jokes sent from

friends, or advertisers hawking pharmaceuticals without a prescription. Billions of these

unsolicited “spam emails” are sent every day and are an annoyance to many.

While certainly a nuisance, these unwanted messages cause real harm to email

users. For example, one individual lost over five million dollars to an “advance fraud”

scheme.1 While unfortunate, a global and mostly anonymous communication medium

will no doubt enable some amount of fraud. However, the spam epidemic not only causes

direct financial losses, but causes time, concentration, and productivity to all be lost

when end users are interrupted by receiving useless spam messages. This loss itself is

only incurred for spam messages that bypass any anti-spam filtering in place: billions

of dollars are spent each year on anti-spam products which exist to prevent spam from

overwhelming users’ inboxes. In a world without billions of spam messages being sent

every day, this lost time and money could be better spent elsewhere.

Legitimate users’ losses due to spam are harmful, but in many cases users’

losses are the perpetrators’ gains: these losses fund the operations of abusive users,

enabling them to invest in improving their own operations. The sale of these goods is

1Adler v. Republic of Nigeria. 219 F.3d 869 (9th Cir. 2000).

1
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also dangerous in many cases, as these spammers are selling pharmaceuticals without a

physician’s prescription and are not subject to safety regulations. All of these avenues for

harm through sending spam share an important property: they all earn money for their

perpetrator.

Existing research regarding spam largely focuses on determining what is spam

and what is not, and how to prevent spam from being delivered. Approaching spam as a

classification problem has been very fruitful, and many of these techniques are presented

in Chapter 2. While effective, these techniques only address the symptoms of the problem

and not the root cause: spam can be used to make money.

Fighting the root cause can be more effective as a global solution rather than a

local one. While local spam filters only protect local users, the incentive to send spam

still exists as long as enough potential customers lack adequate filters. To disincentivize

spammers, we must look beyond the symptom and evaluate the incentive structure itself:

how do spammers make money, where does it come from, and how much do they make?

With an understanding of the incentives behind spamming, we can build more effective

countermeasures that address the root cause of the problem itself.

As an instrument for making money, spam is equivalent to a direct-mail adver-

tisement, much like a mail-order catalog: advertisements are individually addressed, and

the sender achieves profitability when the average net revenue per sale exceeds the cost

of sending these advertisements multiplied by the proportion of recipients who make

purchases. If we are able to quantify this conversion rate and the magnitudes involved,

we can better understand the effectiveness of spam from the spammer’s point of view.

Before this research, data regarding the economic effectiveness of spam cam-

paigns was limited to industry estimates, depositions, and anecdotes [74, 1, 80]. Providing

a deep, data-driven, and open methodology for measuring the revenues and structure

of spam provides a sound footing for effective interventions, policy changes, and new

defenses aimed at a global reduction in spam profitability and thus spam volume.

This thesis aims to quantify the questions important to characterizing a spammer’s

business: who buys their products, how many people click on these advertisements, and

how much money do they make? In service of these goals, we capitalize on weaknesses

inherent in the business models themselves to opportunistically collect information
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regarding the spammers’ operations.

1.1 Contributions

I posit that characterizing the economic motivations for spam is possible through

infrastructure infiltration and information leakage on the part of the perpetrators. Through

infiltration of the Storm botnet, recovery of access logs from a compromised host used to

host images for a large pharmaceutical seller, and opportunistic collection of transaction

information, we show that this is possible and can lead to fruitful analysis of the Internet’s

underground economy. The contributions of this dissertation are as follows:

• We successfully investigated the operation and effectiveness of the Storm botnet’s

operation and spam campaigns. We conducted this study successfully though

sidestepping the obvious legal and ethical problems associated with sending spam.2

Critically, this study makes use of an existing spamming botnet. By infiltrating

its command and control infrastructure parasitically, we convinced it to modify a

subset of the spam it already sends, thereby directing any interested recipients to

servers under our control, rather than those belonging to the spammer. In turn, our

servers presented Web sites mimicking those actually hosted by the spammer, but

“defanged” to remove functionality that would compromise the victim’s system

or receive sensitive personal information such as name, address or credit card

information.

• We describe a general technique—purchase pair—for estimating the number of

orders received (and hence revenue) via on-line store order numbering. We use this

approach to establish rough, but well-founded, monthly order volume estimates for

many of the leading “affiliate programs” selling counterfeit pharmaceuticals and

software.

• We show how to use third-party image hosting data to infer the contents of customer

“baskets” and hence characterize purchasing behavior. We apply this technique to a
2We conducted our study under the ethical criteria of ensuring neutral actions so that users should

never be worse off due to our activities, while strictly reducing harm for those situations in which user
property was at risk.
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leading spam-advertised pharmaceutical program and identify both the nature of

these purchases and their relation to the geographic distribution of the customer

base.

In each case, the real contribution is less in the particular techniques—which an

adversary could easily defeat should they seek to do so—but rather in the data that we

used them to gather. We document three spam campaigns comprising over 469 million

emails. We identified how much of this spam is successfully delivered, how much is

filtered by popular anti-spam solutions, and, most importantly, how many users “click-

through” to the site being advertised (response rate) and how many of those progress to a

“sale” or “infection” (conversion rate). We also document that seven leading counterfeit

pharmacies together have a total monthly order volume in excess of 82,000, while three

counterfeit software stores process over 37,000 orders in the same time. Combining

advertised prices and demand distributions, we provide an evidence-based estimate that

these businesses bring in approximately US$10 million in gross revenue per month.

1.2 Organization

The remainder of this dissertation is organized in the following manner.

Chapter 2 provides background material on spam defenses and related work on

the economic approach to cybercrime.

Chapter 3 covers work infiltrating and analyzing the Storm botnet. We explain our

methodology for botnet infiltration and analyze the information collected by interposing

on almost a billion spam messages being sent by this botnet, and the resulting traffic

elicited from the recipients.

Chapter 4 explores the demand for and revenue from running an online pharmacy.

We infer demand distribution both by customer location and product ordered for over

over 750,000 unique visiting IP addresses and over 3,000 distinct purchases. We also

describe the purchase pair methodology and present the results of inferring the order

volume for ten different spam-advertised merchants.

Finally, Chapter 5 concludes, offering a synthesis of these results and discusses

future research directions in this space.
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Chapter 2

Background and Related Work

Email is one of the great success stories enabled by the Internet; every day,

approximately 140 billion messages are exchanged throughout the world [78]. Email is

an incredibly cost effective communication medium; all one must do to send an email is

know the recipient’s address, follow the established protocol, and transmit the message

over the Internet to the server in charge of the receiving the recipient’s email. There is no

postage fee, and no cost to use the protocol. While this is a great boon to those wishing

to communicate messages that are useful to both parties, this simplicity is a double edged

sword - anyone can send a message to anyone else, and unsolicited, undesired messages

are just as easy to send as desired messages.

Since the first reported complaint in 1978, unsolicited bulk email, or spam, has

caused untold grief among users, system administrators, and researchers alike. The

widespread popularity of email came the onslaught of spam we see today: approximately

78% of all email messages are currently considered spam [76]. The monumental cost

effectiveness of email as a communication platform has led to its great success among

legitimate senders and spammers alike; the equally monumental annoyance and produc-

tivity loss caused by the receipt of unwanted email has itself produced a litany of spam

countermeasures.

A fundamental aspect of email that makes spam a hard problem is that in sender-

initiated direct communication, there is an information inequality present regardless of

medium. While senders understand the usefulness their message will have to the recipient,

recipients cannot know a priori that any given message will contain useful information

6
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before expending the effort to find out. This weakness is confounded by the infinitesimal

effort necessary to send spam after incurring the startup cost of acquiring a distribution

list and Internet connection. Coupled with the anonymous aspect of the protocol itself,

these factors make email an incredibly lucrative method of communication for those who

have any incentive to contact large numbers of people and don’t mind annoying most of

them with useless information. When viewed in this light, the spam epidemic becomes

almost a foregone conclusion.

SMTP, the Simple Mail Transfer Protocol, is the base protocol used for the trans-

mission of all email worldwide [60]. SMTP was initially designed as a relay mechanism,

so that any host could forward any message to any other host, somewhat similar to

packet forwarding on the Internet itself. When SMTP was designed in 1982, today’s

commercial success of the Internet and the pursuant security risks were unimaginable,

and no authentication was built into the protocol itself. Even today, many mail servers

will accept mail from any IP address attesting to be from any email address. Although

this flexibility has its advantages, it also allows many opportunities for abuse.

In response to the deluge of spam, defenders have developed a bevy of defenses

aimed at detecting when a message is undesirable, and filtering it out of the user’s view,

either by discarding it or placing it in a spam subfolder of the user’s email account. These

classification based mechanisms form a majority of the prior anti-spam research, and

have been extensively studied and developed; a survey technical approaches to defeating

spam follows in Section 2.1.

Even with a wide array of spam defense mechanisms, spam has continued to exist,

and has evolved to circumvent new defenses. Spam defenders developed bayesian spam

filters; spammers began to use chaff words and generic messages in order to circumvent

content based filtering techniques [58]. Defenders implement blacklists enumerating

hosts known to spam; spammers use botnets consisting of millions of hosts to overwhelm

the blacklist keepers [63]. Through observing this evolution, we come to realize that

fighting spam by filtering undesired messages is fighting a symptom of some deeper

phenomenon. Spammers send their messages not to circumvent filtering mechanisms,

but because sending spam can make them money. The fact that spam continues to exist

and evolve indicates that there is still a healthy return to be made spamming, even in the
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face of widely deployed countermeasures. Thus, an alternate approach to spam would

be not to attempt to filter messages as one receives them, but instead to disincentivize

its senders so that they no longer attempt to send it in the first place. I introduce this

economic approach to anti-spam in Section 2.2.

While recognizing the economic nature of this adversary is important, modern

spam businesses are realized through complex business processes involving multiple

players each specializing in different aspects of the operation. Understanding the structure

of the business processes supporting modern spam campaigns is a necessary first step

toward finding the correct solutions. I explain the structure of modern spam campaigns

in Section 2.3.

An understanding of modern commercial spam campaign structure is helpful, but

evidence-based measurements are necessary to place these phenomena into context and

motivate creation of the proper economics- and policy-based solutions. I cover the need

for these measurements in Section 2.4.

2.1 Traditional Anti-Spam Approaches

Before the success of email and the Internet among the general populace, spam

countermeasures consisted of human-manageable whitelists and blacklists for sending

IP addresses and mail keywords. The outsize success of the Internet and motivated

adversaries changed this landscape and made these countermeasures untenable at scale.

Modern spam filtering and prevention can be split into three major categories: content

classification, blacklisting, and sender reputation. Each of these strategies builds an

anti-spam technique from a different fundamental aspect of spam.

Content classification takes advantage of the fact that, for a given user, the

content of undesirable and desirable messages exhibit similarities among themselves and

knowledge of previous messages’ desirability allows classification of new deliveries; it

is covered in Section 2.1.1. Blacklisting capitalizes on the fact that an Internet address

which sends unsolicited messages is highly likely to repeat this act, and unlikely to

send legitimate, mutually desired communication if blacklisting is in place; it is covered

in Section 2.1.2. Sender reputation schemes provide strong ties between the nominal
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and true sender of email messages in order to allow records of individual domains’

communications to be recorded and used to filter spam based on past behavior; they are

covered in Section 2.1.3. Alternative methods not listed above will be briefly covered in

Section 2.1.4.

2.1.1 Classification

Content classification is the most popular spam countermeasure in academic

literature. The key observation underlying most statistical implementations of this mech-

anism is that, for a given user, the likely desirability of an unread email message can

be estimated based upon its similarity to both previous desired messages and previous

undesired messages. Several different machine learning algorithms have been proposed

to perform this message clustering task, with Bayesian filtering as the first in 1998 by

Sahami et al. [68]. While machine learning based filtering mechanisms usually make

decisions locally (either for an individual mail user or organization), some approaches

have taken an opposite tack. Rather than judging the desirability of individual tokens

and applying this knowledge to newly arriving spam, these approaches determine the

desirability of entire messages and store this information globally. One such method is

Zhou et al.’s Approximate Object Location Service [88].

Bayesian Junk Email Filtering

Sahami et al. first applied Naive Bayesian classification to the problem of junk

mail classification in 1998 [68]. Bayesian classification for spam takes a specific body of

text X as a vector of individual elements (usually words but sometimes as n-grams, all

sequences of words or characters of length |n|) and learns the overall probability that the

message is spam using Bayes theorem for conditional probabilities.

P (C = ck|X = x) =
P (X = x|C = ck)P (C = ck)

P (X = x)
(2.1)

Bayes Theorem is outlined in Equation 2.1, with C denoting the learned “class”

of the message and ck being the specific class e.g. spam or nonspam, with the generic

feature vector X consisting of all learned words and the elements of x as constants

denoting the presence or absence of a given word within the message being classified.
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Figure 2.1: Current Bayesian spam filtering uses naive Bayesian networks (a) which assume

completely independent probabilities for each predictor, as opposed to complex Bayes (b), which

allows multiple levels of interdependence as shown.

Naive Bayesian classification makes the simplifying assumptions that all features

of an object are conditionally independent and that only the binary spam/not spam

classification is desired. These assumptions allow the computation of Equation 2.1 using

Equation 2.2.

P (X = x|isspam) =
∏
i

P (Xi = xi|isspam) (2.2)

In order to apply this classification scheme to email, a learning phase is used to

determine the predictive power of each token (xi from Equation 2.2). With a pre-classified

body of emails, the value P (Xi = xi|isspam) is simply the number of spam messages in

which the token xi appears divided by the total number of messages in which xi appears.

In this paper’s implementation, only words with three or more appearances in a corpus of

2,593 messages are included, as the classification certainty of words which appear rarely

is low. When evaluating the performance of the classifier against 222 unseen messages

which arrived at the same mailbox as the training messages, Naive Bayes exhibited an

8% false positive and 5% false negative rate, with the false positive messages considered

relatively less important to the user. The paper also discusses the ability to further classify

messages into sub-categories as well as the effect of hand-crafted classifiers on the overall

judgement of the anti-spam system.

The application of Naive Bayes learning and classifying to the spam email

problem in this paper is an essential contribution to the anti-spam literature. Before

Bayesian filtering, spam classification used so-called “domain specific” features of the

text which requires the user to manually choose important strings from within emails that

signified a message’s spam likelihood. While sometimes more flexible than static strings

(i.e., an “excessive punctuation” rule which catches any string of 3 or more of the same
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punctuation mark), domain specific features are fundamentally limited in their choice

and accuracy by being human generated. With the reasonable simplifying assumption

that all words in an email can have independent predicting power for the spam likelihood

for a given message, Naive Bayes can achieve a consistent 98–99% accuracy rate, even

when using a centralized wordlist rather than one tuned to individual email users [6].

Global Message Blacklists

Traditional full message classification systems provide a centralized service adver-

tising raw checksums of messages in order to globally blacklist exact copies of offending

messages [66], [61]. Zhou et al introduce a system with two main advances upon this

technique, namely Approximate Text Addressing (ATA) and Approximate Distributed

Object Location and Routing (ADOLR) [88]. By combining these complementary ca-

pabilities, this system seeks to provide a flexible global storage for records of spam

messages in order to halt the spam epidemic itself.

ADOLR builds a distributed object store that uses feature vectors rather than

scalar checksums to store the location of a given entity within a traditional distributed

object location and routing (DOLR) system such as Pastry [67]. By storing the location

of a desired object at the location of every attribute in the feature vector, a client can

search for an exact object while only knowing a subset of its attributes. This capability is

paired with Approximate Text Addressing, a variant of a technique suggested for finding

similar files within a filesystem [51]. ATA provides a deterministically random vector

of substring checksums from within a text document. These checksums comprise the

feature vector for a given spam email, and are stored into the ADOLR as an approximate

record of the spam message’s existence. When new messages are received at a site using

this system for spam mitigation, the message is hashed with ATA. If enough of these

substring checksums are found, the message is considered spam.

The evaluation of ATA presented in [88] highlights the necessity of balancing the

similarity threshold between being too strict (causing a low detection rate) and being too

liberal (causing false positives). While the authors found suitable settings in their tests,

the corpus of only 25,000 emails does not adequately characterize a global spam defense

mechanism, as even a single large university as of 2004 was receiving over 45,000 emails
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per day [19].

2.1.2 Blacklisting

Although content based classification can be an effective measure against spam,

targeting the senders of spam is also a well established countermeasure. Blacklists, in

general, are a method of keeping track of bad actors and refusing to take receipt of their

email. The main challenge facing an effective and efficient blacklist is maintenance of

the bad actor list. This feat has become increasingly difficult in recent years with the

proliferation of botnet-sourced spam, which can allow an individual spammer to send

one spam campaign from hundreds of thousands of highly transient hosts. Although they

face a hefty challenge, modern blacklist techniques enlist a number of novel intuitions

and methods to keep their lists of spammers up to date (and, when possible, ahead of) the

deluge of unwanted email sent every day.

Blacklisting Research Efforts

Traditionally a blacklist is human maintained or includes addresses automatically

in accordance with a policy. Some examples are the Spamhaus PBL blacklist which

lists dynamically allocated addresses which should not normally be sending email, and

the Spamhaus SBL blacklist which include hosts automatically in response to receiving

email at special honeypot domains or addresses [72, 73].

The most common mechanism for implementing a blacklist is through a repur-

posing of the domain name system [47]. To determine whether an IP address is included

on a particular blacklist, one concatenates the IP address with the domain name for the

blacklist lookups, and performs a DNS query wishing to determine the IP address for that

domain name. Rather than returning the IP address responsible for this domain name,

the response IP address encodes existence in the blacklist with a successful lookup, and

absence with the “no such domain” response code. This repurposing allows DNS blacklist

lookups to be lightweight and efficient through the caching and stateless querying of DNS

lookups in addition to not requiring the creation or implementation of a new protocol.

Prior to the first research efforts seeking to improve the effectiveness of DNS

Blacklists, Jung and Sit observed that the use of DNSBLs increased greatly between
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Figure 2.2: The high-level design of the domain specific dynamic blacklist system’s online

classification phase.

2000 and 2004, and analyzed the blacklisting focus and overlap between several popular

blacklists [31]. They suggested that anti-spam systems which query several DNSBLs

for each mail received could possibly increase their accuracy by being aware of the

overlap between popular blacklists as well as the aggressiveness of each blacklist. In

2006, Ramachandran et al. were able to infiltrate the update mechanism of the Bobax

botnet in order to evaluate the coverage of popular DNSBLs for an individual botnet [62].

They found that even though Bobax was exclusively used to send spam and inhabited

over two million IP addresses during their 46 day sample, only 4,295 of those hosts were

in the Spamhaus DNSBL, a “known to spam” blacklist. Clearly, this leaves room for

improvement in the coverage of this blacklist, and motivates the systems outlined below.

Domain Specific Dynamic Blacklists

Cook et al’s Domain Specific Dynamic Blacklists combine the techniques of

intrusion detection system (IDS) log analysis with blacklists on the mail server in order
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to improve the accuracy of both the IDS and the spam filter [10]. The intuition is that

spamming hosts will perform anomalous network-level events before spamming the

network. By cross referencing the IDS logs with the mail server logs, “precursor activity”

from the mail sending IPs can be observed which will increase the likelihood that the

sending IP is a spammer; after the likelihood reaches a threshold, the offending IP address

is added to the blacklist without human intervention.

