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were not a concern, the size and weight of traditional imaging 
sensors and the need to keep them in contact with the head pro-
hibit recording during many forms of natural subject movement. 
Although virtual-reality systems can be used to simulate move-
ments in larger environments, participants in such experiments 
neither produce natural behavior nor experience the concomitant 
proprioceptive and vestibular sensations (Gramann et al., 2010). 
functional near-infrared spectroscopy (fNIR) has been used to 
measure brain activation during actual human locomotion (Miyai 
et al., 2001; Suzuki et al., 2004, 2008), but this technique lacks 
the temporal resolution necessary to record brain activity on the 
timescale of typical motor planning and behavior and has limited 
sensitivity to activity of non-superfi cial cortex.

To overcome the limitations of traditional brain imaging 
methods, we implemented a mobile brain/body imaging (MoBI) 
approach that uses high-density scalp electroencephalography 
(EEG) and motion capture to simultaneously record brain and body 
dynamics while allowing human subjects near complete freedom of 
the body and the head (Makeig et al., 2009). EEG is the only non-
invasive method of recording brain activity that involves sensors 
light enough to allow uninhibited movement and has suffi cient time 
resolution to record brain activity on the time scale of natural motor 
behavior. Traditionally, EEG experimental paradigms severely 
restricted body, head, and eye movements of participants for fear 
of introducing non-brain artifacts in EEG recordings. However, 
data-driven approaches can disentangle brain and non-brain activ-
ity recorded from scalp electrodes (Makeig et al., 2004, 2009).

To test the feasibility and limitations of MoBI recording and 
analysis, we used a dual-task experimental design in which sub-
jects stood, walked, and ran on a treadmill while at the same time 
attending to a secondary cognitive task (a standard visual odd-
ball task). The goal was to test and demonstrate the feasibility of 
recording and analyzing brain activity accompanying cognitive 

INTRODUCTION
Brain processes are closely tied to the physical reference of our 
bodily sensations and actions within and with respect to our 3-D 
environment. Within this “embodied cognition” framework, a pri-
mary function of human perception and cognition is to assist our 
behavioral selection and motor control (Churchland et al., 1994). 
New information is continually integrated by our brains, allow-
ing us to predict how further events in our current environment 
may be infl uenced by our actions. We often reduce our processing 
load by actively manipulating the environment (e.g., by drawing 
and then referring to maps during navigation), and are able to 
integrate features of the environment into our functional brain/
body action system. For example, a tennis player’s racket becomes 
an integral part of his/her action system, infl uencing aspects of 
the environment (the ball) to shape future events (the opponent’s 
return) (Maravita and Iriki, 2004). From a physiological perspec-
tive, the theory of embodied cognition is supported by evidence 
that brain areas that originally evolved to organize motor behavior 
of animals in their three-dimensional environments also support 
human cognition (Rizzolatti et al., 2002). Thus, analysis of simulta-
neously recorded human brain activity and motor behavior during 
physical interactions with the natural environment (and/or other 
agents in it) could be an invaluable resource for understanding the 
distributed brain activity supporting embodied human cognition 
and behavior.

Concurrent imaging of brain and body dynamics has been 
restricted by mechanical constraints of most functional brain 
imaging modalities that severely limit the scope of brain imaging 
during natural motor behavior. For fear of introducing intractable 
movement artifacts, subjects in hemodynamic and magnetic imag-
ing experiments are required to lie or sit still, interacting with their 
environment via highly restricted movements (minimal-range but-
ton presses, foot taps, wrist fl exions, etc.). Even if movement artifact 
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processes ( including, in particular, the well-known visual P300 or 
P3 feature of the visual event-related potential, ERP) while subjects 
were actively walking. Our aim was to identify typical component 
features of the average ERP associated with target discrimination in 
a standard visual target detection (“oddball”) task as well as to assess 
the possibility of measuring changes in the underlying brain activ-
ity distribution as subjects walked at different speeds. Additional 
information gained from recording kinematics synchronized with 
brain activity signifi cantly improved the breadth of possible move-
ment and EEG data analyses (Gwin et al., 2010), allowing investi-
gation of the EEG activity accompanying walking and concurrent 
somatosensory perception (Gwin et al., in press).

Though here we do not report analyses of brain activities associ-
ated with specifi c aspects of the recorded movements themselves, 
the present study demonstrates the feasibility of and necessary 
requirements for MoBI studies. We here demonstrate the reliable 
measurement and source modeling of the amplitudes, latencies, 
scalp topographies, and source distributions of visual stimulus-
evoked potentials in standing and walking movement conditions.

MATERIALS AND METHODS
PARTICIPANTS
Subjects included 12 healthy adult subjects recruited from the 
University of Michigan. One subject’s data had to be excluded 
due to excessive artifacts in the EEG recordings. The remaining 11 
subjects (mean age 24.2 years ± 3.4 SD; 10 males, 1 female) were 
familiar with treadmill walking and had no history of neurological 
disorders. Informed consent was obtained from each subject prior 
to the experiment and all procedures were approved by the local 
ethics committee and complied with the standards defi ned in the 
Declaration of Helsinki.

