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Abstract

This paper measures the mean, standard deviation, alpha and beta of venture capital
investments, using a maximum likelihood estimate that corrects for selection bias.
Since Þrms go public when they have achieved a good return, estimates that do not
correct for selection bias are optimistic.

The selection bias correction neatly accounts for log returns. Without a selection
bias correction, I Þnd a mean log return of about 100% and a log CAPM intercept
of about 90%. With the selection bias correction, I Þnd a mean log return of about
5% with a -2% intercept. However, returns are very volatile, with standard deviation
near 100%. Therefore, arithmetic average returns and intercepts are much higher than
geometric averages. The selection bias correction attenuates but does not eliminate
high arithmetic average returns. Without a selection bias correction, I Þnd an arith-
metic average return of around 700% and a CAPM alpha of nearly 500%. With the
selection bias correction, I Þnd arithmetic average returns of about 57% and CAPM
alpha of about 45%.

Second, third, and fourth rounds of Þnancing are less risky. They have progres-
sively lower volatility, and therefore lower arithmetic average returns. The betas of
successive rounds also decline dramatically from near 1 for the Þrst round to near
zero for fourth rounds.

The maximum likelihood estimate matches many features of the data, in particular
the pattern of IPO and exit as a function of project age, and the fact that return
distributions are stable across horizons.



1 Introduction

This paper analyzes the risk and return of venture capital investments. My objec-
tive is to measure the expected return, standard deviation, alpha, beta and residual
standard deviation of venture capital investment projects.

I use the VentureOne database. The typical data point gives the investment at
each round of Þnancing and number of shares. If the Þrm is acquired, goes public, or
goes out of business, we can then compute a return for the venture capital investor.
These returns are the basic input to the analysis.

Overcoming selection bias is the central hurdle in evaluating venture capital in-
vestments, and it is the focus of this paper. Most importantly, Þrms go public when
they have experienced a good return, and many Þrms in the sample remain private.
Therefore, the return to ipo, measuring only the winners, is an upward biased measure
of the ex-ante returns to a potential investor.

I overcome this bias with a maximum-likelihood estimate that identiÞes and mea-
sures the increasing probability of going public or being acquired as value increases,
the point at which Þrms go out of business, and the mean, variance, alpha and beta
of the underlying returns. The model captures many of the surprising features of the
data, such as the fact that the return distribution is little affected by the time to
ipo. The estimate also corrects for additional selection biases due to data errors. For
example, I am only able to calculate a return for 3/4 of the ipos and 1/4 of the ac-
quisitions, due to data problems. Simply throwing these presumably successful Þrms
out of the sample would bias the results.

I use only returns from investment to ipo or acquisition, or the information that
the Þrm remains private or has gone out of business. I do not attempt to Þll in valu-
ations at intermediate dates. There are no data on market values of venture capital
projects between investment and exit, so such an imputation requires assumptions
and proxies. I also do not base the analysis on returns computed between Þnancing
rounds. Though each Þnancing round does establish a valuation, and such returns
are potentially interesting, venture capital investors typically cannot take any money
out at intermediate Þnancing rounds; they must hold investments all the way to ipo,
acquisition or failure. I compute returns to venture capital projects. Since venture
funds often take 2-3% annual fees and 20-30% of proÞts at ipo, returns to investors
in venture capital funds are often lower.

Results

I verify large and volatile returns if there is an ipo or acquisition, i.e. if we do not
account for selection bias. The average return to ipo or acquisition is an astounding
698% with a standard deviation of 3,282%. The distribution is highly skewed; there
are a few truly outstanding returns of thousands of percent and many more modest
returns of �only� 100% or so. I Þnd that returns to ipo/acquisition are very well
described by a lognormal distribution. The average log return to ipo or acquisition is
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still enormous with a 108% mean and a 135% standard deviation. Interestingly, these
total returns are quite stable across horizons, and annualized returns are not stable
across horizons. As I will explain, this is the pattern we expect of a selected sample.
A CAPM in levels gives an alpha of 462%; a CAPM in logs still gives an astonishing
alpha of 92%.

The estimates of the underlying return process with a selection bias correction are
much more modest and sensible. The estimated average log return is 5.2% per year.
A CAPM in logs gives a beta near one and a slightly negative intercept. However, I
Þnd arithmetic average returns of 57% and an arithmetic CAPM intercepts or alphas
of around 45%. Though these are large, they are still less dramatic than the 698%
average return or 462% alpha I obtain without a sample selection correction.

The difference between logs and levels results from the large standard deviation
of these individual Þrm returns, near 100%. This large standard deviation implies
an arithmetic average return of 50% or more, even if the average log return is zero.
Venture capital investments are like options; they have a small chance of a huge
payoff.

Issues

One can cite many reasons why the risk and return of private equity might differ
from the risk and return of publicly traded stocks, even holding equal their betas
or characteristics such as industry, small size, and Þnancial structure (book/market
ratio, etc.)

� Liquidity. Investors may require a higher average return to compensate for the
illiquidity of private equity.

� Poor diversiÞcation. Private equity has typically been held in large chunks,
so each investment may represent a sizeable fraction of the average investors�
wealth. Standard asset pricing theory assumes that every investor holds a small
part of every risk, and that all assets are held in perfectly diversiÞed portfolios.

� Information and monitoring. Venture capital investments are often not purely
Þnancial. The VC investors often provide a �mentoring� or monitoring role to
the Þrm, they sit on boards of directors, and may have the right to appoint or Þre
managers. Compensation for these activities may result in a higher measured
Þnancial return.

On the other hand, venture capital is a competitive business with free entry.
If it were a gold mine, we should expect rapid entry. Many venture capital Þrms
are large enough to effectively diversify their portfolios. The special relationship,
information and monitoring stories suggesting a restricted supply of venture capital
may be overblown. Private equity may be just like public equity.
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Literature

Due to the data and econometric hurdles, only a few papers have tried to estimate
the risk and return of venture capital. I have found no work that tries to correct for
the selection bias.

Long (1999) estimates a standard deviation of 8.23% per year. However, his
analysis is based on only 9 unidentiÞed and successful VC investments. Moskowitz and
Vissing-Jorgenson (2000) measure returns to all private equity. Venture capital is less
than 1% of all private equity, which includes privately held businesses, partnerships,
and so forth. They use data from the survey of consumer Þnances, and use self-
reported valuations. They Þnd that a portfolio of all private equity has a mean and
standard deviation of return very close to that of the value weighted index of publicly
traded stocks.

A natural way to estimate venture capital returns is to examine the returns of ven-
ture capital funds, rather than the underlying projects. This is not easy either. Most
venture capital funds are organized as limited partnerships rather than as continu-
ously traded or even quoted entities. Thus, one must either deal with missing data
during the interim between investments and payout, or somehow mark the unÞnished
investments to market. Bygrave and Tymmons (1992) found an average internal rate
of return of 13.5% for 1974-1989. The technique does not allow any risk calculations.
Venture Economics (2000) reports a 25.2% 5 year return and 18.7% 10 year return
for all venture capital funds in their data base as of 12/21/99, a period with much
higher stock returns. This calculation uses year-end values reported by the funds
themselves.

Gompers and Lerner (1997) measure risk and return by periodically marking to
market the investments of a single private equity group. They Þnd an arithmetic
average annual return of 30.5% (gross of fees) from 1972-1997. Without marking
to market, they Þnd a beta of 1.08 on the market. Marking to market, they Þnd a
higher beta of 1.4 on the market, and 1.27 on the market with 0.75 on the small Þrm
portfolio and 0.02 on the value portfolio in a Fama-French three factor regression.
Clearly, marking to market rather than using self-reported values has a large impact
on risk measures, though using market data to evaluate intermediate values almost
mechanically raises betas. They do not report a standard deviation, though one can
infer from β = 1.4, R2 = 0.49 a standard deviation of 1.4×16/√0.49 = 32%. (This is
for a fund, not the individual projects.) Gompers and Lerner Þnd an intercept of 8%
per year with either the one-factor or three-factor model, though there is an obvious
selection bias in looking at a single, successful group. Reyes (1990) reports betas
from 1 to 3.8 for venture capital as a whole, in a sample of 175 mature venture capital
funds, however using no correction for selection or missing intermediate data.

Discount rates applied by VC investors might be informative, but the contrast
between high discount rates applied by venture capital investors and lower ex-post
average returns is an enduring puzzle in the venture capital literature. Smith and
Smith (2000) survey a large number of studies that report discount rates of 35 to
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50%. However, this puzzle depends on the interpretation of �expected cash ßows.� If
you discount the projected cash ßows of a project at 50%, assuming success, but that
project really only has a 0.83 (1.25/1.5) chance of success, you have done the same
thing as discounting true expected cash ßows at a 25% discount rate.

2 Overcoming selection bias

To understand the basic idea for overcoming selection bias, suppose that the under-
lying value of a venture capital investment grows with a constant mean of 10% per
year and a constant standard deviation of 50% per year.