This system comprises two phases, one in which log data is filtered by human

eyes after restricting the IDS log data to only those hosts sending spam, and one in which

rulesets created offline during the first phase are used online to filter new email traffic as

it is received. During the first phase, the email server logs and IDS logs are collated for

the desired time period, and all IP addresses with no email traffic as well as only email

traffic (i.e., no interesting traffic as recorded by the IDS) are discarded. After this phase,

human analysis of the logs determines what rules define precursor activity for spamming

IPs.

The online portion of the system is outlined in Figure 2.2. The information

regarding precursor activity gained during phase 1 is integrated into this feedback loop

between the IDS and the spam filter itself. This system actually goes further than a

traditional DNSBL by blocking all network traffic from a given spamming IP address

rather than only email traffic. The authors note that this system will only blacklist spam

after the first message is received, and currently has no expiration policy for entries in

the blacklist. However, it is still an important first step in creating accurate and effective

automated blacklists.

Behavioral Blacklisting

Ramachandran et al. introduced a system called SpamTracker in 2007 that seeks

to abstract away content based classification and instead only judge email senders by how

they send rather than what they send [65]. The intuition behind this strategy is that while

message content can be easily obfuscated to bypass content filters, network-level features

of spammers are more invariant and thus more amenable to being used for blacklisting

decisions [63]. The goal of this system is motivated in part by the observations regarding

low blacklist coverage for the Bobax botnet seen in [62].
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Figure 2.3: The high-level design of SpamTracker.

The feature used in SpamTracker to identify and cluster spamming hosts is the

distribution of destination domains for email sent from a given IP address. The reasoning

is that while the distribution of destination domains for any email sender will remain

relatively constant within the clustering time frame (6 hours was used in the paper),

legitimate senders will not be using a large number of hosts to send to the same distri-

bution of destination domains. Spammers using botnets as their distribution mechanism

should exhibit this property, and this is exactly the set of hosts that SpamTracker aims to

blacklist.

SpamTracker uses a technique called Spectral Clustering to group senders by

their destination domain distributions in the first stage and then an online classification

stage. In the offline clustering stage, the algorithm takes as input logs of spam receipts

(with all legitimate reciepts filtered out) at all participating domains. The logs are parsed

into arrays of the form (i, j, k) where IP address i sent email at time k to domain j. For a

given clustering period, all time values are collapsed and the distribution of all domains j

for each individual i are constructed. These distributions are then clustered and labeled

with vectors consisting of the destination domain distribution for a given cluster. In the

online stage this set of vectors is compared against the distribution for an IP address
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sending email to a SpamTracker-protected domain, and a similarity metric is computed.

If the similarity metric passes a certain threshold, an IP address is considered part of the

distributed spamming cluster and blacklisted.

Although SpamTracker requires input from several different destination domains

to be effective, the results show at least a 10% improvement in the amount of spam

caught via blacklisting. The dataset was difficult to fully evaluate as no ground truth

data was available for the email or the sending hosts, thus the 10% improvement on

the subset of spam that can be captured via DNS blacklists can be considered a lower

bound. Additional tuning to find a reasonable threshold setting would be necessary

in a production environment. An overview of the SpamTracker system is presented

in Figure 2.3, displaying the feedback loop between the spam classifier, the spectral

clustering algorithm, the participating mailservers and the spammers themselves.

When discussing additional features that could be added, the authors’ suggestion

of temporal behavior will be very difficult for a spam trap that only sees hundreds or

even thousands of destination domains. This is a fundamental weakness of receiver-side

spam protections: because the spammer will often send messages to different domains in

an arbitrary order, the sheer multitude of possible target domains means that it will be

very difficult to glean useful information from inter-spam arrival time as the probability

of receiving spam messages sequentially from an individual botnet machine is very

low. Intra-message response times, however, remain a possibility for useful inspection.

Fundamentally, invariants that can be observed completely within individual delivery

attempts will be the best features to use with this strategy, such as retry and failure modes,

response to tarpitting, and network-level features like response to connection attempts on

port 25.

Although the task of blacklisting hundreds of thousands of bots from limited van-

tage points is very difficult, domain specific dynamic blacklists and behavioral blacklist-

ing offer insightful methods of leveraging network invariants within individual spammers’

botnets to improve the coverage of traditional blacklists.
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2.1.3 Sender Authentication

Authentication methods for anti-spam systems use a substrate of reliable sender

identification in order to create whitelists or reputations for each sender or sending

domain. As the usage model of SMTP (Simple Mail Transfer Protocol) allows for the

relaying of mail on behalf of third parties, the standard does not require any association

between the nominal sender of an email message (traditionally, the name given with the

“From” command during the SMTP session) and the real sender (the entity who authored

and initially submitted the message for delivery) [60]. While SMTP was extended to

provide authentication within the protocol, this capability is mainly intended to restrict

access to an organization’s mail relay (the “outgoing” mail server which accepts messages

from the organization’s members and relays them to the “incoming” mail server of the

recipient) [56].

Sender authentication at the granularity of individual senders [8] and organi-

zations [45, 85] has been implemented, allowing recipients to verify the link between

nominal sender and real sender. Authentication only provides a substrate upon which a

reputation system can be implemented; policies must still be built upon this mechanism

to determine which senders are spammers and which are delivering desired messages.

Traditionally, authorized sender whitelists were maintained manually. Much like

other early anti-spam systems, the effectiveness of this mechanism has not scaled with

the popularity of email. A modern inter-domain authorization must provide an automated,

secure side channel for communication of authorization information; as this effort is

attempting to associate the true email authors with their nominal senders, the modern

systems outlined below have made the design decision to communicate authorization

primitives through the DNS. Although this solves the problem of forged sender addresses,

a reputation system for each sending organization must be built at each domain. The

intuition behind this strategy is that if a large enough quorum of legitimate senders

maintain a good reputation, poorly behaved senders can be easily filtered out while new

good senders can still be introduced without difficulty. As initial deployment cannot

expect instant worldwide adoption, the system outlined here uses strong authentication

and reputation tracking as input to a comprehensive spam filtering mechanism.
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Sender Reputation in a Large Webmail Service

Taylor illustrates the design decisions made when implementing a sender repu-

tation system for Gmail, Google’s free email service in [77]. This research highlights

the bootstrapping and analysis of the use of sender authentication in production email

environments. Gmail implements DomainKeys and the Sender Policy Framework (SPF)

as both a sender and a receiver, using the results as input to their reputation mechanism.

The author notes that nearly 75% of all legitimate mail is authenticated by at least one of

Domain Keys or SPF.

Each of these authentication technologies allows a domain to verify that the

nominal sender is the true sender of a given message, although each has its own weak-

nesses. SPF publishes a list of IP addresses or domain names under the sending domain’s

TXT record. While this provides a cryptography-free guarantee that a mail message was

sent by an entity allowed to do so by the domain owner, if the message is forwarded

before reaching the verifier (as is allowed in the SMTP protocol), the SPF check will fail.

DomainKeys, conversely, allows the domain owner to publish a public key into the DNS

that is used to sign outgoing messages rather than authenticate the sender himself. While

a message body signed in this way (both the body and the headers of a message can be

signed individually) will remain valid regardless of the number of forwarding hops, any

modification by third parties during forwarding will break the signature. Thus, SPF and

DomainKeys provide complementary services for email senders.

Empowered by a strong authentication for sending domains, Gmail builds the

reputation for these domains with information both from user feedback within the mail

interface itself and from statistical spam filters. The reputation for a given email message

begins as the historical reputation for a given domain (calculated every few days), and

is then corrected with any recent “this is spam” or “this is not spam” feedback for this

domain. The reputation value is an integer between 0 and 100 which is a rough analog

for the percent chance that an email from this domain is a legitimate message. Reputation

values are acted upon for incoming messages using two threshold values: a whitelist

threshold, above which all mails are delivered directly to the user’s inbox; and a blacklist

threshold, below which all mails are delivered directly to the user’s spam folder. For

messages between these thresholds, Gmail runs its statistical spam filters and makes a
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final decision informed by the statistical filter and the reputation score for the sender.

Although the user feedback mechanism provides an excellent human-powered

spam filter, it must still be tuned in order to provide the best information. User feedback

which effects the reputation of any given sender is limited to one response per hour so

that individual users cannot skew a domain’s reputation. This mitigates, but does not

prevent a spammer from marking his own messages as nonspam. The paper addresses

this with clever reasoning, concluding it to be a non issue for the reputation system itself:

if spammers are creating accounts on Gmail in order to whitelist their own spam, they

might as well be using these accounts directly to send spam and are not explicitly a

problem for the reputation system but rather for the abuse department.

2.1.4 Alternative Methods

Beyond the major techniques of classification, blacklisting, and reputation man-

agement, other methods have been suggested.

Proof of Work

So-called “proof of work” methods address the disconnect in resource allocation

between senders and receivers in order to attest that the effort on the part of the sender is

commensurate with the expected effort related to receiving and reading an email. Dwork

and Naor suggested this strategy in the paper “Pricing via Processing” [13]. Proof of work

methods require a pricing function for which computation of the output is a moderately

difficult task, but verifying its correctness is easy. Any hard to solve but easy to verify

function can be used; the popular “Hashcash” implementation requires the sender to find

partial hash collisions for a given string, which can be best solved via brute force [5].

Proof of work has been generalized to use quotas alotted by a central authority, as well as

shown in an economic sense to improve the overall utility of email to both senders and

receivers due to the signaling process inherent in expending currency to send messages

[48]. In addition to proof of work via processing or tokens alotted by a central authority,

the same method can be abstracted into using any store of value as a pricing signal,

including monetary “postage” for sending email [14].

While “proof of work” methods are a very promising theory, Laurie and Clayton
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provide both theoretical and empirical evidence that such schemes have some important

shortcomings [43]. Firstly, as spammers are using botnets to send most modern spam,

the cost of the proof is not being directly borne by the spammer; compromised home

machines typically have far more spare processing power than spare bandwidth. Secondly,

empirical evidence presented in the paper shows that although 93.5% of all machines

sent less than 75 emails per day (the global average), the top legitimate senders sent very

many messages and more importantly did so in short bursts. While these senders would

send messages more slowly or pay more to send messages in a proof of work system,

spammers’ messages are typically not as time sensitive and thus they will not experience

as much quality of service degradation as the legitimate senders.

Address Management

Address management techniques build upon the fact that spam cannot easily

be sent to an email address if the address itself is not available to the spammer. The

Channels system exploits this fact by allowing an email user to create several unique email

addresses, each of which can have its own policy regarding validity dates, authorized

senders, and filtering strength [22]. While fundamental changes to the SMTP protocol

are not necessary to implement channelized email addresses, as with some authentication

schemes, multiple recipients and mailing lists pose problems as they leak possibly private

email channels to third parties. The channel system uses a personal channel agent (PCA)

for each user that maintains a database of active personal channels and manages the

creation and publishing of new channels when necessary. While the email infrastructure

does not require direct modification to support this scheme, the mail user agent must

be able to communicate with the PCA in order to address email messages correctly.

While the channel identifiers themselves are cryptographically secure against brute force

guessing, the danger of address book eavesdropping via malware or other means on

third parties presents the same risk as it does currently, although the Channels system

does provide a protocol for automated channel switching to easily recover from the

channel compromise. Other schemes provide similar services via a third party remailer

server [18] which eliminates many of the multi-recipient problems, or via metadata in the

address itself which encodes the policies associated with the address, e.g., which domain
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is allowed to use the address and during which time period [27].

Challenge-response is a method closely related to addresses management tech-

niques [53]. Challenge-response systems use custom email addresses in a similar manner

to address management systems. However, instead of providing a complete anti-spam

solution for individual users, challenge-response systems simply verify that the sender’s

email address was not forged by sending an automated reply asking the sender to verify

that the communication is desired. A variant of this callback method is used an authenti-

cation scheme in the Occam protocol, where the callback mechanism is implemented as

an independent, automated communication [15].

The fundamental information asymmetry of unsolicited communication and the

unauthenticated, global nature of email assure us that undesired, unsolicited email will

continue to exist for the forseeable future. Most current defenses are concerned primarily

with filtering or blocking the messages themselves, but each of these messages has a

sender with a goal in mind. But taking a step back and asking why send spam offers us

key insights: a large proportion of modern spam messages advertise various goods for

sale. Thus, spam can be understood not only as a technical problem, but as an economic

one: spammers send their messages, presumably, because people will buy what they are

selling. Understanding this economic approach to spam—how they make money, how

much they stand to make—is key to finding new methods to decrease their bottom line,

and decreasing in turn the number of spam messages sent every day.

2.2 The Economic Approach to Anti-Spam

The technical approach to anti-spam treats unsolicited messages themselves as

the problem to be solved, and the goal is to effectively filter them. While this approach

has been very successful for the organizations that deploy these filters, filters combat a

symptom—receiving spam email—rather than the root cause: commercial spam is sent

because it is an effective way to make money.

When viewed as part of a business operation, commercial spam shares many

properties with direct marketing, a technique that dates back to the 19th century dis-

tribution of the first mail-order catalogs. What makes direct marketing so appealing is
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that one can directly measure its return on investment. For example, the Direct Mail

Association reports that direct mail sales campaigns produce a response rate of 2.15

percent on average [12]. Meanwhile, rough estimates of direct mail cost per mille (CPM)

– the cost to address, produce and deliver materials to a thousand targets – range between

$250 and $1000. Thus, following these estimates it might cost $250,000 to send out a

million solicitations, which might then produce 21,500 responses. The cost of developing

these prospects (roughly $12 each) can be directly computed and, assuming each prospect

completes a sale of an average value, one can balance this revenue directly against the

marketing costs to determine the profitability of the campaign. As long as the product of

the conversion rate and the marginal profit per sale exceeds the marginal delivery cost,

the campaign is profitable.

Given this underlying value proposition, it is not at all surprising that bulk direct

email marketing emerged very quickly after email itself. The marginal cost to send

an email is tiny and, thus, an email-based campaign can be profitable even when the

conversion rate is negligible. Unfortunately, a perverse byproduct of this dynamic is that

sending as much spam as possible is likely to maximize profit.

The resulting social nuisance begat a vibrant anti-spam community, eventually

producing a multi-billion dollar industry focused on the same problem. However, with

each anti-spam innovation spammers adapted in kind and, while the resulting co-evolution

has not significantly changed the spam problem, it has changed how spam is purveyed.

For example, the advent of real-time IP blacklisting deployed in Mail Transfer Agents

(MTAs) forced spammers to relay their messages through “untainted” third-party hosts —

driving the creation of modern large-scale botnets. Similarly, content-based anti-spam

filters in turn forced spammers to create sophisticated polymorphism engines, modifying

each spam message to be distinct. As well, it forced them to send even more spam. Thus,

it has been estimated that over 120 billion spam messages are now sent each day [29].

However, while spam has long been understood to be an economic problem,

it is only recently that there has been significant effort in modeling spam economics

and understanding the value proposition from the spammer’s point of view. Rarely

do spammers talk about financial aspects of their activities themselves, though such

accounts do exist [36, 83]. Judge et al. describe a prototypical model of spam profitability,



23

including both the basic value proposition as well as the impact of anti-spam filtering and

law enforcement. They speculate that response rates as low as 0.000001 are sufficient

to maintain profitability [30]. Khong [35] likewise employs an economic cost model of

spam, comparing the success of several anti-spam strategies. Goodman and Rounthwaite

construct a more complex model, aimed at deriving the cost factors for sending spam,

and conclude depressingly that the optimal strategy for sending spam is to send as fast as

possible [20]. Serjantov and Clayton explore these issues from the standpoint of an ISP

and try to understand how to place appropriate incentives around the use of anti-spam

blacklists [71].

Some data-based estimates of spammers do exist, but for the specialty type

known as “stock spam” [7, 17, 23]. Stock spam refers to the practice of sending positive

“touts” for a low-volume stock to manipulate its price and thereby profit on an existing

position in the stock. What distinguishes stock spam is that it is monetized through

price manipulation and not via a sale. Consequently, it is not necessary to measure

the conversion rate to understand profitability. Instead, profitability can be inferred by

correlating stock spam message volume with changes in the trading volume and price for

the associated stocks.

While investigating stock spam has given researchers a data point regarding

the profits of spammers, it is the modern commercial spam trade that accounts for the

lion’s share of modern unsolicited bulk email. Understanding how these modern spam

campaigns work is necessary to begin investigating their success rates.

2.3 How spam-advertised sites work

Today, spam of all kinds represents an outsourced marketing operation in service

to an underlying sales activity. At the core are “affiliate programs” that provide retail con-

tent (e.g., storefront templates and site code) as well as back-end services (e.g., payment

processing, fulfillment and customer support) to a set of client affiliates. Affiliates in turn

are paid on a commission basis (typically 30–50% in the pharmaceutical market) for

each sale they bring in via whatever advertising vector they are able to harness effectively.

This dynamic is well described in Samosseiko’s “Partnerka” paper [69] and also in our
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recent work studying the spam value chain [46].

Thus, while an affiliate has a responsibility to attract customers and host their

shopping experience (which includes maintaining the contents of their “shopping cart”),

once a customer decides to “check out” the affiliate hands the process over to the operators

of the affiliate program.1 Consequently, we would expect to find the order processing

service shared across all affiliates of a particular program, regardless of the means used

to attract customers. Indeed, as discussed below, our measurements of purchases from

different members of the same affiliate confirm that the order numbers associated with

the purchases come from a common pool. This finding is critical for our study because

it means that side-effects in the order processing phase reflect the actions of all sales

activity for an entire program, rather than just the sales of a single member.

On the back end, order processing consists of several steps: authorization, set-

tlement, fulfillment, and customer service. Authorization is the process by which the

merchant confirms, through the appropriate payment card association (e.g., Visa, Mas-

terCard, American Express, Japan Credit Bureau, etc.), that the customer has sufficient

funds. For the most common payment cards (Visa/MC), this process consists of con-

tacting the customer’s issuing bank, ensuring that the card is valid and the customer

possesses sufficient funds, and placing a lien on the current credit balance. Once the good

or service is ready for delivery, the merchant can then execute a settlement transaction

that actualizes this lien, transferring money to the merchant’s bank. Finally, fulfillment

comprises packaging and delivery (e.g., shipping drugs directly from a foreign supplier

or providing a Web site and password for downloading software). For our study, however,

the key leverage lies in customer service. To support customer service, payment sites

generate individual order numbers to share with the customer.

With this understanding, we can formulate hypotheses and methodologies for

evaluating the effectiveness of each of these structural elements; the next section outlines

why it is important to uncover these figures and how they can be used to create better

defenses.
1This transfer typically takes the form of a redirection to a payment gateway site (with the affiliate’s

identity encoded in the request), although some sites also support a proxy mode so the customer can appear
to remain at the same Web site.
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2.4 Quantifying the Revenues of Cybercriminals

The security community is at once awash in the technical detail of new threats—

the precise nature of a new vulnerability or the systematic analysis of a new botnet’s

command and control protocol—yet somewhat deficient in analyzing the economic

processes that underlie these activities. In fairness, it is difficult to produce such analyses;

there are innate operational complexities in acquiring such economic data and inherent

uncertainties when reasoning about underground activities whose true scope is rarely

visible directly.