EXPERIMENTAL DESIGN AND PROCEDURE
Subjects were asked to stand, walk, or run on a treadmill facing a 
computer monitor placed 50 cm in front of them (Figure 1). Non-
target (80%) and target (20%) stimuli (vertical or 45° rotated black 
crosses, respectively) were displayed for 500 ms on a white back-
ground. Inter-stimulus intervals varied quasi-randomly between 
500 and 1500 ms. Participants performed four different movement 
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Motion capture 
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FIGURE 1 | (A) Experimental setup: subject standing on the dual-belt 
treadmill facing the LCD display. Components of the experimental setup are 
highlighted and described in the linked text boxes. (B) Equivalent-dipole 
locations of independent component (IC) processes (small spheres) and IC 
cluster centroids (large spheres) projected on horizontal, sagittal, and coronal 

views of the standard MNI brain. (Yellow) Neck-muscle ICs; (gray) eye-
movement ICs; (other colors) brain-based ICs (C) (Scalp maps) Mean 
projections to the scalp of the indicated brain-based IC clusters. Labels give 
the index (Cls #), number of subjects (Ss), and number of independent 
components (# ICs) for each cluster.
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functions implemented in the EEGLAB toolbox. ICs with bilaterally 
distributed scalp maps were fi t with a dual equivalent dipole model 
with a left-right positional symmetry constraint.

Next, ICs were classifi ed as accounting for brain activity if their 
equivalent dipole models were located in the brain and their scalp 
projection through a spherical forward head model had less than 
15% residual variance from the IC scalp map. Those ICs with model 
equivalent dipole(s) located outside the brain (including those 
accounting primarily for scalp or neck muscle activities) were also 
rejected for further analysis when their equivalent dipole models 
had more than 50% residual variance from the spherical forward-
model scalp projection. This procedure led to an average of 18.4 
ICs per participant (±3.9 SD) used in further analyses (range 15–25; 
203 ICs in all).

Following ICA decomposition, the data were separated into 2-s 
epochs with onsets of visual stimuli relative to a 1-s pre-stimulus 
baseline. Selected ICs from all subjects were then clustered based on 
similarities in equivalent dipole locations and mean event-related 
dynamics (mean log spectra, ERPs, event-related spectral perturba-
tions (ERSPs), and inter-trial coherences, ITCs). To compute ERSPs 
and ITCs, each IC time series was transformed into a spectrographic 
image using 3-cycle Morlet wavelets with an increasing number of 
wavelet cycles across a frequency range between 3 Hz (3 cycles) and 
150 Hz (75 cycles). Spectrographic images were converted to mean 
ERSP images by converting the trial spectrograms to log power, aver-
aging trials for each segment, and then subtracting the across-epochs 
mean log power at each frequency in the pre-stimulus interval begin-
ning 1000 ms before visual stimulus onsets (Makeig, 1993).

Subsequently, each of the IC measures using in clustering 
(other than dipole locations) was reduced to their fi rst 10 princi-
pal components (PCs) by principal component analysis (PCA) and 
weighted for subsequent clustering. The equivalent dipole location 
is inherently three-dimensional and was up-weighted by a factor 
of 25. ERSP PCs were given a weight of 3, ERP PCs were weighted 
by 5, and spectra and ITCs were given a weight of 1. These weights 
were chosen heuristically based on the experimental protocol: the 
relatively large weight for dipole location compensated for its inher-
ently reduced dimensionality and promoted spatially tight clusters. 
Because we used transient visual stimulation, we expected tempo-
rally distinct ERPs in spatially distinct brain regions; up-weighting 
them made clustering more sensitive to IC ERP differences. Other 
aspects of brain responses to visual stimulation are revealed in 
ERSPs; these were consequently weighted higher than spectra and 
ITC measures. These weighted measures were further compressed 
by PCA into a single 53-dimensional cluster position vector. ICs 
were then clustered using a K-means clustering algorithm applied 
to the matrix of IC-pair distances in this cluster position space using 
EEGLAB. ICs whose distance to any cluster centroid in joint meas-
ure space was more than three standard deviations from the mean 
were removed from further analysis. There were 32 of these outliers 
(leaving 171 clustered ICs, mean 15.5 ICs per subject; of these, 83 
were brain source ICs, an average of 7.5 brain per subject).

Event-related potential analysis
After ERPs were reduced to linear mixtures of brain-activity ICs 
only, back projected to and summed at the scalp electrodes, two 
peak features (referred to below as “N1” and “P3”) were selected 

conditions: (1) standing on the treadmill; (2) slow walking (0.8 m/s); 
(3) fast walking (1.25 m/s); (4) and running (1.9 m/s). Each session 
began with the standing condition followed by the other three con-
ditions in random order. Two 10-min experimental blocks were per-
formed for each condition. During the fi rst block, subjects pressed 
a button on a Wii (Nintendo, Kyoto, Japan) remote control held 
in their right hand whenever the target stimulus appeared. During 
the second block, subjects silently counted the number of target 
stimuli presented without pressing any button on the Wii remote. 
Both blocks were aggregated for data analyses. Custom DataRiver 
and Producer software (Delorme et al., 2010; Vankov et al., 2010) 
captured and synchronized data from the EEG and Wii remote 
online. All other data streams were synchronized offl ine.

EEG RECORDING
Subject stood, walked, or ran on a force-measuring treadmill with 
two (24′-wide) belts mounted fl ush with the fl oor with a gap of 0.75′ 
between them (Collins et al., 2009). The EEG was recorded from 248 
active electrodes at a sampling rate of 512 Hz (Active II, Biosemi, 
Netherlands). Electrodes were placed on the head using a custom 
cap; electrode impedance was brought below 20 kΩ. The amplifi er 
was placed on a stand above the subject’s head (Figure 1).