The fact that we only observe a return when the Þrm goes public is not really a
problem. If the probability of going public were independent of the project�s value,
simple averages would measure the underlying return characteristics. Projects that
take two years to go public would have an average return of 2 × 10% = 20% and a
variance of 2× 0.502; projects that take 3 years to go public would have an average
return of 3× 10% = 30% and a variance of 3× 0.502 and so forth. Thus, the average
of (return/time to ipo) would be an unbiased estimate of the expected annual return
and the average of (return2/time to ipo) would form an unbiased estimate of the
variance of annual returns1.

However, projects are much more likely to go public when their value has risen.
To understand the effects of this fact, suppose that every project goes public when
its value has grown by a factor of 10. Now, every measured return is exactly 1,000%.
Firms that haven�t reached this value stay private. The mean measured return is
1,000% with a standard deviation of zero. These are obviously wildly biased and
optimistic estimates of the true mean and risk facing the investor!

In this example, we could identify the parameters of the underlying distribution
by measuring the number of projects that go public at each horizon. If the true
mean return is higher than 10%, or if the standard deviation is higher than 50%,
more projects will exceed the 1,000% threshold for going public in the Þrst year.
Since mean grows with horizon and standard deviation grows with the square root of
horizon, the fractions that go public in one year and two years can together identify
the mean and the standard deviation. Observations at many different time periods
add more information.

In this example, observed returns tell us nothing about the underlying rate of
return, but they do tell us the threshold for going public. The fraction that go public
or out of business then tell us the properties of the underlying return distribution.

In reality, the decision to go public is not so absolute. The probability of going

1This statement applies to log i.i.d. returns. Let rt denote the log return at time t. Then the
two-period log return is rt+rt+1; its mean is E(rt+rt+1) = 2E(rt) and its variance is σ2(rt+rt+1) =
2σ2(rt). (i.i.d. implies that there is no covariance term.)
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Figure 1: Probability distribution of returns, (�True value�), probability of going pub-
lic as a function of returns, and observed probability of returns (�Observed value.�)

public is an increasing function of the project�s value. Figure 1 presents a numerical
example that illustrates what happens in this case. The underlying value is normally
distributed, graphed in the solid line. The dashed line graphs the probability of
an ipo given the return, and rises as the Þrm�s value rises. Multiplying the solid
distribution of true values with the dashed probability of going public given value gives
the probability of observing each return, indicated by the solid line with triangles.
While the true mean return is 10%, the mean of the observed return is 40%! You
can see that the volatility of observed returns is also less than that of true returns,
though not zero as it is when all projects go public at the same value.

In this one-period setting, there is really no way to separately identify the underly-
ing value distribution from the probability of going public given value. The �Observed
value� line in Figure 1 could have been generated by a true distribution with a 40%
mean and a ßat probability of ipo given value. However, our data has an extensive
time dimension. By watching the shape of such return distributions as a function
of the return horizon, and by watching the fraction of Þrms that go public or out of
business at each horizon, we can separately identify the true return distribution from
the function that selects Þrms for ipo.

In a sample without selection bias, the mean and variance of returns keep growing
with horizon. In the simple example, the selection-biased return distribution is the
same�a point mass at 1,000%�for all horizons. With a smoothly increasing probability
of going public, the return distribution will initially increase with horizon, but then
will settle down to a constant independent of horizon. This pattern is the signature
of a selected sample, and we will see it in the data. This pattern characterizes the
economic risks as well. The risk facing a VC investor is as much when his return will
occur as it is how much the return will be.
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3 Data

The basic data on venture capital investments come from the VentureOne database.
VentureOne collects information on Þnancing rounds that include at least one venture
capital Þrm with $20 million or more in assets under management. I use this data from
its beginning in 1987 to June 2000. VentureOne provides the date of the Þnancing
round, the amount raised, the post-round valuation of the company, the VC Þrms
involved, and various Þrm-speciÞc characteristics (industry, location, etc.). They also
include a notation of whether the company has gone public, been acquired, or gone
out of business, with the associated date of any such event.

VentureOne claims that their database is the most complete source for this type
of data, and that they have captured approximately 98% of such Þnancing rounds
for 1992 through the present. Therefore, the VentureOne database mitigates a large
source of potential selection bias in this kind of study, the bias induced by only
looking at successful projects. However, the VentureOne data is not completely free
of survival bias. They sometimes search back to Þnd the results of previous rounds,
(rounds that did not involve a VC Þrm with $20 million or more in assets). Gompers
and Lerner (2000, p.288 ff.) discuss this and other potential selection biases in the
database.

The VentureOne data does not include the Þnancial result of a public offering,
merger or acquisition. To compute such values, we used the SDC Platinum service
Corporate New Issues databases. We used this database to research the amount raised
at ipo and the market capitalization for the Þrm at the offering price. For companies
marked as ipo by VentureOne but not on the SDC database, we used MarketGuide
and other online resources.

To compute a return for acquired Þrms, we used the SDC platinum service Merg-
ers and Acquisitions (M&A) database. We found the total value of the consideration
received by companies that underwent a merger or acquisition, according to the Ven-
tureOne database. In some instances, even if the company was matched to the SDC
M&A database, no valuation information was available for the consideration received.
Transactions involving private companies are less likely to be reported to the public.

Using these sources, the basic data consist of the date of each investment, dollars
invested, and value of the Þrm after each investment. The VentureOne data do not
give the number of shares, so we infer the return to investment by tracking the value
of the Þrm after investment. For example, suppose Þrm XYZ has a Þrst round that
raises $10 million, after which the Þrm is valued at $20 million. We infer that the VC
investors own half of the stock. If the Þrm later goes public, raising $50 million and
valued at $100 million after ipo, we infer that the VC investors� portion of the Þrm is
now worth $25 million � 1/2 of the value of the pre-ipo outstanding stock. We then
infer their gross return at $25M/$10M = 250%. We use the same method to assess
dilution of initial investors� claims in multiple rounds.

The VentureOne database does not always capture the amount raised in a speciÞc
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round, and more often the post-round valuation for the Þrm is missing. In such
instances, we are unable to calculate a return for the investors in that round, as well
as the return for any investors of prior rounds for the Þrm. The estimation includes
a correction for bias induced by this selection.

4 Characterizing the data

Before proceeding with a formal estimation, I describe the data. I establish the
stylized facts that drive the estimation, especially the fraction of rounds that go public,
are acquired, or go out of business as a function of age, and the distribution of returns
to ipo or acquisition as a function of age. I check that some of the simpliÞcations of
the formal estimation are not grossly violated in the data, in particular that the size
of projects is not terribly important, and that the pattern of ipo and exit by age is
roughly stable over time.

I take a Þnancing round as the basic unit of analysis. Each Þrm may have several
rounds, and the results of these rounds will obviously be correlated with each other.
I discuss this correlation where it affects the results.

4.1 The Fate of VC investments

Table 1 panel A summarizes the data.

A. Basic Statistics
Total number of Þnancing rounds 16852
Number of companies 7765
Average rounds/company 2.17
Percentage rounds with return 31
Total money raised ($M) 114,983

B. Percent of rounds in various exit categories
Rounds Money

Return No return Total Return No return Total
data data data data

Ipo 16.5 5.3 21.7 19.7 4.2 24.0
Acquisition 5.7 14.4 20.2 4.4 8.7 13.1
Out of business 8.9 0 8.9 4.6 4.6
Remains private 0 45.5 45.5 50.0 50.0
Ipo Registered 0 3.7 3.7 8.3 8.3

Table 1. Characteristics of the sample. �Return data� denotes the
percentage of rounds for which we are able to assign a return; �No return
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data� denotes the percentage of rounds for which we are not able to assign
a return; for example due to missing or invalid data. The sample extends
from January 1987 to June 2000.

We have nearly 17,000 Þnancing rounds in nearly 8,000 companies, representing
114 billion dollars of investments. Table 1 panel B summarizes the fate of venture
capital Þnancing rounds. Of 16852 rounds, 21.7% result in an ipo and 20.2% result in
acquisition. Unfortunately, we are only able to assign a return to about three quarters
of the ipo and one quarter of the acquisitions. Often, the total value numbers are
missing or do not make sense (total value after a round less than amount raised), or
the dates are missing or do not make sense. 8.9% go out of business, 45.5% remain
private and 3.7% have registered for but not completed an ipo. Obviously, we have
no returns for these categories.

Weighting by dollars invested can yield a different picture. For example, large
deals may be more likely to be successful than small ones, in which case the fraction
of dollars invested that result in an ipo would be larger than the fraction of deals
that result in an ipo. The �Money� columns of Table 1 panel B show the fate of
dollars invested in venture capital. The fraction of dollars that result in ipo is very
slightly larger than the fraction of deals, though the fraction of dollars that results
in acquisition is slightly lower. Overall, however, there is no strong indication that
the size of the investment affects the outcome. This is a fortunate simpliÞcation, and
justiÞes lumping all the investments together without size effects in the estimation to
follow.