However, absent a rigorous treatment, the resulting information vacuum is all

too easily filled with opinion, which in turn can morph into “fact” over time. Though

pervasive, this problem seemingly reached its zenith in the 2005 claim by US Treasury

Department consultant Valerie McNiven that cybercrime revenue exceeded that of the

drug trade (over $100 billion at the time) [34]. This claim was frequently repeated by

members of the security industry, growing in size each year, ultimately reaching its

peak in 2009 with written Congressional testimony by AT&T’s chief security officer

stating that cybercrime reaped “more than $1 trillion annually in illicit profits” [70]—

a figure well in excess of the entire software industry and almost twice the GDP of

Germany. Nay-sayers are similarly limited in their empirical evidence. Perhaps best

known in this group are Herley and Florencio, who argue that a variety of cybercrimes

are generally unprofitable. However, lacking empirical data, they are forced to use an

economic meta-analysis to make their case [24, 25, 26].

2.4.1 Estimating spam revenue and demand

Public estimates of the revenue of spammers and demand for their products can

vary widely. In 2005, one consultancy estimated that Russian spammers earned roughly

US$2–3M per year [50]. However, in a 2008 interview, one IBM representative claimed

that a single spamming botnet was earning close to $2M per day [1]. Our previous work

studied the same botnet empirically, leading to an estimate of daily revenue of up to

$9,500, extrapolating to $3.5M per year [32]. Most recently, a report by the Russian

Association of Electronic Communication (RAEC) estimated that Russian spammers
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earned 3.7 billion rubles (roughly $125 million) in 2009 [38].

The demand side of this equation is even less well understood, relying almost en-

tirely on opt-in phone or email polls. In 2004, the Business Software Alliance sponsored

a Forrester Research poll to examine this question, finding that out of 6,000 respondents

(spread evenly across the US, Canada, Germany, France, the UK and Brazil) 27% had

purchased spam-advertised software and 13% had purchased spam-advertised pharmaceu-

ticals [16]. If such data were taken at face value, the US market size for spam-advertised

pharmaceuticals would exceed 30 million customers. Similar studies, one by Marshal in

2008 and the other sponsored by the Messaging Anti-Abuse Working Group (MAAWG)

in 2009, estimate that 29% and 12%, respectively, of Internet users had purchased goods

or services advertised in spam email [28, 52].

Understanding the effectiveness of spam and the size of its market, both on the

supply and demand sides, is crucial to informing correct response to the spam problem.

Without an “evidence basis”, policy and investment decisions are easily distorted along

influence lines, either over-reacting to small problems or under-appreciating the scope

of grave ones. With this goal in mind, the next chapter presents both our methodology

for and results from measuring the conversion rate of a botnet-based spam campaign,

providing insight into the immense scale of modern spam campaigns and beginning to

uncover details of the demand that supports this enterprise.

Chapter 2, in part, is a reprint of the material as it appears in Proceedings of ACM

CCS 2008. Kanich, Chris; Kreibich, Christian; Levchenko, Kirill; Enright, Brandon;

Voelker, Geoffrey M.; Paxson, Vern; Savage, Stefan. The dissertation author was the

primary investigator and author of this paper.

Chapter 2, in part, is a reprint of the material as it appears in Proceedings of

USENIX Security 2010. Kanich, Chris; Weaver, Nicholas; McCoy, Damon; Halvorson,

Tristan; Kreibich, Christian; Levchenko, Kirill; Paxson, Vern; Voelker, Geoffrey M.,

Savage, Stefan. The dissertation author was the primary investigator and author of this

paper.



Chapter 3

The Economics of a Modern Spam

Campaign

Spam-based marketing is a curious beast. We all receive the advertisements —

“Excellent hardness is easy!” — but few of us have encountered a person who admits to

following through on this offer and making a purchase. And yet, the relentlessness by

which such spam continually clogs Internet inboxes, despite years of energetic deploy-

ment of anti-spam technology, provides undeniable testament that spammers find their

campaigns profitable. Someone is clearly buying. But how many, how often, and how

much?

Unraveling such questions is essential for understanding the economic support

for spam and hence where any structural weaknesses may lie. Unfortunately, spammers

do not file quarterly financial reports, and the underground nature of their activities makes

third-party data gathering a challenge at best. Absent an empirical foundation, defenders

are often left to speculate as to how successful spam campaigns are and to what degree

they are profitable. For example, IBM’s Joshua Corman was widely quoted as claiming

that spam sent by the Storm worm alone was generating “millions and millions of dollars

every day” [1]. While this claim could in fact be true, we are unaware of any public data

or methodology capable of confirming or refuting it.

The key problem is our limited visibility into the three basic parameters of the

spam value proposition: the cost to send spam, offset by the “conversion rate” (probability

that an email sent will ultimately yield a “sale”), and the marginal profit per sale. The

27
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first and last of these are self-contained and can at least be estimated based on the costs

charged by third-party spam senders and through the pricing and gross margins offered by

various Internet marketing “affiliate programs”.1 However, the conversion rate depends

fundamentally on group actions — on what hundreds of millions of Internet users do

when confronted with a new piece of spam — and is much harder to obtain. While a

range of anecdotal numbers exist, we are unaware of any well-documented measurement

of the spam conversion rate.2

In part, this problem is methodological. There are no apparent methods for

indirectly measuring spam conversion. Thus, the only obvious way to extract this data

is to build an e-commerce site, market it via spam, and then record the number of

sales. Moreover, to capture the spammer’s experience with full fidelity, such a study

must also mimic their use of illicit botnets for distributing email and proxying user

responses. Through botnet infiltration, we achieved this goal, and this chapter presents

our methodology and resulting analysis.

The remainder of this chapter is structured as follows. Section 3.1 describes the

Storm botnet, and Section 3.2 describes our infrastructure for transparently interposing on

communication between captive malware and the Internet. Section 3.3 describes how we

use this infrastructure to infiltrate and study the operation of the Storm botnet. Section 3.4

describes our spam filtering and conversion results, Section 3.5 analyzes the effects of

blacklisting on spam delivery, and Section 3.6 analyzes the possible influences on spam

responses. We summarise the findings of this research effort in Section 3.7.

3.1 The Storm Botnet

The measurements in this project are carried out using the Storm botnet and

its spamming agents. A full technical overview of the operation of the Storm botnet is

presented in [75]; here we review key mechanisms in Storm’s communication protocols

and organizational hierarchy that are relevant to our botnet infiltration technique.

1Our cursory investigations suggest that commissions on pharmaceutical affiliate programs tend to hover
around 40-50%, while the retail cost for spam delivery has been estimated at under $80 per million [84].

2The best known among these anecdotal figures comes from the Wall Street Journal’s 2003 investigation
of Howard Carmack (a.k.a the “Buffalo Spammer”), revealing that he obtained a 0.00036 conversion rate
on ten million messages marketing an herbal stimulant [3].



29

Storm is a peer-to-peer botnet that propagates via spam (usually by directing

recipients to download an executable from a Web site). Storm communicates using two

separate protocols: the first is an encrypted version of the UDP-based Overnet protocol

(in turn based on the Kademlia DHT [54]) and is used primarily as a directory service

to find other nodes. As well, Storm uses a custom TCP-based protocol for managing

command and control — the directions informing each bot what actions it should take.

We describe each of these below.

3.1.1 Overnet protocol

There are four basic messages to facilitate the basic functioning of Overnet:

Connect, Search, Publicize, and Publish. During the bootstrap phase, a Storm node only

has the initial list of peers that it was shipped with. To gather more peers Storm chooses an

address for itself pseudo-randomly from the 128-bit Overnet address space and proceeds

to Connect to all the peers in its bootstrap list. Each available peer contacted returns a list

of up to 20 peers. Storm does this for a few rounds until it has gathered enough peers to

be adequately connected in Overnet. Once a new node has learned about enough peers

it switches to Publicizing its presence to nearby peers and periodically searching for its

own address to stay connected and learn about new close-by peers to keep up with churn.

Overnet also provides two messages for storing and finding content in the network:

Publish and Search which export a standard DHT (key,value) pair interface. However,

Storm uses this interface in an unusual way. In particular, the keys encode a dynamically

changing rendezvous code that allow Storm nodes to find each other on demand.

A Storm node generates and uses three rendezvous keys simultaneously: one

based on the current date, one based on the previous date, and one based on the next date.

To determine the correct date, Storm first sets the system clock using NTP.

In particular, each key is based on a combination of the time (with 24-hour

resolution) mixed with a random integer between 0 and 31. Thus there are 32 unique

Storm keys in use per day but a single Storm bot will only use 1 of the 32. Because keys

are based on time, Storm uses NTP to sync a bot’s clock and attempts to normalize the

time zone. Even so, to make sure bots around the world can stay in sync, Storm uses 3

days of keys at once, the previous, current, and next day.
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Figure 3.1: The Storm botnet hierarchy.

In turn, these keys are used to rendezvous with Storm nodes that implement the

command and control (C&C) channel. A Storm node that wishes to offer the C&C service

will use the time-based hashing algorithm to generate a key and encode its own IP address

and TCP port into the value. It will then search for the appropriate peers close to the

key and publish its (key, value) pair to them. A peer wishing to locate a C&C channel

can generate a time-based key and search for previously published values to decode and

connect to the TCP network.

3.1.2 Storm hierarchy

There are three primary classes of Storm nodes involved in sending spam (shown

in Figure 3.1). Worker bots make requests for work and, upon receiving orders, send spam

as requested. Proxy bots act as conduits between workers and master servers. Finally, the

master servers provide commands to the workers and receive their status reports. In our

experience there are a very small number of master servers (typically hosted at so-called

“bullet-proof” hosting centers) and these are likely managed by the botmaster directly.

However, the distinction between worker and proxy is one that is determined

automatically. When Storm first infects a host it tests if it can be reached externally. If so,
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then it is eligible to become a proxy. If not, then it becomes a worker.

3.1.3 Spam engine

Having decided to become a worker, a new bot first checks whether it can reach

the SMTP server of a popular Web-based mail provider on TCP port 25. If this check

fails the worker will remain active but not participate in spamming campaigns.3

Figure 3.5 outlines the broad steps for launching spam campaigns when the

port check is successful. The worker finds a proxy (using the time-varying protocol

described earlier) and then sends an update request (via the proxy) to an associated

master server (Step 1), which will respond with a spam workload task (Step 2). A spam

workload consists of three components: one or more spam templates, a delivery list of

email addresses, and a set of named “dictionaries”. Spam templates are written in a

custom macro language for generating polymorphic messages [40]. The macros insert

elements from the dictionaries (e.g., target email addresses, message subject lines),

random identifiers (e.g., SMTP message identifiers, IP addresses), the date and time, etc.,

into message fields and text. Generated messages appear as if they originate from a valid

MTA, and use polymorphic content for evading spam filters.

Upon receiving a spam workload, a worker bot generates a unique message for

each of the addresses on the delivery list and attempts to send the message to the MX

of the recipient via SMTP (Step 3). When the worker bot has exhausted its delivery list,

it requests two additional spam workloads and executes them. It then sends a delivery

report back to its proxy (Step 4). The report includes a result code for each attempted

delivery. If an attempt was successful, it includes the full email address of the recipient;

otherwise, it reports an error code corresponding to the failure. The proxy, in turn, relays

these status reports back to the associated master server.

To summarize, Storm uses a three-level self-organizing hierarchy comprised of

worker bots, proxy bots and master servers. Command and control is “pull-based”, driven

by requests from individual worker bots. These requests are sent to proxies who, in turn,

automatically relay these requests to master servers and similarly forward any attendant

3Such bots are still “useful” for other tasks such as mounting coordinated DDoS attacks that Storm
perpetrates from time to time.
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responses back to the workers.

3.2 Botnet Infiltration Infrastructure

To infiltrate the Storm Botnet, we extended the GQ malware execution farm [42],

introducing new capabilities allowing the monitoring, containment, and modification of

Internet communication flows between infected virtual machines and the commodity

Internet.

As we must allow the Storm malware to communicate with hosts on the commod-

ity Internet, we must guarantee that the botnet does not harm any other hosts during our

experiments. We present GQ’s containment capabilities which enable our infiltration of

the Storm botnet in this section.

3.2.1 Containment server implementation

We wrote the containment server in Python, using a pre-forked, multi-threaded

service model. The server logic comprises roughly 2,200 lines, with 600 lines for the

event-trigger logic. The containment policies, including content rewriters, add up to 1,000

lines.

Shimming protocol. To couple the gateway’s packet router to the containment

server, we need a way to map/unmap arbitrary flows to/from the single address and port of

the containment server. We achieve this mapping using a shimming protocol conceptually

similar to SOCKS [37]: upon redirection to the containment server, the gateway injects

into the flow a containment request shim message with meta-information. Figure 3.2

summarizes the message structure.

The containment server expects this meta-information and uses it to assign a

containment policy to the flow. The containment server similarly conveys the containment

verdict back to gateway using a containment response shim, which the packet router strips

from the flow before relaying subsequent content back to the endpoint. For TCP, the shim

is sent as a separate TCP packet injected into the sequence space, so adding and removing

shim packets requires bumping and unbumping of sequence and acknowledgement
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Figure 3.2: The shim protocol message structure.

numbers; for UDP it requires padding the datagrams with the respective shims.4 The

request shim occupies 24 bytes and begins with a preamble of 8 bytes containing a magic

number (4 bytes), the message length (2 bytes), a message type indicator (1 byte), and

a shim protocol version number (1 byte), followed by the original flow’s endpoint four-

tuple (2 · 4 bytes plus 2 · 2 bytes), the VLAN ID of the sending/receiving inmate (2 bytes)

and a nonce port (2 bytes) on which the gateway will expect a possible subsequent

outbound connection from the containment server, in case the latter needs to rewrite the

flow continuously. The response shim can vary in length and requires at least 56 bytes,

consisting of a similar preamble (8 bytes), the resulting endpoint four-tuple (12 bytes), the

containment verdict (FORWARD, LIMIT, DROP, REDIRECT, REFLECT, or REWRITE, possibly

in combination when feasible) expressed as a numeric opcode (4 bytes), a name tag for

the resulting containment policy (32 bytes), and an optional annotation string to clarify

the context in which the containment server decided the containment verdict.

We show an example of this containment procedure in Figure 3.3. An inmate

initiates the TCP handshake for an upcoming HTTP request (Ê), which the gateway

redirects to the containment server’s fixed address and port, synthesizing a full TCP

handshake. Upon completion, the gateway injects into the TCP stream the containment

request shim (Ë). The containment server in turn sends a containment response shim (Ì)

including the containment verdict for the flow, in this case a REWRITE. To serve as a

transparent proxy rewriting the flow content, it also establishes a second TCP connection

to the target via the gateway and the nonce port received as part of the containment

4For large UDP datagrams, this can require fragmentation.
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T
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e
SYN-ACK

ACK

REQ SHIM
10.0.0.23:1234 192.150.187.12:80VLAN 12, Nonce port 42

RSP SHIM

10.0.0.23:1234 192.150.187.12:80

REWRITE, Policy ID, Annotations

ACK

SYN10.0.0.23:1234 192.150.187.12:80 SYN
10.0.0.23:1234 10.3.0.1:6666

GET bot.exe HTTP/1.1

SYN-ACK

10.0.0.23:1234 192.150.187.12:80

GET bot.exe HTTP/1.1

SEQ += |REQ SHIM|10.0.0.23:1234 10.3.0.1:6666

SYN

10.4.0.1:42 10.3.0.1:2345

SYN10.0.0.23:1234 192.150.187.12:80

SYN-ACK

ACK

10.4.0.1:42 10.3.0.1:2345

GET cleanup.exe HTTP/1.1

SEQ -= |RSP SHIM|10.0.0.23:1234

HTTP/1.1 200 OK

SEQ += |REQ SHIM|10.4.0.1:42 10.3.0.1:2345

10.0.0.23:1234 10.3.0.1:6666

HTTP/1.1 404 NOT FOUND
10.0.0.23:1234 192.150.187.12:80

HTTP/1.1 404 NOT FOUND

SEQ -= |RSP SHIM|

Figure 3.3: TCP packet flow through gateway and containment server in a REWRITE containment.

request shim. The gateway forwards this TCP SYN to the target and relays the handshake

between target and inmate (Í). The inmate completes its connection establishment and

sends the HTTP request, which the gateway relays on to the containment server as part

of the same connection that it used to exchange containment information, bumping

the sequence number accordingly (Î). The containment server rewrites the request as

needed (here changing the requested resource to another one) and forwards it on to the

target, via the gateway (Ï). The target’s response travels in the opposite direction and

arrives at the containment server, which again rewrites it (here to create the illusion of a

non-existing resource) and relays it back to the inmate (Ð). (For brevity, we do not show

the subsequent connection tear-downs in the figure.)
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[VLAN 16-17]

Decider = Rustock

Infection = rustock.100921.*.exe

[VLAN 18-19]

Decider = Grum

Infection = grum.100818.*.exe

[VLAN 16-19]

Trigger = *:25/tcp / 30min < 1 -> revert

[Autoinfect]

Address = 10.9.8.7

Port = 6543

[BannerSmtpSink]

Address = 10.3.1.4

Port = 2526

Figure 3.4: Example of a containment server configuration file: GQ will infect the inmates on

VLAN IDs 16 and 17 iteratively with binaries from the rustock.100921.*.exe batch, using

the “Rustock” containment policy. It will apply similar policies to inmates with VLAN IDs 18 and

19, for Grum. On all four VLAN IDs a lifecycle trigger reverts inmates to a clean state whenever

the number of flows to TCP port 25 in 30 minutes hits zero. The last two sections specify the

location in the subfarm of an auto-infection server and of an SMTP sink, respectively.

Policy structure. We codify containment policies in Python classes, which the

containment server instantiates by keying on VLAN ID ranges and applies on a per-

flow basis. We base endpoint control upon the flow’s four-tuple, and content control

depends on the actual data sent in a given flow. Object-oriented implementation reuse

and specialization lends itself well to the establishment of a hierarchy of containment

policies. From a base class implementing a default-deny policy we derive classes for each

endpoint control verdict, and from these specialize further, for example to a base class for

spambots that reflects all outbound SMTP traffic. The containment server simply takes

the name of the class implementing the applicable containment policy into the response

shim (recall Figure 3.2b) in order to convey it to the gateway.
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Configuration. The codified containment policies are customizable through a

configuration file. This file serves four purposes. It specifies: (i) the initial assignment

of a policy to a given inmate’s traffic, (ii) the individual or set of malware binaries with

which we would like to infect a given inmate over the course of its life-cycles,5 (iii)

activity triggers (e.g., revert and reinfect the inmate once the containment server has

observed no outbound activity for 30 minutes) and (iv) IP addresses and port numbers of

infrastructure services in a subfarm (e.g., where to find a particular SMTP sink or HTTP

proxy). Figure 3.4 shows a sample configuration snippet.