EEG ANALYSIS
During a fi rst visual inspection of the data, individual channels with 
prominent artifacts were removed from the data. Subsequently, 
channels with standard deviations larger than 1000 µV were 
rejected, as were channels with kurtosis more than 5 SD from the 
mean kurtosis across all channels. Finally, we removed channels 
that were de-correlated (r < 0.4) from neighboring channels more 
than 1% of the time. On average, 130 EEG channel signals remained 
(range, 89–164; SD, 24.6; see Figure S1 in Supplementary Material 
for distribution). EEG data were then re-referenced offl ine to an 
average reference. Data intervals containing extreme peak-to-peak 
defl ections (±1000 µV) were excluded from further analysis. Normal 
eye movement potentials did not qualify data for rejection.

Data were analyzed by custom Matlab scripts built on the open 
source EEGLAB toolbox (Delorme and Makeig, 2004) (http//
sccn.ucsd.edu/eeglab). After digitally fi ltering to remove frequen-
cies below 1 Hz, we applied an adaptive independent component 
analysis (ICA) mixture model algorithm [AMICA] (Palmer et al., 
2006, 2008) generalizing previously proposed infomax (Bell and 
Sejnowski, 1995; Lee et al., 1999a) and multiple mixture (Lee et al., 
1999b; Lewicki and Sejnowski, 2000) ICA approaches, to parse 
EEG signals into spatially static, maximally temporally independent 
component (IC) processes (Makeig et al., 1996). Default extended-
mode training parameters were used.

For each subject, IC activation time series were classifi ed as 
accounting primarily for brain or non-brain source activities by 
visual inspection of their activation time courses, spectra, and scalp 
topographies. Then an equivalent current dipole model was com-
puted for each IC scalp topography using a boundary element head 
model (BEM) implemented in the DIPFIT toolbox (Oostenveld and 
Oostendorp, 2002). The co-registration of the MNI brain (Montreal 
Neurological Institute, MNI, Quebec) with standard EEG electrode 
positions was performed by aligning landmarks (nasion, inion, ears, 
and vertex), then rescaling and rotating the montage using DIPFIT 
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[F(2,20) = 21.63, p < 0.001; η2 = 0.684] while the variance of the 
ERP contributions from the non-brain and non-cluster ICs was not 
signifi cantly different across movement conditions (all p’s > 0.4).

CONTRIBUTIONS OF BRAIN, EYE-, AND NECK MUSCLE ICs TO THE 
SURFACE SIGNAL
Next, we investigated mean task-dependent activities of spatially 
segregated IC clusters following onsets of standard and target stim-
uli. In a fi rst step we computed the percent variance accounted for 
(pvaf) by each IC cluster contributing to the scalp ERP across the 
latency range from stimulus onset to 600 ms post stimulus. Clusters 
of independent component processes associated with brain, eye, 
and neck muscle activity were combined and back-projected to the 
sensors (Figure 4, light gray area). The strongest contribution to the 
back-projected activity originated from clusters representing eye 
movements and neck muscle activity. One independent component 
cluster (Cluster 6) representing vertical eye movements accounted 
for approximately 52, 90, and 77% of the variance of the grand-
average ERP (aggregated over target and standard stimuli) while 
subjects were standing, slow walking, and fast walking, respectively1. 
The nine clusters representing neck muscle activity accounted for 
5, 3, and 15% of the variance of the grand-average ERP during 
standing, slow walking, and fast walking, respectively. In contrast, 
the percent variance of the grand-average ERP accounted for by the 
nine IC clusters representing brain activity was 6, 3, and 4% during 
standing, slow walking, and fast walking, respectively. Thus, the con-
tribution of identifi able brain IC processes to the grand-mean ERP 
was relatively small compared to the contributions of eye movement 
and neck muscle activities. To further investigate the contributions 
of independent component clusters representing brain activity to 
the ERPs, we excluded eye and neck muscle clusters.

THE IMPACT OF ATTENTION AND MOVEMENT ON THE ERP
As Figure 5 shows, the spatially fi ltered ERPs summing only the 
clustered brain source activities included the expected visual 
evoked P1–N1 peak sequence at posterior electrode locations in 
all three movement conditions (Anderer et al., 1998; Herrmann 
and Knight, 2001). In all movement conditions, P1 peak ampli-
tude was comparable for target and non-target responses, while 
the N1 peak amplitude at posterior scalp electrodes was larger in 
target than in non-target stimulus responses (e.g., at electrode Pz 
[F(1,10) = 11.72, p < 0.007; η2 = 0.540]). In the latency range of the 
late positive (P3) complex (between 350 and 450 ms), mean ERP 
amplitude was larger following target stimuli (e.g., at electrode Pz 
[F(1,10) = 20.49, p < 0.001; η2 = 0.672]), and this difference was 
constant across movement conditions (p’s < 0.003).

To test whether N1 and P3 peaks demonstrated comparable 
amplitudes in the three movement conditions, we compared 
component amplitudes associated with target and non-target 
responses for standing, slow walking, and fast walking. Figure 6 
displays individual P3 amplitudes for target and non-target stimuli 
in each of the three movement conditions. To test whether com-
ponent amplitudes were similar across movement and stimulus 

for further analysis based on the literature at fronto-central (Fz), 
centro-central (Cz), and parieto-central (Pz) electrode posi-
tions. To measure the N1 peak (referred to as the “N1 com-
ponent” in ERP literature), for each subject and condition the 
peak negative ERP values between 80 and 200 ms at were located 
and their smoothed amplitudes (including two sample points 
before and after the peak) were measured relative to a 200-ms 
pre-stimulus baseline value. P3 feature amplitudes at the same 
three scalp channels were measured as mean ERP amplitude 
in the time period between 350 ms and 450 ms. For each ERP 
feature (N1, P3), a 2 × 3 factorial repeated measures analysis 
of variance (ANOVA) was performed with factors “Stimulus” 
(target versus non-target stimuli) and “Movement” (standing, 
slower walking, and faster walking). Three electrode locations 
(Fz, Cz, Pz) were treated as a repeated measure. In cases where 
the assumption of sphericity was violated, Greenhouse–Geisser 
corrected values are reported. Post hoc honestly significant dif-
ference (HSD) contrasts (Tukey, 1949) were used for further 
testing of significant main effects.