Figure 2 presents the cumulative fraction of rounds in each category as a function
of age. By 5 years after the initial investment, about half of the rounds have gone
public or been acquired. After this age, the chance of success decreases; more and
more rounds go out of business, and the rate of going public or acquisition slows
down2.

One naturally wonders whether age alone is the right variable to track the fortunes
of VC investments. Perhaps the fate of VC investments also depends on the time that
they were started. For example, the late 90s may be a time in which VC investments
prosper to ipo unusually quickly. To examine this question, Figure 3 presents the exit
probabilities of Figure 2, broken down by date of the initial VC investment.

Figure 3 suggests that things are happening a bit faster now. Any given percentile
of Þrms that go public or are acquired happens about one year sooner in the later
subsamples than in the earliest subsample. But this is not just better fortune for VC
investments. The fraction that are out of business at any given age has also risen.

2The lines in Figure 2 are not exactly monotonic, as cumulative probabilities should be, because
the sample is different at each point. For example, the fractions in various states at a 5 year age
must be computed for all rounds that start before 1995, while the fractions in various states at a 3
year age is computed for all rounds that start before 1997. Except for the extreme rightmost points,
where we can only consider the small number of Þrms that started in 1987, however, the lines are
quite smooth, suggesting that merging rounds with different start dates is not a mistake.
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Figure 2: Cumulative exit probabilities as a function of age.

Figure 3: Cumulative exit probabilities as a function of age, for dated subsamples.
The subsamples are 1988-1992, 1992-1995, 1995-1998, and 1998-June 2000. In each
set of lines, the shorter line is the latest sample date. The longest lines show the full-
sample results from Figure 2. The declining lines represent the fraction still private.
The upper set of rising lines represent the fraction going public or being acquired.
The bottom set of rising lines represent the fraction going out of business.

Despite these differences, however, Figure 3 is reassuring that the overall character
of VC investments has not dramatically changed. The basic transition probabilities
as a function of age are reasonably stable across the subsamples, and I will use age
alone as the state variable in estimation that follows.

9



4.2 Returns

Our central question, of course, is the return to VC investments. In this section, I
characterize what we can see � returns when there is an ipo or acquisition. As I
emphasized in the introduction, these are not the ex-ante returns to VC investments,
and they may tell us more about the values that trigger the decision to go public than
they do about the underlying rate of return. However, we have to accurately gauge
how well things go when they do go well, both for its own interest, and since this
is the crucial measurement that I use to calibrate a model that corrects for sample
selection.

Net returns

Figure 4 plots a smoothed histogram of the distribution of net returns. (These
returns are not annualized; annualized returns follow.) For this and the remaining
analysis, I put all investments in together, including multiple rounds in the same
company. Thus, round 1 investment to ipo is one return, and round 2 investment
to ipo in the same company is another return. The next section includes a separate
analysis by round.

Figure 4: Smoothed histogram (kernel estimate) of the distribution of percentage
returns, for Þrms that are acquired or go public.

Figure 4 shows an extraordinary skewness of returns. Most returns are modest,
but there is a long right tail of extraordinarily good returns. 15% of the Þrms that go
public or are acquired give a return greater than 1,000%! It is also interesting how
many modest returns there are. About 15% of returns are less than 0, and 35% are
less than 100%. An ipo or acquisition is not a guarantee of a huge return. In fact,
the modal or �most probable� outcome in Figure 4 is about a 25% return.
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All 0-6 mo. 6m-1yr 1-3yr 3-5yr 5yr+
Number 3595 334 476 1580 807 413

A. Net Returns (percent)
Average 698 306 399 788 942 535
Std. Dev. 3282 1659 881 3979 3822 1123
Median 184 77 135 196 280 209
25-75 Range 521 225 346 508 719 623

B. Log Returns (percent)
Average 108 63 93 114 129 97
Std. Dev. 135 105 118 134 144 147
Median 105 57 86 108 133 1.13
75-25 Range 158 114 125 149 172 189

Table 2. Means and variances of returns when there is an ipo or acquisition. Units
are percent returns, not annualized.

Table 2 assesses the net return distribution numerically. The Þrst column (�All�)
of Table 2 summarizes the entire return distribution, corresponding to Figure 4. While
the modal return (peak of Figure 4) is near 25%, the median is 184%, and the average
return is an impressive 698%. This high average reßects the small possibility of making
an astounding return, combined with the much larger probability of a more modest
return.

The standard deviation of returns reßects huge volatility and the same skewness.
The standard deviation of returns is 3282%. Summing squared returns really empha-
sizes the few positive outliers! The range between the 25% and 75% quantile, like
the median, is a dispersion measure less sensitive to outliers. At 521%, this range is
much lower, but still impressive.

Log returns

The skewness of returns suggests a log transformation. Figures 5 and 6 present the
cumulative distribution of log returns to ipo or acquisition, and Figure 7 presents the
smoothed histogram. The Þgures include a normal distribution calibrated to the mean
and variance of the log return. As you can see, the log transformation does a very good
job of capturing the skewness of returns, and the lognormal distribution is a quite
good approximation to the distribution of actual returns. The actual distribution has
slightly fatter tails than the normal distribution, but the difference is not huge. You
can see this most clearly in Figure 6 which blows up the right tail.

The average log return (Table 2) is 108%, nearly equal to its median of 105%. The
standard deviation of log returns is a large 135%, while the 25% and 75% quantiles
are roughly symmetric about the mean and median. These numbers verify that the
log transformation makes the return distribution quite symmetric. But 108% mean
and 135% standard deviation are still an extraordinary mean and volatility of returns.
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Figure 5: Cumulative distribution of log returns to ipo or acquisition.

Figure 6: Right tail of the cumulative distribution of log returns, together with a
normal distribution Þtted to the mean and variance of log returns.

Which kind of return?

From a statistical point of view, it is clearly better to describe moments of the log
return distribution. However, for portfolio decisions, the expected level or arithmetic
average return and the corresponding standard deviation are the important statistics.
If you form a portfolio composed of fraction w in a VC investment with return Rvc

and fraction 1 − w in a riskfree return Rf , the return of the portfolio RP is given
by wRV C + (1 − w)Rf , with mean E(RP ) = wE(RV C) + (1 − w)Rf and standard
deviation σ(RP ) = wσ(RV C). We cannot make this kind of transformation with the
mean and variance of log returns. Mean-variance portfolio theory also speciÞes the
actual return rather than the log return. Of course, one can easily transform between
the two measures. For example, if the best statistical description is that the log return
is normally distributed with mean µ and variance σ2, then we can compute the actual
or arithmetic mean return as eµ+

1
2
σ2 .
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Figure 7: Smoothed histogram of log returns, together with a normal distribution
Þtted to the mean and variance of log returns.

Returns sorted by age

So far, I have lumped all returns together without consideration of how long it
takes to achieve that return. As we will see, this turns out to be a sensible way to
characterize the data. However, it is important to understand how returns vary by
age of the project. The pattern of returns with age, together with the exit history
depending on age, is the central piece of information I use to overcome the selection
problem that good projects are much more likely to go public. The remaining columns
of Table 2 presents statistics sorted by age, and Figure 8 presents smoothed histograms
of log returns sorted by age categories.

Figure 8: Smoothed histogram of returns to ipo or acquisition, sorted by time between
Þnancing and ipo or acquisition. The leftmost and highest curve is the 0-6 month
category. The older categories correspond to curves with successively lower peaks.
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The distributions in Figure 8 shift slightly to the right, and all the measures
of average returns in Table 2 rise as the time to ipo lengthens, up to the 3-5 year
category. The 5 year plus curve shifts slightly to the left and the average return in
Table 2 decreases. The volatilities also increase slightly as the horizon increases.

However, what is most surprising about both average and volatility is that they
do not increase much faster with horizon. Stock returns are close to independent
over time. Thus, the mean log return should grow linearly with horizon and the
standard deviation should grow with the square root of the horizon. Even when they
do increase, neither mean nor standard deviation grow anything like this fast.

Instead, the pattern of returns sorted by age in Figure 8 and Table 2 shows the
signature of a selected sample. This pattern results if the probability of going public
is small and ßat below a return of about 200%, but then increases smoothly. With an
age below one year, most Þrms cannot build up the 200% return that it takes to make
an ipo likely. Hence, the ipos we see come from the fairly constant and small hazard
of ipo in this value region. Projects that take longer to go public have proportionally
higher and more volatile returns. As time passes, however, more Þrms have the time
to build up the large values that make in ipo more and more likely. At these return
horizons, the return distribution reßects the probability of going public more than it
reßects the underlying character of returns. This fact results in return distributions
that become stable over different horizons. If a Þrm achieves a good return in the Þrst
year, it goes public; we see the good return and then it is removed from the sample.
Most Þrms in the 5 year return distribution did not have a good Þrst year � if they
did, they would have gone public. Thus, Þrms in the 5 year return distribution have
a mean less than 5 times that of the Þrms in the one year distribution.