3.3 Methodology

Our measurement approach is based on botnet infiltration — we combine our

understanding of the Storm botnet outlined in Section 3.1 with the GQ malware farm

introduced in Section 3.2 to insinuate ourselves into the botnet’s “command and control”

(C&C) network, passively observing the spam-related commands and data it distributes

and, where appropriate, actively changing individual elements of these messages in transit.

Storm’s architecture lends itself particularly well to infiltration since the proxy bots, by

design, interpose on the communications between individual worker bots and the master

servers who direct them. Moreover, since Storm compromises hosts indiscriminately

(normally using malware distributed via social engineering Web sites) it is straightforward

to create a proxy bot on demand by infecting a globally reachable host under our control

with the Storm malware.

Figure 3.5 also illustrates our basic measurement infrastructure. At the core,

we instantiate eight unmodified Storm proxy bots within a controlled virtual machine

environment hosted on VMWare ESX 3 servers. The network traffic for these bots is

then routed through a centralized gateway, providing a means for blocking unanticipated

behaviors (e.g., participation in DDoS attacks) and an interposition point for parsing C&C

messages and “rewriting” them as they pass from proxies to workers. Most critically,

by carefully rewriting the spam template and dictionary entries sent by master servers,

5As indicated earlier, we typically specify precisely which sample to infect an inmate with. However,
GQ equally supports traditional honeypot constellations in which dynamic circumstances (such as a web
drive-by) determine the nature of the infection.
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Figure 3.5: The Storm spam campaign dataflow (Section 3.1.3) and our measurement and

rewriting infrastructure (Section 3.3). (1) Workers request spam tasks through proxies, (2) proxies

forward spam workload responses from master servers, (3) workers send the spam and (4) return

delivery reports. Our infrastructure infiltrates the C&C channels between workers and proxies.

we arrange for worker bots to replace the intended site links in their spam with URLs

of our choosing. From this basic capability we synthesize experiments to measure the

click-through and conversion rates for several large spam campaigns.

In the remainder of this section we provide a detailed description of our Storm

C&C rewriting engine, discuss how we use this tool to obtain empirical estimates for

spam delivery, click-through and conversion rates and describe the heuristics used for

differentiating real user visits from those driven by automated crawlers, honey-clients,

etc. With this context, we then review the ethical basis upon which these measurements
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were conducted.

3.3.1 C&C protocol rewriting

Our runtime C&C protocol rewriter consists of two components. A custom Click-

based network element redirects potential C&C traffic to a fixed IP address and port,

where a user-space proxy server implemented in Python accepts incoming connections

and impersonates the proxy bots. This server in turn forwards connections back into

the Click element, which redirects the traffic to the intended proxy bot. To associate

connections to the proxy server with those forwarded by the proxy server, the Click

element injects a SOCKS-style destination header into the flows. The proxy server uses

this header to forward a connection to a particular address and port, allowing the Click

element to make the association. From that point on, traffic flows transparently through

the proxy server where C&C traffic is parsed and rewritten as required. Rules for rewriting

can be installed independently for templates, dictionaries, and email address target lists.

The rewriter logs all C&C traffic between worker and our proxy bots, between the proxy

bots and the master servers, and all rewriting actions on the traffic.

Since C&C traffic arrives on arbitrary ports, we designed the proxy server so

that it initially handles any type of connection and falls back to passive pass-through for

any non-C&C traffic. Since the proxy server needs to maintain a connection for each of

the (many) workers, we use a preforked, multithreaded design. A pool of 30 processes

allowed us to handle the full worker load for the eight Storm proxy bots at all times.

3.3.2 Measuring spam delivery

To evaluate the effect of spam filtering along the email delivery path to user

inboxes, we established a collection of test email accounts and arranged to have Storm

worker bots send spam to those accounts. We created multiple accounts at three pop-

ular free email providers (Gmail, Yahoo!, and Hotmail), accounts filtered through our

department commercial spam filtering appliance (a Barracuda Spam Firewall Model

300 with slightly more permissive spam tagging than the default setting), and multiple

SMTP “sinks” at distinct institutions that accept any message sent to them (these served
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as “controls” to ensure that spam emails were being successfully delivered, absent any

receiver-side spam filtering). When worker bots request spam workloads, our rewriter

appends these email addresses to the end of each delivery list. When a worker bot reports

success or failure back to the master servers, we remove any success reports for our email

addresses to hide our modifications from the botmaster.

We periodically poll each email account (both inbox and “junk/spam” folders)

for the messages that it received, and we log them with their timestamps. However, some

of the messages we receive have nothing to do with our study and must be filtered out.

These messages occur for a range of reasons, including spam generated by “dictionary

bots” that exhaustively target potential email addresses, or because the addresses we use

are unintentionally “leaked” (this can happen when a Storm worker bot connects to our

proxy and then leaves before it has finished sending its spam; when it reconnects via

a new proxy the delivery report to the master servers will include our addresses). To

filter such email, we validate that each message includes both a subject line used by our

selected campaigns and contains a link to one of the Web sites under our control.

3.3.3 Measuring click-through and conversion

To evaluate how often users who receive spam actually visit the sites advertised

requires monitoring the advertised sites themselves. Since it is generally impractical to

monitor sites not under our control, we have arranged to have a fraction of Storm’s spam

advertise sites of our creation instead.

In particular, we have focused on two types of Storm spam campaigns, a self-

propagation campaign designed to spread the Storm malware (typically under the guise of

advertising an electronic postcard site) and the other advertising a pharmacy site. These

are the two most popular Storm spam campaigns and represent over 40% of recent Storm

activity [40].

For each of these campaigns, the Storm master servers distribute a specific

“dictionary” that contains the set of target URLs to be inserted into spam emails as

they are generated by worker bots. To divert user visits to our sites instead, the rewriter

replaces any dictionaries that pass through our proxies with entries only containing URLs

to our Web servers.
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(a) Pharmaceutical site

(b) Postcard-themed self-propagation site

Figure 3.6: Screenshots of the Web sites operated to measure user click-through and conversion.

In general, we strive for verisimilitude with the actual Storm operation. Thus, we

are careful to construct these URLs in the same manner as the real Storm sites (whether

this is raw IP addresses, as used in the self-propagation campaigns, or the particular

“nounnoun.com” naming schema used by the pharmacy campaign) to ensure the generated
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spam is qualitatively indistinguishable from the “real thing”. An important exception,

unique to the pharmacy campaign, is an identifier we add to the end of each URL by

modifying the associated spam template. This identifier allows us to unambiguously

associate individual spam messages with subsequent accesses to the site. We did not

add this identifier to the self-propagation campaigns since their URLs typically consist

entirely of raw IP addresses. The addition of a text identifier suffix might thus appear out

of place, reducing verisimilitude, and perhaps bias user click behavior.

Finally, we created two Web sites to mimic those used in the associated campaigns

(screenshots of these sites are shown in Figure 3.6). The pharmaceutical site, primarily

marketing “male-enhancement” drugs such as Viagra, is a nearly-precise replica of the

site normally advertised by Storm down to using the same naming convention for the

domains themselves. Our site mirrors the original site’s user interface, the addition of

products advertised for sale to a “shopping cart”, and navigation up to, but not including,

the input of personal and payment information (there are a range of complex regulatory,

legal and ethical issues in accepting such information). Instead, when a user clicks on

“Checkout” we return a 404 error message. We log all accesses to the site, allowing us

to determine when a visitor attempts to make a purchase and what the content of their

shopping cart is at the time. We assume that a purchase attempt is a conversion, which

we speculate is a reasonable assumption, although our methodology does not allow us to

validate that the user would have actually completed the purchase or that their credit card

information would have been valid.

The self-propagation campaign is Storm’s key mechanism for growth. The cam-

paign entices users to download the Storm malware via deception; for example by telling

them it is postcard software essential for viewing a message or joke sent to them by a

friend. Unlike the pharmacy example, we were not able to mirror the graphical content of

the postcard site, since it was itself stolen from a legitimate Internet postcard site. Instead,

we created a close analog designed to mimic the overall look and feel. We also “defanged”

our site by replacing its link to the Storm malware with that of a benign executable. If run,

our executable is designed to performs a simple HTTP POST with a harmless payload

(“data=1”) to a server under our control, and then exit. As a rough timeout mechanism,

the executable will not send the message if the system date is 2009 or later. Since the
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postcard site we impersonated served three different executables under different names,

we served three executables with different target filenames in the POST command as well.

Again, all accesses to the site are logged and we are able to identify when our binary

has been downloaded. Moreover, by correlating with the POST signal, we are able to

determine if a particular download is ultimately executed on the visitor’s machine (and

hence is a conversion). Downloads and executions can differ because the user has second

thoughts about allowing an execution or because the user’s security software prevents it

from executing (indeed, we observed that several anti-virus vendors developed signatures

for our benign executable within a few days of our introducing it).

3.3.4 Separating users from crawlers

As with our email accounts, not all visits to our Web site are prospective conver-

sions. There is a range of automated and semi-automated processes that visit our sites,

ranging from pure Web crawlers, to “honeyclient” systems designed to gather intelligence

on spam advertised sites, to security researchers trying to identify new malware.

To filter out such visits (which we generically call “crawlers”) from intentful ones,

we have developed a series of heuristics to identify crawlers and use this data to populate

a global IP blacklist across all of our Web sites. We outline these heuristics below.

First, we consider all hosts that access the pharmacy site that do not use a URL

containing the unique identifier discussed in Section 3.3.3 to be crawlers. Second, we

blacklist hosts that access robots.txt (site-specific instructions meant only for Web

crawlers) and hosts that make malformed requests (most often exploit attempts). Third,

we blacklist all hosts that disable javascript and do not load embedded images. We

assume that typical users do not browse under these conditions, whereas some large-scale

anti-spam honeypots that follow embedded links in suspected spam exhibit this behavior

to reduce load.

In addition to blacklisting based on the behavior of individual site visits, another

common pattern we observed was the same IP address accessing the pharmacy site using

several different unique identifiers, presumably as part of a spam defense or measurement

mechanism. Consequently, we blacklist an IP address seen accessing the pharmacy site

with more than one unique identifier with the same User-Agent field. This heuristic
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Figure 3.7: Number of email messages assigned per hour for each campaign.

does not filter users browsing behind larger Web proxy services, but does filter the

homogeneous accesses seen from spam honeyclients. Similarly, we also blacklist any

host that requests the downloaded executable from the postcard site ten or more times,

under the assumption that such hosts are used by researchers or other observers interested

in tracking updates to the Storm malware.

Finally, it has become common for anti-malware researchers to find new versions

of the Storm malware by directly accessing the self-propagation dictionary entries. To

detect such users we injected new IP addresses (never advertised in spam messages)

into the self-propagation dictionary during a period of inactivity (i.e., when no self-

propagation spam was being sent). Any visitors to these IP addresses could not have

resulted from spam, and we therefore also added them to our crawler blacklist.

It is still possible that some of the accesses were via full-featured, low-volume

honeyclients, but even if these exist we believe they are unlikely to significantly impact

the data.
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Table 3.1: Campaigns used in the experiment.

CAMPAIGN DATES WORKERS EMAILS

Pharmacy Mar 21 – Apr 15 31,348 347,590,389
Postcard Mar 9 – Mar 15 17,639 83,665,479

April Fool Mar 31 – Apr 2 3,678 38,651,124
Total 469,906,992

3.3.5 Measurement ethics

We have been careful to design experiments that we believe are both consistent

with current U.S. legal doctrine and are fundamentally ethical as well. While it is beyond

the scope of this paper to fully describe the complex legal landscape in which active

security measurements operate, we believe the ethical basis for our work is far easier

to explain: we strictly reduce harm. First, our instrumented proxy bots do not create

any new harm. That is, absent our involvement, the same set of users would receive the

same set of spam emails sent by the same worker bots. Storm is a large self-organizing

system and when a proxy fails its worker bots automatically switch to other idle proxies

(indeed, when our proxies fail we see workers quickly switch away). Second, our proxies

are passive actors and do not themselves engage in any behavior that is intrinsically

objectionable; they do not send spam email, they do not compromise hosts, nor do they

even contact worker bots asynchronously. Indeed, their only function is to provide a

conduit between worker bots making requests and master servers providing responses.

Finally, where we do modify C&C messages in transit, these actions themselves strictly

reduce harm. Users who click on spam altered by these changes will be directed to one

of our innocuous doppelganger Web sites. Unlike the sites normally advertised by Storm,

our sites do not infect users with malware and do not collect user credit card information.

Thus, no user should receive more spam due to our involvement, but some users will

receive spam that is less dangerous that it would otherwise be.

At the same time, our infrastructure and modifications only strictly reduce harm

to actual users. The proxy bots we operate do not send spam — the proxies are relays,

and only the worker bots actually send spam. The existence of our proxy bots does not

enable any additional spam to be sent — the workers connected to our proxies would

have simply connected to different proxies otherwise. Further, we do not cause spam to
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Figure 3.8: Timeline of proxy bot workload.

be sent to users who would not have otherwise been targeted, only to additional accounts

under our personal control. Most importantly, we render the spam sent by the worker

bots harmless by changing the URLs included in messages to refer to innocuous sites

rather than sites that contain malware or collect personally identifying information.

3.4 Experimental results

We now present the overall results of our rewriting experiment. We first describe

the spam workload observed by our C&C rewriting proxy. We then characterize the

effects of filtering on the spam workload along the delivery path from worker bots to user

inboxes, as well as the number of users who browse the advertised Web sites and act on

the content there.
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3.4.1 Campaign datasets

Our study covers three spam campaigns summarized in Table 3.1. The “Pharmacy”

campaign is a 26-day sample (19 active days) of an on-going Storm campaign advertising

an on-line pharmacy. The “Postcard” and “April Fool” campaigns are two distinct and

serial instances of self-propagation campaigns, which attempt to install an executable

on the user’s machine under the guise of being postcard software. For each campaign,

Figure 3.7 shows the number of messages per hour assigned to bots for mailing.

Storm’s authors have shown great cunning in exploiting the cultural and social

expectations of users — hence the April Fool campaign was rolled out for a limited run

around April 1st. Our Web site was designed to mimic the earlier Postcard campaign and

thus our data probably does not perfectly reflect user behavior for this campaign, but the

two are similar enough in nature that we surmise that any impact is small.



47

Table 3.2: The 10 most-targeted email address domains and their frequency in the combined lists

of targeted addresses over all three campaigns.

DOMAIN FREQ.

hotmail.com 8.47%
yahoo.com 5.05%
gmail.com 3.17%

aol.com 2.37%
yahoo.co.in 1.13%

sbcglobal.net 0.93%
mail.ru 0.86%

shaw.ca 0.61%
wanadoo.fr 0.61%

msn.com 0.58%
Total 23.79%
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Figure 3.10: The spam conversion pipeline.

We began the experiment with 8 proxy bots, of which 7 survived until the end.

One proxy crashed late on March 31. The total number of worker bots connected to our

proxies was 75,869.

Figure 3.8 shows a timeline of the proxy bot workload. The number of workers

connected to each proxy is roughly uniform across all proxies (23 worker bots on average),

but shows strong spikes corresponding to new self-propagation campaigns. At peak, 539

worker bots were connected to our proxies at the same time.

Most workers only connected to our proxies once: 78% of the workers only
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Table 3.3: Filtering at each stage of the spam conversion pipeline for the self-propagation and

pharmacy campaigns. Percentages refer to the conversion rate relative to Stage A.

STAGE PHARMACY POSTCARD APRIL FOOL

A – Spam Targets 347,590,389 100% 83,655,479 100% 40,135,487 100%
B – MTA Delivery (est.) 82,700,000 23.8% 21,100,000 25.2% 10,100,000 25.2%
C – Inbox Delivery — — — — — —
D – User Site Visits 10,522 0.00303% 3,827 0.00457% 2,721 0.00680%
E – User Conversions 28 0.0000081% 316 0.000378% 225 0.000561%

connected to our proxies a single time, 92% at most twice, and 99% at most five times.

The most prolific worker IP address, a host in an academic network in North Carolina,

USA, contacted our proxies 269 times; further inspection identified this as a NAT egress

point for 19 individual infections. Conversely, most workers do not connect to more than

one proxy: 81% of the workers only connected to a single proxy, 12% to two, 3% to four,

4% connected to five or more, and 90 worker bots connected to all of our proxies. On

average, worker bots remained connected for 40 minutes, although over 40% workers

connected for less than a minute. The longest connection lasted almost 81 hours.

The workers were instructed to send postcard spam to a total of 83,665,479

addresses, of which 74,901,820 (89.53%) are unique. The April Fool campaign targeted

38,651,124 addresses, of which 36,909,792 (95.49%) are unique. Pharmacy spam targeted

347,590,389 addresses, of which 213,761,147 (61.50%) are unique. Table 3.2 shows the

15 most frequently targeted domains of the three campaigns. The individual campaign

distributions are identical in ordering and to a precision of one tenth of a percentage,

therefore we only show the aggregate breakdown.

3.4.2 Spam conversion pipeline

Conceptually, we break down spam conversion into a pipeline with five “filtering”

stages in a manner similar to that described by Aycock and Friess [4]. Figure 3.10

illustrates this pipeline and shows the type of filtering at each stage. The pipeline starts

with delivery lists of target email addresses sent to worker bots (Stage A). For a wide

range of reasons (e.g., the target address is invalid, MTAs refuse delivery because of

blacklists, etc.), workers will successfully deliver only a subset of their messages to an
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Table 3.4: Number of messages delivered to a user’s inbox as a fraction of those injected for test

accounts at free email providers and a commercial spam filtering appliance. The test account for

the Barracuda appliance was not included in the Postcard campaign.

SPAM FILTER PHARMACY POSTCARD APRIL FOOL

Gmail 0.00683% 0.00176% 0.00226%
Yahoo 0.00173% 0.000542% none

Hotmail none none none
Barracuda 0.131% N/A 0.00826%

MTA (Stage B). At this point, spam filters at the site correctly identify many messages as

spam, and drop them or place them aside in a spam folder. The remaining messages have

survived the gauntlet and appear in a user’s inbox as valid messages (Stage C). Users

may delete or otherwise ignore them, but some users will act on the spam, click on the

URL in the message, and visit the advertised site (Stage D). These users may browse

the site, but only a fraction “convert” on the spam (Stage E) by attempting to purchase

products (pharmacy) or by downloading and running an executable (self-propagation).

We show the spam flow in two parts, “crawler” and “converter”, to differentiate

between real and masquerading users (Section 3.3.4). For example, the delivery lists given

to workers contain honeypot email addresses. Workers deliver spam to these honeypots,

which then use crawlers to access the sites referenced by the URL in the messages

(e.g., our own Spamscatter project [2]). Since we want to measure the spam conversion

rate for actual users, we separate out the effects of automated processes like crawlers

— a necessary aspect of studying an artifact that is also being actively studied by other

groups [33].

Table 3.3 shows the effects of filtering at each stage of the conversion pipeline

for both the self-propagation and pharmaceutical campaigns. The number of targeted

addresses (A) is simply the total number of addresses on the delivery lists received by the

worker bots during the measurement period, excluding the test addresses we injected.