RESULTS
Independent component analysis decomposition of EEG recorded 
during standing, slow walking, and fast walking dissociated brain 
activity from line noise, as well as from neck muscle and eye move-
ment activity. During running, large mechanical artifacts were 
present in the EEG that could not be decomposed by ICA into 
one or only a few components. Instead, the EEG during running 
had to be pre-processed using a template-based artifact rejec-
tion technique that made use of the kinematic data derived from 
motion capture (Gwin et al., 2010). Here, we report results for the 
standing, slow walking, and fast walking conditions only.

SCALP RECORDED EVENT-RELATED POTENTIALS BEFORE AND AFTER 
SPATIAL FILTERING
We inspected scalp recorded ERPs time-locked to the onset of targets 
or non-target visual stimuli while subjects were standing, slow walk-
ing, or fast walking (Figure 2). As expected, the activity recorded by 
most scalp channels was contaminated with non-brain artifacts that 
were most pronounced during fast walking. Thus, we excluded all 
non-brain IC processes and back-projected the activities of only those 
ICs whose equivalent current dipoles were located in the brain. This 
rejected IC activities associated with scalp and neck muscle activities, 
eye movements, line noise, electrocardiogram, and other artifacts.

To test the relative contributions of clustered brain, non-brain 
(eye- and neck-muscle), and all other non-clustered ICs to the 
grand average ERPs time locked to onsets of target and non-target 
stimuli, we computed the relative variance of clustered brain, non-
brain, and non-clustered ICs (as identifi ed by their scalp maps, 
spectra, and dipole location) to the overall signal (all reconstructed 
ICs) (Figure 3).

As Figure 3 shows, the raw grand-average ERPs before spatial fi l-
tering included more identifi able non-brain source activities (36.7% 
across all conditions) and other non-identifi able activity (44.9% 
across all conditions) than source activities identifi ed as arising in 
the brain; the variance of their summed projections was only 14.9% 
on average of the raw ERP variance. The ERP  contribution of clus-
tered brain components decreased with increasing movement speed 

1The summed variance accounted by back-projecting clusters of independent 
 component processes to the ERP data can exceed 100% because of possible phase 
cancellation of IC contributions to the scalp channel signals with opposite sign.
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The signifi cant ICCs for N1 and P3 peak amplitudes indicate 
that ICA-based spatial fi ltering successfully separated brain activ-
ity from non-brain activity while subjects were actively moving 
and that, after spatially fi ltering the averaged responses, the speed 
of movement did not affect the amplitudes of either early or late 
visual stimulus ERP features.

conditions, we computed intra-class correlation coeffi cients (ICCs) 
using a  two-way mixed model. The results revealed an ICC of 0.603 
(averaged measures ICC = 0.901; p’s < 0.001) signifying that P3 
amplitudes were similar in all conditions. Comparable results were 
obtained for P3 amplitudes with a signifi cant ICC of 0.628 (aver-
aged measures ICC = 0.910; all p’s < 0.001).

O2
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C5
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FIGURE 2 | Single-subject and grand average visual target event-related 

potentials at indicated electrodes across three movement conditions 

(standing, slow walking, and fast walking). Overlapping single-subject 
and movement-condition ERP traces are shown before (light pink traces) and 
after (gray traces) spatially fi ltering and rejection of artifacts using ICA. Bold 
traces show the grand average (gAVG) ERPs at the indicated electrode 

locations in the most contaminated fast walking condition only, before (red) 
and after (black) removing non-brain independent component (IC) processes. 
Scalp maps show grand average scalp topographies of the raw (left column) 
and the artifact-removed ERPs at three peak latencies (100 ms, P1; 150 ms, 
N1; 400 ms, P3). White dots indicate the locations of the 
indicated electrodes.
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speeds. We used the well-known visual oddball paradigm to test 
whether it was possible to replicate, during steady-state walking, the 
event-related P3 target/non-target differences typically seen during 
discrimination of rare versus frequent visual stimuli while seated. 
The results demonstrate that ICA decomposition and spatial fi ltering 
does allow recording and analysis of cognitive and sensory EEG brain 
activity while subjects perform constant whole-body movements.

Inspection of scalp activity at single channels in different move-
ment conditions demonstrated that, as expected, the traditional 
approach of averaging all or most stimulus responses at each scalp 
channel is not appropriate to imaging the mobile brain. Faster walk-
ing was associated with larger displacements of the head (Hirasaki 
et al., 1999) and with at least three non-brain sources of recorded 
EEG activity: (1) mechanical artifacts refl ecting frequency-specifi c 
cable sway produced by head movement (Gwin et al., 2010), (2) 
eye movements (e.g., vertical) associated with head displacements, 
combined with (3) neck muscle activity compensating for head 
displacements to maintain visual focus on the monitor. That is, 
while participants were walking their heads moved up and down, 
from side to side, and from back to front with each step cycle. The 
faster the participants walked, the more pronounced these head 
displacements (Hirasaki et al., 1999).