Betas

Table 3 presents regressions of returns to ipo or acquisition on the S&P500 index
return. Again, these provide an interesting baseline and stylized fact, but do not
measure the return process of the underlying investments until we correct for selection
bias. In fact, the risk facing a VC investor is as much how long the project will take to
reach ipo, as it is how large the eventual return will be, and adverse market movements
may in the end contribute more to delay than to value.

The intercepts (alpha) are huge. The beta for net returns is large at 2.04. This is
an indication that pre-ipo securities are highly risky, in this conventional sense that
they are quite sensitive to market returns. The log returns trim the outliers somewhat,
and produce a much lower beta. The R2 values in these regressions are tiny. Market
returns of 10 or 30% are just a tiny fraction of the risks one faces with 700% average
returns and 3,000% standard deviations! A scatterplot of these regressions would
just be a huge round cloud. This is also why betas are poorly measured. Similar
regressions across horizons do not show much consistency or any interesting patterns.

14



α (s.e.) β (s.e.) R2

All net returns 462 148 2.04 0.83 0.00
All log returns 92 4 0.37 0.07 0.01

Table 3. CAPM regressions, Rt = α + βRmt + εt and lnRt = α +
β lnRmt +εt. Each return to ipo is regressed against the market return for
the same period. α is in percent.

Annualized returns

Figure 9 presents the distribution of annualized returns, and Table 4 presents
corresponding statistics. Obviously, we usually compare returns at different horizons
by annualizing them, so it is natural to try this transformation.

Figure 9: Smoothed histogram of annualized returns, sorted by age category

All 0-6 mo. 6m-1yr 1-3yr 3-5yr 5yr+
A. Net Returns (Percent)

Average 4× 109 4× 1010 2,064 251 54 20
Std. Dev. 2× 1011 7× 1011 881 3,979 3,822 1,123
Median 62 557 211 79 42 18
25-75 Range 156 3,614 697 152 68 35

B. Log Returns (Percent)
Average 72 201 124 64 35 15
Std. Dev. 148 371 165 81 40 24
Median 48 188 114 58 35 17
75-25 Range 86 337 172 80 48 29

Table 4. Means and variances of annualized returns.
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The mean and volatility of annualized returns decline sharply with horizon. Com-
paring annualized returns with actual returns you can see that the actual returns are
much more stable across age categories than are the annualized returns�exactly the
opposite of the pattern you should observe for an unselected sample. In an unselected
sample of i.i.d. returns, the mean annualized log return should be the same for dif-
ferent horizons. Seeing Table 4, it should now be clear why I summarize the return
to ipo data by returns that are not annualized.

The annualized return distribution is extremely skewed. The mean annualized re-
turn is 4×109%, with standard deviation 2×1011%, though the median and interquar-
tile range are a sensible 62% and 159%. Again, this represents a small probability
of a few extremely large returns. Furthermore, the extreme annualized returns result
from a sensible return that occurs over a very short time period. If you experience a
mild (in this data set) 100% return, but that happens in two weeks, the result is a
100× (224 − 1) = 1. 67× 109 percent annualized return. You can see this pattern in
the breakout of annualized returns by horizon; the extremes happen all at the short
horizons.

Some of these huge annualized returns may result from measurement error in the
dates. 3 observations have ipo dates before investment dates, and there are several
more with ipo dates one or two months after investment dates. Since they imply such
huge annualized returns, I trim all observations with ipo less than two months after
Þnancing, and I focus the analysis on the distribution of actual rather than annualized
returns, which are less sensitive to measurement errors in the dates.

5 Maximum likelihood estimates

5.1 Maximum likelihood estimation procedure

My objective is to estimate the mean, standard deviation, alpha and beta of venture
capital investments, correcting for the selection bias that we do not see returns for
projects that remain private. To do this, we have to write a model of the probability
structure of the data � how the returns we do see are generated from the underlying
value process and the decision to go public or out of business.

Let Vt denote the value of the Þrm at date t. I model the growth in value as
a lognormally distributed variable with parameters µ and σ. These are the central
parameters we want to learn about.

ln
µ
Vt+∆
Vt

¶
�N(µ∆,σ2∆). (1)

I normalize each project to an initial value of 1. I use a time interval ∆ = three
months.
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Each period, the Þrm may go out of business, go public, or be acquired. k denotes
the lower bound on value. If Vt ≤ k, the Þrm goes out of business, for sure:

Pr(out of business|Vt) =
(
0 Vt > k
1 Vt ≤ k . (2)

A lognormal process such as (1) never reaches a value of zero, so we must envision
something like k if we are to generate a Þnite probability of going out of business. I
interpret k as a level of leverage or debt. It can also be interpreted as a cutoff rule
by investors; they give up and go out of business when value reaches k.

If the Þrm remains in business, it may go public or be acquired. I do not distinguish
the two outcomes in the estimation. The probability of going public is an increasing
function of value. I model this probability as a logistic function,

Pr(ipo|Vt, Vt > k) = 1/(1 + e−a(ln(V )−b)) (3)

This function rises smoothly from 0 to 1 as value increases. (See Figure 10.)

In either of these cases, the Þrm is removed from the population of Þrms still in
the sample. The probability of being removed is

Pr(removed|Vt) =
(
1/(1 + e−a(ln(V )−b)) Vt > k

1 Vt ≤ k . (4)

Thus, the probability of having value Vt+∆ at the beginning of period t+∆ is

Pr(Vt+∆) =
Z
dVt Pr(Vt+∆|Vt) [1− Pr(removed|Vt)] Pr(Vt) (5)

and Pr(Vt+∆|Vt) is given by the lognormal distribution of (1).
We do not have valid observations on all out of business Þrms, since some of the

dates are wrong. Thus,

Pr (out of business at t, see) = c× Pr (out of business at t). (6)

I estimate c directly as the fraction of out of business rounds with valid data. We do
not have valid observations on all of the ipo/acquired either. Thus,

Pr(ipo at t, value = Vt, see) = d× Pr(ipo at t, value = Vt) (7)

I estimate d directly as the fraction of ipos and acquisitions with valid data.

Now, for given parameters {µ,σ, k, a, b, c, d} I can recursively calculate the prob-
ability distribution of values and dates for out-of-business and ipo exits, and the
probability of reaching any given age still private with value Vt. I set up a grid of log
values, and initialize all probabilities to zero except at value = 1. Using (1), I Þnd
the probability of entering period 1 at each value gridpoint. Then, using (2) and (3)
and (6) and (7) I Þnd the probability of observing an ipo or bankruptcy in period
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1, and the probability of having had in ipo or bankruptcy but generating bad data.
Now, using (5), I Þnd the probability of entering period 2 at each point on the value
grid, and so on.

Having found the probabilities of all possible events, I loop through the data
to compute the likelihood function. The sample consists of observations of venture
capital Þnancing round. Each round results in one of the following categories:

1. Ipo/acquired with good data.

2. Ipo/acquired with good dates but bad return data.

3. Ipo/acquired with bad dates and return data.

4. Still private. Age = (end of sample) - (investment date).

5. Out of business, good exit date.

6. Out of business, bad exit date.

Based on the above structure, for given parameters {µ, σ, k, a, b, c, d}, we can
compute the probability of seeing a data point in any one of these categories. Taking
the log and adding up this probability over all data points, we obtain the likelihood.
For �bad data� observations, I take the corresponding cumulative probabilities. For
example, for the second category, I take the probabilities that the Þrm goes public
at date t, we do not see data, and value = Vt, and sum over values. For the third
category, I sum over all dates with ages less than (end of sample) - (investment date)
as well.

The return to equity if there is an ipo is

Ret = max

Ã
Vt − k
1− k , 0

!
(8)

The return to equity if the Þrm goes out of business is zero (even if Vt < k). I use
this concept of equity return in the data � when a Þrm goes public, I use 8 to infer
the value of Vt from the returns to shareholders.

Estimates of alpha and beta

To estimate a regression model, I specify

ln
µ
Vt+∆
Vt

¶
= γ + lnRft+∆ + δ(lnR

m
t+∆ − lnRft ) + εt+∆; εt+∆�N(0,σ2) (9)

in place of (1). This is like the CAPM, but in log returns rather than levels of returns.
I derive the parameters of the CAPM in levels implied by (9) below.

To estimate (9), I group all investments according to the quarter in which they
are made. Then, I use the observed time series of Rmt and R

f
t to Þnd the probability
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of returns, ipos, out of business etc., for investments that start on that date, i.e.
for investments that have that particular experience of market return and interest
rate. Each quarter of start date requires a different simulation, so maximizing the
likelihood function takes much longer, and requires a coarser value grid. For this
reason, I separately report estimates of just mean and standard deviation, and then a
smaller number of estimates with alpha and beta as well. (We could avoid a separate
simulation for each investment date if the probability of going public depended only
on the cumulated residual return ε. However, this seems unrealistic � Þrms seem to go
public on the heels of large market return movements as well as after large individual
increases in value.)