We obtain the number of messages delivered to an MTA (B) by relying on delivery

reports generated by the workers. Unfortunately, an exact count of successfully delivered

messages is not possible because workers frequently change proxies or go offline, causing

both extraneous (resulting from a previous, non-interposed proxy session) and missing



50

delivery reports. We can, however, estimate the aggregate delivery ratio (B/A) for each

campaign using the success ratio of all observed delivery reports. This ratio allows us

to then estimate the number of messages delivered to the MTA and even to do so on a

per-domain basis.

The number of messages delivered to a user’s inbox (C) is a much harder value

to estimate. We do not know what spam filtering, if any, is used by each mail provider,

and then by each user individually, and therefore cannot reasonably estimate this number

in total. It is possible, however, to determine this number for individual mail providers

or spam filters. The three mail providers and the spam filtering appliance we used in

this experiment had a method for separating delivered mails into “junk” and inbox

categories. Table 3.4 gives the number of messages delivered to a user’s inbox for the

free email providers, which together accounted for about 16.5% of addresses targeted by

Storm (Table 3.2), as well as our department’s commercial spam filtering appliance. It is

important to note that these are results from one spam campaign over a short period of

time and should not be used as measures of the relative effectiveness for each service.

That said, we observe that the popular Web mail providers all do a very a good job at

filtering the campaigns we observed, although it is clear they use different methods to

get there (for example, Hotmail rejects most Storm spam at the MTA-level, while Gmail

accepts a significant fraction only to filter it later as junk).

The number of visits (D) is the number of accesses to our emulated pharmacy

and postcard sites, excluding any crawlers as determined using the methods outlined

in Section 3.3.2. We note that crawler requests came from a small fraction of hosts but

accounted for the majority of all requests to our Web sites. For the pharmacy site, for

instance, of the 11,720 unique IP addresses seen accessing the site with a valid unique

identifier, only 10.2% were blacklisted as crawlers. In contrast, 55.3% of all unique

identifiers used in requests originated from these crawlers. For all non-image requests

made to the site, 87.43% were made by blacklisted IP addresses.

The number of conversions (E) is the number of visits to the purchase page of the

pharmacy site, or the number of executions of the fake self-propagation program.

Our results for Storm spam campaigns show that the spam conversion rate is quite

low. For example, out of 350 million pharmacy campaign emails only 28 conversions
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Figure 3.11: Time-to-click distributions for accesses to the pharmacy site.

resulted (and no crawler ever completed a purchase so errors in crawler filtering plays

no role). However, a very low conversion rate does not necessary imply low revenue or

profitability. We discuss the implications of the conversion rate on the spam conversion

proposition further in Section 3.7.

3.4.3 Time to click

The conversion pipeline shows what fraction of spam ultimately resulted in visits

to the advertised sites. However, it does not reflect the latency between when the spam

was sent and when a user clicked on it. The longer it takes users to act, the longer the

scam hosting infrastructure will need to remain available to extract revenue from the

spam [2]. Put another way, how long does a spam-advertised site need to be available to

collect its potential revenue?

Figure 3.11 shows the cumulative distribution of the “time-to-click” for accesses
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to the pharmacy site. The time-to-click is the time from when spam is sent (when a proxy

forwards a spam workload to a worker bot) to when a user “clicks” on the URL in the

spam (when a host first accesses the Web site). The graph shows three distributions for

the accesses by all users, the users who visited the purchase page (“converters”), and

the automated crawlers (14,716 such accesses). Note that we focus on the pharmacy

site since, absent a unique identifier, we do not have a mechanism to link visits to the

self-propagation site to specific spam messages and their time of delivery.

The user and crawler distributions show distinctly different behavior. Almost 30%

of the crawler accesses are within 20 seconds of worker bots sending spam. This behavior

suggests that these crawlers are configured to scan sites advertised in spam immediately

upon delivery. Another 10% of crawler accesses have a time-to-click of 1 day, suggesting

crawlers configured to access spam-advertised sites periodically in batches. In contrast,

only 10% of the user population accesses spam URLs immediately, and the remaining

distribution is smooth without any distinct modes. The distributions for all users and users

who “convert” are roughly similar, suggesting little correlation between time-to-click and

whether a user visiting a site will convert. While most user visits occur within the first 24

hours, 10% of times-to-click are a week to a month, indicating that advertised sites need

to be available for long durations to capture full revenue potential.

3.5 Effects of Blacklisting

A major effect on the efficacy of spam delivery is the employment by numerous

ISPs of address-based blacklisting to reject email from hosts previously reported as

sourcing spam. To assess the impact of blacklisting, during the course of our experiments

we monitored the Composite Blocking List (CBL) [9], a blacklist source used by the

operators of some of our institutions. At any given time the CBL lists on the order

of 4–6 million IP addresses that have sent email to various spamtraps. We were able

to monitor the CBL from March 21 – April 2, 2008, from the start of the Pharmacy

campaign until the end of the April Fool campaign. Although the monitoring does not

cover the full extent of all campaigns, we believe our results to be representative of the

effects of CBL during the time frame of our experiments.
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Figure 3.12: Change in per-domain delivery rates as seen prior to a worker bot appearing in

the blacklist (x-axis) vs. after appearing (y-axis). Each circle represents a domain targeted by at

least 1,000 analyzable deliveries, with the radius scaled in proportion to the number of delivery

attempts.

We downloaded the current CBL blacklist every half hour, enabling us to deter-

mine which worker bots in our measurements were present on the list and how their

arrival on the list related to their botnet activity. Of 40,864 workers that sent delivery

reports, fully 81% appeared on the CBL. Of those appearing at some point on the list, 77%

were on the list prior to our observing their receipt of spamming directives, appearing

first on the list 4.4 days (median) earlier. Of those not initially listed but then listed

subsequently, the median interval until listing was 1.5 hours, strongly suggesting that
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Figure 3.13: Geographic locations of the hosts that “convert” on spam: the 541 hosts that execute

the emulated self-propagation program (light grey), and the 28 hosts that visit the purchase page

of the emulated pharmacy site (black).

the spamming activity we observed them being instructed to conduct quickly led to their

detection and blacklisting. Of hosts never appearing on the list, more than 75% never

reported successful delivery of spam, indicating that the reason for their lack of listing

was simply their inability to effectively annoy anyone.

One confounding factor is that the CBL exhibits considerable flux once an address

first appears on the blacklist: the worker bots typically (median) experience 5 cycles of

listing-followed-by-delisting. Much of this churn comes from a few periods of massive

delistings, which appear to be glitches in maintenance (or propagation) of the blacklist

rather than a response to external events. (If delistings arose due to botmasters using

the delisting process to render their workers more effective for a while, then it might be

possible to monitor the delisting process in order to conduct botnet counterintelligence,

similar to that developed previously for blacklisting lookups [64].) Due to caching of

blacklist entries by sites, we thus face ambiguity regarding whether a given worker is

viewed as blacklisted at a given time. For our preliminary analysis, we simply consider a

worker as blacklisted from the point where it first appears on the CBL onwards.

We would expect that the impact of blacklisting on spam delivery strongly depends

on the domain targeted in a given email, since some domains incorporate blacklist feeds

such as the CBL into their mailer operations and others do not. To explore this effect,
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Figure 3.12 plots the per-domain delivery rate: the number of spam emails that workers

reported as successfully delivered to the domain divided by number attempted to that

domain. The x-axis shows the delivery rate for spams sent by a worker prior to its

appearance in the CBL, and the y-axis shows the rate after its appearance in the CBL.

We limit the plot to the 10,879 domains to which workers attempted to deliver at least

1,000 spams. We removed attempted deliveries for which we never saw a status report,

as well as those for which the CBL listing appeared in between the directive to send the

spam and the subsequent report, rendering it unclear whether the blacklist was in effect

for the delivery. We also plot delivery rates for the two different campaigns as separate

circles, though the overall nature of the plot does not change between them. The radius

of each plotted circle scales in proportion to the number of delivery attempts, the largest

corresponding to domains such as hotmail.com, yahoo.com, and gmail.com.

From the plot we clearly see a range of blacklisting behavior by different domains.

Some employ other effective anti-spam filtering, indicated by their appearance near the

origin — spam did not get through even prior to appearing on the CBL blacklist. Some

make heavy use of either the CBL or a similar list (y-axis near zero, but x-axis greater

than zero), while others appear insensitive to blacklisting (those lying on the diagonal).

Since points lie predominantly below the diagonal, we see that either blacklisting or some

other effect related to sustained spamming activity (e.g., learning content signatures)

diminishes the delivery rate seen at most domains. Delisting followed by relisting may

account for some of the spread of points seen here; those few points above the diagonal

may simply be due to statistical fluctuations. Finally, the cloud of points to the upper

right indicates a large number of domains that are not much targeted individually, but

collectively comprise a significant population that appears to employ no effective anti-

spam measures.

3.6 Conversion analysis

We now turn to a preliminary look at possible factors influencing response to

spam. For the present, we confine our analysis to coarse-grained effects.

We start by mapping the geographic distribution of the hosts that “convert” on
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Figure 3.14: Volume of email targeting (x-axis) vs. responses (y-axis) for the most prominent

country-code TLDs. The x and y axes correspond to Stages A and D in the pipeline (Figure 3.10),

respectively.

the spam campaigns we monitored. Figure 3.13 maps the locations of the 541 hosts that

execute the emulated self-propagation program, and the 28 hosts that visit the purchase

page of the emulated pharmacy site. The map shows that users around the world respond

to spam.

Figure 3.14 looks at differences in response rates among nations as determined

by prevalent country-code email domain TLDs. To allow the inclusion of generic TLDs

such as .com, for each email address we consider it a member of the country hosting its
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Figure 3.15: Response rates (stage D in the pipeline) by TLD for executable download (x-axis)

vs. pharmacy visits (y-axis).

mail server; we remove domains that resolve to multiple countries, categorizing them

as “international” domains. The x-axis shows the volume of email (log-scaled) targeting

a given country, while the y-axis gives the number of responses recorded at our Web

servers (also log-scaled), corresponding to Stages A and D in the pipeline (Figure 3.10),

respectively. The solid line reflects a response rate of 10−4 and the dashed line a rate

of 10−3. Not surprisingly, we see that the spam campaigns target email addresses in the

United States substantially more than any other country. Further, India, France and the

United States dominate responses. In terms of response rates, however, India, Pakistan,
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and Bulgaria have the highest response rates than any other countries (furthest away

from the diagonal). The United States, although a dominant target and responder, has the

lowest resulting response rate of any country, followed by Japan and Taiwan.

However, the countries with predominant response rates do not appear to reflect

a heightened interest in users from those countries in the specific spam offerings. Fig-

ure 3.15 plots the rates for the most prominent countries responding to self-propagation

vs. pharmacy spams. The median ratio between these two rates is 0.38 (diagonal line). We

see that India and Pakistan in fact exhibit almost exactly this ratio (upper-right corner),

and Bulgaria is not far from it. Indeed, only a few TLDs exhibit significantly different

ratios, including the US and France, the two countries other than India with a high number

of responders; users in the US respond to the self-propagation spam substantially more

than pharmaceutical spam, and vice-versa with users in France. These results suggest that,

for the most part, per-country differences in response rate are due to structural causes

(quality of spam filtering, general user anti-spam education) rather than differing degrees

of cultural or national interest in the particular promises or products conveyed by the

spam.

3.7 Summary

This chapter describes what we believe is the first large-scale quantitative study of

spam conversion. We developed a methodology that uses botnet infiltration to indirectly

instrument spam emails such that user clicks on these messages are taken to replica Web

sites under our control. Using this methodology we instrumented almost 500 million

spam messages, comprising three major campaigns, and quantitatively characterized both

the delivery process and the conversion rate.

We would be the first to admit that these results represent a single data point

and are not necessarily representative of spam as a whole. Different campaigns, using

different tactics and marketing different products will undoubtedly produce different

outcomes. Indeed, we caution strongly against researchers using the conversion rates

we have measured for these Storm-based campaigns to justify assumptions in any other

context. At the same time, it is tempting to speculate on what the numbers we have
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measured might mean. We succumb to this temptation below, with the understanding that

few of our speculations can be empirically validated at this time.

After 26 days, and almost 350 million email messages, only 28 sales resulted — a

conversion rate of well under 0.00001%. Of these, all but one were for male-enhancement

products and the average purchase price was close to $100. Taken together, these con-

versions would have resulted in revenues of $2,731.88 — a bit over $100 a day for

the measurement period or $140 per day for periods when the campaign was active.

However, our study interposed on only a small fraction of the overall Storm network —

we estimate roughly 1.5 percent based on the fraction of worker bots we proxy. Thus,

the total daily revenue attributable to Storm’s pharmacy campaign is likely closer to

$7000 (or $9500 during periods of campaign activity). By the same logic, we estimate

that Storm self-propagation campaigns can produce between 3500 and 8500 new bots

per day.

Under the assumption that our measurements are representative over time (an

admittedly dangerous assumption when dealing with such small samples), we can extrap-

olate that, were it sent continuously at the same rate, Storm-generated pharmaceutical

spam would produce roughly 3.5 million dollars of revenue in a year. This number could

be even higher if spam-advertised pharmacies experience repeat business. A bit less than

“millions of dollars every day”, but certainly a healthy enterprise.

The next obvious question is, “How much of this revenue is profit”? Here things

are even murkier. First, we must consider how much of the gross revenue is actually

recovered on a sale. Assuming the pharmacy campaign drives traffic to an affiliate

program (and there are very strong anecdotal reasons to believe this is so) then the

gross revenue is likely split between the affiliate and the program (a annual net revenue

of $1.75M using our previous estimate). Next, we must subtract business costs. These

include a number of incidental expenses (domain registration, bullet-proof hosting fees,

etc) that are basically fixed sunk costs, and the cost to distribute the spam itself.

Anecdotal reports place the retail price of spam delivery at a bit under $80 per

million [84]. This cost is an order of magnitude less than what legitimate commercial

mailers charge, but is still a significant overhead; sending 350M emails would cost more

than $25,000. Indeed, given the net revenues we estimate, retail spam delivery would
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only make sense if it were 20 times cheaper still.

And yet, Storm continues to distribute pharmacy spam — suggesting that it is

in fact profitable. One explanation is that Storm’s masters are vertically integrated and

the purveyors of Storm’s pharmacy spam are none other than the operators of Storm

itself (i.e., that Storm does not deliver these spams for a third-part in exchange for a

fee). There is some evidence for this, since the distribution of target email domain names

between the self-propagation and pharmacy campaigns is virtually identical. Since the

self-propagation campaigns fundamentally must be run by the botnet’s owners, this

suggests the purveyor of the pharmacy spam is one and the same. A similar observation

can be made in the harvesting of email addresses from the local hard drives of Storm hosts.

These email addresses subsequently appear in the target address lists of the pharmacy

campaign and self-propagation campaigns alike. Moreover, neither of these behaviors

is found in any of the other (smaller) campaigns distributed by Storm (suggesting that

these may in fact be fee-for-service distribution arrangements). If true, then the cost of

distribution is largely that of the labor used in the development and maintenance of the

botnet software itself. While we are unable to provide any meaningful estimates of this

cost (since we do not know which labor market Storm is developed in), we surmise that

it is roughly the cost of two or three good programmers.

If true, this hypothesis is heartening since it suggests that the third-party retail

market for spam distribution has not grown large or efficient enough to produce com-

petitive pricing and thus, that profitable spam campaigns require organizations that can

assemble complete “soup-to-nuts” teams. Put another way, the profit margin for spam (at

least for this one pharmacy campaign) may be meager enough that spammers must be

sensitive to the details of how their campaigns are run and are economically susceptible

to new defenses.

This chapter has presented a very deep analysis of the operation of one spamming

botnet, allowing us to understand the volume of spam sent, conversion rate of those

messages, and make rough estimates of one spammer’s gross revenue. The next chapter

broadens our approach, allowing us to investigate multiple spammers, and get a better

idea both of the demand for their products and the revenues of the spam-advertised goods

industry at large.
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Chapter 4

Understanding the Business Processes

of Unsolicited Commercial Email

Merchants

The previous chapter presents an in depth characterization of the spam campaigns

sent by an individual botnet. Yet this is but an individual spammer’s operation within,

presumably, a much broader ecosystem. This chapter presents research which widens

our understanding of the market for spam advertised goods both on the demand side, by

analyzing the distribution of goods desired by end users of a spam advertised pharmacy,

and on the supply side, through inferring the order throughput of several large affiliate

marketing programs.

4.1 Introduction

A large number of Internet scams are “advertising-based”; that is, their goal is

to convince potential customers to purchase a product or service, typically via some

broad-based advertising medium.1 In turn, this activity mobilizes and helps fund a broad

array of technical capabilities, including botnet-based distribution, fast flux name service,

1Unauthorized Internet advertising includes email spam, black hat search-engine optimization [82],
blog spam [57], Twitter spam [21], forum spam, and comment spam. Hereafter we refer to these myriad
advertising vectors simply as spam.
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and bulletproof hosting. However, while these same technical aspects enjoy a great deal of

attention from the security community, there is considerably less information quantifying

the underlying economic engine that drives this ecosystem. Absent grounded empirical

data, it is challenging to reconcile revenue “estimates” that can range from $2M/day

for one spam botnet [1], to analyses suggesting that spammers make little money at

all [25]. This situation has the potential to distort policy and investment decisions that

are otherwise driven by intuition rather than evidence.

On the demand side, as expected, we find that most pharmaceuticals selected for

purchase are in the “male-enhancement” category (primarily Viagra and other erectile

dysfunction medications comprising 60 distinct items). However, such drugs constitute

only 62% of the total, and we document that this demand distribution has quite a long tail;

user shopping carts contain 289 distinct products, including surprising categories such as

anti-cancer medications (Arimidex and Gleevec), anti-schizophrenia drugs (Seroquel),

and asthma medications (Advair and Ventolin). We also discover significant differences

in the purchasing habits of U.S. and non-U.S. customers.

Combining these measurements, we synthesize overall revenue estimates for each

program, which can be well in excess of $1M per month for a single enterprise. To

the best of our knowledge, ours is the first empirical data set of its kind, as well as the

first to provide insight into the market size of the spam-advertised goods market and

corresponding customer purchasing behavior.

The remainder of this chapter is structured as follows. We discuss our purchase

pair technique in Section 4.2, validating our technique for internal consistency and then

presenting order volume estimates across seven of the top pharmaceutical affiliate pro-

grams and three counterfeit software programs. We then explore the customer dynamics

for one particular pharmaceutical program, EvaPharmacy, in Section 4.3. We explain how

to use image log data to identify customer purchases and then document how, where and

when the EvaPharmacy customer base places its orders. We summarize our findings in

Section 4.4, devising estimates of revenue and comparing them with external validation.

We conclude with a discussion about the implications of our findings in Section 4.5.
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4.2 Order volume

Underlying our purchase pair measurement approach is a model of how affiliate

programs handle transactions, and, in particular, how they assign order numbers.