To perform the secondary visual task, head displacements occur-
ring during walking or running had to be compensated for to allow 
inspection of the stationary LCD display. Independent components 

CLUSTERS OF BRAIN ICs AND THE ASSOCIATED 
EVENT-RELATED POTENTIAL
Computing the pvaf by brain IC clusters most strongly contribut-
ing to the scalp ERP in the latency ranges of the N1 and the P3 
complexes revealed that, as expected, a distributed set of brain areas 
were involved in generating these ERP features (Tables S1 and S2 
in Supplementary Material) (Makeig et al., 2002, 2004b). Clusters 
of IC processes located in or near the occipital and parietal cortex 
(Cls 11, 14, and 18 in Figure 4) accounted for 30% of variance in 
the 80–200 ms time window of the grand average ERP summing 
the back-projections of brain IC clusters only (Figure 7).

Larger visual evoked N1 peaks at posterior electrodes in the 
target-stimulus ERPs (Figure 7B left column) were accounted by 
ICA as indexing increased activity in IC clusters located in or near 
right-lateral occipital cortex, and superior and inferior parietal 
cortex. In contrast, 40% of the variance in the 350–500 ms time 
window of the target-response ERPs was accounted for in all move-
ment conditions by two IC clusters (Cls 19 and 10) with equivalent 
dipoles in or near anterior cingulate cortex (see Figures 4 and 8; 
Tables S1 and S2 in Supplementary Material).

DISCUSSION
We recorded and analyzed brain activity accompanying cognitive 
processing of two visual stimuli (vertical/horizontal and diagonal 
crosses), while participants stood or walked on a treadmill at  various 
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tion and frequency (here, “respond to the rare stimulus”) have an 
infl uence on this response feature (Potts et al., 2004) and further 
supporting the observation that the N1 refl ects discriminative proc-
esses at an attended location (Vogel and Luck, 2000). In addition, 
P3 amplitudes were more positive following target than non-target 
stimuli, reproducing results of a long history of reports on this ERP 
feature (Sutton et al., 1965; Picton, 1992; Soltani and Knight, 2000).

Our ICA decompositions of the concatenated single-trial EEG 
data again revealed that both ERP components (N1 and P3) are 
accounted as summed mixtures of concurrent volume-conducted 
potential contributions from several cortical areas (Makeig et al., 
1999, 2002, 2004; Makeig, 2002). While parieto-occipital and pari-
etal sources signifi cantly contributed to the N1 component, the 
cortical areas contributing most strongly to the P3 feature were 
located in or near two areas of anterior cingulate cortex. These 

accounting for eye movements thus explained most of the variance 
of the raw scalp ERP, with neck muscle activities explaining some 
additional variance. Using data-driven ICA source decomposition 
methods, we were able to separate brain EEG activities, very likely 
arising as locally synchronous islands of cortical fi eld activity, from 
electric signals associated with eye movements and neck muscle 
activity. Although large artifacts produced in the data record dur-
ing jogging (likely in large part arising from cable sway) were more 
diffi cult to remove from the rest of the data, near future develop-
ments in wireless dry electrodes and EEG recording systems might 
eliminate or minimize this problem (Lin et al., 2008).

Reducing the scalp data to only the contributions of IC processes 
with robust equivalent dipole models located in the brain itself, we 
found that N1 amplitudes were enhanced at posterior electrodes fol-
lowing target stimulus onsets, replicating the fi nding that task instruc-

FIGURE 4 | Centroids of IC clusters (colored spheres) visualized in the MNI 

brain volume in horizontal, sagittal, and coronal views. Gray and yellow 
spheres represent eye and neck muscle activity clusters, respectively. 
Other-colored spheres mark centroids of brain IC clusters. Traces display 
grand-mean ERP envelopes (maximum and minimum channel ERP values at 
each latency) summing back-projections of all IC clusters (light gray areas), 

envelopes of one representative neck muscle cluster (Cluster 16, yellow traces) 
and a representative eye movement cluster (Cluster 6, dark gray traces). Filled 
purple envelopes show the back-projected contribution of one IC cluster (19) 
with equivalent dipoles in or near anterior cingulate cortex. Left column: visual 
target stimulus responses in the three movement conditions. Right column: 
non-target stimulus responses.
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FIGURE 5 | Grand-average ERPs following ICA-based artifact removal in the standing, slow walking, and fast walking conditions. Middle-row traces show 
ERP time courses at electrode Pz (red, target ERPs; blue, non-target ERPs). Scalp maps show the grand-average ERP scalp distributions at 100, 150, and 400 ms 
after onsets of target stimuli (upper row) and non-target stimuli (lower row). White dots indicate the location of electrode Pz. Note the scalp map similarities across 
movement conditions.
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FIGURE 6 | Individual P3 peak amplitudes at electrode Cz for target stimuli (cool colors) and non-target stimuli (warm colors) in the three movement 

conditions.

results replicate earlier fi ndings that a widespread set of areas was 
involved in the generation of the P3 in immobile, seated partici-
pants (Makeig et al., 2004). Here we demonstrated, for the fi rst time, 
that a generally similar set of cortical sources contribute to the N1 
and P3 complexes of non-target averaged visual stimulus responses 
while subjects stand and walk (either at 0.8 or 1.25 m/s).

Several investigations have shown smaller P3 amplitudes of 
ERPs time locked to secondary-task stimuli when primary task 
diffi culty was increased. Ebersbach et al. (1995) also demon-
strated that walking produced a signifi cant (nearly one-digit) 
decrease in a digit recall. Here, interestingly, there was no infl u-
ence of walking speed on P3 peak amplitude. This result suggests 
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A B

FIGURE 7 | (A) Centroid (bigger sphere) and individual ICs (12 ICs from 10 
subjects displayed as smaller spheres) in or near superior parietal cortex (BA7) 
projected onto the standard MNI brain volume. (B) Target and non-target 
stimulus ERPs (middle and right columns) in the (dashed/shaded) P1-N1 latency 

range. Gray-shaded “ERP envelopes” tightly enclose the bundle of spatially 
fi ltered scalp channel ERP traces at each latency. Red-fi lled envelopes outline 
the ERP contributions of the IC cluster contributing most strongly to the “ERP 
envelopes.”