Comment on identiÞcation

You don�t get something for nothing, and the apparent ability to separately iden-
tify the probability of going public and the parameters of the return process does
come by imposing assumptions.

Most importantly, I assume that the function Pr(ipo|Vt) is the same for Þrms of
all ages t. If you double the initial value in a month, you are just as likely to go public
as if it takes 10 years to double the initial value. This is surely unrealistic at very
short and very long time periods. One might want to have a different function for each
age of Þrm, but then we are basically back to the static problem in which we can only
identify the return from the selection probability by functional form assumptions.

I also assume that the return process is independent over time. One might specify
that value creation starts slowly and then gets faster, or that betas change with size,
but identifying these tendencies (and separating them from a direct age effect) will
be difficult. The returns on publicly traded Þrms are far from predictable, so this is
probably a less questionable assumption.

The simulation also assumes speciÞc functional forms for the return distribution
and probability of ipo and bankruptcy. I suspect that this is not a central assumption,
but the programs already take so long to run that nonparametric or more loosely
parameterized estimates are not feasible.

5.2 Estimates and interpretation

5.2.1 Mean and standard deviation

Table 5 presents maximum likelihood parameter estimates. Table 5 includes standard
errors for the mean return µ, which are the only interesting ones. Table 6 includes
the remaining standard errors, which are all tiny. I discuss alphas and betas in the
next section.

The central parameters are the mean and standard deviation of returns. The
mean log return is 5.2%. Compared to mean log returns of 100% or more in the

19



selected sample, accounting for sample selection has a dramatic effect. To put these
numbers in perspective, Table 5 includes the mean and standard deviation of the
S&P500 index over the sample period. The mean log return of the VC investments
was roughly half of the mean log S&P500 return over this sample. (The Jan 87-June
2000 sample covers the entire period of the VentureOne data. However, most of the
VC investments are concentrated in the later part of this period, so I present the Jan
91-June 200 S&P index return as a more relevant comparison. This time period was
amazingly good for publicly traded stocks.)

The standard deviation of log returns is quite large, 98%; much larger than the
roughly 10% standard deviation of the S&P500. These are individual stocks, and so
we expect them to be quite volatile compared to a diversiÞed portfolio such as the
S&P500. The volatility of individual large publicly traded stocks is typically 50%,
and values as high as 93% are not uncommon for small growth NASDAQ stocks.
Keep in mind also that the 93% standard deviation is the annualized instantaneous
standard deviation. It may be easier to digest as 93/

√
365 = 4.9% per day.

The major effect of the high volatility is to give VC investments a surprisingly
high arithmetic mean return. The mean arithmetic return is a whopping 56.9%, with
standard deviation of 119%. To get the CAPM to explain such a high mean arithmetic
return, using a 5% interest rate, we would need β = (56.9− 5)/(17.6− 5) = 4.1
The leverage parameter k is about 5.4%. Whether interpreted as actual leverage,

or the decline in value necessary for investors to give up, this is a low number, but
reasonable. These Þrms do not in fact have much debt, and VC investors are likely
to hang in there and wait for the Þnal payout.

All of the standard errors are calculated from the second derivatives of the likeli-
hood function. The standard error of the mean return is the only interesting case, as
the others are all tiny compared to their estimates. The mean return appears to be
quite well measured. However, I have not accounted for any cross-correlation in the
returns�this standard error treats each of the 16720 Þrms as independent observations.
This deÞciency does not bias the estimates, but it may result in optimistic standard
errors. One source of correlation is that there are several rounds in each Þrm; I address
this issue by breaking out the separate rounds below. The most important other ele-
ment of cross-correlation is likely the dependence on common components, including
the market return and returns on other factor portfolios (small stocks, growth/value,
industry averages, etc.). The standard error of the mean market return is the subject
of an entire literature; reasonable estimates of the equity premium range from 2% to
over 10%, even given a hundred years of data. Thus, to the mean return in Table 5,
add or subtract your ideas about how the ex-post market return in the last 10 years
has diverged from the true mean return; to the standard error add your ideas of the
uncertainty in the mean market return. Finally, modeling simpliÞcations are likely a
much larger source of uncertainty than econometric details.
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S&P500 Industries Financing rounds
All 87-00 91-00 Health Info Retail Other 1 2 3 4

µ 5.17 15.7 17.6 11.0 5.12 -3.03 7.76 7.88 5.09 6.52 2.20
std. err 0.66 3.13 3.13 0.62 0.90 2.51 1.58 0.99 1.20 1.30 2.32
σ 98.0 11.3 9.4 49.8 108 122 45.6 105 98.2 76.9 80.3
E(R) 56.9 17.2 19.7 24.1 69.1 77.4 18.6 68.6 57.0 37.7 36.0
σ(R) 119 13.0 11.3 53.6 137 160 48.4 133 119 87.33 91.2
k (%) 5.4 33.2 3.6 2.6 33.2 3.6 5.4 14.9 12.1
a 0.92 1.02 0.97 0.70 1.03 1.05 1.14 1.14 1.11
b 4.17 3.78 3.96 5.7 3.78 4.24 3.45 3.10 2.82
c 0.95 0.96 0.94 0.96 0.94 0.93 0.97 0.98 0.96
d 0.52 0.54 0.53 0.46 0.27 0.41 0.54 0.63 0.68
N 16720 3917 9232 3129 442 7720 4494 2455 1236

Table 5. Maximum Likelihood estimates. µ and σ describe the under-
lying growth of value, ln

³
Vt+1
Vt

´
�N(µ, σ2). I report 400 × µ and 200 × σ

so the units are annual percentages. E(R) and σ(R) describe the corre-
sponding level rather than log return, E(R) = 400× (exp(µ+1/2σ2)− 1)
and σ(R) = 200 ×

³
E(R)

√
eσ2 − 1

´
. k is the cutoff value at which

the project goes bankrupt, and can be interpreted as the value of debt;
the project goes out of business when Vt ≤ k. a and b describe the
probability of going public (or being acquired) as a function of value,
Pr(ipo|Vt, Vt > X) = (1 + e−a(V−b))−1. c is the fraction of out of business
Þrms for which we have good data, and d is the fraction of ipo/acquired
Þrms for which we have good data. �Health� includes Biopharmaceuti-
cals, Healthcare, Medical Devices, Medical IS and Other Medical. �Info�
includes Communications, Electronics, Information Services, Other IT,
Semiconductors and software. �Retail, svc.� includes Consumer Prod-
ucts, Consumer Services, Retailers.

All Health Info Retail Other 1 2 3 4
σ 1.0 1.3 1.4 3.5 3.6 1.7 1.7 1.8 3.2
k 0.3 1.8 0.3 0.5 4.4 0.4 0.5 1.2 2.0
a 0.02 0.06 0.02 0.01 0.21 0.03 0.04 0.07 0.09
b 0.08 0.18 0.08 0.08 0.68 0.10 0.11 0.16 0.21

Table 6. Standard errors for estimated parameters other than µ.

21



Graphical comparison with the data

Figure 10 presents the estimated probability of going public each quarter as a
function of value. When the Þrm has it has increased in value by e3 = 20, the
Þrm has about 30% chance of going public each quarter, or a 61% chance of going
public in a year, which seems sensible. However, the function is actually quite ßat; the
horizontal axis covers the entire range of possible returns. A log value of 6 corresponds
to a 100× (e6 − 1) = 40, 243% return. This ßatness is necessary to generate the wide
dispersion we see in returns to ipo. If every Þrm went public the moment its value
increased by 20, then the standard deviation of returns to ipo would be zero, not
3,000%.

Figure 10: Estimated probability of going public as a function of log value. Log value
is expressed in percent units, i.e. 100× log value.

Figure 11 presents the model�s predicted probability that a project will wind up
in various exit states as a function of its age. Comparing this graph with Figure 2,
you can see that the model tracks the corresponding age proÞles in the data quite
well.

Figure 12 presents the model�s predictions for the distribution of log returns at
ipo/acquisition, sorted by age category. The most peaked curve is a 3 month horizon.
The curves march to the right at 6 month, 9 month, and then 1, 2, 3, ...14 year
horizon. You can see that the mean return and standard deviation of return initially
increase with horizon, but then the returns settle down to a constant distribution
independent of horizon.

There are two offsetting effects. If the probability of going public were not a
function of value, then the return distribution would shift to the right and spread
out with horizon. This is the dominant effect for short horizons. As you can see
in Figure 10, in the value range between -100% and 100%, the probability of going
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Figure 11: Cumulative probability of various exit states as a function of investment
age. For example, the �ipo� line gives the chance of going public or being acquired
on or before the age given on the horizontal axis.