4.2.1 Basic idea

Upon placing an order, most affiliate programs provide a confirmation page

that includes an “order number” (typically numeric, or at least having a clear numeric

component) that uniquely specifies the customer’s transaction. For purchases where an

order number does not appear on the confirmation page, the seller can provide one in a

confirmation email (the common case), or make one available via login to the seller’s

Web site. The order number allows the customer to specify the particular purchase in any

subsequent emails, when using customer support Web sites, or when contacting online

support via email, IM or live Web chat. For the purchases we made, we found that the

seller generally provides the order number before the authorization step (indeed, even

before merchant-side fraud checks such as Address Verification Service), although purely

local checks such as Luhn digit validation are frequently performed first. Accordingly, we

can consider the creation of an order number only as evidence that a customer attempted

an order, not that it successfully concluded. Thus, the estimates we form in this work

reflect an upper bound on the transaction rate, including transactions declined during

authorization or settlement.2

The most important property for such order numbers is their uniqueness; that

each customer order is assigned a singular number that is distinguished over time without

the possibility of aliasing. While there are a vast number of ways such uniqueness could

be implemented (e.g., a pseudo-random permutation function), the easiest approach by

far is to simply increment a global variable for each new order. Indeed, the serendipitous

observation that motivated our study was that multiple purchases made from the same

affiliate program produced order numbers that appeared to monotonically increase over

2In 2008, Visa documented that card-not-present transactions such as e-commerce had an issuer decline
rate of 14% system-wide [81]. In addition, it seems likely that some orders are declined at the merchant’s
processor due to purely local fraud checks (such as per-card or per-address velocity checks or disparities
between IP address geolocation versus shipping address).
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Figure 4.1: How the purchase pair technique works. In this hypothetical situation, two mea-

surement purchases are made that bracket some number of intervening purchases made by real

customers. Because order number allocation is implemented by a serialized sequential increment,

the difference in the order numbers between measurement purchases, N = 23, corresponds to the

total number of orders processed by the affiliate program in the intervening time.

time. Observing the monotonic nature of this sequence, we hypothesized that order

number allocation is implemented by serializing access to a single global variable that is

incremented each time an order is made; we call this the sequential update hypothesis. To

assess this hypothesis, we examined source code for over a dozen common e-commerce

platforms (e.g., Magento, X-cart, Ubercart, and Zen-cart [49, 79, 86, 87]), finding ubiq-

uitous use of such a counter, typically using an SQL auto-update field, but sometimes

embodied explicitly in code.

Given use of such a global sequential counter, the difference between the numbers

associated with orders placed at two points in time reflects the total number of orders

placed during the intervening time period. Thus, from any pair of purchases we can

extract a measurement of the total transaction volume for the interval of time between

them, even though we cannot directly witness those intervening transactions. Figure 4.1

illustrates the methodology using a concrete example. This observation is similar in flavor

to the analysis used in blind/idle port scanning (there the sequential increment of the IP

identification field allows inference of the presence of intervening transmissions) [11]. It

then appears plausible that this same purchase-pair approach might work across a broad

range of spam-advertised programs, a possibility that we explore more thoroughly next.
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4.2.2 Data collection

To evaluate this approach requires that we first identify which sites advertise

which affiliate programs, and then place repeated purchases from each. We describe how

we gathered each of these data sets in this section.

Program data

In prior work, we developed a URL crawler to follow the embedded links con-

tained in real-time feeds of email spam (provided by a broad range of third-party anti-

spam partners) [46]. The crawler traverses any redirection pages and then fetches and

renders the resulting page in a live browser. We further developed a set of “page classifiers”

that identify the type of good being advertised by analyzing the site content, and, in most

cases, the particular affiliate program being promoted. We developed specific classifiers

for over 20 of the top pharmaceutical programs (comprising virtually all sites adver-

tised in pharmaceutical spam), along with the four most aggressively spam-advertised

counterfeit software programs.

After placing multiple test orders with nine of these pharmaceutical programs, we

identified seven with strictly incrementing order numbers.3 Five of these (Rx–Promotion,

Pharmacy Express (aka Mailien), GlavMed, Online Pharmacy and EvaPharmacy) to-

gether constituted two-thirds of all sites advertised in the roughly 350 million distinct

pharmaceutical spam URLs we observed over three months in late 2010. We found

the sixth, 33drugs (aka DrugRevenue), and seventh, 4RX, less prevalent in email spam

URLs, but they appear to be well advertised via search engine optimization (SEO) tech-

niques [44]. We did a similar analysis of counterfeit software programs, finding three

(Royal Software, EuroSoft, and SoftSales) with the appropriate order-number signature.

While counterfeit software is less prevalent in total spam volume, these three programs

constitute over 97% of such sites advertised to our spam collection apparatus during the

same 3-month period. For the remainder of this paper we focus exclusively on these ten

programs, although it appears plausible that the same technique will prove applicable to

3Of the two programs that we did not select, ZedCash used several different strictly increasing order
number subspaces that would complicate our analysis and decrease accuracy, while World Pharmacy order
numbers appeared to be the concatenation of a small value with the current Unix timestamp, which would
thwart our analysis altogether.
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many smaller programs, and also to programs in other such markets (e.g., gambling, fake

antivirus, adult).

Order data

We collected order data in two manners: actively via our own purchases and

opportunistically, based on the purchases of others. First and foremost are our own

purchases, which we conducted in two phases. The first phase arose during a previous

study, during which we executed a small number of test purchases from numerous affiliate

programs in January and November of 2010 using retail Visa gift cards. Of these, 46

targeted the ten programs under study in this paper. The second phase (comprising the

bulk of our active measurements) reflects a regimen of purchases made over three weeks

in January and February 2011 focused specifically on the ten programs we identified

above.

When placing these orders, we used multiple distinct URLs leading to each pro-

gram (as identified by our page classifiers). The goal of this procedure was to maximize

the likelihood of using distinct affiliates to place purchases in order to provide an oppor-

tunity to determine whether different affiliates of a given program make use of different

order-processing services.

Successfully placing orders had its own set of operational challenges outlined in

Section 4.2.3. Except where noted, we performed all of our purchases using prepaid Visa

credit cards provided to us in partnership with a specialty issuer, and funded to cover

the full amount of each transaction. We used a distinct card for each purchase and went

to considerable lengths to emulate real customers. We used valid names and associated

residential shipping addresses, placed orders from a range of geographically proximate

IP addresses, and provided a unique email address for each order. We used five contact

phone numbers for order confirmation, three from Google Voice and two via prepaid cell

phones, with all inbound calls routed to the prepaid cell phones. In a few instances we

found it necessary to place orders from IP addresses closely geolocated to the vicinity of

the billing address for a given card, as the fraud check process for one affiliate program

(EuroSoft) was sensitive to this feature. Another program (Royal Software) would only

accept one order per IP address, requiring IP address diversity as well.
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In total we placed 156 such orders. We scheduled them both periodically over

a three-week period as well as in patterns designed to help elucidate more detail about

transaction volume and to test for internal consistency, as discussed below.

Finally, in addition to the raw data from our own purchase records, we were able

to capture several purchase order numbers via forum scraping. This opportunity arose

because affiliate programs typically sponsor online forums that establish a community

among their affiliates and provide a channel for distributing operational information (e.g.,

changes in software or name servers), sharing experiences (e.g., which registrars will

tolerate domains used to host pharmaceutical stores), and to raise complaints or questions.

One forum in particular, for the GlavMed program, included an extended “complaint”

thread in which individual affiliates complained about orders that had not yet cleared

payment processing (important to them since affiliates are only paid for each settled

transaction that they deliver). These affiliates chose to document their complaints by

listing the order number they were waiting for, which we determined was in precisely

the same format and numeric range as the order numbers presented to purchasers. By

mining this forum we obtained 122 numbers for past orders, including orders dating back

to 2008.

Note that this data contains an innate time bias since the date of complaint

inevitably came a while later than the time of purchase (unlike our own purchases). For

this reason, we identify opportunistically gathered points distinctly when analyzing the

data. We will see below that the bias proves to be relatively minor.

We summarize the total data set in Table 4.1. It includes order numbers from 202

active purchases and 122 opportunistically gathered data points.

4.2.3 Purchasing Methodology

While some studies can be completed purely using network-level measurements

(either active or passive), in many cases this vantage point can only take one so far. In

particular, when studying the nature of goods and services on offer via the criminal

ecosystem (e.g., including those advertised to the general public, such as spam-advertised

pharmaceuticals, and those rendered to “the trade” such as underground VPNs, exploit

kits, compromised accounts and so on) it is difficult to do so without placing direct
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Table 4.1: Active orders placed to sites of each affiliate program in the two different time phases

of our study. In addition, we opportunistically gathered 122 orders for GlavMed covering the

period between 2/08 and 1/11.

Affiliate Program
Phase 1 Phase 2
(1/10 – 11/10) (1/11 – 2/11)

Rx–Promotion 7 27
Pharmacy Express 3 9
GlavMed 12 14
Online Pharmacy 5 16
EvaPharmacy 7 16
33drugs 4 16
4RX 1 13
EuroSoft 3 25
Royal Software 2 9
SoftSales 2 11

financial transactions via purchasing.

Placing such orders can be operationally difficult, however, and ensuring “realism”

creates particular challenges. In this section we explain these challenges and how our

protocol for handling financial transactions has changed over the last two years of active

involvement.

First, we should make clear that independent of the challenges to verisimilitude,

active measurements such as purchasing from criminals create their own ethical, legal

and operational sensitivities. These issues are not the focus of this paper, but we wish to

emphasize that they have consumed significant attention. All of the work we describe has

been with the knowledge and oversight of multiple lawyers—both specialists in cyberlaw

and general counsel for our institution—and has either been reviewed by our IRB (when

they deemed human subjects to be involved) or consistent with a pre-established set of

ethical guidelines that our group has followed consistently. Indeed, we invested significant

time in consultation with, and education of, our administrators, overseers and advisers,

to arrive at these decisions. Finally, managing the funding of such activities through a

university administration took several years of internal trust building—“We need to be

reimbursed for large numbers of cash equivalent payments for goods that may never

be delivered, that will probably have no receipt and will, at times, involve our being
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defrauded. Is that okay?”—and the development of appropriate industry funding sources.

The remainder of this section focuses on the operational requirements of such

purchasing activity. We separate these financial interactions into two categories: those

in which we pose as fellow scammers and those in which we pose as customers from

the general public. The distinction is driven both by the unique characteristics of each

domain as well as the requirements needed to maintain “cover” in taking measurements.

Purchasing as a customer

Purchasing goods or services offered for sale via traditional channels (e.g., using

credit cards via Web sites) appears far easier on the surface, but introduces its own unique

challenges in execution at scale. We purchased from a large selection of pharmaceutical,

software, and counterfeit luxury goods affiliate programs to identify critical elements

of the payment infrastructure [46]; for this effort, we attempted 120 purchases totaling

$10,400 over the course of one month in 2010. For the research presented in this chapter,

we attempted 156 purchases over three weeks totaling $6,600.

Payment cards

The first challenge is in finding appropriate payment instruments. While it is easy

to use one’s own personal credit card to place a order for spam-advertised herbal supple-

ments or for SEO-advertised fake anti-virus software, this approach has many drawbacks.

First it exposes researchers to potential fraud by providing their credit card information.

Second, it is difficult to differentiate between orders on a credit card statement since the

merchant’s identification string is frequently unrelated to the name of the Web site at

which an order was placed. Finally, placing many orders from the same card creates a

suspicious profile and will quickly trigger standard velocity checks in the merchant’s (or

issuer’s) payment fraud system (or, more likely, a fraud check system operated by their

payment processor or gateway service provider).

One alternative that seems to address this issue is the prepaid gift card (issued by

banks through both the Visa and MasterCard associations). Such cards are practically

anonymous (since the card holder’s identity is bound late, only after the card is purchased,

with zero due diligence) and are cheap enough that different cards can be used for
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different transactions (albeit with some loss due to the residual balance not being easily

transferable).4 Moreover, some issuers will provision “virtual” cards online, allowing

new cards to be created on demand and with variable amounts. However, after using such

cards for almost eighteen months, we can report that they are less attractive than they

first appear.

First, most gift cards only provide telephone support. The assumption is that

most users care primarily about their gift card balance (which can be provided via

an automated telephone menu) and all other requests (e.g., finding out if a particular

transaction settled, the date it settled on, the claimed merchant ID, etc.) require speaking

with the customer support desk. Our experience is that even in widely-used gift card

brands the customer support desk is staffed by only a few individuals and calling tens

of times to request further information creates suspicion of fraud. Moreover, other key

information (e.g., information about transactions that authorized but did not settle and

the Acquirer’s Reference Number, or ARN, identifying the acquiring bank used by the

merchant) does not appear to be available to most support desk operators.

A subset of gift cards provides a Web interface that allows holders to obtain

most of this information online, thus avoiding the customer support problem.5 However,

after researching the Visa gift card market extensively, we found extremely few U.S.

issuers who provide an online Web interface that includes ARN information (critical

for experiments that seek to cluster payment processing infrastructure used by different

scammers). Through consulting with another researcher in the field, we were directed to

one particular brand of card—sold over the counter in West Coast supermarkets—having

these properties. We purchased several thousand dollars of these cards only to be undone

by Federal legislation. As part of the Credit Card Reform Act of 2009, the FinCEN

division of the Treasury department was mandated to revise regulations on the use of

prepaid credit cards to address their use as money laundering vehicles. Among these

new rules (first proposed in mid-2010) are strict reporting requirements on international

4In our experience, placing a single purchase per card number is highly preferable, both for associating
individual transactions to individual cards as well as for analyzing future fraud actions. In initial experiments
we used $500 gift cards and made multiple purchases on each card, only to find that we could not determine
the source of subsequent fraudulent transactions because we had used the card at a variety of sites, making
the culprit ambiguous. In our current efforts, we use each credit card number only a single time.

5Note that there is no guarantee of such service and one such provider changed their policy after we
had purchased their cards, returning us to telephone support for key information.
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transfers. In response, most U.S. Visa gift card issuers elected to simply restrict their

cards to domestic transactions. This change was problematic for cybercrime research

since virtually all interesting transactions are settled through foreign banks.

In the end, after two years of experimentation, we do not believe there is an easy

solution to this problem that is broadly available. Our ultimate solution was to contract

directly with a specialty card issuer whose products do not constitute a “prepaid program”

and who agreed explicitly to support our research, issue new card numbers on demand

(our protocol is to use a single credit card number only one time), and manually export

fine-grained information on each transaction (authorization, settlement, acquiring Bank

Identification Number (BIN), Card Acceptor ID (CAID), etc.) for a nominal fee. This

method required significant negotiation effort on our part as well as an initial investment

of $16,000. While it has been tremendously valuable for us, it is unfortunately non-trivial

to replicate.

Online fraud checks

Armed with a large supply of Visa payment cards we quickly found that many of

our purchases were declined by the sites we purchased from. Through a combination of

trial and error (as well as research into commercial payment fraud services) we discovered

that many merchants employ a range of anti-fraud measures that we had not anticipated.

The first is the standard Address Verification System (AVS), which is provided

through the card association and validates the numeric portion of the customer’s street

address as well as their ZIP code. In each purchase we had inadvertently forgotten to

correctly “program” each card with the corresponding shipping address we planned to

use and our transactions were nearly always declined as a result.

Having fixed the address issue, we still found a variety of sites that rejected our

orders, typically stating that the “fraud score” was above a threshold. Based on our

experiments and examining third-party “fraud check” services, we believe these checks

include IP geolocation (matching the location of the purchaser with the shipping address

and AVS), validating that shipping addresses correspond to “residential” locations, and

flagging “free” email accounts (which, being free, are considered riskier).

For such sites, we modified our operational protocol to address all three issues.
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We obtained IP endpoints located close to the associated shipping addresses, we switched

to using residential shipping addresses instead of the commercial mailbox provider we

had used initially, and we created a range of new domain names to source email addresses

(using Google Apps to host the underlying email service). While this significantly reduced

our decline rate, we still found sites that tracked past IP purchase history and we needed

to allocate a unique IP address for each purchase at such sites.6 Finally, as with our use

of payment cards, we learned that there was significant value in using a unique email

address for each purchase—doing so allows disambiguation among customer service

messages, and tracking differences in post-order advertising.

Voice contact

Most scam sites require the purchaser to provide a range of contact information,

not only shipping and email addresses, but a voice phone number as well—all to support

their own fraud concerns. In our experience, these voice numbers get used frequently

to confirm orders (as yet another fraud check). This in turn requires a range of phone

numbers and some way to relate caller to orders (to recall which “identity” is being called

by the merchant). Over time we have adopted a system using multiple prepaid cellular

telephones, each associated with multiple Google Voice accounts. This arrangement

allows for easy centralized access to voicemail for each account, but also permits the use

of geographically accurate phone numbers. We maintained an online spreadsheet that

identified outstanding orders, as well as the associated names, credit cards and phone

numbers, allowing our purchasers to quickly determine what an incoming call might be

related to.

Managing the operations of this channel was among the most problematic of

our efforts. First, the time overhead of playing phone tag with different merchants can

add up over hundreds of orders. Moreover, even using our shared spreadsheet it was not

always clear which order was being called about and our group members were forced

to bluff their way through conversations until they could determine their appropriate

identity. A further challenge, similar to our experience with gift card support, is that over

6Note that a range of sites will block Tor exit nodes and thus Tor is not an effective solution to this
problem.
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time phone operators would come to recognize our voices, requiring different “actors”

to handle such calls. Finally, if our purchasing behavior exceeded a certain level (at one

point we inadvertently placed a large number of orders for an identical product to the

same address) it was via phone that we would be challenged, further placing pressure on

our buyers to “think fast” for an explanation. When we failed at such ruses, we found that

all related orders would be blacklisted (presumably using some combination of source IP

address and shipping address).

Shipping

Finally, while virtual goods (e.g., fake anti-virus software, counterfeit software,

malware, etc.) can be delivered online, physical goods must be shipped to a postal address.

Purchasing these physical goods creates a number of challenges: since we use a range

of distinct names for placing orders, there must be associated postal addresses that will

accept mail for those individuals.

A natural concern when making these purchases is whether any goods would be

received at all. In fact, similar to other online businesses, our experience is that customer

service is prioritized and all orders were fulfilled (with a few exceptions due to our own

errors).

Our first approach was to deliver all packages to a “virtual suite” at a rented

commercial mailbox in a postal annex. Under this arrangement, we simply provided the

postal annex with a list of names and then one of us was permitted to pickup shipments

for any of those names. Over time this approach created multiple points of stress. First,

while products shipped within the U.S. (i.e., via the postal service) did not require a

signature on delivery, international shipments typically did. In the beginning the annex

employees would allow a single individual to sign for these packages, but as volume

increased they demanded signatures from each recipient, creating a bottleneck. Moreover,

it became challenging to associate each individual product with the associated order

(since it was common for the packaging to not identify the seller or the particular order

number provided via the site’s payment page). We also believe that our use of a non-

residential address increased our fraud score for some merchant’s payment systems,

increasing the probability of a decline. Finally, at least one seller began to notice the
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range of purchases to different names being shipped to the same address and this made

them suspicious of fraud (eventually declining a range of such orders).

Ultimately, we addressed these problems by using a range of individual residential

addresses (volunteered by researchers in our group). This approach significantly increased

overhead for our group, however, and required that a large number of our members make

regular trips to the post office to sign for international packages.