A B

FIGURE 8 | (A) Centroid (bigger sphere) and individual ICs of the IC cluster (19) 
contributing most strongly to the P3 peak. This cluster comprised 13 ICs from 11 
subjects (here displayed as smaller spheres) in or near anterior cingulate cortex 
(BA32, here shown in the standard MNI brain volume). (B) Target and non-target 

stimulus ERPs (middle and right columns) in the (dashed/shaded) P3 latency 
range. Gray-shaded “ERP envelopes” enclose the bundle of spatially fi ltered 
scalp channel ERP values. Magenta-fi lled envelopes enclose the ERP 
contributions to the scalp channel data.



Frontiers in Human Neuroscience www.frontiersin.org October 2010 | Volume 4 | Article 202 | 10

Gramann et al. Visual ERPs during walking

Maravita, A., and Iriki, A. (2004). Tools 
for the body (schema). Trends Cogn. 
Sci.  8, 79–86.

Miyai, I., Tanabe, H. C., Sase, I., Eda, H., 
Oda, I., Konishi, I., Tsunazawa, Y., 
Suzuki, T., Yanagida, T., and Kubota, 
K. (2001). Cortical mapping of gait 
in humans: a near-infrared spectro-
scopic topography study. Neuroimage 
14, 1186–1192.

Oostenveld, R., and Oostendorp, T. F. 
(2002). Validating the boundary ele-
ment method for forward and inverse 
EEG computations in the presence of 
a hole in the skull. Hum. Brain Mapp. 
17, 179–192.

Palmer, J. A., Kreutz-Delgado, K., and 
Makeig, S. (2006). “Super-Gaussian mix-
ture source model for ICA,” in Lecture 
Notes in Computer Science, eds J. Rosca, D. 
Erdogmus, J. C. Principe, and S. Haykin, 
(Heidelberg: Springer), 854–861.

Palmer, J. A., Makeig, S., Delgado, K. 
K., and Rao, B. D. (2008). “Newton 
method for the ICA mixture model,” 
in IEEE International Conference on 
Acoustics, Speech and Signal Processing, 
2008. ICASSP 2008. IEEE, Las Vegas, 
Nevada, 1805–1808.

Picton, T. W. (1992). The P300 wave of the 
human event-related potential. J. Clin. 
Neurophysiol. 9, 456–479.

Potts, G. F., Patel, S. H., and Azzam, P. N. 
(2004). Impact of instructed relevance 
on the visual ERP. Int. J. Psychophysiol. 
52, 197–209.

Prilutsky, B. I., Sirota, M. G., Gregor, 
R. J., and Beloozerova, I. N. (2005). 
Quantification of motor cortex 
activity and full-body biomechanics 
during unconstrained locomotion. J. 
Neurophysiol. 94, 2959–2969.

Rizzolatti, G., Fogassi, L., and Gallese, V. 
(2002). Motor and cognitive functions 
of the ventral premotor cortex. Curr. 
Opin. Neurobiol. 12, 149–154.

Soltani, M., and Knight, R. T. (2000). 
Neural origins of the P300. Crit. Rev. 
Neurobiol. 14, 199–224.

Lin, C.-T., Ko, L.-W., Chiou, J.-C., Duann, 
J.-R., Huang, C. C., Liang, C. C., 
Chiu, T.-W., and Jung, T.-P. (2008). 
“Noninvasive neural prostheses using 
mobile and wireless EEG,” in Proceedings 
of the IEEE 96, 1167–1183.

Makeig, S. (1993). Auditory event-re-
lated dynamics of the EEG spectrum 
and effects of exposure to tones. 
Electroencephalogr. Clin. Neurophysiol. 
86, 283–293.

Makeig, S. (2002). Response: event-related 
brain dynamics – unifying brain 
electrophysiology. Trends Neurosci. 
25, 390.

Makeig, S., Bell, A. J., Jung, T. P., and 
Sejnowski, T. J. (1996). Independent 
component analysis of electroen-
cephalographic data. Adv. Neural Inf. 
Process. Syst. 8, 145–151.

Makeig, S., Debener, S., Onton, J., and 
Delorme, A. (2004a). Mining event-
related brain dynamics. Trends Cogn. 
Sci. 8, 204–210.

Makeig, S., Delorme, A., Westerfield, 
M., Jung, T.-P., Townsend, J., 
Courchesne, E., and Sejnowski, T. J. 
(2004b). Electroencephalographic 
brain dynamics following manu-
ally responded visual targets. PLoS 
Biol. 2, e176. doi: 10.1371/journal.
pbio.0020176.

Makeig, S., Gramann, K., Jung, T. P., 
Sejnowski, T. J., and Poizner, H. (2009). 
Linking brain, mind and behavior. Int. 
J. Psychophysiol. 73, 95–100.

Makeig, S., Westerfield, M., Jung, T. P., 
Covington, J., Townsend, J., Sejnowski, 
T. J., and Courchesne, E. (1999). 
Functionally independent compo-
nents of the late positive event-related 
potential during visual spatial atten-
tion. J. Neurosci. 19, 2665–2680.