Figure 12: Model�s predictions for the distribution of log returns to ipo/acquisition.
Each curve represents one horizon. The highest curve gives the distibution of returns
for projects that end one quarter after beginning. Marching down and to the right,
the curves are at 6 months, 9 months, and then 1,2,3,...14 year horizons.

public is not a strong function of value. Thus, we essentially see the underlying value
process here without a strong selection bias. However, once the value has time to
build up to the levels 200%-400% that make an ipo increasingly likely in Figure 10,
then the return distribution is dominated by the probability of going public. The
distribution of returns to ipo approaches a constant, independent of horizon, as the
horizon lengthens.
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Comparing Figure 12 with Figure 8, you can see that the model does an excellent
job of matching the return distributions, both quantitatively and qualitatively. The
modal 3 year log return is about 150%, just as in Figure 8. This graph conÞrms that
it is entirely consistent to have such a low (5.2%) average growth of log value, while
typical returns to ipo are very large.

Industry breakdown

The middle set of columns of Table 5 present the same estimation broken down by
industry category. Interestingly, the health (including biotech) industry generated a
higher mean log return and lower standard deviation than the information technology
sector. However, the higher standard deviation for IT gives it a much larger arithmetic
mean. Part of the difference between health and IT comes from the larger out of
business cutoff k in the health sector. ML Þnds it better to match the lower tail
with a higher cutoff than with higher volatility and a lower cutoff. Retail has an
even lower�actually negative�geometric mean, but an even larger standard deviation,
giving it the largest arithmetic mean return in the group. As the level of the arithmetic
mean comes almost entirely from the volatility rather than the geometric mean, so
differences in arithmetic means come almost entirely from differences in volatility.

The a and b parameters governs the location of the probability of going public. a is
always near one. As b increases, the curve plotted in Figure 10 ßattens. Interestingly,
the retail industry decisions to go public seem a much less sensitive function of value
than are the other industries.

Financing round breakdown

The Þnal set of columns in Table 5 break the estimation down by Þnancing round.
It is interesting to see if Þrst, second, third, etc. rounds have different characteristics.
In addition, this breakdown allows us to examine one source of statistical problems,
the correlation of returns across rounds in the same Þrm.

The mean log returns decline in subsequent rounds, though this pattern is on the
borderline of signiÞcance. The volatility declines as well; the lower volatility means
that the average arithmetic return falls. The bankruptcy point k. This does suggest
that later rounds are �less risky� than initial rounds.

The b parameter decreases dramatically as we move to later rounds.

It may be reasonable that later rounds are �more mature� projects, so investors
do not stick with them through quite as much initial ill-fortune as they do in the Þrst
round. This also makes a lot of sense: later rounds require a lower increase in value
before going public.

The standard error of the mean in the Þrst round (0.99) is about 1/3 greater than
the standard error of all rounds taken together (0.66), using less than half of the data
points. This suggests that the standard errors calculated ignoring correlation between
multiple rounds in the same Þrm were not orders of magnitude too optimistic.
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5.2.2 Alphas and betas

Table 7 presents maximum likelihood estimates of the market model in logs,

ln
µ
Vt+∆
Vt

¶
= γ + lnRft + δ(lnR

m
t+∆ − lnRft ) + εt+∆.

I used three reference portfolios, the S&P500, the Nasdaq and the smallest Nasdaq
decile. While the latter models are not a CAPM, we can use them to compare the
performance of private equity to a portfolio of comparable publicly traded stocks. Ta-
ble 8 presents the less interesting estimates of k (bankruptcy cutoff), a, b (probability
of going public as a function of value). The preferred estimates are marked �End of
sample� in the �Exit date� column. I focus on those Þrst, and explain the difference
later.

Relative to the S&P500, the venture capital investments score a modest regression
intercept γ = −2.7% and regression coefficient δ = 0.80. (Though the simulation is
quarterly, I express all returns as annualized percentages.) Comparing this result
with Table 3, we see that correcting for selection bias makes an important difference.
In Table 3, the regression in logs showed an intercept γ of 92% with a regression
coefficient δ of 0.37. Since the unconditional volatility was so large, it is no surprise
that the residual is large as well, with a 97% standard deviation.

The next three columns of Table 7 give the implied intercept and regression coeffi-
cient for a CAPM in levels. In the continuous time limit, β = δ, but the α intercept is
different from γ, so I report that calculation as αc. If we use a discrete time lognormal
model, both α and β are different from γ and δ, and I report that calculation as αd
and βd. (I derive the formulas in the Appendix.) The major difference between logs
and levels is that the intercepts in levels, α, add 1/2σ2 to the intercepts in logs, γ,
just as arithmetic average returns add 1/2σ2 to the geometric average. As a result,
even though the log intercepts are negative, when we add nearly 1/2 of a nearly 100%
standard deviation to them, we obtain astonishingly large intercepts in levels, around
40%.

The results using the total NASDAQ return and the NASDAQ smallest decile
are surprisingly similar to the results using the S&P500, given that these indices are
rather poorly correlated. The NASDAQ mean return is slightly larger, so, with about
the same beta, the intercepts are slightly smaller.
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Index Exit date γ (s.e.) δ (s.e.) σ (s.e.) αc αd βd
S&P500 End of sample -2.7 (0.8) 0.80 (0.002) 97.3 (2.5) 44.4 47.6 0.88
Nasdaq End of sample -7.1 (1.2) 0.90 (0.02) 95.2 (2.5) 38.0 40.4 0.98
Nasdaq small End of sample -4.3 (1.0) 0.71 (0.02) 96.0 (2.5) 40.8 43.6 0.77
S&P500 On or before 5.3 (1.3) 0.92 (0.04) 91.6 (2.1) 47.5 51.1 1.03
Nasdaq On or before 5.9 (0.9) 1.16 (0.02) 80.4 (3.0) 38.8 41.1 1.29
Nasdaq small On or before 3.5 (0.3) 0.67 (0.02) 90.9 (2.4) 43.7 46.9 0.73
S&P500 As is 6.5 (1.2) -0.38 (0.04) 101.2 (2.4) 58.3 63.5 -0.43

Table 7. Maximum likelihood estimates of the model

ln
µ
Vt+∆
Vt

¶
= lnRft + γ + δ(lnR

m
t+∆ − lnRft ) + εt+∆.

γ, σ and α are presented in annual percentage return units. The param-
eters of the implied CAPM in levels αc, αd, βd are calculated by (11)
(13) (12), presented in the appendix. �End of sample� estimates ignore
out-of-business dates; they calculate the likelihood from the probability
that a Þrm has gone out of business at some point before the end of the
sample. �On or before� estimates treat the out of business date as an
upper bound; they calculate the likelihood from the probability that the
Þrm has gone out of business at some point on or before the reported
out of business date. �As is� estimates treat the out of business date as
real; they use the probability that the Þrm has gone out of business in the
reported quarter.

Index Exit date k(%) s.e. a s.e. b s.e.
S&P500 End of sample 9.8 (0.6) 0.78 (0.03) 4.79 (0.14)
Nasdaq End of sample 10.9 (0.6) 0.76 (0.04) 4.93 (0.16)
Nasdaq small End of sample 9.8 (0.6) 0.82 (0.03) 4.59 (0.11)
S&P500 On or before 18.1 (0.6) 0.50 (0.09) 7.25 (0.61)
Nasdaq On or before 30.0 (0.8) 0.25 (0.06) 14.0 (0.71)
Nasdaq small On or before 16.5 (0.6) 0.65 (0.02) 5.70 (0.11)
S&P500 As is 6.0 (0.3) 0.87 (0.02) 4.33 (0.89)

Table 8. Maximum likelihood estimates of the remaining parameters
for the model described in Table 7. k is the cutoff value for going out
of business, and a and b describe the probability of going public as a
function of value. For all runs, the parameters describing the probability
of observing good data given out of business and ipo/acquisition are c =
0.95, d = 0.51
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Table 9 presents a breakdown of results by Þnancing round. As usual, the log
intercepts are small. Interestingly, the regression slopes δ and β decline uniformly
from near one to near zero as we progress to later Þnancing rounds. Later Þnancing
rounds are much less sensitive to market conditions. The residual volatility also
decreases as we move to later Þnancing rounds. The alphas decline as well, though
some of the decrease in expected arithmetic return for the later Þnancing rounds is
countered by a decreased beta, so the alphas do not decline as much as the expected
returns did. The k cutoffs for abandoning a project increase as they did before;
investors give up earlier on later rounds. Again, this Þnding is linked to the Þnding
of lower volatility.

Round γ δ σ αc αd βd k a b c d
1 0.5 0.89 99.0 49.7 53.7 1.004 9.0 0.98 4.47 0.93 0.41
(s.e.) (1.5) (0.05) (3.0) (0.6) (0.02) (0.07)
2 -4.2 0.70 100.4 46.0 49.4 0.78 8.2 1.06 6.62 0.97 0.54
(s.e.) (1.3) (0.02) (3.5) (0.6) (0.45) (0.13)
3 -0.74 0.38 82.1 32.7 34.6 0.41 16.5 1.01 3.35 0.98 0.63
(s.e.) (2.8) (0.07) (4.28) (1.0) (0.07) (0.21)
4 0.98 0.17 86.8 38.5 41.0 0.18 16.5 0.85 3.57 0.96 0.68
(s.e.) (3.5) (0.12) (3.5) (0.3) (0.11) (0.36)

Table 9. Estimates of the log market model broken down by Þnancing
rounds. The speciÞcation is

ln
µ
Vt+∆
Vt

¶
= lnRft + γ + δ(lnR

m
t+∆ − lnRft ) + εt+∆.