Receiving each individual shipment, inventorying its contents, shipping informa-

tion and custom slip, and then mapping it back to an associated purchase transaction was a

time consuming task and one fraught with ambiguity. The mapping challenge was greatly

eased when we used EMS international shipping (a more expensive shipping option in

which a tracking number is associated with an order and appears on the packaging) at the

cost of roughly an additional $20 per order. Generally, items were packaged as advertised

(including a proper customs declaration) but occasionally we received items where the

goods had been secreted inside other items (e.g., handicrafts).

4.2.4 Consistency

With this ability to make purchases from underground vendors, we collected

order numbers from ten different affiliate programs. While our initial observations of

order number monotonicity are quite suggestive, we need to consider other possible

explanations and confounding factors as well. Here we evaluate the data for internal

consistency—the degree to which the data appears best explained by the sequential

update hypothesis rather than other plausible explanations. At the end of the paper we

also consider the issue of external consistency using “ground truth” revenue data for one

program.

Sequential update

The fundamental premise underlying our purchase-pair technique is that order

numbers increment sequentially for each attempted order. The monotone sequences that

we observe accord with this hypothesis, but could arise from other mechanisms. Alternate

interpretations include that updates are monotone but not sequential (e.g., incrementing

the order number by a small, varying number for each order) or that order numbers are



76

derived from timestamps (i.e., that each order number is just a normalized representation

of the time of purchase, and does not reflect the number of distinct purchase attempts).

To test these hypotheses, we executed back-to-back orders (i.e., within 5–10

seconds of one another) for each of the programs under study. We performed this mea-

surement at least twice for all programs (excepting EvaPharmacy, which temporarily

stopped operation during our study). For eight of the programs, every measurement

pair produced a sequential increment. The GlavMed program also produced sequen-

tial increments, but we observed one measurement for which the order number in-

cremented by two, likely simply due to an intervening order out of our control. Fi-

nally, we observed no sequential updates for Rx–Promotion even with repeated back-

to-back purchase attempts. However, upon further examination of 35 purchases, we

noticed that order numbers for this program are always odd; for whatever reason, the

Rx–Promotion order processing system increments the order number by two for each

order attempt. Adjusting for this deviation, our experiments find that on finer time

scales, every affiliate program behaves consistently with the sequential update hypoth-

esis.

We need however to consider an alternate hypothesis for this same behavior:

that order numbers reflect normalized representations of timestamps, with each order

implicitly serialized by the time at which it is received. This “clock” model does not

appear plausible for fine-grained time scales. Our purchases made several seconds apart

received sequential order numbers, which would require use of a clock that advances

at a somewhat peculiar rate—slowly enough to risk separate orders receiving the same

number and violating the uniqueness property.

A possible refinement to the clock model would be for a program to periodically

allocate a block of order numbers to be used for the next T seconds (e.g., for T = 3,600),

and after that time period elapses, advancing to the next available block. The use of such

a hybrid approach would enable us to analyze purchasing activity over fine-grained time

scales. But it would also tend towards misleading over-inflation of such activity on larger

time scales, since we would be comparing values generated across gaps.

We test for whether the order numbers in our data fit with a clock model as follows.

First, we consider the large-scale behavior of order numbers as seen across the different
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Figure 4.2: Order numbers (y-axis) associated with each affiliate program versus the time of

attempted purchase (x-axis).

affiliate programs. Figure 4.2 plots for each program the order number associated with a

purchase attempt made at a given time. We plot each of the 10 affiliate programs with

a separate symbol (and varying shades, though we reuse a few for programs whose

numbers are far apart). In addition, we plot with black points the order numbers revealed

in the GlavMed discussion forum.

Three basic points stand out from the plot. First, all of the programs use order

numbers distinct from the others. (We verified that neither of those closest together,

33drugs and Royal Software, nor Pharmacy Express and SoftSales, overlap.) Thus, it is

not the case that separate affiliate programs share unified order processing.

Second, the programs nearly always exhibit monotonicity even across large time

scales, ruling out the possibility that some programs occasionally reset their counters.

(We discuss the outliers that manifest in the plot below.)
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Figure 4.3: The amount of error—either in our measurement process, or due to batching of order

numbers—required for each measurement in 2011 to be consistent with the Null Hypothesis that

order numbers are derived from a clock that advances at some steady rate. Note that the y-axis is

truncated at ±24 hrs, though additional points lie outside this range.

Third, the GlavMed forum data is consistent with our own active purchases from

GlavMed. In addition, the data for both has a clear downward concavity starting in

2009—inconsistent with use of clock-driven batches, but consistent with the sequential

update hypothesis. Assuming that the data indeed reflects purchase activity, the downward

concavity also indicates that the program has been losing customers, a finding consistent

with mainstream news stories [39].

We lack such extensive data for the other programs, but can still assess their

possible agreement with use of clock-driven batches, as follows. For each program, we

consider the purchases made in 2011. We construct a least-squares linear fit between the

order numbers of the purchases and the time at which we made them. If the order numbers
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come from clock-driven batches (the Null Hypothesis), then we would expect that all of

the points associated with our purchases to fall near the fitted line. Accordingly, for each

point we compute how far we would have to move it along the x-axis so that it would

coincide with the line for its program. If the Null Hypothesis is true, then this deviation in

time reflects the error that must have arisen during our purchase measurement: either due

to poor accuracy in our own time-keeping, or because of the granularity of the batches

used by the program for generating order numbers.

Figure 4.3 plots this residual error for each affiliate program. For example, in the

lower right we see a point for a 33drugs purchase made in early February 2011. If the

Null Hypothesis holds, then the purchaser’s order number reflects a value that should

have appeared 18 hours earlier than when we observed it. That is, either we introduced

an error of about 18 hours in recording the time of that purchase; or the program uses a

batch-size of 18+ hours; or the Null Hypothesis fails to hold.

For all ten of the affiliate programs, we find many purchases that require timing

errors of many hours to maintain consistency with the Null Hypothesis. (Note that we

restrict the y-axis to the range ±24 hr for legibility, although we find numerous points

falling outside that range as well.) In addition, we do not discern any temporal patterns in

the required errors, such as would be the case if the least-squares fit was perturbed by

an outlier. Finally, if we extend the analysis out to November 2010 (not shown), we find

that the required error grows, sometimes to 100s of hours, indicating that the discrepancy

does not result from a large batch size such as T = 1 day.

Given this evidence, we reject the Null Hypothesis that the order numbers derive

from a clock-driven mechanism. We do however find the data consistent with the sequen-

tial update hypothesis, and so proceed from this point on the presumption that indeed the

order numbers grow sequentially with each new purchase attempt.

Payment independence

We placed most of our orders using cards underwritten by Visa. We selected Visa

because it is the dominant payment method used by these affiliate programs (few accept

MasterCard, and fewer still process American Express). However, it is conceivable that

programs allocate distinct order number ranges for each distinct type of payment. If so,



80

then our Visa-based orders would only witness a subset of the order numbers, leading

us to underestimate the total volume of purchase transactions. To test this question,

we acquired several prepaid MasterCard cards and placed orders at those programs

that accept MasterCard (doing so excludes Rx–Promotion, GlavMed, 4RX and Online

Pharmacy). In each case, we found that Visa purchases made directly before and after a

MasterCard purchase produced order numbers that precisely bracketed the MasterCard

order numbers as well.

Outliers

Out of the 324 samples in our dataset, we found a small number of outliers (six)

that we discuss here. Almost all come from the GlavMed program. The outliers fall into

two categories: two singleton outliers completely outside the normal order number range

for the program, and one group of four internally consistent order numbers that were

slightly outside the expected range, violating monotonicity. We discuss these in more

detail here, as well as their possible explanations.

The first singleton outlier was a purchase placed at a Web site that is clearly based

on the SE2 engine built by GlavMed. However, the returned order number was close

to 16000 when co-temporal orders from all other GlavMed sites returned orders closer

to 1080000. The site differs in a number of key features, including a unique template

not distributed in the standard package made available to GlavMed affiliates, a different

support phone number, different product pricing, and purchases processed via a different

acquiring bank than used by all other GlavMed purchases. Taken together, we believe

this reflects a site that is simply using the SE2 engine, but is not in fact associated with

the GlavMed operation.7

The second outlier occurred in a very early (January 2010) purchase from a

Pharmacy Express affiliate, which returned an order number much higher than any seen

in later purchases. We have no clear explanation for this incongruity, and other key

structural and payment features match, but we note that the order numbers returned in all

subsequent Pharmacy Express transactions are only five digits long, and that over nine

7We have found third parties contracting for custom GlavMed templates on popular “freelancer” sites,
giving reason to believe that independent innovation exists around the SE2 engine created by GlavMed.
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months pass between this initial outlier and all subsequent purchases. Consequently, we

might reasonably explain the discrepancy by a decision to reset the order number space

at some point between January and October.

Finally, we find a group of four early GlavMed purchases whose order numbers

are roughly the same magnitude, but occur out of sequence (i.e., given the rate of growth

seen in the other GlavMed order numbers, these four are from a batch that will only be

used sometime in 2013). These all occurred together in the last two weeks of January

2010. This small outlier group remains a mystery, and suggests either that GlavMed

might maintain a parallel order space for some affiliates, or that they reflect a “counterfeit”

GlavMed operation. The remaining 21 GlavMed purchase samples, as well as the 122

opportunistically gathered order numbers (occurring both before and after January 2010),

all use consistent order numbering.

While we cannot completely explain these few outliers, they represent less than

2% percent of our dataset. We also have found no unexplained instances within the last

12 months. We remove these six data points in the remainder of our analysis.
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Figure 4.4: Collected data points and best fit slope showing the inferred order rate for ten different

spam-advertised affiliate programs. Order numbers are zero-normalized and the vertical scale of

each plot is identical.
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4.2.5 Order rates

Under these assumptions, we can now estimate the rate of orders seen by each

enterprise. Figure 4.4 plots the 2011 data points for each of the 10 programs. We also

plot the least squares linear interpolation as well as the slope parameter of this line—

corresponding to the number of orders received per day on average. During this time

period, daily order rates for pharmacy programs vary from a low of 227 for Rx–Promotion

(recall that their order IDs increment by two for each order) up to a high of 887 for

EvaPharmacy (software programs range between 49 and 749). Together, these reflect a

monthly volume of over 82,000 pharmaceutical orders and over 37,000 software orders.

Again, these numbers reflect upper bounds on completed orders, since undoubtedly some

fraction of these attempted orders are declined; however, it seems clear that order volume

is substantial.

We also note that while order volume is quite consistent across January and

February, there are significant fall offs for some programs when compared to the data

gathered earlier. For example, during 2010, the average number of Rx–Promotion orders

per day was 385, 70% greater than during the first two months of 2011. Similarly, 2011

GlavMed orders are off roughly 20% from their 2010 pace, and EvaPharmacy saw a

similar decline as compared to October and November of that year. Other programs

changed little and maintained a stable level of activity.

4.3 Purchasing behavior

While the previous analysis demonstrates that pharmaceutical affiliate programs

are receiving a significant volume of orders, it reveals little about the source of these

orders or their contents. In this section, we use an opportunistic analysis of found server

log data to explore these issues for one such affiliate program.
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4.3.1 EvaPharmacy image hosting

In particular, we examine EvaPharmacy, a “top 5” spam-advertised pharmacy

affiliate program.8 In monitoring EvaPharmacy sites we observed that roughly two thirds

“outsourced” image hosting to compromised third-party servers (typically functioning

Linux-based Web servers). This behavior was readily identifiable because visits to such

sites produced HTML code in which each image load was redirected to another server—

addressed via raw IP address—at port 8080.

We contacted the victim of one such infection and they were able to share IDS

log data in support of this study. In particular, our dataset includes a log of HTTP request

streams for a compromised image hosting server that was widely used by EvaPharmacy

sites over five days in August of 2010. While the raw IP addresses in our dataset have been

anonymized (consistently), they have first been geolocated (using MaxMind) and these

geographic coordinates are available to us. Thus, we have city-level source identifiability

as well as the contents of HTTP logs (including timestamp, object requested, and referrer).

Through repeated experimentation with live EvaPharmacy sites, we inferred

that the site “engine” can use dynamic HTML rewriting (similar to Akamai) to rewrite

embedded image links on a per visit basis. On a new visit (tracked via a cookie), the server

selects a set of five compromised hosts and assigns these (apparently in a quasi-random

fashion) to each embedded image link served. During the five-day period covering our log

data, our crawler observed 31 distinct image servers in use. However, our particular server

was apparently disproportionately popular, as it appears in 31% of all contemporaneous

visits made by our URL crawler (perhaps due to its particularly good connectivity). In

turn, each image server hosts an nginx Web proxy able to serve the entirety of the image

corpus.

4.3.2 Basket inference

Since the log we use is limited to embedded Web page images, and in fact only

includes one fifth of the images fetched during a particular visit, there are considerable

challenges involved in inferring item selection purely from this data. We next discuss

8Our page classifiers [46] identified EvaPharmacy in over 8% of pharmacy sites found in spam-
advertised URLs over three months, with affiliates driving traffic to over 11,000 distinct domains.
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Figure 4.5: How a user interacts with an EvaPharmacy Web site, beginning with the landing

page and then proceeding to a product page and the shopping cart. The main Web site contains

embedded images hosted on separate compromised systems. When a browser visits such pages,

the referrer information is sent to the image hosting servers for every new image visited.

how this inference technique works (illustrated at a high level in Figure 4.5) as well as its

fundamental limitations.9

We mapped out the purchasing workflow involved in ordering from an EvaPhar-

macy site, and observed that all purchases involve visiting four key kinds of pages in

order: landing, product, shopping cart, and checkout. The landing page generally includes

over 40 distinct embedded images. Thus, even though images are split among five servers,

it is highly likely that multiple objects from each landing page are fetched via our server

(each with a referrer field identifying the landing page from which it was requested).10

We observe 752,000 distinct IP addresses that visited and included referrer information

during our five-day period.

When a visitor selects a particular drug from the landing page, the reply takes

them to an associated product page. This page in turn prompts them to select the particular

dosage and quantity they wish to purchase. The precise construction of product pages

differs between the set of site templates (i.e., storefront brands) used by EvaPharmacy.

However, all include at least a few new images not found on the landing page, and the

most popular template fetches five additional images. The number of additional images

9This general approach is similar in character to Moore and Clayton’s inference of phishing page visits
from Webalizer logs [55].

10We validated this observation using our crawled data, which showed that the landing pages using
:8080 image hosting always used five distinct servers. Thus, any image server assigned to a particular visit
is guaranteed to see the landing page load for that visit.



85

varies on a per-template basis, not a per-product basis within each template. Thus, for

some templates we may have less opportunity to observe what product the user selects,

but this does not affect our estimate of the distribution of products selected, because the

diminished opportunity is not correlated with particular products.

Next, upon selecting a product, the user is taken to the shopping cart page, which

again includes a large number (often a dozen or more) of new images representing

product recommendations. We observe 4,879 cart visits from 3,872 distinct IP addresses.

This allows us to estimate a product-selection conversion rate: the fraction of visitors who

select an item for purchase. Based on the total number of visitors where we have referrer

information, the conversion percentage on an IP basis is 0.5%.11 Of these, 3,089 cart

additions have preceding visits to product pages, which allows us to infer the selected

product. To quantify overall shopping cart addition activity, we compare the total number

of visits to the number of visits to the shopping cart page. To quantify individual item

popularity, we examine the subset of visits for which the customer workflow allows us to

infer which specific item was added to the cart.

There are three key limitations to this approach. First and foremost, the final page

in the purchasing workflow—the checkout page—generally does not include unique

image content, and thus does not appear in our logs (even if it did, our approach could

not determine whether checkout completed correctly). Thus, we can only observe that a

user inserted an item into their cart, but not that they completed a purchase attempt. In

general, this is only an issue to the degree that shopping cart abandonment correlates

with variables of interest (e.g., drug choice). The second limitation is that pages typically

use the same image for all dosages and quantities on a given product page, and therefore

we cannot distinguish these features (e.g., we cannot distinguish between a user selecting

120 tablets of 25mg Viagra tablets vs. an order of 10 tablets, each of 100mg). Finally, we

cannot disambiguate multiple items selected for purchase. When a user visits a product

page followed by the shopping cart page, we can infer that they selected the associated

product. However, if the visitor then continues shopping and visits additional product

pages, we cannot determine whether they added these products or simply examined

them (subsequent visits to the shopping cart page add few new recommended products;

11For comparison, the analysis in Chapter 3 measured a visit-to-product-selection conversion rate of 2%.
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recommendations appear based on the first item in the cart). We choose the conservative

approach and only consider the products that we are confident the user selected, which

will cause us to under-represent those drugs typically purchased together.

Another issue is that pharmacy formularies, while largely similar, are not identical

between programs. In particular, some pharmacy programs (e.g., Online Pharmacy) offer

Schedule II drugs (e.g., Oxycodone and Vicodin). However, since EvaPharmacy does not

sell such drugs, our data does not capture this category of demand.

Finally, our dataset also has potential bias due to the particular means used to drive

traffic to it. We found that 45 of the 50 top landing pages observed in the hosting data also

appeared in our spam-driven crawler data, demonstrating directly that these landing pages

were advertised through email spam. While these pages could also be advertised using less

risky methods such as SEO, this seems unlikely since spam-advertised URLs are swiftly

blacklisted [41]. Thus, we suspect (but cannot prove) that our data may only capture the

purchasing behavior for the spam-advertised pharmacies; different advertising vectors

could conceivably attract different demographics with different purchasing patterns.

Given these limitations, we now report the results of two analyses: product

popularity (what customers buy) and customer distribution (where the money comes

from).

4.3.3 Product popularity

Our first analysis focuses on simple popularity: what individual items users

put into their shopping carts (Table 4.3a) and what broad (seller-defined) categories of

pharmaceuticals were popular (Table 4.3b) during our measurement period. Although

naturally dominated by the various ED and sexually-related pharmaceuticals, we find a

surprisingly long tail; indeed, 38% of all items added to the cart were not in this category.

We observed 289 distinct products, including popular mass-market products such as

Zithromax (31), Acomplia (27), Nexium (26), and Propecia (27); but also Cipro (11;

a commonly prescribed antibiotic), Actos (6; a treatment for Type 2 diabetes), Buspar

(12; anti-anxiety), Seoquel (9; anti-schitzophrenia), Clomid (8; ovulation inducer), and

Gleevec (1; used to treat Leukemia and other cancers).

This in turn explains why such online pharmacies maintain a comprehensive in-
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Figure 4.6: The geographic distribution of those who added an item to their shopping cart.

ventory: not only does a full formulary lend legitimacy, but it also represents a significant

source of potential revenue.

We also comprehensively crawled an EvaPharmacy site for pricing data and

calculated the minimum estimated revenue per purchase (also shown for the top 18

products in Table 4.3a). Combining this data with our measurement of item popularity,

we calculate a minimum weighted-average item cost of $76 plus $15 for shipping and

handling. This weighted average assumes visitors always select the minimum-priced

item for any given purchase, and that the final purchases have the same distribution as for

items added to the user’s shopping cart.

4.3.4 Customer distribution

We next examine the geographic component of the EvaPharmacy customer base.