Makeig, S., Westerfield, M., Jung, 
T. P., Enghoff, S., Townsend, J., 
Courchesne, E., and Sejnowski, T. 
J. (2002). Dynamic brain sources of 
visual evoked responses. Science 295, 
690–694.

cortical neuronal ensemble activ-
ity. Front. Integr. Neurosci. 3:3. doi: 
10.3389/neuro.07.003.2009.

Gramann, K., Onton, J., Riccobon, D., 
Mueller, H. J., Bardins, S., and Makeig, 
S. (2010). Human brain dynamics 
accompanying use of egocentric and 
allocentric reference frames dur-
ing navigation. J. Cogn. Neurosci. 22, 
2836–2849.

Gwin, J. T., Gramann, K., Makeig, S., and 
Ferris, D. P. (2010). Removal of move-
ment artifact from high-density EEG 
recorded during walking and running. 
J. Neurophysiol. 103, 3526–3534.

Gwin, J. T., Gramann, K., Makeig, S., and 
Ferris, D. P. (in press). Electrocortical 
activity is coupled to gait(cycle )
phase during treadmill walking. 
Neuroimage.

Herrmann, C. S., and Knight, R. T. (2001). 
Mechanisms of human attention: 
event-related potentials and oscillations. 
Neurosci. Biobehav. Rev. 25, 465–476.

Hirasaki, E., Moore, S. T., Raphan, T., and 
Cohen, B. (1999). Effects of walking 
velocity on vertical head and body 
movements during locomotion. Exp. 
Brain Res. 127, 117–130.

Kao, P. C., Lewis, C. L., and Ferris, D. P. 
(2010). Invariant ankle moment pat-
terns when walking with and without a 
robotic ankle exoskeleton. J. Biomech. 
43, 203–209.

Lee, T. W., Girolami, M., and Sejnowski, 
T. J. (1999a). Independent component 
analysis using an extended infomax 
algorithm for mixed subgaussian 
and supergaussian sources. Neural 
Comput. 11, 417–441.

Lee, T. W., Lewicki, M. S., Girolami, M., 
and Sejnowski, T. J. (1999b). Blind 
source separation of more sources 
than mixtures using overcomplete 
representations. IEEE Signal Process. 
Lett. 6, 87–90.

Lewicki, M.S., Sejnowski, T.J., 2000. 
Learning overcomplete representa-
tions. Neural Comput. 12, 337–365.

RefeRences
Anderer, P., Pascual-Marqui, R. D., 

Semlitsch, H. V., and Saletu, B. 
(1998). Differential effects of nor-
mal aging on sources of standard 
N1, target N1 and target P300 
auditor y event-related brain 
potentials revealed by low resolu-
tion electromagnetic tomography 
(LORETA). Electroencephalogr. Clin. 
Neurophysiol. 108, 160–174.

Bell, A. J., and Sejnowski, T. J. (1995). 
An information-maximization 
approach to blind separation and 
blind deconvolution. Neural Comput. 
7, 1129–1159.

Churchland, P. S., Ramachandran, V. S., 
and Sejnowski, T. J. (1994). “A cri-
tique of pure vision,” in Large-Scale 
Neuronal Theories of the Brain, eds 
C. Koch and J. L. Davis (Cambridge, 
MA: MIT Press), 23–60.

Collins, S. H., Adamczyk, P. G., Ferris, D. 
P., and Kuo, A. D. (2009). A simple 
method for calibrating force plates and 
force treadmills using an instrumented 
pole. Gait Posture, 29, 59–64.

Delorme, A., Kothe, C., Bigdely-Shamlo, 
N., Vankov, A., Oostenveld, R., and 
Makeig, S. (2010). “Matlab tools for 
BCI research?,” in Human-Computer 
Interaction and Brain-Computer 
Interfaces, eds D. Tan and A. Nijholt 
(Berlin: Springer), 241–259.

Delorme, A., and Makeig, S. (2004). 
EEGLAB: an open source toolbox for 
analysis of single-trial EEG dynamics 
including independent component 
analysis. J. Neurosci. Methods 134, 
9–21.

Ebersbach, G., Dimitrijevic, M. R., and 
Poewe, W. (1995). Influence of con-
current tasks on gait: a dual-task 
approach. Percept. Mot. Skills 81, 
107–113.

Fitzsimmons, N. A., Lebedev, M. A., 
Peikon, I. D., and Nicolelis, M. A. 
(2009). Extracting kinematic param-
eters for monkey bipedal walking from 

more general aspects of embodied cognition. Answers to many 
questions that were formerly not possible to investigate using 
brain imaging may now be approached. For example: How are eye 
movements, head movements and brain activity accompanying 
attentional orienting interrelated? What are the accompanying 
brain activity of spatial cognitive processes while subjects experi-
ence natural vestibular and proprioceptive feedback associated 
with heading changes during navigation? New information avail-
able from detailed analysis of concurrently recorded EEG and 
body motion data, an imaging modality we refer to as MoBI, 
should open new avenues for analyzing the association of brain 
dynamics with specific aspects of movement (Prilutsky et al., 2005; 
Fitzsimmons et al., 2009; Kao et al., 2010) and motivated action 
(Makeig et al., 2009).

that steady treadmill walking did not pose any greater demands 
on performance of the visual oddball task than standing. It is 
likely our concurrent tasks were too easy to produce an atten-
tional resource conflict. This is consistent with prior work sug-
gesting that multi-tasking does not pose a significant threat 
to postural stability in healthy young adults (for a review, see 
Woollacott and Shumway-Cook, 2002). Future studies could vary 
the difficulties of the motor and/or cognitive tasks to study this 
question further.