Each case uses the S&P500 return for Rm and three month T bill rate
for Rf . All estimates ignore out of business dates, i.e. calculate the
probability of going out of business on or before the end of the sample.

Stylized facts behind the estimates, and handling the out-of-business dates

The last row of Table 7 and 8 describes the most natural estimate. When a Þrm
goes out of business, I calculate the likelihood in these rows from the probability that
the Þrm goes out of business on the reported date. However, this estimate produces
a negative beta of -0.38! Before accepting this estimate, we need to see what stylized
fact drives it, as well as the more successful estimates.

Figure 13 presents the percentage of outstanding rounds that go public each quar-
ter, together with the previous year�s return on the S&P500. You can see the clear
pattern � Þrms go public in up markets. This pattern should produce a positive beta
estimate�a rising market and a positive beta pushes more Þrms over the edge to ipo.
This fact is behind the positive beta estimate in Table 3, that used only the ipos.
Figure 14 presents the corresponding graph for Þrms that are acquired. Here, the
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pattern is much weaker. Still, the estimate combines acquisitions and ipos, so we do
not see an explanation for a negative beta estimate. Figure 15 presents the fraction
that go out of business. Here we see a surprising pattern. The data record two huge
waves of Þrms going out of business. Furthermore, these waves come on the heels
of positive market returns. In the model, Þrms go out of business when their value
declines below k. This is the stylized fact behind the negative beta estimate.

Figure 16 digs a little deeper and shows the fraction of rounds that go out of
business on or before each date. As the Þgure shows, a large fraction of rounds go
out of business in two weeks, one in February 1995 and one in September 1997. This
looks suspiciously like a data error�did 25% of all venture capital investments made
between 1987 and June 2000 cease operations in a single week in September 1997?
However, conversations with VentureOne have not helped us to track down the story
behind these surprising dates.

We could treat the data on out-of-business dates as an upper bound � the Þrm
went out of business on or before the indicated date. Perhaps VentureOne caught up
with a stock of out of business rounds in two big waves. The �On or before� estimates
of Table 7 and 8 treat the dates in this way. The resulting intercepts are somewhat
higher, changing from about negative 5% to about positive 5%. The volatilities are
still large so the implied intercepts in levels are still huge.

However, we did learn from conversations with VentureOne that when there is no
other date information, they report the out of business date as the last date at which
the Þrm was known to be in business. This suggests that the date is not an upper
bound, so that all we really know is that the Þrm went out of business at some point
in the sample. The estimates marked �End of sample� treat the out of business dates
this way.

It is unfortunate to ignore so much sample information about when a Þrm goes
out of business. In particular, when studies such as this one are extended to the
recent period in which the NASDAQ fell dramatically and a wave of Þrms going out
of business followed, this information will reÞne and possibly change substantially our
estimates of both slopes and intercepts. However, it is clear that a researcher will
have to devote a lot of effort to measuring the dates at which Þrms go out of business
in order to use that information.
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Figure 13: Percentage of outstanding rounds that go public each quarter, and the
previous year�s return on the S&P500.

Figure 14: Percentage of outstanding rounds that are acquired each quarter together
with the previous year�s return on the S&P500
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Figure 15: Fraction of outstanding rounds that go out of business each quarter,
together with the previous year�s S&P500 return.

Figure 16: Percentage of rounds that have gone out of business at each date (solid
line) and percentage of rounds that have gone public at each date (dashed line).
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6 Implications

The mean, variance and intercept of log returns are sensible, but the volatility gives
rise to large arithmetic average returns and alphas. I consider here what this means,
how it could have come out differently, and what it does or does not imply.

Inescapable means, volatility and alphas

Figure 17 shows the distribution of a lognormal with mean log return µ = 0 and
σ = 100%. The mean arithmetic return is 100 × (e1/2 − 1) = 64%. As you can see
though, that mean comes from a very large probability of losing money, and a much
smaller probability of a dramatic gain. VC investments are very much like options.
Volatility is good � it raises the chance of the large payoff, without greatly increasing
the chance of a poor return. You can�t do worse than lose your initial investment.

Figure 17: Distribution of a lognormal return with mean log return µ = 0 and stan-
dard deviation of log return σ = 100%. The vertical line shows the mean arithmetic
return.

With this Þgure in mind, we can think about how the estimates could have come
out differently. One possibility is that we could have estimated a 40 to 50% negative
expected log return. This change would squash the peak of Figure 17 even more to
the left. VC investments do not lose money quite so regularly. Such a process would
lead to far more frequent failures, which is why the ML estimate settles on a higher
value. To check, I started the estimation off with a 50% negative mean log return,
and it came back to the same estimates.

I tried specifying a normal rather than a lognormal distribution, in which case the
arithmetic and geometric averages are the same. This speciÞcation is totally at odds
with the data. There are a few data points with spectacular returns in a short time
period. For example, one round resulted in a factor of 290 increase in value (29,000%)
in 3 months. Such a rare event is possible with a lognormal � ln(290) = 5.6, which
is 11 standard deviations above zero with a quarterly 0.5 standard deviation. But
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such an event is far beyond the range that we can even calculate a probability with
a normal distribution, unless we raise the volatility to thousands of percent. But if
we raise the volatility that much, then half of outstanding projects must go under
each period, and the data do not show this. A lognormal, or even a fatter-tailed
distribution, is necessary to capture occasional dramatic positive returns, and the
limited number of failures in the data.

If volatility had been lower, the arithmetic averages would have come out much
more like the sensible geometric averages. The volatility is identiÞed by the speed with
which projects go either bankrupt or to ipo, as well as by the magnitude of returns
when projects do go public.. To some extent, ML trades volatility for estimates of the
lower bound k. For example, at my initial guess for the bankruptcy point k = 30%,
the best estimate of volatility is about 60% rather than 100%. The higher bankruptcy
point then restores the probability of bankruptcy. However, the overall likelihood,
matching the exit probabilities at all different horizons, is larger if one uses larger
volatility and a much lower cutoff k = 5.4%.

The high volatility estimate is also nearly inevitable given the high mean and
volatility of returns when there is an ipo. The ipo end of the selection bias reduces
the volatility of observed returns compared to true returns. If every Þrm goes public
at a return of 1,000%, then the standard deviation of observed returns is zero, no
matter what the standard deviation of actual returns. In more modest cases such
as Figure 1, the true return distribution gets squashed by the probability of going
public. Thus, the 138% standard deviation of log returns to ipo we saw in the data
will almost surely generate a similar standard deviation in the model. Given this logic,
it is if anything surprising that we recover a volatility estimate lower than 138%. The
estimated probability of going public is a surprisingly slowly rising function of value.
If we estimate or impose a more sharply rising function (for example, by separating
ipos and acquisitions), this will lower measured volatility given underlying volatility,
and thus require an even higher estimate of underlying volatility.

In sum, in order to Þt occasional spectacular returns, the limited fraction that
go out of business, and the large volatility of returns to ipo, the large volatility is
inescapable, the skewed distribution is inescapable, and a dramatically lower mean
log return is quite unlikely. The only other possibility is that beta is really something
like 3 rather than the 1 that I have estimated. Here, having to throw out the date
at which Þrms go out of business is particularly unfortunate. If the true, correctly
measured pattern, shows many failures after market declines, the beta estimate will
be substantially raised. Future studies that have better data and can include the
NASDAQ crash and dot-com shakeout may settle on higher beta estimates.

Portfolios

The portfolio implications of large expected returns and alphas are not so obvious
as they seem initially, because the volatility is so huge.

1. An individual VC investment is not particularly attractive, despite the high
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average returns and alphas. In my sample, the Sharpe ratio of a single VC investment
is approximately half of the S&P500 Sharpe ratio in the same period. Furthermore,
a single VC investment is far from normally distributed, as dramatized by Figure 17.
Sharpe ratios are a bad way to evaluate such investments. A log utility investor ranks
portfolios by E(lnR) directly. The average log return of a single VC investment is
about half that of the S&P500. (Table 5)

2. Adding a single VC investment to a market portfolio does not give a huge
increase in performance, because the residual volatility of VC investments is so large.
To make the point, Figure 18 calculates the in-sample Sharpe ratio of an investment
in the S&P500 and one VC round. The maximum Sharpe ratio occurs with only
4% of wealth placed in the VC Þrm, and is barely higher than the Sharpe ratio of
the S&P500 alone. The reason, of course, is the tremendous volatility of the VC
investment. Even though the alpha is positive, so that an optimal portfolio puts
some weight on the VC investment, as soon as you put any substantial weight on
that investment, portfolio volatility rises dramatically3.