Figure 4.6 shows the geolocated origin for all shopping cart additions. We observe that

EvaPharmacy has a vast advertising reach, producing site visits from 229 distinct coun-

tries or territories. However, this reach is not necessarily all that useful: the population

actively engaging with EvaPharmacy sites and placing orders is considerably less diverse

than the superset simply visiting (perhaps inadvertently or due to curiosity). For example,

the Philippines constitutes 4% of the visitors, but only 1% of the additions to the shopping
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Table 4.2: The top 15 countries and the percentage of visitors who added an item to their shopping

cart.

Country Visits
Cart Added

Additions Product

United States 517,793 3,707 0.72%
Canada 50,234 218 0.43%
Philippines 42,441 39 0.09%
United Kingdom 39,087 131 0.34%
Spain 26,968 59 0.22%
Malaysia 26,661 31 0.12%
France 18,541 37 0.20%
Germany 15,726 56 0.36%
Australia 15,101 86 0.57%
India 10,835 17 0.16%
China 8,924 30 0.34%
Netherlands 8,363 21 0.25%
Saudi Arabia 8,266 36 0.44%
Mexico 7,775 17 0.22%
Singapore 7,586 17 0.22%

cart. Overall, countries other than the U.S., Canada, and Western Europe generate 29%

of the visitors but only 13% of the items added to the shopping cart. Conversely, the

vast majority of shopping cart insertions originate from the U.S. and Canada (80%) or

Europe (6%), reinforcing the widely held belief that spam-advertised pharmaceuticals

are ultimately funded with Western Dollars and Euros.

The United States dominates both visits (54%) and cart additions (76%), and

moreover has the highest rate of conversion between visit and shopping cart insertion

(0.72%). Table 4.2 well illustrates this, listing the activity from the countries originating

the most visits. This observation reinforces the conclusion that non-Western audiences

offer ineffective targets for such advertising.

Finally, we also notice significant differences between the drug selection habits

of Americans compared to customers from Canada and Western Europe. In particular, we

divide the EvaPharmacy formulary into two broad categories: lifestyle drugs (defined as

drugs commonly used recreationally, including “male-enhancement” items plus Human

Growth Hormone, Soma and Tramadol) and non-lifestyle (all others, including birth
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Table 4.3: Table (a) shows the top 18 product items added to visitor shopping carts (representing

66% of all items added). Table (b) shows the top 18 seller-defined product categories (representing

99% of all items).

(a)

Product Quantity Min order

Generic Viagra 568 $78.80
Cialis 286 $78.00
Cialis/Viagra Combo Pack 172 $74.95
Viagra Super Active+ 121 $134.80
Female (pink) Viagra 119 $44.00
Human Growth Hormone 104 $83.95
Soma (Carisoprodol) 99 $94.80
Viagra Professional 87 $139.80
Levitra 83 $100.80
Viagra Super Force 81 $88.80
Cialis Super Active+ 72 $172.80
Amoxicillin 47 $35.40
Lipitor 38 $14.40
Ultram 38 $45.60
Tramadol 36 $82.80
Prozac 35 $19.50
Cialis Professional 33 $176.00
Retin A 31 $47.85

(b)

Category Quantity

Men’s Health 1760
Pain Relief 232
Women’s Health 183
General Hearth 135
Antibiotics 134
Antidepressants 95
Weight Loss 92
Allergy & Asthma 85
Heart & Blood Pressure 72
Skin Care 54
Stomach 41
Mental Health & Epilepsy 33
Anxiety & Sleep Aids 33
Diabetes 22
Smoking Cessation 22
Vitamins and Herbal Suppliments 18
Eye Care 15
Anti-Viral 14

control pills). We find that while U.S. customers select non-lifestyle items 33% of the

time, Canadian and Western-European customer selections concentrate far more in the

lifestyle category—only 8% of all items placed in a shopping cart are non-lifestyle items.

We surmise that this discrepancy may arise due to differences in health care regimes;

drugs easily justified to a physician may be fully covered under state health plans in

Canada and Western Europe, leaving an external market only for lifestyle products.

Conversely, a subset of uninsured or under-insured customers in the U.S. may view spam-

advertised, no-prescription-required pharmacies as a competitive market for meeting their

medical needs. To further underscore this point, we observe that 85% of all non-lifestyle

drugs are selected by U.S. visitors.

4.4 Revenue estimation

Combining the results from estimates on the order rate per program and estimates

of the shopping cart makeup, we now estimate total revenue on a per-program basis.
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4.4.1 Average price per order

The revenue model underlying our analysis is simple: we multiply the estimated

order rate by the average price per order to arrive at a total revenue figure over a given

unit of time. However, we do not know, on a per-program basis, the actual average

purchase price. Thus, we explore three different approximations, all of which we believe

are conservative.

First, for online pharmacies we use the static value of roughly $100 that we used

for the analysis in Chapter 3. This study only considered one particular site, covered only

28 customers, and was unable to handle more than a single item placed in a cart (i.e., it

could not capture information about customers buying multiple items).

We also consider a second approximation based on the minimum priced item

(including shipping) on the site for each program under study. Since sites can have

enormous catalogs, we restrict the set of items under consideration as follows. For

pharmacy sites, we consider the top 18 most popular items as determined by the analysis

of EvaPharmacy in Section 4.3 (these top 18 items constituted 66% of order volume

in our analysis). For each of these items present in the target pharmacy, we find the

minimum-priced instance (i.e., lowest dosage and quantity) and use the overall minimum

as our per-order price. For small deviations between pharmacy formularies (e.g., different

Viagra store-brand variants) we simply substitute one item for the other. We repeat this

same process for software, but since we do not have a reference set of most popular

items for this market, we simply use the declared “bestsellers” at each site (16 at Royal

Software, 36 and SoftSales and 76 at EuroSoft)—again using the minimum priced item

to represent the average price per order.

Finally, we calculate a “basket-weighted average” price using measured popularity

data. For pharmacies we again consider the 18 most popular EvaPharmacy items and

extract the overlap set with other pharmacies. Using the relative frequency of elements in

this intersection, we calculate a popularity vector that we then use to weight the minimum

item price; we use the sum of these weights as the average price per order. Intuitively, this

approach tries to accommodate the fact that product’s have non-uniform popularity, while

still using the conservative assumption that users order the minimum dosage and quantity

for each item. Note that we implicitly assume that the distribution of drug popularity
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Table 4.4: Estimated monthly order volume, average purchase price, and monthly revenue (in

dollars) per affiliate program using three different per-order price approximations.

Affiliate Program orders/mo Chapter 3 Min product price Basket-weighted average
single order rev/month single order rev/month single order rev/month

33drugs 9,862 $100 $980,000 $45.00 $440,000 $57.25 $560,000
4RX 8,001 $100 $800,000 $34.50 $280,000 $95.00 $760,000
EuroSoft 22,776 N/A N/A $26.50 $600,000 $84.50 $1,900,000
EvaPharmacy 26,962 $100 $2,700,000 $50.50 $1,300,000 $90.00 $2,400,000
GlavMed 17,933 $100 $1,800,000 $54.00 $970,000 $57.00 $1,000,000
Online Pharmacy 5,856 $100 $590,000 $37.00 $220,000 $58.00 $340,000
Pharmacy Express 7,933 $100 $790,000 $51.00 $410,000 $58.75 $460,000
Royal Software 13,483 N/A N/A $55.25 $750,000 $133.75 $1,800,000
Rx–Promotion 6,924 $100 $690,000 $45.00 $310,000 $57.25 $400,000
SoftSales 1,491 N/A N/A $20.00 $30,000 $134.50 $200,000

holds roughly the same between online pharmacies.12

We repeated this analysis, as before, with site-declared best-selling software

packages. To gauge relative popularity, we searched a large BitTorrent metasearch engine

(isohunt.com), which indexes 541 sites tracking over 6.5 million torrents. We assigned a

popularity to each software item in proportion to the sum of the seeders and leechers on

all torrents matching a given product name. We then weighted the total prices (inclusive

of any handling charge) by this popularity metric to arrive at an estimate of the average

order price.

4.4.2 Revenue

Finally, to place a rough estimate on revenue, we multiply the 2011 order volume

measurements shown in Figure 4.4 against each of the previously mentioned approxi-

mations, summarized in Table 4.4. In general, the approximation from Chapter 3 is the

largest, followed by basket-weighted average and then minimum product price. How-

ever, for pharmaceutical programs the difference between product prices is not large,

and thus the minimum and basket-weighted estimates all lie within 2X of one another.

Software programs see much more variation in price, and hence the difference between

the minimum and basket-weighted revenue estimates can be substantial.

Using the basket-weighted approximation, we find that both GlavMed and Eva-

12One data point supporting this view is Rx–Promotion’s rank-ordered list of best selling drugs. The ten
most popular items sold by both pharmacies are virtually the same and ranked in the same order.



92

Pharmacy produce revenues in excess of $1M per month, with all but two over $400K.

Surprisingly, software sales also produce high revenue—less due to high prices than

high order volumes. It remains for future work how to further validate how closely order

volumes track successfully completed orders for this market niche.

4.4.3 External consistency

While we put considerable care into producing these estimates, a number of

biases remain unavoidable. First, while our order volume data has internal consistency

(and consistency with order number implementations in common shopping cart software),

we could not capture the impact of order declines. Thus, we have a somewhat optimistic

revenue estimate, since surely some fraction of orders will not complete.

On the other hand, our estimates of average order revenue are themselves conser-

vative in several key ways. First, they assume that all purchasers select only a single item.

Second, they assume that when purchasing an item, all users select the minimum dosage

and quantity. Finally, for pharmaceuticals we need to keep in mind that EvaPharmacy

does not carry “harder” drugs found at other sites, such as Schedule II opiates. We

have found anecdotal evidence that these drugs are highly popular at such sites, but our

methodology does not offer any means to consider their impact. Such items are also

typically more expensive than other drugs (e.g., the cheapest Hydrocodone order possible

at one popular pharmacy is $186 plus shipping). Thus, this other factor will cause us to

underestimate the true revenue per order.

Our intuition is that such factors are modest, and our estimates capture—within

perhaps a small constant factor—the true level of financial activity within each enterprise.

However, absent ground truth data for program revenues, it is not generally possible to

validate our model and hence verify that our measurements actually capture reality. In

general, this kind of validation is rarely possible since the actors involved are not public

companies and do not make revenue statements available.

Due to an unusual situation, however, we were able to acquire such information

for one program, Rx–Promotion. In particular, a third party made public a variety of

information, including multiple months of accounting data, for Rx–Promotion’s payment
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processor.13 While we cannot validate the provenance of this data, its volume and speci-

ficity make complete fabrication unlikely. In addition, given that our research covers only

a small subset of this data, it seems further unlikely that any fabrication would closely

match our own independent measurements.

Unfortunately, we do not have payment ledgers precisely covering our 2011

measurement period. Instead, we compare against a similar period six months earlier

for which we do have ground truth documentation, 27 consecutive days from the end

of Spring, 2010. These two periods are comparable because during both times Rx–

Promotion had significant difficulty processing orders on “controlled” drugs (indeed,

during the 2011 period such drugs had been removed from the standard formulary on

Rx–Promotion affiliates).14

Based on this data, we find that between May 31 and June 26, 2010, Rx–

Promotion’s turnover via electronic payments was $609K.15 Using our estimate of 385

orders per day in 2010 (see Section 4.2), this is consistent with an average revenue per

order of $58, very similar to our basket-weighted average order price estimate of $57.

While we suspect that both estimates are likely off (with the number of true June 2010

orders likely less due to declines, and January 2011 price-per-order likely higher due to

conservatism in our approximation), they are sufficiently close to one another to support

our claim that this approach can provide a rough, but well-founded estimate (i.e., within

a small constant factor) of program revenue.

4.5 Summary

When asked why he robbed banks, Willie Sutton famously responded, “Because

that’s where the money is.” The same premise is frequently used to explain the plethora

13While our legal advisers believe that the prior public disclosure of this data allows its use in a research
context, we chose not to unnecessarily antagonize the payment services provider by naming them here.

14During periods when such drugs were sold en masse, the overall Rx–Promotion revenue was frequently
doubled.

15Interestingly, this data also provides useful information about refunds and chargebacks (together
about 10% of revenue) as well as processing fees (roughly 8.5%). Thus, the gross revenue delivered to
Rx–Promotion in June 2010 was likely closer to $489K. Finally, since roughly 40% of successful order
income is paid to affiliates on a commission basis, that leaves only $270K (44% of gross) for fulfillment,
administrative costs, and profit.
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of unwanted spam that fills our inboxes, pollutes our search results and infests our social

networks—spammers spam because they can make money at it. However, a key question

has long been how much money, and from whom? In this chapter we provide what we

believe represents the most comprehensive attempt to answer these questions to date. We

have developed new inference techniques: one to estimate the rate of new orders received

by the very enterprises whose revenue drives spam, and the other to characterize the

products and customers who provide that same revenue. We provide quantitative evidence

showing that spam is ultimately supported by Western purchases, with a particularly

central role played by U.S. customers. We also provide the first sense of market size, with

well over 100,000 monthly orders placed in our dataset alone. Finally, we provide rough

but well-founded estimates of per-program revenue. Our results suggest that while the

spam-advertised pharmacy market is substantial, with annual revenue in the many tens of

millions of dollars, it has nowhere near the size claimed by some, and indeed falls vastly

short of the annual expenditures on technical anti-spam solutions.

This chapter characterizes both the demand for spam-advertised goods and the

suppliers that meet this demand. Both the weaknesses of the spammers’ compromised

machine infrastructure and opportunistic data collection have enabled this research.

These data collection methodologies have allowed us to analyze the magnitude of several

spamming operations at once and take a deep look at the worldwide demand for spam-

advertised pharmaceuticals that supports this market.

Chapter 4, in part, is a reprint of the material as it appears in Proceedings of

USENIX Security 2011. Kanich, Chris; Weaver, Nicholas; McCoy, Damon; Halvorson,

Tristan; Kreibich, Christian; Levchenko, Kirill; Paxson, Vern; Voelker, Geoffrey M.,

Savage, Stefan. The dissertation author was the primary investigator and author of this

paper.

Chapter 4, in part, is a reprint of the material as it appears in Proceedings of

USENIX CSET 2011. Kanich, Chris; Chachra, Neha; McCoy, Damon; Grier, Chris;

Wang, David; Motoyama, Marti; Levchenko, Kirill; Savage, Stefan; Voelker, Geoffrey M.

The dissertation author was the primary investigator and author of this paper.



Chapter 5

Conclusion

When conducting computer security research, considering the motivations of the

adversary can provide precious insight into new approaches to the problem at hand. The

immense success of the Internet as a medium for communication and commerce has

attracted many actors who abuse the system for financial gain. While understanding the

technical aspects of these perpetrators’ schemes is necessary to implementing defenses,

understanding how they achieve their financial gains is crucial to developing countermea-

sures that not only prevent their current abuses, but target their bottom line as a lasting

solution to the problem.

To develop an understanding of Internet scams as business processes, one must

determine what questions to ask, and how to procure the data; the finances of Internet

scammers are not open to public perusal or analysis. A fine first task is to determine how

much money they make, and who purchases their goods. Before this work, our under-

standing of these variables was limited; without sound estimates, our characterization of

the adversary is rough or even incorrect.

This dissertation posits that one can understand the business processes of Internet

scammers through infrastructure infiltration, providing important insights into the symp-

toms of abuse on the Internet. Through interposing on the Storm botnet, analyzing the

image load logs of a compromised image host, and the purchase pair methodology, we

have shown that we can analyze and understand the business processes of several different

underground actors, learning important facts about their revenue streams, customers, and

distribution methods.

95
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5.1 Impact

This research gives a better understanding of the root cause of spam—that its per-

petrators can make a healthy profit—allowing defenders to look beyond the classification

problem to a wider array of defensive possibilities. Following the money allowed us to

discover that 95% of all spam received at multiple spam traps over three months shares

just three banks for their credit card processing infrastructure [46]. In addition, analyzing

the difficulty of different circumvention strategies for the spammers helps us determine

where to best focus our defensive efforts. Not only is there a great concentration of

spammers at just a few banks, but finding new payment processors is far more difficult

than finding new bots to send the spam, contracting with new hosting providers to host

the Web storefronts, or replacing other technical aspects of their operation. This work

was enabled by our continued investigation of the spam economy and our understanding

of the structure of the business that we gained investigating the Storm botnet.

Our experience infiltrating spamming botnets, for example, led to the Botnet

Judo system [59]. Botnet Judo capitalizes on our understanding of botnet-based spam

distribution to build highly effective filters tailored to the spamming templates used by

several individual botnets. By running spamming bots in a contained environment with

no outbound spamming connectivity, we redirect the spam output to the Judo system and

infer the templates for messages very soon after they are disseminated into the botnet.

This template inference allows us to create regular expressions that very specifically

describe the spam output created by individual templates. As universal spam defenses, this

approach can only filter a small percentage of all spam, but as these detectors are specific

to individual templates, they are very unlikely to cause false positives by filtering desired

email. The Botnet Judo system arose both out of our expertise running spamming bots in

captivity and our insights into the potential profits of botnet-based spam distribution.

5.2 Future Directions

The adversarial nature of security coupled with the ever-present profit motive

ensures that new scams will present themselves and necessitate informed creation of

effective defenses. Expertise gained through this data-driven approach to security can be
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applied throughout the ecosystem to current and future threats alike. New online scams

are discovered every day; characterizing the demand for and revenue from these scams

is an important step in building effective countermeasures and in turn creating a safer

Internet.

With the methodology of botnet infiltration in mind, one can use a similar strategy

to characterize the successes of another class of online criminal: those who steal online

financial credentials. While sending spam to advertise goods is one revenue scheme, a

more direct but riskier approach is simply to steal the target’s money, usually by stealing

the online financial credentials from malware-infected victims. The technical capabilities

necessary for malware and phishing-based compromises are well understood, but what

happens after credentials are stolen is less clear. Through data-sharing agreements with

online financial companies, we can investigate the ecosystem of account credential theft

and systematically map out the value chain employed by the criminals to monetize these

accounts.

Our infiltration technique is not limited purely to technical approaches: one can

also infiltrate the social networks of the adversary. As underground actors specialize,

they must communicate and interface with each other to achieve their goals. We can

capitalize on their need to trust and interact with others and participate in the markets to

learn about their abusive operations. Not only will learning about the products, prices,

and actors in these markets give us insight into the myriad scams run by bad actors on the

Internet, but one might also learn valuable information about these scams by purchasing

and testing the goods themselves. These research directions all utilize understanding and

methodologies developed during the research comprising this dissertation, and, hopefully,

will also be useful in better understanding the motivations and business processes of

Internet scammers in different domains.

5.3 Final Thoughts

In this research we have capitalized on the side effects of the moral flexibility

of the perpetrators of spam: the use of compromised hosts is an economic advantage

for spammers, but is a fundamental weakness that we have exploited multiple times to
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collect information regarding the inner workings of their operations. If scammers think

twice about using compromised hosts in the future, this in itself is a positive result for

Internet users; what is more likely is that scammers on the Internet continue to utilize

compromised machines in their schemes. If this is indeed the case, we hope that we will

still be able to capitalize on this weakness of their business model and better understand

their operations through new infiltrations.
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