In sum, we here have demonstrated the feasibility of MoBI 
studies of event-related EEG dynamics in subjects performing 
full-body movements in a 3-D environment. Future MoBI stud-
ies will address critical questions concerning macroscopic brain 
dynamic patterns supporting motivated motor behavior and 



Frontiers in Human Neuroscience www.frontiersin.org October 2010 | Volume 4 | Article 202 | 11

Gramann et al. Visual ERPs during walking

Citation: Gramann K, Gwin JT, 
 Bigdely-Shamlo N, Ferris DP and 
Makeig S (2010) Visual evoked responses 
during standing and walking. Front. 
Hum. Neurosci. 4:202. doi: 10.3389/
fnhum.2010.00202
Copyright © 2010 Gramann, Gwin, 
Bigdely-Shamlo, Ferris and Makeig. This 
is an open-access article subject to an exclu-
sive license agreement between the authors 
and the Frontiers Research Foundation, 
which permits unrestricted use, distribu-
tion, and reproduction in any medium, 
provided the original authors and source 
are credited.

Woollacott, M., and Shumway-Cook, A. 
(2002). Attention and the control of 
posture and gait: a review of an  emerging 
area of research. Gait Posture 16, 1–14.

Conflict of Interest Statement: The 
authors declare that the research was 
conducted in the absence of any com-
mercial or financial relationships that 
could be construed as a potential confl ict 
of interest.

Received: 22 June 2010; accepted: 03 
October 2010; published online: 29 October 
2010.

treadmill: an optical imaging study. 
Neuroimage 23, 1020–1026.

Tukey, J. W. (1949). Comparing individ-
ual means in the analysis of variance. 
Biometrics 5, 99–114.

Vankov, A., Bigdely-Shamlo, N., and 
Makeig, S. (2010). “DataRiver – a 
software platform for real-time man-
agement of multiple data streams,” 
in Fourth International BCI Meeting 
Asilomar, California.

Vogel, E. K., and Luck, S. J. (2000). The vis-
ual N1 component as an index of a dis-
crimination process. Psychophysiology 
37, 190–203.

Sutton, S., Braren, M., Zubin, J., and John, 
E. R. (1965). Evoked-potential corre-
lates of stimulus uncertainty. Science 
150, 1187–1188.

Suzuki, M., Miyai, I., Ono, T., and 
Kubota, K. (2008). Activities in the 
frontal cortex and gait perform-
ance are  modulated by preparation. 
An fNIRS study. Neuroimage 39, 
600–607.

Suzuki, M., Miyai, I., Ono, T., Oda, I., 
Konishi, I., Kochiyama, T., and Kubota, 
K. (2004). Prefrontal and premo-
tor cortices are involved in adapting 
walking and running speed on the 



Frontiers in Human Neuroscience www.frontiersin.org October 2010 | Volume 4 | Article 202 | 12

Gramann et al. Visual ERPs during walking

Table S2 | Percent of variance accounted for (pvaf) for the fi ve strongest clusters contributing to the surface measured P3 component, separately for 

targets and non-target stimuli while standing, slow walking, and fast walking.

 P3 

Target Standing Cluster Cls 3 Cls 9 Cls 10 Cls 11 Cls 19 Sum

  pvaf % 1.9 4.1 11.0 3.1 31.9 58.0

Target Slow walking Cluster Cls 3 Cls 9 Cls 10 Cls 11 Cls 19 Sum

  pvaf % 2.8 3.2 9.7 2.5 33.5 51.7

Target Fast walking Cluster Cls 9 Cls 10 Cls 11 Cls 18 Cls 19 Sum

  pvaf % 3.4 7.4 4.0 2.6 32.9 50.3

Non-target Standing Cluster Cls 9 Cls 10 Cls 11 Cls 14 Cls 19 Sum

  pvaf % 6.2 11.6 6.5 1.9 23.7 49.9

Non-target Slow walking Cluster Cls 8 Cls 9 Cls 10 Cls 11 Cls 19 Sum

  pvaf % 4.7 3.2 17.2 6.3 24.8 56.2

Non-target Fast walking Cluster Cls 8 Cls 9 Cls 10 Cls 11 Cls 19 Sum

  pvaf % 4.0 6.0 11.6 4.9 29.8 56.3

Table S1 | Percent of variance accounted for (pvaf) for the fi ve strongest clusters contributing to the surface measured N1 component, separately for 

targets and non-target stimuli while standing, slow walking, and fast walking.

 N1 

Target Standing Cluster Cls 10 Cls 11 Cls 14 Cls 18 Cls 19 Sum

  pvaf % 9.5 29.6 16.8 7.3 6.7 69.9

Target Slow walking Cluster Cls 10 Cls 11 Cls 14 Cls 18 Cls 19 Sum

  pvaf % 9.4 39.3 9.9 9.6 10.3 78.5

Target Fast walking Cluster Cls 8 Cls 11 Cls 14 Cls 18 Cls 19 Sum

  pvaf % 11.4 27.0 18.2 10.6 8.9 76.1

Non-target Standing Cluster Cls 8 Cls 11 Cls 14 Cls 18 Cls 19 Sum

  pvaf % 17.0 36.9 26.5 23.7 18.0 122.1

Non-target Slow walking Cluster Cls 8 Cls 11 Cls 14 Cls 18 Cls 19 Sum

  pvaf % 18.0 28.5 24.8 16.6 28.5 116.4

Non-target Fast walking Cluster Cls 8 Cls 11 Cls 14 Cls 18 Cls 19 Sum

  pvaf % 12.4 32.3 25.9 16.7 20.2 107.5

FIGURE S1 | Probability of electrodes to be included in subsequent 

analyses as a function of electrode location. Warm (red) colors indicate 
increasing probabilities.
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