3. Of course the promise of alpha is that a well-diversiÞed portfolio of many high
α investments should yield spectacular results. But now we are on thinner ground. If
the residuals are independent of each other � if E (εiεj) = 0 � then one can achieve
an arbitrarily high Sharpe ratio with a sufficient number of small VC investments.
But we do not know this. I did not estimate any correlation structure between VC
investments. It�s quite possible that there is a strong common component to VC
investments, so that a �well-diversiÞed� portfolio is still quite volatile. In the Fall of
2000, many VC investments went out of business at the same time, and many more
were substantially delayed, all at the same time. The smell of a common component
is there. Furthermore, VC investments have until very recently been quite difficult to
diversify since they were structured as limited partnerships.

4. A venture capital investment is illiquid. If the market goes down, not only will

3I calculated Figure 18 as

Sharpe ratio =
E(Rp)−Rf
σ(Rp)

E(Rp)−Rf = w
£
E(R)−Rf¤+ (1−w) £E(RS&P )−Rf¤

= wE
£
α+ β(RS&P −Rf )¤+ (1−w) £E(RS&P )−Rf¤

wα+ [wβ + (1−w)] £E ¡RS&P ¢−Rf¤
σ(Rp) = σ

£
wR+ (1−w)RS&P ¤

= σ
£
w
¡
α+Rf + β(RS&P −Rf ) + ε¢+ (1−w)RS&P ¤

= σ
£
(1 +w (β − 1))RS&P +wε¤

=

q
(1 +w (β − 1))2 σ2 (RS&P ) +w2σ2 (ε).

I used the numerical values for α and β from Table 7, the values for the S&P return from Table 5
and a 5% risk-free rate.
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Figure 18: Sharpe ratio attained by an investment in the S&P500 and one venture
capital round.

returns be lower, but they may be more delayed. Standard portfolio theory with a
Þxed horizon and/or constantly tradeable assets does not necessarily apply, even if
the alphas are large.

7 Conclusions and extensions

In sum, the selection bias correction neatly accounts for the log returns. It reduces
the mean log return from 100% or more to a sensible 5%; it reduces the intercept in a
log market model from 93% to near zero. However, the huge volatility of log returns
and the market model regression means that arithmetic returns and alphas are still
very large, in the range of 40 to 50%.

There are many ways that this work can be extended, though each involves a
substantial investment in programming and computer time. My model of the ipo
and acquisition process is very stylized�I assumed that ipo, acquisition, and going
out of business were only a function of the Þrm�s value at a point in time. Most
easily, one might separate ipo and acquisition, at the (not insubstantial) cost of two
more parameters. More ambitiously, the decision to go public may well depend on
the market as well as on the value of the particular Þrm. There do seem to be waves
of ipos in �good markets,� high prices relative to dividends, book values or earnings.
While such waves will also raise the value of a particular Þrm, it may be the case that
Þrms are more likely to go public, even given their own values, in high stock markets.
Finally, age and industry effects are likely in all of these decisions.

Multiple risk factors are an obvious generalization, though with this approach
each additional regressor multiplies the simulation time dramatically. Combining the
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two modiÞcations, the risks (betas, standard deviation) of the Þrm are also likely to
change as its value increases, as the breakout by Þnancing round suggests.

The modeling philosophy can be extended to consider multiple rounds in the
same Þrm more explicitly. The probability of needing additional rounds will depend
on value and other parameters, though, so this modiÞcation will also introduce sub-
stantial complexity and extra parameters.

Most importantly, we will only get better results with better data. Establishing
the dates at which Þrms go out of business is important to this estimation procedure.
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9 Appendix

9.1 Details of data selection

Details of the construction of Figures 2 and 3

I removed rounds that ended in ipo, acquisition or bankruptcy if they had missing
dates. I also removed cases in which the end date was earlier than the start date,
cases in which the fate was unknown, and start dates 19870101, which codes for all
values earlier than this date.

To estimate the fractions at, say, a 4 year age, I started with all rounds with a
start date earlier than 4 years before the end of the sample � rounds that had a chance
to achieve the 4 year age before the end of the sample. The fraction out of business
is then the fraction of all these rounds that went out of business at an age less than
or equal to 4 years. For example, a round that started in Jan 1991 and went out of
business in June 1993 would be counted.

There is a selection bias with this measure: only Þrms that go out of business, are
acquired or go public can have bad exit dates; Þrms that are still private cannot be
removed from the sample for bad exit dates, and so are overrepresented. To account
for this bias, I calculated the out of business fraction at, say, 4 years, as

out4 × out ratio
total4 × total ratio

where

out4 = number of rounds that started more than 4 years before the
end of the sample, and went out of business in less than or equal to 4
years
total4 = number of rounds that started more than 4 years before the

end of the sample.
out ratio = number of out-of-business rounds after selections/ number

of out-of-business rounds before selections
total ratio = total number of rounds after selection / total number of

rounds before selection .

I followed the same procedure to reweight the ipo or acquired category. I calculated
the �still private� category as one less the last two categories. The weights do not
make a difference noticeable to the eye in Figures 2 and 3.

Details of return selection

To compute Tables 2-4 and Figures 2-9, I selected the data as follows. I removed
all rounds in which the value information implied that the VC investors owned more
than 100% or less than or equal to 0% of the company. (For example, if $10 million
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is raised, and the post-round valuation is $5 million). I removed observations with
ipo or acquisition less than two months after the Þnancing round date. I eliminated
observations that had missing Þnancing round dates, missing ipo or acquisition dates,
or missing return data. I also removed observations with round date 19870101, which
codes for unknown Þnancing date before this date.

9.2 Logs to levels in the CAPM

This section derives the formulas for αc,αd, βd in Table 7. From the estimated market
model in logs,

ln

Ã
V it+∆
V it

!
− lnRft = γ + δ(lnRmt+∆ − lnRft ) + εit+∆. (10)

We want to Þnd the implied CAPM in levels, i.e.

V it+∆
V it

−Rft = α+ β(Rmt+∆ −Rft ) + vit+∆.

Results. In the continuous time limit, β = δ and σ(ε) = σ(v), but

αc = γ +
1

2
δ (δ − 1)σ2m +

1

2
σ2. (11)

As advertized, the major effect is a familiar 1/2σ2 term. If we model the returns as
lognormals in discrete time, we obtain instead

βd = eγ+(δ−1)(E(lnR
m)−lnRf)+ 1

2
σ2+ 1

2(δ
2−1)σ2m

³
eδσ

2
m − 1

´
(eσ2m − 1) (12)

αd = eln(R
f )
½µ
eγ+δ(E(lnR

m)−lnRf)+ 1
2
δ2σ2m+

1
2
σ2 − 1

¶
− β

µ
e(µm−lnR

f)+ 1
2
σ2m − 1

¶¾
(13)

Algebra for continuous-time limit. We start with the continuous time version of
the log market model,

d lnV =
³
rf + γ

´
dt+ δ

³
d lnPm − rfdt

´
+ σdz

d lnPm = µmdt+ σmdz
m

E(dzdzm) = 0

Substituting,

d lnV =
³
rf(1− δ) + γ

´
dt+ δ (µmdt+ σmdz

m) + σdz

=
³
rf + γ + δ

³
µm − rf

´´
dt+ δσmdz

m + σdz
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Now, we can transform to levels. Using Ito�s lemma,

dV

V
=

d
³
elnV

´
V

= d lnV +
1

2
d lnV 2

=
h
rf + γ + δ
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µm − rf
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dt+ δσmdz
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1

2
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2
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=
µ
µm +

1

2
σ2m

¶
dt+ σmdz

m

Using the latter expression to substitute for dzm,

dV

V
=
·
rf + γ + δ
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δ2σ2m + σ
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´¸
dt+ δ
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or, Þnally,

dV

V
− rfdt =

·
γ +

1

2
δ (δ − 1)σ2m +

1

2
σ2
¸
dt+ δ

Ã
dPm

Pm
− rfdt

!
+ σdz

We see that β = δ, and the errors are the same, but we derive formula (11) relating
the log intercept to the intercept in levels.

Algebra for the discrete-time lognormal calculation. From the model (10), we
want to Þnd the implied regression in levels,

Rt+∆ −Rft = α+ β(Rmt+∆ −Rft ) + εit+∆
where

Rt+∆ ≡ Vt+∆
Vt

.

(It does not matter that the conditional expectation of Vt+∆/Vt is a nonlinear function
of Rm. The CAPM speciÞes the projection or linear regression.) We start with beta,

β =
cov [Rt+∆, R

m]

var(Rm)
.

The denominator is

var(Rm) = E
³
Rm2

´
− [E(Rm)]2

= E
h
e2 lnR

m
i
−
h
E
³
elnR
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eµm+

1
2
σ2m
´2
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2
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2
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³
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2
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´
.

The numerator is

cov (R, Rm) = E [RRm]− E(R)E(Rm) = E [E(R|Rm)Rm]− E [E(R|Rm)]E(Rm)
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Now,
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Putting it all together,
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Continuing for α,
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